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Abstract

The Poisson distribution of event-to-ith-nearest-event radial distances is well known for homo-
geneous processes that do not depend on location or time. Here we investigate the case of a non-
homogeneous point process where the event probability (and hence the neighbour configuration)
depends on location within the event space. The particular non-homogeneous scenario of interest to
us is ion implantation into a semiconductor for the purposes of studying interactions between the
implanted impurities. We calculate the probability of a simple cluster based on nearest neighbour
distances, and specialise to a particular two-species cluster of interest for qubit gates. We show that if
the two species are implanted at different depths there is a maximum in the cluster probability and an
optimum density profile.

Introduction

Individual interacting impurity atoms can be important for donor qubit gates, such as that proposed by
Stoneham et al[1], while an important class of theoretical physics problems is produced by the Hubbard model,
which relies on hopping and magnetic interactions between neighbours in chains [2]. In the case of donor
impurities in a semiconductor, deterministic placement using scanning probe tips has improved greatly in
recent years, but is currently limited to a small number of species of impurity (principally phosphorus and
arsenic [3] in silicon [4, 5] and germanium [6], and Mn in GaAs [7]). Ion implantation methods can also be used
to create impurity layers in semiconductors with merits including flexibility with regards to the numerous
available implantable species and far faster device fabrication times which are less costly and more easily scalable.
These merits clearly come at the cost of much less precision. Given the stochasticity of the donor placement it is
important to look at the effects of the implant distribution on the neighbour-neighbour distances, and hence the
probability of observable interactions. Contemporary work in this area [8] has focused on analytically
understanding the interactions between donors, the dependence these interactions have on donor spacing and
using the results of homogeneous Poisson point process statistics, optimising for these interactions. Here we
generalise the statistics to include inhomogeneity of the impurities and optimise the event density profiles for a
comparable event cluster definition. We show that in the case of a Gaussian distribution of events (whichisa
good approximation of the distribution of impurities after ion implantation) an analytic solution for the non-
homogeneous nearest neighbour distribution exists. We also show that the numerical optimisation involved can
be accelerated by introducing an appropriate heuristic.

Many physical problems involving stochastic probability have been studied which make use of point process
statistics. They have been used to model distributions of events ranging from plants in a field [9], the locations of
cellular network base stations[10] to the distribution of astronomical bodies[11]. The ability to model a
distribution of points in an event space and be able to quantify irregularities such as clustering of points helps
provide an insight into correlations between events and the consequences resulting from such a distribution.
Using the well understood construct that is the Poisson point process [12, 13], the nearest neighbour
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distribution of an impurity species has been used to model optical properties of donors in silicon[14] due to
nearest neighbour interactions and also to calculate the probability of finding large clusters of donors[15] in
homogeneously doped bulk semiconductors.

Itis useful to discuss clusters comprising two different species so that we may expect to detect the effect that
excitation of one of the species has on its interaction with the other. Species specific control/detection might
make use of optical or electronic resonances. It seems reasonable to expect that if density profiles of species A and
Bare implanted at a different depth then we can control the distributions for the A — B separation, and by
controlling the peak densities of each profile we might control the A — A and B — B separations. Itis clear
that if the homospecies separations (i.e. A — A or B — B) are small compared with the width of the implant
profile then thelikelihood ofan A — Binteraction will decrease relative to homospecies interactions and signal
will be lost. This suggests low density sheets are ideal for inter-species interactions. Conversely, if the densities
areverylow thenthe A — B separation will be controlled by the density rather than the separation of the sheets.
There is clearly an optimum to be found. The statistics developed in this work, though applied to the problem of
interacting donor impurities for quantum technology, has been presented so that readers interested in structure
between multiple species of events described by non-homogeneous density distributions may easily apply the
ideas contained to their work.

In this work we analyse the distribution of nearest neighbour (NN) distances existing in a two-species point
process where the density of those species are non-homogeneous in depth. When the event density varies as a
Gaussian profile in one spatial dimension a solution to the distribution of ithnearest neighbours is shown to be
analytically solvable. We have extended the calculation to the probability of finding particular multi-species
cluster configurations and show that optimising the density profiles in favour of such clusters is a numerically
feasible task which may be improved by an approximation. The optimised probabilities found with the aid of
such an approximation were checked against those using the analytical solution which was also supported by
simulation of the deemed optimal doping parameters.

Non-homogeneous Poisson point process

In this section we give some definitions of symbols useful later, and show the relationship between non-
homogeneous and homogeneous Poisson distributions in order to indicate the method for investigating
neighbour-distances.

If the distribution of events is non-homogeneous, the density #(x) and the expected number of events
ON = n(x)0x in the infinitesimal volume ¢x varies with the location, x. If SN is small then the probability of an
eventin 0x isequal to SN. We may now find the probability that there are no events within a larger volume V by
dividing it up into elemental volumes. The expected number of events in V'is

N(V)= S 6N = fev n(x)dx. 1)

x;eV

Assuming 7 (x) is well-behaved, we may choose the size of the ithelement (§x;) so that the product n(x;) 0x;isa
constant. The probability of an event within 6x; is then the same for every element, and it follows (see appendix

A) that the probability of 1 events enclosed in the larger volume Vis given by the probability mass function for a
Poisson distribution

Pp{m, N(V)} = N(V)"exp(=N(V)) /m!. @)

Itis tempting to try to use the probability 7 (x) §x (of an event in the elemental volume §x around X) to define a
probability density function (PDF). This is best avoided because the probability of an event in a larger volume is not
given by the integral over that volume j;( v (x)dx = Pp{1, N} from comparison of equations (1) and (2)
(unless Vand N are very small, obviously). This is due to the fact that the possibility of two or more events is non-
negligible for a large volume. Later, we shall be concerned with both questions of counting types of events in some
volume where an integration like equation (1) is needed, and of the probability of occupation by specific numbers
of events (0, 1, 2 or more events etc) in some volume where equation (2) is needed.

Previously, clusters of impurities with homogeneous density have been discussed in terms of the distribution
of neighbour-neighbour distance [15]. In order to put our discussion into this context we give the non-
homogeneous case, which follows immediately from equation (2). We define the probability p, , , (r)ér thata
pointin 3D Euclidean space, x = (x, y, z) hasits ithnearest event of species A at a radial distance between
r — r + 6r.Weshallreferto p,_, , (r)as the nearest neighbour probability density function (NNPDF). In
previous literature the NNPDF is the precursor to what is referred to as the ‘void nearest neighbour distribution
function’ [12] which is simply the cumulative distribution of the NNPDF as defined here. The term ‘void’ is used
since there is no event specified at the point x whose neighbour is being found. To calculate the NNPDF,
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consider the sphere Vper (75 X) centred on X of radius , and the infinitesimal shell of thickness ér around it.
The probability of finding the first nearest event within the shell is equal to the product of the probabilities of
having no events within the sphere and one within the shell (since these two conditions are independent):
Py (1) or = Pp{0, Ny (Viphere (15 X))} 8N4, where the probability of an event in the shell is

6Ny = §r%NA (Viphere (75 X)). Hence the NNPDF for the ithnearest neighbour is
. d
PXHA[(T’) =Pp{i — 1, Ny (Vsphere(r; x))} ;Nﬁ (Vsphere(r; Xx)). (3

The distribution around a void can be extended to the distribution for the neighbours around an event by taking
into account the density of events in the infinitesimal volume 0x at x.

We can recover the homogeneous results in 3D bulk doped or perfect 2D delta-doped layers in
semiconductors, etc. For example, in 3D we replace 14 (x) — n3° and so Ny (Viphere (15 X)) — %7‘(7‘31’131) ,and

%NA — 47r?m;P . Hence all terms in equations (2) and (3) are independent of X and we obtain the familiar 3D

homogeneous neighbour-neighbour distributions, pﬁi 4 (1) = 47r2n3P exp (—%7‘(‘1’3712D), Similarly for

2D p}fﬁAl (r) = 2P exp (—7r2niP).

Poisson point process with expectation varying in 1D
In this work we are particularly concerned with impurities that have been implanted from the surface. We
therefore specialize to the case with inhomogeneity of event density in only one dimension, specifically when the
density n, is a function of z only. This is the case with broad-area ion implants which produce a finite spread of
penetration perpendicular to the surface and are homogeneous in the plane. The expected number of events per
unitareain z — z + 0z is ny(z) 6z and the total areal density (equivalent to implant dose) is njD = f ny(z)dz.
To find the expected number of events in the sphere of radius , one integrates over the thin discs perpendicular
to z(which have constant density). For a sphere Viphere (75 z) of radius r centred on x = (0, 0, z) equation (1)
becomes,

N (Viphee (13 2)) = [ M@l = (@ = 221de’ @

2'€ Viphere (132)

where the limits of the integral are such that the area in the square brackets is positive, i.e. fromz — rtoz + r.
Differentiating under the integral sign,

il\]A(\/sphere(r; z)) = 27T7'f ny (z")dz’' (5)
dr 2' € Viphere (152)

for use in equation (3).

Neighbour separations with Gaussian density profiles

In the case of Gaussian density profiles which are reasonable approximations for typical mono-energetic
implants, 1y (z) = 37 1/2d; " exp(—z%/d3), where d, /+/2 is the r.m.s. thickness of the density profile. When
substituted into (3) for i = 1 this gives the analytical solution for the probability of a first nearest event within

r — r 4+ 6r measured from a starting point at depth zand hence the NNPDF:

2D 1/2 2 2
Py (1) = mPSr exp A I [—2d2(C.e € + e ) + S (dd — 217 + 22%)] ©6)

where

S¢ = erf(¢,) + erf(¢)

r+z
G = g

Having found the NNPDF we can further give the number of A atoms (per unitarea) between z — z + 6z
with an ithnearest neighbour A within the range r — r + 6r, which is

fa—a, (1, 2) 016z = pz_)Ai(r)ér X np(z) 6z 7)

since the density of A’s at zand the probability density for the surrounding A’s are independent. This is easily
generalized to a multiple species situation: the density of A’s (per unit area) at zwith an ithnearest species B
neighbour at ris

na—p, (1, 2) = p,_ 5 (1)na(2). (8

While the NNPDF p__ x (r)isalD function, ny_, x,(r, z) is a two-dimensional surface; the ithnearest neighbour
density surface (NNDS).
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Figure 1. Nearest Neighbour Density Functions (NNDFs) describing the distribution of A’s ithnearest B neighbours. The impurity
density profiles for both A and B species are Gaussian (lower panel). In the upper panel, the colour scale gives the normalized density
na—p, (1, 2) / 3P such that the number of A’s within the depth range z — z + 6z with an ithnearest Bat a radial distance

r — r + Oris ny_p,(r, z) 6r6z. The centre of mass of the NNDF for i = 1 has a zposition close to the peak of the A density and an r
position defined by the depth separation between the A and Blayers. As expected, the 20th nearest neighbours are further away than
the Ist nearest. Vertical slices may be used to find the expected distance to a B for A’s of specific depth, and integrating horizontal slices
(projecting onto the r axis) produces the total probability density irrespective of the depth of A.

Since n4(z) is analytical, the NNDS #,_, 5.(r, z) is also analytical. It may be normalized easily since
fzj—oofr:co b5, (Nna (z)drdz = j:_oc n4(z)dz = n3P: figure 1 shows s, (1, z)/nﬁD whereby the two
Gaussian density profiles for 14 3(z) have a unit separation in depth, and each has an r.m.s width of 1/+/2 i.e.
d, = dg = 1unitoflength, and unit heighti.e. ni?7=1/2d, ! = nP7~1/2d;! = 1inverse volume units.

From figure 1 the fraction of A’s with an ithnearest Bbetween r — r + Oris j; 3:0700 ta_p, (1, 2)dzdr / nl.
Referring to figure 1 this is equivalent to integrating over horizontal slices or projecting onto the r-axis. The
probability of, say, the first nearest neighbour B having a separation of 1 unit from an A can be optimised by
varying the separation and density of the layers. In the next section we consider the effect of adding constraints
on the next nearest neighbours.

Density of specific cluster configurations

The total number of useful clusters, N4, is 2 question of counting events and may be found from an
integration like equation (1). The number of useful clusters in the elemental volume ¢x around X is given by the
number of A’s in the elemental volume multiplied by the probability that each is part of a useful cluster,

14 (x) 0xPysx { Good Cluster}. Hence the total is
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Nyood = f Py« {Good Cluster} n, (x)dx. 9)

We have used the shorthand notation Py, {Good Cluster} for the conditional probability of a useful cluster
configuration around x when it is given that a central A exists at point x. This probability depends on the
probability of specified numbers of events in regions of space around the A, and must be found from
computations like equation (2). In the case of a 1D non-homogeneous density variation along z, the number of
useful clusters (per unit area) is

S f P, {Good Cluster) i (z)dz. (10)

Cluster probability for donor qubit gates
Here we investigate the calculation of Py, {Good Cluster} for the example case of a simple qubit gate made with
donorsinssilicon.

We are interested in multi-species clusters that have specifications on the separations. We imagine a pair of
qubits that carry quantum information in their spin. The gate operation is performed by controlling the
entanglement between two impurity electrons. By changing the state of the impurity of species A which we name
the control, it will get entangled with a nearby impurity electron of species B which we name the target. This
controlled change of state might be by optical excitation or use of electric fields etc. To facilitate the controlled
interaction they must be separated by an appropriate radial distance, equivalent to defining a radial interval
rather than an infinitesimal shell. We imagine such changes in interaction range occur in other fields such as in
ecological networks of consumer species and resource species where there is e.g. a seasonal change in the
interaction strength. We now add a specification on the next-nearest neighbours because the control and target
impurities should be sufficiently isolated from the environment, i.e. other impurities, that they do not decohere.
In ecology this might be analogous to the effects of competition.

With the results of the previous section we can calculate the probability density for an A donor having its first
nearest (target) B at the optimal distance using equations (8) and (6) (or (3) for non Gaussian event density
profiles). We now examine the combination of this condition with specification that the second nearest Band
first nearest A are out of range. We allow for some tolerance on the useful target B distance.

In the simplest specification of our useful cluster for which the probability is Py { Good Cluster}, we definea
useful cluster as one in which the A control atom has:

1. its nearest A outside the range ry, > ri" 4, 1-€. in the region labelled ‘1" on figure 2. This minimum ensures
that when all As are in their excited state, they do not interact with each other, and the target B only feels its
central controlling A;

2.its nearest B within the range r" 5, < 1B, < r4"5p, i.e. in the region labelled ‘3’ on figure 2. This ensures
there is a target atom within range of the central control atom A when it is excited, but not so close that it is
in range when the control is not excited;

3.its second nearest B outside the range r3, > ri"p + T;EB{ i.e. in the regions labelled ‘1’ or 2’ on figure 2,
ensuring that the central A and its corresponding B; cannot interact with any other Bs.

These conditions may be recast in terms of the Poisson probabilities from above, Pp {i, Nx} for i, X events
within regions that contain an expectation Nx (which may be calculated from equation (4) for spherical regions
in which the densities vary in 1D only):

i. there are no nearest A’s within the complement of region ‘1’ (regions 2’-‘5’) on figure 2. We shall refer to
this region as V. to indicate the volume around the A control atom at X from which other A’s are excluded.
In it, the expected number of A’s is Ny (V4,).

ii. region ‘3’ on figure 2 includes exactly one B. This region will be referred to as V{35, the volume around the
Aat X in which there is a B target atom. In it, the expectation number of B’s is Np(Vxe).

iil. regions ‘4’ and ‘5’ on figure 2 contain no B’s. The next equation becomes more compact if we define the
combined volume of these regions with region ‘3’ of the previous condition, V5, (x'), i.e. the total region for
which there are conditions on the number of B’s. V2. (x') is the expected number of B’s in this region.

Itis relatively straightforward to specify this good cluster, though less easy to calculate its probability. The
useful cluster, given an A at x and Bat x/, requires there are no A’s in V4, and there areno B’sin V5 (x') (other
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Figure 2. Specification of a useful cluster for a qubit gating scheme with a central control atom of species A (red dots) with a target
atom of species B (blue dots) for which there are restrictions on the distance from each other as described in the text.

than those at X and x’, which we consider to be elemental volumes so small that it does not affect the required
expectation). Since a useful cluster having its Bat x’ is mutually exclusive with a useful cluster having its Bat x”
we can add these probabilities, i.e. integrate over the allowed range of x'.
In the case of the 1D non-homogeneous problem the probability of a Bin an elemental ring at cylindrical
coordinates z’ and r/ (from the vertical axis containing the central A control atom) is 277! n(z') 61/ 6z', and so
Py, {Good cluster} = exp[—Ny(V4)] x /f 27r!np(2) eXp[—NB(Vf; (', r)ldrldzZ (11)
z'r!

target
1€ VAzg

where the expected number of B’s within the region Vf; (z/, r/yaroundan AatzandaBat 2/, r/ is
No(VRG ey = [ S(VELGE 1D, 2 ymae")dz” (12)
z'e sz(z’,r[/)
and S(V, z) is the area of a horizontal slice at height z through V.

Thearea S(VE. (2/, r!), z") isaslice through the intersection of two spheres, which is surprisingly
complicated but may be written analytically. Even so, the integral in equation (11) is a nested triple integral with
complicated bounds. In cases where many calculations of P, { Good cluster} are required, such as in our
problem of optimising the species density profiles, it is helpful to produce a heuristic method that accelerates the
numerical calculation of this probability.

Heuristic method to approximate the best case cluster probability

Solongas it is given that there is only B, within the region V', then the probability of finding B, between

z/ — 2/ + 67 is proportional to n(z") S(V ¥, z’)6z'. We can use this to find the location of B, within Vs
with the most important contribution to P, {Good cluster}. Let us call the coordinates of this location Z}, and
R}, and let the regions ‘3’-‘5’ in figure 2 around this particular configuration be Vf;ve/ (R),» Z},) (as usual the
subscript indicates it is given that there is an A control atom at z). We may now use an approximate version of
equation (11):

Py, {Good cluster} ~ Np(ViE)exp[—Na(VA,) — No(VEY' (R, Z).))] (13)

There are a number of reasonable but different choices for calculating the most important location of the
target Zj, and R}, for use in equation (13). We tried finding the expectation radius using (6)

/ ! /
Levj‘;ge‘ rpz_)Bl(r )dr
(r"dr'

Ry, = (1) = (14)

J;Ie Vliazrget pz—>B1
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and the expectation depth given this spherical radius

fz':jAz /nA(Z)C(Z')dZ

! / _ YZTRa

O (15)
i M) C()dz!

szAZ

where C(z') is the circumference of the small circle of the sphere R}, through z’. We also tried finding the
expectation depth and then the expectation spherical radius given this depth. Finally, we tried looking for the
most likely depth (where the maximum 1(z) occurs) and most likely radius (at the outer edge of Vr¥"). The
latter is the easiest to find and requires no integration yet dramatically underestimates Py, { Good cluster}. We
found that calculating R}, first gave the best agreement with (11) for the good cluster configuration we were
interested in.

An approximate solution to this probability which is less computationally intensive accelerates the process of
numerically optimising that probability. The closer the approximate solution is to the optimum found using the
vigorous method, the more efficiently one can converge to an optimum Gaussian doping profile.

Results of optimising cluster probability

We provide a numerical example of the cluster optimization in the case of the silicon donor qubit gate using
separation tolerances estimated from consideration of exchange interactions [8]. The separation range for the

control to target distance is from rj{’ffB = 15nmto r; = 28 nm. The exclusion radius for control to control

is i 4, = 60 nm, and for target to target is rBﬁ g/ = 15 nm.

To optimise the number of good clusters we allow for four independent parameters for the Gaussian density
profiles—the two areal densities 13}, the width of both density profiles dy = d; = d, and the separation of the
two layers p1. Here we make the assumption that both profiles can be implanted at different depths with the same
width. In practise, independent control of layer depth and width is not achievable with ion implantation and the
depth profile for a particular implant species and target depends principally on the implant energy. The profile of
impurities will also change during necessary post-processing such as diffusion during annealing and whether
each species is annealed as implanted or if the system is annealed only once after all implants. As these specifics
are dependent on the species and target of interest we leave possible simplifications to the reader. It has been
shown previously that Bi implanted at a high energy into silicon (therefore creating many lattice defects) can be
electrically activated to a high enough quality that the donor electron spin states are measurable[16]. This
demonstrates the feasibility of ion implantation as the means creating the qubits of interest here. The following
optimisation can be used to determine a best case implant profile if the final donor profiles are expected to be
Gaussian. If the final active donor profile can be measured, it may be used directly with equations (10) and (11) to
determine the final viable cluster yield.

We first maximised the total density of good clusters, N; 20D0d for a given combination of width and separation
using the heuristic as detailed in the previous section. This is shown in figure 3(a), in which the values of 13’}
were varied (the resulting optimum values of nA 3 are not shown in this figure) for various combination of ;s and
dto find the optimum good cluster density N, good

For sufficiently large layer widths layer separation clearly has no effect on either Néﬁd or Nj good / n3P . In this
limit the optimum values of n3”d, = 13" d tend to the optimum homogeneous bulk densities [8]. We see that
for layers spaced far apart the density of viable clusters tends to zero as the layer width is reduced, as expected as it
becomes increasingly difficult to obtainan A — B distance within the allowed range. For very narrow layers,
there is an obvious optimum layer separation of 15 nm which can be deduced from geometrical configurations
relating to the definition of our ’good configuration’. This distance is the same as the minimum separation of
control from target. For intermediate layer widths of around 10 nm the lines cross, and the optimum is now
obtained for layers of zero separation, i.e. the target and control layers should be at the same depths.

The areal density Ngzoff)d is not necessarily the most useful optimization objective function. Even with a small
density, the total number of good clusters may be increased simply by increasing the sample size. The ratio of
signal to background in an experiment might be improved if instead we maximise the fraction of donors that are
involved in a good cluster. For example, we imagine an experiment where we detect the effects of the interaction
by measuring the effect on the spin of the A’s after exciting the A’s (which produces an effect only for those A’s
thatare part of a good cluster). In our simple cluster of interest there is only one A per cluster, so the number of
A’sinvolved in a good cluster is just equal to the number of good clusters, and the signal to background will be
optimized by maximising the fraction N, 2£d / n2P. By simply maximising this fraction, the optimum occurs
when 73" is as small as possible. In this limit the condition on the control’s nearest A (r4_, A, > 60nm)becomes
guaranteed, and the only conditions that need to be satisfied are the ones on the nearest and next-nearest B’s.
Alternatively, we might imagine a different experiment where we detect the effect of the interaction by
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Figure 3. (a) The optimal areal density of good clusters for two different species A, B implanted at different average depths, i.e. the
layers were separated by p shown in the legend. The density profiles of each was a Gaussian of the same width dy, = di = d, but
differing total integrated areal density, 31, which were optimized using the heuristic procedure described in the text (finding R},
first). The values of n}% that produce the optimum vary as a function of both dand yi. Some of these values are listed in table A1.

(b) The proportion of A donors involved in a good cluster i.e. I\Igzre,d / 3P after optimizing for I\L;f?,d as graphed in 3(a).
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Figure 4. Focussing on the co-planar (;» = 0) configuration we show how close our heuristic method agrees with the full result for the
density of viable clusters in that configuration. Both methods are shown to be in agreement with a brute force approach (filled squares
with error). Here the error in the mean fraction of A impurities that gate viable clusters is more visible. This error was minimised
through repeated simulation. Like the full solution, optimising using the brute force approach is considerably more impractical than
the solution found using the suitable heuristic.

measuring the effect on the spin of the B’s after exciting the A’s, and therefore we optimise the fraction

Ngzol(),d / nzP, which occurs when 7P is as small as possible for a similar argument. To avoid these cases where the
optimum density of a species tends to zero we optimised for the absolute number of good clusters which
optimises the total signal (figure 3(a)), and subsequently calculated the corresponding fraction Ngz(f)d / n3P
describing the ratio of signal to background shown in figure 3(b).

3(b) shows that if one were able to fabricate atomically flat layers separated in depth then this fraction is
optimised when such layers are separated by 15 nm. An interesting situation arises if there is a lower limit on the
possible width of the density profiles. This is the case when ion implanting species into a lattice. Depending on
the implantation specifics, it is difficult to make very thin layers due to ion straggle. Figure 3 shows that if the
layers cannot be fabricated with widths less than 10 nm, the optimum configuration is to have the two species co-
planar (1 = 0) with widths of ~15 nm (not to be as thin as possible) achieving a reasonable 10%. The fractions
in both of these cases are an improvement over the optimised, bulk dope case achieving a good cluster fraction of
9%. The results of 3 doping configurations were simulated using a brute force (Monte Carlo) approach (filled
squares with error) confirming the densities as calculated by (10).

The quality of the optimization is shown in figure 4, in which we compare it with optimization using the full
solution of equations 1 1-12, and also using a brute force (Monte Carlo) method. Agreement is excellent for cases
examined here where the two species profiles overlap in depth. We found that the heuristic method does not
agree with the full solution when the layers are thinner than the separation between layers as shown in figure 5.
Under these circumstances the optimum B density can differ by as much as 2 orders of magnitude.
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Figure 5. The density of viable clusters plotted as a function of the areal density of B donors. The same optimum B is found using either
the heuristic (dashed lines) of full solution (solid lines). These methods where compared for different layer widths (coloured lines) and
different layer separations (separate subplots). The discrepancy between methods is only apparent for layers whose profile width is
smaller than their separation.

Conclusion

This work has demonstrated how the ideas used in non-homogeneous Poison point process statistics may be
used not only to describe the distribution of ithnearest neighbour distances between events that exist non-
homogeneously in space but also to calculate the probabilities of events forming more complex structures
existing in such a process. When the event species density inhomogeneity is described by a Gaussian probability
density function of depth and with complete spatial randomness in the xy-plane an analytic solution to the
NNPDF is yielded. This density surface gives a good representation of event-event separations existing in non-
homogeneous processes. for the purposes of research into solid state qubit gates, we calculate the frequency of
appearance of suitable structures for qubit interactions in random doped samples. The introduction of a
heuristic for calculating the probabilities of such structures improves the ability to optimise the dopant profiles
for these interactions. Such an optimisation will influence the fabrication requirements of test-bed solid state
quantum devices whereby distance dependant interactions with nearest neighbours are of paramount
importance.
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Appendix A. Poissonian statistics of events in non-homogeneous point process

The sizes of the i elements (§x;) that make up the finite domain V'in which there are an expected N(V') events
can be varied such that the expected number of events within those elements is constant. N; = N/M = 6N,
where M is the number of elemental volumes. As N is finite, we can make M large enough and N small enough
that we may neglect the possibility of two or more events in any element; hence the probability of no events is

1 — 6N for each element. Since the incidence of events in each element is independent from the others,

the probability of no eventsin Vis Pp {0, N} = (1 — §N)M. Forlarge M and small 6N this tends to

Pp{0, N} = exp(—MON) = exp(—N). This is the same as the usual Poisson probability of zero events when
the expectation is N, in spite of the fact that #(x) is non-homogeneously distributed within V.

We may further find the probability of one event in the volume V by considering one additional elemental
volume added toit; Po{1, N + 6N} = Pp{1, N}(1 — 6N) + Pp{0, N}ON, where the first term is the
probability of no events in the additional element and one event in the original volume, and the second term is
for the opposite scenario (the two scenarios are mutually exclusive so the probabilities add). Rearranging,
[Pp{1, N + 6N} — Pp{1, N}]/6N = Pp{0, N} — Pp{1, N}, in which the LHS is %Pp{l, N}. Making use of
the result just obtained for Pp {0, N}, we see the solutionis Pp{1, N} = N exp(—N). Continuing similar
arguments for higher numbers of events, m, we again recover the standard Poisson distribution (2) with
expectation N (even though 7 (x) is non-homogeneous).
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Table A1. Numerically found solutions for the optimum integrated
impurity densities for particular points along the curves displayed in

figures 3 and 4.
Optimum A Optimum B
Separation Width density n, density np
p[nm] d[nm] [em 7] [em 7]
0 1.0 4.99 x 10° 2.14 x 10"
14.5 3.64 x 10° 1.97 x 10°
300.0 1.76 x 10° 1.66 x 10°
15 1.2 433 x 10° 2.62 x 10"
16.0 3.34 x 10° 2.28 x 10°
281.2 223 x 10® 1.74 x 10°
30 14.5 3.63 x 10° 2.88 x 10"
300.0 1.75 x 10° 1.65 x 10°

Appendix B. Optimum impurity densities for configurations of interest
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