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Abstract
The Poisson distribution of event-to-ith-nearest-event radial distances is well known for homo-
geneous processes that do not depend on location or time.Here we investigate the case of a non-
homogeneous point process where the event probability (and hence the neighbour configuration)
depends on locationwithin the event space. The particular non-homogeneous scenario of interest to
us is ion implantation into a semiconductor for the purposes of studying interactions between the
implanted impurities.We calculate the probability of a simple cluster based on nearest neighbour
distances, and specialise to a particular two-species cluster of interest for qubit gates.We show that if
the two species are implanted at different depths there is amaximum in the cluster probability and an
optimumdensity profile.

Introduction

Individual interacting impurity atoms can be important for donor qubit gates, such as that proposed by
Stoneham et al [1], while an important class of theoretical physics problems is produced by theHubbardmodel,
which relies on hopping andmagnetic interactions between neighbours in chains [2]. In the case of donor
impurities in a semiconductor, deterministic placement using scanning probe tips has improved greatly in
recent years, but is currently limited to a small number of species of impurity (principally phosphorus and
arsenic [3] in silicon [4, 5] and germanium [6], andMn inGaAs [7]). Ion implantationmethods can also be used
to create impurity layers in semiconductors withmerits including flexibility with regards to the numerous
available implantable species and far faster device fabrication timeswhich are less costly andmore easily scalable.
Thesemerits clearly come at the cost ofmuch less precision. Given the stochasticity of the donor placement it is
important to look at the effects of the implant distribution on the neighbour-neighbour distances, and hence the
probability of observable interactions. Contemporary work in this area [8] has focused on analytically
understanding the interactions between donors, the dependence these interactions have on donor spacing and
using the results of homogeneous Poisson point process statistics, optimising for these interactions. Herewe
generalise the statistics to include inhomogeneity of the impurities and optimise the event density profiles for a
comparable event cluster definition.We show that in the case of a Gaussian distribution of events (which is a
good approximation of the distribution of impurities after ion implantation) an analytic solution for the non-
homogeneous nearest neighbour distribution exists.We also show that the numerical optimisation involved can
be accelerated by introducing an appropriate heuristic.

Many physical problems involving stochastic probability have been studiedwhichmake use of point process
statistics. They have been used tomodel distributions of events ranging fromplants in afield [9], the locations of
cellular network base stations[10] to the distribution of astronomical bodies[11]. The ability tomodel a
distribution of points in an event space and be able to quantify irregularities such as clustering of points helps
provide an insight into correlations between events and the consequences resulting from such a distribution.
Using thewell understood construct that is the Poisson point process [12, 13], the nearest neighbour
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distribution of an impurity species has been used tomodel optical properties of donors in silicon[14] due to
nearest neighbour interactions and also to calculate the probability offinding large clusters of donors[15] in
homogeneously doped bulk semiconductors.

It is useful to discuss clusters comprising two different species so that wemay expect to detect the effect that
excitation of one of the species has on its interactionwith the other. Species specific control/detectionmight
make use of optical or electronic resonances. It seems reasonable to expect that if density profiles of speciesA and
B are implanted at a different depth thenwe can control the distributions for the A B separation, and by
controlling the peak densities of each profile wemight control the A A and B B separations. It is clear
that if the homospecies separations (i.e. A A or B B) are small comparedwith thewidth of the implant
profile then the likelihood of anA−B interactionwill decrease relative to homospecies interactions and signal
will be lost. This suggests low density sheets are ideal for inter-species interactions. Conversely, if the densities
are very low then the A B separationwill be controlled by the density rather than the separation of the sheets.
There is clearly an optimum to be found. The statistics developed in this work, though applied to the problemof
interacting donor impurities for quantum technology, has been presented so that readers interested in structure
betweenmultiple species of events described by non-homogeneous density distributionsmay easily apply the
ideas contained to their work.

In this workwe analyse the distribution of nearest neighbour (NN) distances existing in a two-species point
process where the density of those species are non-homogeneous in depth.When the event density varies as a
Gaussian profile in one spatial dimension a solution to the distribution of ithnearest neighbours is shown to be
analytically solvable.We have extended the calculation to the probability offinding particularmulti-species
cluster configurations and show that optimising the density profiles in favour of such clusters is a numerically
feasible taskwhichmay be improved by an approximation. The optimised probabilities foundwith the aid of
such an approximationwere checked against those using the analytical solutionwhichwas also supported by
simulation of the deemed optimal doping parameters.

Non-homogeneous Poisson point process

In this sectionwe give some definitions of symbols useful later, and show the relationship between non-
homogeneous and homogeneous Poisson distributions in order to indicate themethod for investigating
neighbour-distances.

If the distribution of events is non-homogeneous, the density n x( ) and the expected number of events
d d=N n x x( ) in the infinitesimal volume dx varies with the location, x. If δN is small then the probability of an
event in dx is equal to δN .Wemay nowfind the probability that there are no events within a larger volumeV by
dividing it up into elemental volumes. The expected number of events inV is

òå d= =
Î Î

N V N n dx x. 1
V

i
Vx x

i

( ) ( ) ( )

Assuming n x( ) is well-behaved, wemay choose the size of the ithelement dx i( ) so that the product dn x xi i( ) is a
constant. The probability of an event within dx i is then the same for every element, and it follows (see appendix
A) that the probability ofm events enclosed in the larger volumeV is given by the probabilitymass function for a
Poisson distribution

= -P m N V N V N V m, exp . 2P
m{ ( )} ( ) ( ( )) ! ( )

It is tempting to try to use theprobability dn x x( ) (of an event in the elemental volume dx around x) to define a
probability density function (PDF). This is best avoided because the probability of an event in a larger volume isnot
given by the integral over that volume ò ¹

Î
n d P Nx x 1,

V Px
( ) { } fromcomparison of equations (1) and (2)

(unlessV andN are very small, obviously). This is due to the fact that the possibility of twoormore events is non-
negligible for a large volume. Later,we shall be concernedwithbothquestions of counting types of events in some
volumewhere an integration like equation (1) is needed, and of theprobability of occupationby specific numbers
of events (0, 1, 2 ormore events etc) in some volumewhere equation (2) is needed.

Previously, clusters of impurities with homogeneous density have been discussed in terms of the distribution
of neighbour-neighbour distance [15]. In order to put our discussion into this context we give the non-
homogeneous case, which follows immediately from equation (2).We define the probability dp r rAx i

( ) that a
point in 3DEuclidean space, = x y zx , ,( ) has its ithnearest event of speciesA at a radial distance between

d +r r r .We shall refer to p rAx i
( ) as the nearest neighbour probability density function (NNPDF). In

previous literature theNNPDF is the precursor towhat is referred to as the ‘void nearest neighbour distribution
function’ [12]which is simply the cumulative distribution of theNNPDF as defined here. The term ‘void’ is used
since there is no event specified at the point x whose neighbour is being found. To calculate theNNPDF,

2

J. Phys. Commun. 4 (2020) 015010 KStockbridge et al



consider the sphereV r x;sphere ( ) centred on x of radius r, and the infinitesimal shell of thickness dr around it.
The probability offinding thefirst nearest event within the shell is equal to the product of the probabilities of
having no events within the sphere and onewithin the shell (since these two conditions are independent):

d d=p r r P N V r Nx0, ;A P A Ax spherei
( ) { ( ( ))} , where the probability of an event in the shell is

d d=N r N V r x;A
d

dr A sphere( ( )). Hence theNNPDF for the ithnearest neighbour is

= -p r P i N V r
d

dr
N V rx x1, ; ; . 3A P A Ax sphere spherei

( ) { ( ( ))} ( ( )) ( )

The distribution around a void can be extended to the distribution for the neighbours around an event by taking
into account the density of events in the infinitesimal volume dx at x.

We can recover the homogeneous results in 3Dbulk doped or perfect 2D delta-doped layers in
semiconductors, etc. For example, in 3Dwe replace n nxA A

D3( ) and so pN V r r nx;A A
D

sphere
4

3
3 3( ( )) , and

pN r n4d

dr A A
D2 3 . Hence all terms in equations (2) and (3) are independent of x andwe obtain the familiar 3D

homogeneous neighbour-neighbour distributions, p p= -p r r n r n4 expA
D

A
D

A
D

x
3 2 3 4

3
3 3

1 ( )( ) . Similarly for

2D p p= -p r rn r n2 expA
D

A
D

A
D

x
2 2 2 2

1
( ) ( ).

Poisson point processwith expectation varying in 1D
In this workwe are particularly concernedwith impurities that have been implanted from the surface.We
therefore specialize to the case with inhomogeneity of event density in only one dimension, specifically when the
density nA is a function of z only. This is the case with broad-area ion implants which produce afinite spread of
penetration perpendicular to the surface and are homogeneous in the plane. The expected number of events per
unit area in d +z z z is dn z zA( ) and the total areal density (equivalent to implant dose) is ò=n n z dzA

D
A

2 ( ) .
Tofind the expected number of events in the sphere of radius r, one integrates over the thin discs perpendicular
to z (which have constant density). For a sphereV r z;sphere ( ) of radius r centred on = zx 0, 0,( ) equation (1)
becomes,

ò p= ¢ - ¢ - ¢
¢Î

N V r z n z r z z dz; 4A
z V r z

Asphere
;

2 2

sphere

( ( )) ( ) [ ( ) ] ( )
( )

where the limits of the integral are such that the area in the square brackets is positive, i.e. from z−r to z+r.
Differentiating under the integral sign,

òp= ¢ ¢
¢Î

d

dr
N V r z r n z dz; 2 5A

z V r z
Asphere

;sphere

( ( )) ( ) ( )
( )

for use in equation (3).

Neighbour separationswithGaussian density profiles
In the case of Gaussian density profiles which are reasonable approximations for typicalmono-energetic
implants, p= -- -n z n d z dexpA A

D
A A

2 1 2 1 2 2( ) ( ), where d 2A is the r.m.s. thickness of the density profile.When
substituted into (3) for i=1 this gives the analytical solution for the probability of afirst nearest event within

d +r r r measured froma starting point at depth z and hence theNNPDF:

p
p

z z p= - + + - +z
x x

z +
-

-
-- +p r n S r

n
d e e S d r zexp

4
2 2 2 6z A A

D A
D

A A
2

2 1 2
2 2 2 2

i

2 2( ) [ ( ) ( )] ( )

where

z z

z

= +

=


z + -



S

r z

d

erf erf

.
A

( ) ( )

Having found theNNPDFwe can further give the number ofA atoms (per unit area) between d +z z z
with an ithnearest neighbourAwithin the range d +r r r , which is

d d d d= ´ n r z r z p r r n z z, 7A A z A Ai i
( ) ( ) ( ) ( )

since the density ofAʼs at z and the probability density for the surroundingAʼs are independent. This is easily
generalized to amultiple species situation: the density ofAʼs (per unit area) at zwith an ithnearest speciesB
neighbour at r is

= n r z p r n z, . 8A B z B Ai i
( ) ( ) ( ) ( )

While theNNPDF p rXx i
( ) is a 1D function, n r z,A Xi

( ) is a two-dimensional surface; the ithnearest neighbour
density surface (NNDS).

3

J. Phys. Commun. 4 (2020) 015010 KStockbridge et al



Since nA(z) is analytical, theNNDS n r z,A Bi
( ) is also analytical. Itmay be normalized easily since

ò ò ò= =
=-¥

¥

=

¥
 =-¥

¥
p r n z drdz n z dz n

z r z B A z A A
D

0

2
i
( ) ( ) ( ) : figure 1 shows n r z n,A B A

D2
i
( ) whereby the two

Gaussian density profiles for n zA B, ( ) have a unit separation in depth, and each has an r.m.s width of 1 2 i.e.
= =d d 1A B unit of length, and unit height i.e. p p= =- - - -n d n d 1A

D
A B

D
B

2 1 2 1 2 1 2 1 inverse volume units.

From figure 1 the fraction ofAʼs with an ithnearestB between d +r r r is ò d
=-¥

¥
n r z dz r n,

z A B A
D2

i
( ) .

Referring tofigure 1 this is equivalent to integrating over horizontal slices or projecting onto the r-axis. The
probability of, say, thefirst nearest neighbourB having a separation of 1 unit from anA can be optimised by
varying the separation and density of the layers. In the next sectionwe consider the effect of adding constraints
on the next nearest neighbours.

Density of specific cluster configurations

The total number of useful clusters,Ngood, is a question of counting events andmay be found from an
integration like equation (1). The number of useful clusters in the elemental volume dx around x is given by the
number ofAʼs in the elemental volumemultiplied by the probability that each is part of a useful cluster,

dn Px x Good ClusterA Ax( ) { }. Hence the total is

Figure 1.Nearest NeighbourDensity Functions (NNDFs) describing the distribution ofAʼs ithnearestBneighbours. The impurity
density profiles for bothA andB species are Gaussian (lower panel). In the upper panel, the colour scale gives the normalized density

n r z n,A B A
D2

i ( ) , such that the number ofAʼs within the depth range d +z z z with an ithnearestB at a radial distance
d +r r r is d dn r z r z,A Bi ( ) . The centre ofmass of theNNDF for i=1 has a z position close to the peak of theA density and an r

position defined by the depth separation between theA andB layers. As expected, the 20th nearest neighbours are further away than
the 1st nearest. Vertical slicesmay be used to find the expected distance to aB forAʼs of specific depth, and integrating horizontal slices
(projecting onto the r axis) produces the total probability density irrespective of the depth ofA.
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ò=N P n dx xGood Cluster . 9A A
x

xgood { } ( ) ( )

Wehave used the shorthand notation P Good ClusterAx { } for the conditional probability of a useful cluster
configuration around x when it is given that a centralA exists at point x. This probability depends on the
probability of specified numbers of events in regions of space around theA, andmust be found from
computations like equation (2). In the case of a 1Dnon-homogeneous density variation along z, the number of
useful clusters (per unit area) is

ò=N P n z dzGood Cluster . 10D

z
Az Agood

2 { } ( ) ( )

Cluster probability for donor qubit gates
Herewe investigate the calculation of P Good ClusterAz { } for the example case of a simple qubit gatemadewith
donors in silicon.

We are interested inmulti-species clusters that have specifications on the separations.We imagine a pair of
qubits that carry quantum information in their spin. The gate operation is performed by controlling the
entanglement between two impurity electrons. By changing the state of the impurity of species Awhichwe name
the control, it will get entangledwith a nearby impurity electron of species Bwhichwe name the target. This
controlled change of statemight be by optical excitation or use of electric fields etc. To facilitate the controlled
interaction theymust be separated by an appropriate radial distance, equivalent to defining a radial interval
rather than an infinitesimal shell.We imagine such changes in interaction range occur in other fields such as in
ecological networks of consumer species and resource species where there is e.g. a seasonal change in the
interaction strength.We now add a specification on the next-nearest neighbours because the control and target
impurities should be sufficiently isolated from the environment, i.e. other impurities, that they do not decohere.
In ecology thismight be analogous to the effects of competition.

With the results of the previous sectionwe can calculate the probability density for anA donor having itsfirst
nearest (target)B at the optimal distance using equations (8) and (6) (or (3) for nonGaussian event density
profiles).We now examine the combination of this conditionwith specification that the second nearestB and
first nearestA are out of range.We allow for some tolerance on the useful targetB distance.

In the simplest specification of our useful cluster for which the probability is P Good ClusterAx { }, we define a
useful cluster as one inwhich theA control atomhas:

1. its nearest A outside the range > r rA A A
min

1 1
, i.e. in the region labelled ‘1’ on figure 2. This minimum ensures

that when allAs are in their excited state, they do not interact with each other, and the targetB only feels its
central controllingA;

2. its nearest B within the range < < r r rA B B A B
min max

1 1 1
, i.e. in the region labelled ‘3’ on figure 2. This ensures

there is a target atomwithin range of the central control atomAwhen it is excited, but not so close that it is
in rangewhen the control is not excited;

3. its second nearest B outside the range > +  ¢r r rB A B B B
max min

2 1 1
i.e. in the regions labelled ‘1’ or ‘2’ on figure 2,

ensuring that the centralA and its correspondingB1 cannot interact with any otherBs.

These conditionsmay be recast in terms of the Poisson probabilities from above, P i N,P X{ } for i,X events
within regions that contain an expectationNX (whichmay be calculated from equation (4) for spherical regions
inwhich the densities vary in 1Donly):

i. there are no nearest Aʼs within the complement of region ‘1’ (regions ‘2’-‘5’) on figure 2. We shall refer to
this region asVA

A
x to indicate the volume around theA control atom at x fromwhich otherAʼs are excluded.

In it, the expected number ofAʼs is N VA A
A

x( ).

ii. region ‘3’ on figure 2 includes exactly one B. This region will be referred to as VAx
target, the volume around the

A at x inwhich there is aB target atom. In it, the expectation number ofBʼs is N VB Ax
target( ).

iii. regions ‘4’ and ‘5’ on figure 2 contain no Bʼs. The next equation becomes more compact if we define the
combined volume of these regionswith region ‘3’ of the previous condition, ¢¢V xA

B
x ( ), i.e. the total region for

which there are conditions on the number ofBʼs. ¢¢V xA
B

x ( ) is the expected number ofBʼs in this region.

It is relatively straightforward to specify this good cluster, though less easy to calculate its probability. The
useful cluster, given anA at x andB at ¢x , requires there are noAʼs inVA

A
x and there are noBʼs in ¢¢V xA

B
x ( ) (other
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than those at x and ¢x , whichwe consider to be elemental volumes so small that it does not affect the required
expectation). Since a useful cluster having itsB at ¢x ismutually exclusive with a useful cluster having itsB at x
we can add these probabilities, i.e. integrate over the allowed range of ¢x .

In the case of the 1Dnon-homogeneous problem the probability of aB in an elemental ring at cylindrical
coordinates ¢z and ¢rc (from the vertical axis containing the centralA control atom) is p d d¢ ¢ ¢ ¢r n z r z2 c B c( ) , and so

p= - ´ ¢ ¢ - ¢ ¢ ¢ ¢
¢ ¢Î

¢P N V r n z N V z r dr dzGood cluster exp 2 exp , 11Az A Az
A

z r V
c B B Az

B
c c

, c Az
target

∬{ } [ ( )] ( ) [ ( ( ))] ( )

where the expected number ofBʼs within the region ¢ ¢¢V z r,Az
B

c( ) around anA at z and aB at ¢ ¢z r, c is

ò¢ ¢ = ¢ ¢   ¢

Î ¢ ¢

¢
¢

N V z r S V z r z n z dz, , , 12B Az
B

c
z V z r

Az
B

c B
,Az

B
c

( ( )) ( ( ) ) ( ) ( )
( )

and S V z,( ) is the area of a horizontal slice at height z throughV.
The area ¢ ¢ ¢S V z r z, ,Az

B
c( ( ) ) is a slice through the intersection of two spheres, which is surprisingly

complicated butmay bewritten analytically. Even so, the integral in equation (11) is a nested triple integral with
complicated bounds. In cases wheremany calculations of P Good clusterz { }are required, such as in our
problemof optimising the species density profiles, it is helpful to produce a heuristicmethod that accelerates the
numerical calculation of this probability.

Heuristicmethod to approximate the best case cluster probability
So long as it is given that there is onlyB1 within the region VAz

target, then the probability offindingB1 between
d¢  ¢ + ¢z z z is proportional to d¢ ¢ ¢n z S V z z,Az

target( ) ( ) .We can use this tofind the location ofB1 withinVAz
target

with themost important contribution to P Good clusterz { }. Let us call the coordinates of this location ¢ZAz and
¢RAz , and let the regions ‘3’-‘5’ infigure 2 around this particular configuration be ¢ ¢¢V R Z,Az

B
Az Az

ave ( ) (as usual the
subscript indicates it is given that there is anA control atom at z).Wemay nowuse an approximate version of
equation (11):

» - - ¢ ¢¢P N V N V N V R ZGood cluster exp , 13Az B Az A Az
A

B Az
B

Az Az
target ave{ } ( ) [ ( ) ( ( ))] ( )

There are a number of reasonable but different choices for calculating themost important location of the
target ¢ZAz and ¢RAz for use in equation (13).We tried finding the expectation radius using (6)

ò

ò
¢ = á ¢ñ =

¢ ¢ ¢

¢ ¢
¢Î 

¢Î 

R r
r p r dr

p r dr
14Az Az

r V z B

r V z B

Az

Az

target 1

target 1

( )

( )
( )

Figure 2. Specification of a useful cluster for a qubit gating schemewith a central control atomof speciesA (red dots)with a target
atomof speciesB (blue dots) forwhich there are restrictions on the distance from each other as described in the text.
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and the expectation depth given this spherical radius

ò

ò
¢ = á ¢ñ =

¢ ¢ ¢

¢ ¢

- ¢

+ ¢ ¢

- ¢

+ ¢ ¢
Z z

z C z dz

C z dz
15Az Az

z R

z R n z

n

z R

z R n z

n

Az

Az A

A
D

Az

Az A

A
D

2

2

( )

( )
( )

( )

( )

where ¢C z( ) is the circumference of the small circle of the sphere ¢RAz through ¢z .We also triedfinding the
expectation depth and then the expectation spherical radius given this depth. Finally, we tried looking for the
most likely depth (where themaximum nB(z) occurs) andmost likely radius (at the outer edge ofVAz

target). The
latter is the easiest tofind and requires no integration yet dramatically underestimates P Good clusterAz { }.We
found that calculating ¢RAz first gave the best agreementwith (11) for the good cluster configurationwewere
interested in.

An approximate solution to this probability which is less computationally intensive accelerates the process of
numerically optimising that probability. The closer the approximate solution is to the optimum found using the
vigorousmethod, themore efficiently one can converge to an optimumGaussian doping profile.

Results of optimising cluster probability

Weprovide a numerical example of the cluster optimization in the case of the silicon donor qubit gate using
separation tolerances estimated from consideration of exchange interactions [8]. The separation range for the
control to target distance is from =r 15nmA B

min
1

to =r 28 nmA B
max

1
. The exclusion radius for control to control

is =r 60 nmA A
min

1
, and for target to target is = ¢r 15 nmB B

min
1 1

.
To optimise the number of good clusters we allow for four independent parameters for theGaussian density

profiles—the two areal densities nA B
D
,

2 , thewidth of both density profiles = =d d dA B , and the separation of the
two layersμ. Herewemake the assumption that both profiles can be implanted at different depthswith the same
width. In practise, independent control of layer depth andwidth is not achievable with ion implantation and the
depth profile for a particular implant species and target depends principally on the implant energy. The profile of
impurities will also change during necessary post-processing such as diffusion during annealing andwhether
each species is annealed as implanted or if the system is annealed only once after all implants. As these specifics
are dependent on the species and target of interest we leave possible simplifications to the reader. It has been
shownpreviously that Bi implanted at a high energy into silicon (therefore creatingmany lattice defects) can be
electrically activated to a high enough quality that the donor electron spin states aremeasurable[16]. This
demonstrates the feasibility of ion implantation as themeans creating the qubits of interest here. The following
optimisation can be used to determine a best case implant profile if thefinal donor profiles are expected to be
Gaussian. If thefinal active donor profile can bemeasured, itmay be used directly with equations (10) and (11) to
determine the final viable cluster yield.

Wefirstmaximised the total density of good clusters, N D
good
2 for a given combination of width and separation

using the heuristic as detailed in the previous section. This is shown infigure 3(a), inwhich the values of nA B
D
,

2

were varied (the resulting optimumvalues of nA B
D
,

2 are not shown in this figure) for various combination ofμ and

d tofind the optimumgood cluster density N D
good
2 .

For sufficiently large layer widths layer separation clearly has no effect on either N D
good
2 or N nD

A
D

good
2 2 . In this

limit the optimumvalues of =n d n dA
D

A B
D

B
2 2 tend to the optimumhomogeneous bulk densities [8].We see that

for layers spaced far apart the density of viable clusters tends to zero as the layer width is reduced, as expected as it
becomes increasingly difficult to obtain an A B distancewithin the allowed range. For very narrow layers,
there is an obvious optimum layer separation of 15 nmwhich can be deduced from geometrical configurations
relating to the definition of our ’good configuration’. This distance is the same as theminimum separation of
control from target. For intermediate layer widths of around 10 nm the lines cross, and the optimum is now
obtained for layers of zero separation, i.e. the target and control layers should be at the same depths.

The areal density N D
good
2 is not necessarily themost useful optimization objective function. Evenwith a small

density, the total number of good clustersmay be increased simply by increasing the sample size. The ratio of
signal to background in an experimentmight be improved if insteadwemaximise the fraction of donors that are
involved in a good cluster. For example, we imagine an experiment wherewe detect the effects of the interaction
bymeasuring the effect on the spin of theAʼs after exciting theAʼs (which produces an effect only for thoseAʼs
that are part of a good cluster). In our simple cluster of interest there is only oneA per cluster, so the number of
Aʼs involved in a good cluster is just equal to the number of good clusters, and the signal to backgroundwill be
optimized bymaximising the fraction N nD

A
D

good
2 2 . By simplymaximising this fraction, the optimumoccurs

when nA
D2 is as small as possible. In this limit the condition on the control’s nearestA ( >r 60A A1

nm) becomes
guaranteed, and the only conditions that need to be satisfied are the ones on the nearest and next-nearestBʼs.
Alternatively, wemight imagine a different experiment wherewe detect the effect of the interaction by
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measuring the effect on the spin of theBʼs after exciting theAʼs, and therefore we optimise the fraction
N nD

B
D

good
2 2 , which occurs when nB

D2 is as small as possible for a similar argument. To avoid these cases where the
optimumdensity of a species tends to zerowe optimised for the absolute number of good clusters which
optimises the total signal (figure 3(a)), and subsequently calculated the corresponding fraction N nD

A
D

good
2 2

describing the ratio of signal to background shown infigure 3(b).
3(b) shows that if onewere able to fabricate atomically flat layers separated in depth then this fraction is

optimisedwhen such layers are separated by 15 nm.An interesting situation arises if there is a lower limit on the
possible width of the density profiles. This is the case when ion implanting species into a lattice. Depending on
the implantation specifics, it is difficult tomake very thin layers due to ion straggle. Figure 3 shows that if the
layers cannot be fabricatedwithwidths less than 10 nm, the optimumconfiguration is to have the two species co-
planar (m = 0)withwidths of»15 nm (not to be as thin as possible) achieving a reasonable 10%. The fractions
in both of these cases are an improvement over the optimised, bulk dope case achieving a good cluster fraction of
9%. The results of 3 doping configurationswere simulated using a brute force (MonteCarlo) approach (filled
squares with error) confirming the densities as calculated by (10).

The quality of the optimization is shown infigure 4, in whichwe compare it with optimization using the full
solution of equations 11–12, and also using a brute force (MonteCarlo)method. Agreement is excellent for cases
examined herewhere the two species profiles overlap in depth.We found that the heuristicmethod does not
agreewith the full solutionwhen the layers are thinner than the separation between layers as shown infigure 5.
Under these circumstances the optimumB density can differ by asmuch as 2 orders ofmagnitude.

Figure 3. (a)The optimal areal density of good clusters for two different species A B, implanted at different average depths, i.e. the
layers were separated byμ shown in the legend. The density profiles of eachwas aGaussian of the samewidth dA=dB=d, but
differing total integrated areal density, nA B

D
,

2 , whichwere optimized using the heuristic procedure described in the text (finding ¢RAz

first). The values of nA B
D
,

2 that produce the optimumvary as a function of both d andμ. Some of these values are listed in table A1.
(b)The proportion ofA donors involved in a good cluster i.e. N nD

A
D

good
2 2 after optimizing for N D

good
2 as graphed in 3(a).

Figure 4. Focussing on the co-planar (μ=0) configurationwe showhow close our heuristicmethod agrees with the full result for the
density of viable clusters in that configuration. Bothmethods are shown to be in agreement with a brute force approach (filled squares
with error). Here the error in themean fraction of A impurities that gate viable clusters ismore visible. This errorwasminimised
through repeated simulation. Like the full solution, optimising using the brute force approach is considerablymore impractical than
the solution found using the suitable heuristic.
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Conclusion

Thiswork has demonstrated how the ideas used in non-homogeneous Poison point process statisticsmay be
used not only to describe the distribution of ithnearest neighbour distances between events that exist non-
homogeneously in space but also to calculate the probabilities of events formingmore complex structures
existing in such a process.When the event species density inhomogeneity is described by aGaussian probability
density function of depth andwith complete spatial randomness in the xy-plane an analytic solution to the
NNPDF is yielded. This density surface gives a good representation of event-event separations existing in non-
homogeneous processes. for the purposes of research into solid state qubit gates, we calculate the frequency of
appearance of suitable structures for qubit interactions in randomdoped samples. The introduction of a
heuristic for calculating the probabilities of such structures improves the ability to optimise the dopant profiles
for these interactions. Such an optimisationwill influence the fabrication requirements of test-bed solid state
quantumdevices whereby distance dependant interactionswith nearest neighbours are of paramount
importance.

Acknowledgments

Thisworkwas funded by the Engineering and Physical Sciences ResearchCouncil (EPSRC) through the
ADDRFSS project (project reference EP/M009564/1).

AppendixA. Poissonian statistics of events in non-homogeneous point process

The sizes of the i th elements dx i( ) thatmake up the finite domainV inwhich there are an expectedN(V ) events
can be varied such that the expected number of events within those elements is constant. d d= =N N M Ni ,
whereM is the number of elemental volumes. AsN isfinite, we canmakeM large enough and dN small enough
thatwemay neglect the possibility of two ormore events in any element; hence the probability of no events is

d- N1 for each element. Since the incidence of events in each element is independent from the others,
the probability of no events inV is d= -P N N0, 1P

M{ } ( ) . For largeM and small dN this tends to
d= - = -P N M N N0, exp expP { } ( ) ( ). This is the same as the usual Poisson probability of zero events when

the expectation isN, in spite of the fact that n x( ) is non-homogeneously distributedwithinV.
Wemay further find the probability of one event in the volumeV by considering one additional elemental

volume added to it; d d d+ = - +P N N P N N P N N1, 1, 1 0,P P P{ } { }( ) { } , where the first term is the
probability of no events in the additional element and one event in the original volume, and the second term is
for the opposite scenario (the two scenarios aremutually exclusive so the probabilities add). Rearranging,

d d+ - = -P N N P N N P N P N1, 1, 0, 1,P P P P[ { } { }] { } { }, inwhich the LHS is P N1,d

dN P { }.Making use of

the result just obtained for P N0,P { }, we see the solution is = -P N N N1, expP { } ( ). Continuing similar
arguments for higher numbers of events,m, we again recover the standard Poisson distribution (2)with
expectationN (even though n x( ) is non-homogeneous).

Figure 5.The density of viable clusters plotted as a function of the areal density ofB donors. The same optimumB is found using either
the heuristic (dashed lines) of full solution (solid lines). Thesemethodswhere compared for different layer widths (coloured lines) and
different layer separations (separate subplots). The discrepancy betweenmethods is only apparent for layers whose profile width is
smaller than their separation.
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Appendix B.Optimum impurity densities for configurations of interest
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Table A1.Numerically found solutions for the optimum integrated
impurity densities for particular points along the curves displayed in
figures 3 and 4.

Separation

μ [nm]
Width

d [nm]

OptimumA

density nA
[cm−2]

OptimumB

density nB
[cm−2]

0 1.0 4.99×109 2.14×1010

14.5 3.64×108 1.97×109

300.0 1.76×108 1.66×109

15 1.2 4.33×109 2.62×1010

16.0 3.34×108 2.28×109

281.2 2.23×108 1.74×109

30 14.5 3.63×108 2.88×1010

300.0 1.75×108 1.65×109
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