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Abstract

Given a pair of graphs G and H, the Ramsey number R(G, H) is the smallest N such
that every red-blue coloring of the edges of the complete graph Ky contains a red copy of
G or a blue copy of H. If a graph G is connected, it is well known and easy to show that
R(G,H) > (|G] — 1)(x(H) — 1) + o(H), where x(H) is the chromatic number of H and o(H)
is the size of the smallest color class in a x(H)-coloring of H. A graph G is called H-good if
R(G,H) = (|G| — 1)(x(H) — 1) + o(H). The notion of Ramsey goodness was introduced by
Burr and Erdés in 1983 and has been extensively studied since then.

In this paper we show that if n > Q(|H|log® |H|) then every n-vertex bounded degree tree
T is H-good. The dependency between n and |H| is tight up to log factors. This substantially
improves a result of Erdds, Faudree, Rousseau, and Schelp from 1985, who proved that n-vertex
bounded degree trees are H-good when n > Q(|H|?).

MSC: 05C05, 05C55

1 Introduction

For a pair of graphs G and H, the Ramsey number R(G, H) is defined to be the minimum N such
that every red-blue coloring of the edges of the complete graph Ky contains a red copy of G or a
blue copy of H. An old theorem of Ramsey states that R(K,, K,,) is finite and therefore R(G, H) is
well-defined for any G, H. It is sometimes quite difficult to compute the Ramsey number. Indeed,

the inequalities
22 < R(Kp, Ky) < 4"

were proven by Erdds and Szekeres [I1] in 1935, and Erdds [7] in 1947, and there have not been
any improvements to the constant in the exponent for either bound since then.

However, there are graphs for which we can compute the Ramsey number exactly. Erdds [7]
showed that for a path P,, on n vertices, we have R(P,, K;;,) = (n—1)(m—1)+ 1. The lower bound
comes from considering the graph composed of m — 1 disjoint red cliques of size n — 1, with all edges
between them blue. This lower bound construction was generalized by Burr [2], who observed that
for any connected graph G and any graph H,

R(G,H) = (|G| = D)(x(H) = 1) + o(H). (1)

where x(H) is the chromatic number of H and o(H) is the size of the smallest color class in a
X (H)-coloring of H. To see that eq. holds, consider the graph composed of x(H) — 1 disjoint
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red cliques of size |G| —1 and one additional red clique of size o(H) — 1, with all edges between the
cliques blue. This graph has no red copy of G because every red connected component has size at
most |G| — 1, and it has no blue copy of H because otherwise this copy would be partitioned, via
the red cliques, into x(H) parts with one part having size o(H) — 1, contradicting the minimality
of o(H).

We say that G is H-good when equality holds in eq. . The notion of Ramsey goodness was
introduced by Burr and Erdds [3] in 1983, and has been studied extensively since then, see e.g.,
[1L 6, 12l 18, 19] and their references. Note that Erdés’ argument which gives a lower bound on
R(K,, K,) can be used to show that if we have relatively dense graphs G, H, then the Ramsey
number is super-polynomial in |G| and hence G is not H-good. Thus we restrict our attention
to sparse and connected G. In 1977, Chvatal [4] showed that any tree is K,,-good. Recently,
Pokrovskiy and Sudakov [20] showed that any path P with |P| > 4|H| is H-good, verifying a
conjecture of Allen, Brightwell, and Skokan [I] in a strong sense.

Since paths are a special case of trees, it is natural to consider whether trees are Ramsey
good for all graphs H. In []] Erdds, Faudree, Rousseau and Schelp ask “What is the behavior
of R(T,K(n,n)) when T has bounded degree?” Erdds, Faudree, Rousseau and Schelp [8] 9] [10]
wrote several papers on this topic. The result in their 1985 paper [9] implies that for any H,
all sufficiently large bounded degree trees T' are H-good. Though they do not give an explicit
dependency between |T'| and |H]|, their proof method can be used to show that any bounded degree
tree T with |T| > Q(|H|*), is H-good. In this paper, we improve their result as follows.

Theorem 1.1. For all A and k there exists a constant Ca j, such that for any tree T' with mazimum
degree at most A and any H with x(H) = k satisfying |T| > Ca x|H|log* |H|, T is H-good.

The dependency between |T'| and |H| in the above theorem is tight up to the log|H| factors.
Indeed for |T| <m = |KF|/k, no tree T is K¥ -good for the balanced complete multipartite graph
KE . To see this, consider, an edge colouring of a complete graph on (2k — 1)(|T| — 1) + 1 vertices
consisting of 2k — 1 red cliques of size |T| — 1, with all other edges blue. It is easy to check
that this graph has no red 7' and no blue K, showing that R(T, K*) > (2k — 1)(|T| — 1) +1 >
(k—=1(T|—1)+m.

In the proof of Theorem we first consider the case where our tree T' has many leaves. In
this case, we are able to obtain the following stronger result.

Theorem 1.2. Let T be a tree with | leaves and mazimum degree at most A, and let H be a graph
satisfying | > 13A|H| + 1. Then T is H-good.

The results in this paper cannot be extended to trees without a bounded degree assumption.

In particular a star S,, is not Ky, ,-good for n < O (2%“) To see this, recall that there are

2
N-vertex graphs with minimum degree (2 (N 1_TH> containing no K, »,, (see for example [14],

Theorem 2.26). The complement of such a graph is S, free forn = N — N l_m%rl. From this, it can

be shown that for n > <2mT+l) there is such a graph on > 2n vertices which is K, ,, free and
has minimum degree N — n. Equivalently we get that R(Sy, K m) > 2n for n > Q <2mT+1> In

particular this shows that S, is not K, ,,-good for n > Q (2%“) which shows that Theorem
cannot hold for an arbitrary tree T'.



Remark 1.3. The condition [ > 13A|H| + 1 can be replaced with | > 13Am + 1 where m is the
size of the largest color class in a x(H) coloring of H. Indeed, this is what we actually prove in
Lemma [3.41

2 Overview

Notation

For a graph G, we let E(G) denote the set of edges of G. We define K¥ to be the complete k-partite
graph with parts of size m, i.e. a graph on km vertices partitioned into k classes of m vertices each,
with edges between any pair of vertices from different classes. Note that in particular, K}, denotes
the empty graph on m vertices. Also let K,,, . m, be the complete multipartite graph with parts of
size my, ..., my. For a graph G and vertex z, we let N(z) = Ng(z) = {y € G : zy € E(G)} denote
the neighborhood of x. We analogously let dg(x) = |Ng(x)| denote the degree of x and A(G)
denote the maximum degree of a vertex in G. For any subset S C G, we define the neighborhood

N(5) = Na(5) = Uyzes Na(@)\S.

Proof outline

We are given a tree T with n vertices and a graph H with x(H) = k and o(H) = my, and we
would like to show that any graph G on (n — 1)(k — 1) + mq vertices either has a copy of T, or G¢
has a copy of H. Note that as long as k and my are fixed, adding more edges to H only makes the
problem more difficult. Indeed, if we let mq < ... < my be the sizes of the parts in a k-coloring of
H, then a graph not containing H also doesn’t contain K, . m,,. Because of this we will actually
prove the following slightly stronger version of Theorem [I.1]

Theorem 2.1. For all A and k, there exists a constant Ca j such that for any tree T with maz
degree at most A and numbers my < mg < -+ < my, with |T'| > Ca pmy log* my, the tree T is
K imo,...;my, -good.

Assume that we are given a graph G on (n — 1)(k — 1) + m; vertices such that G° has no copy
of Kp,,....m,,- To prove Theorem @ we need to show that G has a copy of T'. Notice that since G¢
has no copy of K, ... m,, we have that G has no copy of Kfnk and most of the time we will only
use this weaker assumption. For simplicity, in this proof outline we will deal only with the case
when m| =--- =mp =m.

Finding trees in expanders

The basic technique in this paper is to use results about finding large trees in graphs which are
expanders. Here “expander” means a graph G in which N(S) is suitably large for every set of
vertices S. Expanders are closely related to graphs G with G¢ containing no copy of K, .. Indeed
it is easy to see that G° being K, ,-free is equivalent to every set S with |S| = m satisfying
IN(S)| > |G| — 2m.

Trees in expanders are well studied. By results of Friedmann-Pippenger [13] and Haxell [15],
expanders contain all suitably large trees. See Lemma for the specific instance of this which
we apply in our paper. By applying this to graphs G with G¢ containing no copy of K,’?n, one can



immediately prove something quite similar to Theorem [2.1}—In Lemma [4.9] we prove that
R(KE T) < (k—1)(|T| + 13Am) + m for any tree T with A(T) < A. (2)

When |T| > m, this is quite close to the bound “R(KF*,T) < (k—1)(|T| — 1) +m” which we want
to prove in Theorem Using (2)) we obtain that for any subtree 7" C T with |T"| < |T'| — 13Am,
we have R(K* T') < (k — 1)(|T| — 1) + m. This shows that we can find any large subtree T
of T in a graph G with |G| = (k — 1)(|T| — 1) + m and G¢ Kk -free. The bulk of the proof of
Theorem consists of extending T” into a copy of T. This extension is performed by different
methods depending on whether 7' has many leaves or many bare paths (A bare path in a graph is
a path such that all interior vertices have degree 2). It is a well known result (see eg. Lemma 2.1
in [16]) that a tree either has many leaves or many long bare paths.

Lemma 2.2. For any integers n,r > 2, a tree on n vertices either has at least n/4r leaves or a
collection of at least n/4r vertex disjoint bare paths, each having length r.

Theorem is proved by different methods depending on which case of Lemma holds for
the tree T'.

Case 1: Many leaves

In section [3 we suppose our tree 7" has many leaves. Here “many” means that 7" has > 13Am
leaves. In this case if we let T be T with 13Am leaves deleted, then using any G with G°
KF -free contains a copy of T7’. With some extra work, it is possible to find such a copy of T" with
all subsets of V(T") expanding outside V(7T”). Once we have this, it is easy to find all the required
leaves using a variant of Hall’s Theorem (Lemma [3.3).

Case 2: Many bare paths

In section 4] we consider the case where our tree has few leaves, and therefore many long bare paths
by Lemma [2.2] In this case we will often need to find disjoint paths of prescribed length between
pairs of vertices, so we make the following definition.

Definition 2.3. For two sets X and W in a graph, we say that (X, W) is (s,d~,d")-linked system
if the following holds. Suppose that we have distinct vertices x1,y1,...,Ts,ys € X, and integers
di,...,ds withd= <d; <dv for all i. Then there are disjoint paths Py, ..., P, with P; going from
x; to y;, Py internally contained in W, and P; having length d;.

We then follow the approach of Montgomery [17], who shows that an expander is a (s,d ™, d+)-
linked system for some appropriate choices of s,d~,d" (Lemma and Theorem ) Thus we
first apply results like in order to embed the tree with the bare paths removed and then apply
Montgomery’s result to find the required bare paths, completing the embedding. This strategy
works to prove Theorem for the case k = 2 (see section [4.1])

When k > 3, the proof is substantially more complicated and is dealt with in section The
first step is to note that by , if G has no copy of T, then G° contains a copy of K]]fjl for M > m
(see Claim ) Then there are two subcases depending on whether there are a lot of short (length
at most 3) paths in G between some pairs of parts of the copy of K ]]f4



If there are a lot of paths between pairs of parts of K%  then these parts together with the
paths between them form a large linked system. Using and techniques from Montgomery [17],
we find a copy of the tree T similar to how we did in the k = 2 case.

If there are few paths between all pairs of parts of K%, , then we show that the entire graph G
must be close to Burr’s extremal construction for showing . Specifically, we show that in this
case G has k — 1 disjoint sets Hy,..., Hi_1 of size > 0.9n, which have no edges between them. In
Lemma |4.16| we analyse graphs with this structure and prove Theorem for them.

3 Embedding a tree with many leaves

To deal with the case where our tree has many leaves, we will need a result of Haxell [15], which
lets us embed a bounded degree tree with prescribed root into a graph with sufficient expansion.
In section 4.2 we will actually need a generalization of this result to forests, so we state the more
general version in the following lemma. For a proof of Lemma (3.1} we refer the reader to the
appendix.

Lemma 3.1. Let A, M,t and m be given. Let X = {x1,...,x:} be a set of vertices in a graph G.
Suppose that we have rooted trees Ty, ,. .., Ty, satisfying > |Tw,| < M and A (Ty,) < A for all i.
Suppose that for all S with m < |S| < 2m we have |[N(S)| > M + 10Am, and for S with |S| < m
we have |N(S)\ X| > 4A|S|.

Then we can find disjoint copies of the trees Ty, ..., Ty, in G such that for each i, T, is rooted
at ;. In addition for all S C T,, U...UT,, with |S| < m, we have

’N(S>\(Tz1 U"'UTxt)‘ > A’S|

As a corollary, we can embed a large bounded degree tree into a graph whose complement does
not contain K, m.,-

Corollary 3.2. Let A;my,mg be integers, T be a forest with A(T) < A, and G a graph with
|G| > |T'| + 13Amy + mq such that G¢ does not contain Ky, m,. Then G contains a copy of T'.
Additionally, for all S C T with |S| < my, we have

IN(SNT| = AlS].

Proof. Since every forest F' is a subgraph of some tree on |F| vertices, without loss of generality
we may suppose that T is a tree.

Since G¢ does not contain K, m,, we have that for any S C G with m; < |S| < 2my,
INc(S)| > |G| — 2m1 — ma. Indeed, otherwise |G\(Ng(S) U S)| > my and so if we choose A C S,
B C G\(Ng(S)uUS) with |A| = my, |B| = mg, then AU B is a copy of Ky, m, in G°.

Now if we choose | X | < mj—1 maximal so that | Ng(X)| < 4A|X]|, then we claim that G/ = G\ X
satisfies that for all S C G’ with 1 < [S| < my, |Ng/(S)| > 4A|S| 4 1. Indeed, for any S C G’ with
1 <|S| <my, if [INe(9)| <4A|S| then |[Ng(X US)| < |[Ng(X)UNg(95)| <4A|X US|, so we must
have m; < |X U S| < 2my by maximality of X. But then

8Am; > 4A|X U S’ > |Ng(X U S)‘ > ‘G| —2mq — ma,
contradicting the assumption of the lemma. Also, for any S C G’ with m; < |S| < 2my, we have

[Ne(9)] =2 [Na(S)| = [X] = [Na(S)| —m1 > |G| = 3m1 — mg > [T'| + 10Am,.



Thus we may apply Lemma with the graph G’, m = my, X = {z} for any vertex z, and the
tree T, = T, to obtain that G’ contains a copy of T. Moreover, for all S C T with |S| < mq, we
have

[Na(SI\T| = [Ner (S\T'| = A[S]. O

We will also need the following extension of Hall’s theorem (see eg. exercise 25.4 in [22]

)
Lemma 3.3. Given a bipartite graph (A, B) and a function | : A = N, if IN(S)| > > cgl(v) for
all S C A then the graph contains a forest F' such that dp(v) = l(v) for allv € A and dp(v) <1
for allv € B. Ol

We are now ready to prove that a bounded degree tree with sufficiently many leaves is Ky, .. m
good.

-

Lemma 3.4. Let [,Ak € N and my < ... < my be given with | > 13Amy + 1. Then any tree T
with | leaves and A(T) < A is Ky, ,...m,, good.

Proof. Let n = |T|. We proceed by induction on k. For k = 1, any graph on m; vertices trivially
contains K%ll as a subgraph (since K} is the graph with m vertices and no edges.) Now suppose
k > 2 and let G be a graph with (k—1)(n—1)4m; vertices such that G¢ does not contain K, . m, -

First suppose there exists S C G with |S| > my, such that |[Ng(S)|+|S| < n — 1. Then letting
H = G\(Ng(S)US), we have |H| > (k—2)(n — 1) +m; and H does not contain a K, . m,_;»
or else we could take it together with an mj, vertex subset of S to get a copy of K, . m, in G
Thus we may apply induction to H to conclude that it contains a copy of 7.

Otherwise, we have that for all S C G with |S| > my, |[Ng(S)| + |S| > n. For sets S with
|S| = my, this is equivalent to G¢ not containing K, s for m' = (k —2)(n — 1) + m. Now let T"
be the subtree of T" with all leaves removed. Using [ > 13Amy 4+ 1 we have

k

(k—1)(n—1)+m; >n—1+13Amy + (k—2)(n — 1)+ m1 =n — [+ 13Amy, +m’.

Combining this with |7”| = n — [, we can apply Corollary to conclude that G contains a copy
of T'. Now let P be the vertices of T” to which we need to connect leaves in order to get T', and
let I(v) be the number of leaves to attach for each v € P. From the last part of Corollary we
have that for any S C P with [S| < my,

ING(S\T'| = AlS] = 3 1(v).
veS
Moreover, for any S C P with |S| > my, we have |[Ng(S)| + |S| —n > 0 which implies
ING(S\T'| = [NG(S)| = [T\S| = [Na(S)| + S| = n+1> 1= i(v) > ) i(v).
veEP vES

Thus we may apply Lemma to complete the embedding of T'. O
Theorem [I.2] now follows immediately.

Proof of Theorem|[1.3. Let n = |T|, k = x(H) and my < ... < my be the sizes of the color classes in
a k-coloring of H, so that m; = o(H). Let G be a graph on (n—1)(k—1)+my vertices such that G¢
has no copy of H. Then G has no copy of Ky, .. m,, and we have that ¢ > 13A|H|+1 > 13Amy+1,
so by Lemma [3.4) G must contain a copy of T O



4 Embedding a tree with few leaves

If a bounded degree tree doesn’t have many leaves, then it has many long bare paths by Lemma
S0 it remains to embed such trees. We will need the following definitions and lemmas of Montgomery
[17]. First we define a notion of expansion into a subset of a graph.

Definition 4.1. For a graph G and a set W C G, we say G d-expands into W if

1. IN(X)NW|>d|X| for all X C G with 1 < |X| < [%"

2. e(X,Y) > 0 for all disjoint X, Y C G with | X| = Y| = PW‘-‘
Definition 4.2. We call G an (n,d)-expander if |G| = n and it d-expands into G.
We state some basic properties of expansion.
Lemma 4.3. Let W C Z C G and suppose that G d-expands into W.
(i) Z d-expands into W.
(ii) If d > 2 then G d-expands into Z.
(iti) If d > 1 and d/(d — 1) < ¢ < d then G c-expands into W.

Proof. (i) follows directly from the definition.
1]

For (ii), condition 2 follows immediately. For condition 1, let X C G with 1 < |X| < {Td-‘ be
given. If | X| < [‘m then we have [N(X)NZ| > [N(X)NW]| > d|X|. Otherwise if ['W'] < |X| <
qu then we know that |Z\(NV(X)U X)| < {%-‘ by condition 2 of d-expansion. It follows that

wi
NG N 2] 2 12] - 1X] - o 2 12] -

1zl 1wl 2l
> > d|X
2d 2d — 2 IX1-

The proof of (ii¢) is similar to that of (i4). The interesting case to check is when {%—‘ <

2c 2d
d/(d —1) < cis equivalent to ¢! + d~! < 1. Combining these gives

| X| < {M—‘, which implies |W\(N(X) U X)| < {—r‘ by condition 2 of d-expansion. Notice that

W] W W
> x| - > - - >
INCONW =2 W] = |X| =S > W] - - 2 >

(W]

> | X|. O

We will also need a useful decomposing property of this expansion.

Lemma 4.4 (Lemma 2.3 of Montgomery [17]). There exists ng such that for k,n € N with n > ng

and k < logn, if we have my,...,my € N with m = my + ... +my and d; = g+d > 2logn, then
for any graph G with n vertices which d-expands into W with |W| = m, we can partition W into k
disjoint sets Wy, ..., Wy of sizes my, ..., my respectively, so that G d;-expands into W;. O

The following lemma will be crucial for section It allows us to simultaneously find many
paths of prescribed lengths between endpoints in an expander graph.



Lemma 4.5 (Lemma 3.2 of Montgomery [17]). Let G be a graph with n vertices, where n is suf-

ficiently large, and let d = 1601logn/loglogn. Suppose r,k1,..., k. are integers with 4 Log’lgogJ <
ki < n/40 for each i, and ), k; < 3|W|/4. Suppose G contains disjoint vertex pairs (xi,y;),1 <
1 <r, and let W C G be disjoint from these vertex pairs.

If G d-expands into W, then we can find disjoint paths P;, 1 < i < r,with interior vertices in

W, so that each path P; is an x;,y;-path with length k;. ]
It will be convenient for us to restate the previous lemma using the definition of a linked system.

Corollary 4.6. Let n,s € N and ¢ = 160logn/loglogn. Suppose that G is a graph on n vertices
and W C G such that n > |W|+2s and G c-expands into W. Then (G\W, W) is (s,d™,d")-linked

system, for d— =4 [blgoign—‘ and dT = L—V(IQ.

Proof. This follows immediately from Lemma and the definition of (s,d ™, d")-linked system. [J

Lemmashows that if a graph G expands into a set W, then it is possible to cover 3/4 of W by
disjoint paths of prescribed length. The following theorem shows that, under similar assumptions
to Lemma it is possible to cover all of W by such paths.

Theorem 4.7 (Theorem 4.3 of Montgomery [I7]). Let n be sufficiently large and let | € N satisfy
I > 1031log®n and ln. Let a graph G contain n/l disjoint vertex pairs (x;,y;) and let W =
G\(Ui{z;,v:}). Suppose G d-expands into W, where d = 10"°1log* n/loglogn. Then we can cover
G with n/l disjoint paths P; of length | — 1, so that P; is an x;,y;-path. O

Montgomery uses the above theorem to embed a spanning tree with many long bare paths in
an expander. The idea is to first find a copy of the tree with the bare paths removed, and then
apply Theorem [£.7] to find the paths. We will use this theorem for the same purpose in section (1]

4.1 The case k=2

If we have a graph with at least n vertices for which small sets expand and whose complement does
not contain K?2,, then we can find an embedding of the tree via Theorem as in Montgomery
[17].

Lemma 4.8. Let n,m,A € N with n sufficiently large relative to A and let d = 4 - 10121(1;%;"”,
r = [103log? n], such that n > 2(d+ 1)m. Let T be a tree with n vertices, A(T) < A, and at least
n/(4r) disjoint bare paths of length r. If G is a graph with n' vertices such that n’ > n, G° does

not contain K2,, and for all S C G with |S| < m, |[N(S)| > d|S|, then G contains a copy of T.

Proof. If n’ > n + 13Am + m then G contains a copy of T' by Corollary Otherwise we have
n<n' <n+13Am+m=n(1l+o(1)).

We first note that G is an (n’, d)-expander. Indeed, for any S C G with 1 < |S| < m we have
|N(S)| > d|S| by assumption. For S C G with m < |S| < [n//(2d)], using n’ > 2(d + 1)m and the
K2 -freeness of G we have

IN(S)| = n' S| —m >d|S],

so the first condition holds. Moreover, since G¢ does not have K2, and [n//(2d)] > m, the second
condition holds as well.



Now let 7" be T with the interior vertices of the n/4r bare paths of length r deleted. Then
IT'| = 3n/4 +n/(4r). Let ny = n' —n/8 and ny = n/8. Then if we let d; = £%d, we can apply
Lemma to partition G into G and G4 such that |G;| = n; and G d;-expands into G;. Note that
m = o(n) and hence

m _ 3n ,
ny=n"—n/8> < 2 Z+4—+13Am+m |T"| + 13Am + m.
Morever, G has no K2, so we conclude by Corollary that G1 contains a copy of T". Let (x;,y;)
be the disjoint vertex pairs in the copy of 7" that need to be connected by paths to get T.

Let G’ be any subgraph of G of size (r + 1)n/4r containing Go U (|, {zs,v:}), and let W =
G'\ (U; {zi,y:}). Since G2 € W, we may apply Lemma[4.3] (i), (ii) to conclude that G’ da-expands
into W. We have

dy = dn/40n’ > d/41 > 10" 1og* n/loglogn > 10 1og*|G’|/ loglog |G'|.

By Lemma (111) G’ 1091og* |G'|/ loglog |G'|-expands into W. Since |G'| < n, we have and
r+1>103 log |G’|. Combining these, we can apply Theorem 4.7| with | = r + 1, G = G’, and
d = 10'"01og*|G’|/ loglog |G’| to conclude that the pairs (x;,y;) can be connected by disjoint paths
of length r in G’, completing the embedding of T O

Putting Lemma [3.4) and Lemma [4.8] together, we may conclude the case k = 2 for all bounded
degree trees as follows
Proof of Theorem [2.1] for k =2. Let d = 4 - 10121é0g10gnn and 7 = [10%log?n]. We can choose C 4
such that n is sufficiently large relative to A,k and n > (2d 4+ 3)ms. Now let G be a graph
with n + m; — 1 vertices such that G° does not contain K,,, m,. Notice that in particular, G¢
doesn’t contain Kgm. If T has at least n/4r > 13Amg + 1 leaves, then by Lemma we are done.
Otherwise, by LemmaT has at least n/4r disjoint bare paths of length r. Note that since G¢ has
10 Ky, msy, we have that for any S C G with [S| > my, |[N(S)| > n—mg —|S|. Now choose X C G
with | X| < my — 1 maximal so that |N(X)| < d|X| and let G’ = G\ X. Then we claim that for all
S C G’ with |S| < my, |[Ne(S)| > d|S|. Indeed, otherwise we would have |[N(X U S)| < d|X US|,
so by maximality of X this would imply m; < |X U S| < 2m;. But then

2dm; > d|X US| > |N(XUS)|>n—ma2—|XUS|>n—2m; —mao,

a contradiction. For S with m; < |S| < mg we have [N(S)| > n — 2mg > dmg > d|S|. Since
|X| < mj — 1, we have |G'| > n. Thus we may apply Lemma to G’ with m = msy to conclude
that G’ contains a copy of T. O

4.2 The case k >3

We first extend Corollary to show that we can embed a large bounded degree tree into a graph
whose complement does not contain KF,.

Lemma 4.9. Let Ajk,m € N be given, T a tree with A(T) < A, and G a graph with |G| >
(k —1)(|T| + 13Am) + m such that G¢ does not contain K¥. Then G contains a copy of T



Proof. We proceed by induction on k. For k = 1, any graph on m vertices trivially contains K.
Now suppose k > 2 and let m’ = (k — 2)(|T'| + 13Am) + m. If G° does not contain K, ,, then by
Corollary G contains a copy of T.

Otherwise G contains disjoint A, B with |A| = m,|B| = m’ and no edges between A and B.
Then B¢ does not contain a copy of K*~1 or else taking this copy together with A would give a
copy of Kﬁl in G¢. But then by induction, B contains a copy of T. O

Moreover, for k > 3, we observe that we can embed much larger bounded degree forests than
trees. This makes sense in view of the Burr’s construction showing — it does not have a tree on
n vertices, but it has a forest made of k — 1 trees each of size n — 1.

Corollary 4.10. Let k,m,A € N be given with k > 3, and let Ty, Ty be trees with |T,| < |Ty| and
A(T,), A(Ty) < A. Let G be a graph with G¢ not containing KF . If

|G| > |Ta| + (E — 1)(|Tp| + 13Am) + m,
then G contains a copy of the forest T, UTy.

Proof. We first apply Lemma to obtain a copy of T, in G. Now we let G’ = G\T, and apply
Lemma 4.9 to G’ to obtain a copy of T} in G'. O

The following lemma lets us find a copy of T" in a sufficiently large graph which contains a linked
system and whose complement is K% -free, but does contain K¥~!, for a sufficiently large u. The
idea of the proof is to break up our tree into three parts—two forests T,, Tp, and a collection of
bare paths joining the forests. Then the forests T, and T}, are found using Corollary [£.10] while the
bare paths are found using the linked system.

Lemma 4.11. Let n,m,k,A € N with k > 3 and n sufficiently large relative to A,k and let
d=14- 10121;2%;"71, r = [10%log?n] and y = [logn], such that n > 2(d 4+ 1)m. Let X, W, Z be
disjoint subsets of a graph such that (Z U X)¢ is KF -free with |Z| > 0.99(k — 1)n. Let T be a tree
on n vertices with A(T) < A, and at least n/4r bare paths of length r. Suppose that X¢ contains
KE=Y for w > 2n/r. Suppose that (X, W) is a (n/2r,d=,d")-linked system for d~ <y < d*. Then
ZUXUW contains a copy of T'.

Proof. We first find a subset of Z with appropriate expansion properties.

Claim 4.12. There exists Z' C Z with |Z'| > 0.9(k — 1)n such that |[N(S) N X| > |S| for any
S CZ" with |S| < n/r.

Proof. Let Uy,...,Ux_1 be the parts of the K*~1 in X¢. If there exists S C Z with |S| > m and
|Nge(S)NU;| > m for all i, then we can take subsets of size m from S, Nge(S)NU1, . . ., Nge(S)NUgk_1
to obtain a K* in (X U Z) a contradiction. Thus for all S C Z with n/r > |S| > m, we have
that |[Ng(S) N X| >u—m >n/r > |S| (using m = o(n).)

Now let A C Z with |A| < m — 1 be maximal such that |[Ng(A) N X| < |A|, and let Z' = Z\ A.
We claim that for all S C Z’ with |S| < m, |[Ng(S)NX| > |S|. Indeed, otherwise [Ng(AUS)NX| <
|A US|, so we must have m < |A U S| < 2m by maximality of A. But then

2m > |AU S| > |[Ng(AUS)| >n/r,

a contradiction to n > 2(d 4+ 1)m. O
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Now let T, be a collection of n/4r disjoint paths of length r — 2y — 4, so that |T,| = n(r — 2y —
3)/(4r) < n/4 and let T, be T without the interior vertices of the n/4r bare paths of length 7, so
that |Tp| = n —n(r —1)/4r = 3n/4 +n/(4r). Since we can always add edges to T, and T} to make
them trees without increasing the maximum degree, and

1Z'| > 0.9(k — 1)n > %—"(k— 1) (?+£+13Am> +m,

we may apply Corollary to conclude that Z’' has a copy of T, and Ty. Let xz4,y, € Z' for
1 < a < n/2r be the endpoints of those copies so that if we connect x, with y, by disjoint paths
of length y + 2 for all 4, we obtain an embedding of 7. By Lemma [3.3 and the claim, there is a
matching from {z, : 1 <a<n/2r}U{y,:1<a <n/2r} tosomeset {z,:1<a<n/2r}U{y,:
1 < a < n/2r} contained in X. Since (X, W) is a (n/2r,d”,d")-linked system for d~ <y < d,
there are disjoint z/, to y., paths of length y in W as required. O

Next we prove two lemmas which help us construct linked systems. Lemmal[4.13]lets us combine
2 linked systems into a bigger linked system, provided that there are sufficiently many short paths
between them. In Lemma |4.14] we combine several linked systems with many short paths between
them into a big linked system, by making repeated use of Lemma

Lemma 4.13. Suppose that we have sets of vertices X1, Xo, W1, Wo with (X1 UW71)N(XoUW3) = 0,
such that (X1, W1) is a (s1,dy,d])-linked system and (X2, Wa) is a (s2,dy,dq)-linked system.
Suppose that there are disjoint paths P, ..., P, of length < 3 from X; to X internally outside
XiUXoUW UWy. Then (X1 UXo, Wi UL U Ule Pt) is a (s,d™,d"%)-linked system for d~ =
dy +dy +3, d* = min(d{,dJ), and s = min(sq, s2,t/3).

Proof. Let x1,y1,...,Ts,ys be vertices in X; U X and dy,...ds € [d~,d "] as in the definition of
(s,d™,d")-linked system. To prove the lemma we need to find disjoint paths Q1,...,Qs with Q;
a length d; path from z; to y;. Without loss of generality x1,v1,...,%s,ys are labeled so that
1, Y1y -y TasYa € X1, Tat1l,Yatly---»Th U € X2, Tog1,--.,Ts € X1, and Yp41,...,Ys € Xo for
some a and b.

Since the paths Pi,..., P, are disjoint and have only 2 vertices each in X; U X9, we have
that < 2s of the paths Py,..., P, intersect {x1,...,2Zs,Y1,...,Ys}. Since t > 3s, without loss of
generality, we can suppose that the paths Pyy1,..., Py are disjoint from {z1,...,2s,y1,...,ys}. For

each i = b+ 1,...,s, let y/ be the endpoint of P; in X;, and z the endpoint of P; in X5. For
each i = b+ 1,...,s, let dl = d; and d? = d; —d; — |E(P;)|. Notice that by assumption we
have d +d, +3 = d~ < d; < d* = min(d{, d;) which combined with |E(P;)| < 3 implies that
dy <d!<df andd; <d? <dj.

Apply the definition of (X3, W;) being a (s1,d],d;])-linked system in order to find paths
Q1,...,Qq, Ql17+17 ..., QL with Q; a length d; path from w; to y; internally contained in Wy, and Q}
a length d} path from x; to y/ internally contained in Wj. Similarly, apply the definition of (Xa, W2)
being a (g, d; , d3 )-linked system to find paths Qu11, - - -, Qp, Q127+17 ..., Q% with Q; a length d; path
from z; to y; internally contained in Wy, and Qf a length d? path from 2/ to y; internally contained
in Wy. Fori=b+1,...,s, let Q; = Q} + Pi + Q7 to get a length d; = d! + d? + |E(P;)| path going
from x; to y;. Now the paths @1, ..., Qs are paths from z1,...,zs to y1,...,ys internally contained
in Wy UWa UJ!_, P, as in the definition of (s,d~,d")-linked system. O
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Lemma 4.14. Let G be a graph and k,s,d”,d" € N. Fori = 1,...,k suppose that we have a
(s,d,d%)-linked system (X;, W;) with (X; UW;) N (X; UW;) =0 for i # j. Suppose that we have
a connected graph F with vertex set {1,...,k} such that for all uv € E(F) there is a family Py, of
t disjoint paths of length < 3 from X, to X, internally outside Ule X; UW,; with t > 15ks. Then
(X, W) is a(s,k(d~43),d")-linked system for X = X1U---UXy and W = W1 U---UW,UU,cpy Pe.

Proof. Without loss of generality we can suppose that F' is a tree with edges es, ..., e, and that
the vertices of I’ are ordered so that for each i, the edge e; goes from vertex ¢ to some vertex in
{1,...,i—1}. Notice that this ensures that the induced subgraph F[{1,...,i}] is a tree for every i.

For all e; € E(F), choose a subfamily P, C P., with |P, | = 3s such that the paths in
Péi are disjoint from those in Péj for ¢ # j. This is done by choosing the paths in Péi one by

one for each i always choosing them to be disjoint from U;;lz Upep: P. This is possible since
<

| UE;IQ Upep, P| < 12is (using the fact that the paths in all Pe; have length < 3), and since there
J

are t > 15ks > 12is + 3s paths in P,, which are all disjoint.

We will use induction on i to prove that “(X; U---UX;, Wi U---UW; U U;:Q Pe,) is a
(s,i(d™ +3),d")-linked system.” The initial case “i = 1” follows from (X7, W7) being a (s,d ™, d")-
linked system. Suppose that ¢ > 2, and (X', W’) is a (s, (i — 1)(d~ + 3),d")-linked system for
X'=X;U--UX; qand W =Wy U---UW; s UUIZL P

By construction of P/ and the initial assumption that paths in P, are internally disjoint from
U?Zl X; UW; we have that paths in P, are internally disjoint from X' U W’ and X; UW;. From
the lemma’s assumptions, for a < b we have (X, U W,) N (X UW;) = 0 and we know that paths
in P, are disjoint from X3, U Wj. These imply (X' UW') N (X; UW;) = 0. Also, since e; € E(F),
we have that every path in P, goes from X’ to X; and has length < 3. By Lemma we have
that (X' UX;, W UW; U U;;l Pe,) is a (min(s, [P, [/3), (i —1)(d” +3) +d~ +3,d")-linked system.
Since |P;,|/3 = s, this completes the induction step. O

We will need the well known folklore result that every tree T' can be separated into two parts
of size < 2|T'|/3 with one vertex (see e.g. [5], Corollary 2.1.)

Lemma 4.15. The vertices of any tree T' can be partitioned into a vertex u and two disjoint sets
T, and Ty such that |T,|, |Ty| < 2n/3 and there are no edges between T, and T. O

The following lemma shows that if we have a 2-edge-coloured complete graph on (k — 1)(n —
1) + my vertices whose colouring is close to Burr’s extremal construction, then it either contains a
red copy of T or a blue copy of Ky, .. m,

Lemma 4.16. Suppose that we have numbers n,k, A, m1,...,my € N with k > 3, m; < mg <
4
... < my, n large enough relative to A,k and n > 2(d + 1)my, where d = 4 - 1012 lgzglognn'

Let T be a tree with |T| =n and A(T) < A. Let G be a graph with (k—1)(n— 1) 4 my vertices
that has disjoint vertex sets Hy, ..., Hx_1 with |H;| > 0.9n, such that there are no edges between
H; and Hj for all i # j. If G° has no Ky, ... m,, then G contains a copy of T'.

Proof. Fix m = my, and r = [10%log® n]. Notice that we have n > 2(d+1)m and G has no K* . If
T has > n/4r leaves, then since n/4r > 13A|Kp, . m,|+1 we are done by Theorem Therefore,
by Lemma we may assume that 7" has at least n/4r bare paths of length r.

We first need the following claim.
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Claim 4.17. There exist H] C H; with |H]| > 0.8n such that for all S C H] with |S| < m, we have
[Ny (S)| = 5A(S| and for all S C Hj with m < |S| < 2m, we have [Ny (S)| > 2n/3 + 10Am.

Proof. First observe that for each i, H{ has no copy of K2, or else we could take such a copy
together with m vertices from each Hj : j # i, to obtain a KE in G, a contradiction. Thus for any
S C H; with m <|S| < 2m we have |Ng,(S)| > |H;| — |S| —m > |H;| —3m > 0.8n.

Now for each i, choose a maximal X; C H; with |X;| < m — 1 such that |Ng,(X;)| < 5A|X;],
and let H! = H;\X;. Notice that we have |H[| > |H;| — m > 0.8n as required by the claim. Using
n > 2(d 4+ 1)m and the fact that n is sufficiently large relative to A, we have that for any S C H/

with m < |S| < 2m
2
|Nu:(S)] = [Ny, (S)] —m > 0.8n —m > gt 10Am.

Finally, suppose for sake of contradiction that there exists S C H with |S| < m such that
|N#(S)] < 5A[S|. Then we have |[Np,(X; US)| < 5A|X; US| so that m < |X; US| < 2m by
maximality of X; and hence

10Am > 5A|X; US| > |Ng,(X; US)| > 0.8n,
a contradiction to n > 2(d + 1)m and n being sufficiently large relative to A. O

Let Z = G\ Uf;ll H!. Suppose there exists v € Z and a # b such that dr; (v), dpy (v) = A.
Apply Lemma to T in order to get a vertex u and two forests T, and T} with no edges between
them and |Tg],|T5| < 2n/3. We think of the trees in the forests T, and T} as being rooted at the
neighbours of u. Let t,,%, < A be the number of neighbors of w in T, and T} respectively. Now
choose X, C H, N N(v) so that | X,| =t, and X;, C H{ N N(v) so that |X}| = b. We observe that
for i € {a,b}, for all S C H} with 1 < |S| < m, we have

Ny (S\Xi| = [Ny (5)] — |Xi] = 5AIS| — 1; > 4A]S]. (3)

Because of the claim and , H] satisfies the assumptions of Lemma with G = Hy, M = 2n/3,
t =tq, X = X,, and {Ty,, ..., Ty, } the collection of trees in the forest Tj,. Therefore we can apply
Lemma to H, in order to find a copy of T, with its trees rooted in X,. By the same argument,
Hy, has a copy of Tp, with its trees rooted in Xj. These copies of T, and T} together with the vertex
v give a copy of T in GG, so we are done.

Otherwise, for all v € Z there exists i, such that for all j # 4, dH; (v) < A. We partition
G into k — 1 parts via G; = H/U{v € Z : i, = i}. Observe that for any ¢ # j and S C Gj,
we have |[N(S) N Hj| < A[S|. We claim that therefore G§ has no K2,. Indeed suppose without
loss of generality that S; was a copy of K2, in G{. Then for j = 2,...,k — 1, observing that
|[HAN(S1)| > |Hj| = [N(S) N H}| > 0.8n — 2Am > m, we can choose a set S; C H{\N(S) of size
m. Then Uf;ll S; is a copy of Kﬁl in G, a contradiction.

Now fix i and observe that since G¢ has no K2, we have that for any S C G; with |S| > m,
|Ng, (S)| > |Gi|—|S|—m. Now choose Z; C G; with |Z;| < m—1 maximal so that |Ng,(Z;)| < d|Z;]
and let G = G;\Z;. Then we claim that for all S C G} with |S| < m, |[Ng/(S)| > d|S]. Indeed,
otherwise we would have |Ng,(Z; U S)| < d|Z; U S|, so by maximality of X this would imply
m < |Z; US| < 2m. But then

2dm > d|Z; US| > |N(Z; US)| >n—1Z; US| —m >n—3m,
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a contradiction.

Now let n, = |G%|. If for some i, n, > n then we can apply Lemma to conclude that
G, has a copy of T. Otherwise we have that n; < n —1 for all ¢ € [k — 1], and therefore using
|G| = (n—1)(k — 1) + my we conclude S-¥7'|Z;| > my. For each j =1,...,k — 1, we observe that

k—1
|N (U Zi> NHj

=1

< |IN(Z;) VHj| + > IN(Z) N Hj| < dm + kAm,
i#£]

and hence

k—1
‘HJ’\N (U ZZ'> > 0.8n — kAm — dm > m.

i=1

Thus for each j = 1,...,k — 1 we can choose a set S; C H\N (Uf;ll Zi) of size mjy1 < m. But

then by taking a subset X C Uf:_ll Z; of size m1, we obtain that X U Uf:_ll S; is a copy of K, ....my
in G¢, a contradiction. O

We can now complete the case k£ > 3 by using either Lemma 4.11| or Lemma |4.16

. 4
Proof of Theorem [2.1] for k > 3. Fix m = my, d = 4 - 102 1;(§glognnﬂ" = [1031og?n] and y = [logn].
We can choose Ch 4, such that n is sufficiently large relative to A,k and n > 2(d + 1)m. Let G be
a graph with (k — 1)(n — 1) 4+ my vertices such that G¢ has no copy of K, . m,. Notice that in
particular G¢ has no Kﬁl If T has at least n/4r > 13Am + 1 leaves, then by Lemma we are

done. Otherwise, by Lemma T has at least n/4r disjoint bare paths of length r.

Claim 4.18. There are disjoint sets Q',...,Q}_, of size € [22yn/r,23yn/r], and W{, ..., W]_, of
size € [20yn/r,21yn/r] such that for all i, W] C @}, Q. y-expands into W/, and there are no edges
between Q; and Q’; for i # j.

Proof. Let ¢ = 23yn/r and w = 2lyn/r. Since n is sufficiently large relative to k, A and r =
[1031og? n] we have (n—1)(k—1)+m1 > (k—2)(n+13Aq)+q. Therefore we can apply Lemma
to conclude that either G contains a copy of T so that we are done, or else there exists a copy of
Ké“_l in G¢. Label the parts of Ké“_l by Q1,...,Qr—1. Observe that clearly Q¢ has no copy of K2,
For each i, let W; C Q; be a set of size w. Now choose X; C Q; with | X;| < m — 1 maximal so that
|Ng, (X)) N W] < y|X;| and let Q) = Q;\X;, and W/ = W;\X;. We claim that for all S C Q) with
|S| < m, [Ng(S) N W]| > y[S|. Indeed, otherwise we would have [Ng,(X; U.S) N W;| < y|X; US|
so that m < |X; U S| < 2m by maximality of X;. But then since Q$ has no K2,

2ym > y|X; US| > [Ng,(X; US)NW;| > w—|X; US| —m > w—3m,

a contradiction to n > 2(d + 1)m. Note that since m < yn/r, we have |Q}| > ¢ —m > 22yn/r and
|[W!| > w —m > 20yn/r. We further conclude that @) y-expands into W/. Indeed, since QI does

not have K2, we have that for any S C Q) with m < || < {%—‘,

[Ny (8) A W)| 2 W] = 18] —m > w —2m — o

so the first condition holds. Moreover, since Q¢ does not have K2, and [w/2y] > m, the second
condition holds as well. O
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Now let M; = Q}\ W/ and note that yn/r < |M;| < 3yn/r. For i # j, fix a maximal family P; ;
of < 8kn/r vertex-disjoint paths of length < 3 from M; to M; internally outside R; = Ufz_ll Q.
Let F' be an auxiliary graph on [k — 1] with ij an edge whenever |P; ;| = 8kn/r. Let Ry = U, ,; Pi,j
and R = Ry U Ry. Note that |Ry| < 23kyn/r and |Rs| < 8k3n/r so that |R| < 24kyn/r (since
y > 8k? as a consequence of n being sufficeintly large relative to k.) Now let M/ = M;\R3 and note
that |M/[| < |M;| < 3yn/r and

|M!| > |M;| — |Ra| > yn/r — 8k3n/r > 2n/r > m.

Note that |Q}| < 23yn/r, so 1601log|Q%|/loglog |Q}| <logn <y and hence by Lemma (i4i),
we have that Q) 1601log |Q’|/loglog |Q}|-expands into W. Moreover

n n n n
Q) > 222 > L s w42
r T r 2r

so we may apply Corollary with s =n/2r. Since

Wil log | Q3] log y
< —1 d 4|l———— | <4|—=—|<=-3
v= 40(n/2r) o loglog |Qi| | = " |loglogn| — k 7

we conclude that (M;, W) is a (n/2r,y/k — 3, y)-linked system and hence so is (M, W/). We now
consider two cases depending on whether F' is empty or not.

Case 1: Suppose that F' is not empty. Let F’ be the largest connected component of F' and
let " = |F'| + 1. Since F is not empty we have k' > 3. Let G’ = G\ U,cpr (M] UN(M])).

Case 1.1: Suppose that |G'| > (k — k') (n + 13Am) + m. Then G’ has no KE~¥+1 or else we
could take it together with subsets of M/ : i € F' of size m to obtain a K¥, in G¢, a contradiction.
But then G’ contains a copy of T' by Lemma

Case 1.2: Suppose that |G'| < (k — k')(n + 13Am) + m. Then since m = o(n), we have

U M uN ()

i€l

>(k-=1)(n-=1)+m — (k—K)n+13Am) —m = (k' — 1)(n — 1)(1 — o(1)).

So if we let Z = U, N(M])\R, we obtain

21 > | |J N -

i€F’

—|R| = ||J M{UN(M)

1€ F’

U M

1<y 04

- |R|

> (K = 1)(n—1)(1 - o(1)) — 3’“97” = 24@7"

> 0.99(k" — 1)n.

Moreover, if we let X = J,cp M then we claim (Z U X )¢ has no K¥. Indeed, since ij ¢ E(F)
for any i € F',j ¢ F’', we could take subsets of M/ : i ¢ F' of size m, together with a copy of
K¥ in (ZU X)¢ to obtain a copy of K* in G. Since F’ is connected, Lemma applied with
d- =y/k—3,d" =y, s=n/2r, and k = k' implies that (X, W) is a (n/2r,y,y)-linked system for
W = Ry UJ;epr W/. Thus we may apply Lemma to conclude that G contains a copy of T
Case 2: Suppose that F is empty. Note that if ij ¢ E(F) then we must have no edges between
MU (N(M{)\R) and M} U (N(M)\R) by the maximality of the family of paths P; ;. Thus if we
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define H; = N(M])\R, then Hy, ..., Hy_; are disjoint and there are no edges between H; and Hj,
for all i # j. Fix some ¢ € {1,...,k — 1}. Since |M]| > m, we have that (G\(N(M/) U M/))¢ does
not contain KX~1 or else we could take it together with a subset of M] of size m to obtain a K in
G°, a contradiction. Thus if |G\(N(M]) U M/)| > (k — 2)(n + 13Am) + m, then G\ (N (M]) U M])
has a copy of T' by Lemma [4.9] so we are done. Otherwise we have

IN(M])U M| > (n—1)(k—1)+mi — ((k—2)(n+ 13Am) + m)
=n—(k—2)(13Am+1)+m; —m
— (1 - o(1)),

so that |[N(M])| > n(1 —o(1)) — 3yn/r = n(1 — o(1)) and hence for n sufficiently large,
|Hi| > IN(M)| = |R| = n(1 = o(1)) — 24kyn/r > 0.9n.

This holds for all 7, so we can apply Lemma to conclude that G' contains a copy of T O

5 Concluding Remarks

In this paper we determined the range in which bounded degree trees are H-good, up to logarithmic
factors. However, we conjecture that these factors can be removed to obtain the following.

Conjecture 5.1. For all A and k there exists a constant Cay such that for any tree T with
mazimum degree at most A and any H with x(H) = k satisfying |T| > Ca x|H|, T is H-good.

As mentioned in the introduction, Conjecture is best possible up to the constant factor Ch .
Pokrovskiy and Sudakov [20] showed that Conjecture holds for paths, and our Theorem
shows that Conjecture holds for trees with linearly (in |H|) many leaves.
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Appendix

Our goal will be to prove Lemma This is a generalization of Haxell’s theorem [I5], and the
proof follows the method of Friedman and Pippenger [I3]. The idea is to prove a stronger statement
from which Lemma [3.1] will follow as a corollary. For this, we will also need a slightly different
definition of neighborhood. For a vertex x in a graph G, let I'(z) = N(x) be the neighborhood of z
and for a set of vertices S in G, define I'(S) = |J g I'(x). Also, for a tree T" rooted at v, we define
droot(T) = dT(v)-
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Lemma 5.2. Let A, M,t and m be given. Let X = {x1,...,x:} be a set of vertices in a graph G.
Suppose that we have rooted trees Ty, ..., Ty, satisfying 22:1 |Ty,| < M and A(Ty,) < A for all
i. Suppose that for all S with m < |S| < 2m we have |I'(S)| > M + 10Am, and for S with |S| <m
we have

P\ X] = 4AIS\ X[+ D7 (droot(T2) + A). (4)

zeSNX

Then we find disjoint copies of the trees Ty, , ..., Ty, in G such that for each i, T, is rooted at x;.
In addition for all S C G with |S| < m, we have

D)\ (Toy U- - U Ty, )| 2 A[S]. ()

Proof. The proof is by induction on 25:1 e(T;,). The initial case is when each tree is just a single
vertex which holds by embedding T}, to z;. Then holds as a consequence of . Now suppose
that the lemma holds for all families of trees with 25:1 e(Ty,) < e and we have a family with
S e(Ty,) = e > 0. Without loss of generality, we may assume that e(T,) > 1. Let r be the
root of Ty, and ¢ one of its children. For every v € I'(x1) we define a set XV = X U {v} and a
corresponding family of rooted trees {1} : z € X"} as follows. Let T} be the subtree of 7%, rooted
at r formed by deleting ¢ and its children. Let 7, be the subtree of T, rooted at ¢ formed by ¢
and its children. For all z € XV — 21 — v, let T) =T,.

Suppose that there is a vertex v € I'(z1) \ X such that the set XV together with the family of
trees {T : © € X"} satisfy the following for every C' C G with |C| < m.

PN X 2 4AIC\ X+ 3 (o (T2) + A).
rzeCNXvV

Then, by induction we have an embedding of T , ..., T}, T into G' which satisfies . By adding

s Lo
the edge x1v, we can join the trees T}/ and T} in order to obtain a copy of T}, rooted at x;. This

gives an embedding of T, ,...,T;, into G which satisfies .
Otherwise, for every v € I'(x1)\ X, there is a set C,, with |C,| < m and

TCON XY SAAICAX [+ - (drour (T2) + ) = 1. (6)
zeC,NXV

Notice that taking S = {1}, implies that z; has at least one neighbour outside of X. Define a
set of vertices S to be critical if it has order < m and equality holds in .

Claim 5.3. For every v € I'(x1)\X, the set C, is critical, and also v € I'(Cy) and x1 & C,.
Proof. Notice that the following hold.
IT(Cy) \ X| =1 < |T(C) \ X7, (7)

INCAPCFERS (dmot(T”(az)) + A) <4plC\ X[+ Y (dmot(T(az)) + A). (8)
zeCyrNX" zeCynX

Adding @, , , and applied with S = C,, gives “0 < 0” which implies that equality holds

in each of these inequalities. In particular equality holds in , which implies that C, is critical.

For equality in to hold, we must have v € T'(C,). For equality in to hold, we must have

x1 € Cy (since dyoor (T;l) = droot (Txl) -1 O
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We remark that the above proof also gives v € C,,, although this will not be needed in the proof.
We’ll also need the following claim.

Claim 5.4. For two critical sets S and T, the union S UT is critical.

Proof. First we show that the reverse of the inequality holds for S UT. We have the following

PN X| = 4AIS\ X[+ > (droot(T(2)) + A). (9)
zeSNX
DT\ X| = 4AIT\ X[+ Y (ot (T()) + A). (10)
zeTNX
DSNT)\X| = 4AISNT\ X[+ > (dmot(T(:c))+A>. (11)
zeSNTNX

Equations @D and come from S and T being critical, whereas is just applied to SNT
(which is smaller than m since S is critical.) Also, note that by inclusion-exclusion, we have

[SUT\X|=|S\X|+|T\X|—-|SNT\ X]|, (12)
> (dmot (T(x)) + A) = ) (dmot (T(z)) + A) + ) (dmot (T(x)) + A)
ze(SUT)NX xeSNX zeTNX (13)
= > (dron(T@) +A).
zxeSNTNX

Moreover, we observe that

(S UTN\X| = [(T(S) UT(T)\X],
DS NTNX| < [(T(S) NT(T)\X],

which together with inclusion-exclusion implies

DS UTNX| < [CO\X] + [D(TN\X] = [T(S N T)\X]. (14)
Plugging @, , and into , and then using and gives
IDSUT)\ X| <4AISUT\ X[+ Y (dmot(T(x)) +A). (15)
z€(SUT)NX

Since both S and T are critical we have |S U T| < 2m, which together with implies that
IPSUT)| <|X|+[TSUT)\ X| <|X|+8Am < M + 10Am. By the assumption of the lemma
we have |SUT| < m. Therefore holds for the set S UT which together with implies that
S UT is critical. O
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Let C = UveF(zl)\X Cy. By the two claims, we have that C is critical. Since from the first
claim I'(x1)\X C T'(C) and z1 ¢ C, we have that

T(C U {z}) \ X| = [F(C) \ X|
—4AIC\ X[+ Y (droot (T(@) +2)
zeCNX

<4plc\ x|+ Y (dmot (T(x)) + A) + dyoot (T(1)) + A
zeCNX

—4A[Cu{mP\ X+ Y (dmot (T(z)) + A).

ze(CU{z1})NX

By (4) we have that |CU{z1}| > m, which combined with C' being critical means that |C'U{z1}| =
m+ 1. But then [['(CU{z1})| < |X|+ |T(CU{z1})\ X| < |X|+ 8Am contradicts the assumption
of the lemma that |[I'(C U{z1})| > M + 10Am. O

Proof of Lemma (3.1 Note that since [I'(S)| > |[N(S)| and >, cgnx (droot(Tz) + A) < 4A[S N X|
for all S, we may apply Lemma[5.2]to obtain copies of T, ..., Ty, rooted at @1, ..., x; respectively
so that (5)) holds for all S with |S| < m. In particular, if S C T,, U...UT,, and |S| < m then

IN(S)\ (T, U...UTy,)| = TS\ (Ty, U...UTy,)| > AlS]. O
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