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Abstract

Consider the following strong Ramsey game. Two players take turns in claiming a previously
unclaimed edge of the complete graph on n vertices until all edges have been claimed. The first
player to build a copy of K5 is declared the winner of the game. If none of the players win,
then the game ends in a draw. A simple strategy stealing argument shows that the second player
cannot expect to ever win this game. Moreover, for sufficiently large n, it follows from Ramsey’s
Theorem that the game cannot end in a draw and is thus a first player win. A famous question
of Beck asks whether the minimum number of moves needed for the first player to win this game
on Kn grows with n. This seems unlikely but is still wide open. A striking equivalent formulation
of this question is whether the same game played on the infinite complete graph is a first player
win or a draw.

The target graph of the strong Ramsey game does not have to be K5, it can be any predeter-
mined fixed graph. In fact, it can even be a k-uniform hypergraph (and then the game is played
on the infinite k-uniform hypergraph). Since strategy stealing and Ramsey’s Theorem still apply,
one can ask the same question: is this game a first player win or a draw? The same intuition
which lead most people (including the authors) to believe that the K5 strong Ramsey game on
the infinite board is a first player win, would also lead one to believe that the H strong Ramsey
game on the infinite board is a first player win for any uniform hypergraph H. However, in this
paper we construct a 5-uniform hypergraph for which the corresponding game is a draw.

1 Introduction

The theory of positional games on graphs and hypergraphs goes back to the seminal papers of Hales
and Jewett [11] and of Erdős and Selfridge [7]. The theory has enjoyed explosive growth in recent
years and has matured into an important area of combinatorics (see the monograph of Beck [2], the
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recent monograph [13] and the survey [14]). There are several interesting types of positional games,
the most natural of which are the so-called strong games.

Let X be a (possibly infinite) set and let F be a family of finite subsets of X. The strong game
(X,F) is played by two players, called FP (the first player) and SP (the second player), who take
turns claiming previously unclaimed elements of the board X, one element per move. The winner of
the game is the first player to claim all elements of a winning set A ∈ F . If no player wins the game
after some finite number of moves, then the game is declared a draw. A very simple but classical
example of this setting is the game of Tic-Tac-Toe.

Unfortunately, strong games are notoriously hard to analyze and to date not much is known about
them. A simple yet elegant game-theoretic argument, known as strategy stealing, shows that FP is
guaranteed at least a draw in any strong game. Moreover, using Ramsey Theory, one can sometimes
prove that draw is impossible in a given strong game and thus FP has a winning strategy for this
game. Note that these arguments are purely existential and thus even if we know that FP has a
winning/drawing strategy for some game, we might not know what it is. Explicit winning strategies
for FP in various natural strong games were devised in [8] and in [9]. These strategies are based on
fast winning strategies for weak variants of the games in question. More on fast winning strategies
can be found in [12] and [4].

In this paper we study a natural family of strong games. For integers n ≥ q ≥ 3, consider the strong
Ramsey game R(Kq, n). The board of this game is the edge set of Kn and the winning sets are the
copies of Kq in Kn. As noted above, by strategy stealing, FP has a drawing strategy in R(Kq, n)
for every n and q. Moreover, it follows from Ramsey’s famous Theorem [16] (see also [10] and [6]
for numerous related results) that, for every q, there exists an n0 such that R(Kq, n) has no drawing
position and is thus FP’s win for every n ≥ n0. An explicit winning strategy for FP in R(Kq, n) is
currently known (and is very easy to find) only for q = 3 (and every n ≥ 5). Moreover, for every
q ≥ 4, we do not know what is the Game Ramsey number of q, i.e., the smallest n0 = n0(q) such
that R(Kq, n) is FP’s win for every n ≥ n0. Determining this value seems to be extremely hard even
for relatively small values of q.

A related question is to determine the smallest number of moves FP needs in order to win R(Kq, n)
(assuming this game is FP’s win). This is again open for every q ≥ 4. In fact, we do not even know
if this number grows with n or is bounded from above by some function of q. This question was
posed by Beck [2] as one of his “7 most humiliating open problems”, where he considers even the
case q = 5 to be “hopeless” (see also [15] and [3] for related problems).

Consider now the strong game R(Kq,ℵ0). Its board is the edge set of the countably infinite complete
graph KN and its winning sets are the copies of Kq in KN. Even though the board of this game
is infinite, strategy stealing still applies, i.e., FP has a strategy which ensures that SP will never
win R(Kq,ℵ0). Clearly, Ramsey’s Theorem applies as well, i.e., any red/blue colouring of the edges
of KN yields a monochromatic copy of Kq. Hence, as in the finite version of the game, one could
expect to combine these two arguments to deduce that FP has a winning strategy in R(Kq,ℵ0). The
only potential problem with this reasoning is that, by making infinitely many threats (which are
idle, as he cannot win), SP might be able to delay FP indefinitely, in which case the game would be
declared a draw. As with the finite version, R(K3,ℵ0) is an easy win for FP. The question whether
R(Kq,ℵ0) is a draw or FP’s win is wide open for every q ≥ 4. In fact, it is not hard to see that this
question is equivalent to Beck’s question of whether the number of moves needed for FP in order to
win R(Kq, n) grows with n (the corresponding infinite game is a draw) or not (the corresponding
infinite game is FP’s win).
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Playing Ramsey games, we do not have to restrict our attention to cliques, or even to graphs for
that matter. For every integer k ≥ 2 and every k-uniform hypergraph H, we can study the finite
strong Ramsey game R(k)(H, n) and the infinite strong Ramsey game R(k)(H,ℵ0). The board of the
finite game R(k)(H, n) is the edge set of the complete k-uniform hypergraph Kk

n and the winning sets
are the copies of H in Kk

n. As in the graph case, strategy stealing and Hypergraph Ramsey Theory
(see, e.g., [5]) shows that FP has winning strategies in R(k)(H, n) for every H and every sufficiently
large n. The board of the infinite game R(k)(H,ℵ0) is the edge set of the countably infinite complete
k-uniform hypergraph Kk

N and the winning sets are the copies of H in Kk
N. As in the graph case,

strategy stealing shows that FP has drawing strategies in R(k)(H,ℵ0) for every H. Hence, here too
one could expect to combine strategy stealing and Hypergraph Ramsey Theory to deduce that FP
has a winning strategy in R(k)(H,ℵ0) for every H (and, equivalently, the number of moves FP needs
in order to win R(k)(H, n) does not grow with n).

Our main result shows that, while it might be true that R(Kq,ℵ0) is FP’s win for any q ≥ 4, basing
this solely on strategy stealing and Ramsey Theory is ill-founded.

Theorem 1.1. There exists a 5-uniform hypergraph H such that the strong game R(5)(H,ℵ0) is a
draw.

Apart from being very surprising, Theorem 1.1 might indicate that strong Ramsey games are even
more complicated than we originally suspected. We discuss this further in Section 5.

1.1 Overview of the proof

Since the proof of our main result is fairly technical, even though it is based on a very simple idea,
we briefly sketch this idea now.

The main properties of the construction are that the hypergraph H has a distinguished degree 2
vertex z while all other vertices have degree at least 4, and that H \ z is highly asymmetrical and
still has minimum degree at least 3.

The main idea of the proof is fairly simple and goes as follows: SP can create an almost copy of H,
namely a copy of H \ z, before FP can make a single threat. SP can then make an infinite series of
threats, each one forcing FP to respond immediately. Making such a series of threats is possible due
to the properties of H which make z unique. Moreover, since H \ z is asymmetric, when FP blocks
a threat, he does not create a threat of his own. It is of course possible that FP will be the first to
initiate a (possibly infinite) series of threats. However, for similar reasons, SP will be able to block
all of them, thus preventing FP from completing a copy of H.

The rest of this paper is organized as follows. In Section 2 we introduce some basic notation and
terminology that will be used throughout this paper. In Section 3 we prove that R(k)(H,ℵ0) is a
draw whenever H is a k-uniform hypergraph which satisfies certain conditions. Using the results of
Section 3, we construct in Section 4 a 5-uniform hypergraph H5 for which R(5)(H5,ℵ0) is a draw,
thus proving Theorem 1.1. Finally, in Section 5 we present some open problems.

2 Notation and terminology

Let H be a k-uniform hypergraph. We denote its vertex set by V (H) and its edge set by E(H). The
degree of a vertex x ∈ V (H) in H, denoted by dH(x), is the number of edges of H which are incident
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with x. The minimum degree of H, denoted by δ(H), is min{dH(u) : u ∈ V (H)}. We will often use
the terminology k-graph or simply graph rather than k-uniform hypergraph.

A tight path is a k-graph with vertex set {u1, . . . , ut} and edge set e1, . . . , et−k+1 such that ei =
{ui, . . . , ui+k−1} for every 1 ≤ i ≤ t− k + 1. The length of a tight path is the number of its edges.

We say that a k-graph F has a fast winning strategy if a player can build a copy of F in |E(F)|
moves (note that this player is not concerned about his opponent building a copy of F first).

3 Sufficient conditions for a draw

In this section we list several conditions on a k-graph H which suffice to ensure that R(k)(H,ℵ0) is
a draw.

Theorem 3.1. Let H be a k-graph which satisfies all of the following properties:

(i) H has a degree 2 vertex z;

(ii) δ(H \ {z}) ≥ 3 and dH(u) ≥ 4 for every u ∈ V (H) \ {z};

(iii) H \ {z} has a fast winning strategy;

(iv) For every two edges e, e′ ∈ H, if φ : V (H\ {e, e′}) −→ V (H) is a monomorphism, then φ is the
identity;

(v) e ∩ r 6= ∅ and e ∩ g 6= ∅ holds for every edge e ∈ H, where r and g are the two edges incident
with z in H.

(vi) |V (H) \ (r ∪ g)| < k − 1.

Then R(k)(H,ℵ0) is a draw.

Before proving this theorem, we will introduce some more notation and terminology which will be
used throughout this section. Let e ∈ H be an arbitrary edge, let F be a copy of H \ {e} in Kk

N and
let e′ ∈ Kk

N be an edge such that F ∪ {e′} ∼= H. If e′ is free, then it is said to be a threat and F is
said to be open. If F is not open, then it is said to be closed. Moreover, e′ is called a standard threat
if it is a threat and e ∈ {r, g}. Similarly, e′ is called a special threat if it is a threat and e /∈ {r, g}.

Next, we state and prove two simple technical lemmata.

Lemma 3.2. Let H be a k-graph which satisfies Properties (i), (ii) and (iv) from Theorem 3.1.
Then, for every edge e ∈ H, if φ : V (H \ {e}) −→ V (H) is a monomorphism, then φ is the identity.

Proof. Fix an arbitrary edge e ∈ H and an arbitrary monomorphism φ : V (H \ {e}) −→ V (H). It
follows by Properties (i) and (ii) that there exists an edge f ∈ H\{e} such that V (H\{e, f}) = V (H).
Hence, φ equals its restriction to V (H \ {e, f}) which is the identity by Property (iv).

Lemma 3.3. Let H be a k-graph which satisfies Properties (i) and (iv) from Theorem 3.1. For any
given copy H′ of H \ {z} in Kk

N and any vertex x ∈ V (Kk
N) \ V (H′), there exists a unique pair of

edges r′, g′ ∈ Kk
N such that x ∈ r′ ∩ g′ and H′ ∪ {r′, g′} ∼= H.
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Proof. LetH′ be an arbitrary copy ofH\{z} in Kk
N and let x ∈ V (Kk

N)\V (H′) be an arbitrary vertex.
It is immediate from the definition ofH′ and Property (i) that there are edges r′, g′ ∈ E(Kk

N) such that
x ∈ r′∩g′ and H′∪{r′, g′} ∼= H. Suppose for a contradiction that there are edges r′′, g′′ ∈ E(Kk

N) such
that {r′′, g′′} 6= {r′, g′}, x ∈ r′′∩g′′ and H′∪{r′′, g′′} ∼= H. Let φ : V (H′∪{r′, g′})→ V (H′∪{r′′, g′′})
be an arbitrary isomorphism. The restriction of φ to V (H′) is clearly a monomorphism and is thus
the identity by Property (iv). Since x is the only vertex in (r′ ∩ g′) \ V (H′) and in (r′′ ∩ g′′) \ V (H′),
it follows that φ itself is the identity and thus {r′, g′} = {r′′, g′′} contrary to our assumption.

We are now in a position to prove the main result of this section.

Proof of Theorem 3.1. Let H be a k-graph which satisfies the conditions of the theorem and let
m = |E(H)|. At any point during the game, let G1 denote FP’s current graph and let G2 denote
SP’s current graph. We will describe a drawing strategy for SP. We begin by a brief description of
its main ideas and then detail SP’s moves in each case. The strategy is divided into three stages.
In the first stage SP quickly builds a copy of H \ {z}, in the second stage SP defends against FP’s
threats, and in the third stage (which we might never reach) SP makes his own threats.

Stage I: Let e1 denote the edge claimed by FP in his first move. In his first m− 2 moves, SP builds
a copy of H \ {z} which is vertex-disjoint from e1. SP then proceeds to Stage II.

Stage II: Immediately before each of SP’s moves in this stage, he checks whether there are a
subgraph F1 of G1 and a free edge e′ ∈ Kk

N such that F1 ∪ {e′} ∼= H. If such F1 and e′ exist, then
SP claims e′ (we will show later that, if such F1 and e′ exist, then they are unique). Otherwise, SP
proceeds to Stage III.

Stage III: Let F2 be a copy of H \ {z} in G2 and let z′ be an arbitrary vertex of Kk
N \ (G1 ∪ G2).

Let r′, g′ ∈ Kk
N be free edges such that z′ ∈ r′ ∩ g′ and F2 ∪ {r′, g′} ∼= H. If, once SP claims r′, FP

cannot make a threat by claiming g′, then SP claims r′. Otherwise he claims g′.

It readily follows by Property (iii) that SP can play according to Stage I of the strategy (since Kk
N is

infinite, it is evident that SP’s graph can be made disjoint from e1). It is obvious from its description
that SP can play according to Stage II of the strategy. Finally, since SP builds a copy of H \ {z} in
Stage I and since Kk

N is infinite, it follows that SP can play according to Stage III of the strategy as
well.

It thus remains to prove that the proposed strategy ensures at least a draw for SP. Since, trivially,
FP cannot win the game in less than m moves, this will readily follow from the next three lemmata
which correspond to three different options for FP’s (m− 1)th move.

Lemma 3.4. If FP’s (m− 1)th move is not a threat, then he cannot win the game.

Proof. Assume that SP does not win the game. We will prove that, under this assumption, not only
does FP not win the game, but in fact he does not even make a single threat throughout the game.
We will prove by induction on i that the following two properties hold immediately after FP’s ith
move for every i ≥ m− 1.

(a) FP has no threat.

(b) Let G′1 denote FP’s graph immediately after his (m−1)th move. Then G1\G′1 consists of i−m+1
edges em, . . . , ei, where, for every m ≤ j ≤ i, ej contains a vertex zj such that dG1(zj) = 1.
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Properties (a) and (b) hold for i = m− 1 by assumption. Assume they hold for some i ≥ m− 1; we
will prove they hold for i + 1 as well. Since FP’s (m − 1)th move is not a threat, SP’s ith move is
played in Stage III. By the description of Stage III, in his ith move SP claims an edge e′ ∈ {r′, g′},
where both r′ and g′ contain a vertex z′ which is isolated in G1. If FP does not respond by claiming
the unique edge of {r′, g′} \ {e′} in his (i+ 1)th move, then SP will claim it in his (i+ 1)th move and
win the game contrary to our assumption (by Property (a), FP had no threat before SP’s ith move
and thus cannot complete a copy of H in one move). It follows that Property (b) holds immediately
after FP’s (i+ 1)th move. Suppose for a contradiction that Property (a) does not hold, i.e., that FP
makes a threat in his (i+ 1)th move. As noted above, in his ith move, SP claims either r′ or g′ and,
by our assumption that Property (a) does not hold immediately after FP’s (i+ 1)th move, in either
case FP’s response is a threat. Hence, immediately after FP’s (i+ 1)th move, there exist free edges
r′′ and g′′ and copies Fr and Fg of H\{z} in G1 such that Fr ∪{r′, g′′} ∼= H and Fg ∪{r′′, g′} ∼= H.
By Property (ii) and since, by the induction hypothesis, Property (b) holds for i, we have Fr ⊆ G′1
and Fg ⊆ G′1. Suppose for a contradiction that e1 ∈ Fr. Since Fr ∪ {r′} is a threat, with z′ ∈ r′ in
the role of z, it follows by Property (v) that r′ ∩ e1 6= ∅. However, SP could have created a threat
by claiming r′ in his ith move which, by Stages I and III of SP’s strategy, implies that r′ ∩ e1 = ∅.
Hence e1 /∈ Fr and an analogous argument shows that e1 /∈ Fg. Since |E(G′1) \ {e1}| = m − 2, it
follows that Fr = G′1 \ {e1} = Fg. Therefore, by Lemma 3.3 we have {r′, g′′} = {r′′, g′}. Since,
clearly r′ 6= g′, it follows that {r′′, g′′} = {r′, g′} contrary to our assumption that both r′′ and g′′

were free immediately before FP’s (i+ 1)th move. We conclude that Property (a) holds immediately
after FP’s (i+ 1)th move as well.

Lemma 3.5. If FP’s (m− 1)th move is a special threat, then he cannot win the game.

Proof. Assume that SP does not win the game. We will prove that, under this assumption, FP does
not win the game. We begin by showing that he does not win the game in his mth move. Let e′ be
a free edge such that G1∪{e′} ∼= H. Playing according to the proposed strategy, SP responds to this
threat by claiming e′. Let f ′ denote the edge FP claims in his mth move. Suppose for a contradiction
that, by claiming f ′, FP completes a copy of H. Note that (G1 \ {f ′})∪{e′} ∼= H and so there exists
an isomorphism φ : V ((G1 \ {f ′}) ∪ {e′}) → V (G1). The restriction of φ to V (G1 \ {f ′}) is clearly a
monomorphism and is thus the identity by Lemma 3.2. However, V ((G1 \{f ′})∪{e′}) = V (G1 \{f ′})
and so φ itself is the identity. It follows that e′ ∈ G1 and thus e′ ∈ G1 ∩ G2 which is clearly a
contradiction. We conclude that indeed FP does not win the game in his mth move. Next, we
prove that, in his mth move, FP does not even make a threat. Suppose for a contradiction that
by claiming f ′ in his mth move, FP does create a threat. Immediately after FP’s mth move, let
f ′′ ∈ G1 and f ′′′ ∈ Kk

N \ (G1 ∪ G2) be edges such that H′ := (G1 \ {f ′′}) ∪ {f ′′′} ∼= H. Recall that
H′′ := (G1 \ {f ′}) ∪ {e′} ∼= H as well. Let φ : V (H′′) → V (H′) be an isomorphism. The restriction
of φ to V (H′′ \ {e′, f ′′}) is clearly a monomorphism and is thus the identity by Property (iv). Since
FP’s (m− 1)th move was a special threat, it follows that V (H′′ \ {e′, f ′′}) = V (H′′) and thus φ itself
is the identity. Therefore e′ ∈ H′. Since e′ 6= f ′′′ we then have e′ ∈ G1 and thus e′ ∈ G1 ∩ G2 which is
clearly a contradiction. We conclude that indeed FP does not make a threat in his mth move.

It remains to prove that FP cannot win the game in his ith move for any i ≥ m+ 1. We will prove
by induction on i that the following two properties hold immediately after FP’s ith move for every
i ≥ m.

(a) FP has no threat.

(b) G1 contains at most one copy of H \ {z}.
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Starting with the induction basis i = m, note that Property (a) holds by the paragraph above.
Moreover, since FP’s (m − 1)th move is a special threat, immediately after this move, there exists
a vertex u of degree two in G1. By Property (ii), this vertex and the two edges incident with it
cannot be a part of any copy of H \ {z} in G1 immediately after FP’s mth move. Property (b) now
follows since FP’s graph contains only m− 2 additional edges. Assume Properties (a) and (b) hold
immediately after FP’s ith move for some i ≥ m; we will prove they hold after his (i+ 1)th move as
well. As in the proof of Lemma 3.4, we can assume that in his (i + 1)th move FP claims either r′

or g′. Since both edges contain a vertex which was isolated in G1 immediately before FP’s (i+ 1)th
move, neither edge can be a part of a copy of H \ {z} in G1. Hence, Property (b) still holds. As
in the proof of Lemma 3.4, if FP does make a threat in his (i + 1)th move, then G1 must contain
two copies Fr 6= Fg of H \ {z} contrary to Property (b). We conclude that Property (a) holds as
well.

Lemma 3.6. If FP’s (m− 1)th move is a standard threat, then he cannot win the game.

Proof. The basic idea behind this proof is that either FP continues making simple threats forever
or, at some point, he makes a move which is not a standard threat. We will prove that, assuming SP
does not win the game, in the former case there is always a unique threat which SP can block, and
in the latter case, by making his own standard threats, SP can force FP to respond to these threats
forever, without ever creating another threat of his own.

We first claim that, if FP does win the game in some move s, then there must exist some m ≤ i < s
such that FP’s ith move is not a threat. Suppose for a contradiction that this is not the case. Assume
first that, for every m− 1 ≤ i < s, FP’s ith move is a standard threat. We will prove by induction
on i that, for every m− 1 ≤ i < s, immediately after FP’s ith move, G1 satisfies the following three
properties:

(a) G1 contains a unique copy F1 of H \ {z};

(b) Let em−1, . . . , ei denote the edges of G1 \F1. Then, for every m−1 ≤ j ≤ i, there exists a vertex
zj ∈ V (G1) such that {zj} = ej \ V (F1) and dG1(zj) = 1;

(c) F1 ∪ {ei} is open and F1 ∪ {ej} is closed for every m− 1 ≤ j < i.

Properties (a), (b) and (c) hold by assumption for i = m− 1. Assume they hold for some i ≥ m− 1;
we will prove they hold for i+ 1 as well. Immediately after FP’s ith move, let e′i be a free edge such
that F1 ∪ {ei, e′i} ∼= H. Note that e′i exists by Property (c) and is unique by Lemma 3.3. According
to his strategy, SP claims e′i thus closing F1∪{ei}. By assumption, in his (i+1)th move FP makes a
standard threat by claiming an edge ei+1. It follows that ei+1 \V (F1) = {zi+1}, where, immediately
after FP’s (i + 1)th move, dG1(zi+1) = 1. Hence, Property (b) is satisfied immediately after FP’s
(i+ 1)th move. Since δ(H \ {z}) ≥ 3 holds by Property (ii), it follows that Property (a) is satisfied
as well. Finally, G1 satisfies Property (c) by Lemma 3.3. Now, by Properties (a), (b) and (c), for
every m − 1 ≤ i < s, immediately after FP’s ith move there is a unique threat e′i. According to
his strategy, SP claims e′i in his ith and thus FP cannot win the game in his (i + 1)th move. In
particular, FP cannot win the game in his sth move, contrary to our assumption.

Assume then that there exists some m ≤ i < s such that FP makes a special threat in his ith move.
We will prove that this is not possible. Consider the smallest such i. As discussed in the previous
paragraph, immediately before FP’s ith move, G1 contained a unique copy F1 of H \ {z}, and every
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vertex of G1 \ F1 had degree one in G1. If FP makes a special threat in his ith move by claiming
some edge f ′1, then there exists a free edge f ′2 such that, by claiming f ′2 in his (i + 1)th move, FP
would complete a copy H1 of H. Since |V (F1)| < |V (H)|, there is some vertex u ∈ V (H1) \ V (F1).
Immediately after FP’s (i+1)th move, the degree of u in G1 is at most three. Hence, by Property (ii),
u must play the role of z in H1. Therefore, H1 = (F1 ∪ {f ′1, f ′2, e′u}) \ {f ′3}, where e′u is the first edge
incident with u which FP has claimed and f ′3 is some edge of F1. Since, at some point in the game,
e′u was a standard threat, and, at that point, F1 was the unique copy of H\{z} in G1, there exists an
edge e′′u such that H′ := F1∪{e′u, e′′u} ∼= H. Let φ : V (H′)→ V (H1) be an isomorphism. It is evident
that H′ \{e′′u, f ′3} = H1 \{f ′1, f ′2} and that the restriction of φ to V (H′ \{e′′u, f ′3}) is a monomorphism
and is thus the identity by Property (iv). However, V (H′\{e′′u, f ′3}) = V (H′) = V (F1)∪{u} = V (H1)
and thus φ itself is the identity entailing e′′u ∈ G1. However, e′′u ∈ G2 holds by the description of the
proposed strategy. Hence e′′u ∈ G1 ∩ G2 which is clearly a contradiction.

We conclude that there must exist some m ≤ i < s such that FP’s ith move is not a threat. Let `
denote the first such move. In order to complete the proof of the lemma, we will prove by induction
on i that the following two properties hold immediately after FP’s ith move for every i ≥ `.

(1) FP has no threat.

(2) Let G′1 = F1 ∪ {f}, where F1 is the unique copy of H \ {z} FP has built during his first m− 1
moves and f is the edge FP has claimed in his `th move. Then G1 \ G′1 consists of i −m + 1
edges em, . . . , ei, where, for every m ≤ j ≤ i, ej contains a vertex zj such that dG1(zj) = 1.

Properties (1) and (2) hold for i = ` by assumption, by the choice of ` and by Properties (a) –
(c) above. Assume they hold for some i ≥ `; we will prove they hold for i + 1 as well. Proving
Property (2) can be done by essentially the same argument as the one used to prove Property (b)
in Lemma 3.4; the details are therefore omitted. Suppose for a contradiction that Property (1) does
not hold immediately after FP’s (i + 1)th move. As in the proof of Property (a) in Lemma 3.4, it
follows that there are free edges r′′ and g′′ and graphs Fr ⊆ G′1 and Fg ⊆ G′1 such that Fr∪{r′, g′′} ∼=
H ∼= Fg ∪ {r′′, g′}. Since Fr ⊆ G′1 and Fg ⊆ G′1, it follows by Property (ii) that V (Fr) = V (Fg).
Let F2 ⊆ G2 be such that F2 ∪ {r′, g′} ∼= H and let z′ be the unique vertex in r′ \ V (F2). Note that
r′ \ {z′} ⊆ V (Fr) and g′ \ {z′} ⊆ V (Fg). Hence (r′ ∪ g′) \ {z′} ⊆ V (Fr). By Property (vi), we then
have |V (F2) \V (Fr)| ≤ |V (F2) \ (r′ ∪ g′)| < k− 1. However, e1 ∩V (F2) = ∅ holds by the description
of the proposed strategy and |e1∩V (Fr)| ≥ k−1 holds by our assumption that FP’s (m−1)th move
was a threat. This implies that k − 1 ≤ |e1 ∩ V (Fr)| ≤ |V (Fr) \ V (F2)| = |V (F2) \ V (Fr)| < k − 1
which is clearly a contradiction. We conclude that Property (1) does hold immediately after FP’s
(i+ 1)th move.

Since FP’s (m− 1)th move is either a standard threat or a special threat or no threat at all, Theo-
rem 3.1 follows immediately from Lemmata 3.4, 3.5 and 3.6. 2

4 An explicit construction

In this section we will describe a 5-graph H which satisfies Properties (i) – (vi) from Theorem 3.1
and thus R(5)(H,ℵ0) is a draw. The vertex set of H is {z, v1, v2, v3, v4, v5, v6, v7, v8, v9}, and its edges

8



v1
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z

Figure 1: The 5-uniform hypergraph H. The black line from v1 to v9 represents the tight path
consisting of the edges e1, . . . , e5.

are

r = {z, v1, v3, v5, v8},
g = {z, v2, v4, v7, v9},
a = {v1, v4, v6, v8, v9},
b = {v9, v1, v2, v3, v4},
e1 = {v1, v2, v3, v4, v5},
e2 = {v2, v3, v4, v5, v6},
e3 = {v3, v4, v5, v6, v7},
e4 = {v4, v5, v6, v7, v8},
e5 = {v5, v6, v7, v8, v9}.

It readily follows from the definition of H that it satisfies Properties (i), (ii), (v) and (vi) from
Theorem 3.1. We claim that it satisfies Properties (iii) and (iv) as well. We start with Property (iii).

Lemma 4.1. H \ {z} has a fast winning strategy.

Proof. We describe a strategy for SP to build a copy of H\ {z} in seven moves. The basic idea is to
build a tight path of length 5 in five moves, and then to use certain symmetries of H \ {z} in order
to complete a copy of H \ {z} in two additional moves. Our strategy is divided into the following
three stages.

Stage I: In his first move, SP claims an arbitrary free edge e1 = {v1, v2, v3, v4, v5}. For every
2 ≤ i ≤ 5, in his ith move SP picks a vertex vi+4 which is isolated in both his and FP’s current
graphs and claims the edge ei = {vi, vi+1, vi+2, vi+3, vi+4}. If in his 6th move FP claims either
{v1, v2, v3, v4, v9} or {v1, v4, v6, v8, v9} or {v1, v3, v5, v8, v9}, then SP claims {v1, v6, v7, v8, v9} and
proceeds to Stage II. Otherwise, SP claims {v1, v2, v3, v4, v9} and skips to Stage III.
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Stage II: If in his seventh move FP claims {v1, v2, v4, v6, v9}, then SP claims {v1, v2, v5, v7, v9}.
Otherwise, SP claims {v1, v2, v4, v6, v9}.

Stage III: If in his seventh move FP claims {v1, v4, v6, v8, v9}, then SP claims {v1, v3, v5, v8, v9}.
Otherwise, SP claims {v1, v4, v6, v8, v9}.

It is easy to see that SP can indeed play according to the proposed strategy and that, in each of the
possible cases, the graph he builds is isomorphic to H \ {z}.

It remains to prove that H satisfies Property (iv). We begin by introducing some additional notation.
If φ : V (H) → V (H) is a monomorphism, and e = {a1, a2, . . . , a5} ∈ H, then we set φ(e) :=
{φ(a1), φ(a2), . . . , φ(a5)}. For two edges e, f ∈ H, let Hef = H \ {e, f}.

Next, we observe several simple properties of H and of monomorphisms. Table 1 shows the degrees
of the vertices in H and Table 2 shows the sizes of intersections of pairs of edges in H.

Vertex v1 v2 v3 v4 v5 v6 v7 v8 v9 z

Degree 4 4 5 7 6 5 4 4 4 2

Table 1: Degrees of vertices in H.

r g a b e1 e2 e3 e4 e5
r 1 2 2 3 2 2 2 2

g 1 2 3 2 2 2 2 2

a 2 2 3 2 2 2 3 3

b 2 3 3 4 3 2 1 1

e1 3 2 2 4 4 3 2 1

e2 2 2 2 3 4 4 3 2

e3 2 2 2 2 3 4 4 3

e4 2 2 3 1 2 3 4 4

e5 2 2 3 1 1 2 3 4

Table 2: Intersection sizes of pairs of edges in H.

Observation 4.2. The hypergraph H satisfies all of the following properties:

(1) V (H) \ {r, g} = {v6} and r ∩ g = {z}.

(2) e1 is the unique edge satisfying |e1 ∩ r| = 3 and |e1 ∩ g| = 2.

(3) b is the unique edge satisfying |b ∩ g| = 3 and |b ∩ r| = 2.

(4) There are precisely two tight paths of length five in H, namely, TP1 := (e1, e2, e3, e4, e5) and
TP2 := (b, e1, e2, e3, e4).

(5) For every two vertices u, v ∈ V (H), there are three edges f1, f2, f3 ∈ H such that |fi∩{u, v}| = 1
for every 1 ≤ i ≤ 3.
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Observation 4.3. Let F and F ′ be k-graphs, where F ′ ⊆ F , and let φ : V (F ′) → V (F) be a
monomorphism. Then

(a) dF (φ(x)) ≥ dF ′(x) ≥ dF (φ(x))− |E(F \ F ′)| holds for every x ∈ V (F ′).

(b) If P is a tight path of length ` in F ′, then φ(P ) is a tight path of length ` in F .

(c) Let P = (f1, f2, . . . , fm) be a tight path in F ′, where m ≥ k and fi = {pi, . . . , pi+k−1} for every
1 ≤ i ≤ m. If φ(P ) = (e1, e2, . . . , em), where ei = {qi, . . . , qi+k−1} for every 1 ≤ i ≤ m, then
either φ(pi) = qi for every 1 ≤ i ≤ m+ k − 1 or φ(pi) = qm+k−i for every 1 ≤ i ≤ m+ k − 1.

(d) For any pair of edges x, y ∈ F ′ we have |φ(x) ∩ φ(y)| = |x ∩ y|.

We prove that H satisfies Property (iv) in a sequence of lemmata.

Lemma 4.4. Let e and f be two arbitrary edges of H and let φ : V (Hef ) → V (H) be a monomor-
phism. If φ(e′) = e′ holds for every edge e′ ∈ Hef , then φ is the identity.

Proof. Suppose for a contradiction that φ is not the identity. Then, there exist distinct vertices
u, v ∈ V (Hef ) such that φ(u) = v. By Observation 4.2(5), there are three edges f1, f2, f3 ∈ H
such that |fi ∩ {u, v}| = 1 for every 1 ≤ i ≤ 3. Clearly, we may assume that f1 /∈ {e, f} and thus
φ(f1) = f1 by the assumption of the lemma. Since φ(u) = v, it follows that {u, v} ⊆ f1 which is a
contradiction.

Lemma 4.5. Let φ : V (Hef )→ V (H) be a monomorphism. Then φ(z) = z.

Proof. Assume first that {e, f} ∩ {r, g} 6= ∅. Then dHef
(z) ≤ 1. Combined with Observation 4.3(a),

this implies that dH(φ(z)) ≤ 1 + |{e, f}| = 3. Since z is the only vertex of degree at most 3 in H, it
follows that φ(z) = z.

Assume then that {e, f} ∩ {r, g} = ∅. Since φ is a monomorphism, there exists a vertex v ∈ V (Hef )
such that φ(v) = z. Suppose for a contradiction that v 6= z. By Observation 4.3(a), we have
dHef

(v) ≤ 2 and thus dH(v) ≤ 4. Since z is the only vertex of degree less than 4 in H, it follows that
dH(v) = 4 and that both e and f contain v. Let r′ = φ−1(r) and g′ = φ−1(g) be the other two edges
of H that contain v. By Observation 4.3(d), we have |r′ ∩ g′| = |r ∩ g| = 1. Looking at Tables 1
and 2, we see that the only choice of r′, g′ and v such that dH(v) = 4 and r′ ∩ g′ = {v} is v = v9 and
{r′, g′} = {b, e5}. Since both e and f contain v as well, this implies that {e, f} = {g, a}, contrary to
our assumption that {e, f} ∩ {r, g} = ∅.

Lemma 4.6. Let φ : V (Hef ) → V (H) be a monomorphism. If r, g ∈ Hef , φ(r) = r and φ(g) = g,
then φ is the identity.

Proof. Since φ is injective, φ(r) = r, and φ(g) = g, it follows by Observation 4.2 (1) that φ(v6) = v6.

By Observation 4.3(a), we have that dH(φ(v4)) ≥ dHef
(v4) ≥ 5 which in turn implies that φ(v4) ∈

{v3, v4, v5, v6}. Since, moreover, φ(v4) ∈ φ(g) = g = {z, v2, v4, v7, v9}, it follows that φ(v4) = v4.
Since e5 is the unique edge in H containing v6 but not v4, we have that if e5 ∈ Hef , then φ(e5) = e5.

Since φ(r) = r and φ(g) = g, it follows by Observation 4.3(d) and by Observation 4.2(2), that if
e1 ∈ Hef , then φ(e1) = e1. Similarly, using Observation 4.2(3), it follows that if b ∈ Hef , then
φ(b) = b. We distinguish between the following three cases.
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Case 1: b, e3 ∈ Hef . As noted above φ(b) = b. Since |e3 ∩ b| = 2, Observation 4.3(d) and Table 2
imply that φ(e3) ∈ {e3, r}. Since, moreover, φ(r) = r by assumption, we conclude that φ(e3) = e3.
Observation 4.3(d) then implies that (|φ(x)∩b|, |φ(x)∩e3|) = (|x∩b|, |x∩e3|) for every edge x ∈ Hef .
Looking at the rows corresponding to b and e3 in Table 2, we see that the pair (|x ∩ b|, |x ∩ e3|) is
distinct for every x ∈ H \ {r, g}. It follows that φ(x) = x for every x ∈ Hef . Hence, φ is the identity
by Lemma 4.4.

Case 2: e2, e5 ∈ Hef . As noted above φ(e5) = e5. Since |e2∩e5| = 2, Observation 4.3(d) and Table 2
imply that φ(e2) ∈ {e2, r, g}. Since, moreover, φ(r) = r and φ(g) = g by assumption, we conclude
that φ(e2) = e2. Observation 4.3(d) then implies that (|φ(x) ∩ e5|, |φ(x) ∩ e2|) = (|x ∩ e5|, |x ∩ e2|)
for every edge x ∈ Hef . Looking at the rows corresponding to e5 and e2 in Table 2, we see that the
pair (|x∩ e5|, |x∩ e2|) is distinct for every x ∈ H \ {r, g}. It follows that φ(x) = x for every x ∈ Hef .
Hence, φ is the identity by Lemma 4.4.

Case 3: {e, f} ∈ {b, e3} × {e2, e5}. Observe that e1 ∈ Hef and thus, as noted above, φ(e1) = e1.
Looking at the row corresponding to e1 in Table 2 and using Observation 4.3(d), we infer that
φ(e3) = e3, φ(e5) = e5, {φ(b), φ(e2)} = {b, e2}, and {φ(a), φ(e4)} = {a, e4}. Since φ(v6) = v6, it then
follows that φ(e2) = e2 and thus φ(b) = b. Let x denote the unique edge of {e2, e5} ∩ Hef . Looking
at the row corresponding to x in Table 2, we see that |x ∩ a| 6= |x ∩ e4|. Using Observation 4.3(d),
we conclude that φ(a) = a and φ(e4) = e4. Hence, φ is the identity by Lemma 4.4.

Since, clearly, at least one of the above three cases must occur, this concludes the proof of the
lemma.

Lemma 4.7. Let φ : V (Hef )→ V (H) be a monomorphism. If b, e5 ∈ Hef , then φ(v9) = v9.

Proof. Suppose for a contradiction that φ(v9) 6= v9. By Lemma 4.5 we have φ(z) = z which implies
that φ(v9) 6= z. By Observation 4.3(a) we have dH(φ(v9)) ≤ dHef

(v9) + 2 ≤ 6 which implies that
φ(v9) 6= v4.

Since φ is a monomorphism, we have {φ(v9)} = φ(b ∩ e5) = φ(b) ∩ φ(e5). Since {φ(v9)} is the
intersection of two edges, we must have φ(v9) ∈ {v4, v5, v9, z}. Combining this with the previous
paragraph, we infer that φ(v9) = v5.

Note that 6 = dH(v5) = dH(φ(v9)) ≤ dHef
(v9) + 2. Hence, dHef

(v9) = 4 which implies that
{g, a} ∩ {e, f} = ∅. Since φ(z) = z and φ(v9) = v5, we must have φ(g) = r.

Since e1, e5 is the unique pair of edges satisfying e1∩e5 = {v5}, it follows that {φ(b), φ(e5)} = {e1, e5}.
Suppose for a contradiction that φ(b) = e5. Then, by Observation 4.3(d) we have 3 = |b ∩ g| =
|φ(b) ∩ φ(g)| = |e5 ∩ r| = 2. We conclude that φ(b) = e1 and φ(e5) = e5. We can now determine the
missing edges in Hef and in φ(Hef ).

Claim 4.8. e2, e4 6∈ Hef and e2, e4 6∈ φ(Hef ).

Proof. Suppose for a contradiction that e2 ∈ Hef . Since |e2 ∩ b| = 3 and v9 /∈ e2, it follows by
Observation 4.3(d) that |φ(e2)∩ e1| = |φ(e2)∩φ(b)| = 3 and v5 /∈ φ(e2). This is a contradiction since
there is no edge x ∈ H such that |x ∩ e1| = 3 and v5 /∈ x.

Suppose for a contradiction that e4 ∈ Hef . It follows by Observation 4.3(d) that 4 = |e4 ∩ e5| =
|φ(e4)∩φ(e5)| = |φ(e4)∩ e5| and thus φ(e4) = e4. Since, moreover, v9 /∈ e4 and φ(v9) = v5, it follows
that v5 /∈ e4, contrary to the definition of e4.
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Suppose for a contradiction that e2 ∈ φ(Hef ). Let x ∈ Hef be such that φ(x) = e2. Since φ(b) = e1,
it follows by Observation 4.3(d) that 4 = |e1 ∩ e2| = |b ∩ x|. Looking at the row corresponding to b
in Table 2, we infer that x = e1. However, since v9 /∈ e1, we then deduce that v5 = φ(v9) /∈ e2 which
is clearly a contradiction.

Suppose for a contradiction that e4 ∈ φ(Hef ). Let x ∈ Hef be such that φ(x) = e4. Since φ(e5) = e5,
it follows by Observation 4.3(d) that 4 = |e4 ∩ e5| = |x ∩ e5|. Looking at the row corresponding to
e5 in Table 2, we infer that x = e4. However, we already saw before that assuming e4 ∈ Hef results
in a contradiction.

We are now in a position to complete the proof of Lemma 4.7. Let F = H \ {e2, e4}. It follows
from Claim 4.8 that Hef = φ(Hef ) = F and that φ is an automorphism of F . Hence, in particular,
dF (φ(v4)) = dF (v4) = 5. On the other hand, since φ(g) = r, it follows that φ(v4) ∈ {v1, v3, v5, v8}.
Therefore dF (φ(v4)) ≤ 4 which is clearly a contradiction.

Lemma 4.9. Let φ : V (Hef )→ V (H) be a monomorphism. Suppose that Hef contains a tight path
of length 5. Then φ is either the identity or one of (v9v1v2v3v4v5v6v7v8)(z), (v1v9v8v7v6v5v4v3v2)(z),
(v9v8)(v1v7)(v2v6)(v3v5)(v4)(z), (v1v8)(v2v7)(v3v6)(v4v5)(v9)(z), and (v1v9)(v2v8)(v3v7)(v4v6)(v5)(z).

Proof. By Lemma 4.5 we know that φ(z) = z. Moreover, by Observation 4.2(4), we know that Hef
contains TP1 or TP2. Moreover, by Observation 4.3(b), if TP1 ∈ Hef , then φ(TP1) ∈ {TP1, TP2}
and if TP2 ∈ Hef , then φ(TP2) ∈ {TP1, TP2}. Accordingly, we distinguish between the following
four cases.

Case 1: TP1 ∈ Hef and φ(TP1) = TP1. It follows by Observation 4.3(c) that either φ is the
identity or φ = (v1v9)(v2v8)(v3v7)(v4v6)(v5)(z).

Case 2: TP1 ∈ Hef and φ(TP1) = TP2. It follows by Observation 4.3(c) that either φ =
(v1v9v8v7v6v5v4v3v2)(z) or φ = (v1v8)(v2v7)(v3v6)(v4v5)(v9)(z).

Case 3: TP2 ∈ Hef and φ(TP2) = TP1. It follows by Observation 4.3(c) that either φ =
(v9v1v2v3v4v5v6v7v8)(z) or φ = (v1v8)(v2v7)(v3v6)(v4v5)(v9)(z).

Case 4: TP2 ∈ Hef and φ(TP2) = TP2. It follows by Observation 4.3(c) that either φ is the
identity or φ = (v8v9)(v1v7)(v2v6)(v3v5)(v4)(z).

Lemma 4.10. Let φ : V (Hef )→ V (H) be a monomorphism. If b, e5 ∈ Hef , then φ is the identity.

Proof. Suppose for a contradiction that φ is not the identity. By Lemma 4.5 we know that φ(z) = z
and by Lemma 4.7 we know that φ(v9) = v9. Assume first that φ(b) = b. Since φ(v9) = v9, φ(b) = b,
and e5 is the unique edge whose intersection with b is {v9}, we infer that φ(e5) = e5. Since g is the
unique edge containing both v9 and z, we infer that, if g ∈ Hef , then φ(g) = g. Since e2 is the unique
edge satisfying |e2 ∩ b| = 3, |e2 ∩ e5| = 2, and |e2 ∩ b ∩ e5| = 0, it follows by Observation 4.3(d) that,
if e2 ∈ Hef , then φ(e2) = e2. Looking at the rows corresponding to e5 and b in Table 2, we see that
(|x ∩ e5|, |x ∩ b|) is distinct for every x ∈ H \ {g, e2}. This implies that φ(x) = x for every x ∈ Hef
and thus φ is the identity by Lemma 4.4 contrary to our assumption. Therefore, from now on we
will assume that φ(b) 6= b. Since φ(v9) = v9, it follows that φ(b) = e5 and φ(e5) = b. We distinguish
between the following three cases.
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Case 1: {e, f} ⊆ {r, g, a}. Observe that Hef contains TP1. Since, moreover, φ(v9) = v9 and φ is
not the identity by assumption, it follows from Lemma 4.9 that φ = (v1v8)(v2v7)(v3v6)(v4v5)(v9)(z).
Let x ∈ {r, g, a} \ {e, f}. Then φ(x) is not an edge of H contrary to φ being a monomorphism.

Case 2: g ∈ Hef . As noted above, φ(g) = g. Since b is the unique edge intersecting g in 3 vertices,
we have φ(b) = b, contrary to our assumption that φ(b) 6= b.

Case 3: g /∈ Hef and r, a ∈ Hef . Since r is the unique edge such that z ∈ r and v9 /∈ r, it follows
that φ(r) = r. Similarly, since z /∈ a, v9 ∈ a, φ(b) = e5, and φ(e5) = b, it follows that φ(a) = a. Then

{φ(v1)} = φ(b) ∩ φ(r) ∩ φ(a) = e5 ∩ r ∩ a = {v8},
{φ(v2)} = φ(b) \ (φ(r) ∪ φ(a)) = e5 \ (r ∪ a) = {v7},
{φ(v3)} = φ(b) ∩ φ(r) \ φ(a) = e5 ∩ r \ a = {v5}.

Since, moreover, φ(b) = e5, it follows that φ(v4) = v6. Now, using φ(r) = r and φ(a) = a, it is easy
to see that φ(v8) = v1 and thus φ(v6) = v4, φ(v5) = v3 and φ(v7) = v2. However, then neither φ(e1)
nor φ(e4) is an edge of H. Since {e1, e4} \ {e, f} 6= ∅, this contradicts φ being a monomorphism.

Lemma 4.11. Let φ : V (Hef ) → V (H) be a monomorphism. If {e, f} ∈ {b, e5} × {r, g, a}, then φ
is the identity.

Proof. Since |{e, f} ∩ {b, e5}| = 1 by assumption, Hef contains either TP1 or TP2. Hence, φ must
be one of the six permutations listed in Lemma 4.9.

Assume first that r, g ∈ Hef . By Lemma 4.5 we know that φ(z) = z and thus {φ(r), φ(g)} ⊆ {r, g}.
Therefore φ(v6) = v6 holds by Observation 4.2(1). This implies that φ is the identity since this is
the only permutation listed in Lemma 4.9 which maps v6 to itself.

Assume then that a ∈ Hef . This implies that φ is the identity since this is the only permutation
listed in Lemma 4.9 which maps a to an edge of H.

Lemma 4.12. Let φ : V (Hef )→ V (H) be a monomorphism. Then φ is the identity.

Proof. Let e′ and f ′ denote the two edges of H \ φ(Hef ). Suppose for a contradiction that φ is not
the identity. Observe that this implies that φ−1 is a monomorphism from φ(Hef ) to H which is not
the identity.

Since φ is not the identity, it follows from Lemma 4.10 that {b, e5} ∩ {e, f} 6= ∅. By Lemma 4.11 we
then infer that {r, g, a}∩{e, f} = ∅. Similarly, since φ−1 is a monomorphism which is not the identity,
it follows from Lemma 4.10 that {b, e5}∩{e′, f ′} 6= ∅ and from Lemma 4.11 that {r, g, a}∩{e′, f ′} = ∅.

By Lemma 4.5 we know that φ(z) = z and thus {φ(r), φ(g)} ⊆ {r, g}. Therefore φ(v6) = v6 holds
by Observation 4.2(1). By Lemma 4.6 we know that φ(r) = g and φ(g) = r, which implies that
φ(x) 6= x for every x ∈ V (H) \ {z, v6}.

Since g, a and b are the only edges which do not contain v5, and {e, f} \ {g, a, b} 6= ∅, it follows that
dHef

(v5) ≤ 5. Since {e′, f ′} \ {g, a, b} 6= ∅, an analogous argument shows that dφ(Hef )(v5) ≤ 5.

Suppose for a contradiction that e5 ∈ {e, f}. Then dHef
(v4) ≥ 6 and thus dφ(Hef )(φ(v4)) ≥ 6 as

well. Since, as noted above, dφ(Hef )(v5) ≤ 5, it follows from Table 1 that φ(v4) = v4. However, this
contradicts the fact that φ does not fix any vertex of V (H) \ {z, v6}. It follows that b ∈ {e, f}. An
analogous argument shows that b ∈ {e′, f ′} as well.
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Suppose for a contradiction that e1 /∈ {e, f}. Then |φ(e1) ∩ g| = |φ(e1) ∩ φ(r)| = |e1 ∩ r| = 3 holds
by Observation 4.3(d). Since b is the only edge of H which intersects g in 3 vertices, it then follows
that φ(e1) = b. However, this contradicts the fact that b ∈ {e′, f ′}. An analogous argument shows
that e1 ∈ {e′, f ′} as well.

We have thus shown that {e, f} = {e′, f ′} = {e1, b}. Hence, P = (e2, e3, e4, e5) is the unique tight
path of length 4 inHef and in φ(Hef ). Since φ(z) = z and since φ(P ) = P holds by Observation 4.3(b)
it follows that φ(v1) = v1 contrary to φ not fixing any vertex of V (H) \ {z, v6}.

5 Concluding remarks and open problems

As noted in the introduction, this paper originated from Beck’s open problem of deciding whether
R(Kq,ℵ0) is a draw or FP’s win. While it would be very interesting to solve this challenging problem,
there are several natural intermediate steps one could make in order to improve one’s understanding
of the problem. In this paper we constructed a 5-uniform hypergraph H5 such that R(5)(H5,ℵ0)
is a draw, thus refuting the intuition that, due to strategy stealing and Ramsey-type arguments,
R(k)(H,ℵ0) is FP’s win for every k and every k-graph H. It would be interesting to replace H5 with
a graph.

Question 5.1. Is there a graph G such that R(2)(G,ℵ0) is a draw?

Our proof that R(5)(H5,ℵ0) is a draw, relies heavily on the fact that H5 has a vertex of degree 2.
Since this is clearly not the case with Kq, for q ≥ 4, it would be interesting to determine whether
this condition is necessary.

Question 5.2. Given an integer d ≥ 3, is there a k-graph H such that δ(H) ≥ d and R(k)(H,ℵ0) is
a draw?

Another important ingredient in our proof that R(5)(H5,ℵ0) is a draw, is the fact that SP can build
H5\{z} very quickly. A similar idea was used in [8] and in [9] to devise explicit winning strategies for
FP in various natural strong games. On the other hand, it was proved by Beck in [1] that building
a copy of Kq takes time which is at least exponential in q. Intuitively, not being able to build a
winning set quickly, should not be beneficial to FP. This leads us to raise the following question.

Question 5.3. Is there a k-graph H with minimum degree at least 3 such that R(k)(H,ℵ0) is a draw
and, for every positive integer n, FP cannot win R(k)(H, n) in less than, say, 1000|V (H)| moves?

Acknowledgment

Part of the research presented in this paper was conducted during the two joint Free University
of Berlin–Tel Aviv University workshops on Positional Games and Extremal Combinatorics. The
authors would like to thank Michael Krivelevich and Tibor Szabó for organizing these events. The
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