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Tumors are complex networks of constantly interacting elements: tumor cells, stromal cells, immune and stem cells,

blood/lympathic vessels, nerve fibers and extracellular matrix components. These elements can influence their

microenvironment through mechanical and physical signals to promote tumor cell growth. To get a better understanding of

tumor biology, cooperation between multidisciplinary fields is needed. Diverse mathematic computations and algorithms have

been designed to find prognostic targets and enhance diagnostic assessment. In this work, we use computational digital tools

to study the topology of vitronectin, a glycoprotein of the extracellular matrix. Vitronectin is linked to angiogenesis and

migration, two processes closely related to tumor cell spread. Here, we investigate whether the distribution of this molecule in

the tumor stroma may confer mechanical properties affecting neuroblastoma aggressiveness. Combining image analysis and

graph theory, we analyze different topological features that capture the organizational cues of vitronectin in histopathological

images taken from human samples. We find that the Euler number and the branching of territorial vitronectin, two topological

features, could allow for a more precise pretreatment risk stratification to guide treatment strategies in neuroblastoma

patients. A large amount of recently synthesized VN would create migration tracks, pinpointed by both topological features, for

malignant neuroblasts, so that dramatic change in the extracellular matrix would increase tumor aggressiveness and worsen

patient outcomes.
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Introduction
The interplay between different fields of basic science has been
revealed as an efficient way to advance in medicine. Physics
and mathematics-related terms like tensegrity, topology and
tessellations (see Glossary) are now used to improve under-
standing of biology and biomedicine.1–3 In parallel, a robust
and efficient analysis of histopathological images is required
due to their increasingly accepted use. Image analysis land-
scape has enormous potential to improve the quality of histo-
logical image interpretation, supporting without overruling
pathologists in decision-making.4,5 In the oncology field, a
plethora of computational tools is being designed to capture
medical information with the help and supervision of a variety
of professionals such as pathologists, biologists or
physicists.6–8 Morphometric analysis has often been used as a
first approach, successfully highlighting new prognostic
indicators.9–11 However, more sophisticated techniques are
needed to model highly complicated diseases like cancer. In
particular, computerized image analysis has proven useful to
find relevant features in different types of cancer.12–14 For
instance, features related to texture analysis, which is based on
the intensity and colors of the images, or morphological fea-
tures considering the shape of the detected elements, are
broadly used. These approaches did not consider the spatial
relationship between its components12,13 or were restricted to
nuclei.14 However, morphometric techniques assure the stan-
dardization of all measurements and minimize interobserver
differences.15,16 Understanding how biopsy elements are orga-
nized is important to find potential new markers for improv-
ing treatment strategies and outcome prediction.

There is an increasing emergence of network theory
methods in biology.17–20 In cancer, graph theory (see Glos-
sary) is commonly used to analyze gene networks.21,22 In the
case of histopathological images, three reconstructions have
recurrently been used to obtain a graph that connects the ele-
ments of the image: Delaunay triangulation, Voronoi diagram
(see Glossary) and minimum spanning tree.23–25 However,
these approaches did not consider the importance of the spa-
tial context of the extracellular matrix (ECM) for patient out-
comes. Likewise, small nonisomorphic induced subgraphs
(graphlets, see Glossary) have been used as a means to charac-
terize biological networks,26–28 but as yet they have not been
used to topologically characterize histopathological samples
regarding outcomes.

The tumor microenvironment, particularly ECM, has a
strong influence on cancer malignancy.29,30 Specifically,
vitronectin (VN), a glycoprotein belonging to the ECM, is
considered to promote angiogenesis and vascular permeability,
aiding tumor migration.31–33 In particular in neuroblastoma
(NB), a heterogeneous tumor in childhood with widely vary-
ing prognosis according to several clinical and genetic factors
in the International Neuroblastoma Risk Group (INRG)
classification,34 the role of VN remains incompletely defined,
although our previous studies suggested a connection to
tumor progression.35 Despite efforts to fully characterize the
impact of the NB microenvironment on patient pretreatment
risk evaluation and tumor genetic instability, it still remains
unclear how ECM topology and the interplay of its elements
affect patient prognosis.9,36,37 Our hypothesis is that tumor
cells affect the organization of the different elements sur-
rounding them, including ECM elements such as
VN. Working from this, our aim is to identify independent
tumor tissue parameters, like VN topology, which could help
to assess the risk group of NB patients and/or tumor genetic
instability.

Materials and Methods
Material
Ninety-one primary NB tumors (at least two representative
cylinders of 1 mm2 from each tumor) included in eight tissue
microarrays were chosen according to INRG classification
parameters and/or tumor genetic instability criteria related to
segmental chromosome aberrations (SCAs)34,38 (Supplemen-
tary Table 1). Tissue microarray slices of 3 μm were stained
with anti-VN (1/100) (clone EP873Y, isotype IgG, code
ab45139, Abcam), scanned at 20x with Pannoramic MIDI
(3DHistech Ltd., Budapest, Hungary), and analyzed objec-
tively with Image Pro-Plus v.6.0 (Media Cybernetics, Inc.,
Rockville, MD 20850 USA) and DensitoQuant module from
Pannoramic viewer software 1.15 (3DHistech Ltd.). For each
biopsy (Figs. 1a and 1b), we obtained three markup images
(area of each image: 1 mm2, see Glossary) and their morpho-
metric data: hematoxylin stained nuclei (Fig. 1c); territorial
VN location (Fig. 1d), strongly stained intensity; and inter-
territorial VN location (Fig. 1e), represented by low and
medium intensity. These biopsy results were classified as
high-risk group (≥18 months and stage M or <18 months,
stage M/MS and MYCN amplified [MNA]) and non-high-risk

What’s new?
The tumor microenvironment has a strong influence on cancer malignancy. Here, the authors investigate whether the

organization of the extracellular matrix glycoprotein vitronectin in the tumor stroma may confer mechanical properties affecting

neuroblastoma aggressiveness. Combining image analysis and graph theory, they identify two topological features of

vitronectin that could potentially be used to improve patient pre-treatment risk stratification. The data also point to the

creation of vitronectin migration tracks for malignant neuroblasts, so that dramatic changes in the extracellular matrix would

increase tumor stiffness and aggressiveness and worsen patient outcomes.
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group (very low, low and intermediate categories following
the INRG classification) patient material (additional Table 2).
Regarding tumor genetic instability criteria, results were also
grouped as higher SCA patient material (genetic profiles with
>3 typical SCAs plus MNA or 11q deleted or >3 gene amplifi-
cations or with hyperrearranged chromosomal segments) and
lower SCA patient material (genetic profiles with numerical
chromosomal aberration or ≤3 typical SCAs, excluding 11q
SCA).35 Our study was approved by the Ethics Committee
(reference B.0000339 29/01/2015). Participants or their family
members/legal guardians provided written informed consent.

Topological features
To characterize our biopsies, we have extracted a set of 47 fea-
tures, where 25 captured the organization of both types of VN
(territorial and interterritorial), separately. First, considering the
impossibility of measuring VN as if it were individual objects
in our black-and-white markup images (Figs. 1c–1e), we
decided to discretize the space in hexagonal regions of a fixed
side of, approximately, 8.05 mm (50 pixels) (Fig. 2 and Fig. S1b).
Considering that hexagonal regions filled with VN staining

represented by nodes (see Glossary), we quantified the follow-
ing parameters (Table 1a): (i) quantity of VN staining inside it
(features with ID 4, 5, 16 and 17). (ii) Euler number (see Glos-
sary): defined as the number of objects minus the number of
holes within a region (7, 8, 19 and 20). (iii) Branching (see
Glossary): We measured the number of crosslinks (11, 12,
23 and 24). (iv) Difference in quantity between interterritorial
and territorial VN (feature with ID 25).

To get the final value of the features, we calculated the
average of each parameter considering all the regions (fea-
tures with suffix “per region,” Table 1a) or only the nodes
(suffix “per node,” Table 1a) of the Euler number and
branching, while the deviance (standard deviation [std]) of
either the nodes or all the regions were computed to all the
parameters. In addition, we computed a series of features
that did not consider the hexagonal region (Table 1a): the
holes inside VN staining regions and the deviance of their
area (features with ID 9, 10, 21 and 22). We also computed
the Euler number per VN staining area of the whole image
(6 and 18). All the topological features were extracted with
Matlab R2014b (MathWorks).

Figure 1. Segmentation of biopsy images from neuroblastoma (NB) patients. (a) Image of an immunohistochemical biopsy stained to detect
vitronectin (VN) (brown scale). Hematoxylin is highlighted in blue, corresponding to nuclei and fibers of extracellular matrix. (b) Segmented
image differentiating between territorial VN (red) and interterritorial VN (brown). The cell nuclei are also shown in the resulting image (green).
(c–e) Markup images showing the segmented elements separately, but all in white: cell nuclei (c), territorial VN (d) and interterritorial VN (e).
Scale bar in black, 50 mm.
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Pure topological features. We used graph theory to obtain a
subset of “pure topological” features. Briefly, to extract this set
of characteristics, we collected the position and number of the
hexagonal regions of our images (Fig. 2). In our network
(graph), hexagonal regions filled with VN staining stand for

nodes. To connect the nodes with a link (edge, see Glossary),
we considered the “ordinary” (Euclidean) distance between
them. We, therefore, started with all the nodes having no con-
nections amid them. Aiming to model how the regions are
distributed throughout the sample, we linked the nodes to

Figure 2. Legend on next page.
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obtain a connected network (i.e., any node can reach any node
using the edges as a vehicle) using three different algorithms
(iteration, sorting or minimum spanning tree, Supplementary
Methods). Note that, for a given markup image, we will have
three networks with the same number of nodes (one per
algorithm).

Once we had the networks, which connect the regions
filled with VN, we extracted the different configurations that
can be achieved with a small number of nodes (graphlets26 of
up to five nodes). Specifically, we used the ORCA (Orbit Cou-
nting Algorithm) computer program for graphlet identifica-
tion and calculation,39 to extract the different graphlets of
each network. In order to obtain the final tensegrity index
(see Glossary) features, we compared, using the graphlet
degree distribution distance,40 the graphlets obtained from the
biopsy markup image with an in silico control, which tries to
mimic a sample where the VN is equally distributed through-
out the sample (represented by a homogeneous Voronoi tes-
sellation, Supplementary Methods).

We computed the average distance between ten in silico
generated controls with its tumor markup image specific net-
work. Therefore, a tensegrity index represents how the real
distribution of territorial or interterritorial VN differs from a
homogeneous distribution. Finally, we obtained the six
tensegrity indices (Table 1a): three algorithms from two loca-
tions (features 1, 2, 3, 13, 14 and 15). The whole pipeline is
explained in Figure 2.

Nontopological characteristics
We captured an additional set of nontopological features
(Fig. 2), which involve morphometric characteristics:

1. Nuclei (Fig. 1c). We obtained the number, area, ratio and
percentage of hematoxylin stained nuclei (from non-VN
secretory cells) and the total nuclei number (from non-
secretory and VN secretory cells) from the total markups.

2. Percentage of stained area (Fig. S1b). We quantified the
VN stained areas in each delimited hexagonal area. We cal-
culated the mean and std of the whole grid. In addition, we
computed this mean and std using only the nodes. In the

total markups, we also calculated VN location (percentage
of stained area and number/mm2), pixel intensity ratio
(ratio of positive stained pixels), positive or negative H-
score (based on a specific discriminatory threshold, ranging
from 0 to 300) and number of VN secretory cells (percent-
age of VN positive cells).

3. Number of holes. We also identified the holes in an image.
4. Difference between interterritorial and territorial VN. We

computed the average difference between interterritorial
and territorial VN per region. For each hexagonal area, we
operated territorial minus interterritorial.

Statistical analysis
We have adapted the pipeline shown in past studies41,42 to
obtain complementary features to refine the risk-group assign-
ment for NB treatment stratification and genetic instability in
the present cohort. In particular, we have performed a multi-
variate analysis using logistic regression to collect these relevant
features. See Supplementary Information for more details.

Data availability
The data set used and analyzed in the current study is avail-
able upon request.

Code availability
The code is available at: https://github.com/Complex
OrganizationOfLivingMatter/NeuroblastomeIntegration.

Results
Capturing organization from NB biopsy images
We processed and analyzed 91 histological images taken from
human samples stained with anti-VN antibody to visualize
VN distribution (Figs. 1a and 1b, Methods). Using these
images, we obtained the hematoxylin stained nuclei markup
image for each biopsy (Fig. 1c). We also distinguished two dif-
ferent localizations of VN according to intensity, as previously
described35: strong intensity was assigned to a territorial VN,
whose location is pericellular and intracellular (Fig. 1d); and
the intercellular location (peripherally to territorial matrix),
which was named interterritorial VN, corresponded to low

Figure 2. Pipeline overview of how the features are extracted. The process starts with the initial markup image, which in this example
corresponds to territorial VN. A region of interest (ROI) from the initial image was selected (in dark gray) to show the space discretization and
further operations. Below, the nodes (in red) are identified when a hexagon has VN inside. This information is used to obtain the pure
topological features (dark blue, left side), a subset of the topological characteristics. In particular, the number of nodes is used to create the
control with a uniform node distribution, while the position and number of nodes are utilized to gain the markup node distribution.
Thereafter, each distribution of nodes is connected using a network algorithm (sorting, iteration or minimum spanning tree methods) and the
graphlets degree distribution (GDD) is computed for both control and markup networks. To obtain the tensegrity index, the distance between
the control GDD and the markup GDD is calculated. For topological characteristics (blue, right side), excluding the pure topological ones, two
sources of information are used: the hexagonal grid and detected nodes (arrows in darker gray), and properties quantification performed
directly on the markup image (lighter gray arrows). Two topological features are highlighted: Euler number per node, where the Euler number
is calculated by subtracting the two objects (in brown) against the five holes within them (in light brown) resulting in a Euler number of
minus three; and Branches per node in which the crosslinks (circles in light brown) from territorial VN shapes (in brown) were detected.
Likewise, the nontopological features (orange, bottom right) use information extracted directly from the markup image and from the space
discretization.
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Table 1. Statistically significant features. (a) Index of feature name and identifier used in the study, divided into topological (in white) or
nontopological (gray). Topological features are the ones who capture organization, while the nontopological characteristics are morphometric
measurements and other nonorganizational quantifications. (b) Results from the univariate analysis performed for tumor genetic instability
criteria and high-risk pretreatment stratification group. Only statistically significant characteristics (χ2 < 0.05) are shown. The features are
ranked by their p-values obtained on the chi-square test, in ascending order. The selected features to be used in the next steps are underlined.
The characteristics of territorial vitronectin (VN) are marked in bold (12/21 in the risk group and 15/27 in tumor genetic instability criteria).
Highly statistically significant common features in tumor genetic instability criteria and risk group were marked with an asterisk. MST, minimum
spanning tree; std, standard deviation

(a) Definition of features (b) Univariate analysis

ID Characteristics Rank ID Characteristics Chi-square

Topological Tumor genetic instability criteria

1 Interterritorial—sorting tensegrity index 1 20 Territorial—Euler number per node* 8.20E-07

2 Interterritorial—iteration tensegrity index 2 24 Territorial—mean quantity of branches per node* 4.03E-06

3 Interterritorial—MST tensegrity index 3 37 Territorial—percentage of stained area* 6.58E-05

4 Interterritorial—std percentage of VN stained area
per region

4 16 Interterritorial—std percentage of VN stained area
per region

9.05E-05

5 Interterritorial—std percentage of VN stained area
per node

5 39 Total nuclei 1.27E-04

6 Interterritorial—Euler number per VN stained area 6 29 Territorial—mean percentage of VN stained area
per node

1.75E-04

7 Interterritorial—Euler number per region 7 16 Territorial—std percentage of VN stained area
per region

2.74E-04

8 Interterritorial—Euler number per node 8 45 Territorial—ratio of strong positive pixels to total
pixels

2.74E-04

9 Interterritorial—number of holes per VN stained
area

9 27 Territorial—mean percentage of VN stained area
per region

3.87E-04

10 Interterritorial—std area of holes 10 23 Territorial—mean quantity of branches per region 3.87E-04

11 Interterritorial—mean quantity of branches per
region

11 7 Territorial—Euler number per region 5.34E-04

12 Interterritorial—mean quantity of branches per
node

12 40 Percentage of hematoxylin stained nuclei area 6.11E-04

13 Territorial—sorting tensegrity index 13 22 Territorial—std area of holes 8.44E-04

14 Territorial—iteration tensegrity index 14 43 Interterritorial—ratio of weak positive pixels to
total pixels

1.46E-03

15 Territorial—MST tensegrity index 15 47 H-score 0.002

16 Territorial—std percentage of VN stained area per
region

16 38 Territorial—VN stained area/mm2 0.002

17 Territorial—std percentage of VN stained area per
node

17 46 Ratio of all positive pixels 0.004

18 Territorial—Euler number per VN stained area 18 31 Territorial—mean area of holes 0.005

19 Territorial—Euler number per region 19 42 Ratio of hematoxylin stained nuclei pixels to total
pixels

0.006

20 Territorial—Euler number per node 20 36 Interterritorial—VN stained area/mm2 0.009

21 Territorial—number of holes per VN stained area 21 12 Interterritorial—mean quantity of branches per
node

0.014

22 Territorial—std area of holes 22 34 Hematoxylin stained nuclei/mm2 0.016

23 Territorial—mean quantity of branches per region 23 2 Interterritorial—iteration tensegrity index 0.017

24 Territorial—mean quantity of branches per node 24 19 Territorial—Euler number per region 0.024

25 Std difference territorial and Interterritorial 25 21 Territorial—number of holes per VN stained area 0.030

Non-topological 26 9 Interterritorial—number of holes per VN stained
area

0.034

26 Interterritorial—mean percentage of VN stained
area per region

27 6 Interterritorial—Euler number per VN stained area 0.045

27 Interterritorial—mean percentage of VN stained
area per node

Risk pretreatment stratification group

28 Interterritorial—mean area of holes 1 20 Territorial—Euler number per node* 0.001

(Continues)
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and medium intensity (Fig. 1e). In this way, we detected the
objects (VN stained areas) in the markup images, and over-
lapping a hexagonal grid with the related markup image, we
divided the image into regions. In addition, we detected which
hexagons were filled with VN objects becoming our nodes of
the future graph (Figs. S1a and S1b, Methods). Using the infor-
mation from the overlapped images and markup images, we
studied the organization of the two locations of VN, by
obtaining 25 features characterizing the topology of VN
(Table 1a and Fig. 2). In particular, we quantified (i) the general
topology of the distribution of cells with interterritorial (features

with ID 1, 2 and 3) or territorial (13, 14 and 15) VN; (ii) the
variance in quantity of VN per hexagonal region (characteristics
4, 5, 16 and 17); (iii) the Euler number, which corresponds to
the number of objects minus the holes (6, 7, 8, 18, 19 and
20 (Fig. S1b); (iv) the number of holes per object (9 and 21) and
the variation of the area of the holes (10 and 22); (v) branching,
representing how many crosslinks are found (11, 12, 23 and 24)
and (vi) the variation on the difference between interterritorial
VN and territorial VN in terms of its quantity (25).

The values for the pure topological features (network char-
acteristics 1, 2, 3, 13, 14 and 15) were obtained in three steps

Table 1. Statistically significant features. (a) Index of feature name and identifier used in the study, divided into topological (in white) or
nontopological (gray). Topological features are the ones who capture organization, while the nontopological characteristics are morphometric
measurements and other nonorganizational quantifications. (b) Results from the univariate analysis performed for tumor genetic instability
criteria and high-risk pretreatment stratification group. Only statistically significant characteristics (χ2 < 0.05) are shown. The features are
ranked by their p-values obtained on the chi-square test, in ascending order. The selected features to be used in the next steps are underlined.
The characteristics of territorial vitronectin (VN) are marked in bold (12/21 in the risk group and 15/27 in tumor genetic instability criteria).
Highly statistically significant common features in tumor genetic instability criteria and risk group were marked with an asterisk. MST, minimum
spanning tree; std, standard deviation (Continued)

(a) Definition of features (b) Univariate analysis

ID Characteristics Rank ID Characteristics Chi-square

29 Territorial—mean percentage of VN stained area
per region

2 24 Territorial—mean quantity of branches per node* 0.003

30 Territorial—mean percentage of VN stained area
per node

3 39 Total nuclei 0.003

31 Territorial—mean area of holes 4 37 Territorial—percentage of stained area* 0.006

32 Mean difference territorial and Interterritorial 5 16 Territorial—std percentage of VN stained area
per region

0.010

33 Percentage of hematoxylin stained nuclei area 6 22 Territorial—std area of holes 0.010

34 Hematoxylin stained nuclei/mm2 7 34 Hematoxylin stained nuclei/mm2 0.010

35 Interterritorial—percentage of stained area 8 36 Interterritorial—VN stained area/mm2 0.010

36 Interterritorial—VN stained area/mm2 9 45 Territorial—ratio of strong positive pixels to total
pixels

0.010

37 Territorial—percentage of stained area 10 43 Interterritorial—ratio of weak positive pixels to
total pixels

0.014

38 Territorial—VN stained area/mm2 11 17 Interterritorial—std percentage of VN stained area
per node

0.016

39 Total nuclei 12 29 Territorial—mean percentage of VN stained area
per region

0.019

40 Percentage of hematoxylin stained nuclei 13 23 Territorial—mean quantity of branches per region 0.019

41 Percentage of VN positive cells 14 19 Territorial—Euler number per region 0.019

42 Ratio of hematoxylin stained nuclei pixels to total
pixels

15 47 H-score 0.019

43 Interterritorial—ratio of weak positive pixels to
total pixels

16 27 Territorial—std percentage of VN stained area
per node

0.019

44 Interterritorial—ratio of moderate positive pixels to
total pixels

17 38 Territorial—VN stained area/mm2 0.019

45 Territorial—ratio of strong positive pixels to total
pixels

18 33 Percentage of haematoxylin stained nuclei area 0.028

46 Ratio of all positive pixels 19 42 Ratio of haematoxylin stained nuclei pixels to
total pixels

0.028

47 H-score 20 30 Territorial—mean percentage of VN stained area
per node

0.033

21 46 Ratio of all positive pixels 0.033

The asterisk indicated three features that presented low values of chi-square in both categories.
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(Fig. 2). First, we used the superimposed images and its nodes
to build a graph using different methods to connect these
nodes (with edges). Specifically, we developed three different
algorithms that consider the distance between the nodes:
sorting, connecting all the closest distances between nodes,
obtaining a highly-linked graph (Fig. S1c); iteration, which
links the closest neighbors of the nodes emphasizing local
topologies (Fig. S1d); and minimum spanning tree, which
connects all the nodes together minimizing the total edge dis-
tance, creating a minimum topological structure (Fig. S1e).
The three algorithms were designed to construct a connected
graph, meaning that no nodes were isolated (Methods). Sec-
ond, for each original markup image of a given VN location
(Figs. 1d and 1e), ten control images were generated by taking
the number of nodes in a biopsy (Fig. S1b) and distributing
them homogenously in the regions where it was possible to
find VN (i.e., tears of the tissue were discarded) (Figs. S1f and
S1g). The nodes of the control images were connected to
obtain a corresponding control graph (Methods and Figs. S1f
and S1g). Third, to get the final value of these features (the
tensegrity indices), we calculated a descriptor of the similarity
between each graph and its control (Fig. 2). To this end, we
used the graphlet degree distribution distance26 (Methods). As
a result, we obtained six tensegrity indices for each biopsy
(three types of algorithms from two different locations
of VN).

A combination of morphometric and topological features
In addition to the topological features, we captured 22 non-
topological characteristics (Table 1a), 7 of them obtained
using the information from the hexagonal grid overlapped
with the original markup image (Fig. 2): (i) percentage of VN
(features 26, 27, 29 and 30); (ii) area of holes of the VN
objects (28 and 31) and (iii) difference between territorial and
interterritorial VN regarding their quantity (32). The
remaining 15 morphometric features (33–47) did not consider
the hexagonal grid and were acquired in a previous study.35

Altogether, we had 47 VN characteristics (Table 1a and
Supplementary Table 1): 19 came from interterritorial VN,
18 from territorial VN, 5 from both VN location, 4 from
nuclei and 1 from total cells presented in their related markup
images. We combined all this information to see if we could
obtain a new supporting feature to enhance our two possible
criteria: pretreatment risk stratification group (high-risk vs.
non-high-risk, 91 cases) and tumor genetic instability (higher
vs. lower, 82 cases).

The pattern of VN is more homogeneous in patients with
higher tumor genetic instability
As a preliminary analysis of the relation between the pure
topology of the VN in the biopsy and the risk group of the
patients or tumor genetic instability, we compared the distri-
bution of our six tensegrity indices in high-risk vs. non-high-
risk groups and higher vs. lower tumor genetic instability.

Regarding risk criteria, no feature was statistically significant
between different prognoses. On the contrary, for the tumor
genetic instability, both Iteration algorithms, interterritorial
(lower instability: 0.22 � 0.08; higher instability: 0.18 � 0.10,
p < 0.01) and territorial VN (lower instability: 0.26 � 0.08,
higher instability: 0.21 � 0.09, p < 0.01), were statistically sig-
nificant to divide between lower and higher genetic instability
(Methods). Even though only the two mentioned results
(2 out of 12) were statistically relevant, a trend was found
among all the tensegrity indices: higher risk group or higher
tumor genetic instability was associated with lower values in
tensegrity indices, that is, differences between biopsy and con-
trols (Fig. 3a and Table S2). This means that using these indi-
cators, low-risk group and low tumor genetic instability cases
were distributed more heterogeneously than low-risk group
patients and higher tumor genetic instability.

The territorial Euler number could enhance the prediction of
poor risk group-related prognosis
Next, considering the whole data set (47 features), we looked
for variables that could improve the current tumor-tissue pre-
dictors of patients’ risk group or tumor genetic instability. For
this purpose, we used a multivariate logistic regression pipe-
line based on the statistical analysis previously performed.41,42

The first step of the pipeline was a univariate logistic regres-
sion analysis. This test checked whether the individual contri-
bution of each feature was statistically significant for each
criterion. Then, we retained only the features with statistical
significance (p < 0.05) that could be independent factors in
the study cohort (Table 1b). Among them, the three most sta-
tistically significant in tumor genetic instability were related to
territorial VN features and they also presented low chi-square
values predicting the high-risk pretreatment stratification
group. In addition, the majority of possible independent fac-
tors were characteristics of territorial VN (12/21 in high-risk
pretreatment stratification group and 15/27 in tumor genetic
instability criteria, Table 1b).

The second step of the pipeline was a multivariate logistic
regression analysis, whose outputs are characteristics that
should generate new insights; thus, they cannot overlap with
variables that have known predictive power. Therefore, we
coupled all the INRG variables, with values known to assess
patient prognosis, with the top eight VN features of each cri-
terion considered as the most statistically significant (nine fea-
tures with p < 0.011 in risk group; eight characteristics with
p < 3e-04 for tumor genetic instability) by the univariate anal-
ysis (Methods and Table 1b). Thereafter, we performed the
multivariate logistic regression, which yielded a set of charac-
teristics formed by age ≥18 months, Euler number per node
from territorial VN, MYCN status (MNA) and metastatic
stage (M) (Table 2), which was the best model characterizing
the INRG pretreatment risk classification (nagelkerke R2:
0.47). Using these four features, we obtained a significant
model (χ2 < 0.005) with a specificity of 0.89 (non-high-risk
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Figure 3. The topology of territorial vitronectin (VN) is relevant to patient outcome. (a) Iteration tensegrity index values for the biopsies
shown. For the same case, both VN locations are illustrated: interterritorial (top, connecting brown hexagonal areas) and territorial (bottom,
connecting red hexagonal regions). (b) Region of interest (ROC) curve for the final model of risk pretreatment stratification group. (c)
Territorial VN Euler number per node feature. Values are for the whole image, but the representative image is from a ROI. (d) ROC curve
resulting from the model of tumor genetic instability criteria. (e) Branches per node from territorial VN. ROI taken from an image stained with
territorial VN. The branches found are presented in dark orange. The skeletonized region of the marker is in light orange. Scale bar, 20 mm.
Note that images from patients related to the non-high-risk group and lower tumor genetic instability are represented in green. Burgundy
shows examples of cases belong to high-risk group and higher tumor genetic instability. (f ) Representative drawing of neuroblastoma
microenvironment. Tumor with a close-up of a stiff area: rich territorial vitronectin regions (dark brown) were associated with a desmoplastic
extracellular matrix (represented by a low amount of glycosaminoglycans, crosslinked reticulin fibers, collagen I fibers and interterritorial
vitronectin), tortuous blood and lymph vessels as a scaffold of tumor and stromal cells.
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group) and a sensitivity of 0.74 (high-risk group) (Fig. 3b).
The selected independent prognostic predictor was based on
the Euler number for territorial VN (Fig. 2). It stands for the
number of objects in a sample minus the number of holes
within those objects. Although the feature Euler number per
node from territorial VN is related to the quantity of peri-
cellular VN, it also takes into account the compactness of the
territorial VN stained area including intracellular VN. More-
over, it considers the hematoxylin-stained nuclei of active VN
secretory cells with intracellular VN accumulation. In particu-
lar, we found that a greater number of objects and a lesser
number of holes (a higher Euler number per node) from terri-
torial VN was associated with the high-risk pretreatment
stratification group (p < 0.05) (Fig. 3c).

Territorial crosslinks can assess tumor genetic instability
We repeated the second step of the pipeline to obtain the
most relevant independent factors in the study cohort for
tumor genetic instability. The final set was composed of the
mean quantity of branches per node of territorial VN and the
INRG variables: genetic profile (SCA), MYCN status (MNA)
and ploidy (diploid and tetraploid) (nagelkerke R2: 0.84),
although it yielded quasi-completion separation odd ratios, as
can be seen in the standard errors of the results (Table 2). To
avoid this issue, we performed a Firth’s logistic regression.

The output of this logistic regression was a penalized model
(χ2 < 0.005) with a specificity of 0.91 and a sensitivity of 0.89
(Fig. 3d). For tumor genetic instability, the mean quantity of
branches per node of territorial VN was selected as an individ-
ual predictor in the study cohort. It considers the number of
crosslinks after skeletonizing the image, taking into account only
the filled hexagons (Figs. 2, 3e and Supplementary Fig. S1b).
This feature highlights the proximity of VN secretory cells with
merged areas of recent VN secretion, mainly located per-
icellularly. We found that a higher number of branches corre-
lated with higher tumor genetic instability. In addition, we also
found a trend with the four defined levels from the genetic
instability of the tumors (very low: 1.81 � 0.8; low: 2.30 � 1.6;
medium: 2.43 � 1.1; high: 7.05 � 5.4; Table S1).

Discussion
In this work, we show that capturing VN organization can
help improve understanding of how VN, essential to the
structure of the ECM, affects or is affected by tumor progres-
sion, and thus patient prognosis. To acquire the characteristics
for this purpose, we used two defined VN expression patterns
that indicate the duration of time in the ECM:35 a territorial
pattern indicates VN that has just been synthesized (also,
intracellular) and/or was recently secreted into the surround-
ing matrix (pericellular); interterritorial VN has been present

Table 2. Multivariate logistic regression. The models using the final set of features for each criterion. Each model is defined by the different
coefficients (B column) of the intercept and independent variables (features). For tumor genetic instability criteria, both regular logistic
regression and Firth’s logistic regression are shown. SE stands for standard error. The odds ratio and confidence score are presented (exp(B)
95% CI column). In regular logistic regression, Z-score and its associated p-value are represented, while in Firth’s logistic regression
chi-squared and its p-value are presented

Features B SE Exp (B) (95% CI) Z-value Pr(>|z|)

Risk pretreatment stratification group

(Intercept) −3.95 0.91 0.019 (0.003–0.114) −4.36 1.32E-05

Territorial—Euler number per node 0.65 0.26 1.92 (1.15–3.20) 2.49 0.013

Age (≥18 month) 2.66 0.61 14.36 (4.34–47.50) 4.36 1.28E-05

Stage −6.05E-03 0.01 0.99 (0.97–1.02) −0.51 0.610

MYCN (MNA) −5.45E-03 0.01 0.99 (0.97–1.02) −0.50 0.620

Tumor genetic instability criteria

Regular logistic regression

(Intercept) −23.64 2,914.00 5.45E-11 (0–Inf) −0.01 0.994

Territorial—mean quantity of branches per node 1.50 0.58 4.46 (1.44–13.80) 2.60 0.009

SCA 19.89 2,914.00 4.37E+08 (0–Inf) 0.01 0.995

MYCN (MNA) 22.58 3,245.00 6.43E+09 (0–Inf) 0.01 0.994

Ploidy −2.83E-03 1.32E-03 1.00 (0.99–1.00) −2.15 0.032

Firth’s logistic regression

Features B SE Exp (B) (95% CI) Chi-square p

(Intercept) −6.53 2.10 1.42E-04 (4.58E-06–4.64E-02) 21.99 2.73E-06

Territorial—mean quantity of branches per node 1.24 0.47 3.45 (1.42–10.96) 8.00 0.005

SCA 3.45 1.58 31.45 (3.04–4.45) 10.20 0.001

MYCN (MNA) 5.26 1.95 192.31 (9.81–4764.41) 20.04 7.56E-06

Ploidy −2.21E-03 1.04E-03 1.00 (1.00–1.00) 5.46 0.019
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for a while in the intercellular space. In the same study, the
optical analysis was used to determine the adequacy of further
image analysis and to set the image analysis parameters. A
good consistency (in terms of intensity) between the visual
analysis and the digital image analysis quantification was
observed using Kruskal-Wallis test (p < 1e-4). Our automatic
image analysis approach can capture relevant information,
which could be missing with traditional methods, to improve
the classification of biopsy samples from NB patients. As a
result, our different sets of experiments using different types
of features indicate that territorial VN is relevant to evaluate
the risk group of patients affected by NB and their tumor
genetic instability.

The preliminary results of the pure topological features
highlighted the iteration tensegrity index for both territorial
and interterritorial VN with respect to tumor genetic instabil-
ity (Fig. 3a). In addition, the tensegrity index for inter-
territorial VN is the only relevant attribute of our novel
features classifying tumor genetic instability (Table 1b). Nei-
ther sorting nor minimum spanning tree tensegrity index
appeared relevant to capture the patient’s outcome. A possible
reason could be the density of the resulting networks. The
sorting graph (Fig. 2 and Supplementary Fig. S1c) is likely too
dense, while the network of minimum spanning tree (Fig. 2
and Supplementary Fig. S1e) may be insufficiently connected
for the graphlets to find differences between cases and con-
trols. Thus, the intermediate graph of Iteration tensegrity
index (Fig. 2 and Supplementary Fig. S1d), neither too dense
nor too sparse, has the correct attributes to characterize the
topology of the VN in these samples.

Although only one of our defined pure topological features
was an independent factor in the study cohort, we found a
trend in all the tensegrity indices: more homogeneous territo-
rial and interterritorial VN patterns in node distribution
emerged where patient prognosis was worse (Table S2 and
Fig. 3a). Here, rather than the direct quantity of VN, homoge-
neous reflects that VN is equally distributed throughout the
sample: VN is spread over the tissue without restrictions in
patients with poor prognosis. This is consistent with recent
studies on the matter,35,43 suggesting that VN enhanced the
migratory capacity of tumor cells located in focal areas, thus
associating VN with intratumor heterogeneity, tumor inva-
sion, angiogenesis and metastasis.44 It could also be the case
that endothelial cells migrate to a fibronectin and VN-rich
environment as a way to create new blood vessels in the pro-
cess of neoangiogenesis.31,33,45,46

We found an individual independent predictor in the study
cohort for each of the criteria analyzed (pretreatment risk
stratification group and tumor genetic instability). Both are
topological features that can predict prognosis without over-
lapping with the existing known variables (age, stage, MYCN
status and genetic profile). In the risk stratification group, the
Euler number per node from territorial VN, which was a com-
pendium between VN quantity and organization, came out as

a remarkable feature. In our topological feature Euler number
per node, we only consider the regions with information and
computed the Euler number of each region separately. There-
fore, a higher number of this feature, related to tumors with
MNA from high-risk patients, stage M and ≥18 months,
might indicate that existing territorial VN is compacted with
stretch marks in focal areas, as previously indicated. In sum-
mary, our results suggest that the topology of territorial VN
would aid tumor cell migration, mechanically altering the
ECM, which translates into disrupted tumor cell adhesion and
easier spreading into a stiff matrix. It has been shown that the
Euler number is able to characterize the aggressiveness of
prostate cancer, distinguishing between tubular and cribriform
growth patterns associated with lower and higher aggressive
behaviors, respectively.47 These organization patterns resemble
the ones we encounter in territorial VN, where a higher Euler
number is related to worse prognosis (Fig. 3c). One possibility
is that the territorial VN forms cribriform-like structures that
try to surround the cancer cells with a stiff ECM, allowing
migration. VN-rich territorial regions would facilitate the dis-
ruption of ECM–cell or cell–cell interactions (Fig. 3f ). Inter-
estingly, this pattern is similar to the fibrosis areas previously
described in human lung cancer.48

For the tumor genetic instability criteria, we obtained the
topological feature branches per node from territorial VN,
related to the shape of VN and its number of crosslinks, as an
individual independent factor. Irregular shapes (not straight),
which may be surrounding the cells (Fig. 3e, right), appeared
in tumors with higher genetic instability. The displacement of
malignant neuroblasts in a stiff ECM could be mediated by
cycles of formation and rupture of binding glycoproteins, VN
and/or fibronectin, as described in these studies in ovarian
and oral squamous carcinoma tumor cells.32,49 Likewise, VN
branching could represent migration tracks with a large
amount of VN, connecting integrins and fiber elements of the
ECM. Furthermore, these irregular territorial VN branches
would represent migrating tracks facilitating invasion by acti-
vating nuclear intracellular signaling pathways that would
modify genetic and epigenetic mechanisms, increasing tumor
instability in these patients (Fig. 3f ).

The digital analysis tools are increasingly numerous and
powerful as a result of the growing demand for an automatic
objective method that allows rapid and effective analysis
(reduce inter and intraobserver variability) of the huge num-
ber of tumor samples required at a routine clinical diagnosis
and research.50,51 In particular, previous works had used tex-
tural analysis to improve the current methods of grading pros-
tate cancer24 or malignancy detection in breast tumors,12

among others.13,23 Although these studies achieved accurate
results, the features they got did not directly unlock biological
mechanisms. NB is considered a heterogeneous and complex
cancer dependent on many known variables, such as age and
MYCN oncogene amplification,37,52 but there are still
unknown biological factors. Thus, interpret and relate features
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with biology are essential to extract new insights. Likewise,
most of the works using computerized image analysis rely on
recognizable objects to capture the morphology or topology,
such as the nuclei of the cells within the sample.14,24,25 In our
case, VN cannot be captured as an object due to its variability
in size and shape (Figs. 1d and 1e). We propose that these
automatic methods can be enhanced with the use of mathe-
matical tools that can capture the organization of the elements
identified in the biopsies. Our approach discretizes the space
to extract different topological and morphological features
avoiding these two issues while obtaining statistically signifi-
cant characteristics.

Overall, our conclusion is that the particular organization of
territorial VN markedly changes the constitution and mechan-
ics of the ECM by the rapid addition of new synthesized VN
creating migration tracks, which may lead to more aggressive
NB. However, the molecular mechanism behind these results
remains unclear. In conclusion, combining topology and mor-
phometric features seems an effective strategy to find comple-
mentary factors that could obtain a more precise pretreatment
risk stratification to guide treatment strategies. We have shown
that VN may play a greater role than previously assumed in
prognostic assessment of human patients, in agreement with
our previous work that suggested the importance of territorial
VN.35 There remains a wealth of information to be captured
from these biopsies. Human samples are an excellent source of
information that should be thoroughly analyzed. On this sense,
our topological approach requires long computational
processing to obtain high-quality and reliable markups. How-
ever, once the markup images have been validated, their topo-
logical properties can be easily extracted using our pipeline.
Our mathematical approach shows a big potential in histopath-
ological images of NB samples. In the near future, the integra-
tion of histopathological consecutive slices will be the first step
to approach the 3D tumor’s structure. These studies will be
needed to reveal the true role of VN in NB to test whether the
results of our study are consistent.

Glossary
Tensegrity: Stabilization of structures constituted by continu-
ous elements of tension and discontinuous elements resistant
to compression. Topology: How a set of elements are struc-
tured and connected in a given space. Tessellation: A sur-
face covered by geometric components (or tiles) with no gaps
and without overlapping. Graph/network: A set of elements

connected between them following determined rules that rep-
resent binary relations. A graph is formed by nodes (the ele-
ments) and edges that link them. Voronoi diagram: A
particular tessellation formed by convex polygons. Each con-
vex polygon is a Voronoi cell. Every Voronoi cell emerges
from a seed. All the points of a Voronoi cell are closer to its
own seed that to any other seed of the surface. Graphlets:
Graphs with a small number of nodes extracted from a larger
network. A network can be quantitatively characterized by its
graphlets composition. Markup image: A binary immuno-
histochemistry microscopic image in which the white regions
represent detected objects, and the black ones, the
background. Euler number feature: In an image where a
set of objects has been identified, the Euler number is the
value of the number of objects minus the number of holes
inside them. Branching feature: In an image where a set of
objects has been identified, the Branching is the value of the
number of crosslinks that are found on the objects. Node:
A representation of an object. In our case, it stands for a hex-
agonal area filled with vitronectin. Edge: The link between
nodes. Two nodes connected by one edge are considered
adjacent. Tensegrity index: Represents how different is the
VN (interterritorial or territorial) organized in the biopsy
compared to a homogenous distribution.
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