
1

Hierarchical Multi-Agent Optimization for
Resource Allocation in Cloud Computing
Xiangqiang Gao, Rongke Liu, Senior Member, IEEE and Aryan Kaushik, Member, IEEE

Abstract—In cloud computing, an important concern is to allocate the available resources of service nodes to the requested tasks on
demand and to make the objective function optimum, i.e., maximizing resource utilization, payoffs and available bandwidth. This paper
proposes a hierarchical multi-agent optimization (HMAO) algorithm in order to maximize the resource utilization and make the
bandwidth cost minimum for cloud computing. The proposed HMAO algorithm is a combination of the genetic algorithm (GA) and the
multi-agent optimization (MAO) algorithm. With maximizing the resource utilization, an improved GA is implemented to find a set of
service nodes that are used to deploy the requested tasks. A decentralized-based MAO algorithm is presented to minimize the
bandwidth cost. We study the effect of key parameters of the HMAO algorithm by the Taguchi method and evaluate the performance
results. The results demonstrate that the HMAO algorithm is more effective than two baseline algorithms of genetic algorithm (GA) and
fast elitist non-dominated sorting genetic algorithm (NSGA-II) in solving the large-scale optimization problem of resource allocation.
Furthermore, we provide the performance comparison of the HMAO algorithm with two heuristic Greedy and Viterbi algorithms in
on-line resource allocation.

Index Terms—Cloud computing, resource allocation, resource utilization, bandwidth cost, genetic algorithm, multi-agent optimization.

F

1 INTRODUCTION

FOR some electronic devices, which are composed of ded-
icated hardware equipments, i.e., field programmable

gate array (FPGA), digital signal processor (DSP) and inte-
grated circuit (IC), the compatibilities for different requested
tasks are difficult to guarantee and the systems will be
more complicated with the increase in the number of the
requested tasks. The software defined network (SDN) and
virtualization technology are the foundations of the cloud
computing, and provide a promising and flexible approach
to facilitate resource allocation [1], [2], [3]. Cloud service
providers can allocate the available resources related to
service nodes to the requested tasks depending on demand
and supply. When a task consists of multiple sub-tasks,
these sub-tasks could be deployed on several service nodes
and form a service chain, which is a data flow through
the service nodes in sequence and can be presented as a
directed acyclic graph (DAG) [4]. Each sub-task needs the
physical resources for central processing unit (CPU), mem-
ory, or graphic processing unit (GPU). Besides, there are
bandwidth costs to transfer data on different service nodes.
For example, in case of data transmission, it includes five
sub-tasks and the service chain about these sub-tasks can
be represented as: network receiving → capture → track-
ing → synchronization → decoding, where each functional
module is achieved by software programming and can run
on a commonly used computer system. The complexity and
development cost of a system can be effectively reduced by
cloud computing, and the flexibility and scalability can also

• X. Gao and R. Liu are with the School of Electronic and Information
Engineering, Beihang University, Beijing 100191, China.
E-mail: {xggao, rongke liu}@buaa.edu.cn.

• Aryan Kaushik is with the Department of Electronic and Electrical Engi-
neering, University College London (UCL), London WC1E 7JE, United
Kingdom.
E-mail: a.kaushik@ucl.ac.uk.

be improved. However, a new challenge in cloud computing
is how to effectively allocate the available resources related
to service nodes to the requested tasks, which leads to a
combinatorial optimization problem [5], [6].

1.1 Literature Review

The optimization problems for resource allocation in cloud
computing have been widely studied [7], [8], [9], [10], [11],
which are proved to be NP-hard and the complexities are
analyzed in [12], [13], [14]. Meta-heuristic algorithms are
effective optimization approaches for solving these resource
allocation problems. Several variants of genetic algorithm
(GA) are developed to improve the performance of the
resource allocation solution in [7], [8], [9] and the fast elitist
non-dominated sorting genetic algorithm (NSGA-II), which
is described in detail in [15], is also used to tackle this
problem [10], [11]. Two modified particle swarm optimiza-
tions (MPSO) are proposed to reallocate the migrated virtual
machines and achieve the resource management based on a
flexible cost in [16] and [17], respectively. Moreover, an ant
colony optimization (ACO) for dealing with the nonlinear
resource allocation problem is presented in [18]. To enhance
the efficiency in terms of seeking the optimal solution, the
authors in [19] introduce a hybrid optimization algorithm of
simulated annealing and artificial bee colony (ABC-SA).

However, as the scale of the optimization problem
grows, a large feasible solution space needs to be searched
and the computational complexity order of seeking the
optimal solution increases. Hence, the performance of solv-
ing the problem could be reduced by using meta-heuristic
algorithms [20], [21]. To further solve this issue, some opti-
mization algorithms based on decomposition and coopera-
tive co-evolutionary method are introduced, where a large-
scale problem is divided into several small-scale problems



2

and global optimal solution can be obtained by address-
ing these sub-problems with cooperative co-evolutionary
method [22], [23]. Reference [24] proposes a new coopera-
tive co-evolution framework (CCFR), which can efficiently
allocate computational resources based on the contributions
of different sub-populations, to address a large-scale opti-
mization problem.

Compared with centralized optimization methods, dis-
tributed optimization algorithms based on multi-agent sys-
tems (MAS) [25] have an explicit potential advantage for
solving the task deployment and resource allocation in
cloud computing [26], [27], [28]. In [26], the product allo-
cation problem for supply chain market is considered as
a discrete resource allocation and solved by a multi-agent
based distributed optimization algorithm. In addition, an
efficient greedy algorithm with multi-agent is proposed to
address the task allocation problem in social networks [27],
where the agents just require their local information about
tasks and resources, and provide the resources for the tasks
by an auction mechanism. Another auction-based virtual
machine resource allocation approach with the multi-agent
system is presented to save energy cost, and the virtual
machines assigned on different agents can be exchanged by
a local negotiation-based approach in [28].

In our work, a hierarchical multi-agent optimization
(HMAO) algorithm is proposed to address the problem of
maximizing the resource utilization and making the band-
width cost minimum. The proposed HMAO algorithm con-
sists of improved GA and multi-agent optimization (MAO)
algorithm. To reduce the complexity of solving the objective
problem, we decompose it into two sub-objective problems:
maximizing the resource utilization and minimizing the
bandwidth cost. The improved GA is used to obtain the
optimal set of service nodes that are used by the requested
tasks. The MAO algorithm is proposed to minimize the
bandwidth cost. For the MAO algorithm, we design a shared
agent and several service agents. Shared agent can hold
the information about resource allocation and task deploy-
ment for all service nodes. Service agents can aware the
environment of cloud computing by accessing the shared
agent. In addition, we also implement the selection and
exchange operators by a probabilistic method to migrate
and swap the sub-tasks on the service nodes. According
to the proposed HMAO algorithm, we can improve the
performance of solving resource allocation as the number
of the requested tasks increases.

1.2 Contributions

In this paper, we assume that the information about the
requested tasks and service nodes is given in advance,
e.g., task types, the number of tasks, resource requirements
for each sub-task and resource capacity values of service
nodes. Furthermore, we formulate the problem of resource
allocation to maximize the resource utilization and mini-
mize the bandwidth cost under resource constraints. The
resource utilization is defined as the ratio of the number of
resources used by all the requested tasks to the total number
of resources of the service nodes that are used to deploy the
requested tasks. In order to address the optimization prob-
lem, we propose a hierarchical multi-agent optimization

(HMAO) algorithm which is a combination of improved GA
and multi-agent optimization (MAO) algorithm.

Firstly, we decompose the main objective of maximizing
the resource utilization and minimizing the bandwidth cost
into two sub-objectives: maximizing the resource utilization
and minimizing the bandwidth cost [24]. The two sub-
objective optimization problems are in conflict with each
other and we assume that the former is considered with a
higher priority. The improved GA is used to seek the opti-
mal solution in order to maximize the resource utilization
and the optimal solution can be expressed as a set of service
nodes that are used to deploy the requested tasks. For
the MAO algorithm, there are two types of agents: service
agent and shared agent. Service agents are assigned to each
service node to assist in resource management. A shared
agent holds the information about resource allocation for all
the service nodes and supports the service agents in access
and update processes. The agents have environment-aware,
autonomy, social behavior and load-balancing properties
[29]. The service agents visit the shared agent to obtain
the information about resource allocation for all the service
agents, and they can migrate and swap their sub-tasks
with each other by selection and exchange operators that
are designed based on a probabilistic approach. In addi-
tion, a priority-based source sub-task selection mechanism
for the selection operator is implemented by considering
load-balancing on the service nodes and the relationships
between different sub-tasks. As a result, a global optimal
solution will be obtained by seeking the optimal solutions of
the service agents with cooperative co-evolutionary method
[23]. The proposed HMAO algorithm provides the following
contributions.

1) Considering to solve the joint problem of optimiz-
ing the resource utilization and bandwidth cost as
an entire problem, it will increase the computa-
tional complexity of the optimization problem and
weaken the performance of seeking the optimal
solution, especially, for the high-dimensional prob-
lems. In this paper, we decompose the total op-
timization problem into two sub-problems. Corre-
spondingly, a hierarchical multi-agent optimization
algorithm, which combines an improved GA with
MAO algorithm, is presented for solving the two op-
timization sub-problems. So that we can effectively
reduce the computational complexity of the overall
optimization problem.

2) The set of available service nodes, which represents
the optimal solution of maximizing the resource
utilization, can be obtained by the improved GA.
Then the MAO algorithm is proposed to solve the
sub-problem of minimizing the bandwidth cost. We
consider four main characteristics for the agents:
environment-aware, autonomy, social behavior and
load-balancing. Furthermore, we design the action
sets and behavior criteria for service agents and
a shared agent, the relationships between different
agents are illustrated based on an organized archi-
tecture. To migrate and swap those sub-tasks on
the service nodes, we implement two operators of
selection and exchange, where the selection operator



3

Set

Node1 Node2Node0

Task 0 Task 1 Task 2

Assign

0,0
t

0,0
t

0,1
t

0,2
t

0,3
t

0,1
t

0,2
t

0,3
t

1,0
t

1,1
t

1,2
t

1,0
t

1,1
t

1,2
t

2,0
t

1
t

2,0
t

1
t

0,3
t

1,0
t

1,1
t

1,2
t

2,0
t

1
t

0,0
t

0,1
t

t

Fig. 1. Procedure for resource allocation.

consists of a source sub-task selection and a target
sub-task selection. Considering load-balancing on
the service nodes and the relationships between
different sub-tasks, the source sub-task is provided
by a priority-based selection mechanism. For the
MAO algorithm, a feasible solution is partitioned
into several small-scale solutions and each service
agent indicates one part. We can find the global
optimal solution by optimizing the objectives of
the service agents with cooperative co-evolutionary
method.

3) To keep diversity in feasible solutions and avoid
premature convergence, the selection and exchange
operators for the MAO algorithm are implemented
based on a probabilistic method. For the former, we
can randomly choose a sub-task from the service
nodes as the target sub-task through the selection
probability. Similarly, if the objective result for a
service agent does not improve after the exchange,
it can also continue to be executed with the use of
exchange probability. By introducing a probabilistic
method to the selection and exchange operators,
we can further improve the performance of the
proposed HMAO algorithm.

Finally, the experiments for different tasks are carried
out to verify the performance of the proposed HMAO algo-
rithm. The results show that the proposed HMAO algorithm
is an effective approach to solve the optimization problem of
resource allocation. When compared with GA and NSGA-II,
the proposed HMAO algorithm performs better for high-
dimensional problems in terms of solution quality, conver-
gence time and stability.

The remainder of this paper is organized as follows.
Section 2 introduces the system model of resource alloca-
tion. In Section 3, we provide the problem formulation for
the system model. A hierarchical multi-agent optimization
algorithm is proposed in Section 4. Section 5 investigates the
effect of key parameters for the proposed HMAO algorithm
and evaluates the performance comparison with existing
optimization algorithms. The conclusion of this paper is
discussed in Section 6.

2 SYSTEM MODEL

A cloud computing system can be modeled as a graph
G =< V,E >, where V = {v0, v1, . . . , vK−1} represents

{ },
0,0 0,1
t t

{ },
0,3 1,2
t t

1, 2
b

1,0
b

0 1

2

0,2
b0,0

b

,

0,4
1,3

b

b

{ },
1,0 1,1
t t

{ }0,2
t

0,3
b

{ },
0,4 1,3
t t

3

4

(a)

{ }, ,
0,0 0,1 0,2
t t t

{ },
1,1 1,2
t t

1,1
b

0,3
b

{ }1,0
t

{ }0,3
t

 Task 0
Task 1
Node

1,0
b

0

32

0,0
b

1

0,4
b

1,3
b

4

{ },
0,4 1,3
t t

(b)

Fig. 2. Example of resource allocation with different schemes.

a set of service nodes with K service nodes, vi is the i-
th service node. E describes a set of links between these
service nodes and < vi, vj >∈ E indicates the link be-
tween service nodes vi and vj . Service node vi contains
four resources: CPU, memory, GPU and bandwidth, whose
capacities are denoted as Ci,M i, Gi and Bi, respectively.
We also assume that any two service nodes can commu-
nicate with each other through inter-connected networks,
i.e., ∀ < vi, vj >∈ E. Let T = {t0, t1, . . . , tL−1} be a
set of tasks with L total number of tasks and tl denotes
the l-th task. tl consists of Nl sub-tasks and is expressed
as tl = {tl,0, tl,1, . . . , tl,Nl−1}, which is an ordered list
and there is a precedence relationship between different
sub-tasks. That is, tl,n can not be carried out until all its
predecessors are finished. The resource requirements of
CPU, memory, GPU and bandwidth for tl,n running on vi
are described as cil,n,m

i
l,n, g

i
l,n, b

i
l,n, respectively. In cloud

computing, an effective resource allocation approach is used
to allocate the available resources of service nodes to the
requested tasks. Note that the total number of resources on
any service node can not be more than its capacities, and
the bandwidth cost will be considered when two adjacent
sub-tasks are placed on different service nodes. Moreover,
we can deploy as many sub-tasks as possible to a service
node in order to improve the resource utilization [7], [11],
[12].

The procedure for resource allocation in our system
model is shown in Fig. 1, where the information about the
requested tasks and service nodes is obtained in advance, all
sub-tasks from the requested tasks are deployed to multiple
service nodes simultaneously, and the neighbouring sub-
tasks can be located on the same service node or different
ones. Therefore, different resource allocation schemes have
an impact on the system performance [12].

Fig. 2 presents an example of resource allocation with
different schemes. There are five service nodes with com-
munication links in the network, two tasks are given as
t0 = {t0,0, t0,1, t0,2, t0,3, t0,4} and t1 = {t1,0, t1,1, t1,2, t1,3}.
In Fig. 2(a), for task t0, sub-tasks t0,0, t0,1 are deployed on
service node v0, sub-tasks t0,2, t0,3 and t0,4 are on service
nodes v1, v3 and v4, respectively. A service chain for t0 is
built on the service nodes v0, v1, v3 and v4 in order, and
there is no bandwidth cost between sub-tasks t0,0 and t0,1
as they are on the same service node. Hence, the bandwidth
cost for t0 is b00,0 + b10,2 + b30,3 + b40,4. For task t1, sub-tasks
t1,0 and t1,1 are allocated on service node v2, and sub-tasks
t1,2 and t1,3 are on service nodes v3 and v4, respectively.
The bandwidth cost for t1 is indicated as b21,0 + b31,2 + b41,3.
Different resource allocation schemes for tasks t0 and t1



4

are described in Fig. 2(b). sub-tasks t0,0, t0,1 and t0,2 are
assigned on service node v0, and sub-tasks t0,3 and t0,4 are
on service nodes v1 and v4, respectively, and the bandwidth
cost for t0 is b00,0 + b10,3 + b40,4. Similarly, the bandwidth cost
for t1 is b21,0 + b31,1 + b41,3. As shown in Fig. 2, the bandwidth
costs vary for different resource allocation schemes.

3 PROBLEM FORMULATION

In this section, a mathematical description of resource al-
location is presented for our system model. Our purpose
is to maximize the resource utilization and minimize the
bandwidth cost in cloud computing with several physical
constraints. Moreover, we do not consider the network
resource constraints in this paper, such as routers and
switches.

Note that several redundant service nodes are placed to
maintain service delivery by using the proposed approach
in a practical cloud environment. In general, these redun-
dant service nodes are in sleep or shutdown states to reduce
the operating cost [30], [31]. When a few service nodes fail
to handle their dynamical workloads, the redundant service
nodes will be woken up quickly. The dynamical workloads
in the failed service nodes can be migrated to the redundant
service nodes, so it ensures that our proposed approach can
be also effective and maintain service delivery in the case of
service node failure.

The main symbols used to formulate our problem are
summarized in Table 1.

To further discuss the problem, we define a binary
decision variable xi

l,n that indicates whether sub-task tl,n
is deployed on service node vi, i.e., xi

l,n = 1 means tl,n is
allocated on vi, otherwise not. In addition, another binary
decision variable yi,jl,n,n̂ is used to describe whether there
is a bandwidth cost between sub-tasks tl,n and tl,n̂. Let us
denote a set of predecessors of tl,n as Up

l,n and a set of suc-
cessors of tl,n̂ as Us

l,n̂. We assume that tl,n and tl,n̂ are placed
on vi and vj , respectively. When Up

l,n ̸= ∅, tl,n̂ ∈ Up
l,n, then

yi,jl,n,n̂ = 1, or else yi,jl,n,n̂ = 0. Note that the bandwidth cost
between a sub-task and the source node is not neglected.
The bandwidth cost for tl,n can be written as:

b̃il,n =

{
bil,n, if Up

l,n = ∅ or yi,jl,n,n̂ = 1,

0, otherwise.
(1)

With the physical resource constraints [9], the number
of resources used by the requested tasks on a service node
should be less than the resource capacities. As a result,
the resource constraints about CPU, memory and GPU are
given as follows:

L−1∑
l=0

Nl−1∑
n=0

cil,nx
i
l,n ≤ Ci,

L−1∑
l=0

Nl−1∑
n=0

mi
l,nx

i
l,n ≤M i,

L−1∑
l=0

Nl−1∑
n=0

gil,nx
i
l,n ≤ Gi.

(2)

Similarly, as the amount of bandwidth used on a service
node can not be more than the capacity, the bandwidth
resource constraint is expressed as:

TABLE 1
List of Symbols

Symbol Definition

V Set of service nodes in cloud computing.
E Set of network links in cloud computing.
K Maximum number of service nodes.
Va Set of service nodes deployed tasks.
Ka Number of service nodes deployed tasks.
T Set of tasks.
L Number of tasks.
Nl Number of sub-tasks for the l-th task.
tl Set of sub-tasks for the l-th task.
tl,n The n-th sub-task for the l-th task.
vi The i-th service node.
Ci Resource capacity for CPU on vi.
M i Resource capacity for Memory on vi.
Gi Resource capacity for GPU on vi.
Bi Resource capacity for Bandwidth on vi.
cil,n Resource requirement of tl,n for CPU on vi.
mi

l,n Resource requirement of tl,n for Memory on vi.
gil,n Resource requirement of tl,n for GPU on vi.
bil,n Resource requirement of tl,n for Bandwidth on vi.
xi
l,n Indicate whether tl,n is assigned on vi.

yi,jl,n,n̂ Indicate whether a bandwidth cost is available for tl,n, tl,n̂.
b̃il,n Bandwidth cost for running tl,n.
Us
l,n Set of successors of tl,n.

Up
l,n Set of predecessors of tl,n.

Z1 Objective function of resource utilization.
Z2 Objective function of bandwidth cost.
Z Total objective function.
α, β Weight values.

L−1∑
l=0

Nl−1∑
n=0

b̃il,nx
i
l,n ≤ Bi. (3)

Furthermore, all the sub-tasks from the task set T are
deployed to the service nodes in V and any sub-task can be
allocated just only once. Thus, we can obtain the following:

K−1∑
i=0

L−1∑
l=0

Nl−1∑
n=0

xi
l,n =

L−1∑
l=0

Nl. (4)

In this paper, one of our goals is to improve the resource
utilization of cloud computing by reducing the number of
service nodes used. For service node vi, the resource utiliza-
tion includes three parts: CPU utilization, memory utiliza-
tion and GPU utilization, which are denoted by φi

c, φ
i
m, φi

g ,
respectively. They can be computed as follows:

φi
c =

L−1∑
l=0

Nl−1∑
n=0

cil,nx
i
l,n/C

i,

φi
m =

L−1∑
l=0

Nl−1∑
n=0

mi
l,nx

i
l,n/M

i,

φi
g =

L−1∑
l=0

Nl−1∑
n=0

gil,nx
i
l,n/G

i.

(5)

According to the preferences of different resource types,
we provide the weight values for CPU, memory and GPU
as αc, αm and αg , respectively. The resource utilization Z1



5

for our system model is obtained by a linear weighted sum
method as follows:

Z1(X) =
1

Ka

Ka−1∑
i=0

(
αcφ

i
c + αmφi

m + αgφ
i
g

)
, (6)

where X =
{
xi
l,n,∀vi ∈ V, ∀tl,n ∈ T

}
is a feasible solu-

tion for allocating the available resources of service nodes
to the requested tasks in cloud computing. The parame-
ter Ka (Ka ≤ K) denotes the number of service nodes
that are used to deploy the requested tasks. In addition,
αc + αm + αg = 1.
Another goal is to optimize the bandwidth cost by deploy-
ing the adjacent sub-tasks to the same service node. Let us
denote the bandwidth cost as Z2 which can be expressed as
follows:

Z2(X) =
1

Ka

Ka−1∑
i=0

L−1∑
l=0

Nl−1∑
n=0

b̃il,nx
i
l,n/B

i. (7)

In cloud environment, we think that when a service
node is running it will increase the operating cost [30],
[31]. In order to reduce the operating cost, the number of
service nodes that are used by the requested tasks should
be as small as possible and the service nodes in idle mode
can be in sleep or shutdown states [31]. In addition, the
adjacent sub-tasks from a task are assigned on the same
service node to save the bandwidth and delay costs, and
improve the performance of cloud computing. We need
to simultaneously optimize these two objectives which are
Z1(X) and Z2(X). Specifically, our purpose is to seek an
optimal solution which maximizes the resource utilization
Z1(X) and minimizes Z2(X). Thus the combined objective
Z(X) which involves maximizing Z1(X) and minimizing
Z2(X) can be expressed as:

maximize Z(X) = β1Z1(X) + β2(1− Z2(X)), (8)

where β1 and β2 are the weight values for Z1(X) and
1 − Z2(X), respectively. The preferences of different objec-
tives can be adjusted by varying β1 and β2, and we consider
β1+β2 = 1. However, this optimization problem is regarded
as NP-hard problem, which means a high computational
complexity order for finding an optimal solution. Meta-
heuristic optimization algorithms are effective approaches
to solve the combinatorial optimization problem, but the
performance of solution quality and convergence time will
degrade with the increase in the scale of the problem.
Distributed optimization algorithms, which are based on
decomposition and multi-agent systems, can improve the
optimization solution effectively.

In the next section, we propose the HMAO algorithm,
which is an optimization approach using hierarchical multi-
agent framework, to address the resource allocation prob-
lem in cloud computing.

4 HIERARCHICAL MULTI-AGENT OPTIMIZATION

In this paper, we address a joint optimization problem of
maximizing the resource utilization in cloud computing sys-
tems and reducing the bandwidth cost [32], [33]. To reduce
the computational complexity of the optimization problem,

S
te

p
 1

S
te

p
 2

Agent0 Agent1 Agent2

× × × Group1

× × ×

Group2

Shared agent

Agent2

Agent1

Agent0

Fig. 3. Proposed hierarchical multi-agent framework.

we decompose the total objective into two optimization
sub-problems: maximizing Z1(X) and minimizing Z2(X),
and these two optimization sub-problems will be solved,
accordingly.

Firstly, an improved GA is introduced to find the optimal
solution which maximizes Z1(X). All sub-tasks from T
make up an ordered list as an individual that represents a
feasible solution. We use a roulette wheel selection approach
[34] to obtain those individuals with higher fitness values.
Besides, two-point crossover and signal-point mutation are
also used [35]. A set Va of service nodes that are used to
deploy the requested tasks can be provided as the optimal
solution by the improved GA.

Then, a multi-agent optimization algorithm is proposed
to solve the sub-problem of minimizing Z2(X). We use a
shared agent to hold the information of resource allocation
for the service nodes, and assign service agents to each
service node for assisting in resource management [36]. Dif-
ferent service agents can cooperate, coordinate and compete
with each other to optimize their objectives with respect to
the behavior criteria [28]. To keep the diversity of feasible so-
lutions and avoid the occurrence of premature convergence,
both selection and exchange operators [36] are achieved by a
probabilistic method. In addition, a feasible solution consists
of all the sub-tasks from the available service agents and
those sub-tasks on a service agent are considered as part
of a feasible solution. We can optimize the objectives of the
service agents with cooperative co-evolutionary method to
obtain a global optimal solution [23].

Fig. 3 shows the proposed hierarchical multi-agent
framework. The procedure for addressing the optimization
problem is divided into two steps. In the first step, the
improved GA is used to find the optimal solution which
maximizes Z1(X), and each agent represents an individual.
In the second step, the MAO algorithm is applied to seek
the optimal solution which minimizes Z2(X). Shared agent
can hold the information concerning task deployment and
resource allocation for all service nodes, and support service
agents to access and update the information about task
deployment and resource allocation in real-time. Service
agents are assigned on each service node and provide help
for resource management. Service agents can obtain the
information about task deployment and resource allocation
by accessing the shared agent, and swap their sub-tasks with
each other to improve the resource allocation solution.



6

Resource

Limit

Resource

Limit

Node 0 Node 1 Node 0 Node 1 Node 2Node 2

Move

Gene 0,0
t

0,1
t

0,2
t

0,3
t

0,4
t

1,0
t

1,1
t

1,2
t

1,3
t

0,0
t

0,1
t

0,2
t

0,2
t

0,0
t

0,1
t

0,2
t

0,3
t

0,4
t

1,0
t

1,1
t

1,2
t

1,3
t

Fig. 4. Procedure for decoding an individual.

4.1 Improved GA

For the sub-problem of optimizing the resource utilization,
the objective is to maximize Z1(X) and the constraints
need to be satisfied. The improved GA is introduced to
solve this optimization problem. The improvement consists
of two parts: procedure of decoding an individual and
initial population generation. We implement two kinds of
procedure for decoding an individual by index priority and
first-fit rule [37], [38], respectively. One decoding procedure
based on index priority is used for the off-line resource
allocation and the other procedure of decoding by first-fit
rule is applied for the on-line resource allocation. Further-
more, for the proposed HMAO algorithm in on-line resource
allocation, in order to improve the quality of the initial
solutions, an individual is encoded by the inter-dependent
relationships of those sub-tasks in sequence and the rest of
the individuals are randomly encoded to keep diversity of
feasible solutions.

In the improved GA, a population includes P individu-
als, an individual p ∈ P is encoded by a permutation rep-

resentation [35], [39] and consists of
L−1∑
l=0

Nl genes in order,

where a gene represents a sub-task. During the process of
decoding, all service nodes in V are sorted in ascending
order by index, and the service nodes with low index have
high priority to be deployed with the requested tasks. Thus,
a sub-task is deployed depending upon the priority of a
service node until the resource requirements are satisfied.
By the decoding method, the sub-tasks from an individual
can be allocated to these service nodes in V in sequence, and
the result of resource allocation indicates a feasible solution.

Fig. 4 illustrates the procedure for decoding an in-
dividual. There are two tasks: t0 with 5 sub-tasks
and t1 with 4 sub-tasks, an individual is expressed as
p = {t0,0, t0,1, t0,2, t0,3, t0,4, t1,0, t1,1, t1,2, t1,3}. Three ser-
vice nodes are denoted as v0, v1 and v2, respectively, and
their resource capacities are limited. Firstly, it is seen that
sub-tasks t0,0 and t0,1 are allocated to service node v0, but
the required resources for v0 are more than the capacities
after deploying t0,2 to v0. As a result, sub-task t0,2 is moved
to service node v1. Due to the high priority of service nodes
with low index, sub-task t0,3 will be placed to service node
v0. Similarly, we deploy sub-tasks t0,4 and t1,0 to service
node v1, sub-tasks t1,1, t1,2 and t1,3 to service node v2.

Three operators for selection, crossover and mutation are
used as follows:

• Selection operator: A roulette wheel selection [34] is
applied to obtain the individuals with high fitness
values. All individuals are sorted in ascending order

Parent0 0,3
t

0,1
t

0,4
t

1,0
t

0,0
t

1,1
t

0,2
t

1,2
t

1,3
t

Parent1 0,0
t

0,4
t

1,3
t

0,1
t

1,2
t

1,0
t

0,3
t

1,1
t

0,2
t

Point 0 Point 1

Offspring 0,3
t

0,1
t

0,4
t

0,0
t

1,3
t

1,2
t

1,0
t

1,1
t

0,2
t

Fig. 5. Example of two-point crossover operator.

by their fitness values and the cumulative probability
distribution function (CDF) is computed accordingly.
Then we choose the candidates through the concept
of the survival of the fittest,which means an individ-
ual with high fitness is more likely to be chosen.

• Crossover operator: Two-point crossover [35] is used as
the crossover operator and executed with crossover
probability pc. We randomly select two gene points
for two individuals (one each from the mother and

father) in the field
{
1,

L−1∑
l=0

Nl − 2

}
to mate with each

other, each offspring inherits some of the genes from
their parents, respectively. An example of two-point
crossover is described in Fig. 5. Two individuals p0 =
{t0,3, t0,1, t0,4, t1,0, t0,0, t1,1, t0,2, t1,2, t1,3} , p1 =
{t0,0, t0,4, t1,3, t0,1, t1,2, t1,0, t0,3, t1,1, t0,2} are given
as the parents, and two gene points are randomly
generated, such as 3 and 6. Firstly, an offspring
inherits t0,3, t0,1 and t0,4 from parent0 as the genes
of itself. Then 3 genes (point1 − point0 = 3) from
parent1 need to be searched from low to high, and
they can not be the same as that of the offspring.
Therefore, genes t0,0, t1,3 and t1,2 from parent1 are
inherited as the genes of the offspring. In the same
way, the offspring can inherit genes t1,0, t1,1 and
t0,2 from parent0. Thus the offspring is indicated as
{t0,3, t0,1, t0,4, t0,0, t1,3, t1,2, t1,0, t1,1, t0,2}. Similarly,
{t0,0, t0,4, t1,3, t0,3, t0,1, t1,0, t1,2, t1,1, t0,2} can
represent another offspring.

• Mutation operator: Mutation operator [35] is carried
out with mutation probability pm, where we ran-
domly choose two gene points from an individual
and exchange their genes to gemerate a new individ-
ual.

The improved GA is described in Algorithm 1. Let us de-
note the maximum number of iterations as Itermax. At the
beginning, the initial population P is randomly produced,
we compute the fitness of the objective function for those
individuals from population P and obtain the CDF. Then
the population of offsprings can be obtained by running
selection, crossover and mutation operators, respectively.
The optimal solution of maximizing Z1(X) will be given
in iterative evolution. The termination criterion is met when
the number of iterations is greater than Itermax.

According to the improved GA, we obtain an optimal so-
lution which maximizes the resource utilization, where the
optimal solution indicates a set Va of service nodes that are
used to deploy the requested tasks and contains Ka service
nodes. However, the bandwidth cost and load-balancing are
not considered for this sub-problem. The following section
4.2 will discuss the sub-problem of minimizing the band-



7

Algorithm 1 Improved GA.
1: Initialize: Population P , individual p ∈ P , crossover

probability pc, mutation probability pm, maximum num-
ber of iterations Itermax;

2: for Iter = 0 to Itermax do
3: Compute the fitness for all individuals P ;
4: Obtain the CDF based on the fitness values;
5: Run selection operator to get P candidates;
6: for i = 0 to length(P )

2 do
7: Randomly choose two individuals;
8: Generate a random number pr;
9: if pr ≤ pc then

10: Run two-point crossover operator;
11: end if
12: end for
13: Produce offspring population;
14: for i = 0 to length(P ) do
15: Randomly choose an individual;
16: Generate a random number pr;
17: if pr ≤ pm then
18: Run mutation operator;
19: end if
20: end for
21: Update population P ;
22: end for

width cost and load-balancing based on a set Va of service
nodes.

4.2 Multi-agent Optimization
For set Va of service nodes, we propose a multi-agent opti-
mization approach to address the optimization sub-problem
of minimizing Z2(X) with the constraints. For the MAO,
the agents have four characteristics: environment-aware,
autonomy, social behavior and load-balancing [29], which
are described in detail as follows:

1) Environment-aware: The environment in the MAO
algorithm consists of all the agents and their re-
lationships, where the agents are designed as a
shared agent and Ka service agents in advance,
and we use an organized architecture to illustrate
their relationships. A service agent can obtain the
information about resource allocation by accessing
the shared agent, and interact with other service
agents to better adapt to the current environment
condition, that is, to achieve a higher fitness value. A
shared agent provides access services for the service
agents in order to help with resource management.

2) Autonomy: When the environment conditions are
changed, an agent can autonomously make a deci-
sion for the next actions to adjust its fitness value
by a set of actions and the behavior criteria. For
a service agent, its action set includes four parts:
access, selection, exchange and update. Firstly, it
obtains the information about resource allocation
by accessing the shared agent. Then selection and
exchange operators, which are described later in this
section, can be executed, respectively. The results of
interaction on service agents will be updated on the

shared agent. In addition, the action set of a shared
agent can provide three services which are storing,
accessing and updating the information.

3) Social behavior: According to social behavior, the
agents share the information about resource alloca-
tion, and the sub-tasks deployed on different service
agents can be exchanged with each other. There are
two kinds of social behavior which are between
shared agent and service agents, and service agents
with each other. For the former, the agents can
share the information about resource allocation with
all the service agents. For the latter, the aim is
to exchange those sub-tasks that are deployed on
different service agents to improve their objectives.

4) Load-balancing: Load-balancing is an important issue
to ensure that the service nodes are being used
sufficiently. Therefore, considering load-balancing,
a service agent runs the exchange operator by co-
operating, coordinating and competing with other
service agents.

In order to better describe the MAO algorithm, some
important specifications are given as follows:

• Shared agent: Shared agent, which is denoted by
as, holds the information about task deployment
and resource allocation for all service agents, it can
support the service agents to access and update the
information in real-time.

• Service agent: Service agents are assigned to the ser-
vice nodes in Va to assist in resource management,
where they can access and update the information
about resource allocation on the shared agent. More-
over, the sub-tasks deployed on different service
agents can be migrated and swapped with each other
by selection and exchange operators. The service
agent assigned to vi is indicated as ai and all the
service agents make up a set Aa of the service agents.

• Adjacent agent: We assume that ∀tl,n ∈ ai, ∃tl,n̂ ∈
aj , i ̸= j, where tl,n̂ ∈ Up

l,n∪Us
l,n, then ai, aj are seen

as adjacent agents.
• Active sub-task: For a sub-task ∀tl,n ∈ ai, its adjacent

sub-tasks are migrated and swapped to ai to improve
the bandwidth cost by selection and exchange oper-
ators. Sub-task tl,n is defined as an active sub-task.

• Host service agent: If an active sub-task tl,n ∈ ai,
the service agent ai is considered as the host service
agent.

• Feasible solution: All sub-tasks placed on service agent
ai are indicated as Λi, where Λi is considered as part
of a feasible solution. Therefore, a feasible solution

can be expressed as X =
Ka−1∪
i=0

Λi.

• Objective function: A feasible solution is decomposed
into Ka parts, thus the objective can be re-written as:

Z2(X) = 1
Ka

Ka−1∑
i=0

Z2(Λi).

In the MAO algorithm, there is a shared agent as and
Ka service agents, the agents can communicate with each
other by network links, such as as and ai, and ai and
aj , i ̸= j. The service agents can share the information about
resource allocation by accessing the shared agent as, migrate



8

2

5 6

87

Shared agent.

Agents which include       and its neighbors.

Agents which do not include       or its neighbors.

Update shared 

information

{ }, 1+tl n

{ },tl n

{ }, -1tl n

sp

1- sp

1 3

0

4

9

,l nt

,l nt

Fig. 6. Architecture for multi-agent optimization.

and swap their sub-tasks with each other to reduce their
bandwidth costs. To keep the diversity of feasible solutions,
selection and exchange operators are implemented based
on a probabilistic method which is discussed later in this
section.

Generally, the procedure of the MAO includes four parts:
obtain the adjacent agents, choose source and target sub-
tasks, execute the exchange operator, and update the shared
information. Firstly, let us select sub-task ∀tl,n ∈ ai as the
active sub-task, all its adjacent sub-tasks Ul,n = Up

l,n ∪ Us
l,n

and their service agents can be obtained by accessing the
shared agent. Then selection and exchange operators can
be carried out for each sub-task from corresponding Ul,n.
For the selection operator, we need to choose the source
and target sub-tasks, where the target sub-task is selected
by a probabilistic method, and the source sub-task from ai
is obtained by a priority-based selection mechanism. The
priority-based selection mechanism consists of two parts,
where one is the dependence relationships of sub-tasks
for two adjacent service agents and the other is the used
resources of server nodes that are illustrated in detail in
subsection 4.2.2. For exchange operator, we can migrate
and swap the source and target sub-tasks among differ-
ent service agents with multiple constraints, which include
objective optimization, resource constraints, load-balancing
and diversity of feasible solutions that are clearly described
in subsection 4.2.3. Furthermore, the exchange operation can
be carried out with exchange probability pe if the objective
fitness is not improved at this instance. When the exchange
is finished, the shared information will be updated.

An example of the MAO algorithm is illustrated in
Fig. 6. We assume that a host service agent is a4 and an
active sub-task is tl,n. The service agent a4 can obtain the
information about the adjacent sub-tasks for tl,n by visiting
the shared agent, and there are two adjacent sub-tasks
tl,n−1 ∈ a1, tl,n+1 ∈ a9. For sub-task tl,n+1, it is chosen
as the target sub-task with selection probability 1 − ps or
else a random sub-task tl̂,n̂ ∈ a3 is chosen to be the target
sub-task. A source sub-task from a4 is selected by a priority-
based selection mechanism. Then we can run the exchange
operation and update the shared information. Similarly, we

Host

0,3
t

0,1
t

0,4
t

1,0
t

0,0
t

1,2
t

0,2
t

1,3
t

Adjacent node

2,1
t

1,2

1,0

0,1 0,0 0,4 0,1 0,0 0,4

- 1: ;

- 2 : ;

- 3: , , .< <

Sub task t

Sub task t

Sub task t t t and d d d

1,2
t

1,0
t

0,1
t

0,0
t

0,4
t

Task sequence

EOF

Fig. 7. Source sub-task candidate list.

can proceed with the processing for tl,n−1.
Next, we discuss three main parts for the MAO algo-

rithm.

4.2.1 Target Selection
In the MAO algorithm, to optimize the bandwidth cost, our
purpose is to assign the adjacent sub-tasks from a task to
the same service agent as far as possible. In addition, a
probabilistic method is used to select the target sub-task to
avoid premature convergence.

For active sub-task tl,n ∈ ai, the set of its adjacent sub-
tasks is Ul,n, and we assume that a candidate adjacent sub-
task is tl,n̂ ∈ Ul,n, tl,n̂ ∈ aj , i ̸= j and a random sub-task
is denoted as tl̂,n̂ ∈ ak, i ̸= k. Therefore, the target sub-task
is tl̂,n̂ with probability ps, otherwise tl,n̂. The algorithm for
target selection is described in Algorithm 2.

4.2.2 Source Selection
Considering load-balancing and objective optimization, a
priority-based source sub-task selection mechanism is pro-
posed. In the host service agent, all available sub-tasks for
active sub-task tl,n ∈ ai are sorted in descend order by
the priority, which includes two categories: the dependence
relationships of sub-tasks for the host and adjacent service
agents, and the used resources. There are three sub-task
types according to the dependence relationships as follows:

• Sub-task1: Let us denote active sub-task as tl,n ∈ ai,
an adjacent service agent as aj , i ̸= j and a set of
available sub-tasks as Wl,n. If tl′,n′ ∈ Wl,n, t

′
l′,n′ ∈

Ul′,n′ , make ∃t′l′,n′ /∈Wl,n and t′l′,n′ ∈ aj , let tl′,n′ be
sub-task1.

• Sub-task2: If tl′,n′ ∈ Wl,n, t
′
l′,n′ ∈ Ul′,n′ , make

∀t′l′,n′ /∈Wl,n and t′l′,n′ /∈ aj , let tl′,n′ be sub-task2.
• Sub-task3: If tl′,n′ ∈ Wl,n, t

′
l′,n′ ∈ Ul′,n′ , make

∃t′l′,n′ ∈Wl,n, let tl′,n′ be sub-task3.

The precedence relations for three sub-task types are ranked
as: sub-task1 > sub-task2 > sub-task3. Furthermore, for the
same sub-task type, we calculate the resource utilization
difference between ai and the average value of the system
for each candidate sub-task. All the candidate sub-tasks are
sorted in ascending order by the differences.

Fig. 7 describes the procedure of a source sub-
task candidate list. Host service agent is indicated as
{t0,3, t0,1, t0,4, t1,0, t0,0, t1,2}, active sub-task is t0,3 and an
adjacent service agent consists of t0,2, t1,3 and t2,1. We can
find that t1,2 is sub-task1, t1,0 is sub-task2, t0,1, t0,0 and t0,4
are sub-task3. For sub-task3, the differences of the sub-tasks



9

Algorithm 2 Target selection.
1: Initialize: Probability ps;
2: For ∀tl,n ∈ ai,∃tl,n̂ ∈ Ul,n, tl,n̂ ∈ aj , ai, aj ∈ Aa, i ̸= j,

tl̂,n̂ ∈ ak, i ̸= k;
3: Generate a random number pr;
4: if pr ≥ ps then
5: Let tl,n̂ be the target sub-task;
6: else
7: Let tl̂,n̂ be the target sub-task;
8: end if

Algorithm 3 Source selection.
1: For active sub-task tl,n ∈ ai, an adjacent service agent

aj , i ̸= j;
2: Make a set of available sub-tasks Wl,n;
3: for ∀tl′,n′ ∈Wl,n do
4: Obtain the set of its adjacent sub-tasks Ul′,n′ ;
5: For t′l′,n′ ∈ Ul′,n′ ;
6: if ∃t′l′,n′ /∈Wl,n and t′l′,n′ ∈ aj then
7: Let tl′,n′ be sub-task1;
8: else if ∀t′l′,n′ /∈Wl,n and t′l′,n′ /∈ aj then
9: Let tl′,n′ be sub-task2;

10: else
11: Let tl′,n′ be sub-task3;
12: end if
13: Assume tl′,n′ is a source sub-task and calculate the

difference between the resource utilization of ai and
the average value of the system;

14: end for
15: Sort the sub-task candidate list by precedence.

are ranked as d0,1 < d0,0 < d0,4. As a result, the task list can
be indicated as {t1,2, t1,0, t0,1, t0,0, t0,4}.

For the sub-task candidate list, the source sub-task can be
chosen by the priority, and different source sub-tasks have
an influence on the performance. The algorithm for source
selection is shown in Algorithm 3.

4.2.3 Exchange Procedure
For active sub-task tl,n, the target sub-task and source sub-
task candidate list are given by target and source selection
operations, then the service agents can cooperate, coordinate
and compete with each other to migrate and swap their
sub-tasks to improve the objectives through the exchange
operator. In this context, there are four situations to be
considered as follows:

• Objective optimization: For the exchange procedure,
our aim is to migrate and swap these sub-tasks on
different service agents to reduce their bandwidth
costs. That is, the objective fitness should be im-
proved for the host service agent after running the
exchange operator.

• Resource constraints: The number of resources used
for each service agent can not exceed its resource
capacities.

• Load-balancing: Load-balancing is implemented by a
priority-based source sub-task selection mechanism
and the procedure of migrating and swapping the
sub-tasks.

Algorithm 4 Exchange procedure.
1: For target sub-task tl̂,n̂, source sub-task candidate list

Ql,n, exchange probability pe;
2: for ∀tl′,n′ ∈ Ql,n do
3: if The objective optimization is invalid then
4: Generate a random number pr;
5: if pr > pe then
6: Continue;
7: end if
8: end if
9: if (tl′,n′ = EOF or (tl′,n′ ̸= EOF and hold equation

(9))) and meet with resource constraints then
10: Run the migration and break;
11: else if tl′,n′ ̸= EOF and hold resource constraints

then
12: Run the exchange and break;
13: end if
14: end for
15: Update the shared information on the shared agent.

• Diversity of feasible solutions: Exchange operator is
achieved by a probabilistic method, when the ob-
jective optimization is not satisfied, the exchange
procedure can continue to be carried out with a lower
probability.

Next, we describe the exchange procedure in detail.
Let us denote the source sub-task list by Ql,n. For

∀tl′,n′ ∈ Ql,n, we firstly ensure that the objective result
is improved by the exchange operation. If it is not, the
exchange procedure can keep running with exchange prob-
ability pe. Considering the load-balancing for all the service
agents, if the load-balancing constraint in equation (9) is
satisfied, we will just migrate the target sub-task from aj
to ai and there will be nothing to do for the source sub-task.
Besides, the migration will be also considered when there is
no available source sub-task in the candidate list. The load-
balancing constraint can be expressed as:

ηi < ηj + 2 ∗ η̄, (9)

where ηi and ηj show the resource utilization of ai and aj
after the migration, respectively. The parameter η̄ indicates
the average resource utilization for all sub-task types. In
most cases, we need to swap the target and source sub-tasks
with each other between ai and aj . Note that the migration
and exchange are satisfied with the resource constraints. The
exchange procedure is shown in Algorithm 4.

The MAO algorithm is an iterative optimization al-
gorithm based on multi-agent systems and Algorithm 5
describes the entire MAO algorithm. We assume that the
maximum number of iterations is M . During an iterative
evolution, all the sub-tasks from each service agent run the
selection and exchange operations, and the objective value
for this service agent can be improved with high probability.
All the service agents can work together with cooperative
co-evolutionary method. Thus, the global optimal solution
can be found by increasing the number of iterations.



10

Algorithm 5 MAO algorithm.
1: Input: Maximum number of iterations M , selection

probability ps, exchange probability pe;
2: for m = 0 to M do
3: for ∀ai ∈ Aa do
4: for ∀tl,n ∈ ai do
5: Obtain Ul,n by visiting as;
6: for ∀tl,n̂ ∈ Ul,n, tl,n̂ ∈ aj , i ̸= j do
7: Run the target selection operation;
8: Run the source selection operation;
9: Run the exchange procedure;

10: end for
11: end for
12: Update Λi for ai;
13: end for

14: Get the feasible solution X =
Ka−1∪
i=0

Λi and compute

the objective fitness value;
15: end for
16: Obtain an approximate optimal solution.

4.3 HMAO Algorithm in On-line Resource Allocation

The proposed HMAO algorithm is easily to be applied to the
on-line resource allocation by a few modifications. In this
paper, we consider the scenario of allocating the available
resources related to service nodes to the requested tasks
in batch mode. That is, the requested tasks need to be
performed are collected and will be handled at a fixed time
slot.

All the available resources related to service nodes make
up an available resource pool. In addition, we assume that
some new requested tasks appear and several old requested
tasks are over in each time slot. Before running the pro-
posed HMAO algorithm at every time, we need to check
whether there are several completed old requested tasks in
the last time slot. The resources used by these completed
old requested tasks can free and put into the resource pool
to be available for deploying the coming requested tasks in
the current time slot. Then we can run the proposed HMAO
algorithm to assign the available resources in the resource
pool to the new requested tasks.

In order to improve the quality of the initial solutions
for the GA, an individual is encoded by the inter-dependent
relationships of those sub-tasks in sequence and the rest of
the population are randomly encoded to keep diversity of
feasible solutions. For the decoding procedure of the GA, we
sort the service nodes that are used to deploy the requested
tasks in ascending order by the resource utilization. All the
sub-tasks for an individual are assigned to the available
service nodes with the first-fit rule [37], [38] and a new
service node would be activated when any of the available
service nodes can not meet the resource requirements of the
sub-task to be assigned. Algorithm 6 describes the proposed
HMAO algorithm in on-line resource allocation. For time
slot t, let us denote the set of the new requested tasks as
Tnew,t ∈ T and the set of the old requested tasks that are
ending as Told,t−1 ∈ T . Firstly, we end the old tasks from
Told,t−1 and release the required resources used. Then with
existing resources used and physical resource constrains, we

Algorithm 6 HMAO Algorithm in on-line resource alloca-
tion.

1: Input at time t: Set Tnew,t ∈ T of the tasks coming at t,
set Told,t−1 ∈ T of the tasks ending at t− 1;

2: Release the required resources of the old tasks in Told,t−1

and update the resource information for the service
nodes;

3: Generate the initial population P for Tnew,t;
4: Run the GA and obtain the set Va,t of service nodes that

are used to deploy the new tasks;
5: Carry out the MAO algorithm for Va,t;
6: Obtain an approximate optimal solution of allocating

the available resources to Tn,t.
7: Time: t← t+ 1.

TABLE 2
Resource requirements for tasks and service nodes.

Name CPU
(MHz)

Memory
(GB) GPU Bandwidth

(Mbps)
Network receiving 290 9.6 0 100

Capture 319 11.52 1 97
Tracking 435 12.48 1 95

Synchronization 638 12.48 1 92
Decoding 145 4.8 1 90

Server node 2900 96 8 1000

use the proposed HMAO algorithm to allocate the available
resources of service nodes to the new requested tasks.

5 PERFORMANCE EVALUATION

In this section, we make the experiments for different num-
ber of communication tasks to verify the performance of the
proposed HMAO algorithm with computer simulation re-
sults. Meanwhile, the performance of the proposed HMAO
algorithm is analyzed by comparing with two existing base-
line algorithms, which are GA and NSGA-II. The experi-
mental platform is a high performance server, which is i7-
4790k CPU, 16 GB memory and windows 10. Each commu-
nication task contains 5 parts: network receiving, capture,
tracking, synchronization and decoding. All service nodes
are homogeneous and have the same resource capability.
The resource requirements for tasks and service nodes can
be observed in Table 2. Note that the limitation of network
links is not considered in this paper, such as switches and
routers. Equation (8) is considered for performance metrics
comparison between the proposed HMAO algorithm and
other existing baseline algorithms.

5.1 Simulation Parameters Setup

Firstly, we assume that the weights in equation (8) have the
same values, and can be described as αc = αm = αg = 1

3
and β1 = β2 = 1

2 . The parameters for the improved GA
are P = 16, Itermax = 5, pc = 1.0, pm = 0.1. In the
MAO algorithm, there are three main parameters: selection
probability ps, exchange probability pe and the number of
iterations, which have impact on the performance results. In
order to better estimate this impact on the performance for
different combinations of parameters, the Taguchi method
of design-of-experiment (DOE) is used to generate the test



11

TABLE 3
Parameters for Taguchi method.

Factor Level
1 2 3 4

ps 0.01 0.05 0.10 0.15
pe 0.01 0.05 0.10 0.15
M 250 500 750 1000

TABLE 4
Orthogonal table L16(43) and the optimal solutions for Z(X).

No. Factor Z(X)
ps Pe M L = 8 L = 16 L = 24 L = 32

0 0.01 0.01 250 0.7829 0.8008 0.8103 0.8109
1 0.01 0.05 500 0.7853 0.8032 0.8141 0.8133
2 0.01 0.10 750 0.7861 0.8079 0.8138 0.8136
3 0.01 0.15 1000 0.7869 0.8075 0.8152 0.8139
4 0.05 0.01 500 0.7869 0.8088 0.8156 0.8146
5 0.05 0.05 250 0.7869 0.8062 0.8144 0.8136
6 0.05 0.10 1000 0.7869 0.8088 0.8167 0.8148
7 0.05 0.15 750 0.7869 0.8088 0.8164 0.8147
8 0.10 0.01 750 0.7869 0.8088 0.8161 0.8148
9 0.10 0.05 1000 0.7869 0.8088 0.8170 0.8148
10 0.10 0.10 250 0.7869 0.8088 0.8161 0.8141
11 0.10 0.15 500 0.7869 0.8088 0.8170 0.8143
12 0.15 0.01 1000 0.7869 0.8088 0.8170 0.8148
13 0.15 0.05 750 0.7869 0.8088 0.8170 0.8148
14 0.15 0.10 500 0.7869 0.8088 0.8170 0.8148
15 0.15 0.15 250 0.7869 0.8088 0.8167 0.8141

cases and analyze the results of our experiments [29]. There
are 3 factors and each factor contains 4 levels, and the
combinations of different parameters for Taguchi method
are shown in Table 3. Moreover, we develop the orthogonal
table L16(4

3), where there are 16 cases and each case is
carried out 10 times for 8, 16, 24, 32 tasks, respectively, to
obtain the average results. Table 4 provides the orthogonal
table L16(4

3) and the values related to the approximate
solutions for different tasks.

Fig. 8 shows the main effects plot for means with dif-
ferent tasks. It can be obvious that the objective values are
improved as ps, pe and the number of iterations increase. For
the proposed HMAO algorithm, we can adjust the values of
ps, pe to the diversity of feasible solutions, however, it will
cost more time to seek an approximate solution for Z(X).
The ideal value of ps for 8, 16, 24, 32 tasks is 0.15, the ideal
value of pe is 0.1 for 8, 24 tasks and 0.15 for 16, 32 tasks.

5.2 Numerical Simulation

Based on the parameters above, the maximum number of
iterations is set as 250, we make four different experiments,
where the number of requested tasks is 8, 16, 24 and
32, respectively, to evaluate convergence of the proposed
HMAO algorithm. As it is shown in Fig. 9, we illustrate
the relationships between iterations and the bandwidth
utilization for different tasks. Fig. 9(a) and Fig. 9(c) indicate
the procedure for seeking the optimal solution of bandwidth
utilization for L = 8, 24 with ps = 0.15, pe = 0.15, and the
best values 0.1640 and 0.0.2076 can be observed at 49 and 176
iterations, respectively. For L = 16, 32, ps = 0.15, pe = 0.10,
their results for optimizing the bandwidth utilization are
depicted in Fig. 9(b) and Fig. 9(d), and we can obtain the

(a) Mean for L = 8 (b) Mean for L = 16

(c) Mean for L = 24 (d) Mean for L = 32

Fig. 8. Mean for L = 8, 16, 24, 32.

optimal solution results 0.1872 and 0.2137 at 73 and 121
iterations, respectively.

Similarly, Fig. 10 describes the evolutionary plots of the
iterative optimal solutions for different tasks, which include
the best and real-time objective values. Fig. 10(a) and Fig.
10(c) show the simulation results of 8, 24 tasks with ps =
0.15, pe = 0.15, Fig. 10(b) and Fig. 10(d) show the simulation
results of 16, 32 tasks with ps = 0.15, pe = 0.10. It can
be observed that the objective values for 8, 16, 24 and 32
tasks converge to the approximate solution results as 0.7869,
0.8088, 0.8112 and 0.8148 at 49, 73, 176 and 121 iterations,
respectively. Therefore, it can be depicted that the proposed
HMAO algorithm is an effective optimization algorithm to
solve the problem of resource allocation in cloud computing
and has a better convergence performance.

As the number of iterations have impact on the per-
formance of the proposed HMAO algorithm, therefore, the
experiments with 250 and 500 iterations are carried out for
L = 8, 16, 24 and 32, respectively. Each case runs 10 times,
we can obtain minimum, maximum, mean and standard
deviation of the optimal solutions and the average comput-
ing time, which are shown in Table 5. It can be observed
from Table 5 that the performance of the proposed HMAO
algorithm is high when the number of iterations increases,
i.e., the means for 8, 16, 24 and 32 tasks with 250 iterations
are 0.7869, 0.8084, 0.8164 and 0.8137, respectively, while the
means are 0.7869, 0.8088, 0.8170 and 0.8147 with 500 iter-
ations, respectively. That is, the potential optimal solution
for Z(X) is more likely to be sought by exploring and
exploiting the solution space iteratively. Besides, the results
indicate that the computing time of the proposed HMAO
algorithm increases almost linearly with the increase in the
number of iterations.

5.3 Performance Comparison with the Baseline Algo-
rithms
In order to further discuss the effectiveness of the proposed
HMAO algorithm, we compare the proposed HMAO algo-
rithm for different tasks with two existing algorithms, which
are GA and NSGA-II.

GA: The genetic algorithm described in [9] is used in
our paper. We randomly select two individuals from the



12

(a) L = 8, ps = 0.15, pe = 0.15 (b) L = 16, ps = 0.15, pe = 0.10

(c) L = 24, ps = 0.15, pe = 0.15 (d) L = 32, ps = 0.15, pe = 0.10

Fig. 9. Bandwidth utilization for L = 8, 16, 24, 32.

TABLE 5
Results of simulation for the HMAO algorithm.

L M Min Max Mean Std Time(min)
8

250

0.7869 0.7869 0.7869 0.0 0.2375
16 0.8046 0.8088 0.8084 0.0013 0.4777
24 0.8141 0.8170 0.8164 0.0012 0.7205
32 0.8104 0.8148 0.8137 0.0015 0.9703
8

500

0.7869 0.7869 0.7869 0.0 0.4995
16 0.8088 0.8088 0.8088 0.0 1.0125
24 0.8170 0.8170 0.8170 0.0 1.5177
32 0.8146 0.8148 0.8147 0.0001 2.0164

population P to be the parents, and they can mate with each
other by the two-point crossover operator with crossover
probability pc to generate their offsprings. If the fitness value
of an offspring is superior to its parent, we will consider
it as a candidate in the next generation. Otherwise, the
mutation operator is carried out with mutation probability
pm. An individual that has a better fitness value between
the offspring and its parent will be seen as a new individual
in the next generation.

NSGA-II: We introduce NSGA-II in [15] to address our
problem, two optimization sub-problems are Z1(X) and
1 − Z2(X), respectively. A binary tournament selection
method [34] is applied to make decision for choosing the
parents from the population P to mate with each other. In
crossover operator, we randomly select two gene points of
one individual to exchange their genes equivalently with the
other individual under crossover probability pc. A bitwise
mutation is executed with mutation probability pm.

With the above analysis of the proposed HMAO al-
gorithm, we set the maximum iterations as 1000 for the
proposed HMAO algorithm, 5000 for GA and NSGA-II,
the population P is set as 16 for the proposed HMAO
algorithm, 100 for GA and NSGA-II. Moreover, we have
pe = ps = 0.15, pc = 1.0, pm = 0.1. The number of
tasks is from 4 to 16 corresponding to the number of initial
service nodes 4, 5, . . . , 16, respectively. We run each test case
10 times and compute the average results. The parameters

(a) L = 8, ps = 0.15, pe = 0.15 (b) L = 16, ps = 0.15, pe = 0.10

(c) L = 24, ps = 0.15, pe = 0.15 (d) L = 32, ps = 0.15, pe = 0.10

Fig. 10. Objective values for L = 8, 16, 24, 32.

TABLE 6
Parameter setting for HMAO, GA and NSGA-II.

Parameters Value
Number of tasks L {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

Number of service nodes K {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
Maximum iterations M HMAO: 1000; GA,NSGA-II: 5000

Population size P HMAO: 16; GA,NSGA-II: 100
Selective probability pe 0.15
Exchange probability ps 0.15
Crossover probability pc 1.0
Mutation probability pm 0.1

Running time 10

used for the proposed HMAO algorithm, GA and NSGA-II
are summarized in Table 6.

Firstly, we simulate all test cases by the proposed HMAO
algorithm, GA and NSGA-II with the specified parameters
in Table 6 and obtain the average results of these three
algorithms, including resource utilization, bandwidth uti-
lization, objective value and time cost. Note that the number
of initial service nodes K can influence the results of GA and
NSGA-II.

To investigate the evolution of the optimal solution for
the proposed HMAO algorithm over time, we compare the
evolutionary performance of the proposed HMAO algo-
rithm, GA and NSGA-II for L = 4, 6, 8, 10 and the results
of these three algorithms are shown in Fig. 11. It can be
observed that the performance of the proposed HMAO
algorithm is similar to that of GA for L = 4, 6, 8, NSGA-
II for L = 4, 8. Hence, the effectiveness of the proposed
HMAO algorithm is verified by comparing the performance
of the proposed HMAO algorithm with GA and NSGA-
II algorithms. Moreover, the convergence of the proposed
HMAO algorithm is better than GA and NSGA-II as the
number of tasks grows.

The reason is that the selection and exchange operators
for the proposed HMAO algorithm are executed with a
finer-grained sub-task level and the optimization objective
tends to a good result with high probability during each
iterative evolution. Besides, the probabilistic-based selection
and exchange operators are used to achieve the diversity



13

(a) L = 4 (b) L = 6

(c) L = 8 (d) L = 10

Fig. 11. Objective values for L = 4, 6, 8, 10 with HMAO, GA and NSGA-
II.

of feasible solutions and avoid early entering into the local
optimal solution. However, the space of feasible solutions
for GA and NSGA-II becomes larger with the increase in
the number of tasks, i.e., it will take more time to search
the optimal solution. In addition, Fig. 11 shows that GA
outperforms NSGA-II for L = 4, 6, 8, 10, because each
offspring generated by GA, which has a better fitness value
than its parent, will be selected as a new individual in the
next generation and that can guarantee that the performance
of solving the optimization problem is improved in each
iterative evolution.

In order to further analyze the performance of the pro-
posed HMAO algorithm, we provide the maximum, mini-
mum, mean, standard deviation and average convergence
time of the simulation results for the proposed HMAO
algorithm, GA and NSGA-II, and the detailed information
can be observed from Table 7. In all test cases except
L = 11, the maximum, minimum, mean and standard
deviation of the optimal solutions obtained by the proposed
HMAO algorithm are better than or equal to GA and NSGA-
II, respectively. Furthermore, the convergence time of the
proposed HMAO algorithm is slower than GA, NSGA-II
for L = 4, 6 but faster for the other cases, the difference
is more evident with increasing the number of tasks. For
example, in the case of L = 14, we can observe that the
performance of the proposed HMAO algorithm increases by
3.27%, and 3.44%, the convergence time reduces by 35.67%
and 58.38% for GA and NSGA-II, respectively. For L = 16,
the mean results of the proposed HMAO algorithm improve
by 4.26% and 3.49%, the convergence time decreases by
78.23% and 88.57% for GA and NSGA-II, respectively. The
results can demonstrate that the proposed HMAO algorithm
is an effective optimization approach for resource allocation
and has a better performance in terms of solution quality,
robustness and convergence.

Furthermore, we compare the results of the proposed
HMAO algorithm with GA and NSGA-II in Fig. 12, in-
cluding resource and bandwidth utilization, optimal solu-
tion and average convergence time. Fig. 12(a) shows the

(a) Resource utilization (b) Bandwidth utilization

(c) Optimal solution (d) Convergence time

Fig. 12. Performance comparisons for HMAO, GA and NSGA-II.

resource utilization for different tasks, the results obtained
by the proposed HMAO algorithm are equal to GA for
L = 4, 6, 8, 10, NSGA-II for L = 4, 8, and better than
GA and NSGA-II for the other cases. The solution with a
lower resource utilization implies that there are more service
nodes to be used to deploy the requested tasks. The results
of bandwidth utilization are described in Fig. 12(b). We
can observe that the performance of the proposed HMAO
algorithm is better than or equal to GA and NSGA-II for
L = 4, 6, 8, 10. For L = 12, 14, 16, it is due to the fact that the
number of service nodes for the proposed HMAO algorithm
is less than that of the other two baseline algorithms. As
the number of service nodes used by the requested tasks
is smaller, the probability of placing adjacent sub-tasks of a
task to different service nodes is greater, which can result
in increasing the bandwidth cost. Fig. 12(c) illustrates the
results of optimal solutions, the performance for the pro-
posed HMAO algorithm, GA and NSGA-II is approximately
equivalent with a lower number of tasks, and the proposed
HMAO algorithm performs better than GA and NSGA-II
as the number of tasks increases. The average convergence
time of three algorithms can be observed from Fig. 12(d), the
time taken to converge by the proposed HMAO algorithm is
worse than that of GA and NSGA-II as the number of tasks
is small, but the proposed HMAO algorithm outperforms
GA and NSGA-II as the number of tasks increases.

5.4 Evaluate HMAO in On-line Resource Allocation

To further investigate the performance of the proposed
HMAO algorithm in on-line resource allocation, we imple-
ment the resource allocation model in a dynamic environ-
ment and design the following experiments of dynamically
allocating the available resources to the requested tasks. We
set P = 16, pc = 1.0 and pm = 0.1 for the improved GA
algorithm and pe = 0.15, ps = 0.15 and M = 1000 for the
MAO algorithm, respectively. The total number of server
nodes is a larger number K = 64 to guarantee that the
maximum available resources are sufficient for deploying



14

TABLE 7
Results of simulation for HMAO, GA and NSGA-II.

L HMAO GA NSGA-II
Min Max Mean Std Time(min) Min Max Mean Std Time(min) Min Max Mean Std Time(min)

4 0.7869 0.7869 0.7869 0.0000 0.2737 0.7869 0.7869 0.7869 0.0000 0.0231 0.7869 0.7869 0.7869 0.0000 0.0569
5 0.7718 0.7718 0.7718 0.0000 0.0520 0.7718 0.7718 0.7718 0.0000 0.0481 0.7603 0.7718 0.7706 0.0034 0.1408
6 0.8170 0.8170 0.8170 0.0000 0.4752 0.817 0.817 0.817 0.0000 0.4573 0.7628 0.8170 0.7953 0.0265 0.4666
7 0.7989 0.7989 0.7989 0.0000 0.0645 0.7989 0.7989 0.7989 0.0000 0.2841 0.7567 0.7989 0.7937 0.0126 1.0380
8 0.7869 0.7869 0.7869 0.0000 0.1903 0.7869 0.7869 0.7869 0.0000 0.5710 0.7869 0.7869 0.7869 0.0000 0.8126
9 0.8170 0.8170 0.8170 0.0000 0.5219 0.8170 0.8170 0.8170 0.0000 2.3043 0.7782 0.8170 0.7899 0.0177 2.1777

10 0.8041 0.8041 0.8041 0.0000 0.8174 0.7975 0.8041 0.8034 0.0020 1.8199 0.7718 0.8041 0.7976 0.0129 2.1903
11 0.7368 0.8102 0.7874 0.0283 0.8174 0.7887 0.7944 0.7938 0.0017 1.7007 0.7771 0.7944 0.7909 0.0052 2.3302
12 0.8170 0.8170 0.8170 0.0000 0.2446 0.7818 0.8170 0.8045 0.0135 3.1743 0.7628 0.8170 0.7929 0.0161 4.0658
13 0.8070 0.8070 0.8070 0.0000 1.0464 0.7715 0.8069 0.7973 0.0104 3.8402 0.7762 0.8070 0.7977 0.0131 4.2793
14 0.8116 0.8119 0.8118 0.0001 2.1852 0.7677 0.7989 0.7861 0.0127 3.3968 0.7675 0.7989 0.7848 0.0119 5.2505
15 0.8170 0.8170 0.8170 0.0000 0.9704 0.7590 0.7923 0.7811 0.0099 4.3592 0.7680 0.8075 0.7875 0.0115 7.7129
16 0.8088 0.8088 0.8088 0.0000 1.0624 0.7576 0.7869 0.7757 0.0092 4.8812 0.7714 0.7868 0.7815 0.0049 9.3008

the requested tasks in each time slot, where the server
nodes that are not used by the requested tasks are in sleep
or shutdown states to save the operating costs and the
requested tasks can be only deployed to the active server
nodes. When the resource requirements of the requested
tasks can not be satisfied we will wake up the server
nodes from idle or shutdown states to a active state and
provide the available resources for the requested tasks on
demand. We assume that there are new requested tasks
are appearing and old requested tasks are ending in each
time slot, whose numbers are randomly produced from
Li = {4 ∗ i+ 1, . . . , 4 ∗ i+ 9} , i = 0, 1, . . . , 10. Each case
also runs 10 times with time slots from 0 to 30 and the
average results of optimal solutions are obtained by the
proposed HMAO algorithm. Moreover, we compare the pro-
posed HMAO algorithm with two heuristic algorithms of
Viterbi [30] and Greedy [40] in terms of resource utilization,
bandwidth utilization and optimal solution.

Viterbi: For the Viterbi algorithm in [30], the problem
of placing service chains is modeled by the states and their
relations as a multi-stage directed graph. We can compute
the cumulative cost for each state by Viterbi algorithm.
When the costs of the final stage are finished, the sequence
of states, which has the minimum cost, is considered as the
optimal solution.

Greedy: The Greedy algorithm described in [40] is di-
vided into two steps. First, the authors sort all the mid-
dleboxes in descending order with an important factor,
which represents as the number of policies including the
same middlebox. Second, the middleboxes are assigned
to these switches iteratively. For placing a middlebox, the
authors can search all available switches to calculate the cost
scores accordingly and find the minimum cost to deploy the
middlebox. To reduce the impact of these middleboxes that
have not been placed, a weight average cost score of the
unassigned middleboxes is introduced to compute the total
cost score.

The simulation results for the case L0 can be observed
from Fig. 13, where the results of optimal solutions for all
cases L0 ∼ L10 are provided by the proposed HMAO,
Greedy and Viterbi algorithms in Fig. 13(d).

Fig. 13(a) shows the computing resource utilization for
L0. It can be observed that the number of computing
resources are comparatively close between the proposed
HMAO algorithm and the two comparison algorithms of

(a) Resource utilization with L0 (b) Bandwidth utilization with L0

(c) Optimal solution with L0 (d) Optimal solutions with L0∼10

Fig. 13. Performance comparisons for HMAO, Viterbi and Greedy.

Greedy and Viterbi in each time slot. The results of band-
width utilization for L0 are illustrated in Fig. 13(b), where
we can observe that the bandwidth utilization values ob-
tained by the proposed HMAO algorithm are better than
that of the Greedy approach, and there is average 3.63%
performance improvement. This is because of the fact that
the adjacent sub-tasks of a task can be migrated and
swapped to the same service node by the proposed HMAO
algorithm as far as possible in order to reduce the band-
width resources used by the requested tasks. The proposed
HMAO algorithm performs well as the Viterbi algorithm.
Fig. 13(c) describes the objective results of optimal solution
for L0, where we can observe that the proposed HMAO
algorithm performs better than the Greedy approach and
the performance of the proposed HMAO algorithm shows
an average increase of 0.54% when compared with the
Greedy approach. In addition, the proposed HMAO and
Viterbi algorithms show similar results. To better analyze
the performance of the proposed HMAO algorithm for pro-
cessing the different number of the requested tasks in a time
slot, we provide the average results of optimal solutions for
L0 ∼ L10 in Fig. 13(d). It is obvious that the proposed
HMAO algorithm outperforms the Greedy approach for



15

L0 ∼ L10, and the average performance improvement of the
proposed HMAO algorithm is nearly 1.06%. Our proposed
HMAO algorithm shows close performance to the Viterbi
algorithm and the average performance difference is 0.04%.
From Fig. 13, we can observe that the proposed HMAO
algorithm is better than the Greedy approach and close to
the Viterbi algorithm in dynamical resource allocation.

6 CONCLUSION

This paper studies the problem of resource allocation in
cloud computing systems. Our aim is to maximize the
resource utilization based on CPU, memory and GPU, and
minimize the bandwidth cost. To address the problem, we
propose the HMAO algorithm which combines the im-
proved GA and the MAO algorithm, where the improved
GA is to find an optimal resource utilization solution and
the MAO algorithm is to minimize the bandwidth cost.
For the MAO algorithm, we use a priority-based selection
mechanism to obtain the candidate source sub-tasks, and
design the selection and exchange operators by a probabilis-
tic method to migrate and swap the sub-tasks on several
service agents. The proposed HMAO algorithm can obtain
the objective optimal result by cooperative co-evolutionary
method.

Finally, we verify and evaluate the performance of the
proposed HMAO algorithm via simulation experiments.
When compared with GA and NSGA-II, we can observe that
the proposed HMAO algorithm outperforms them in terms
of solution quality, convergence time and robustness as the
number of tasks increases. For L = 14, the proposed HMAO
algorithm improves performance by 3.38% for GA and
3.44% for NSGA-II, and reduces the average convergence
time by 19.34% for GA and 58.38% for NSGA-II. Further-
more, we compare the performance of the proposed HMAO
algorithm with the Greedy and Viterbi algorithms in on-line
resource allocation. We can observe that the performance of
the proposed HMAO algorithm is nearly the same with the
Viterbi algorithm and increases approximately by 1.06% for
the Greedy algorithm.

REFERENCES

[1] H. Kim and N. Feamster, “Improving network management with
software defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 114–119, 2013.

[2] S. Sezer, S. Scott-Hayward, P. K. Chouhan et al., “Are we ready for
SDN? implementation challenges for software-defined networks,”
IEEE Commun. Mag., vol. 51, no. 7, pp. 36–43, 2013.

[3] H. Erdogmus, “Cloud computing: Does nirvana hide behind the
nebula?” IEEE Softw., vol. 26, no. 2, pp. 4–6, 2009.

[4] H. Moens and F. De Turck, “VNF-P: A model for efficient place-
ment of virtualized network functions,” in Proc. 10th Int. Conf.
Netw. Service Manag. (CNSM), Rio de Janeiro, Brazil, Nov. 2014,
pp. 418–423.

[5] S. A. Kazmi, N. H. Tran, T. M. Ho et al., “Hierarchical matching
game for service selection and resource purchasing in wireless
network virtualization,” IEEE Commun. Lett., vol. 22, no. 1, pp.
121–124, 2017.

[6] H. Zheng, Y. Feng, and J. Tan, “A hybrid energy-aware resource
allocation approach in cloud manufacturing environment,” IEEE
Access, vol. 5, pp. 12 648–12 656, 2017.

[7] W. Rankothge, F. Le, A. Russo et al., “Optimizing resource allo-
cation for virtualized network functions in a cloud center using
genetic algorithms,” IEEE Trans. Netw. Serv. Manag., vol. 14, no. 2,
pp. 343–356, 2017.

[8] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and
resource optimization with network function virtualization,” IEEE
Trans. Commun., vol. 64, no. 9, pp. 3746–3758, 2016.

[9] F.-H. Tseng, X. Wang, L.-D. Chou et al., “Dynamic resource predic-
tion and allocation for cloud data center using the multiobjective
genetic algorithm,” IEEE Syst. J., vol. 12, no. 2, pp. 1688–1699, 2017.

[10] B. Tan, H. Ma, and Y. Mei, “A NSGA-II-based approach for service
resource allocation in cloud,” in Proc. IEEE Congr. Evol. Comput.,
San Sebastian, Spain, Jun. 2017, pp. 2574–2581.

[11] S. Khebbache, M. Hadji, and D. Zeghlache, “A multi-objective non-
dominated sorting genetic algorithm for VNF chains placement,”
in Proc. IEEE Annu. Consum. Commun. Netw. Conf., Las Vegas, NV,
USA, Jan. 2018, pp. 1–4.

[12] Q. Sun, P. Lu, W. Lu et al., “Forecast-assisted NFV service chain
deployment based on affiliation-aware vNF placement,” in Proc.
IEEE Glob. Commun. Conf. (IEEE GLOBECOM), Washington, DC,
USA, Dec. 2016, pp. 1–6.

[13] E. Amaldi, S. Coniglio, A. M. Koster et al., “On the computational
complexity of the virtual network embedding problem,” Electron.
Notes Discret. Math., vol. 52, pp. 213–220, 2016.

[14] B. Addis, M. Gao, and G. Carello, “On the complexity of a virtual
network function placement and routing problem,” Electron. Notes
Discret. Math., vol. 69, pp. 197–204, 2018.

[15] K. Deb, A. Pratap, S. Agarwal et al., “A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6,
no. 2, pp. 182–197, 2002.

[16] S. E. Dashti and A. M. Rahmani, “Dynamic vms placement for
energy efficiency by pso in cloud computing,” J. Exp. Theor. Artif.
Intell., vol. 28, no. 1-2, pp. 97–112, 2016.

[17] K. Mani and R. M. Krishnan, “Flexible cost based cloud resource
provisioning using enhanced PSO,” Int. J. Comput. Intell. Res.,
vol. 13, no. 6, pp. 1441–1453, 2017.

[18] P.-Y. Yin and J.-Y. Wang, “Ant colony optimization for the non-
linear resource allocation problem,” Appl. Math. Comput., vol. 174,
no. 2, pp. 1438–1453, 2006.

[19] B. Muthulakshmi and K. Somasundaram, “A hybrid ABC-SA
based optimized scheduling and resource allocation for cloud
environment,” Cluster Comput., pp. 1–9, 2017.

[20] M. N. Omidvar, X. Li, and K. Tang, “Designing benchmark prob-
lems for large-scale continuous optimization,” Inf. Sci., vol. 316,
pp. 419–436, 2015.

[21] Y. Liu, X. Yao, Q. Zhao et al., “Scaling up fast evolutionary
programming with cooperative coevolution,” in Proc. IEEE Congr.
Evol.Comput., vol. 2, Seoul, South Korea, May 2001, pp. 1101–1108.

[22] X. Wu, Y. Wang, J. Liu et al., “A new hybrid algorithm for solving
large scale global optimization problems,” IEEE Access, vol. 7, pp.
103 354–103 364, 2019.

[23] Z. Ren, Y. Liang, A. Zhang et al., “Boosting cooperative coevolu-
tion for large scale optimization with a fine-grained computation
resource allocation strategy,” IEEE Trans. Cybern., vol. 49, no. 12,
pp. 4180–4193, 2019.

[24] M. Yang, M. N. Omidvar, C. Li et al., “Efficient resource allocation
in cooperative co-evolution for large-scale global optimization,”
IEEE Trans. Evol. Comput., vol. 21, no. 4, pp. 493–505, 2017.

[25] P. Stone and M. Veloso, “Multiagent systems: A survey from a
machine learning perspective,” Auton. Robot., vol. 8, no. 3, pp. 345–
383, 2000.

[26] T. Kaihara, “Multi-agent based supply chain modelling with dy-
namic environment,” Int. J. Prod. Econ., vol. 85, no. 2, pp. 263–269,
2003.

[27] M. M. de Weerdt, Y. Zhang, and T. Klos, “Multiagent task alloca-
tion in social networks,” Auton. Agents Multi-Agent Syst., vol. 25,
no. 1, pp. 46–86, 2012.

[28] W. Wang, Y. Jiang, and W. Wu, “Multiagent-based resource alloca-
tion for energy minimization in cloud computing systems,” IEEE
Trans. Syst., Man, Cybern., Syst., vol. 47, no. 2, pp. 205–220, 2016.

[29] X.-l. Zheng and L. Wang, “A multi-agent optimization algorithm
for resource constrained project scheduling problem,” Expert Syst.
Appl., vol. 42, no. 15-16, pp. 6039–6049, 2015.

[30] F. Bari, S. R. Chowdhury, R. Ahmed et al., “Orchestrating virtual-
ized network functions,” IEEE Trans. Netw. Serv. Manag., vol. 13,
no. 4, pp. 725–739, 2016.

[31] B. Kar, E. H. Wu, and Y. Lin, “Energy cost optimization in dynamic
placement of virtualized network function chains,” IEEE Trans.
Netw. Serv. Manag., vol. 15, no. 1, pp. 372–386, 2018.



16

[32] N. Srinivas and K. Deb, “Muiltiobjective optimization using non-
dominated sorting in genetic algorithms,” Evol. Comput., vol. 2,
no. 3, pp. 221–248, Sept 1994.

[33] L. F. Nawaf, S. M. Allen, and O. Rana, “Optimizing infrastructure
placement in wireless mesh networks using nsga-ii,” in Proc. IEEE
HPCC, Exeter, United Kingdom, Jun 2018, pp. 1669–1676.

[34] N. M. Razali, J. Geraghty et al., “Genetic algorithm performance
with different selection strategies in solving tsp,” in Proc. World
Congr. Eng., vol. 2, no. 1, 2011, pp. 1–6.

[35] S. Hartmann, “A competitive genetic algorithm for resource-
constrained project scheduling,” Nav. Res. Logist., vol. 45, no. 7,
pp. 733–750, 1998.

[36] L. Nawaf, S. M. Allen, and O. Rana, “Internet transit access point
placement and bandwidth allocation in wireless mesh networks,”
in Proc. IEEE CCWC, Las Vegas, USA, Jan 2017, pp. 1–8.

[37] D. Bhamare, M. Samaka, A. Erbad et al., “Optimal virtual network
function placement in multi-cloud service function chaining archi-
tecture,” Comput. Commun., vol. 102, pp. 1–16, 2017.

[38] D. Espling, L. Larsson, W. Li et al., “Modeling and placement of
cloud services with internal structure,” IEEE Trans. Cloud Comput.,
vol. 4, no. 4, pp. 429–439, Oct 2016.

[39] S. Kaur and A. Verma, “An efficient approach to genetic algorithm
for task scheduling in cloud computing environment,” Int. J. Inf.
Technol. Comput. Sci., vol. 4, no. 10, pp. 74–79, 2012.

[40] J. Liu, Y. Li, Y. Zhang et al., “Improve service chaining performance
with optimized middlebox placement,” IEEE Trans. Serv. Comput.,
vol. 10, no. 4, pp. 560–573, 2017.

Xiangqiang Gao received the B.Sc. degree in
school of electronic engineering from Xidian Uni-
versity and the M.Sc. degree from Xi’an Mi-
croelectrinics Technology Institute, Xi’an, China,
in 2012 and 2015, respectively. He is currently
pursuing the Ph.D. degree with the School of
Electronic and Information Engineering, Beihang
University, Beijing, China. His research interests
include rateless codes, software defined network
and network function virtualization.

Rongke Liu received the B.Sc. degree in elec-
tronic engineering and Ph.D. degree in informa-
tion and communication engineering from Bei-
hang University, Beijing, China, in 1996 and
2002, respectively. From 2006 to 2007, he was
a visiting professor at Florida Institute of Tech-
nology, Florida. In August, 2015, he visited the
university of Tokyo as a senior visiting scholar.
He is a Full Professor with the School of Elec-
tronic and Information Engineering in Beihang
University, specializing in the fields of informa-

tion and communication engineering. He has authored or co-authored
more than 100 papers in journals and conferences, and edited four
books. His current research interests include multimedia computing and
space information network. He is a Member of the IEEE and ACM.
Dr. Liu was one of the winners of education ministry’s New Century
Excellent Talents supporting plan in 2012.

Aryan Kaushik is currently a Research Fel-
low in Communications and Radar Transmis-
sion at the Institute of Communications and
Connected Systems, University College London,
United Kingdom. He received PhD in Commu-
nications Engineering at the Institute for Digital
Communications, School of Engineering, The
University of Edinburgh, United Kingdom, in
2020. He received MSc in Telecommunications
from The Hong Kong University of Science and
Technology, Hong Kong, in 2015. He has held

visiting research appointments at the Wireless Communications and
Signal Processing Lab, Imperial College London, UK, from 2019-20,
the Interdisciplinary Centre for Security, Reliability and Trust, University
of Luxembourg, Luxembourg, in 2018, and the School of Electronic
and Information Engineering, Beihang University, China, from 2017-19.
His research interests are broadly in signal processing, radar, wireless
communications, millimeter wave and multi-antenna communications.


