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Abstract

In this paper we prove a new result about partitioning coloured complete graphs
and use it to determine certain Ramsey Numbers exactly. The partitioning theorem
we prove is that for k ≥ 1, in every edge colouring of Kn with the colours red and
blue, it is possible to cover all the vertices with k disjoint red paths and a disjoint
blue balanced complete (k+1)-partite graph. When the colouring of Kn is connected
in red, we prove a stronger result—that it is possible to cover all the vertices with k
red paths and a blue balanced complete (k + 2)-partite graph.

Using these results we determine the Ramsey Number of a path, Pn, versus a
balanced complete t-partite graph on tm vertices, Kt

m, whenever m ≡ 1 (mod n−1).
We show that in this case R(Pn,K

t
m) = (t − 1)(n − 1) + t(m − 1) + 1, generalizing

a result of Erdős who proved the m = 1 case of this result. We also determine
the Ramsey Number of a path Pn versus the power of a path P t

n. We show that

R(Pn, P
t
n) = t(n− 1) +

⌊
n
t+1

⌋
, solving a conjecture of Allen, Brightwell, and Skokan.

1 Introduction

Ramsey Theory is a branch of mathematics concerned with finding ordered substructures in
a mathematical structure which may, in principle, be highly disordered. An early example
of a result in Ramsey Theory is a theorem due to Van der Waerden [18], which says that
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for any k and r ≥ 1 there is a number W (k, r), such that any colouring of the numbers
1, 2, . . . ,W (k, r) with r colours contains a monochromatic k-term arithmetic progression.
A special case of a theorem due to Ramsey [16] says that for every n, there exists a
number R(n), such that every 2-edge-coloured complete graph on more than R(n) vertices
contains a monochromatic complete graph on n vertices. The number R(n) is called a
Ramsey number.

A central definition in Ramsey Theory is the generalized Ramsey number R(G) of a
graph G: the minimum n for which every 2-edge-colouring of Kn contains a monochromatic
copy of G. For a pair of graphs G and H the Ramsey number of G versus H, R(G,H), is
defined to be the minimum n for which every 2-edge-colouring of Kn with the colours red
and blue contains either a red copy of G or a blue copy of H. Although there have been
many results which give good bounds on Ramsey numbers of graphs [6], the exact value
of the Ramsey number R(G,H) is only known when G and H each belong to one of a few
families of graphs.

One of the first Ramsey numbers to be determined exactly was the Ramsey number of
the path.

Theorem 1.1 (Gerencsér and Gyárfás, [5]). For m ≤ n we have that

R(Pn, Pm) = n+
⌊m

2

⌋
− 1.

In the same paper where Gerencsér and Gyárfás proved Theorem 1.1, they also proved
the following.

Theorem 1.2 (Gerencsér and Gyárfás, [5]). The vertices of every 2-edge-coloured complete
graph can be covered by two vertex-disjoint monochromatic paths of different colours.

Throughout this paper we will prove several “partitioning theorems” of the form “the
vertices of every 2-edge-coloured complete graph, Kn, can be covered by certain disjoint
monochromatic subgraphs”. In all the theorems that we prove, some of the subgraphs
partitioning Kn are allowed to be empty (so, for example in Theorem 1.2 it would be
allowed to cover the whole graph by just one monochromatic path). Whenever we have a
2-edge-coloured graph, the colours will always be called “red” and “blue”.

The proof of Theorem 1.2 is so short that it was originally published in a footnote of [5].
Indeed to see that the theorem holds, simply find a red path R in Kn and a disjoint blue
path B in Kn such that |R| + |B| is as large as possible. Let r and b be endpoints of R
and B respectively. If there is a vertex x 6∈ R ∪ B, then it is easy to see that the triangle
{x, r, b} contains either a red path between x and r or a blue path between x and b. This
path can be joined to R or B to obtain a new partition into two disjoint monochromatic
paths of different colours (after perhaps deleting r or b from R or B). This contradicts the
maximality of |R|+ |B|.

Any result about covering the vertices of edge-coloured graphs by a small number of
monochromatic subgraphs will imply a Ramsey-type result as a corollary. For example
Theorem 1.2 implies the bound R(Pn, Pm) ≤ n + m − 1. Indeed Theorem 1.2 shows that
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every 2-edge-coloured Kn+m−1 can be covered by a red path R and a disjoint blue path B.
Clearly these paths cannot cover all the vertices unless |R| ≥ n or |B| ≥ m. This is the
main technique we shall use to bound Ramsey numbers in this paper.

Although Theorem 1.2 originated as a technique to bound Ramsey Numbers, it subse-
quently gave birth to the area of partitioning edge-coloured complete graphs into monochro-
matic subgraphs. There have been many further results and conjectures in this area, many
of which generalise Theorem 1.2. One particularly relevant conjecture which attempts to
generalize Theorem 1.2 is the following.

Conjecture 1.3 (Gyárfás, [8]). The vertices of every r-edge-coloured complete graph can
be covered with r vertex-disjoint monochromatic paths.

Although Theorems 1.1 and 1.2 have both led to many generalizations, there have not
been many further attempts to use results about partitioning coloured graphs in order to
bound Ramsey Numbers. A notable exception is the following result of Gyárfás and Lehel.

Theorem 1.4 (Gyárfás & Lehel, [7, 9]). Suppose that the edges of Kn,n are coloured with
two colours such that one of the vertex classes of Kn,n is contained in a monochromatic
connected component. Then there exist two disjoint monochromatic paths with different
colours which cover all, except possibly one, of the vertices of Kn,n.

Gyárfás and Lehel used this result to determine the bipartite Ramsey Number of a
path i.e. the smallest n for which every 2-edge-coloured Kn,n contains a red copy of Pi or
a blue Pj, for fixed integers i and j. Recently Theorem 1.4 was used by the author in the
proof of the r = 3 case of Conjecture 1.3 [15].

In this paper we prove a new theorem about partitioning 2-edge-coloured complete
graphs, and use it to determine certain Ramsey Numbers exactly. Our starting point will
be the following lemma which was used by the author in the proof of the r = 3 case of
Conjecture 1.3 [15].

Recall that a complete bipartite graph is called balanced if both of its parts have the
same order.

Lemma 1.5. Suppose that the edges of Kn are coloured with two colours. Then Kn can be
covered by a red path and a disjoint blue balanced complete bipartite graph.

Lemma 1.5 immediately implies the bound R(Pn, Km,m) ≤ n + 2m − 2. It turns out
that when m ≡ 1 (mod n − 1), this bound is best possible. The following theorem was
proved by Häggkvist.

Theorem 1.6 (Häggkvist, [10]). If m, ` ≡ 1 (mod n− 1), then we have

R(Pn, Km,`) = n+m+ `− 2.

The lower bound on Theorem 1.6 comes from considering a colouring of Kn+m+`−3
consisting of 1 + (m+ `− 2)/(n− 1) red copies of Kn−1 and all other edges are coloured
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blue. The condition m, ` ≡ 1 (mod n − 1) ensures that the number 1 + (m+`−2)
(n−1) is an

integer.
The main theorem about partitioning coloured graphs that we will prove in this paper

is a generalization of Lemma 1.5. Recall that the balanced complete k-partite graph, Kk
m,

is the graph whose vertices can be partitioned into k sets A1, . . . , Ak such that |A1| = · · · =
|Ak| = m for all i, and there is an edge between ai ∈ Ai and aj ∈ Aj if, and only if, i 6= j.
We will prove the following.

Theorem 1.7. Let k ≥ 1. Suppose that the edges of Kn are coloured with two colours.
Then Kn can be covered by k disjoint red paths and a disjoint blue balanced complete
(k + 1)-partite graph.

As a corollary of Theorem 1.7 we obtain that for all m satisfying m ≡ 1 (mod n − 1)
we have R(Pn, K

t
m) = (t− 1)(n− 1) + t(m− 1) + 1. This generalizes a result of Erdős who

showed that R(Pn, Kt) = (t− 1)(n− 1) + 1 (see [4, 13]).
Instead of proving Theorem 1.7 directly, we will actually prove a strengthening of it, and

then deduce Theorem 1.7 as a corollary. The strengthening that we prove is the following.

Theorem 1.8. Let k ≥ 2. Suppose that the edges of Kn are coloured with two colours,
such that the red subgraph is connected. Then Kn can be covered by a red tree T with at
most k leaves and a disjoint blue balanced complete (k + 1)-partite graph.

In the above theorem “red subgraph” means the subgraph of Kn consisting of all the
red edges. It is not immediately clear that Theorem 1.8 implies Theorem 1.7. Notice
that every tree with k leaves can be covered by k − 1 vertex-disjoint paths. Therefore
Theorem 1.8 has the following corollary.

Corollary 1.9. Let k ≥ 1. Suppose that the edges of Kn are coloured two colours, such
that the red subgraph is connected. Then Kn can be covered by k disjoint red paths and a
disjoint blue balanced complete (k + 2)-partite graph.

Corollary 1.9 shows that when the colouring of Kn is connected in red, then the con-
clusion of Theorem 1.7 can actually be strengthened—we can use one less red path in the
covering of Kn.

Theorem 1.7 is easy to deduce from Corollary 1.9.

Proof of Theorem 1.7, assuming Corollary 1.9. For k = 1, Theorem 1.7 is just Lemma 1.5.
This lemma was originally proven in [15], and this proof is also reproduced in Section 2.
We shall therefore assume that k ≥ 2.

Suppose that we have an arbitrary 2-edge-colouring of Kn. We add an extra vertex v
to the graph and add red edges between v and all other vertices. The resulting colouring
of Kn+1 is connected in red. Therefore we can apply Corollary 1.9 to Kn + v in order to
cover it by k − 1 disjoint red paths and a disjoint blue balanced complete (k + 1)-partite
graph H. Since all the edges containing v are red, the vertex v cannot be in H. Therefore,
v must be contained in one of the red paths. Deleting v from Kn+1 will split this path into
two red paths. Therefore, deleting v gives a partition of Kn into k disjoint red paths and
a blue balanced complete (k + 1)-partite graph as required.
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A well known remark of Erdős and Rado says that any 2-edge-coloured complete graph
is connected in one of the colours. Therefore Theorem 1.8 implies that every 2-edge-
coloured complete graph can be covered by a monochromatic path and a monochromatic
balanced complete tripartite graph (where we have no control over which colour each graph
has).

The th power of a path of order n is the graph with vertex set {1, . . . , n} and ij an edge
whenever 1 ≤ |i − j| ≤ t. It is easy to see that Kt

m contains a copy of P t−1
tm . Therefore,

Theorem 1.7 and Corollary 1.9 imply the following.

Corollary 1.10. Let k ≥ 1. Suppose that the edges of Kn are coloured with two colours.

• Kn can be covered with k disjoint red paths and a disjoint blue kth power of a path.

• If Kn is connected in red, then Kn can be covered with k disjoint red paths and a
disjoint blue (k + 1)th power of a path.

The first part of this corollary may be seen as a generalization of Theorem 1.2. We are
also able to use Corollary 1.10 and Theorem 1.1 to determine the Ramsey numbers of a
path on n vertices versus a power of a path on n vertices.

Theorem 1.11. For all k ≥ 1 and n ≥ k + 1, we have

R(Pn, P
k
n ) = (n− 1)k +

⌊
n

k + 1

⌋
.

Theorem 1.11 solves a conjecture of Allen, Brightwell, and Skokan who asked for the
value of R(Pn, P

k
n ) in [1].

The structure of this paper is as follows. In Section 2 we define some notation and
prove certain weakenings of Theorem 1.8. These weakenings serve to illustrate the main
ideas used in the proof of Theorem 1.8 and hopefully aid the reader in understanding that
theorem. In addition the results we prove in Section 2 will be strong enough to imply
Corollary 1.10. This means that it is possible to prove Theorem 1.11 without using the
full strength of Theorem 1.8. In Section 3 we prove Theorem 1.8. In Section 4 we prove
Theorem 1.11 and also determine R(Pn, K

t
m) whenever m ≡ 1 (mod n−1). In Section 5 we

discuss some further problems which may be approachable using the techniques presented
in this paper.

2 Preliminaries

For a non-empty path P , it will be convenient to distinguish between the two endpoints
of P saying that one endpoint is the “start” of P and the other is the “end” of P . Thus
we will often say things like “Let P be a path from u to v”. Let P be a path from a to b
in a graph G and Q a path from c to d in G. If P and Q are vertex disjoint and bc is an
edge in G, then we define P + Q to be the unique path from a to d formed by joining P
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and Q with the edge bc. If P is a path and Q is a subpath of P sharing an endpoint with
P , then P −Q will denote the subpath of P with vertex set V (P ) \ V (Q).

If H1, . . . , Hk, are subgraphs of G satisfying V (G) = V (H1)∪ · · · ∪ V (Hk), we say that
H1, . . . , Hk cover G. If H1, . . . , Hk are also vertex-disjoint, we say that H1, . . . , Hk partition
G.

A 2-edge-colouring of a graph G is an arbitrary assignment of colours “red” and “blue”
to the edges of G. Since, in this paper, we are one interested in edge-coloured graphs we
will sometimes abbreviate “2-edge-coloured” to “2-coloured”. If a graph G is edge-coloured
we define the red subgraph or red colour class of G to be the subgraph of G with vertex set
V (G) and edge set consisting of all the red edges of G. We say that G is connected in red,
if the red colour class is a connected graph. Similar definitions are made for the colour
blue as well. For a vertex v in a coloured graph G, Nr(v) denotes the set of vertices in G
to which v is connected by a red neighbour, and Nb(v) denotes the set of vertices in G to
which v is connected by a blue neighbour.

For all other notation, we refer to [3].

2.1 Proof outline

In this section we go through some of the ideas which go into the proofs of Theorems 1.8
and 1.11.

Outline of Theorem 1.8

The proof of Theorem 1.8 could be summarized as follows “first we find a partition of our
graph into a tree T and a complete (but not necessarily balanced) multipartite graph H
which in some way extremal and then we show that in order to satisfy the extremality
conditions H must in fact be balanced”. In order to illustrate this strategy, we give the
proof of Lemma 1.5 here.

Proof of Lemma 1.5. Notice that a graph with no edges is a complete bipartite graph (with
one of the parts empty). Therefore, any 2-edge-coloured Kn certainly has a partition into
a red path and a blue complete bipartite graph (by assigning all of Kn to be one of the
parts of the complete bipartite graph). Partition Kn into a red path P and a blue complete
bipartite graph B(X, Y ) with parts X and Y such that the following hold.

(i) max(|X|, |Y |) is as small as possible.

(ii) |P | is as small as possible, whilst keeping (i) true.

We are done if |X| = |Y | holds. Therefore, without loss of generality, suppose that we
have |X| < |Y |.

Suppose that P = ∅. Then let y be any vertex in Y , P ′ = {y}, Y ′ = Y −y, and X ′ = X.
This new partition of Kn satisfies max(|Y ′|, |X ′|) < |Y | = max(|X|, |Y |), contradicting the
minimality of the original partition in (i).
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Now, suppose that P is non-empty. Let p be an end vertex of P . If there is a red edge
py for y ∈ Y , then letting P ′ = P + y and Y ′ = Y − y gives a partition of Kn into a red
path, P ′, and the complete bipartite graph B(X, Y ′) with parts X and Y ′. However we
have max(|Y ′|, |X|) < |Y | = max(|X|, |Y |), contradicting the minimality of the original
partition in (i).

If all the edges between p and Y are blue, then note that letting P ′ = P − p and
X ′ = X + p gives a partition of Kn into a red path and a complete bipartite graph
B(X ′, Y ) with parts X ′ and Y . We have that max(|X ′|, |Y |) = |Y | = max(|X|, |Y |) and
|P ′| < |P |, contradicting the minimality of the original partition in (ii).

The proof of Theorem 1.8 is similar to the above proof. The overall strategy will be
again to consider a partition into a red tree T and blue complete multipartite graph which
satisfy extremality conditions similar to (i) and (ii). The main difficulty is that in the proof
of Theorem 1.8, the extremality conditions are much more complicated than in the above
proof, and so it takes a lot longer to prove that the multipartite graph is balanced.

Next we present another weakening of Theorem 1.8, which can replace it in some
applications. Given a 2-coloured Kn, and a set S ⊆ Kn, let c(S) be the order of the largest
red component of Kn[S]. The following is a weakening of Theorem 1.8.

Theorem 2.1. Let k ≥ 2. Suppose that the edges of Kn are coloured with the colours red
and blue, such that the red subgraph is connected. Then Kn can be covered by a red tree
with at most k leaves and a disjoint set S satisfying c(S) ≤ |S|/(k + 1).

Notice that Theorem 2.1 is indeed a weakening of Theorem 1.8. To see this, simply
note that if we have a set S ⊆ V (Kn) such that the induced colouring of Kn on S contains
a spanning blue balanced (k + 2)-partite graph, then S satisfies c(S) ≤ |S|/(k + 2).

Proof of Theorem 2.1. We partition Kn into a red tree T and a set S with the following
properties.

(i) T has at most k leaves.

(ii) c(S) is as small as possible, whilst keeping (i) true.

(iii) The number of red components in S of order c(S) is as small as possible, whilst
keeping (i) and (ii) true.

(iv) |T | is as small as possible, whilst keeping (i) – (iii) true.

Let S+ be the subset of S formed by taking the union of the red components of order c(S)
in S. Let S− be S \ S+. Let v1, . . . , v` be the leaves of T . By assumption (i), we have
` ≤ k.

Suppose that for some i, vi has a red neighbour u ∈ S+. Then we can let T ′ be the
red tree formed from T by adding the vertex u and the edge viu, and S ′ = V (Kn) \ V (T ′).
Notice that T ′ still has at most k leaves. Since S ′ is a subset of S, we must have c(S ′) = c(S)
(by minimality of c(S) in (ii)). But since u was in a red component of order c(S), S ′ must

7



have one less component of order c(S) than S had. This contradicts minimality of the
original partition in (iii).

Suppose that ` < k. By connectedness of the red colour class of Kn there is a red edge
between some v ∈ T and u ∈ S+. Let T ′ be the red tree formed from T by adding the
vertex u and the edge vu, and S ′ = V (Kn) \ V (T ′). Then T ′ has ` + 1 ≤ k leaves, and so
satisfies (i). As before, since S ′ is a subset of S, we must have c(S ′) = c(S). But since u
was in a red component of order c(S), S ′ must have one less component of order c(S) than
S had, contradicting the minimality of the original partition in (iii).

For the remainder of the proof, we can suppose that ` = k, and the vertices v1, . . . , vk do
not have any red neighbours in S+. For a leaf vi, let N(vi) be the red connected component
containing vi in the induced graph on S− ∪ {vi}

Suppose that N(vi) ∩ N(vj) 6= ∅ for some i 6= j. Then there must be a red path P
between vi and vj contained in S− ∪ {vi, vj}. Let T1 be the graph formed by adding the
path P to the tree T . Notice that T1 is a red graph with k − 2 leaves and exactly one
cycle. By connectedness of the red colour class of Kn there is a red edge between some
v ∈ T1 and u ∈ S+. Let T2 be the graph formed by adding the vertex u and the edge
uv to T1. Notice that T2 is a red graph with between 1 and k − 1 leaves and exactly one
cycle. Therefore T2 contains an edge xy which is contained on the cycle and the vertex x
has degree at least 3. Let T3 be T2 minus the edge xy and S ′ = V (Kn) \ V (T2). Now T3
is a red tree with at most k leaves. As before S ′ ⊂ S and (ii) implies that we must have
c(S ′) = c(S). As before this contradicts (iii) since the vertex u which we removed from S+

was contained in a red component of order c(S).
Suppose that N(vi)∩N(vj) = ∅ for all i 6= j. If there is some i for which N(vi) < c(S),

then letting T ′ = T − vi and S ′ = V (Kn) \ T ′ gives a new tree satisfying (i) – (iii), but
with |T ′| < |T |, contradicting the minimality of the original partition in (iv). Therefore
we can suppose that N(vi) ≥ c(S) for all i. Let I = {vi : N(vi) = c(S)}, T ′ = T \ I, and
S ′ = S ∪ I. Notice that by the definition of I and S ′, c(S ′) = c(S). Recall that we have
N(vi)− vi ⊆ S− for all i which implies

|S| ≥ |S+|+
k∑
i=1

|N(vi)− vi| ≥ c(S) +
k∑
i=1

(|N(vi)| − 1) ≥ (k + 1)c(S)− |I|.

This is equivalent to |S ′| ≥ (k+1)c(S) which, using c(S ′) = c(S), gives c(S ′) ≤ |S ′|/(k+1)
and so the partition into T ′ and S ′ satisfies the conditions of the theorem.

Most of the steps of the above proof reoccur in the proof of Theorem 1.8. Notice that
the partition into T and S satisfying (i) – (iv) did not necessarily satisfy the conditions of
Theorem 2.1—indeed in the last theorem of the proof we had to define a new partition into
T ′ = T \ I and S ′ = S ∪ I in order to prove the theorem. A similar idea will be employed
in the proof of Theorem 1.8—in the proof of that theorem we will first proceed similarly to
how we did in Thereom 2.1 in order to partition Kn into a red tree and a blue multipartite
graph which is “reasonably” balanced. Then we will use an auxiliary lemma (Lemma 3.1)
in order to turn the reasonably balanced multipartite graph into a balanced one.
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Deducing Corollary 1.10 from Theorem 2.1

Here we show that Theorem 2.1 implies Corollary 1.10. This allows one to prove The-
orem 1.11 without resorting to the full strength of Theorem 1.8. Notice that to deduce
Corollary 1.10 from Theorem 2.1, it is sufficient to prove the following proposition.

Proposition 2.2. Let Kn be a 2-edge-coloured complete graph. Suppose that Kn contains
a set S which satisfies c(S) ≤ |S|/(k+2). Then S contains a spanning blue (k+1)th power
of a path.

Indeed combining Proposition 2.2 with Theorem 2.1 we obtain that every 2-edge-
coloured complete graph which is connected in red can be covered by a red tree T with
at most k leaves and a blue (k + 1)th power of a path. Since every tree with at most k
leaves can be partitioned into k − 1 disjoint paths, this implies part (ii) of Corollary 1.10.
For k ≥ 2, part (i) of Corollary 1.10 follows from part (ii) in exactly the same way as we
deduced Theorem 1.7 from Corollary 1.9 in the introduction. Indeed, to prove part (i) of
Corollary 1.10, we start with an arbitrary colouring of Kn. We add a vertex v to the graph
and add red edges between v and all other vertices. The resulting colouring of Kn+1 is
connected in red. Therefore we can apply part (ii) of Corollary 1.10 to Kn + v in order to
cover it by k − 1 disjoint red paths and a disjoint blue kth power of a path P . Since all
the edges containing v are red, the vertex v cannot be in P (unless |P | ≤ 1). Therefore,
removing v gives a partition of Kn into k disjoint red paths a blue kth power of a path as
required.

It remains to verify Proposition 2.2. One way of doing this is to notice that if c(S) ≤
|S|/(k+ 2), then the induced blue subgraph of Kn on S must have minimal degree at least
k+1
k+2
|S|. A conjecture of Seymour says that all graphs with minimal degree k

k+1
|S| contain

a kth power of Hamiltonian cycle [17]. Seymour’s Conjecture has been proven for graphs
with sufficiently large order by Komlós, Sárközy, and Szemerédi [11]. Seymour’s Conjecture
readily implies Proposition 2.2. However given that our set S has a very specific structure,
it is not hard to prove that it contains a spanning blue (k + 1)th power of a path without
using the full strength of Komlós, Sárközy, and Szemerédi’s result. One way of doing this
is by induction on the number of vertices of S. We omit the details, because Corollary 1.10
follows much more readily from the stronger Theorem 1.8.

Outline of Theorem 1.11

Theorem 1.11 is proved by a case distinction depending on how large the largest red
component of a 2-edge-coloured Kn is.

Notice that if a complete graph on (n− 1)k+
⌊

n
k+1

⌋
vertices contains a red component

C with more than (n−1)k vertices, then part (ii) of Corollary 1.11 implies that C contains
either a red Pn or a blue P k

n . Indeed Corollary 1.11 gives us a partition of C into k − 1
red paths and a blue kth power of a path—by the Pigeonhole Principle, one of these must
have at least n vertices.

When the largest red component C has size less than (n − 1)k, but not too small,
then a similar strategy can be used to find a blue P k

n . In this case we apply part (ii) of
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Corollary 1.11 to the largest red component C ⊆ Kn in order to find a long blue jth power
of a path P in C for suitably chosen j. Then, we apply part (i) of Corollary 1.11 to Kn \C
in order to find a blue long (k − j) power of a path Q in the complement of C. Using the
fact that all the edges between P and Q must be blue (since C is a red component), it is
possible to join P and Q in order to obtain a kth power of a path on n vertices.

Finally, when all red components are very small, then the strategy changes. In this case
we apply Theorem 1.1 to the graph several times in order to find several long blue paths in
the graph. Since the red components of Kn are all small, these paths can be constructed
to have no red edges between them. This will allow us to join them together into a blue
P k
n .

3 Partitioning coloured complete graphs

In this section we prove Theorem 1.8. The proof has many ideas in common with the
proofs of Lemma 1.5 and Theorem 2.1.

We begin by proving an intermediate lemma. The following lemma will allow us to take
a partition of Kn into a red tree T and a blue multipartite graph H which is “reasonably
balanced”, and output a partition of Kn into a red tree and a blue balanced complete
(k + 1)-partite graph as required.

Lemma 3.1. Suppose that we have a 2-edge-coloured complete graph Kn containing k + 1
sets A0, . . . Ak, k sets B1, . . . Bk, and k sets N1, . . . , Nk such that the following hold.

(i) The sets A0, . . . Ak, B1, . . . Bk partition V (Kn).

(ii) For all 1 ≤ i < j ≤ k all the edges between any of the sets A0, Ai, Bi, Aj, and Bj

are blue.

(iii) For all i, every red connected component of Bi intersects Ni.

(iv) |A0| ≥ |Ai| for all i ≥ 1.

(v) |Ai|+ |Bi| ≥ |A0| for all i ≥ 1.

(vi) For all i ≥ 1 either |Bi| ≤ 2 minkt=1 |Bt| or |Ai|+ |Bi| ≤ |A0|+ minkt=1 |Bt| holds.

Then, there is a partition of Kn into k red paths P1, . . . , Pk and a blue balanced k+1 partite
graph. In addition, for each i, the path Pi is either empty or starts in Ni.

Proof. The proof is by induction on the quantity
∑k

t=1 |Bt|.
First we prove the base case of the induction, i.e. we prove the lemma when

∑k
t=1 |Bt| =

0. In this case Bi = ∅ for all i, and so conditions (iv) and (v) imply that |Ai| = |A0| for
all i. Therefore, by (ii), Kn contains a spanning blue complete (k + 1)-partite graph with
parts A0, . . . , Ak. We can take P1 = · · · = Pk = ∅ to obtain the required partition.
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We now prove the induction step. Suppose that the lemma holds for all 2-edge-coloured
complete graphs K ′n containing sets A′0, . . . A

′
k, B

′
1, . . . B

′
k, and N ′1, . . . , N

′
k as in the state-

ment of the lemma but satisfying
∑k

t=1 |B′t| <
∑k

t=1 |Bt|. We will show that the lemma
holds for Kn as well.

First we show that if there is a partition of Kn satisfying (i) – (vi), then the sets
A0, . . . , Ak and B1, . . . , Bk can be relabeled to obtain a partition satisfying (i) – (vi) and
also the following

|A0| ≥ |A1| ≥ · · · ≥ |Ak|, (1)

|B1| ≤ · · · ≤ |Bk|. (2)

The following claim guarantees this.

Claim 3.2. Let σ be a permutation of (0, 1, . . . , k) ensuring that |Aσ(0)| ≥ |Aσ(1)| ≥ · · · ≥
|Aσ(k)| holds. Let τ be a permutation of (1, . . . , k) ensuring that |Bτ(1)| ≤ · · · ≤ |Bτ(k)|
holds. Let A′i = Aσ(i), B

′
i = Bτ(i), and N ′i = Nτ(i). Then the sets A′i, B

′
i, and N ′i satisfy (i)

– (vi).

Proof. Notice that N ′i , A
′
i and B′i satisfy (i) – (iii) trivially.

Since the sets Ai satisfy (iv), we can assume that σ(0) = 0. This ensures that the sets
Aσ(i) satisfy (iv).

For (v), note that if for some j ≥ 1, |Aσ(j)|+ |Bτ(j)| < |A0|, then we also have |Aσ(x)|+
|Bτ(y)| < |A0| for all x ≥ j and y ≤ j. However, the Pigeonhole Principle implies that
σ(x) = τ(y) for some x ≥ j and y ≤ j, contradicting the fact that Ai and Bi satisfy (v)
for all i.

Suppose that (vi) fails to hold. Then for some j, |Bτ(j)| > 2 minkt=1 |Bt| and |Aσ(j)| +
|Bτ(j)| > |A0| + minkt=1 |Bt| both hold. If we have |Aτ(i)| ≥ |Aσ(j)| for some i ≥ j, then
|Bτ(i)| ≥ |Bτ(j)| > 2 minkt=1 |Bt| and |Aτ(i)| + |Bτ(i)| ≥ |Aσ(j)| + |Bτ(j)| > |A0| + minkt=1 |Bt|
both hold, contradicting the fact that Ai and Bi satisfy (vi) for all i. Therefore, we can
assume that |Aτ(i)| < |Aσ(j)| for all i ≥ j. This, together with |Aσ(0)| ≥ |Aσ(1)| ≥ · · · ≥
|Aσ(k)| implies that {τ(j), τ(j+1), . . . , τ(k)} ⊆ {σ(j+1), σ(j+2), . . . , σ(k)}, contradicting
τ being injective.

By the above claim, without loss of generality we may assume that the Ais and Bis
satisfy (1) and (2).

Notice that the lemma holds trivially if we have the following.

|A0| = |A1|+ |B1| = |A2|+ |B2| = · · · = |Ak|+ |Bk|. (3)

Indeed, if (3) holds, then Kn contains a spanning blue complete (k+ 1)-partite graph with
parts A0, A1∪B1 . . . , Ak∪Bk, and so taking P1 = · · · = Pk = ∅ gives the required partition.

Therefore, we can assume that (3) fails to hold, so there is some j such that |Aj|+|Bj| >
|A0|. In addition, we can assume that j is as large as possible, and so |Ai|+ |Bi| = |A0| for
all i > j.
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First we deal with the case when |Bj| ≤ 1. Notice that in this case (2) implies that
|Bi| ≤ 1 for all i ≤ j. Using the fact that |Ai| + |Bi| > |A0| for these i, (iv) implies that
|Bi| = 1 and |Ai| = |A0| for all i ≤ j. For i ≤ j let Pi be the single vertex in Bi, and for
i > j let Pi = ∅. This ensures that Kn \(P1, . . . , Pk) is a balanced complete k-partite graph
with classes A1, . . . , Aj, Aj+1 ∪Bj+1, . . . , Ak ∪Bk, giving the required partition of Kn.

For the remainder of the proof, we assume that |Bj| ≥ 2. We split into two cases
depending on whether Bj is connected in red or not.

Case 1: Suppose that Bj is connected in red. Let v be a vertex in Bj ∩ Nj (which
exists by (iii)). Let K ′n = Kn− v, B′j = Bj − v, N ′j = Nr(v) and A′i = Ai, B

′
i = Bi, N

′
i = Ni

for all other i. We show that the graph K ′n with the sets A′i, B
′
i, and N ′i satisfies (i) – (vi).

Conditions (i), (ii), and (iv) hold trivially for the new sets as a consequence of them
holding for the original sets A∗ and B∗. Condition (iii) holds trivially whenever i 6= j, and
holds for i = j as a consequence of Bj being connected in red.

To prove (v), it is sufficient to show that |A′j| + |B′j| ≥ |A′0|. This is equivalent to
|Aj|+ |Bj − v| ≥ |A0|, which holds since |Aj|+ |Bj| > |A0|.

We now prove (vi). Note that by (2) we have minkt=1 |B′t| = min(|B1|, |B′j|). If

minkt=1 |B′t| = |B1| holds, then (vi) is satisfied for the new sets A′0, . . . , A
′
k, B

′
0, . . . , B

′
k as a

consequence of it being satisfied for the original sets A0, . . . , Ak, B0, . . . , Bk. Now, suppose
that we have minkt=1 |B′t| = |B′j|. For i > j, we have |A′i|+ |B′i| = |A′0| by choice of j, which
implies that (vi) holds for these i. If i ≤ j, then we have |Bi| ≤ |Bj| which together with
|Bj| ≥ 2 implies that B′i ≤ 2|Bj| − 2 = 2|B′j| holds.

Therefore, the graph K ′n with the sets A′i, B
′
i,and N ′i satisfies (i) – (vi). We also have∑k

t=1 |B′t| =
∑k

t=1 |Bt| − 1, and so, by induction K ′n can be partitioned into k red paths
P ′1, . . . , P

′
k starting in N ′1, . . . , N

′
k respectively and a blue balanced (k + 1)-partite graph

H. Since P ′j starts in N ′j = Nr(v), we have the required partition of Kn into k paths
P ′1, . . . , v + P ′j , . . . P

′
k and a blue balanced (k + 1)-partite graph H.

Case 2: Suppose that Bj is disconnected in red. We will find a new partition of Kn

into sets A′0, . . . , A
′
k and B′1, . . . , B

′
k, which together with N1, . . . , Nk satisfy (i) – (vi). We

will also have
∑k

t=1 |B′t| <
∑k

t=1 |Bt| which implies the lemma by induction.
Let B−j be the smallest red component of Bj and let B+

j = Bj \B−j . Notice that since
|B−j | + |B+

j | = |Bj|, we have 2|B−j | ≤ |Bj| and |Bj| ≤ 2|B+
j |. There are two subcases

depending on whether we have |Aj|+ |B−j | ≤ |A0| or not.
Case 2.1: Suppose that we have |Aj|+ |B−j | ≤ |A0|. Let B′j = B+

j and A′j = Aj ∪B−j ,
and A′i = Ai, B

′
i = Bi for all other i. As before, conditions (i) – (iii) hold trivially.

To prove (iv), it is sufficient to show that |A′0| ≥ |A′j| which is true since we are assuming
that |Aj|+ |B−j | ≤ |A0|.

To prove (v), it is sufficient to show that |A′j|+ |B′j| ≥ |A′0| which holds since we have
|A′j|+ |B′j| = |Aj|+ |Bj| ≥ |A0|.

To prove (vi), first note that we have minkt=1 |B′t| = min(B1, B
′
j). If minkt=1 |B′t| = |B1|

holds, then (vi) is satisfied for the new sets A′0, . . . , A
′
k, B

′
0, . . . , B

′
k as a consequence of

it being satisfied for the original sets A0, . . . , Ak, B0, . . . , Bk. Now, suppose that we have
minkt=1 |B′t| = |B′j|. For i > j, we have |A′i| + |B′i| = |A′0| which implies that (vi) holds for
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these i. If i ≤ j, then we have |Bi| ≤ |Bj| which together with |Bj| ≤ 2|B+
j | implies that

B′i ≤ 2|B′j| holds.

Notice that we have
∑k

t=1 |B′t| <
∑k

t=1 |Bt|, and so the lemma holds by induction.
Case 2.2: Suppose that we have |Aj|+ |B−j | > |A0|.
We claim that in this case |Bj| ≤ 2|B1| holds. Indeed by (vi) and (2), we have that either

|Bj| ≤ 2|B1| holds, or we have |Aj|+ |Bj| ≤ |A0|+ |B1|. Adding |Aj|+ |Bj| ≤ |A0|+ |B1|
to |Aj| + |B−j | > |A0| gives |B+

j | < |B1|. This, together with |Bj| ≤ 2|B+
j | implies that

|Bj| ≤ 2|B1| always holds.
There are two cases, depending on whether we have j = k or not.
Case 2.2.1: Suppose that j 6= k. Let B′j = B+

j , A′j+1 = Aj+1 ∪ B−j , and A′i = Ai,
B′i = Bi for all other i. As before, conditions (i) – (iii) hold trivially.

To prove (iv), it is sufficient to show that |A′0| ≥ |A′j+1|, which holds as a consequence
of |Aj+1|+ |Bj+1| = |A0| and (2).

To prove (v), it is sufficient show that |A′j|+ |B′j| ≥ |A′0|, which holds as a consequence
of |B+

j | ≥ |B−j | and |Aj|+ |B−j | > |A0|.
We now prove (vi). For i ≥ j + 2, note that we have |A′i| + |B′i| = |A′0| which implies

that (vi) holds for these i. For i ≤ j, (vi) holds since using |B′i| ≤ |Bj| ≤ 2|B+
j | = 2|B′j|

and |Bj| ≤ 2|B1| we get that |B′i| ≤ 2 min(|B1|, |B′j|) = 2 minkt=1 |B′t|. For i = j + 1, we

have |A′j+1|+ |B′j+1| ≤ |A′0|+ minkt=1 |B′t| as a consequence of |A′j+1|+ |B′j+1| = |A0|+ |B−j |,
|B−j | ≤ 1

2
|Bj|, and |Bj| ≤ min(2|B1|, 2|B′j|) = 2 minkt=1 |B′t|.

Notice that we have
∑k

t=1 |B′t| <
∑k

t=1 |Bt|, and so the lemma holds by induction.
Case 2.2.2: Suppose that j = k. Let B′k = B+

k , A′k = A0, A
′
0 = Ak ∪ B−k , and

A′i = Ai, B
′
i = Bi for all other i. As before, conditions (i) – (iii) hold trivially.

Since |A0| ≥ |A′i| for all i ≥ 1, to prove (iv), it is sufficient to show that |A′0| ≥ |A0|.
This holds since we assumed that |Ak|+ |B−k | > |A0|.

To prove (v), we have to show that |Ai|+ |Bi| ≥ |Ak|+ |B−k | for all i < k and also that
|A0| + |B+

k | ≥ |Ak| + |B
−
k |. We know that for all i we have |B−k | ≤ 1

2
|Bk| ≤ |B1| ≤ |Bi|

which, combined with (1), implies that we have |Ai| + |Bi| ≥ |Ak| + |B−k |. We also know
that |B+

k | ≥ |B
−
k | which, combined with (1), implies that we have |A0|+|B+

k | ≥ |Ak|+|B
−
k |.

To prove (vi), note that we have minkt=1 |B′t| = min(B1, B
′
k). Suppose that minkt=1 |B′t| =

|B′k| holds. Then we have |B′i| ≤ 2|B′k| for all i as a consequence of (2) and 2|B′k| ≥
|Bk|. Suppose that minkt=1 |B′t| = |B′1| holds. Then for i < k, (vi) is satisfied for the
new sets A′0, . . . , A

′
k, B

′
0, . . . , B

′
k as a consequence of it being satisfied for the original sets

A0, . . . , Ak, B0, . . . , Bk and |A′0| ≥ |A0|. For i = k, (vi) holds since we have |B′k| ≤ |Bk| ≤
2|B1|.

Notice that we have
∑k

t=1 |B′t| <
∑k

t=1 |Bt|, and so the lemma holds by induction.

We now use the above lemma to prove Theorem 1.8. The proof has many similarities
to that of Theorem 2.1.

Proof of Theorem 1.8. We will partition Kn into a red tree T , and sets A0, A1, . . . , Ak and
B1, . . . , Bk with certain properties. For convenience we will define A = A0 ∪A1 ∪ · · · ∪Ak
and B = B1 ∪ · · · ∪Bk. The tree T will have l leaves which will be called v1, v2, . . . , vl. For
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a set S ⊆ Kn, let c(S) be the order of the largest red component of Kn[S]. Define f(S) to
be the number of red components contained in S of order c(A ∪ B). The tree T , and sets
A0, A1, . . . , Ak and B1, . . . , Bk are chosen to satisfy the following.

(I) For 1 ≤ i < j ≤ k, all the edges between A0,Ai, Aj, Bi, and Bj are blue.

(II) T has l leaves v1, . . . , vl, where l ≤ k. For i = 1, . . . , l, the leaf vi, is joined to every
red component of Bi by a red edge.

(III) c(A ∪B) is as small as possible, whilst keeping (I) – (II) true.

(IV)
∑k

t=1 |f(Bt)− 1
2
| is as small as possible, whilst keeping (I) – (III) true.

(V) f(A) is as small as possible, whilst keeping (I) – (IV) true.

(VI) |T | is as small as possible, whilst keeping (I) – (V) true.

(VII) |{i ∈ {1, . . . , k} : |Bi| ≥ c(A ∪ B)}| is as large as possible, whilst keeping (I) – (VI)
true.

(VIII)
∑
{t:|Bt|<c(A∪B)} |Bt| is as large as possible, whilst keeping (I) – (VII) true.

(IX)
∑k

t=1 |Bt| is as small as possible, whilst keeping (I) – (VIII) true.

(X) maxkt=1 |At| is as small as possible, whilst keeping (I) – (IX) true.

(XI) |{i ∈ {1, . . . , k} : |Ai| = maxkt=1 |At|}| is as small as possible, whilst keeping (I) – (X)
true.

In order to prove Theorem 1.8 we will show that the partition of A∪B into Ai and Bi

satisfies conditions (i), (ii), (iv), (v), and (vi) of Lemma 3.1. Then, Lemma 3.1 will easily
imply the theorem.

Without loss of generality, we may assume that the Ais are labelled such that we have

|A0| ≥ |A1| ≥ · · · ≥ |Ak|. (4)

We begin by proving a sequence of claims.

Claim 3.3. For each i, f(Bi) is either 0 or 1.

Proof. Suppose that f(Bi) ≥ 2. Let C be a red component in Bi of order c(A ∪ B). Let
B′i = Bi \C, A′0 = A0 ∪C, T ′ = T and A′j = Aj, B

′
j = Bj for other j. It is easy to see that

the new partition satisfies (I) – (III). We have that f(B′i) = f(Bi) − 1, which combined
with f(Bi) ≥ 2 implies that |f(B′i)− 1

2
| < |f(Bi)− 1

2
| contradicting the minimality of the

original partition in (IV).

Claim 3.4. If we have f(Bi) = 1 for some i, then we also have |Bi| = c(A ∪B).
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Proof. Suppose that f(Bi) = 1 and |Bi| > c(A ∪ B) both hold. Then Bi contains some
non-empty red connected component C of order strictly less than c(A ∪ B). Let T ′ = T ,
A′0 = A ∪ C, B′i = Bi \ C, and A′t = ∅, B′t = Bt for all other t.

It is easy to see that the new partition satisfies (I) – (VIII). However |B′i| < |Bi| and
|B′t| = |Bt| for t 6= i which contradicts the minimality of the original partition in (IX).

Claim 3.5. We have that f(A) ≥ 1.

Proof. Suppose that we have f(A) = 0. Then all the red components of order c(A∪B) of
A∪B must be contained in B. Let I = {i : c(Bi) = 1}, and for each i ∈ I, let Ci be a red
component of order c(A ∪B) contained in Bi. By Claim 3.3 any red component of A ∪B
or order c(A∪B) must be one of the Cis. For i ∈ {1, . . . , l}∩ I, condition (II) implies that
vi has a red neighbour ui in Ci. For i ∈ {l+ 1, . . . , k} ∩ I, by red-connectedness of Kn and
condition (I), there is a red edge uiwi between ui ∈ Ci and some wi ∈ T .

Let A′0 = A ∪ B \ {ui : i ∈ I} and A′j = B′j = ∅ for j ≥ 1. Let T ′ be the tree with
vertex set V (T ) ∪ {ui : i ∈ I} formed from T by joining ui to vi for i ∈ {1, . . . , l} ∩ I and
ui to wi for i ∈ {l + 1, . . . , k} ∩ I.

Clearly the new partition satisfies (I) and (II). However since each of the largest com-
ponents of A ∪ B lost a vertex, we must have c(Kn \ T ′) < c(A ∪ B) contradicting the
minimality of the original partition in (III).

Claim 3.6. If i > l, then f(Bi) = 1 holds.

Proof. Suppose that f(Bi) = 0 for some i > l.
By Claim 3.5, there is a red component C of order c(A ∪ B) in A. Let T ′ = T ,

A′0 = A \ C, B′i = Bi ∪ C, and A′t = ∅, B′t = Bt for all other t.
It is easy to see that the new partition satisfies (I) – (IV). However we have f(A) =

f(A)− 1 contradicting the minimality of the original partition in (V).

Claim 3.7. For every i, we have |A0| ≤ |Ai|+ c(A ∪B).

Proof. Suppose that for some i we have |A0| > |Ai|+c(A∪B). Let C be any red component
of A0. We have |C| ≤ c(A ∪ B). Let A′0 = A0 \ C, A′i = Ai ∪ C, T ′ = T and A′j = Aj,
B′j = Bj otherwise. It is easy to see that the new partition will satisfy (I) – (IX). Notice
that |A0| > |Ai| + c(A ∪ B) ensures that we have |A′0|, |A′i| < |A0|. This implies that
maxkt=0 |A′t| ≤ maxkt=0 |At|, which, by minimality of the original partition in (X) implies
that maxkt=0 |A′t| = maxkt=0 |At|. But |A′0|, |A′i| < |A0| = maxkt=0 |At| implies that the
quantity |{j ∈ {1, . . . , k} : |A′j| = maxkt=1 |A′t|}| must be smaller than it was in the original
partition, contradicting (XI).

Claim 3.8. For every i, we have |Bi| ≥ c(A ∪B).

Proof. Suppose that |Bi| < c(A ∪ B) for some i. Notice that this implies that f(Bi) = 0.
Thus, by Claim 3.6, we have that i ≤ l.

First suppose that we have Nr(vi) ∩ A 6= ∅. Let C be a red component of A which
intersects Nr(vi). Let T ′ = T , B′i = Bi ∪ C, and A′t = At \ C, B′t = Bt, for all other t.
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The new partition satisfies (I) trivially. By choice of C, the new partition satisfies
(II). It is easy to see that c(A′t), c(B

′
t) ≤ c(A ∪ B) for every t which implies that (III)

holds for the new partition. Since f(Bi) = 0 holds, we have that f(B′i) ≤ 1 and hence
|f(B′i)− 1

2
| = |f(Bi)− 1

2
| which implies that (IV) holds for the new partition.

It is easy to see that f(A′t) ≤ f(At) for all t, which implies that (V) holds for the new
partition. Since T ′ = T , (VI) holds for the new partition.

We have that |B′t| ≥ |Bt| for all t. Therefore, so as not to contradict the maximality of
the original partition in (VII), we must have |B′i| < c(A ∪ B). However since |B′i| > |Bi|,
this contradicts maximality of the original partition in (VIII).

For the remainder of the proof of this claim, we may assume that we have Nr(vi) ⊆ B.
Recall that (II) implies that Nr(vi) ∩ Bi 6= ∅. There are two cases depending on whether
the red neighbours of vi are all contained Bi or not.

Case 1: Suppose that Nr(vi) ⊆ Bi.
Let T ′ = T − vi, B′i = Bi + vi, and A′j = Aj, B

′
j = Bj for all other j. The resulting

partition satisfies (I) since Nr(vi) ⊆ Bi. Condition (II) implies that Bi + vi is connected
in red. This, together with the fact that the neighbour of vi in T is connected to B′i by a
red edge implies that condition (II) holds for the new partition. The only red component
of the new partition which was not a red component of the old partition is Bi ∪ v, which
is of order at most c(A ∪ B) since |Bi| < c(A ∪ B). This implies that (III) is satisfied.
Since f(Bi) = 0, we must have f(B′i) = 0 or 1, which means that |f(B′i)− 1

2
| = |f(Bi)− 1

2
|

and hence the new partition satisfies (IV). The new partition satisfies (V) since we have
A′0 ∪ · · · ∪ A′k = A. However |T ′| = |T | − 1, contradicting the minimality of the original
tree T in (VI).

Case 2: Suppose that Nr(vi) ∩ Bj 6= ∅ for some j 6= i. Let C be a red component
of Bj which intersects Nr(vi). Recall that Claim 3.4 implies that either c(Bj) < c(A ∪ B)
or |Bj| = c(A ∪B) holds. In either case we obtain c(Bj \ C) < c(A ∪B).

There are two subcases, depending on whether j ≤ l holds.
Case 2.1: Suppose that j > l. By Claim 3.5 there is a red component CA ⊆ A of order

c(A∪B). Let B′i = Bi ∪C, B′j = (Bj ∪CA) \C, T ′ = T and A′t = At \CA, B′t = Bt for all
other t.

The resulting partition trivially satisfies (I). Condition (II) follows from the fact that
vi is connected to C by a red edge. We have A′0 ∪ · · · ∪A′k ∪B′1 ∪ · · · ∪B′k = A ∪B which
implies that the new partition satisfies (III). Using |Bi|, c(Bj \ C) < c(A ∪ B) we obtain

that f(B′i), f(B′j) ≤ 1 and f(B′t) = f(Bt) otherwise. This implies that
∑k

t=1 |f(B′t)− 1
2
| =∑k

t=1 |f(Bt)− 1
2
|, and so the new partition satisfies (IV). However, we have f(A′0∪· · ·∪A′k) =

f(A)− 1, contradicting the minimality of the original partition in (V).
Case 2.2: Suppose that j ≤ l. Since i 6= j, this implies that we have l ≥ 2.
Let ui be a red neighbour of vi in C. By (II), vj has a red neighbour uj in C. There

must be a red path P between ui and uj contained in C.
Notice that joining T and P using the edges uivi and ujvj produces a graph T1 which

has l− 2 leaves and exactly one cycle (which passes through P ). By Claim 3.5 A contains
a red component CA of order c(A ∪ B). By red-connectedness of Kn, there must be some
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edge xv′j between x ∈ T and a vertex v′j ∈ CA.
We construct a tree T ′ and sets A′t and B′t as follows.

(a) Suppose that x 6= vt for any t ∈ {1, . . . , l} \ {i, j}. In this case we let T2 be the graph
with vertices V (T1)∪{v′j}, formed from T1 by adding the edge xv′j. Notice that T2 has
l − 1 leaves and exactly one cycle. Therefore, the cycle in T2 must contain a vertex y
of degree at least 3. Let v′i be a neighbour of y on the cycle. We let T ′ be the tree
formed from T2 by removing the edge yv′i. The leaves of T ′ are {v1, . . . , vl} \ {vi, vj},
v′j and possibly v′i (depending on whether the degree of v′i in T2 is 2 or not.)

We also let A′0 = (A ∪ Bi ∪ Bj) \ (P ∪ v′j), B′i = B′j = ∅, and At = ∅, B′t = Bt, v
′
t = vt

for t 6= i, j.

(b) Suppose that x = vs for some s ∈ {1, . . . , l} \ {i, j} and f(Bs) = 1. In this case,
Claim 3.4 implies that Bs is connected. Let v′s be a neighbour of x in Bs. Let T2 be
the graph with vertices V (T1) ∪ {v′j, v′s}, formed from T1 by adding the edges xv′j and
xv′s. As before T2 has l − 1 leaves and exactly one cycle, which contains a vertex y of
degree at least 3. Let v′i be a neighbour of y on the cycle. We let T ′ be the tree formed
from T2 by removing the edge yv′i. The leaves of T ′ are {v1, . . . , vl} \ {vi, vj, vs}, v′j, v′s
and possibly v′i (depending on whether the degree of v′i in T2 is 2 or not.)

We also let A′0 = (A ∪ Bi ∪ Bj) \ (P ∪ v′j)′j, B′i = B′j = ∅, B′s = Bs − v′s and At = ∅,
B′t = Bt, v

′
t = vt for t 6= i, j, s.

(c) Suppose that x = vs for some s ∈ {1, . . . , l}\{i, j} and f(Bs) = 0. Let T2 be the graph
with vertices V (T1)∪ {v′j}, formed from T1 by adding the edge xv′j. Then T2 has l− 2
leaves and exactly one cycle, which contains a vertex y of degree at least 3. Let v′i be
a neighbour of y on the cycle. We let T ′ be the tree formed from T2 by removing the
edge yv′i. The leaves of T ′ are {v1, . . . , vl} \ {vi, vj, vs}, v′j and possibly v′i (depending
on whether the degree of v′i in T2 is 2 or not.)

We also let A′0 = (A∪Bi∪Bj ∪Bs)\ (P ∪v′j), B′i = B′j = B′s = ∅, and At = ∅, B′t = Bt,
v′t = vt for t 6= i, j, s.

Clearly the new partition satisfies (I). Notice that all the leaves of T ′ are vertices v′t for
various t. It is easy to see that for all t for which v′t is defined, v′t is connected to all the
red components of B′t, so the new partition satisfies (II).

Since A′0∪· · ·∪A′k∪B′1∪· · ·∪B′k ⊆ A∪B, we must have c(A′0∪· · ·∪A′k∪B′1∪· · ·∪B′k) ≤
c(A ∪ B) and hence the new partition satisfies (III). Since for all t, we have B′t ⊆ Bt, the
new partition satisfies (IV). Recall that c(Bj \ C) < c(A ∪ B), which combined with the
fact that P is non-empty, P ⊆ C, and |C| ≤ c(A ∪ B) implies that c(Bj \ P ) < c(A ∪ B).
This, combined with the fact that c(Bi) < c(A ∪ B) (and, in case (c), c(Bs) < c(A ∪ B))
implies that the red components of size c(A ∪ B) in A′0 ∪ · · · ∪ A′k are exactly those of A,
minus CA. Therefore we have f(A′0 ∪ · · · ∪ A′k) = f(A) − 1, contradicting the minimality
of the original partition in (V).

Claim 3.9. For every i, we have |Bi| ≤ 2c(A ∪B).
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Proof. Suppose that Bi > 2c(A ∪B). Combining this with Claim 3.3, means that there is
a red component, C, in Bi satisfying |C| < c(A ∪ B). Let B′i = Bi \ C, A′0 = A0 ∪ C, and
A′t = At, B

′
t = Bt, T

′ = T otherwise.
The new partition satisfies (I) – (II) trivially. It is easy to see that c(A′t) = c(At) and

c(B′t) = c(Bt) for every t which implies that (III) holds for the new partition. Also we have
f(A′t) = f(At) and f(B′t) = f(Bt) for every t which implies that (IV) – (V) hold for the
new partition. Since T ′ = T , (VI) holds for the new partition. Since |B′t| = |Bt| for t 6= i
and |B′i| ≥ c(A ∪B), the new partition satisfies (VII) and (VIII).

However, we have that |B′i| < |Bi| which contradicts minimality of the original partition
in (IX).

We now prove the theorem.
For each i = 1, . . . , k we define a set Ni ⊆ A ∪B. If i ≤ l, let Ni = Nr(vi). If i > l, let

Ni =
⋃
v∈T Nr(v).

We will show that the graph Kn \T , together with the sets A0, . . . , Ak, B1, . . . , Bk, and
N1, . . . , Nk satisfies conditions (i) – (vi) of Lemma 3.1.

Condition (i) follows from the definition of A0, . . . , Ak, and B1, . . . , Bk. Condition (ii)
follows immediately from (I). Condition (iii) follows from (II) whenever i ≤ l and from
red-connectedness of Kn whenever i > l. Condition (iv) follows from the fact that we are
assuming (4).

Combining Claims 3.7 and 3.8 implies that we have |Bi|+ |Ai| ≥ c(A∪B) + |Ai| ≥ |A0|
for all i. This proves condition (v) of Lemma 3.1.

Combining Claims 3.8 and 3.9 implies that we have 2|Bi| ≥ 2c(A ∪B) ≥ |Bj| for all i
and j . This proves condition (vi) of Lemma 3.1.

Therefore, the graph Kn\T , together with the sets A0, . . . , Ak, B1, . . . , Bk, and N1, . . . ,
Nk satisfies all the conditions of Lemma 3.1. By Lemma 3.1, Kn \ T can be partitioned
into paths P1, . . . , Pk starting in N1, . . . , Nk and a balanced complete (k+ 1)-partite graph
H. For each i, the path Pi can be joined to T by a red edge in order to obtain the required
partition of Kn into a tree with at most k leaves on the vertex set T ∪ P1 ∪ · · · ∪ Pk and a
balanced complete (k + 1)-partite graph H.

4 Ramsey Numbers

In this section, we use the results of the previous section to determine the the value of the
Ramsey number of a path versus certain other graphs.

First we determine R(Pn, K
t
m) whenever m ≡ 1 (mod n− 1).

Theorem 4.1. If m ≡ 1 (mod n− 1) then we have

R(Pn, K
t
m) = (t− 1)(n− 1) + t(m− 1) + 1.

Proof. For the upper bound, apply Theorem 1.7 to the given 2-edge-coloured complete
graph on (t − 1)(n − 1) + t(m − 1) + 1 vertices. This gives us t − 1 red paths and a blue
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balanced complete t-partite graph which cover all the vertices of K(t−1)(n−1)+t(m−1)+1. By
the Pigeonhole Principle either one of the paths has order at least n or the complete t-
partite graph has order at least t(m−1)+1. Since the complete t-partite graph is balanced,
if it has order ≥ t(m− 1) + 1, then it must have at least tm vertices.

For the lower bound, consider a colouring of the complete graph on (t − 1)(n − 1) +
t(m−1) vertices consisting of (t−1)+ t(m− 1)/(n− 1) disjoint red copies of Kn−1 and all
other edges coloured blue. The condition m ≡ 1 (mod n− 1) ensures that we can do this.
Since all the red components of the resulting graph have order at most n − 1, the graph
contains no red Pn. The graph contains no a blue Kt

m, since every vertex class of such a
graph would have to intersect at least (m − 1)/(n − 1) + 1 of the red copies of Kn−1 and
there are only (t− 1) + t(m− 1)/(n− 1) of these.

In the remainder of this section we will prove Theorem 1.11. An outline of this proof is
given in Section 2. First we will use Theorem 1.7 and Corollary 1.9 to find upper bounds
on R(Pn, P

t
m).

Lemma 4.2. The following statements are true.

(a) R(Pn, P
t
m) ≤ (n− 2)t+m for all n,m and t ≥ 1.

(b) Suppose that t ≥ 2 and n,m ≥ 1. Every 2-edge-coloured complete graph on (n− 1)(t−
1) +m vertices which is connected in red contains either a red Pn or a blue P t

m.

Proof. For part (a), notice that by Theorem 1.7, we can partition a 2-edge-coloured
K(n−2)t+m into t red paths P1, . . . , Pt and a blue tth power of a path P t. Suppose that
there are no red paths of order n in K(n−2)t+m. Suppose that i of the paths P1, . . . , Pt are of
order n− 1. Without loss of generality we may assume that these are the paths P1, . . . , Pi.
We have |P t| + (n − 2)(t − i) + (n − 1)i ≥ |P t| + |P1| + · · · + |Pt| = (n − 2)t + m which
implies i + |P t| ≥ m. For each j, let vj be one of the endpoint of Pj. Notice that since
there are no red paths of order n in K(n−2)t+m, all the edges in {v1, . . . , vi, p} are blue for
any p ∈ P t. This allows us to extend P t by adding i extra vertices v1, . . . , vi to obtain a
tth power of a path of order m.

Part (b) follows immediately from Corollary 1.9 and the fact that a balanced complete
t-partite graph contains a spanning (t− 1)th power of a path.

It is worth noticing that the above lemma could also be deduced from Theorem 2.1 and
Proposition 2.2.

The following simple lemma allows us to join powers of paths together.

Lemma 4.3. Let G be a graph. Suppose that G contains a (k− i)th power of a path, P k−i,
and a disjoint (i− 1)th power of a path, Qi−1, such that the following hold.

(i) All the edges between P k−i and Qi−1 are present.

(ii) |P k−i| = (k − i+ 1)
⌊

n
k+1

⌋
+ rP for some rP ≤ k − i+ 1.
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(iii) |Qi−1| = i
⌊

n
k+1

⌋
+ rQ for some rQ ≤ i.

(iv) |P k−i|+ |Qi−1| ≥ n.

Then G contains a kth power of a path on n vertices.

Proof. Let p1, . . . , p|Pk−i| be the vertices of P k−i and q1, . . . , q|Qi−1| be the vertices of Qi−1.
It is easy to see that the following sequence of vertices is a kth power of a path on at least
n vertices.

q1, . . . qrQ
p1, . . . , pk−i+1, qrQ+1, . . . , qrQ+i

pk−i+2, . . . , p2(k−i+1), qrQ+i+1, . . . , qrQ+2i

...

p(k−i+1)(b n
k+1c−1)+1, . . . , p(k−i+1)b n

k+1c, qrQ+(b n
k+1c−1)i+1, . . . , qrQ+b n

k+1ci
p(k−i+1)b n

k+1c+1, . . . , p(k−i+1)b n
k+1c+rP

We are now ready to prove Theorem 1.11.

Proof of Theorem 1.11. For the lower bound R(Pn, P
k
n ) ≥ (n − 1)k +

⌊
n
k+1

⌋
, consider a

colouring of K(n−1)k+b n
k+1c−1 consisting of k disjoint red copies of Kn−1 and one disjoint

red copy of Kb n
k+1c−1. All edges outside of these are blue. It is easy to see that when

n ≥ k + 1, this colouring contains neither a red path on n vertices nor a blue P k
n .

It remains to prove the upper bound R(Pn, P
k
n ) ≤ (n−1)k+

⌊
n
k+1

⌋
. Let K be a 2-edge-

coloured complete graph on (n − 1)k +
⌊

n
k+1

⌋
vertices. Suppose that K does not contain

any red paths of order n. We will find a blue copy of P k
n .

Let C be the largest red component of K. The following claim will give us three cases
to consider.

Claim 4.4. One of the following always holds.

(i) |C| ≥ 2(n− 1)− (k − 2)
⌊

n
k+1

⌋
+ 1.

(ii) There is a set B, such that all the edges between B and V (K) \B are blue and also

n+

⌊
n

k + 1

⌋
≤ |B| ≤ 2(n− 1)− (k − 2)

⌊
n

k + 1

⌋
.

(iii) The vertices of K can be partitioned into k disjoint sets B1, . . . , Bk such that for i 6= j
all the edges between Bi and Bj are blue and we have

|B1| ≥ |B2| ≥ · · · ≥ |Bk| ≥
⌈

n

k + 1

⌉
.
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Proof. Suppose that neither (i) nor (ii) hold.
This implies that all the red components in K have order at most n +

⌊
n
k+1

⌋
− 1. Let

B be a subset of V (K) such that the following hold.

(a) All the edges between B and V (K) \B are blue.

(b) |B| ≤ n− 1 +
⌊

n
k+1

⌋
.

(c) |B| is as large as possible, whilst keeping (a) and (b) true.

Suppose that there is a red component C ′ in V (K) \ B of order at most
⌈

n
k+1

⌉
− 1. Let

B′ = B ∪C ′. Notice that n ≥ k
⌊

n
k+1

⌋
+
⌈

n
k+1

⌉
holds for all integers n, k ≥ 0. This implies

that we have |B′| = |B| + |C ′| ≤ 2(n − 1) − (k − 2)
⌊

n
k+1

⌋
which implies that B′ satisfies

(ii) (since otherwise B′ would be a set satisfying (a) and (b) of larger order than B).
Suppose that all the red components in V (K) \ B have order at least

⌈
n
k+1

⌉
. Since

n ≥ 2, we have

|V (K) \B| ≥ (n− 1)(k − 1) > (k − 2)

(
n− 1 +

⌊
n

k + 1

⌋)
. (5)

Using the fact that all red components of K have order at most n− 1 +
⌊

n
k+1

⌋
, (5) implies

that V (K)\B must have at least k−1 components. Therefore V (K)\B can be partitioned
into k − 1 sets B2, . . . , Bk which, together with B1 = B, satisfy (iii).

We distinguish three cases, depending on which part of Claim 4.4 holds.
Case 1: If part (i) of Claim 4.4 holds, then there must be some i ≤ k − 2, such that

we have

(k − i)(n− 1)− i
⌊

n

k + 1

⌋
+ 1 ≤ |C| ≤ (k − i+ 1)(n− 1)− (i− 1)

⌊
n

k + 1

⌋
. (6)

Combining (k− i)(n− 1)− i
⌊

n
k+1

⌋
+ 1 ≤ |C| with part (b) of Lemma 4.2 shows that C

must contain a blue (k− i)th power of a path, P k−i, on n− i
⌊

n
k+1

⌋
vertices. If i = 0, then

P k−i is a copy of P k
n , and so the theorem holds. Therefore, we can assume that i ≥ 1.

Notice that (6) implies that we have |V (K) \C| ≥ (i− 1)(n− 1) + i
⌊

n
k+1

⌋
. Combining

this with part (a) of Lemma 4.2 shows that V (K) \C must contain a blue (i− 1)th power
of a path, Qi−1, on i

⌊
n
k+1

⌋
+ i− 1 vertices.

Notice that |P k−i| = n − i
⌊

n
k+1

⌋
≥ (k − i + 1)

⌊
n
k+1

⌋
. Let P̂ k−i be a subpath of P k−i

of length min
(
n− i

⌊
n
k+1

⌋
, (k − i+ 1)

⌊
n
k+1

⌋
+ k − i+ 1

)
. Since all the edges between C

and V (K) \ C are blue, we can apply Lemma 4.3 to P̂ k−i and Qi−1 with rP = min(n
(mod k + 1), k − i + 1) and rQ = i − 1 in order to find a blue kth power of a path on n
vertices in G.

Case 2: Suppose that there is some set B ⊆ V (K) such that all the edges between B
and V (K) \B are blue and also

n+

⌊
n

k + 1

⌋
≤ |B| ≤ 2(n− 1)− (k − 2)

⌊
n

k + 1

⌋
.
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Apply Theorem 1.1 to B in order to find a blue path, P , of order 2
⌊

n
k+1

⌋
+ 2 in B.

Notice that we have |V (K)\B| ≥ (k−2)(n−1)+(k−1)
⌊

n
k+1

⌋
. Part (a) of Lemma 4.2

shows that V (K) \ B must contain a blue (k − 2)nd power of a path, Qk−2 , on (k −
1)
⌊

n
k+1

⌋
+ k − 2 vertices.

Since all the edges between B and V (K) \ B are blue we can apply Lemma 4.3 to P
and Qk−2 with i = k − 1, rP = 2, and rQ = k − 2 in order to find a blue kth power of a
path of order n vertices in G.

Case 3: Suppose that the vertices of K can be arranged into disjoint sets B1, . . . , Bk

such that for i 6= j all the edges between Bi and Bj are blue and we have

|B1| ≥ |B2| ≥ · · · ≥ |Bk| ≥
⌈

n

k + 1

⌉
.

Let t be the maximum index for which |Bt| > n− 1. Notice that |K| ≥ k(n− 1) +
⌊

n
k+1

⌋
implies that we have |B1| + · · · + |Bt| − t(n − 1) ≥

⌊
n
k+1

⌋
. Therefore, for i ≤ t, we can

choose numbers xi satisfying 0 ≤ xi ≤ |Bi| − n+ 1 for all i and also x1 + · · ·+ xt =
⌊

n
k+1

⌋
.

For each i = 1 . . . k we define a path Ri. For i > t, we set Ri = ∅. For i ≤ t we
have |Bi| ≥ n− 1 + xi, which combined with Theorem 1.1, implies that Bi contains a blue
path Ri of order 2xi + 1. Let ri,0, ri,1, . . . , ri,2xi be the vertex sequence of Ri. For each
i ∈ {1, . . . , t} and j 6= i choose a set Ai,j of vertices in Bj satisfying |Ai,j| = xi. Note that
for j > t, the inequality |Bj| ≥

⌈
n
k+1

⌉
implies that we have

|A1,j|+ · · ·+ |At,j| =
⌊

n

k + 1

⌋
≤ |Bj|. (7)

For j ≤ t, the inequalities |Bj| ≥ n and xj ≤
⌊

n
k+1

⌋
imply that we have

|A1,j|+ · · ·+ |Aj−1,j|+ |Rj|+ |Aj+1,j|+ · · ·+ |At,j| =
⌊

n

k + 1

⌋
+ xj + 1 ≤ |Bj|. (8)

Now, (7) and (8) imply that we can choose the sets Ai,j, such that Ai,j and Ai′,j are disjoint
for i 6= i′. In addition, for every j ≤ t, (8) implies that we can choose the sets Ai,j to be
disjoint from Rj. Let ai,j,1, . . . , ai,j,xi be the vertices of Ai,j. If n 6≡ 0 (mod k+ 1), then the
inequalities in both (7) and (8) must be strict, and so there must be at least one vertex
contained in Bi outside of Ri ∪ A1,i ∪ · · · ∪ At,i. Let bi be this vertex.

For i = 1, . . . , t and j = 1, . . . , xi, we will define blue paths Pi,j of order k+1 as follows.
If i = 1 and j ∈ {1, . . . , x1 − 1}, then Pi,j has the following vertex sequence.

P1,j = r1,2j−1, r1,2j, a1,2,j, a1,3,j, . . . , a1,k,j.

If i = 1 and j = x1, then Pi,j has the following vertex sequence.

P1,x1 = r1,2x1−1, r1,2x1 , r2,0, a1,3,x1 , . . . , a1,k,x1 .
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If i ∈ {2, . . . , t− 1} and j ∈ {1, . . . , xi− 1}, then Pi,j has the following vertex sequence.

Pi,j = ri,2j−1, ai,1,j, ai,2,j, . . . , ai,i−1,j, ri,2j, ai,i+1,j, ai,i+2,j, . . . , ai,k,j.

If i ∈ {2, . . . , t− 1} and j = xi, then Pi,j has the following vertex sequence.

Pi,xi = ri,2xi−1, ai,1,xi , ai,2,xi , . . . , ai,i−1,xi , ri,2xi , ri+1,0, ai,i+2,xi , . . . , ai,k,xi .

If i = t and j ∈ {1, . . . , xt}, then Pi,j has the following vertex sequence.

Pt,j = rt,2j−1, at,1,j, at,2,j, . . . , at,t−1,j, rt,2j.

If n 6≡ 0 (mod k + 1), we also define a path P0 of order k with vertex sequence

P0 = r1,0, b2, b3, . . . , bk.

If n ≡ 0 (mod k + 1), let P0 = ∅.
Notice that the paths Pi,j and Pi′,j′ are disjoint for (i, j) 6= (i′, j′). Similarly P0 is

disjoint from all the paths Pi,j. We have the following

|P0|+
k∑
i=1

xi∑
j=1

|Pi,j| = |P0|+ (k + 1)(x1 + · · ·+ xk) = |P0|+ (k + 1)

⌊
n

k + 1

⌋
≥ n. (9)

We claim that the following path is in fact a blue kth power of a path.

P =



P0+

P1,1 + P1,2 + · · ·+ P1,x1+

P2,1 + P2,2 + · · ·+ P2,x2+
...

Pt,1 + Pt,2 + · · ·+ Pt,xt .

To see that P is a kth power of a path one needs to check that any pair of vertices a, b at
distance at most k along P are connected by a blue edge. It is easy to check that for any
such a and b, either a ∈ Bi and b ∈ Bj for some i 6= j or a and b are consecutive vertices
along P0 or Pi,j for some i, j. In either case ab is blue implying that P is a blue kth power
of a path.

The identity (9) shows that |P | ≥ n, completing the proof.

5 Remarks

In this section we discuss some further directions one might take with the results presented
in this paper.
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• It would be interesting to see if there are any other Ramsey numbers which can be
determined using the techniques we used in this paper.

If G is a graph of (vertex)-chromatic number χ(G), then σ(G) is defined to be the
smallest possible order of a colour class in a proper χ(G)-vertex colouring of G.
Generalising a construction of Chvatal and Harary, Burr [2] showed that if H is a
graph and G is a connected graph and satisfying |G| ≥ σ(H), then we have

R(G,H) ≥ (χ(H)− 1)(|G| − 1) + σ(H) (10)

This identity comes from considering a colouring consisting of χ(H)− 1 red copies of
K|G|−1 and one red copy of Kσ(H)−1. Notice that for a kth power of a path, we have
χ(P k

n ) = k + 1 and σ(P k
n ) =

⌊
n
k+1

⌋
. Therefore, Theorem 1.11 shows that (10) is best

possible when G = Pn and H = P k
n .

It is an interesting question to find other pairs of graphs for which equality holds
in (10) (see [1, 12]). Allen, Brightwell, and Skokan conjectured that when G is a
path, then equality holds in (10) for any graph H satisfying |G| ≥ χ(H)|H|.

Conjecture 5.1 (Allen, Brightwell, and Skokan). For every graph H, R(Pn, H) =
(χ(H)− 1)(n− 1) + σ(H) whenever n ≥ χ(H)|H|.

It is easy to see that in order to prove Conjecture 5.1, it is sufficient to prove it only
in the case when H is a (not necessarily balanced) complete multipartite graph.

The techniques used in this paper look like they may be useful in approaching Con-
jecture 5.1. One reason for this is that several parts of the proof of Theorem 1.11
would have worked if we were looking for the Ramsey number of a path versus a
balanced complete multipartite graph instead of a power of a path.

• Recall that Lemma 1.5 only implies part of Häggkvist’s result (Theorem 1.6). How-
ever, it is easy to prove an “unbalanced” version of Lemma 1.5 which implies Theo-
rem 1.6.

Lemma 5.2. Suppose that the edges of Kn are coloured with 2 colours and we have
an integer t satisfying 0 ≤ t ≤ n. Then there is a partition of Kn into a red path and
a blue copy of Km,m+t for some integer m.

The proof of this lemma is nearly identical to the one we gave of Lemma 1.5 in the
Section 2. Indeed, the only modification that needs to be made is that we need to
add the condition “

∣∣|X| − |Y |∣∣ ≥ t” on the sets X and Y in the proof of Lemma 1.5.

• It would be interesting to see whether Theorems 1.7 and 1.8 have any applica-
tions in the area of partitioning coloured complete graphs. In particular, given that
Lemma 1.5 played an important role in the proof of the r = 3 case of Conjecture 1.3
in [15], it is possible that Theorems 1.7 and 1.8 may help with that conjecture.
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Classically, results about partitioning coloured graphs would partition a graph into
monochromatic subgraphs which all have the same structure. For example Theo-
rems 1.2 and 1.4 partition graphs into monochromatic paths. Lemma 1.5 and Theo-
rem 1.8 stand out from these since they partition a 2-edge-coloured complete graph
into two monochromatic subgraphs which have very different structure. It would be
interesting to find other natural results along the same lines. Some results about
partitioning a 2-edge-coloured complete graph into a monochromatic cycle and a
monochromatic graph with high minimum degree will appear in [14].
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