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Abstract

Aharoni and Berger conjectured that in every proper edge-colouring of a bipartite
multigraph by n colours with at least n+1 edges of each colour there is a rainbow matching
using every colour. This conjecture generalizes a longstanding problem of Brualdi and
Stein about transversals in Latin squares. Here an approximate version of the Aharoni-
Berger Conjecture is proved—it is shown that if there are at least n+ o(n) edges of each
colour in a proper n-edge-colouring of a bipartite multigraph then there is a rainbow
matching using every colour.
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1 Introduction

The research in this paper is motivated by some old problems about transversals in Latin
squares. Recall that a Latin square of order n is an n × n array filled with n different
symbols, where no symbol appears in the same row or column more than once. A transversal
in a Latin square of order n is a set of n entries such that no two entries are in the same
row, same column, or have the same symbol. It is easy to see that not every Latin square
has a transversal (for example the unique 2 × 2 Latin square has no transversal.) However,
it is possible that every Latin square contains a large partial transversal. Here, a partial
transversal of size m means a set of m entries such that no two entries are in the same row,
same column, or have the same symbol. The study of transversals in Latin squares goes
back to Euler who studied orthogonal Latin squares i.e. order n Latin squares which can be
decomposed into n disjoint transversals. For a survey of transversals in Latin squares, see [1].

There are several closely related, old, and difficult conjectures which say that Latin squares
should have large partial transversals. The first of these is a conjecture of Ryser that every
Latin square of odd order contains a transversal [2]. Brualdi conjectured that every Latin
square contains a partial transversal of size n − 1 (see [3].) Stein independently made the
stronger conjecture that every n × n array filled with n symbols, each appearing exactly n
times contains a partial transversal of size n − 1 [4]. Because of the similarity of the above
two conjectures, the following is often referred to as “the Brualdi-Stein Conjecture”.

Conjecture 1.1 (Brualdi and Stein, [3, 4]). Every n×n Latin square has a partial transversal
of size n− 1.

In this paper we will study a generalization of the Brualdi-Stein Conjecture to the setting of
rainbow matchings in properly coloured bipartite multigraphs. How are these related? There
is a one-to-one correspondence between n × n Latin squares and proper edge colourings of
Kn,n with n colours. Indeed consider a Latin square S whose set of symbols is {1, . . . , n} with
the i, j symbol Si,j . To S we associate an edge-colouring of Kn,n with the colours {1, . . . , n},
by setting V (Kn,n) = {x1, . . . , xn, y1, . . . , yn} and letting the edge between xi and yj receive
colour Si,j . Notice that this colouring is proper i.e. adjacent edges receive different colours.
Recall that a matching in a graph is a set of disjoint edges. We call a matching rainbow if
all of its edges have different colours. It is easy to see that partial transversals in the Latin
square S correspond to rainbow matchings in the corresponding coloured Kn,n. Thus the
Brualdi-Stein Conjecture is equivalent to the statement that “in any proper n-edge-colouring
of Kn,n, there is a rainbow matching of size n − 1.” Once the conjecture is phrased in this
form, one begins to wonder whether large rainbow matchings should exist in more general
coloured graphs.Aharoni and Berger made the following generalization of the Brualdi-Stein
Conjecture.

Conjecture 1.2 (Aharoni and Berger, [5]). Let G be a properly edge-coloured bipartite multi-
graph with n colours having at least n+1 edges of each colour. Then G has a rainbow matching
using every colour.

This conjecture attracted a lot of attention since it was made. A most natural way of
attacking it is to consider graphs which have substantially more than n + 1 edges in each
colour, and show that such graphs have a rainbow matching using every colour. For example
an easy greedy argument shows that every properly edge-coloured bipartite multigraph with
n colours and at least 2n edges of each colour has a rainbow matching of size n. Indeed,
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if the largest matching M in such a graph had size ≤ n − 1, then one of the 2n edges of
the unused colour would be disjoint from M , and we could get a larger matching by adding
it. This simple bound has been successively improved by many authors. Aharoni, Charbit,
and Howard [6] proved that matchings of size b7n/4c are sufficient to guarantee a rainbow
matching of size n. Kotlar and Ziv [7] improved this to b5n/3c. The author proved that
φn+ o(n) is sufficient, where φ ≈ 1.618 is the Golden Ratio [8]. Clemens and Ehrenmüller [9]
showed that 3n/2+o(n) is sufficient. The best currently known bound is by Aharoni, Kotlar,
and Ziv [10] who showed that having 3n/2 + 1 edges of each colour in an n-edge-coloured
bipartite multigraph guarantees a rainbow matching of size n.

Additionally, there are two results showing that just (1 + o(1))n edges in each colour are
enough if we place additional assumptions on G. A special case of a theorem of Haggkvist
and Johansson [11] (proved by probabilistic methods) is that “every bipartite graph consisting
of n edge-disjoint perfect matchings of size n + o(n) edges has a rainbow matchings of size
n”. The author showed that the assumption that the matchings are perfect can be removed
i.e. every bipartite graph consisting of n edge-disjoint matchings of size n+ o(n) edges has a
rainbow matching of size n [8].

The goal of this paper is to improve on all previous asymptotic results by showing that
(1 + o(1))n edges are sufficient for all bipartite multigraphs.

Theorem 1.3. For all ε > 0, there exists an N0 = N0(ε) such that the following holds. Let
G be a properly coloured bipartite multigraph with n ≥ N0 colours and at least (1 + ε)n edges
of each colour. Then G contains a rainbow matching using every colour.

The above theorem is the natural approximate version of Conjecture 1.2. Now the inter-
esting direction for further research is to try and improve the second order term.

This theorem is proved by associating an auxiliary directed graph with G and studying
certain kinds of paths in the directed graph. Such an approach was also taken in the author’s
previous paper [8], and is substantially refined here. In the next section we give an overview
of the various components of the proof of Theorem 1.3.

2 Proof sketch

The proof of Theorem 1.3 is quite long and complicated. The basic idea is to associate
an auxiliary directed graph to G and then study properties of this directed graph. The
directed graph is studied by introducing five new concepts—“switching paths”, “amidstness”,
“reaching”, “bypassing”, and “λ-components”—and then proving many lemmas about these
concepts. Since these concepts are quite foreign, we use this section to give a slow and detailed
introduction to all of them. In particular we motivate some of these concepts by showing how
they relate to the initial undirected graph in Theorem 1.3.

This section and the main proof of Theorem 1.3 (Sections 3 and 4) can be read com-
pletely independently of one another. All concepts that we introduce in this section, will be
reintroduced during the main proof of Theorem 1.3 (usually more concisely.)

2.1 Associating a directed graph

Let G be a properly coloured bipartite multigraph as in Theorem 1.3, and let M be a rainbow
matching of maximum size in G. Suppose for the sake of contradiction that M doesn’t use
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every colour. Aside from [11], all approaches to Conjecture 1.2 have involved performing
local manipulations on M to try and produce a larger rainbow matching. Here a “local
manipulation” on M means choosing some edge m ∈ M and e 6∈ M such that M −m+ e is
another rainbow matching of the same size as M . The basic idea of the proof is to perform
a sequence of such local manipulations to obtain a new matching M ′ of the same size as M
such that there is some edge which can be added to M ′ to give a larger rainbow matching.
Since M was originally chosen to have maximum size, this gives a contradiction.

Thus the main aim throughout the proof is to find a suitable sequence of local manipula-
tions. A key idea in [8] was that such sequences correspond to paths in a suitable auxiliary
directed graph. The following is the directed graph which we will use.

Definition 2.1 (The directed graph DG,M ). Let G have bipartition classes X and Y , CG the
set of colours in G, and CM the set of colours on M . Let X0 = X \ V (M). For any colour
c ∈ CM , let mc be the colour c edge of M . The digraph DG,M corresponding to G and M is
defined as follows:

• The vertex set of DG,M is the set CG of colours of edges in G.

• For two colours u and v ∈ V (DG,M ) there is a directed edge from u to v in DG,M

whenever there is a colour u edge from some x ∈ X to the vertex mv ∩ Y .

a

a

b
bc

c

d

d
fe h

h f
e

g

Y

X

M M M M M

Figure 1: A graph G, with a matching M , and the corresponding directed graph DG,M . The
thick vertical edges labelled “M” are the rainbow matching M . All other edges are denoted
by a – h to show which edge of DG,M corresponds to which edge of G. Notice that the edge
g of G doesn’t have a corresponding edge in DG,M—this is because g doesn’t go through
Y ∩ V (M).

See Figure 1 for a diagram of a bipartite multigraph and the corresponding directed
graph DG,M . Consider the directed path in the DG,M with edge sequence (h, f, e) and vertex
sequence (grey, yellow, pink, green). Notice that deleting the yellow, pink, and green edges
from M and replacing them with h, f , and e produces a new rainbow matching of the same
size as M . In addition this new matching misses a different colour (green rather than grey.)
This demonstrates that directed paths in DG,M can give the kinds of local manipulations we
are interested in.

However not all directed paths in DG,M correspond to sequences of local manipulations.
For example in Figure 1, the directed path c, b, a doesn’t work since the three edges c, b, a in
G do not form a matching. In fact it is easy to check that the only directed paths in Figure 1
which correspond to the kinds of manipulations we’re interested in are sub-paths of (h, f, e).

The previous paragraphs show that while paths in DG,M can capture the kind of local
manipulations we’re looking for, not all paths do so. We will add labels to the edges of DG,M
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in order to be able to describe exactly the kind of paths we’re interested in. The set of labels
for edges of DG,M is X0 ∪ CM (where X0 = X \ V (M) and CM is the set of colours of the
edges of M .) If there is a colour u edge in G from x ∈ X to mv ∩ Y , then we label the
corresponding edge uv ∈ DG,M by the following rule.

• If x ∈ X0 then the edge uv is labelled by x.

• If x ∈ mc ∈M then uv is labelled by c, the colour of mc.

1 2 3 4 5 6

6
7

7

Y

X

M M M M M

Figure 2: The same graphs G and DG,M as in Figure 1, but now with the edge-labels on
DG,M . The coloured edges in DG,M are ones labelled by elements of CM (or equivalently the
ones labelled by something in V (DG,M ).) The black edges are ones labelled by elements of
X0 (or equivalently ones labelled by something not in V (DG,M ).)

See Figure 2 for an example of this labelling. One key point to notice is that the set of
labels X0 ∪ CM is not just an ambient set—since V (DG,M ) = CG an element of CM can
simultaneously be a vertex of DG,M and a label of edges in DG,M . Formally, an edge-labelled
directed graph is defined to be a directed graph D together with a set X0 with X0∩V (D) = ∅
and a labelling function f : E(D) → V (D) ∪X0. The set X0 is called the set of non-vertex
labels in D. We call X0 ∪ V (D) the set of labels in D (regardless of whether D actually has
edges labelled by all elements of X0 ∪ V (D)).

Having equipped DG,M with a labelling, we can define the kinds of paths we are interested
in.

Definition 2.2 (Switching path). A path P = (p0, . . . , pd) in an edge-labelled, directed graph
D is a switching path if the following hold.

• P is rainbow i.e. the edges of P have different labels.

• If pipi+1 is labelled by a vertex v ∈ V (D), then v = pj for some 1 ≤ j ≤ i.

In other words a switching path is a rainbow path with a kind of “consistency” property
for its edge-labels which are vertices: For every edge e ∈ P which is labelled by a vertex v, P
must pass through v before it reaches e. Notice that this vertex v is not allowed to be p0, the
starting vertex of P . A consequence of this is that the first edge p0p1 of P cannot be labelled
by a vertex of D (in the case of DG,M this means that the first edge of any switching path
must be labelled by something in X0).

See Figure 3 for an example of a switching path. Notice that this path does correspond to
the kinds of local manipulations of M which we are interested in i.e if we exchange the edges
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1 2 3 4 5 6

6
7

7 8

8

Y

X

M M M M M

Figure 3: A switching path in a graph DG,M . Replacing the edges of M for the other pictured
edges of G produces a new matching of the same size as M .

of M for the edges in G corresponding to the switching path, then we obtain a new rainbow
matching of the same size as M .

When looking at a switching path in the graph is DG,M , the vertices of P correspond to
edges of G which we want to remove from the matching M , and the edges of P correspond
to edges of G which we want to add to M . The two conditions in the definition of “switching
path” then have natural interpretations when one seeks to obtain a new rainbow matching
by switching the edges along P . Asking for the switching path to be rainbow is equivalent
asking for the edges we want to add to M not intersecting in X (which is needed to get a
matching). The second part of Definition 2.2 ensures that when we add an edge to M , its
colour was previously removed from M .

The following exercise makes precise how to modify a matching M using a switching path
in DG,M starting from a colour outside M .

Exercise 2.3. Let M be a rainbow matching in a graph G, p0 a colour not in M , and
P = (p0, p1, . . . , pd) a switching path in DG,M . For i ≥ 1, let mi be the colour pi edge of M ,
and for i ≥ 0, let ei be the edge of G corresponding to pipi+1. Show that the following is a
rainbow matching missing the colour pd:

M + e0 −m1 + e1 · · · −md−1 + ed−1 −md.

For a solution to the above exercise, see Claim 3.6. Exercise 2.3 is exactly what we use to
try and extend M into a larger matching. If M was chosen to be maximum, then Exercise 2.3
can be used to show that DG,M possesses a certain degree property. This and other properties
of DG,M will be discussed in the next section.

2.2 Properties of the directed graph

The labelled directed graph DG,M ends up having several properties which we use in the proof
of Theorem 1.3. In this section we go through the properties which we need. See Figure 4 for
examples of some of the features that DG,M can have.

For two vertices u, v ∈ DGM it is possible for uv and vu to both be present in DG,M .
For example the two edges between the green and pink vertices in Figure 4. However it is
impossible for the edge uv to appear twice with different labels i.e. the directed graph DG,M

is simple.

Exercise 2.4. Using the fact that G is properly coloured, show that for u, v ∈ V (DG,M ), there
is at most one edge from u to v in DG,M .
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1 2 3 4 5 6 6

6

Y

X

M M M M M

Figure 4: Some of the features DG,M has. The directed graph DG,M doesn’t have multiple
edges, unless they go in different directions (like the two edges labelled 6). At a vertex v,
DG,M never has out-going edges with the same label, but it may have in-going edges with the
same label (For example the green vertex has two in-going blue edges.)

For a solution to this exercise, see Lemma 3.2. The labelling on the directed graph DG,M

is far from a general labelling. We make the following definitions which generalize proper
colouring to directed graphs.

Definition 2.5. Let D be a labelled directed graph.

• D is out-properly labelled if for any u ∈ V (D), all out-going edges uv have different
labels.

• D is in-properly labelled if for any u ∈ V (D), all in-going edges vu have different labels.

It turns out that the labelling on DG,M is always out-proper.

Exercise 2.6. Using the fact that G is properly coloured, show that DG,M is out-properly
labelled.

For a solution to this exercise, see Lemma 3.2. The labelling on DG,M is not always in-
proper. For example, in Figure 4, the green vertex has two in-going blue edges. Notice that
in Figure 4 this happened because of the multiple edge in G. It turns out that this is the only
way to have in-going edges with the same label in DG,M .

Exercise 2.7. Suppose that G is properly coloured, simple, and M is a matching in G. Show
that DG,M is in-properly labelled.

Recall that the special case of Theorem 1.3 when G is simple was proved in the author’s
earlier paper [8]. The case when G is simple turns out to be much easier to prove precisely be-
cause the directed graph DG,M associated to G is both in-properly and out-properly labelled.
The reason for the difficulty of the multigraph case is that dense directed graphs which are not
in-properly labelled do not necessarily have certain connectivity properties. This difficulty is
explained in more detail in Section 2.3.

The other main property of DG,M which we will need is a degree property i.e. we will
want to know that all vertices in DG,M have a suitably large degree. Let Y0 = Y \ S be the
set of vertices in Y disjoint from the matching M . From the definition of DG,M , notice that
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every edge e ∈ G corresponds to an edge of DG,M unless e passes through Y0 or e ∈M 1. A
consequence of this is that e(DG,M ) = e(G)− |M | − e(X,Y0). Recall that every colour c in G
has (1 + ε)n edges. For a colour c, let cY0 be the number of colour c edges going through Y0.
From the definition of DG,M we have

|N+(c)| = (1 + ε)n− cY0 − 1 if M has a colour c edge, (1)

|N+(c)| = (1 + ε)n− cY0 if M has no colour c edge. (2)

Here N+(c) denotes the out-neighbourhood of c i.e. the set of x ∈ V (DG,M ) with cx ∈
E(DG,M ). Notice that (1) and (2) do not by themselves imply that |N+(c)| is large for any
colour c. It is possible that most of the edges of G go through Y0, making the cY0 term
dominant in (1) and (2). However the fact that M is a maximum size rainbow matching does
force some colours in G to have a large out-degree in DG,M . In particular if c0 is a colour
which does not appear on M , then notice that there cannot be any edges in G between X0 and
Y0—indeed if such an edge existed then it could be added to M to give a rainbow matching
larger than M . Recall that from the assumption of Theorem 1.3 there are ≥ (1 + ε)n colour
c0 edges in G, and at most |M | ≤ n of these can intersect X ∩ V (M). The other εn colour c0

edges must go between X0 and Y ∩ V (M), giving |N+(c0)| ≥ εn.
The above discussion shows that all colours not on M have a high out-degree in DG,M .

Can we get something similar for the other colours in G? Recall from Exercise 2.3 that
switching paths can be used to give new rainbow matchings with the same size as M . Using
this it is easy to show that any colour close to c0 6∈ M in DG,M has a large degree in DG,M

as well.

Exercise 2.8. Let c0 be a colour not on M , and c some other colour. Let P be a switching
path from c0 to c in DG,M . Then |N+(c)| ≥ εn− |P |.

The above exercise is a special case of Lemma 3.7 which we prove later. So far we have
looked at only edges labelled by X0 and found that vertices close to missing colours have
many such edges leaving them. For a set of labels L, define N+

L (v) to be the set of x ∈ N(v)
with vx labelled by some ` ∈ L. Under the assumptions of Exercise 2.8, it is easy to show
that |N+

X0
(c)| ≥ εn− |P |.

We would like to have information about how big N+
L is for sets of labels L other than X0.

Where could we get such information? In Figure 5, notice that if M is a maximum matching,
then there cannot be any red edges going from {2, 4, 9} to Y0. Indeed if there was such an
edge e then we could look at the rainbow matching M ′ as in Exercise 2.3 (corresponding
to the switching path in Figure 5) and then add e to M ′ to get a larger rainbow matching.
Thus if there are red edges in G touching {2, 4, 9}, then they must go through Y ∩ V (M),
and hence must have corresponding edges in DG,M . Since these edges go from v to N+(v),
this would tell us that N+(v) is slightly bigger than the estimate we have in Exercise 2.8.
For just the single path P in Figure 5, this increase is very small. But if we had a large
collection of switching paths P like the one in Figure 5, then the gains may add up to give a
large improvement on the bound in Exercise 2.8. The next definition captures what kind of
information about the path P in Figure 5 we were interested in.

1The edges of M could be naturally thought of corresponding to loops in DG,M , but to keep our analysis
to loopless graphs, we won’t do this.
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Definition 2.9 (Amidst). Let u and v be two vertices in an edge-labelled, directed graph D,
and ` a label. We say that ` is amidst u and v if there is a switching path P = (u, p1, . . . , pd, v)
from u to v such that the following hold.

• There are no edges of P labelled by `.

• If ` is a vertex of D then ` ∈ {p1, . . . , pd, v}.

1 2 3 4 5 6

6
7

7 8

8

9

Y

X

M M M M M

Figure 5: A switching path P in a graph DG,M , and three edges that can be added to get a
larger matching. Notice that the three labels {blue, pink, 9} in DG,M are amidst grey and red,
as witnessed by the switching path P . The vertices in X of blue and pink are 2 and 4—which
are the X-vertices of the corresponding dashed red edges. This shows how amidstness is used
to identify vertices of X through which we can add edges to extend M . This is the essence
of Exercise 2.10.
Notice that in the above diagram, labels which are not amidst a pair of labels cannot be used
for augmenting the matching M . For example, if there was a red edge f from vertex 5 to Y0,
then one might hope to switch some edges to free up the red colour and vertex 5 in order to
extend the matching by adding f . However this cannot be done because freeing up vertex 5
and colour red would require yellow to be amidst grey and red. In the above diagram yellow is
not amidst grey and red. (intuitively because in order to free up red, the yellow edge starting
at 6 must be used).

Notice a parallel between each of the two parts of the definitions of “switching path”
and “amidst”: The first parts are about forbidding edges of a path from having particular
labels, whereas the second parts are about paths passing through a particular vertex. This
similarity is no coincidence — a path P = (p0, . . . , pd) is a switching path if, and only if, the
path p0, . . . , pd−1 is a switching path witnessing the label of pd−1pd being amidst p0 and pd−1.

If P is a path as in Definition 2.9, then we say that P witnesses ` being amidst u and v. As
an example, the path P in Figure 5 witnesses each of the labels {blue, pink, 9} being amidst
grey and red. Suppose that ` ∈ CM is the colour of some edge m in M . By an argument
similar to the one in the previous paragraph, it is possible to show that if ` is a label amidst
u and v, and u is not present on M , then there is no colour v edge from m ∩X to Y0.

Exercise 2.10. Let `, u, v be colours in G with u not in M and ` the colour of an edge
m ∈M . If ` is amidst u and v, then there is no colour v edge from m ∩X to Y0 in G.

For a solution to the above exercise see Lemma 3.5. The essence of the solution is in
Figure 5 — the dashed red edges are exactly the kind of edges that Exercise 2.10 is about. If
any of them were present in the graph then they could be augmented to the matching. We
now have that given a set of vertices X ′ ⊆ X, if all the corresponding labels are amidst u
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and v, then all the colour v edges touching X ′ in G must contribute to N+(v) in DG,M . The
following exercise is a strengthening of Exercise 2.8 which takes into account vertices in X
outside X0.

Exercise 2.11. Suppose that M misses a colour c∗, v is a colour in G, and A is a set of
labels in DG,M which are amidst c∗ and v. Then |N+

A (v)| ≥ |A| − |X0|+ εn− 1.

For a solution to this exercise, see Lemma 3.7. As remarked before, this is actually a
strengthening of Exercise 2.8. Indeed given a path P as in Exercise 2.8, notice that if x ∈ X0

is a label which does not occur on edges of P , then x is amidst u and v (witnessed by
the path P .) Applying Exercise 2.11 with A the set of labels in X0 and not on P we get
|N+

A (v)| ≥ |A| − |X0|+ εn− 1 ≥ εn− |P |.
Exercise 2.11 allows us to finally state the method we use to prove Theorem 1.3. We prove

that for any ε > 0, there cannot be arbitrarily large labelled digraphs satisfying the degree
condition of Exercise 2.11. The following is an intermediate theorem we prove, which implies
Theorem 1.3.

Theorem 2.12. For all ε with 0 < ε ≤ 0.9, there is an N0 = N0(ε) such that the following
holds. Let D be any out-properly edge-labelled, simple, directed graph on n ≥ N0 vertices. Let
X0 be the set of labels which are not vertices of D

Then for all u ∈ V (D), there is a vertex v and a set of labels A amidst u and v, such that
|N+

A (v)| < |A| − |X0|+ εn.

We remark that the set A can be an arbitrary subset of V (D)∪X0 and that D might not
have edges labelled by all elements of A.

Modulo the discussion in this section, it is easy to see that this theorem implies The-
orem 1.3. Indeed suppose that there was a sufficiently large graph G as in Theorem 1.3.
Suppose that a maximum matching M in G doesn’t use every colour. By Exercises 2.4
and 2.6 we know that the corresponding digraph DG,M is out-properly labelled and simple.
Let c∗ be some colour outside M . By Exercise 2.11 we know that for any v ∈ V (DG,M ), we
have |N+

A (v)| ≥ |A| − |X0|+ εn− 1 ≥ |A| − |X0|+ 0.9εn for any set of labels A amidst c∗ and
v. But this contradicts Theorem 2.12.

We conclude this section by explaining how amidstness can be used to build switching
paths. Recall that a path P = (p0, . . . , pd) is a switching path if, and only if, the path
p0, . . . , pd−1 is a switching path witnessing the label of pd−1pd being amidst p0 and pd−1.
Because of this, labels which are amidst two vertices u and v have potential to be be used to
extend switching paths. The following exercise makes this precise.

Exercise 2.13. If a label ` is amidst x and y and there is some vertex z such that the edge
yz is present and labelled by `, then there is a switching path from x to z.

A version of this exercise is proved in Lemma 4.25. Exercise 2.13 is important because it
is one of the tools we will use to build longer and longer switching paths.

2.3 The right notion of connectedness

Theorem 2.12 is proved studying connectivity properties of subgraphs of D. It is not imme-
diately apparent why connectivity is useful here. One hint of it being useful comes from the
definition of “amidst”. The first part of the definition of “amidst” asks for a u to v path
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avoiding all edges of label `. If there are < k colour ` edges then this is a property k-edge-
connected graphs have. The second part of the definition of “amidst” asks for a path going
from u to v via some other vertex `. This is a property which 2-vertex-connected undirected
graphs have (as a consequence of Menger’s Theorem).

The purpose of connectivity in the proof is to find sets of vertices C ⊆ V (DG,M ) which
are highly connected in the following sense—for any pair u, v ∈ C we have c amidst u and v
for most c ∈ C. We can then plug C into the assumption of Theorem 2.12 in order to deduce
that v has a high out-degree. Knowing that vertices in C have high out-degree is then used
to find a set C ′ which is also highly connected and substantially larger than C. Iterating this
process we get larger and larger highly connected sets, which can eventually be used to get a
contradiction to these sets being smaller than V (D).

What notion of connectivity should we use? In [8], the following notion was used.

Definition 2.14. Let W be a set of vertices in a labelled digraph D. We say that W is
(k, d)-rainbow connected in D if, for any set of at most k labels S and any vertices x, y ∈W ,
there is a rainbow x to y path of length ≤ d in D avoiding colours in S.

This kind of connectivity is useful when the graph G is a simple graph rather than a
multigraph. Recall that if G is a simple graph then the labelling on DG,M is both in-proper
and out-proper. In [8] it is proved that in any labelled digraph D there is a highly (k, d)-
connected set C with |C| ≥ δ+(G) − o(n) which is a key intermediate result in proving
Theorem 1.3 in the case when G is simple.

Figure 6: A labelled directed graph whose labelling is out-proper, but not in-proper. Here all
the edge-labels are not vertices. The edge-labelling is such that every vertex v has a “chosen
colour” with all edges directed towards v having the chosen colour. Notice that deleting all
edges having a particular label reduces the in-degree of some vertex to 0, effectively isolating
it.

When G is a multigraph, then we know that DG,M is out-properly labelled, but not
necessarily in-properly labelled. Definition 2.14 isn’t the right notion of connectivity for
studying such graphs. It is possible to have an out-proper labelling of the complete directed
graph in which any vertex can be isolated by deleting just one label. See Figure 6 for an
example of such a graph. This graph is a complete directed graph where every edge xy is
labelled by `y (for some label `y which only appears on in-going edges to y.) This graph
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has a high out-degree but doesn’t have any (1,∞)-connected subgraphs. This is the issue
with using (k, d)-connectedness since we would like high out-degree graphs to have highly
connected subsets.

We introduce a different kind of connectedness, for which the graph in Figure 6 is highly
connected. The following is at the heart of the notion of connectivity which we use.

Definition 2.15 (Reaching). For a vertex v ∈ V (D) and a set R ⊆ V (D), we say that v
(k, d,∆)-reaches R if for any set S of ≤ k labels, there are length ≤ d switching paths avoiding
S to all, except possibly at most ∆, vertices x ∈ R.

Standard notions of connectedness are based on studying when two vertices are connected
by a path. “Reaching” is fundamentally different from these since it is of no use to know that
a vertex u reaches another vertex v. In fact any vertex u (∞,∞, 1)-reaches any singleton {v}
(since ∆ = 1, we can let {v} be the set of ∆ vertices in S to which we don’t need to find a
path in the definition of reaching. More generally, there is nothing to check in the definition
of “reaching” when ∆ ≥ |R|.) Thus “reaching” is only meaningful when we talk about a
vertex reaching a reasonably large set of vertices R. Notice that the graph in Figure 6 has
good connectivity properties with our new definition.

Exercise 2.16. For the labelled directed graph D in Figure 6 and any k ≤ ∆, show that every
v ∈ V (D) (k, 1,∆)-reaches V (D).

To prove Theorem 2.12, we will need to have a fairly deep understanding of “reaching”.
This involves first proving several basic consequences of the definition such as showing that
reaching is monotone under change of parameters, preserved by unions, and has a kind of
transitivity property. These properties are proved in Section 4.1.

Our main goal when studying “reaching” will be to show that some analogue of connected
components exists for the new notion of connectedness. Recall that a strongly connected
component C in a directed graph is a maximal set of vertices in a graph such that for any two
vertices x and y in C there is a path from x to y. Analogously, in a labelled graph we would
like to find a maximal set C such that any x ∈ C reaches all of C for suitable parameters.
This notion of a maximal reached set seems a bit hard to work with, so we will instead deal
with the following approximate version.

Definition 2.17 ((k, d,∆, γ, k̂, d̂, ∆̂)-component). A set C ⊆ V (D) is a (k, d,∆, γ)-component
if for any vertex v ∈ C, there is a set Rv with |Rv 4 C| ≤ ε3n such that the following hold.

(i) v (k, d,∆)-reaches Rv.

(ii) v doesn’t (k̂, d̂, ∆̂)-reach any set R disjoint from Rv with |R| ≥ γn.

In other words a (k, d,∆, γ, k̂, d̂, ∆̂)-component is a set C such that every vertex v ∈ C
reaches most of C and doesn’t reach any large set outside C. It is not at all obvious that
(k, d,∆, γ, k̂, d̂, ∆̂)-components exist for particular parameters k, d,∆, γ, k̂, d̂, ∆̂. An impor-
tant intermediate lemma we prove in Section 4.2, is that for given k, d,∆, γ, there is a
(k′, d′,∆′, γ′, k̂′, d̂′, ∆̂′)-component for new parameters k′, d′,∆′, γ′, k̂′, d̂′, ∆̂′ close to k, d,∆, γ.

We make a remark about how constants will be dealt with throughout this paper. Looking
at the definitions of “(k, d,∆)-reaches” and “(k, d,∆, γ, k̂, d̂, ∆̂)-component”, they look a bit
scary because of the large number of parameters there are in each definition. In the actual
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proof of Theorem 2.12 in Section 4 this won’t be the case because we introduce a single pa-
rameter, λ, which will control each of the parameters k, d,∆, γ, k̂, d̂, ∆̂. Formally, in Section 4
we define seven explicit functions kε(λ), dε(λ), ∆ε(λ), γε(λ), k̂ε(λ), d̂ε(λ), and ∆̂ε(λ) depend-
ing on ε (which is the constant given in the statement of Theorem 2.12.) Then we say that v
λ-reaches a set R if v (kε(λ), dε(λ),∆ε(λ))-reaches R, and that a set C is a λ-component if C
is a (kε(λ), dε(λ),∆ε(λ), γε(λ), k̂ε(λ), d̂ε(λ), ∆̂ε(λ))-component. The advantage of this is that
it means that only one parameter, λ, needs to be kept track of between the various lemmas
that we prove. This makes the high level structure of the proof of Theorem 2.12 easier to
follow.

We mention a final definition which we use in the paper.

Definition 2.18 (Bypassing). For a vertex v ∈ V (D) and a set B ⊆ V (D), we say that v
(k̂, d̂, ∆̂, γ)-bypasses B if v doesn’t (k̂, d̂, ∆̂)-reach any set R contained in B with |R| ≥ γn

The significance of the above definition is that part (ii) of the definition of (k, d,∆, γ, k̂, d̂, ∆̂)-
component can be now rephrased as “v (k̂, d̂, ∆̂, γ)-bypasses V (D) \Rv”. Thus the notion of
bypassing is important because it eases the study of (k, d,∆, γ, k̂, d̂, ∆̂)-components.

Recall that at the start of the section we said that the reason for using connectedness
is to be able to study “amidstness”. It is not immediately apparent how the definitions we
introduce do this. With a bit of work it is possible to prove that in a (k, d,∆, γ, k̂, d̂, ∆̂)-
component C, most triples (u, c, v) ∈ C × C × C have c amidst u and v.

Lemma 2.19. For ε > 0, D a sufficiently large labelled directed graph, and C a (k, d,∆, γ,
k̂, d̂, ∆̂)-component in D for suitable k, d,∆, γ, k̂, d̂, ∆̂, there are at least |C|3 − (εn)3 triples
(u, c, v) ∈ C × C × C with c amidst u and v.

The above lemma is an easy consequence of Lemma 4.26 which we prove in Section 4.3.
The full Lemma 4.26 will say a bit more, giving information about the structure of triples
(u, c, v) ∈ C × C × C with c amidst u and v.

2.4 An overview of the proof of Theorem 2.12

Here we give a high level overview of the strategy of the proof of Theorem 2.12. The proof
begins by supposing for the sake of contradiction that there is a vertex u ∈ V (D) such that
for every vertex v and a set of labels A amidst u and v we have |N+

A (v)| < |A| − |X0| + εn.
The proof of the theorem naturally splits into three parts.

1. Find (ki, di,∆i, γi, k̂i, d̂i, ∆̂i)-components C0, . . . , Cm for suitable parameters such that
Ci ∩ Ci+1 6= ∅. In addition we find a short switching path from u to each Ci. This is
done as follows:

1.1 Prove lemmas along the lines of “for any vertex v and parameters k, d,∆, γ there
are complementary sets Rv and Bv such that v (k′, d′,∆′)-reaches Rv and doesn’t
reach anything in Bv for suitable parameters k′, d′,∆′ close to k, d,∆. This is
performed in Lemmas 4.13 and 4.14.

1.2 Show that reaching has a transitivity property: If v reaches a sufficiently large set
R and every vertex in R reaches a set R′, then v reaches R′. This is performed in
Lemma 4.11.
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1.3 Choose a vertex v with the set Rv from part 1.1 as small as possible. Using
transitivity, it is possible to show that for most vertices u ∈ Rv we have that
|Ru 4 Rv| is small. By letting C = Rv minus a few vertices it is possible to get a
single component of the sort we want. This is performed in Lemma 4.18.

1.4 By iterating 1.3, we can get the sequence of components C0, . . . , Cm which we need.
This is performed in Lemma 4.22.

2. Show that if C is a (k, d,∆, γ, k̂, d̂, ∆̂)-component close to u, then either any v ∈ C
(k′, d′,∆′, γ′)-reaches some set R with |R| ≥ |C| + (ε − o(1))n for suitable parameters
or the conclusion of Theorem 2.12 holds for some A ⊆ C ∪X0. The formal statement
of this is Lemma 4.32. This step is performed as follows:

2.1 We show that for most triples (u, c, v) ⊆ C × C × C, c is amidst u and v. This is
performed in Lemma 4.26.

2.2 Let R be the set of z ∈ V (D) for which there are a lot of triples (u, c, v) such that
vz is an edge labelled by c and c is amidst u and v.

2.3 The vertex v ends up (k′, d′,∆′)-reaching R as a consequence of 2.1. This is
performed in Claim 4.34.

2.4 Use the assumption of Theorem 2.12 applied to a suitable subset of C∪X0 together
with Lemma 2.19 to show that |R| ≥ |C| + (ε − o(1))n. This is performed in
Claims 4.35 and 4.36.

3. Combining parts 1 and 2 and the definition of (k, d,∆, γ, k̂, d̂, ∆̂)-component we obtain
that |Ci+1| ≥ |Ci|+ (ε− o(1))n for every Ci from part 1. If the number of components
m� ε−1 this gives a contradiction to |Cm| ≤ |V (D)| = n.

2.5 An example

In this section we give an illustrative labelled directed graph and explain how the proof of
Theorem 2.12 works for that particular graph.

For a fixed ε > 0 and t� ε−1, we define a directed graph Ds,t as follows: Ds,t has n = st
vertices split into t disjoint classes V1, . . . , Vt each of size s with Vi = {v1,i, . . . , vs,i}. The set
of non-vertex labels in Ds,t is X0 = {x1, . . . , xs}. All the edges are present in G going in both
directions. Each vertex in G has it’s own “chosen label” with all edges directed towards the
vertex having that label (much like the graph in Figure 6.) For i 6= 1 and any vertex u, the
edge uvj,i has label vj,i−1. For a vertex u and a vertex vj,1 ∈ V1, the edge uvj,1 has label xj .

Because of the simple structure the graphs Ds,t have, it is possible to describe all switching
paths, reached sets, bypassed sets, and components in these graphs.

Exercise 2.20 (Switching paths in Ds,t). A directed path P = (p0, p1, . . . , pd) is a switching
path if, and only if, “vj,i = pk ∈ V (P ) =⇒ vj,i−1, . . . , vj,1 ∈ {p1, . . . , pk−1}”.

Exercise 2.21 (Amidstness in Ds,t).

• A vertex va,b is amidst vertices vc,d and ve,f if, and only if, b, d 6= f and va,b 6= vc,d.

• A label xb is amidst vertices vc,d and ve,f if, and only if, b, d 6= f .
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Figure 7: The labelled, directed graph Ds,t.

In each of the next three exercises we give a necessary condition and a sufficient condition
for a set to be reached, bypassed, or be a component. Although the necessary conditions and
a sufficient conditions which we give are not exactly the same, they are always quite similar.
Thus the next three exercises should be seen as giving a near-characterization of sets which
are reached, bypassed, and components in Ds,t.

Exercise 2.22 (Reaching in Ds,t). Let v ∈ V (Ds,t) and R ⊆ V (Ds,t).

• If v (k, d,∆)-reaches R then |R \ (V1 ∪ · · · ∪ Vd)| ≤ ∆.

• If |R \ (V1 ∪ · · · ∪ Vd)| ≤ ∆− (k + 1)d, then v (k, d,∆)-reaches R.

Exercise 2.23 (Bypassing in Ds,t). Let v ∈ V (Ds,t), B ⊆ V (Ds,t), and ∆̂ ≥ (k̂ + 1)d̂.

• If v (k̂, d̂, ∆̂, γ)-bypasses B then |B ∩ (V1 ∪ · · · ∪ Vd)| ≤ γn.

• If |B ∩ (V1 ∪ · · · ∪ Vd)| < γn− ∆̂, then v (k̂, d̂, ∆̂, γ)-bypasses B.

Exercise 2.24 (Components in Ds,t). Let C ⊆ V (G), ε3n ≥ max(γn,∆, ∆̂), ∆ ≥ (k + 1)d,

∆̂ ≥ (k̂ + 1)d̂, and d̂ ≤ d

• If C is a (k, d,∆, γ, k̂, d̂, ∆̂)-component then |C 4 (V1 ∪ · · · ∪ Vd)| ≤ 8ε3n.

• If |C 4 (V1 ∪ · · · ∪ Vd)| ≤ ε3n then C is a (k, d,∆, γ, k̂, d̂, ∆̂)-component.

Using Exercise 2.21 we can check that Thereom 2.12 holds for the graphs Ds,t. To see
this notice that for any pair of vertices va,b and vc,d for b 6= d and any set of labels A with
A∩{vi,b, vi,d : i = 1, . . . , s} = ∅ we have A amidst va,b and vc,d. Notice also that |N+

A (v)| = |A|
or |A| − 1 for every vertex v and set of labels A. Finally, recall that |X0| = s ≥ εn. Thus we
see that for a given vertex u = va,b the conclusion of Thereom 2.12 holds by choosing v = vc,d
for d 6= b and A any set of labels disjoint from {vi,b, vi,d : i = 1, . . . , s} with |A| > n (for
example we could take A = V (Ds,t) ∪X0 \ {vi,b, vi,d : i = 1, . . . , s}.)
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This example teaches us an important lesson. It is not hard to see that if A is amidst
u and v and satisfies |N+

A (v)| < |A| − |X0| + εn then |A| > n must hold. From this we see
that any proof of Theorem 2.12 for the graph Ds,t must “find” a very large set of labels A
amidst some pair of vertices. In the remainder of this section, we explain how the strategy in
Section 2.4 finds such a set A.

In Part 1 of the overview in Section 2.4, the proof finds (ki, di,∆i, γi, k̂i, d̂i, ∆̂i)-components
C0, . . . , Cm for suitable parameters such that Ci∩Ci+1 6= ∅. Here “suitable parameters” means
that m� ε−1, that di,∆i, γi, d̂i, and ∆̂i increase with i while ki and k̂i decrease with i. For
the sake of argument, let us consider what happens when m = ε−4, di = d̂i = i, γi = ε9i,
∆i = ∆̂i = 2im, and k = k̂ = m − i. For these values, Exercise 2.24 tells us that for
i = 1, . . . , t we must have |Ci 4 (V1 ∪ · · · ∪ Vi)| ≤ 8ε3n and that for i = t+ 1, . . . ,m we have
|Ci 4 (V1 ∪ · · · ∪ Vt)| ≤ 8ε3n.

In Parts 2 and 3 of the overview in Section 2.4, it is shown that if C is a component close
to u, then either any v ∈ C (k′, d′,∆′, γ′)-reaches some set R with |R| ≥ |C|+ (ε− o(1))n for
suitable parameters or the conclusion of Theorem 2.12 holds for some A ⊆ C∪X0 and v ∈ C.
Testing this for the components C0, . . . , Cm from Part 1, we see that for i = 0, . . . , t − 1,
there is a set R such that v (ki, di + 1,∆i, γi)-reaches some set R with |R| ≥ |C|+ (ε− o(1))n
(namely we can take R = V1 ∪ · · · ∪ Vi+1.) On the other hand for i = t, . . . ,m such a set
R doesn’t exist, so Part 2 would imply that the conclusion of Theorem 2.12 holds for some
A ⊆ Ci ∪ X0 and v ∈ C. If u = va,b then we see that this is indeed the case with e.g.,
A = Ci ∪X0 \ {v1,b, . . . , vt,b, v1,c, . . . , vt,d} and v = va,c.

Notation

For standard notation we follow [12]. A path P = (p0, p1, . . . , pd) in a directed graph D is a
sequence of vertices p0, p1, . . . , pd such that pipi+1 is an edge for i = 0, . . . , d−1. The order of
P is the number of vertices it has, and the length of P is the number of edges it has. We’ll use
additive notation for concatenating paths i.e. if P = (p1, p2, . . . , pi) and Q = (pi, pi+1, . . . , pd)
are two internally vertex-disjoint paths, then we let P + Q denote the path (p1p2 . . . pd).
Throughout the paper, all directed graphs will be simple meaning that an edge xy appears
only at most once. We do allow both of the edges xy and yx to appear in the directed graphs
we consider. For clarity we will omit floor and ceiling signs where they aren’t important.

Our digraphs are always simple i.e. they never have two copies of an edge going from a
vertex u to a vertex v. A digraph is out-properly labelled if all out-going edges at a vertex
have different labels. For a vertex v in a digraph, the out-neighbourhood of v, denoted N+(v)
is the set of w ∈ V (D) with vw an edge of D.

Throughout the paper we will deal with edge-coloured undirected graphs and edge-labelled
directed graphs. The difference between the two concepts is that in an edge-coloured graph,
the set of possible colours is just some ambient set, whereas in an edge-labelled digraph D
the set of possible labels is V (D) ∪ X0 where V (D) is the set of vertices of D (and X0 is
some ambient set unrelated to D.) Formally, an edge-labelled directed graph is defined to
be a directed graph D together with a set X0 with X0 ∩ V (D) = ∅ and a labelling function
f : E(D) → V (D) ∪ X0. The set X0 is called the set of non-vertex labels in D. We call
X0 ∪ V (D) the set of labels in D (regardless of whether D actually has edges labelled by all
elements of X0 ∪ V (D)).

Throughout the paper we will always use “G” to denote a coloured bipartite graph with
parts X and Y and M a rainbow matching in G. We’ll use CG to denote the set of colours
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in G and CM to denote the set of colours in M . We’ll use V (M) to mean the set of vertices
contained in edges of M , and X0 = X \ V (M) and Y0 = Y \ V (M) to denote the vertices in
X and Y outside M . For a colour c ∈ CM , we use mc to denote the colour c edge of M .

3 From bipartite graphs to directed graphs

In this section we show how go from the Aharoni-Berger Conjecture to a problem about
edge-labelled digraphs. We define a directed, edge-labelled digraph DG,M corresponding to a
coloured bipartite graph G and a rainbow matching M in G.

Definition 3.1 (The directed graph DG,M ). Let G be a coloured bipartite graph with parts
X and Y and n colours. Let M be a rainbow matching in G. Let X0 = X \ V (M) be the
subsets of X disjoint from M . Let CG be the set of colours used in G and CM ⊂ CG be the
set of colours used on edges in M . For a colour c ∈ CM , we let mc denote the colour c edge
of M . The labelled digraph DG,M corresponding to G and M is defined as follows:

• The vertex set of DG,M is the set CG.

• The edges of DG,M are be labelled by elements of the set X0 ∪ CM .

• For two colours u and v ∈ V (DG,M ) and a vertex x ∈ X, there is a directed edge from
u to v in DG,M whenever v ∈ CM and there is a colour u edge from x to mv ∩ Y .

– If x ∈ X0 then the edge uv is labelled by x.

– If x ∈ mc ∈M then uv is labelled by c, the colour of mc.

Notice that every edge e ∈ E(G) corresponds to at most one edge of DG,M . There are two
types of edges in G which do not correspond to edges of DG,M : Edges going through Y0 do
not appear in DG,M , and also the edges of M do not appear in DG,M either. Thus the edges
of DG,M are naturally in bijection with the edges of G[X ∪ V (M)] \M . Also notice that if
c 6∈ CM is a colour which doesn’t appear in M , then the in-degree of c in DG,M is zero.

For any set L of labels in DG,M we define a corresponding set (L)X of vertices in X as
follows. For a colour c ∈ CM we define (c)X to be mc ∩X where mc is the colour c edge of
M . For any vertex x ∈ X0, we set (x)X = {x}. For L a set of labels of DG,M , we define
(L)X =

⋃
`∈L(`)X i.e. (L)X is the subset of L consisting of vertices in X0 together with

M ′ ∩X where M ′ is the subset of M consisting of edges whose colour is in L.
Notice that with the above definition, if xy is an edge of G and ` is the label of the

corresponding edge of DG,M , then we always have (`)X = x. Conversely if uv is an edge of
DG,M labelled by `, then the corresponding edge of G goes from (`)X to mv ∩ Y . Also notice
that |(L)X | = |L| for any set of labels of DG,M .

It turns out that if G is properly coloured, then DG,M is out-properly labelled and simple.

Lemma 3.2. Let G be a properly edge-coloured bipartite graph and M a matching in G. Then
the directed graph DG,M is out-properly labelled and simple.

Proof. Suppose that uv and uv′ are two distinct edges of DG,M with the same label `. By
definition of DG,M they correspond to two edges of the form (`)Xy and (`)Xy

′ of G having
colour u, where y = mv ∩ Y and y′ = mv′ ∩ Y . But this contradicts the colouring of G being
proper.
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Suppose that DG,M is not simple i.e. an edge uv occurs twice with different labels ` and
`′. This corresponds to two edges of the form (`)Xy and (`′)Xy of G having the same colour
u (where y = mv ∩ Y .) But this contradicts the colouring of G being proper.

We now come to the central objects of study in this paper—switching paths. Switching
paths in a labelled digraph D are rainbow paths which have a kind of “consistency” property
for the edges they contain which are labelled by vertices of D.

Definition 3.3 (Switching path). A path P = (p0, . . . , pd) in an edge-labelled, directed graph
D is a switching path if the following hold.

• P is rainbow i.e. the edges of P have different labels.

• If pipi+1 is labelled by a vertex v ∈ V (D), then v = pj for some 1 ≤ j ≤ i.

Another key definition in this paper is of a label being amidst two vertices.

Definition 3.4 (Amidst). Let u and v be two vertices in an edge-labelled, directed graph D,
and c a label. We say that c is amidst u and v if there is a switching path P = (u, p1, . . . , pd, v)
from u to v such that the following hold.

• There are no edges of P labelled by c.

• If c is a vertex of D then c ∈ {p1, . . . , pd, v}.

If P is a path as in Definition 3.4, then we say that P witnesses c being amidst u and v.
Notice that like in the definition of “switching path”, in the second part of the definition of
“amidst” the vertex c is required to be a non-starting vertex of P . Also notice that if there
is a switching path P from u to v with |P | ≥ 2, then v is amidst u and v, as witnessed by P .

The following lemma establishes a link between a matching M being maximum in a graph
G and the behavior of switching paths in the corresponding digraph DG,M .

Lemma 3.5. Let G be a properly coloured bipartite graph with parts X and Y and M a
maximum rainbow matching in G.

Suppose that M misses a colour c∗ and a is a label in DG,M which is amidst c∗ and some
v ∈ V (DG,M ). Then there is no colour v edge in G from (a)X to Y0 = Y \ V (M).

Proof. Suppose for the sake of contradiction that a colour v edge (a)Xy exists for y ∈ Y0. Let
P be a switching path witnessing a being amidst c∗ and v. Let p0, p1, . . . , pk be the vertex
sequence of P with p0 = c∗ and pk = v. For 1 ≤ i ≤ k, let mi be the edge of M with colour pi.
Such edges exist since the in-degree of pi is positive for i ≥ 1. For 0 ≤ i ≤ k − 1 let `i be the
label of pipi+1 and define xi = (`i)X . For 0 ≤ i ≤ k− 1 let ei be the edge of G corresponding
to the edge pipi+1 of DG,M i.e. ei is the colour pi edge going from xi to mi+1 ∩ Y .

Claim 3.6. Let M ′ = M ∪{e0, . . . , ek−1} \ {m1, . . . ,mk}. Then M ′ is a rainbow matching in
G of size |M | missing the colour v.

Proof. First we show that M ′ is a rainbow set of edges missing the colour v. Notice that
for each i ≥ 1, ei and mi both have colour pi. Also the edge e0 has colour p0 = c∗. Since
M is rainbow and missed colour c∗, M \ {m1, . . . ,mk} is rainbow and misses the colours c∗,
p1, . . . , pk. Therefore M ′ is rainbow and misses colour pk = v.
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It remains to show that M ′ is a matching. Notice that M \ {m1, . . . ,mk} is a matching
as a consequence of M being a matching.

Next we show that {e0, . . . , ek−1} is a matching. Since P is a switching path, its edges
have different labels, which is equivalent to the vertices x0, . . . , xk−1 being distinct. Also,
since P is a path, the vertices p1, . . . , pk are distinct which implies that the edges m1, . . . ,mk

are also distinct. Since ei goes from xi to mi+1 ∩ Y , these imply that for distinct i and j we
have ei ∩ ej = ∅.

Finally we show that ei ∩m = ∅ for 0 ≤ i ≤ k − 1 and m ∈ M \ {m1, . . . ,mk}. Suppose
that ei ∩m ∩ Y 6= ∅. Then since ei ∩ Y = mi+1 ∩ Y , we have m = mi+1 which contradicts
m ∈M \{m1, . . . ,mk}. Suppose that ei∩m∩X 6= ∅, or equivalently ei∩m∩X = {xi}. Then
xi ∈ V (M) which is equivalent to `i ∈ V (DG,M ). In particular we find out that `i is a colour
in G (rather than a vertex of X0.) Recall that `i is the label of the edge pipi+1 of P . Using
the definition of P being a switching path, we get that `i = pj for some 1 ≤ j ≤ i. Then mj

is the colour `i edge of M which gives xi = (`i)X ∈ mj ∩X. This implies that m = mj which
contradicts m ∈M \ {m1, . . . ,mk}.

We claim that (a)X 6∈ V (M ′). Since a is amidst c∗ and v, we have that a doesn’t appear
on edges of P , which implies (a)X 6= xi for 0 ≤ i ≤ k−1. This shows that (a)X is disjoint from
e0, . . . , ek−1. If a 6∈ CM , then we have a ∈ X0 and so (a)X 6∈ V (M) which gives (a)X 6∈ V (M ′).
If a ∈ CM , then since a is amidst c∗ and v, we have that a = pi for some 1 ≤ i ≤ k. This gives
(a)X = mi ∩X which implies that (a)X 6∈ V (M \ {m1, . . . ,mk}) and hence (a)X 6∈ V (M ′).

Now we have that neither of the vertices (a)X or y are in M ′, and also M ′ misses colour
v. Thus M ′ + (a)Xy is a rainbow matching of size |M ′| + 1 contradicting the maximality of
M .

For a set of labels L in a labelled digraph D, define

N+
L (v) = {w ∈ N+(v) : vw is labelled by some ` ∈ L}.

Notice that from the definition of DG,M , we have that |N+
L (v)| is exactly the number of colour

v edges in G going from (L \ {v})X to Y ∩ V (M).
The following corollary of the above lemma shows that if we have a graph G with a

maximum matching missing some colour, then the corresponding digraph DG,M satisfies a
degree condition.

Lemma 3.7. Let G be a properly coloured bipartite graph with parts X and Y , M a maximum
rainbow matching in G, and X0 = X \ V (M).

Suppose that M misses a colour c∗, v is a colour in G with |M |+ k edges, and A is a set
of labels in DG,M which are amidst c∗ and v. Then |N+

A (v)| ≥ |A| − |X0|+ k − 1.

Proof. Suppose for the sake of contradiction that |N+
A (v)| < |A|−|X0|+k−1. Since |(A)X | =

|A|, there are exactly |M | + |X0| − |A| vertices in X outside (A)X . The number of colour v
edges touching (A \ {v})X in G is ≥ |M |+ k− |X \ (A \ {v})X | ≥ |M |+ k− |X \ (A)X | − 1 =
|A| − |X0| + k − 1 > |N+

A (v)|. Since |N+
A (v)| equals the number of colour v edges between

(A\{v})X and Y ∩V (M) we obtain that there is a colour v edge from some (a)X ∈ (A\{v})X
to y ∈ Y0 = Y \ V (M). But, by definition of A we have a amidst c∗ and v, contradicting
Lemma 3.5.
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The above lemma produces a directed graph with a degree condition. In the remainder of
the paper we show that this degree condition is almost too strong to hold. We show that if k
is linear in |G| for every vertex v and |G| is sufficiently large, then no digraphs satisfying the
conclusion of Lemma 3.7 exists. This is equivalent to there being no graphs with a maximum
matching M satisfying the assumptions of Lemma 3.7 i.e. we obtain that any maximum
matching in such a graph must use every colour.

4 Connectivity of labelled, directed graphs

The goal of this section is to prove the following theorem. Together with Lemmas 3.2 and 3.7,
it immediately implies Theorem 1.3.

Theorem 4.1. For all ε with 0 < ε ≤ 0.9, there is a N0 = N0(ε) such that the following
holds. Let D be any out-properly edge-labelled, simple, directed graph on n ≥ N0 vertices. Let
X0 be the set of labels which are not vertices of D

Then for all u ∈ V (D), there is a vertex v and a set of labels A amidst u and v, such that
|N+

A (v)| < |A| − |X0|+ εn.

Throughout this section, for a set of vertices S in a graph D we denote the vertex-
complement of S by S = V (D) \ S.

For a path P , define a corresponding set of labels P consisting of labels which are either ver-
tices of P or labels of edges of P . Formally P = V (P )∪ {` : ` is the label of some e ∈ E(P )}
denotes the set of labels consisting of V (P ) together with the set of labels of edges of P . For
a path of length d, we will often use the bound |P | ≤ 2d+ 1 ≤ 3d. For a set of labels S and
a path P starting at a vertex v, we say that P avoids S if S ∩ P ⊆ {v} i.e. P has no edges
labelled by elements of S and P has no vertices in S except possibly the starting vertex v.

The condition that S is allowed to contain the starting vertex of P in the definition of
“avoids” may seem strange. We have this condition since it makes many of the arguments in
this paper neater. In particular, it allows us to cleanly concatenate switching paths with the
following lemma.

Lemma 4.2. Let P = (p0, p1, . . . , pt) and Q = (pt, pt+1, . . . , ps) be two switching paths in a
labelled digraph D. If Q avoids P then P +Q = (p1, p2, . . . , ps) is also a switching path.

Proof. To see that P +Q is rainbow, notice that P and Q are rainbow and that Q shares no
edge-labels with P since Q avoids P . To see the second part of the definition of P +Q being
a switching path notice that if pipi+1 is labelled by v ∈ V (D), then depending on whether
v ∈ P or v ∈ Q we have v = pj for 1 ≤ j ≤ i or v = pj for t+ 1 ≤ j ≤ i.

Another consequence of the definition of “avoids” is that for any set of labels S, a single
vertex path P = v is a path from v to v avoiding S.

The proof of Theorem 4.1 involves lots of constants. The first constant which we use is
ε which is the constant given to us by Theorem 4.1. Throughout the section it is best to fix
ε with 0 < ε ≤ 0.9, and to read everything that we do as a proof of Theorem 4.1 for that
particular ε.

Next we introduce three numbers N0, λmax and δ depending on ε whose relationship is
N−1

0 � λ−1
max � δ � ε. The number N0 will be the N0 in Theorem 4.1, while λmax and

δ are just two numbers with no special meaning. We set λmax = 4ε
−9

and δ = ε3. For an
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integer x let twr(x) = λ
λ.
. .
λmax

max
max be the tower function, where there are x exponentiations. Set

N0 = twr(2λmax).
Next for any λ ∈ N, we define four numbers dλ, kλ,∆λ, and γλ. These numbers will

control the variables in our definition of connectedness and will allow us to define “reaching”
and “components” using just one parameter (rather than using four as in Section 2.3.) The
specific definitions of dλ, kλ,∆λ, and γλ are not too important—the intuition is that for any
λ ∈ [1, λmax] we have

λmax �dλ � kλ � ∆λ � γ−1
λ � N0,

dλ+1 � dλ, kλ+1 � kλ,

∆λ+1 � ∆λ, γλ+1 � γλ.

Notice that some sort of upper bound on λ is necessary for all the above to hold since
dλ+1 � dλ, kλ+1 � kλ, and dλ � kλ cannot simultaneously hold for all λ ∈ N. Because of
this, in all our lemmas we will make sure that λ is in the range 1 ≤ λ ≤ λmax.

For specific dλ, kλ,∆λ, and γλ with which our proofs work, define

dλ = λmax · 4λ,

kλ = λmax(4λ
4
max − 4λmax·λ),

∆λ = twr(λ),

γλ = twr(λ+ 2)−1.

To prove Theorem 4.1 we will need a careful understanding of the switching paths in a
labelled digraph. We will study switching paths via a new notion of connectedness which we
now introduce. The following is the heart of the notion of connectedness that we study.

Definition 4.3 (λ-reaching). For a vertex v in a labelled digraph D and a set R ⊆ V (D), we
say that v λ-reaches R if for any set S of ≤ kλ labels, there are length ≤ dλ switching paths
avoiding S to all, except possibly at most ∆λ, vertices x ∈ R.

Notice that v λ-reaches a set R exactly when it (kλ, dλ,∆λ)-reaches R, as defined in
Section 2.3. To complement the notion of “reaching” we introduce a notion of “bypassing”.
Informally a set B is bypassed by a vertex v if v doesn’t reach anything big inside B.

Definition 4.4 (λ-bypassing). For a vertex v in a labelled digraph D and a set B ⊆ V (D),
we say that v λ-bypasses B if v doesn’t λ-reach any R ⊆ B with |R| ≥ γλ|D|.

The third key definition is that of a λ-component. Recall that when studying ordinary
undirected graphs a connected component C is a set where every pair x, y ∈ C is connected
by a path, and no pair x ∈ C, z 6∈ C is connected by a path. Intuitively a λ-component is
similar to this, with “every pair” replaced by “almost every pair” and “no pair” replaced by
“almost no pair”.

Definition 4.5 (λ-component). A set of vertices C in a labelled digraph D is a λ-component
if for any vertex v ∈ C, there is a set Rv ⊆ V (D) with |Rv 4C| ≤ δn such that the following
hold.
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(i) v λ-reaches Rv.

(ii) v (λ− 3)-bypasses Rv.

Notice that for a labelled digraph D it is far from clear that λ-components exist in D. Sec-
tion 4.2 will be devoted to proving that every properly labelled digraph D, has λ-components
for suitable λ.

4.1 Basic properties

Here we establish many basic properties of λ-reaching, λ-bypassing, and λ-components. The
first property is that reaching or bypassing a set W is preserved by passing to a subset of W ,
and by moving λ in a suitable direction.

Observation 4.6. Let D be a labelled digraph, v ∈ V (D), R,B ⊆ V (D), and λ ∈ N.

(i) Monotonicity of reaching: Let λ+ ≥ λ and R− ⊆ R. Then v λ-reaches R =⇒ v
λ+-reaches R−.

(ii) Monotonicity of bypassing: Let λ− ≤ λ and B− ⊆ B. Then v λ-bypasses B =⇒ v
λ−-bypasses B−.

Proof. For (i), let S be a set of kλ+ labels. Since kλ+ ≤ kλ and v λ-reaches R, there are
length ≤ dλ switching paths from v to all except at most ≤ ∆λ vertices in R. Since dλ+ ≥ dλ
and ∆λ+ ≥ ∆λ, these same paths give length ≤ dλ+ switching paths from v to all except at
most ≤ ∆λ+ vertices in R− ⊆ R.

For (ii), let R be a subset of B− which is λ−-reached by v. Since λ ≥ λ−, by part (i) we
know that v λ-reaches R. Since R ⊆ B− ⊆ B and v λ-bypasses B, we get that |R| ≤ γλ|D|.
Since γλ− ≥ γλ we get that |R| ≤ γλ− |D|. Since R was an arbitrary subset of B− which is
λ−-reached by v, we have proved that v λ−-bypasses B−.

Since the above observation is extremely fundamental and basic we will not always ex-
plicitly refer to it throughout its many applications. The next observation provides trivial
conditions for sets to be reached or bypassed by a vertex.

Observation 4.7. Let D be a labelled digraph, X0 the set of non-vertex labels in D, v ∈ V (D),
R,B ⊆ V (D), and λ ∈ N.

(i) Reaching small sets: |R| ≤ ∆λ =⇒ v λ-reaches R.

(ii) Bypassing small sets: |B| < γλ|D| =⇒ v λ-bypasses B.

(iii) Reaching neighborhoods: If D is out-properly labelled then v 3-reaches N+
X0

(v).

Proof. For (i), we can take the family of paths for the definition of v λ-reaching R to be
empty. For (ii), notice that every subset R ⊆ B has |R| ≤ |B| < γλ|D| regardless of whether
R is reached by v or not.

For (iii), notice that ∆3 ≥ k3. Let S be a set of ≤ k3 labels. Notice that for every
y ∈ N+

X0\S(v)\S, the edge vy is a length 1 ≤ d3 switching path from v to y avoiding S. Since

D is properly coloured we have |N+
X0

(v) \ (N+
X0\S(v) \ S)| ≤ |S| ≤ k3 ≤ ∆3, and so we have

enough paths for the definition of v λ-reaching N+
X0

(v).
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Observation 4.6 shows that if R is λ-reached by v, we can pass to a subset of R and still
have it λ-reached. We will sometimes want to increase the size of a set R and know that it is
still reached by v. The following lemma shows that we can add the vertex v itself to R and
still know that R ∪ {v} is reached by v with the same parameter λ.

Observation 4.8 (Reaching one more vertex). v λ-reaches R =⇒ v λ-reaches R ∪ {v}.

Proof. Let S be a set of ≤ kλ labels. Recall that {v} is a length 0 ≤ dλ switching path
from v to v avoiding S (using the fact that the first vertex of a path is allowed to be in S in
the definition of “avoids”.) Also, since v λ-reaches R, there are length ≤ dλ switching paths
avoiding S to all except at most ∆λ vertices of R. These paths, together with {v}, give the
required paths to show that v λ-reaches R ∪ {v}.

Consider a set Rv as in the definition of λ-component i.e. Rv is λ-reached by v and Rv is
(λ−3)-bypassed by v. By Observation 4.8 Rv∪{v} is λ-reached by v, and by the monotonicity
of bypassing Rv ∪ {v} is (λ − 3)-bypassed by v. This shows that without affecting anything
we could have added the condition “v ∈ Rv” to the definition of λ-component.

The next two lemmas show that reaching and bypassing are preserved by unions, as long
as we weaken the parameter λ slightly.

Lemma 4.9 (Reaching unions). For m ≤ γ−1
λ , suppose that a vertex v λ-reaches sets

R1, . . . , Rm ⊆ V (D). Then v (λ+ 3)-reaches
⋃m
i=1Ri.

Proof. Let S be a set of kλ+3 labels. Since kλ+3 ≤ kλ and v λ-reaches Ri, there are length
≤ dλ switching paths avoiding S to all, except possibly ∆λ, vertices x ∈ Ri for each i.
Therefore there are length ≤ dλ ≤ dλ+3 switching paths avoiding S to all, except possibly
m∆λ ≤ γ−1

λ ∆λ = twr(λ+ 2)twr(λ) ≤ twr(λ+ 3) = ∆λ+3 vertices in
⋃m
i=1Ri.

A similar lemma holds for bypassing.

Lemma 4.10 (Bypassing unions). For m ≤ γ−1
λ−1, suppose that a vertex v λ-bypasses sets

B1, . . . , Bm ⊆ V (D). Then v (λ− 1)-bypasses
⋃m
i=1Bi.

Proof. Suppose that v (λ − 1)-reaches a set R ⊆
⋃m
i=1Bi. Without loss of generality we

can suppose that B1, . . . , Bm are ordered so that |R ∩ B1| ≥ |R ∩ Bj | for j > 1. Since
R =

⋃m
i=1R ∩Bi we have |R ∩B1| ≥ |R|/m. From the monotonicity of reaching, v λ-reaches

R ∩B1. Since v λ-bypasses B1, this implies |R ∩B1| < γλ|D|. This gives |R| ≤ m|R ∩B1| ≤
mγλ|D| ≤ γ−1

λ−1γλ|D| = twr(λ+ 1)twr(λ+ 2)−1|D| ≤ twr(λ+ 1)−1|D| = γλ−1|D|. Since R was
arbitrary, we have proved that v (λ− 1)-bypasses

⋃m
i=1Bi.

Recall that “two vertices u and v being connected by a path” is a transitive relation
on vertices in an graph. This transitivity is used to show that connected components in a
graph are equivalence classes. The following lemma shows that “reaching” also has a kind of
transitive property. The lemma plays a similar role in showing that λ-components exist.

Lemma 4.11 (Transitivity of reaching). For a labelled digraph D and 1 ≤ λ ≤ λmax, suppose
that we have a vertex v ∈ V (D), and R such that v λ-reaches R. Suppose that we have
distinct vertices x0, . . . , x∆λ

∈ R and a set W such that xi λ-reaches W for each i. Then v
(λ+ 1)-reaches W .
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Proof. Let S be a set of kλ+1 labels. Since v λ-reaches R and kλ+1 ≤ kλ, there is some
i ∈ 0, . . . ,∆λ such that there is a length ≤ dλ switching path P from v to xi avoiding S.
Since xi λ-reaches W and |S|+ |P | ≤ kλ+1 + 3dλ ≤ kλ, there is a length ≤ dλ switching path
Pw avoiding S and P from xi to all, except ∆λ vertices of w ∈W .

Using Lemma 4.2, the paths P + Pw are length ≤ 2dλ ≤ dλ+1 switching paths avoiding S
to all except at most ∆λ ≤ ∆λ+1 vertices w ∈W . This proves the lemma.

A consequence of Observation 4.7 (iii) is that components cannot be much smaller than
the neighborhoods of vertices they contain.

Lemma 4.12 (Components are larger than neighbourhoods). Let D be a out-properly labelled,
directed graph on n vertices with X0 the set of non-vertex labels in D, and 6 ≤ λ ≤ λmax. For
any λ-component C and v ∈ C we have |C| ≥ |N+

X0
(v)| − δn− γλ−3n.

Proof. By the definition of C being a λ-component, there is a set Rv with |Rv \ C| ≤ δn
such that v (λ− 3)-bypasses Rv. By Observation 4.7 (iii) and the monotonicity of reaching,
v (λ− 3)-reaches N+

X0
(v). This gives |N+

X0
(v) ∩Rv| ≤ γλ−3n which implies the lemma:

|C| ≥ |N+
X0

(v)|−|N+
X0

(v)∩C| ≥ |N+
X0

(v)|−|N+
X0

(v)∩C∩Rv|−|C\Rv| ≥ |N+
X0

(v)|−δn−γλ−3n.

4.2 Constructing λ-components

The goal of this section is to show that λ-components exist for suitable λ. The first step
towards this is to show that for any vertex v and number λ, there is a set Rv ⊆ V (D)
possessing the two properties Rv has in the definition of λ-component.

Lemma 4.13. For all vertices v in a labelled digraph D and 1 ≤ λ ≤ λmax, there is a set
R ⊆ V (D) such that v (λ+ 3)-reaches R and v λ-bypasses R.

Proof. We define sets of vertices R0, R1, R2, . . . , Rm recursively as follows.

• Let R0 = ∅.

• For each i ≥ 1, if possible, choose Ri to be any set disjoint from R0 ∪ · · · ∪Ri−1 which
is λ-reached by v, and also |Ri| ≥ γλ|D|.

• Otherwise, if no such Ri exists, we stop with m = i− 1.

Notice that the sets R1, . . . , Rm are all disjoint and satisfy |Ri| ≥ γλ|D| which implies that
m ≤ γ−1

λ . Set R = R1 ∪ · · · ∪Rm.
By definition of m, v λ-bypasses R—indeed otherwise we could choose a set Rm+1 of size

γλ|D| disjoint from R which is λ-reached by v, contradicting the fact that we stopped at m.
By Lemma 4.9 v (λ+ 3)-reaches R. This completes the proof.

Notice that in the above lemma would be stronger if it produced a set R with R λ-reached
by v and R λ′-bypassed by v for λ′ > λ (rather than λ′ < λ as Lemma 4.13 gives us.) The next
lemma tries to prove something like this—it produces two sets R and B which are “nearly
complementary” such that v λ-reaches R and λ′-bypasses B for λ′ > λ.
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Lemma 4.14. Let D be a labelled digraph on n vertices, λ0 ∈ N with 43δ−1 ≤ λ0 ≤ λmax,
and v ∈ V (D). There are two sets of vertices R and B satisfying the following.

(i) |V (D) \ (R ∪B)| ≤ δn/3.

(ii) There is a λ with λ0 − 42δ−1 ≤ λ ≤ λ0 such that

• v (λ− 4)-reaches R.

• v λ-bypasses B.

Proof. Define λ1, . . . , λ6δ−1 , R1, . . . , R6δ−1 as follows.

• For each i, set λi = λi−1 − 7.

• Let Ri be a set which is (λi + 3)-reached by v and with Ri λi-bypassed by v. Such a
set exists by Lemma 4.13.

We show that there is some index m satisfying a property like part (i) of the lemma.

Claim 4.15. There is some m ∈ {1, . . . , 6δ−1} for which |V (D) \ (Rm ∪Rm−1)| ≤ δn/3.

Proof. Suppose for the sake of contradiction that |V (D) \ (Ri ∪ Ri−1)| > δn/3 for all i =
1, . . . , 6δ−1. Notice that we have |Ri ∩Ri−1| ≤ γλi−1

n (since v λi−1-bypasses Ri−1, v (λi + 3)-
reaches Ri∩Ri−1, and λi+3 ≤ λi−1.) We also have |Ri−1 \Ri| = |V (D)\ (Ri∪Ri−1)| > δn/3
for i < 6δ−1. Combining these, we get the following

|Ri| = |Ri ∩Ri−1|+ |Ri ∩Ri−1| = |Ri−1| − |Ri−1 \Ri|+ |Ri ∩Ri−1| < |Ri−1| − (δ/3− γλi−1
)n.

Notice that for all i ≤ 6δ−1 we have λi ≥ 1, and so γλi ≤ λ−1
max ≤ δ/12 which implies

|Ri| < |Ri−1| − δn/4. Iterating this gives 0 ≤ |Ri| < |R1| − (i − 1)δn/4 ≤ n − (i − 1)δn/4.
This is a contradiction for i = 6δ−1.

Set R = Rm, B = Rm−1 and λ = λm−1. Then v (λ− 4)-reaches Ri and λ-bypasses B by
the constructions of Ri and Ri−1. We have |V (D) \ (R ∪B)| ≤ δn/3 by choice of m. Finally
we have λ0 ≥ λ ≥ λ0 − 7m ≥ λ0 − 42δ−1.

As a prelude to constructing components we give a condition under which a singleton {v}
is a λ-component.

Lemma 4.16. Let D be a labelled digraph on n ≥ N0 vertices and 4 ≤ λ ≤ λmax. Suppose
that v λ-bypasses B with |B| ≤ δn/2. Then {v} is a λ-component.

Proof. To prove the lemma we need to choose a set Rv and show that it satisfies all the
properties of the set Rv in the definition of λ-component. Apply Lemma 4.13 to get a set Rv
which is λ-reached by v and with Rv (λ − 3)-bypassed by v. Notice that since v λ-bypasses
B, we must have |Rv ∩ B| ≤ γλn. This gives |Rv 4 {v}| ≤ |Rv| + 1 ≤ |Rv ∩ B| + |B| + 1 ≤
γλn+ δn/2 + 1 ≤ δn.

The following lemma is a purely technical tool which we will need. A r-uniform multi-
hypergraph H with n vertices and m edges is a family of m size r subsets of [n] with the
possibility of H containing several copies of the same subset.
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Lemma 4.17. Let H be a γn-uniform multihypergraph with n vertices and m edges. Then,
for any t with γ/2 ≥ 2t/m, there are t edges T1, . . . , Tt ∈ H with |T1 ∩ · · · ∩ Tt| ≥

(γ
2

)t
n.

Proof. Let T be a set of t distinct edges of H chosen uniformly at random from all such sets.
To prove the lemma it is sufficient to show that the expected size of the intersection of the
edges in T is at least

(γ
2

)t
n. For any vertex v ∈ V (H), let d(v) be the number of edges of

H containing v. Let V≥t = {v ∈ V (H) : d(v) ≥ t}. By linearity of expectation we have the
following.

E

(∣∣∣∣∣ ⋂
E∈T

E

∣∣∣∣∣
)

=
∑

v∈V (H)

P

(
v ∈

⋂
E∈T

E

)
=
∑
v∈V≥t

P

(
v ∈

⋂
E∈T

E

)

=
∑
v∈V≥t

(
d(v)
t

)(
m
t

) ≥ ∑
v∈V≥t

(
(d(v)− t)

m

)t
.

The inequality comes from “
(
d
t

)/(
m
t

)
≥ ((d− t)/m)t for d ≥ t.” Using convexity of f(x) = xt

we can prove the lemma.

E

(∣∣∣∣∣ ⋂
E∈T

E

∣∣∣∣∣
)
≥
∑
v∈V≥t

(
(d(v)− t)

m

)t
≥

 ∑
v∈V≥t

(d(v)− t)
nm

t

n ≥
(
γm− 2t

m

)t
n ≥

(γ
2

)t
n.

The third inequality comes from
∑

v∈V (G) d(v) = γnm and
∑

v∈V (G)\V≥t d(v) ≤ tn. The last

inequality comes from γ/2 ≥ 2t/m.

The following lemma is the main result of this section. It implies that for a given λ0,
there is a λ-component C for some λ which is close to λ0. In addition the lemma gives some
control over where the component C is located—given any set B0 which is λ0-bypassed, we
can choose C to be outside B0.

Lemma 4.18. Let D be a labelled digraph on n ≥ N0 vertices and 87δ−2 ≤ λ0 ≤ λmax.
Suppose we have v0 ∈ V (D) and B0 ⊆ V (D) such that v0 ∈ B0 and v0 λ0-bypasses B0. Then
there is a nonempty C ⊆ B0 such that C is a λ-component with λ0 − 87δ−2 ≤ λ ≤ λ0.

Proof. We start with the following claim.

Claim 4.19. There is a vertex v′ ∈ B0, λ′ ∈ [λ0 − 86δ−2, λ0], and a set B′ ⊇ B0 with the
following properties.

• v′ λ′-bypasses B′.

• For every u ∈ B′, if there is a set Bu ⊃ B′ such that u (λ′ − 43δ−1)-bypasses Bu, then
|Bu| < |B′|+ δn/2.

Proof. Using B0, v0, and λ0 from the lemma, we define B1, . . . , Bm, v1, . . . , vm, and λ1, . . . , λm
as follows.

• For each i, set λi+1 = λi − 43δ−1.

• For each i, if possible, choose a vertex vi+1 ∈ Bi and a set Bi+1 ⊃ Bi such that vi+1

λi+1-bypasses Bi+1 and |Bi+1| ≥ |Bi|+ δn/2.
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• Otherwise, if no such pair of vi+1 and Bi+1 exists, then stop with m = i.

Notice that since |Bi+1| ≥ |Bi| + δn/2 for i < m, we stop with m ≤ 2δ−1. Let λ′ = λm,
v′ = vm, and B′ = Bm. Since m ≤ 2δ−1, we have λ′ = λ0 − 43δ−1m ≥ λ0 − 86δ−2. We have
B′ = Bm ⊇ Bm−1 ⊇ · · · ⊇ B0 and v′ ∈ Bm−1 ⊆ B0 as required. The vertex v′ λ′-bypasses
B′ by choice of vm and Bm. The fact that “for every u ∈ B′, if there is a set Bu ⊃ B′ such
that u (λ′ − 43δ−1)-bypasses Bu, then |Bu| < |B| + δn/2” is equivalent to the fact that we
stopped at m.

Apply Lemma 4.14 to v′ and λ′ in order to obtain sets R and B and λ′′ ∈ [λ′−42δ, λ′] such
that |V (D) \ (R ∪B)| ≤ δn/3, v′ (λ′′ − 4)-reaches R, and v′ λ′′-bypasses B. By Lemma 4.10
and the monotonicity of bypassing, v′ (λ′′ − 1)-bypasses B ∪B′.

We make the following definition

S = {x ∈ R : x (λ′′ − 2)-reaches some T ⊆ B ∪B′ with |T | ≥ γλ′′−3n}.

From the definition of S and the monotonicity of reaching, we have that for every v ∈ R\S
the vertex v (λ′′ − 3)-bypasses B ∪B′. Using Lemma 4.17 and the “transitivity of reaching”
we show that S is small.

Claim 4.20. |S| ≤ 4∆λ′′γ
−1
λ′′ .

Proof. Suppose for the sake of contradiction that |S| > 4∆2
λ′′γ
−1
λ′′ . For each s ∈ S, choose

some set Ts ⊆ B ∪ B′ with |Ts| = γλ′′−3n which is (λ′′ − 2)-reached by s. Let H = {Ts :
s ∈ S}. Notice that H is an (γλ′′−3n)-uniform multihypergraph with |S| edges. Notice that
|S| > 4∆λ′′γ

−1
λ′′ implies γλ′′−3/2 ≥ 2(∆λ′′−2 + 1)/|S|. Therefore we can apply Lemma 4.17 to

H with t = ∆λ′′−2 + 1 and γ = γλ′′−3 in order to find ∆λ′′−2 + 1 sets T ′0, . . . , T
′
∆λ′′−2

∈ H with∣∣∣∣∣∣
∆λ′′−2⋂
i=0

T ′i

∣∣∣∣∣∣ ≥
(γλ′′−3

2

)∆λ′′−2+1
n > γλ′′−1n.

The second inequality comes from γ−1
λ′′−1 = twr(λ′′ + 1) ≥ (2twr(λ′′ − 1))twr(λ′′−2)+1 =

(2/γλ′′−3)∆λ′′−2+1. By Lemma 4.11 applied with λ = λ′′ − 2, v = v′, R = R, W =
⋂∆λ′′−2

i=0 T ′i ,

and xi the vertex of S which (λ′′ − 2)-reaches T ′i , we get that v′ (λ′′ − 1)-reaches
⋂∆λ′′−2

i=0 T ′i .
This contradicts v′ (λ′′ − 1)-bypassing B ∪B′.

Let C = R \ (S ∪ B′ ∪ B) and λ = λ′′ − 2. Since C ⊆ B′ and B′ ⊇ B0 we have C ⊆ B0.
From the definitions of λ′ and λ′′ we have that λ0 − 87δ−2 ≤ λ ≤ λ0.

Claim 4.21. C is a λ-component.

Proof. For each v ∈ C apply Lemma 4.13 to get a set Rv which is λ-reached by v and with
Rv (λ−3)-bypassed by v. To prove the claim, it is enough to show that |Rv4C| ≤ δn. We’ll
do this by showing |Rv \ C| ≤ δn/2 and |C \Rv| ≤ δn/2.

First we show that |Rv \C| ≤ δn/2. Notice that C = R∩S∩B′∩B = (R∪B)∩S∩B′∩B.
Notice that since v ∈ R \ S and λ = λ′′ − 2 we have |Rv ∩ (B ∪ B′)| ≤ γλ′′−3n. Combining
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these with |S| ≤ 4∆λ′′γ
−1
λ′′ and |V (D) \ (R ∪B)| ≤ δn/3 we get

|Rv \ C| = |Rv \ ((R ∪B) ∩ S ∩B′ ∩B)|
= |Rv ∩ ((R ∪B) ∪ S ∪B′ ∪B)|
≤ |Rv ∩ (R ∪B)|+ |Rv ∩ S|+ |Rv ∩ (B ∪B′)|
≤ |V (D) \ (R ∪B)|+ |S|+ |Rv ∩ (B ∪B′)|
≤ δn/3 + 4∆λ′′γ

−1
λ′′ + γλ′′−3n ≤ δn/2.

The last inequality comes from n ≥ N0 and λ ≤ λmax.
Next we show that |C \ Rv| ≤ δn/2. Using v ∈ R \ S and the monotonicity of bypassing

we get that v (λ − 3)-bypasses B′. By Lemma 4.10, v (λ − 4)-bypasses Rv ∪ B′. Now using
the monotonicity of bypassing we have a vertex v ∈ B′ and a set Rv ∪ B′ ⊇ B′ such that
v (λ′ − 43δ−1)-bypasses Rv ∪ B′. From Claim 4.19 we have |Rv ∪ B′| ≤ |B′| + δn/2 which
implies |Rv \B′| ≤ δn/2. This gives us

|C \Rv| = |C ∩Rv| ≤ |Rv \B′|+ |C ∩B′| = |Rv \B′| ≤ δn/2.

We have now proved that C satisfies all the requirements of the lemma aside from “C
is nonempty”. Thus, for the remainder of the proof we can assume that C is empty, or
equivalently R ⊆ S ∪B′ ∪B. We’ll show that {v′} is a λ-component satisfying the conditions
of the lemma. Notice that {v′} ⊆ B0 holds as a consequence of the definition of v′ in
Claim 4.19.

By |S| ≤ 4∆λ′′γ
−1
λ′′ ≤ γλ+1n and Observation 4.7 (ii), v (λ+1)-bypasses S. By Lemma 4.10,

v′ λ-bypasses S ∪ B′ ∪ B. From R ⊆ S ∪ B′ ∪ B we obtain |V (D) \ (S ∪ B′ ∪ B)| =
|V (D) \ (R ∪ S ∪ B′ ∪ B)| ≤ |V (D) \ (R ∪ B)| ≤ δn/3. By Lemma 4.16 applied with v = v′,
λ = λ, and B̂ = S ∪ B′ ∪ B, we have that C ′ = {v′} is a λ-component which satisfies the
conditions of the lemma.

By iteratively applying Lemma 4.18 we can find a sequence of λ-components for decreasing
λ. We’ll use this sequence in the proof of Theorem 4.1.

Lemma 4.22. Fix m = 4δ−1 and let D be a labelled digraph on n ≥ N0 vertices. For any
v ∈ V (D) we can choose C1, . . . , Cm and λ1, . . . , λm such that for each i, Ci is a λi-component
with |Ci \ Ci+1| ≤ δn and 1 ≤ λi+1 − 88δ−2 ≤ λi ≤ λi+1 − 9 ≤ λmax for i = 1, . . . ,m.

In addition there is a length ≤ dλmax/2 switching path which starts at v and passes through
all of C1, . . . , Cm.

Proof. We will choose vertices v1, . . . , vm+1, paths P1, . . . , Pm+1, sets R1, . . . , Rm+1, numbers
λ1, . . . , λm+1, and components C1, . . . , Cm. They will have the following properties.

(i) For i ≤ m, 1 ≤ λi+1 − 88δ−2 ≤ λi ≤ λi+1 − 9 ≤ λmax/4.

(ii) For i ≤ m+ 1, vi λi-reaches Ri and vi (λi − 3)-bypasses Ri.

(iii) For i ≤ m + 1, Pi is a switching path from v to vi passing through vi+1, . . . , vm. Also
|Pi| ≤ dλi+1

+ dλi+2
+ · · ·+ dλm .

(iv) For i ≤ m, Ci is a λi-component with Ci ⊆ Ri+1, vi ∈ Ci, and |Ci 4Ri| ≤ δn.
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Once we have constructed these sequences, then it is easy to see that the components
C1, . . . , Cm, the numbers λ1 . . . , λm, and the path P1 satisfy the conditions of the lemma.
Indeed Ci is a λi-component with |Ci \ Ci+1| ≤ |Ri+1 \ Ci+1| ≤ |Ri+1 4 Ci+1| ≤ δn by (iv).
By (i), (iii), and (iv) the path P1 is a length ≤ mdλm ≤ md(λmax/4) ≤ dλmax/2 switching path
starting from v which passes through the vertex vi ∈ Ci for i = 1, . . . ,m.

We will construct vi, Pi, Ri, λi, and Ci in reverse order starting with i = m+ 1 and ending
with i = 1. Let vm+1 = v, Pm+1 = {v}, and λm+1 = λmax/4. Use Lemma 4.13 to find a set
Rm+1 such that vm+1 (λm+1)-reaches Rm+1 and (λm+1−3)-bypasses Rm+1. By construction,
conditions (i) – (iii) are satisfied for vm+1, Pm+1, Rm+1, and λm+1. Condition (iv) doesn’t
need to be checked since we do not have a component Cm+1.

For each i ≤ m + 1, suppose that we have constructed vi, Pi, Ri, and λi. We build
vi−1, Pi−1, Ri−1, λi−1, and Ci−1 as follows.

By the monotonicity of bypassing and Observation 4.8, vi λi-reaches Ri∪{vi} and (λi−3)-
bypasses Ri ∪ {vi}. Since vi λi-reaches Ri ∪ {vi} and |Pi| ≤ 3idλm+1 ≤ kλi , there is a subset
R′i ⊆ Ri ∪ {vi} of order at least |Ri| −∆λi such that there are length ≤ dλi switching paths
from vi to all r ∈ R′i avoiding Pi. Without loss of generality we can assume vi ∈ R′i (since
there is a length 0 switching path from vi to vi avoiding any set of labels.) By ∆λi ≤ γλi−3n,
Observation 4.7 (ii), and Lemma 4.10, vi (λi − 4)-bypasses R′i. Apply Lemma 4.18 with

v0 = vi, λ0 = λi − 9, and B0 = R′i in order to find a nonempty λ-component Ci−1 contained
in R′i for some λi − 9 − 87δ−2 ≤ λ ≤ λi − 9. Let λi−1 = λ. Let vi−1 be any vertex in Ci−1.
Since vi−1 ∈ Ci−1 ⊆ R′i, there is a length ≤ dλi switching path Q from vi to vi−1 which avoids
Pi. Let Pi−1 = Pi + Q. Let Ri−1 be the set from the definition of “λi−1-component” such
that |Ri−1 4 C| ≤ δn, vi−1 λi−1-reaches Ri−1, and (λi−1 − 3)-bypasses Ri−1.

We claim that vi−1, Pi−1, Ri−1, λi−1, and Ci−1 satisfy properties (i) – (iv). For property (i)
we have λi−88δ−2 ≤ λi−9−87δ−2 ≤ λi−1 ≤ λi−9 and also λi−1 ≥ λm+1−(m−i+1)88δ−2 ≥
λmax−252δ−3 ≥ 1. Property (ii) holds since we chose Ri−1 so that vi−1 λi−1-reaches Ri−1 and
(λi−1− 3)-bypasses Ri−1. To see that property (iii) holds, notice that it held for Pi, and that
Q is a length ≤ dλi−1

switching path avoiding Pi from vi to vi−1. Using Lemma 4.2 we have
that Pi−1 = Pi+Q is a length e(Pi) + e(Q) ≤ dλi−1

+ · · ·+dλm switching path from v to vi−1.
For property (iv), Ci−1 being a λi−1-component with Ci−1 ⊆ Ri comes from our application
of Lemma 4.18, vi−1 ∈ Ci−1 comes from our choice of vi−1, and |Ci−1 4 Ri−1| ≤ δn comes
from the choice of Ri−1.

4.3 Growth of λ-components

Notice that so far in Section 4, “amidstness” has only come up in the statement of Theo-
rem 4.1. In this section we build a link between amidstness and λ-components. First we will
need a more precise notion of amidstness which incorporates the parameter λ.

Definition 4.23. Let u and v be two vertices in an edge-labelled, directed graph D, c a label,
and S a set of labels. We say that c is (λ, S)-amidst u and v if c 6∈ S and there is a length
≤ 2dλ switching path P = (u, p1, . . . , pd, v) avoiding S from u to v such that the following
hold.

(i) There are no edges of P labelled by c.

(ii) If c is a vertex of D then c is in {p1, . . . , pd, v}.
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The following is an extension of Lemma 4.2. It shows that when we concatenate two
switching paths, then the vertex at which we concatenate automatically becomes amidst the
endpoints of the concatenated path.

Lemma 4.24. In a labelled digraph D, let S be a set of vertices, P a length ≥ 1 and ≤ dλ
switching path from u to x which avoids S, and Q a length ≤ dλ switching path from x to v
which avoids S and P . Then P +Q witnesses x being (λ, S)-amidst u and v.

Proof. Using Lemma 4.2 we have that P + Q is a length ≤ 2dλ switching path avoiding S
from u to v which passes through x. We have x 6∈ S since P avoids S, P ends with x, and
|P | ≥ 2. Part (ii) of the definition of (λ, S)-amidst holds since x ∈ P + Q and x is not the
starting vertex of P . It remains to show that part (i) of the definition of (λ, S)-amidst holds.
Note that P has no edges labelled by x since P is a switching path ending with x, and Q has
no edges labelled by x since Q avoids P 3 x. These imply that P +Q has no edges labelled
by x.

Recall that the idea behind “amidstness” was to identify labels which can be used to
extend switching paths. The next lemma makes this precise.

Lemma 4.25. Let x be a label in a labelled digraph D which is (λ, S)-amidst v and y. Suppose
that we have a vertex z with z 6∈ S and the edge yz present and labelled by x. Then there is
a length ≤ 2dλ + 1 switching path P from v to z avoiding S.

Proof. Since x is (λ, S)-amidst u and v, there is a length ≤ 2dλ switching path Q from v to y
avoiding S and having no edges labelled by x. In addition if x is a vertex then x ∈ V (Q)\{v}.
If z ∈ Q, then we are done by choosing P to be the subpath of Q ending with z. Otherwise
we take P = Q+ z to get a path from v to z. To see that this is a switching path first notice
that the label of the last edge yz is x which is not present on the edges of P . In addition
if x is a vertex then x ∈ V (Q) \ {v} = V (P ) \ {v, z}. Thus P is a switching path. Notice
that x 6∈ S since x is (λ, S)-amidst v and y. Combining this with z 6∈ S and the fact that Q
avoided S shows that P avoids S. Thus P is a length ≤ 2dλ + 1 switching path from v to z
avoiding S as required.

Recall that for a label x and a vertex v, N+
{x}(v) denotes the set of vertices y with vy an

edge labelled by x. In a out-properly labelled digraph we always have |N+
{x}(v)| ∈ {0, 1}. For

a labelled digraph D, let

L+(D) = {(x, y) : x is a label and y ∈ V (D) with N+
{x}(y) 6= ∅}.

Equivalently we have that L+(D) is the set of pairs (x, y) with x a label and y ∈ V (D) such
that there is an edge in D starting at y labelled by x.

The following lemma gives a connection between amidstness and λ-components. It shows
that for a λ-component C, most triples of the form (v, x, y) ⊆ C×(X0∪C)×C have x amidst
v and y.

Lemma 4.26. Let D be an out-properly labelled digraph with |D| = n ≥ N0, λ ∈ N with
3 ≤ λ ≤ λmax, X0 the set of non-vertex labels of D, and C a λ-component. Fix a vertex
v ∈ C. To every set of labels S with |S| ≤ kλ − 3dλ we can assign sets CS ⊆ C and
ZS ⊆ (X0 ∪ CS)× CS with the following properties.
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(i) For every (x, y) ∈ ZS, the label x is (λ, S)-amidst v and y.

(ii) |CS | ≥ |C| − 2δn and |ZS | ≥ |(X0 ∪ CS)× CS | − 4δn|CS |.

(iii) For two sets S and T we have |L+(D) ∩ (ZS \ ZT )| ≤ 6∆λn.

Proof. Since C is a λ-component, for every u ∈ C there is a set Ru ⊆ C with |Ru| ≥ |C| − δn
so that u λ-reaches Ru. For a set of labels S, let RuS be the set of y ∈ Ru for which there is
a length ≤ dλ switching path from u to y avoiding S. For each u, S and y ∈ RuS , fix such a
switching path P u,yS . Since u λ-reaches Ru, we have

|Ru \RuS | ≤ ∆λ for all S with |S| ≤ kλ. (3)

For a pair of sets S and T with |S|, |T | ≤ kλ, we trivially have |RuS \ RuT | ≤ |Ru \ RuT | which
implies |RuS \RuT | ≤ ∆λ. We now define the sets CS and ZS .

CS = RvS \ {v},
Z0
S = {(x, y) ∈ X0 × CS : P v,yS avoids x and x 6∈ S},

Z1
S = {(x, y) ∈ CS × CS : y ∈ RxS∪P v,xS

},

ZS = Z0
S ∪ Z1

S .

Notice that we have ZS ⊆ (X0 ∪ CS) × CS . For S with |S| ≤ kλ − 3dλ, (3) implies that
|CS | ≥ |Rv| −∆λ − 1 ≥ |C| − 2δn as required by part (ii) of the lemma. The next two claims
prove “|ZS | ≥ |(X0 ∪ CS)× CS | − 4δn|CS |”, completing the proof of part (ii).

Claim 4.27. For any S with |S| ≤ kλ − 3dλ we have |(X0 × CS) \ Z0
S | ≤ kλ|CS |.

Proof. We have (X0×CS) \Z0
S ⊆ (S ×CS)∪

⋃
y∈CS

(
P v,yS × {y}

)
. Using |S| ≤ kλ− 3dλ and

|P v,yS | ≤ 3dλ, this implies |(X0 × CS) \ Z0
S | ≤ |S||CS |+

∑
y∈CS |P

v,y
S | ≤ kλ|CS |.

Claim 4.28. For any S with |S| ≤ kλ − 3dλ we have |(CS × CS) \ Z1
S | ≤ 2δn|CS |.

Proof. Notice that we have

|Z1
S | =

∑
x∈CS

|RxS∪P v,xS
∩ CS | =

∑
x∈CS

(|CS | − |CS \RxS∪P v,xS
|). (4)

We will bound the second term by the following

|CS \RxS∪P v,xS
| ≤ |C \RxS∪P v,xS

| ≤ |C \Rx|+ |Rx \RxS∪P v,xS
| ≤ δn+ ∆λ ≤ 2δn.

The second last inequality comes from |C \Rx| ≤ δn, |S ∪ P v,xS | ≤ kλ, and (3). Plugging the

above into (4) we get |Z1
S | ≥

∑
x∈CS (|CS | − 2δn) = |CS |2 − 2δn|CS | as required.

From Claims 4.27 and 4.28, n ≥ N0, and λ ≤ λmax we get |ZS | ≥ |(X0 ∪ CS) × CS | −
kλ|CS |−2δn|CS | ≥ |(X0∪CS)×CS |−4δn|CS |, completing the proof of part (ii) of the lemma.

Next we prove part (i) of the lemma.

Claim 4.29. Let S be a set of ≤ kλ − 3dλ labels and (x, y) ∈ ZS. Then the label x is
(λ, S)-amidst v and y.
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Proof. Suppose x ∈ X0, or equivalently (x, y) ∈ Z0
S . By definition of Z0

S , we have x 6∈ S. The
path P v,yS is a length ≤ dλ switching path from v to y avoiding S. Since (x, y) ∈ Z0

S , P v,yS
also avoids x, and so witnesses x being (λ, S)-amidst v and y.

Suppose x ∈ CS , or equivalently (x, y) ∈ Z1
S . Since x ∈ CS ⊆ RvS , recall that we have a

length ≤ dλ switching path P v,xS from v to x avoiding S. Since v 6∈ CS , we have x 6= v, which
implies that P v,xS has length ≥ 1. Since y ∈ Rx

S∪P v,xS
, we have a length ≤ dλ switching path

P x,y
S∪P v,xS

from x to y avoiding S and P v,xS . By Lemma 4.24 we have that Q = P v,xS + P x,y
S∪P v,xS

is a switching path witnessing x being (λ, S) amidst v and y.

The following two claims prove part (iii) of the lemma.

Claim 4.30. For S and T with |S|, |T | ≤ kλ − 3dλ we have |L+(D) ∩ (Z0
S \ Z0

T )| ≤ 2∆λn.

Proof. We proceed as follows.

|(L+(D) ∩ (Z0
S \ Z0

T )| ≤ |L+(D) ∩ (X0 × CS \ Z0
T )|

≤ |L+(D) ∩ (X0 × CS \X0 × CT )|+ |L+(D) ∩ (X0 × CT \ Z0
T )|

≤ |L+(D) ∩ (X0 × CS \X0 × CT )|+ kλ|CS |
= |L+(D) ∩ (X0 × (CS \ CT ))|+ kλ|CS |
≤ n|CS \ CT |+ kλ|CS |
≤ ∆λn+ kλ|CS |
≤ 2∆λn.

The first inequality comes from Z0
S ⊆ X0 × CS . The second inequality is an instance of

U \W ⊆ (U \ V ) ∪ (V \W ). The third inequality comes from Claim 4.27. The equality is
an instance of U × V \ U ×W = U × (V \W ). The fourth inequality comes from |L+(D) ∩
((V (D) ∪ X0) × U)| =

∑
u∈U |N+(u)| ≤ n|U | which holds for any set of vertices U . The

fifth inequality comes from |RuS \RuT | ≤ ∆λ. The sixth inequality holds since kλ ≤ ∆λ for all
λ ≥ 3.

Claim 4.31. For S and T with |S|, |T | ≤ kλ − 3dλ we have |Z1
S \ Z1

T | ≤ 4∆λ|CS |.

Proof. Using the definitions of ZS and CS we have the following.

|Z1
S \ Z1

T | = |((CS \ CT )× CS) ∩ (Z1
S \ Z1

T )|+ |((CS ∩ CT )× CS) ∩ (Z1
S \ Z1

T )|

=
∑

x∈CS\CT

|CS ∩RxS∪P v,xS
|+

∑
x∈CS∩CT

|(CS ∩RxS∪P v,xS
) \ (CT ∩RxT∪P v,xT

)|

≤
∑

x∈CS\CT

|CS |+
∑

x∈CS∩CT

|CS \ CT |+
∑

x∈CS∩CT

|RxS∪P v,xS
\RxT∪P v,xT

|

≤ 4∆λ|CS |.

The first equality comes from Z1
S \ Z1

T ⊆ CS × CS . The second equality comes from Z1
S =⋃

x∈CS{x}×(CS∩RxS∪P v,xS
) and Z1

T =
⋃
x∈CT {x}×(CT ∩RxT∪P v,xT

). The first inequality comes

from (U ∩W ) \ (U ′ ∩W ′) ⊆ (U \ U ′) ∪ (W \W ′). The second inequality comes from (3),
|S ∪ P v,xS | ≤ kλ, and |T ∪ P v,xT | ≤ kλ.

Claims 4.30 and 4.31 imply (iii), concluding the proof of the lemma.
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We now prove the main result of this section. The following lemma shows that if we
have a digraph D which doesn’t satisfy Theorem 4.1, then λ-components in D have a special
property—every vertex in a λ-component C (λ+1)-reaches a set R which is much larger than
C. This lemma will later be combined with Lemma 4.22 in order to show that all digraphs
satisfy Theorem 4.1.

Lemma 4.32. Let D be a out-properly labelled, digraph on n ≥ N0 vertices, X0 the set
of labels of D which are not vertices, and 3 ≤ λ ≤ λmax. Let C be a λ-component in D,
u ∈ V (D), and P a length ≤ dλmax switching path from u to some v ∈ C. Then one of the
following holds.

(i) There is a vertex y ∈ C, and a set of labels A amidst u and y such that |N+
A (y)| <

|A| − |X0|+ εn.

(ii) v (λ+ 1)-reaches a set R with |R| ≥ |C|+ (ε− 7δ)n.

Proof. Suppose that (i) doesn’t hold.

Claim 4.33. Let y ∈ C and A be a set of labels which are (λ, P )-amidst v and y. Then
|N+

A (y)| ≥ |A| − |X0|+ εn.

Proof. It is sufficient to show that every label in A is amidst u and y. Then the claim follows
since we are assuming that (i) doesn’t hold.

Fix a ∈ A. Using the definition of a being (λ, P )-amidst v and y, there is a switching path
Q from v to y avoiding P and having no edges labelled by a. In addition if a is a vertex of
D, then a ∈ Q \ {v}. We also have a 6∈ P since a is (λ, P )-amidst v and y. Since Q avoids P ,
Lemma 4.2 implies that P + Q is a switching path from u to y. Since neither P nor Q had
edges labelled by a, P +Q also has no edges labelled by a. In addition, if a is a vertex, then
P +Q passes through a and a 6= u (since a 6∈ P .) Therefore P +Q witnesses a being amidst
u and y as required.

Notice that every x ∈ X0 \P is (λ, P )-amidst v and v (witnessed by the single-vertex path
v.) By Claim 4.33 applied with A = X0 \P we have |N+

X0\P (y)| ≥ εn− |P |. By Lemma 4.12,
n ≥ N0, and P ≤ 3dλmax we have

|C| ≥ |N+
X0

(v)| − δn− γλ−3n ≥ εn− |P | − δn− γλ−3n ≥ εn/2. (5)

Apply Lemma 4.26 to C and v to assign sets CS ⊆ C and ZS ⊆ (X0 ∪CS)×CS satisfying
all the conclusions of Lemma 4.26 to every set of labels S with |S| ≤ kλ− 3dλ. For z ∈ V (D)
and S a set of labels, let

ES(z) = {(x, y) ∈ L+(D) ∩ ZS with yz present and labelled by x}.

Since the labelling on D is out-proper, we have that ES(z)∩ES(z′) = ∅ for any S and z 6= z′.
Also notice that for sets S and S′ we have ES(z)∩L+(D)∩ZS′ ⊆ ES′(z). We now define the
set R

R = {z ∈ V (D) : |EP (z)| ≥ δ|CP |}.

First we show that v (λ+ 1)-reaches R.

Claim 4.34. v (λ+ 1)-reaches R.
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Proof. Let S be a set of at most kλ+1 labels. Notice that |S ∪P | ≤ kλ+1 + 3dλmax ≤ kλ− 3dλ.
Let RS = {z ∈ R : ES∪P (z) 6= ∅}.

We claim that for every z ∈ RS \ (S ∪ P ), there is a length ≤ dλ+1 switching path Pv,z
from v to z avoiding S. Notice that for every z ∈ RS \ (S ∪ P ), we have ES∪P (z) 6= ∅, and
so by the definition of ES∪P (z), there is a pair (x, y) ∈ L+(D) ∩ ZS∪P with yz present and
labelled by x. Since (x, y) ∈ ZS∪P , by part (i) of Lemma 4.26 we have x (λ, S ∪ P )-amidst
v and y. By Lemma 4.25 applied with S′ = S ∪ P , there is a switching path from v to z
avoiding S ∪ P of length ≤ 2dλ + 1 ≤ dλ+1.

To prove the claim it is sufficient to show that |R \ (RS \ (S ∪ P ))| ≤ ∆λ+1. We will do
this by showing |R \RS |+ |S ∪ P | ≤ ∆λ+1. We have

δ|CP ||R \RS | ≤
∑

z∈R\RS

|EP (z)|

=

∣∣∣∣∣∣
⋃

z∈R\RS

EP (z)

∣∣∣∣∣∣
≤ |(L+(D) ∩ ZP ) \ (L+(D) ∩ ZS∪P )|
≤ 6∆λn.

The first inequality comes from the definition of R. The equality comes from EP (z)∩EP (z′) =
∅ for z 6= z′. For the second inequality first recall that EP ⊆ L+(D) ∩ ZP . Then notice that
for z ∈ R \RS we have ES∪P (z) = ∅ and hence EP (z)∩L+(D)∩ZS∪P ⊆ ES∪P (z) = ∅. This
shows EP (z) ⊆ (L+(D) ∩ ZP ) \ (L+(D) ∩ ZS∪P ) for z ∈ R \ RS which implies the second
inequality. The third inequality comes from part (iii) of Lemma 4.26 and |S ∪P | ≤ kλ− 3dλ.

Rearranging and using |S ∪ P | ≤ kλ we obtain |R \ RS | + |S ∪ P | ≤ 6∆λn/δ|CP | + kλ.
From (5) and Lemma 4.26 (ii) we have |CP | ≥ |C| − δn ≥ εn/3. Combining these gives
|R \RS |+ |S ∪ P | ≤ 18∆λ/δε+ kλ ≤ ∆λ+1 as required.

The following claim lets us lower bound |L+(D) ∩ ZP | in terms of |ZP |.

Claim 4.35. |L+(D) ∩ ZP | ≥ |ZP | − |X0||CP |+ εn|CP |.

Proof. For every y ∈ CP , define

AP (y) = {x ∈ X0 ∪ CP : (x, y) ∈ ZP },
ALP (y) = {x ∈ X0 ∪ CP : (x, y) ∈ L+(D) ∩ ZP }.

From the definition of L+(D) we have ALP (y) = {x ∈ AP (y) : |N+
{x}(y)| = 1}. Notice that we

have ZP =
⋃
y∈CP AP (y)× {y} and L+(D) ∩ ZP =

⋃
y∈CP A

L
P (y)× {y}. The following string

of equalities holds.

|L+(D) ∩ ZP | =
∑
y∈CP

|ALP (y)| =
∑
y∈CP

∣∣N+
ALP (y)

(y)
∣∣ =

∑
y∈CP

∣∣N+
AP (y)(y)

∣∣. (6)

The first equality comes from L+(D) ∩ZP =
⋃
y∈CP A

L
P (y)× {y}. The second equality holds

since
∣∣N+
{x}(y)

∣∣ = 1 for x ∈ ALP (y) which implies
∣∣N+

ALP (y)
(y)
∣∣ = |ALP (y)|. The third equality

34



holds since
∣∣N+

AP (y)(y)
∣∣ =

∣∣N+
ALP (y)

(y)
∣∣ +

∣∣N+
AP \ALP (y)

(y)
∣∣ and also

∣∣N+
AP \ALP (y)

(y)
∣∣ = 0 which

comes from “ALP (y) = {x ∈ AP (y) : |N+
{x}(y)| = 1}”.

By Lemma 4.26 (i), for every x ∈ AP (y) we have x (λ, P )-amidst v and y. We can use

Claim 4.33 to bound
∑

y∈CP

∣∣∣N+
AP (y)(y)

∣∣∣.
∑
y∈CP

∣∣∣N+
AP (y)(y)

∣∣∣ ≥ ∑
y∈CP

(|AP (y)| − |X0|+ εn) = |ZP | − |X0||CP |+ εn|CP | (7)

The first inequality comes from Claim 4.33. The equality comes from ZP =
⋃
y∈CP AP (y)×

{y}. The claim follows from (6) and (7).

Now we show that R is large.

Claim 4.36. |R| ≥ |C|+ (ε− 7δ)n.

Proof. Since D doesn’t have repeated edges, for any z ∈ V (D) and y ∈ CP , there can be at
most one label x for which (x, y) ∈ EP (z). In particular this implies that for all z ∈ V (D) we
have |EP (z)| ≤ |CP |. For z 6∈ R we have |EP (z)| ≤ δ|CP |. These imply

(n− |R|)δ|CP |+ |R||CP | ≥
∑

z∈V (D)

|EP (z)| = |L+(D) ∩ ZP |. (8)

To see the equality, notice that by the definition of EP (z) both sides equal
∣∣∣⋃z∈V (D)EP (z)

∣∣∣.
Combining Claim 4.35 with part (ii) of Lemma 4.26 we get

|L+(D) ∩ ZP | ≥ |ZP | − |X0||CP |+ εn|CP | ≥ |CP |2 + εn|CP | − 4δn|CP |. (9)

Combining (8) and (9) and rearranging implies the claim.

|R| ≥
|CP |2 + εn|CP | − 5δn|CP |

|CP | − δ|CP |
≥ |CP |+ εn− 5δn. ≥ |C|+ εn− 7δn.

The last inequality is from Lemma 4.26 (ii).

Claims 4.34 and 4.36 prove the lemma.

4.4 Proofs of Theorems 1.3 and 4.1

In this section we prove the theorems of this paper.

Proof of Theorem 4.1. Suppose that there is a vertex u for which the theorem doesn’t hold i.e.
that for every vertex v and set of labels A amidst u and v we have |N+

A (v)| ≥ |A| − |X0|+ εn.
Apply Lemma 4.22 to u in order to obtain numbers λ1, . . . , λ4δ−1 , components C1, . . . , C4δ−1 ,
and a path P passing through all of them. For each i, let vi be a vertex in P ∩ Ci.

Using Lemma 4.12 we can show that all the components Ci are large.

Claim 4.37. |Ci| ≥ εn/2 for i = 1, . . . , 4δ−1.
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Proof. Fix i ≤ 4δ−1. Let P ′ be the subpath of P ending with vi and A = X0 \P ′. Notice that
P ′ witnesses every label in A being amidst u and vi. Since we are assuming that the theorem
doesn’t hold we obtain |N+

A (vi)| ≥ |A|−|X0|+εn ≥ εn−|P ′| ≥ εn−3dλmax (using the fact that
P has length ≤ dλmax/2 in Lemma 4.22.) Since N+

A (vi) ⊆ N+
X0

(vi), n ≥ N0, and λi ≤ λmax,

Lemma 4.12 implies |Ci| ≥ |N+
A (vi)| − δn− γλi−3n ≥ εn− 3dλmax − δn− γλi−3n ≥ εn/2.

Using Lemma 4.32, we can show that each Ci is much bigger than the previous one.

Claim 4.38. |Ci+1| ≥ |Ci|+ εn/2 for i = 1, . . . , 4δ−1

Proof. Recall that from Lemma 4.22 we have |Ci \ Ci+1| ≤ δn for all i. Combining this with
Claim 4.37 we get |Ci ∩ Ci+1| = |Ci| − |Ci \ Ci+1| ≥ εn/2 − δn ≥ εn/3. For each i, let Rvi
be a set from the definition λi-component which is λi-reached by vi. Using |Ci 4 Rvi | ≤ δn
and |Ci ∩ Ci+1| ≥ εn/3 we get |Rvi ∩ Ci ∩ Ci+1| ≥ |Ci ∩ Ci+1| − |Ci \ Rvi | ≥ εn/3 − δn ≥
∆λi + 1. From the monotonicity of reaching we have that vi λi-reaches Rvi ∩Ci∩Ci+1. Using
|P | ≤ 3dλmax/2 ≤ kλi and |Rvi ∩Ci ∩Ci+1| ≥ ∆λi + 1 this implies that there is a length ≤ dλi
switching path Q avoiding P from vi to a vertex v ∈ Rvi ∩ Ci ∩ Ci+1. Let P ′ be the subpath
of P from u to vi. By Lemma 4.2, P ′ +Q is a length ≤ dλmax switching path from u to v.

Notice that all the conditions of Lemma 4.32 hold with C = Ci, λ = λi, u = u, v = v, and
P = P ′ +Q. In addition, (i) cannot hold since we are assuming that u is a vertex for which
the theorem is false. Therefore part (ii) of Lemma 4.32 occurs, i.e. we obtain a set R which
is (λi + 1)-reached by v and has |R| ≥ |Ci| + (ε − 7δ)n. Since v is in the (λi+1)-component
Ci+1, we have a set Rv with |Rv4Ci+1| ≤ δn such that Rv is (λi+1−3)-bypassed by v. From
Lemma 4.22 we have λi + 1 ≤ λi+1 − 3. Since v (λi + 1)-reaches R, (λi+1 − 3)-bypasses Rv,
and λi + 1 ≤ λi+1 − 3 we get |R \ Rv| = |R ∩ Rv| ≤ γ(λi+1−3)n (using the monotonicity of
reaching.) Combining this with |Rv 4Ci+1| ≤ δn, |R| ≥ |Ci|+ (ε− 7δ)n, and n ≥ N0 we get

|Ci+1| ≥ |Rv| − |Rv \ Ci+1| ≥ |R| − |R \Rv| − |Rv 4 Ci+1|
≥ |Ci|+ (ε− 7δ)n− γ(λi+1−3)n− δn ≥ |Ci|+ εn/2.

Iterating |Ci+1| ≥ |Ci| + εn/2 for i = 1, . . . , 4δ−1 gives |C4δ−1 | ≥ 2δ−1εn > n which is a
contradiction to C4δ−1 ⊆ V (D).

Using Theorem 4.1 and Lemma 3.7 it is easy to prove our approximate version of Conjec-
ture 1.2.

Proof of Theorem 1.3. Let N0 = N0(0.9ε) be the constant from Theorem 4.1, and let G be
a properly coloured bipartite multigraph with n ≥ N0 colours having ≥ (1 + ε)n edges of
each colour. Let M be a maximum rainbow matching in G. Let X and Y be the parts
of the bipartition of G and X0 = X \ V (M). Suppose for the sake of contradiction that M
misses a colour c∗. Let DG,M be the labelled directed graph from Definition 3.1 corresponding
to M . By Lemma 3.2, DG,M is out-properly labelled and simple. By Lemma 3.7 we have
that for any vertex v ∈ V (DG,M ) and any set of labels A amidst c∗ and v we have |N+

A (v)| ≥
|A|−|X0|+εn−1 ≥ |A|−|X0|+0.9εn. This contradicts Theorem 4.1 applied with ε′ = 0.9ε.

5 Concluding remarks

Here we make some remarks about the proof in this paper and directions for further research.

36



Improving the bound in Theorem 1.3

In this paper we proved an approximate version of the Aharoni-Berger Conjecture. Naturally,
the main direction for further research is to improve the dependency ofN0 on ε in Theorem 1.3,
and eventually prove the full conjecture. The dependency which follows from our proof

is extremely bad—for ε > 0, we have N0 = twr
(

2 · 4ε−9
)

. This dependency can surely be

significantly improved by tweaking the proof in various ways. The author believes that getting
a polynomial error term is out of reach of the methods in this paper.

Problem 5.1. For some α < 1 prove the following. Let G be a properly edge-coloured bipartite
multigraph with n colours and at least n + nα edges of each colour. Then G has a rainbow
matching using every colour.

Of particular interest would be to solve the above problem for some α < 1/2. This
is because there are some natural variants of the Aharoni-Berger Conjecture, where n1/2

is the best currently known bound on the error term. One of these is the version of the
Aharoni-Berger Conjecture where not every colour needs to be used in the rainbow matching.
Specifically it is know that in every properly edge-coloured bipartite multigraph with n colours
and at least n edges of each colour, there is a rainbow matching of size n−

√
n (see [13, 14].)

Also recall that Haggkvist and Johansson proved an approximate version of the Aharoni-
Berger Conjecture when when the colour classes in G are all disjoint perfect matchings. In
their paper [11] they say that “it will be clear from the proof that in order to reach ε ≤ n−1/2

some new ideas must be found, if indeed the theorem is valid in this range.” This suggests
that

√
n is a natural barrier for their techniques as well.

Finally it would be extremely interesting to show that every properly n-edge-coloured
bipartite multigraph with n + o(log2 n) edges of each colour has a rainbow matching using
every colour. This would improve the best known bound on the Brualdi-Stein Conjecture
[15].

After this paper was announced, Gao, Ramadurai, Wanless, and Wormald [16] solved
Problem 5.1 when an additional restriction is placed on the multigraph — that the multiplicity
of each edge is at most

√
n/ log2 n. Together with the Haggkvist-Johanson approach [11],

and the author’s first approach [8], this gives three different approaches which can prove an
asymptotic version of the Aharoni-Berger Conjecture when the underlying graph is simple.
However, when the underlying graph is a general multigraph, then the approach in this paper
remains the only known way to prove the Aharoni-Berger Conjecture asymptotically.

Improving the bound in Theorem 4.1

In this paper and [8] we introduced a directed graph based approach to the Aharoni-Berger
Conjecture. It would be interesting to know how far this approach can be pushed. A specific
open problem is to find out how small N0 in Theorem 4.1 can be. Perhaps with some
completely different proof technique, Theorem 4.1 can be proved with much better bounds?
Of particular interest is to find out whether there are serious barriers to this approach proving
the full Aharoni-Berger Conjecture. For example—for every C ∈ N, are there labelled directed
graphs such that for all u, v ∈ V (D) and set of labels A amidst u and v we have |N+

A (v)| ≥
|A| − |X0|+ C?”
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Non-bipartite graphs

The problem dealt with in this paper can be asked for non-bipartite graphs as well i.e. what
is the smallest f(n) so that given n matchings of size f(n) in a (not necessarily bipartite)
graph G, there is a rainbow matching using every colour. The following conjecture about this
appears in [16].

Conjecture 5.2 ([16]). Let G be a properly edge-coloured bipartite multigraph with n colours
having at least n+2 edges of each colour. Then G has a rainbow matching using every colour.

The motivation for asking for n + 2 edges of each colour (rather than n + 1 like in Con-
jecture 1.2) is that in the non-bipartite case there is an example of graph with n+ 1 edges of
each colour and no rainbow matching using each colour. This example is to take two vertex-
disjoint copies of K4 and properly edge-colour it using 3 colours. This graph has 4 edges of
each colour, but it is easy to check that it has no rainbow matching of size 3.

Some progress has been made on Conjecture 5.2 since this paper has been announced.
Keevash and Yepremyan [17] showed that if the multiplicities are ≤ o(n) and each colour
appears at least (1 + o(1))n times, then there is a rainbow matching using n−O(1) colours.
Gao, Ramadurai, Wanless, and Wormald [16] proved that if the multiplicities are ≤

√
n/ log2 n

and each colour appears at least (1+o(1))n times, then there is a rainbow matching using every
colour. When restricted to bipartite graphs, both of these results are qualitatively weaker
than the one in this paper (since Theorem 1.3 places no restriction on the multiplicities).

It is natural to ask whether the methods in this paper can prove an approximate version
Conjecture 5.2 without any restriction on the multiplicities. While the author isn’t aware
of any inherent barriers preventing a suitable generalization from existing, it certainly is no
easy task to find one. Indeed the construction of the auxiliary directed graph DG,M relied
heavily on the graph G being bipartite, and it is not clear what natural auxiliary directed
graph could be useful in the non-bipartite case.

Different approaches based on directed graphs

Theorem 1.3 was proved by considering a directed graph DG,M corresponding to G and study-
ing paths called “switching paths” in DG,M . Neither the definition of DG,M nor the notion
of “switching path” which we used are canonical. There are variations of these definitions
which could be used to prove the same theorems. For example, instead of the directed graph
DG,M perhaps one could consider an alternative definition where edges going through Y0 in
G somehow corresponded to edges in DG,M . Instead of switching paths, one can use the
following.

Definition 5.3 (Weakly switching path). A path P = (p0, . . . , pd) in an edge-labelled, directed
graph D is a weakly switching path if the following hold.

• P is rainbow i.e. the edges of P have different labels.

• If pipi+1 is labelled by a vertex v ∈ V (D), then v = pj for some 1 ≤ j ≤ d.

The difference between “weakly switching path” and “switching path” is that for weakly
switching paths if pipi+1 is labelled by v ∈ V (D) then we only ask for v to be a non-starting
vertex of P (whereas for “switching path”, we wanted v to precede pipi+1 as well.) It is
not hard to check that everything in Section 4 stays true if we replace “switching path” by
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“weakly switching path”. Also a “weakly switching path” version of Theorem 4.1 follows from
the version of Theorem 4.1 which we prove (just because switching paths are a special case
of weakly switching paths.)

The above discussion suggests that weakly switching paths are perhaps a better notion to
use in future research. The reason we didn’t use them in this paper is a little bit technical.
If we changed “switching path” to “weakly switching path” in the definition of “v λ-reaching
R”, then we would allow paths P from v to x ∈ R which have an edge labelled by x. This
causes a problem in the proof of Lemma 4.26 since there we want to construct paths from v
through a vertex r with no edges labelled by x. However it is not hard to overcome this issue
and prove a version of Theorem 4.1 whilst working directly with weakly switching paths (for
example by suitably changing the definition of “reaching”.)
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