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Ramsey goodness of paths

Alexey Pokrovskiy∗ Benny Sudakov †

Abstract

Given a pair of graphs G and H , the Ramsey number R(G,H) is the smallest N such that every
red-blue coloring of the edges of the complete graphKN contains a red copy ofG or a blue copy ofH .
If graphG is connected, it is well known and easy to show thatR(G,H) ≥ (|G|−1)(χ(H)−1)+σ(H),
where χ(H) is the chromatic number of H and σ the size of the smallest color class in a χ(H)-
coloring of H . A graph G is called H-good if R(G,H) = (|G| − 1)(χ(H)− 1) + σ(H). The notion
of Ramsey goodness was introduced by Burr and Erdős in 1983 and has been extensively studied
since then. In this short note we prove that n-vertex path Pn is H-good for all n ≥ 4|H |. This
proves in a strong form a conjecture of Allen, Brightwell, and Skokan.

1 Introduction

Given a pair of graphs G and H, the Ramsey number R(G,H) is the smallest N such that every
red-blue coloring of the edges of the complete graph KN contains a red copy of G or a blue copy of H.
It is a corollary of the celebrated theorem of Ramsey that these numbers are always finite. Let χ(H)
be the chromatic number of H, i.e. the smallest number of colors needed to color the vertices of H so
that no pair of adjacent vertices have the same colour, and σ(H) be the the size of the smallest color
class in a χ(H)-colouring of H. It was observed by Burr [4] that for connected G with |G| ≥ σ(H)
Ramsey numbers always satisfy the following easy lower bound

R(G,H) ≥ (|G| − 1)(χ(H)− 1) + σ(H). (1)

To prove (1), consider a 2-edge-coloring of the complete graph on N = (|G|− 1)(χ(H)− 1)+σ(H)− 1
vertices consisting of χ(H)− 1 disjoint red cliques of size |G| − 1 as well as one disjoint red clique of
size σ(H)− 1. This coloring has no red G because all red connected components have size ≤ |G| − 1,
and there is no blue H since the partition of this H induced by red cliques would give a coloring of H
by χ(H) colors with one color class smaller than σ(H), contradicting the definition of σ(H).

For some graphs the bound in (1) is quite far from the truth. For example Erdős [8] showed that
R(Kn,Kn) ≥ Ω(2n/2) which is much larger than the quadratic bound we get from (1). However there
are many known pairs of graphs for which R(G,H) = (|G| − 1)(χ(H)− 1)+σ(H). In this case we say
that G is H-good. The notion of Ramsey goodness was introduced by Burr and Erdős [5] in 1983 and
was extensively studied since then, see, e.g., [1, 6, 7, 11, 13, 14] and their references.

In this short note we study the question of when the n-vertex path Pn is H-good, for some fixed
graph H. This problem goes back to the work of Erdős, Faudree, Rousseau, and Schelp [9], who
in 1985 proved that there is a function f such that Pn is H-good for all n ≥ f(|H|). The function
f(|H|) is not explicit in [9], but f(H) = O(|H|4) can be proved using their method. Häggkvist [12]
(for k = 2) and later Pokrovskiy [16] obtained a general upper bound on the Ramsey number of path
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versus complete k-partite graphs, showing that R(Pn,Km,...,m) ≤ (k − 1)(n − 1) + km− k + 1. Here
and later, Km1,...,mk

denotes a complete k-partite graph with parts of order m1, . . . ,mk together with
all the edges connecting vertices in different parts. Although this bound is not strong enough to prove
goodness, it holds for all values of the parameters. More recently, Pei and Li [15] showed that if
n ≥ 8|H| + 3σ(H)2 + cχ8(H), then Pn is H-good. For general H (e.g., when H = Km,m) this result
requires n to be quadratic in |H|. Allen, Brightwell, and Skokan [1] conjectured that Pn is H-good
already when n is linear in |H|.

Conjecture 1.1 ([1]). Let H be a fixed graph with chromatic number k and let n ≥ k|H|. Then
R(Pn,H) = (n− 1)(k − 1) + σ(H).

Let R(C≥n,H) be the smallest N such that any 2-edge-coloring of KN contains either a red cycle
of length at least n or a blue H. Notice that we always have R(Pn,H) ≤ R(C≥n,H). Motivated by
the above conjecture, in this note we prove the following theorem.

Theorem 1.2. Given integers m1 ≤ m2 ≤ · · · ≤ mk and n ≥ 3mk + 5mk−1, we have

R(C≥n,Km1,...,mk
) = (k − 1)(n − 1) +m1.

Notice that the vertices of a k-chromatic graph H can be partitioned into k independent sets of sizes
m1, . . . ,mk with σ(H) = m1 ≤ m2 ≤ · · · ≤ mk. This is equivalent to H being a subgraph of Km1,...,mk

.
Since 4|H| ≥ 4mk + 4mk−1 ≥ 3mk + 5mk−1, Theorem 1.2 implies the following.

Corollary 1.3. Let H be a fixed graph with chromatic number k and let n ≥ 4|H|. Then R(Pn,H) =
(n− 1)(k − 1) + σ(H).

For k ≥ 4, this corollary proves Conjecture 1.1 in a very strong form, showing that the condition
n ≥ χ(H)|H| is unnecessary, and n ≥ 4|H| suffices. For k ≤ 3, our result is slightly weaker than the
conjecture, but is a large improvement on the best previously known [15] quadratic dependence of n
on |H|. Moreover, for certain graphs H, Theorem 1.2 shows that Pn is H-good even when n is smaller
than 4|H|. For example if H is balanced (i.e. if |H| = σ(H)χ(H)), then this theorem implies that Pn

is H-good as long as n ≥ 8|H|/χ(H).

2 Proof of the main theorem

The proof of Theorem 1.2 uses a combination of the Pósa rotation-extension technique and induction
on k. Let P = p1p2 . . . pt be a path in a graph G which also contains an edge ptpi. We say that a path
Q = p1p2 . . . piptpt−1 . . . pi+1 is a rotation of P . We say that a path Q is derived from P if there is a
sequence of paths P0 = P,P1, . . . , Ps = Q with Pj being a rotation of Pj−1 for each j. We say that a
vertex x is an ending vertex for P if it is the final vertex of some path derived from P . We say that a
set X of ending vertices of P is connected if for every x ∈ X there is a path Px ending with x and a
sequence of paths P = P0, P1, . . . , Ps = Px with Pj being a rotation of Pj−1 for each j and Pj ending
with some x′ ∈ X. That is, for a Px ending in x ∈ X, the set X also contains ending vertices of a
sequence of intermediate paths whose rotations produce Px. Notice that for a path P , the set of all
ending vertices for P is connected. For a set of vertices S in a graph G, we use NG(S) to mean the
set of vertices v ∈ V (G) \S for which there is a vertex s ∈ S such that vs is an edge of G i.e NG(S) is
the neighbourhood of the set S outside S. When there is no ambiguity of what the underlying graph
is, we abbreviate this to N(S).

We will need a variant of the celebrated lemma of Pósa from [18].
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Lemma 2.1. Let P be a path of maximum length in a graph G starting at some vertex p0, X a
connected set of ending vertices for P , and S the set of all ending vertices for P . Then we have

(i) |N(X)| ≤ 2|S|.

(ii) There is a cycle in G containing N(X) ∪X.

Proof. Fix an orientation of P . Let S− be the set of left neighbours on P of vertices in S and let
S+ be the set of right neighbours on P of vertices in S. Notice that by maximality of |P |, we have
N(X) ⊆ V (P ) (indeed otherwise if we have y ∈ N(X) \ V (P ), then we can obtain a longer path
starting from p0 by choosing a rotation of P ending with a neighbour of y, and extending it with y.)
First we will show that N(X) ∪X ⊆ S− ∪ S+ ∪X.

Let x be a vertex in X and P = P0, P1 . . . , Ps be a sequence of paths such that Ps ends with x, Pi

ends with some v ∈ X, and Pi is a rotation of Pi−1 (such a sequence exists since X is a connected set of
endpoints.) Notice that if yz ∈ E(Ps), then either yz ∈ E(P ) or {y, z} ⊆ X ∪X−∪X+ (this is proved
by induction using the fact that from the definition of “rotation”, we have yz ∈ Pi =⇒ yz ∈ Pi−1 or
{y, z} ⊆ X ∪X− ∪X+.)

Let p0, . . . , pk = x be the vertex sequence of Ps. For pi ∈ N(x), we know p1p2 . . . pipkpk−1 . . . pi+1

is a rotation of P and hence pi+1 ∈ S. Since pipi+1 ∈ E(Ps), we have that either pipi+1 ∈ E(P ) which
implies that pi ∈ S− ∪ S+ ⊆ X ∪ S− ∪ S+, or we have {pi, pi+1} ⊆ X ∪X− ∪X+ ⊆ X ∪ S− ∪ S+.
This implies that N(X) ⊆

⋃
x∈X N(x) ⊆ X ∪ S− ∪ S+ as required. Now part (i) of the lemma comes

from |N(X) ∪X| ≤ |S−|+ |S+|+ |X| ≤ 2|S|+ |X|.
Although part (ii) of the lemma already appeared in [3], we include its short proof for the sake of

completeness. Let p0, . . . , pk be the vertex sequence of P , and let pi be the first element of (N(X) ∪
X)∩{p0, . . . , pk}. Since we are considering paths starting from p0, we must have p0 6∈ X. If p0 ∈ N(X),
then we have a cycle on V (P ) formed by taking a rotation of P ending with p ∈ N(p0) and adding the
edge p0p. Therefore, we can assume that pi 6= p0. Notice that since pi−1 ∈ N(pi) we must have pi 6∈ X
(otherwise pi−1 would be an element of (N(X) ∪ X) ∩ {p0, . . . , pk} preceding pi) which implies that
pi ∈ N(X). Let x ∈ X be a neighbour of pi, and let Q be a rotation of P ending with x. Let p0q1 . . . qk
be the vertex sequence of Q. Recall that for all i either qtqt+1 ∈ E(P ) or {qt, qt+1} ⊆ X− ∪X+ ∪X.
Since Q starts with p0, and X ∩ {p0, . . . , pi} = ∅, each of the edges p0p1, . . . , pi−1pi must be edges
of Q, and so Q starts with the sequence p0p1 . . . pi. Therefore letting C be the cycle formed from
Q \ {p0, . . . , pi−1} by adding the edge xpi gives a cycle containing X ∪N(X).

We now prove the main result of this note.

Proof of Theorem 1.2. The lower bound of the theorem follows from (1), so it remains to show that
R(C≥n,Km1,...,mk

) ≤ (k−1)(n−1)+m1. The proof is by induction on k. In case k = 1 we need to find
either a red copy of C≥n or a blue 1-partite graph K1

m on m vertices. Since such a graph contains no
edges its copy exist in any 2-edge-coloring of Km. This implies that R(H,K1

m) ≤ m for any graph H.
Now let k ≥ 2 and suppose that the theorem holds for all k′ < k. Let Γ be a 2-edge-colored

complete graph on (k− 1)(n− 1) +m1 vertices. Suppose that Γ contains no blue Km1,...,mk
and let G

be the subgraph spanned by the red edges of Γ.

Claim 2.2. For any set B with |B| ≥ m1, we have |NG(B) ∪B| ≥ n−m2 +m1.

Proof. Suppose that |NG(B) ∪ B| ≤ n − m2 + m1 − 1. Let Γ′ = Γ \ (NG(B) ∪ B). We have |Γ′| =
|Γ|−|NG(B)∪B| ≥ (k−2)(n−1)+m2. By induction Γ′ either contains a red C≥n or a blue Km2,...,mk

.
In the second case, since |B| ≥ m1, and all the edges between B and Γ′ are blue, B can be joined to
Km2,...,mk

in order to produce a blue Km1,...,mk
.
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Let A be a maximum size subset of G satisfying |A| < 2m1 and |NG(A)| ≤ 2|A|. This implies that
|NG(A) ∪ A| ≤ 3|A| < 6m1 < n −m2 +m1, and so by Claim 2.2 we have |A| < m1. Let G′ be the
induced subgraph of G on V (G) \ A. Note that every subset X with |X| ≤ m1 in G′ satisfies that
|NG′(X)| > 2|X|—indeed otherwise we would have

|NG(X ∪A)| ≤ |NG(X) \ A|+ |NG(A)| = |NG′(X)| + |NG(A)| ≤ 2|X| + 2|A| = 2|A ∪X|.

This would contradict the maximality of A.
Let P be a maximum length path in G′, and S the set of ending vertices for P . By Lemma 2.1

we have |NG′(S)| ≤ 2|S| which implies that |S| ≥ m1. Let X be a connected set of exactly m1 ending
vertices for P . This set can be obtained by repeatedly applying rotations, adding one new ending
vertex at a time until we have m1 ending vertices. This guarantees that the resulting set is connected,
since we always keep all previous ending vertices. From Claim 2.2 we obtain

|NG′(X) ∪X| ≥ n−m2 +m1 − |A| ≥ 2m2 + 5m1.

Since |X| = m1 and |NG′(X)∪X| = |NG′(X)|+ |X|, the above is equivalent to |NG′(X)| ≥ 2m2+4m1.
Combining this with Lemma 2.1 gives

|S| ≥
1

2
|NG′(X)| ≥ m2 + 2m1.

Since A has at most 2|A| ≤ 2m1 neighbours in G, we can choose S′ ⊆ S with |S′| = m2 such that
there are no edges between S′ and A in G. Note that then NG′(S′) = NG(S

′).
By Lemma 2.1, there is a cycle C in G′ containing S′ ∪ NG′(S′) = S′ ∪NG(S

′). If |C| ≥ n, then
the complete graph Γ contains a red cycle of length at least n. Otherwise, if |C| ≤ n − 1, then let
Γ′ = Γ \ (S′ ∪NG(S

′)). We have |Γ′| ≥ |Γ| − |C| ≥ (k − 2)(n − 1) +m1. Therefore, by induction, Γ′

contains a blue Km1,m3,...,mk
. All the edges between S′ and Γ′ are blue, and so S′ can be joined to

Km1,m3,...,mk
in order to produce a blue Km1,...,mk

.

3 Concluding remarks

An interesting open question is to determine all n for which Pn is H-good. It is possible to show that
Pn is not Km1,m2

-good when n ≤ 2m2 − 2. To see this, let n = 2m2 − 2, N = n+m1 − 1 and consider
the edge coloring of the complete graph KN , consisting of two blue cliques of orders m2 +m1 − 1 and
m2 − 2 respectively with all the edges between them red. It is easy to see that this coloring contains
no red path Pn and no blue Km1,m2

. This implies that constant “4” in Corollary 1.3 cannot be made
less than 2.

Our main result gives either a red cycle of length at least n or a blue copy of H. One could ask
whether under the same conditions, we can guarantee a cycle of length exactly n. Indeed, this was
asked by Allen, Brightwell, and Skokan [1], who conjectured that R(Cn,H) = (n−1)(χ(H)−1)+σ(H)
when n ≥ χ(H)|H|. In a forthcoming paper [17], we will prove a strengthening of this conjecture for
large χ(H) and σ(H). Our result shows that Cn is H-good when n ≥ C|H| for some constant C and
σ(H) ≥ χ(H)11.

We also like to mention a related problem of Erdős, Faudree, Rousseau, and Schelp [10], who
conjectured that R(Cn,Km) = (n − 1)(m − 1) + 1 for n ≥ m. The best known bound for this
conjecture is due to Nikiforov [13], who proved it when n ≥ 4m+ 1.

Since paths are special case of trees, it is natural to consider the Ramsey goodness problem for
trees as well. For example an old result of Chvátal [6] says that any tree T is good for every complete
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graph. Motivated by question of Erdős, Faudree, Rousseau and Schelp, in the recent paper [2] we
study the Ramsey goodness of bounded degree trees with respect to general graphs.
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