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Abstract

In 1975 Stein conjectured that in every n× n array filled with the numbers 1, . . . , n with
every number occuring exactly n times, there is a partial transversal of size n−1. In this note
we show that this conjecture is false by constructing such arrays without partial transverals
of size n− 1

42
lnn.

Introduction

Latin squares are combinatorial objects introduced by Euler in the 18th century. An order n
Latin square is an n × n array filled with n symbols such that no symbol appears twice in the
same row or column. A partial transversal is a collection of cells of the Latin square which do
not share the same row, column or symbol. Starting with Euler (see [9, 12]), questions about
transversals in Latin squares were extensively studied. The most natural question about them is
“how large a partial transversal one can guarantee to find in every n × n Latin square?” A well
known conjecture of Ryser, Brualdi, and Stein [7, 14, 15] is that the answer should be n− 1.

Notice that n×n Latin squares have the property that every symbol occurs precisely n times.
Over 40 years ago, Stein conjectured that this condition on its own is sufficient to guarantee a
partial transversal of size n − 1. In [15], an equi-n-square is defined to be an n × n array filled
with n symbols such that every symbol occurs precisely n times, and it is conjectured that every
equi-n-square has a partial transversal of size n− 1.

Conjecture 1 (Stein, [15]). Let S be an n× n array filled with the symbols 1, . . . , n so that each
number occurs exactly n times. Then S has a partial transversal of size n− 1.

Attempts to prove this conjecture have lead to the development of important tools in extremal
combinatorics. Stein’s Conjecture was the setting of the first application of the Lopsided Lovasz
Local Lemma [8]—Erdős and Spencer introduced this variant of the local lemma to show that
every n × n array with ≤ (n − 1)/16 occurences of every symbol has a size n transversal. Later
Alon, Spencer, and Tetali showed that if there are ≤ εn occurences of every symbol and n is a
power of 2, then the square can be completely decomposed into size n transversals. When working
in equi-n-squares, the best currently known result is due to Aharoni, Berger, Kotlar, and Ziv
[3]—they used topological methods to show that such arrays always have a partial transversal of
size 2n/3. This improved on an earlier result of Stein [15] who used the probabilistic method to
show that a partial transversal of size (1− e−1)n exists in every equi-n-square

In this note we produce counterexamples to Conjecture 1.

Theorem 2. For all sufficiently large n, there exist n×n arrays filled with the symbols 1, . . . , n so
that each symbol occurs exactly n times, which have no partial transversals larger than n− 1

42 lnn.

We remark that a corollary of the above theorem is that Erdős and Spencer’s result cannot be
strengthened to hold when the number of occurrences of each symbol in the array is “≤ n− 1

85 lnn”
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rather than “≤ (n− 1)/16”. To see this consider the n× n array S from Theorem 2 and append⌊
1
84 lnn

⌋
rows and columns to obtain a new array S′. Fill the newly created entries with (arbitrarily

many) previously unused symbols using every symbol ≤ n times. Now S′ is an n′ × n′ array for
n′ = n+

⌊
1
84 lnn

⌋
with ≤ n ≤ n′− 1

85 lnn′ occurrences of each symbol (using that n is sufficiently
large). It cannot have a size n′ transversal, since such a transversal would intersect S in at least
n′ − 2(n′ − n) ≥ n− 1

42 lnn entries, and S was chosen to have no transversal of size n− 1
42 lnn.

The above theorem is proved in the next section. These counterexamples still leave open the
possibility of Stein’s Conjecture holding in some asymptotic sense. In Section we discuss some
possible asymptotic versions of it.

Proof

Our proof relies on the fact that the sequence at = 1√
t

has the property that bt = at
∑t

i=1 ai

converges as t→∞ while ct =
∑t

i=1 a
2
i diverges. The following lemma proves this in a way which

will be convenient to apply.

Lemma 3. For an integer n ≥ 1060, consider the sequence xt =
⌊
1
3

√
n
t

⌋
. The following hold for

all t.

xt

t∑
i=1

xi ≤
n

4
(1)

n∑
i=1

x2i ≥
n lnn

10
(2)

Proof. We’ll use the fact that for the decreasing function f(x) we have
∫ b

a
f(x)dx ≤

∑b
i=a f(i) ≤∫ b

a−1 f(x)dx. This implies

1

3

t∑
i=1

√
n

i
=

√
n

3

(
1 +

t∑
i=2

1√
i

)
≤
√
n

3

(
1 +

∫ t

1

1√
x
dx

)
=

√
n

3

(
1 + 2

(√
t− 1

))
≤ 2
√
nt

3
(3)

Now (1) comes from using (3) and xt ≤ 1
3

√
n
t to get

xt

t∑
i=1

xi ≤
1

3

√
n

t

(
t∑

i=1

1

3

√
n

i

)
≤ 1

3

√
n

t
· 2
√
nt

3
≤ n

4

For (2) we have

n∑
i=1

x2i =

n∑
i=1

⌊
1

3

√
n

i

⌋2
≥ n

9

n∑
i=1

1

i
− 2

3

n∑
i=1

√
n

i
≥ n

9

∫ n

1

1

x
dx− 4n

3
=
n lnn

9
− 4n

3
≥ n lnn

10

The first inequality comes from
⌊
1
3

√
n
i

⌋
≥ 1

3

√
n
i − 1. The second inequality uses (3) and the fact

that decreasing functions have
∫ b

a
f(x)dx ≤

∑b
i=a f(i). The last inequality uses 1 ≤ lnn

120 which
holds for n ≥ 1060.

Now we construct counterexamples to Conjecture 1.

Proof of Theorem 2. Let n ≥ 1060, and consider an n×n array with rows r1, . . . , rn, and columns
c1, . . . , cn. For a set of rows R and a set of columns C, we denote the rectangle formed by R and
C by R × C = {(ri, cj) : ri ∈ R, cj ∈ C}. Let xi be the sequence from Lemma 3. Let n0 be the
largest number for which xn0

6= 0, and notice that n0 =
⌊
n
9

⌋
. From (1) and the integrality of xi,

we have
∑n0

i=1 xi ≤
n

4xn0
≤ n

4 . Partition {r1, . . . , rn} into sets R1 ∪ · · · ∪Rn0
∪R∗ and C into sets

2



Figure 1: An illustration of a counterexample to Conjecture 1. The colours in the array represent
symbols in the array S. For clarity we use the same colour for symbols in each of N1, . . . , Nn, and
A. The picture is not entirely to scale since in the actual array in Theorem 2, R∗ × C∗ takes up
a far larger proportion of the square.

C1 ∪ · · · ∪ Cn0
∪ C∗ with |Ri| = |Ci| = xi =

⌊
1
3

√
n
i

⌋
and |R∗| = |C∗| = n−

∑n0

i=1 xi ≥ 3n/4. Let
Fi = Ri × Ci, Hi = Ri × (C∗ ∪

⋃
j>i Cj), and Ji = (R∗ ∪

⋃
j>iRj) × Ci. Notice that S is the

disjoint union of the sets Fi, Hi, Ji for i = 1, . . . , n0, and R∗ × C∗.
Notice that |Fi| = |Ri||Ci| = x2i . Using (1) we have

|Hi| = |Ji| = |Ri|(n−
∑
j≤i

|Cj |) = xin− xi
∑
j≤i

xj ≥ n
(
xi −

1

4

)
.

In particular this means that |Hi ∪ Ji| > n(2xi − 1).
We now fill S with the n symbols 1, . . . , n so that each symbol occurs exactly n times. First

split {1, . . . , n} into sets N1, . . . , Nn0
with |Ni| = 2xi − 1, a set B with |B| =

⌊
1
20 lnn

⌋
≥ 1

21 lnn,
and a set A with |A| = n− |B| − |N1| − · · · − |Nn0

| (to see that such a partition is possible, notice
that from

∑n0

i=1 xi ≤
n
4 and n ≥ 1060, we have |B|+|N1|+· · ·+|Nn0 | =

⌊
1
20 lnn

⌋
+
∑n0

i=1(2xi−1) ≤
1
20 lnn+ n

2 < n). Fill S as follows

• For each symbol in Ni, place it n times into Hi ∪ Ji (|Hi ∪ Ji| > n|Ni| ensures that this is
possible).

• For each symbol in B, place it n times into F1 ∪ · · · ∪ Fn0
. This is possible since (2) implies∑n0

i=1 x
2
i =

∑n
i=1 x

2
i ≥ 1

10n lnn ≥ n|B|.

• Place the symbols from A arbitrarily into the remaining entries of S (making sure that there
are exactly n occurances of each symbol).

Suppose, for the sake of contradiction, that we have a partial transversal T of size > n− 1
42 lnn.

Claim 4. If T contains s entries in Fi, then T contains at most 2xi − 2s entries in Hi ∪ Ji

Proof. Suppose that (ra1
, cb1), . . . , (ras

, cbs) ∈ T ∩ Fi. Then since T is a transversal, T cannot
have any other entries in rows raj or columns cbj for j = 1, . . . , s. Recall that Hi and Fi are both
contained in the xi rows Ri, which implies ra1 , . . . , ras ∈ Ri. This means that Hi ∩ T must be
contained in the xi − s rows Ri \ {ra1

, . . . , ras
}. Since T has at most one entry in each row we

have |T ∩Hi| ≤ xi − s. By the same argument we have |T ∩ Ji| ≤ xi − s.

Since |B| ≥ 1
21 lnn, T must contain at least 1

42 lnn of the symbols of B. Letting zi = |T∩Fi|, we
have

∑n0

i=1 zi ≥
1
42 lnn. By the claim, for all i, T has at most 2xi−2zi entries in Hi∪Ji, and so uses

at most 2xi−2zi symbols in Ni (since the symbols in Ni only occur in Hi∪Ji). Since |Ni| = 2xi−1,

3



this means that T doesn’t have any entries of at least |Ni| − (2xi − 2zi) = 2zi − 1 symbols of Ni.
Summing up, we have that T doesn’t use at least

∑n0

i=1 min(2zi−1, 0) ≥
∑n0

i=1 zi ≥
1
42 lnn symbols.

This contradicts |T | > n− 1
42 lnn.

Concluding remarks

The counterexamples constructed in this note still leave the possibility of Stein’s Conjecture hold-
ing in some asymptotic sense. There are two natural asymptotic weakenings of the conjecture
which may still be true.

• In the setting of Stein’s Conjecture, is there always a size n− o(n) partial transversal? This
would strengthen the results of Stein [15] and of Aharoni, Berger, Kotlar, and Ziv [3].

It is possible to show that an asymptotic version of Stein’s Conjecture holds with a mild
additional condition on the square — that no symbol appears too often in a row or column.
To prove this we will use the following version of Rödl’s Nibble (see eg. [5]).

Theorem 5 (Rödl). Fix ε > 0, r ∈ N, the following holds for sufficiently large n and d.
Let H be an r-uniform, d-regular, n-vertex hypergraph with every pair of vertices u, v having
d(u, v) ≤ o(n). Then H has a matching with (1− ε)n/r edges.

Using the above result we can prove an asymptotic version of Stein’s Conjecture when no
symbol appears too often in a row or column.

Corollary 6. Fix ε > 0. Let S be an n × n array filled with the symbols 1, . . . , n so that
each number occurs exactly n times in the square, and at most o(n) times in every row and
column. Then S has a partial transversal of size (1− ε)n.

Proof. We define a 3-uniform, 3-partite hypergraph H as follows. The vertex set of H is
{r1, . . . , rn, c1, . . . , cn, s1, . . . , sn}. The edges of H are exactly triples of the form {ri, cj , sk}
with the (i, j)th entry of S being k. We claim that H satisfies the assumptions of Theorem 5.
Notice that H is a 3-uniform, n-regular, and 3n-vertex hypergraph. For a pair of vertices
u, v we have d(u, v) ≤ 1 unless one of u, v is in {r1, . . . , rn, c1, . . . , cn} and the other in
{s1, . . . , sn}. Notice that d(ri, sj) and d(ci, sj) are equal to the number of occurances of
symbol j in row i and column i respectively. By assumption, both of these quantities are at
most o(n).

By Theorem 5, H has a matching M with (1 − ε)n edges. Let T be the set of entries in S
corresponding to the edges of M . Notice that T doesn’t have more than one entry with any
row, column or symbol because M doesn’t have more than one edge through any vertex.
Thus T is the required partial transversal.

The above corollary shows that an asymptotic version of Stein’s Conjecture holds when no
symbol is repeated more than o(n) times in any row or column. It is easy to check that in the
arrays constructed in Theorem 2, each symbol is repeated O(

√
n) in every row or column.

Thus Corollary 6 applies to the squares constructed in Theorem 2 to show that they have
partial transversals of size n−o(n). It would be interesting to know it this holds without any
restriction on symbol repetitions i.e. if Corollary 6 holds without the “each number occurs
at most o(n) times in every row and column” condition.

• What is the largest α so that every n× n square with ≤ αn occurances of every symbol has
a size n transversal? Erdős and Spencer [8] proved that α = 1/16 suffices, but it is likely
that α can be as large as 1− o(1). Again, one can ask an easier question by adding an extra
condition forbidding symbol repetitions in rows and columns. Such a result is true and will
be proved in [13]:

4



Theorem 7 (Montgomery, Pokrovskiy, Sudakov, [13]). Let S be an n× n array filled with
the symbols so that each symbol occurs ≤ (1− o(1))n times in the square, and no symbol is
repeated in a row or column. Then S has a transversal.

In [13] something stronger is actually shown — that under the assumptions of the above
Theorem the square has (1 − o(1))n disjoint transversals. Theorem 7 shows that if we
completely forbid symbol repetitions in rows and columns, then the asymptotic version of
Stein’s Conjecture holds. Again, it would be interesting to know it Theorem 7 holds without
any restrictions on repetitions in rows and columns.

• After Stein made his conjecture, many authors have proposed strengthenings and variations
of Conjecture 1. The construction in this note can be used to disprove most of these con-
jectures as well. Sometimes this is immediate e.g. the conjecture in [10] and Conjecture 1.9
in [1] are direct strengthenings Conjecture 1 and so are false by Theorem 2. Sometimes
one needs to modify our construction slightly to disprove related conjectures. For example,
Hahn suggested the following conjecture.

Conjecture 8 (Hahn, [11]). In every edge-colouring of Kn with ≤ n/2 − 1 edges of each
colour, there is a rainbow path of length n− 1.

Here “rainbow path” means a path in the graph all of whose edges have the same colour.
The relationship between this and Stein’s Conjecture is that to every symmetric n×n array
S, one can assign an edge-coloured complete graph Kn by colouring edge ij with the symbol
in the (i, j)th entry of S (since S is symmetric, this gives a well-defined colouring of Kn).
It is easy to see that under this correspondence, partial transversals in Kn correspond to
rainbow maximum degree 2 subgraphs in Kn. Thus Conjecture 8 would imply that every
symmetric n× n array S with ≤ n− 1 occurrences of each symbol has a partial transversal
of size n − 1. The proof of Theorem 2 can easily be run so it gives a symmetric array i.e.
we get graphs satisfying the assumptions of Conjecture 8 without rainbow paths longer than
n− 1

42 lnn. Here is another conjecture about rainbow subgraphs.

Conjecture 9 (Aharoni, Barat, Wanless, [2]). Let G be a bipartite graph with > ∆(G) + 1
edges of each colour. Then G has a rainbow matching using every colour.

To see the relationship between this and Stein’s Conjecture: from an n × n array S, build
a coloured Kn,n with vertices {x1, . . . , xn, y1, . . . , yn} by colouring the edge xiyj ∈ Kn,n by
the symbol in the (i, j)th entry of S. It is easy to see that under this correspondance a
transversal in S corresponds to a rainbow matching in Kn,n. Consider the n × n array S
from Theorem 2 and the corresponding coloured Kn,n. Since S has n copies of each symbol,
the corresponding Kn,n has n edges of each colour. Since ∆(Kn,n) = n, this is just short of
the assumption of Conjecture 9 (and so of disproving the conjecture).

However, it is easy to modify the construction slightly to actually get a counterexample
e.g. by deleting the edges of the form xiyi and xiyi+1 (mod n) in Kn,n. We use the proof of
Theorem 2 to get a colouring of this (n− 2)-regular graph with n− 2 colours such that each
colour has n edges, but there is no rainbow matching of size n − 1

42 lnn. This corresponds
to deleting two diagonals in the square S in Theorem 2, and checking that the proof still
works if we omit these entries: The only parts that need to be checked are that the sets Fi

and Hi ∪ Ji have enough room to fit the colours they must contain. Specifically we need to
check that |Hi ∪ Ji| ≥ n(2xi− 1) and |F1 ∪ · · · ∪Fn0

| ≥ n|B| still hold after deleting the two
diagonals from these sets. This is indeed true because there is room in the inequalities we
used for |Hi ∪ Ji| and |F1 ∪ · · · ∪ Fn0 |.
The fact that our constructions can disprove Conjecture 9 and Conjecture 1.9 in [1] was first
noticed by Alon. He also found some interesting further modifications of our construction,
see [4] for details.
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[12] A.D. Keedwell and J. Dénes. Latin Squares and their Applications. Elsevier Science, 2015.

[13] R. Montgomery, A. Pokrovskiy, and B. Sudakov. Decompositions into spanning rainbow
structures. preprint, 2018.

[14] H. Ryser. Neuere probleme der kombinatorik. Vorträge über Kombinatorik, Oberwolfach,
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