On the size-Ramsey number of cycles

R. Javadi ${ }^{\text {a }}$, F. Khoeini ${ }^{\text {a }}$, G.R. Omidi ${ }^{\text {a,c, }}{ }^{1}$, A. Pokrovskiy ${ }^{\text {b, }}{ }^{2}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran
${ }^{\mathrm{b}}$ Department of Economics, Mathematics, and Statistics, Birkbeck, University of London, U.K.
${ }^{\text {c School of Mathematics, Institute for Research in Fundamental Sciences (IPM), }}$ P.O. Box 19395-5746, Tehran, Iran
rjavadi@cc.iut.ac.ir, romidi@cc.iut.ac.ir, f.khoeini@math.iut.ac.ir, dr.alexey.pokrovskiy@gmail.com

Abstract

For given graphs G_{1}, \ldots, G_{k}, the size-Ramsey number $\hat{R}\left(G_{1}, \ldots, G_{k}\right)$ is the smallest integer m for which there exists a graph H on m edges such that in every k-edge coloring of H with colors $1, \ldots, k, H$ contains a monochromatic copy of G_{i} of color i for some $1 \leq i \leq k$. We denote $\hat{R}\left(G_{1}, \ldots, G_{k}\right)$ by $\hat{R}_{k}(G)$ when $G_{1}=\cdots=G_{k}=G$.

Haxell, Kohayakawa and Łuczak showed that the size-Ramsey number of a cycle C_{n} is linear in n i.e. $\hat{R}_{k}\left(C_{n}\right) \leq c_{k} n$ for some constant c_{k}. Their proof, however, is based on the regularity lemma of Szemerédi and so no specific constant c_{k} is known.

In this paper, we give various upper bounds for the size-Ramsey numbers of cycles. We provide an alternative proof of $\hat{R}_{k}\left(C_{n}\right) \leq c_{k} n$, avoiding the use of the regularity lemma, where c_{k} is exponential and doubly-exponential in k, when n is even and odd, respectively. In particular, we show that for sufficiently large n we have $\hat{R}_{2}\left(C_{n}\right) \leq 10^{5} \times c n$, where $c=6.5$ if n is even and $c=1989$ otherwise.

Keywords: Ramsey number, Size Ramsey number, Random graphs, Cycles.
AMS subject classification: $05 \mathrm{C} 55,05 \mathrm{D} 10$

1 Introduction

For given graphs G_{1}, \ldots, G_{k} and a graph H, we say that H is Ramsey for $\left(G_{1}, \ldots, G_{k}\right)$ and we write $H \longrightarrow\left(G_{1}, \ldots, G_{k}\right)$, if no matter how one colors the edges of H with k colors $1, \ldots, k$, there exists a monochromatic copy of G_{i} of color i in H, for some $1 \leq i \leq k$. Ramsey's theorem [16] states that for given graphs G_{1}, \ldots, G_{k}, there exists a graph H that is Ramsey for $\left(G_{1}, \ldots, G_{k}\right)$. Note that, if a graph H is Ramsey for $\left(G_{1}, \ldots, G_{k}\right)$ and H is a subgraph of H^{\prime}, then H^{\prime} is also Ramsey for $\left(G_{1}, \ldots, G_{k}\right)$. In this view, in order to study the collection of graphs which are Ramsey for $\left(G_{1}, \ldots, G_{k}\right)$, it suffices to study the collection $\mathcal{F}\left(G_{1}, \ldots, G_{k}\right)$ of graphs which are minimal subject to being Ramsey for $\left(G_{1}, \ldots, G_{k}\right)$. These graphs are called Ramsey minimal for $\left(G_{1}, \ldots, G_{k}\right)$.

Many interesting problems in graph theory concern the study of various parameters related to Ramsey minimal graphs for $\left(G_{1}, \ldots, G_{k}\right)$. The most well-known and well-studied

[^0]one, is the smallest number of vertices of a graph in $\mathcal{F}\left(G_{1}, \ldots, G_{k}\right)$ which is referred to as the Ramsey number of $\left(G_{1}, \ldots, G_{k}\right)$ and is denoted by $R\left(G_{1}, \ldots, G_{k}\right)$. In diagonal case, where $G=G_{1}=\cdots=G_{k}$, we may write $R_{k}(G)$ for $R\left(G_{1}, \ldots, G_{k}\right)$. Estimating $R\left(K_{n}\right)=R_{2}\left(K_{n}\right)$ is one of the main open problems in Ramsey theory. Erdős 8 and Erdős and Szekeres [10] showed that $2^{n / 2} \leq R\left(K_{n}\right) \leq 2^{2 n}$, and despite a lot of efforts, there have not been much improvements to the exponents of the bounds. For further results about the Ramsey numbers of graphs, see [5, 15] and the references therein.

In this paper, we consider another well-studied parameter called the size-Ramsey number $\hat{R}\left(G_{1}, \ldots, G_{k}\right)$ of the given graphs G_{1}, \ldots, G_{k}, which is defined as the minimum number of edges of a graph in $\mathcal{F}\left(G_{1}, \ldots, G_{k}\right)$. When $G=G_{1}=\cdots=G_{k}$, it is denoted by $\hat{R}_{k}(G)$. The investigation of the size-Ramsey numbers of graphs was initiated by Erdős, Faudree, Rousseau, and Schelp [9] in 1978. Since then, the size-Ramsey numbers of graphs have been studied with particular focus on the case of trees, bounded degree graphs and sparse graphs. The survey paper due to Faudree and Schelp [11] collects some results about size-Ramsey numbers.

One of the most studied directions in this area is the size-Ramsey number of paths. In 1983, Beck [4] showed that $\hat{R}_{2}\left(P_{n}\right)<900 n$ for sufficiently large n, where P_{n} is a path on n vertices. This verifies the linearity of the size-Ramsey number of paths in terms of the number of vertices and from then, different approaches were attempted by several authors to reduce the constant coefficient in the upper bound, see [3, 6, 14]. Most of these approaches are based on the classic models of random graphs. Currently, the best known upper bound is due to Dudek and Prałat [7] which proved that $\hat{R}_{2}\left(P_{n}\right) \leq 74 n$, for sufficiently large n.

In this paper, we investigate the size-Ramsey number of cycles. The linearity of $\hat{R}_{k}\left(C_{n}\right)$ (in terms of n) follows from the earlier result by Haxell, Kohayakawa and Luczak [13]. Nevertheless, their proof is based on the regularity lemma and therefore is unable to determine a specific constant coefficient. The standard techniques for proving linear bounds for paths, avoiding the use of the regularity lemma, seem to be insufficient to prove a linear bound for cycles. Here, we give such a proof for the following theorem.

Theorem 1.1. Let $n_{1}, n_{2}, \ldots, n_{t}$ be a sequence of positive integers with t_{e} even numbers and t_{o} odd numbers. Let $c=4.6 \times 10^{2^{t_{o}}-1} \times 15^{t_{e}}, n=\max \left(n_{1}, \ldots, n_{t}\right)$ and suppose that for all i, we have $n_{i} \geq 2\lceil\log (n c)\rceil+2$. Then

$$
\hat{R}\left(C_{n_{1}}, \ldots, C_{n_{t}}\right) \leq(\ln c+1) c^{2} n .
$$

The above theorem is proved by showing that an Erdős-Renyi random graph with suitable edge probability is almost surely a Ramsey graph for a collection of cycles. By considering binomial random bipartite graph model we will give further improvement on the bound in Theorem 1.1 (see Theorems 3.2 and 3.4).

Throughout the paper, the notations $\log x$ and $\ln x$ refer to the logarithms to the bases 2 and Euler's number e, respectively. Also, for a graph G and a subset $S \subseteq V(G), N_{G}(S)$ stands for the set of all vertices of G which have at least one neighbor in S.

2 Cycles versus a complete bipartite graph

In this section, we prove some auxiliary results which will later be used to bound the size-Ramsey numbers of cycles. Specifically, we prove some linear upper bounds (in terms of the number of vertices) for the Ramsey and bipartite Ramsey numbers of cycles versus a complete bipartite graph. First, we give some definitions and lemmas.

A rooted tree with at most two children for each vertex is called a binary tree. The depth of a vertex in a binary tree T is the distance from the vertex to the root of T and the maximum depth of any vertex is called the height of T. If a tree has only one vertex (the root), the height is zero. A perfect binary tree is a binary tree with all leaves at the same depth where every internal vertex (non-leaf vertex) has exactly two children. Now we begin with the following lemma.

Lemma 2.1. For every positive integer $n \geq 2$, there is a binary tree of height $\lceil\log n\rceil$ and at most $2 n+\lceil\log n\rceil-2$ vertices which has exactly n leaves, all of the same depth.

Proof. If $n=2^{t}$ for some t, then clearly the perfect binary tree of height t has exactly n leaves and $2 n-1$ vertices and we are done. Now, assume that $n=2^{t_{1}}+\cdots+2^{t_{r}}$, where $r \geq 2$ and $t_{1}>\cdots>t_{r} \geq 0$. For each $1 \leq i \leq r$, let T_{i} be the perfect binary tree of height t_{i} with $2^{t_{i}+1}-1$ vertices and $2^{t_{i}}$ leaves. Now, we construct a binary tree T as follows. Consider the vertex disjoint binary trees T_{1}, \ldots, T_{r} with roots x_{1}, \ldots, x_{r} and a new path $P=v_{1} \ldots v_{t_{1}-t_{r}+1}$ and add an edge from $v_{t_{1}-t_{i}+1}$ to the root x_{i} of T_{i} for each $1 \leq i \leq r$. One can easily check that T is a binary tree rooted at v_{1} of height $t_{1}+1$ with $n=2^{t_{1}}+\cdots+2^{t_{r}}$ leaves and

$$
|V(T)|=\sum_{i=1}^{r} 2^{t_{i}+1}-r+t_{1}-t_{r}+1 \leq 2 n+t_{1}-1
$$

vertices. Clearly $\lceil\log n\rceil=t_{1}+1$ and so T is a binary tree with n leaves of depth $\lceil\log n\rceil$ and at most $2 n+\lceil\log n\rceil-2$ vertices.

We also need the following tree-universality result due to Haxell and Kohayakawa.
Theorem 2.2. [12] Let $1 \leq d \leq t$ be fixed integers. Suppose that G is a bipartite graph with associated bipartition $\left(V_{1}, V_{2}\right)$, such that for every subset $S \subseteq V_{i}(i \in\{1,2\})$ with $|S| \leq 2 t / d$, we have $\left|N_{G}(S)\right| \geq 2 d|S|$. Then, G contains as a subgraph every tree with maximum degree at most d whose each bipartition class has at most t vertices.

The above theorem is used to prove the following lemma about finding red paths in a 2-coloured balanced complete bipartite graph. The proof technique of this lemma is similar to the techniques from [2].

Lemma 2.3. Let n, m_{1}, m_{2} be positive integers such that n is even and $\min \left\{m_{1}, m_{2}\right\} \geq$ $n \geq\left(\left\lceil\log m_{1}\right\rceil+\left\lceil\log m_{2}\right\rceil+1\right)$. Suppose that we have a 2 -edge-colored $K_{7 m_{1}+8 m_{2}, 8 m_{1}+7 m_{2}}$ with colors red and blue and bipartition classes V_{1} and V_{2} which has no blue $K_{m_{1}, m_{2}}$. Then for each $i \in\{1,2\}$, there is $V_{i}{ }^{\prime} \subseteq V_{i}$ with $\left|V_{i}{ }^{\prime}\right|=m_{i}$ such that for every $x \in V_{1}{ }^{\prime}$ and $y \in V_{2}{ }^{\prime}$ there is a red path of length $n-1$ from x to y.

Proof. Assume that the edges of $H=K_{N_{1}, N_{2}}$ are colored by red and blue and $\left(V_{1}, V_{2}\right)$ is the bipartition of H with $\left|V_{1}\right|=N_{1}=7 m_{1}+8 m_{2}$ and $\left|V_{2}\right|=N_{2}=8 m_{1}+7 m_{2}$. Let H_{r} and H_{b} be the subgraphs of H induced on the red and blue edges, respectively. By our assumption, H_{b} is $K_{m_{1}, m_{2}}$-free. Thus, we have

$$
\begin{equation*}
\forall i, j \in\{1,2\},\left|N_{H_{r}}(S)\right|>N_{i+1}-m_{j+1}, \quad \text { for every } S \subseteq V_{i} \quad \text { with } \quad|S| \geq m_{j} \tag{2.1}
\end{equation*}
$$

(reading $i+1$ and $j+1$ modulo 2).
Claim 1. There is an induced subgraph $G \subseteq H_{r}$ with parts $\hat{V}_{i} \subseteq V_{i}, i=1,2$, which satisfies

$$
\begin{equation*}
\forall i \in\{1,2\}, \quad\left|N_{G}(S)\right| \geq 6|S|, \quad \text { for every } S \subseteq \hat{V}_{i} \text { with }|S| \leq m_{1}+m_{2} \tag{2.2}
\end{equation*}
$$

Proof of the claim. Define

$$
\mathcal{E}=\left\{\left(X_{1}, X_{2}\right)\left|X_{i} \subseteq V_{i},\left|X_{i}\right| \leq m_{1}+m_{2},\left|N_{H_{r} \backslash X_{i+1}}\left(X_{i}\right)\right| \leq 6\right| X_{i} \mid, \text { for each } i \in\{1,2\}\right\},
$$

(reading $i+1$ modulo 2) and let $\left(A_{1}, A_{2}\right)$ be a pair in \mathcal{E} with largest $\left|A_{1}\right|+\left|A_{2}\right|$. We claim that $\left|A_{i}\right|<m_{i+1}(i \in\{1,2\})$, since otherwise, by (2.1), we have

$$
N_{i+1}-m_{i}-\left|A_{i+1}\right|<\left|N_{H_{r} \backslash A_{i+1}}\left(A_{i}\right)\right| \leq 6\left|A_{i}\right|,
$$

which implies that $N_{i+1}<6\left|A_{i}\right|+\left|A_{i+1}\right|+m_{i} \leq 7 m_{1}+7 m_{2}+m_{i}=N_{i+1}$, which is a contradiction. Therefore, $\left|A_{i}\right|<m_{i+1}(i \in\{1,2\})$.

Now, for each $i \in\{1,2\}$, let $\hat{V}_{i}=V_{i} \backslash A_{i}$ and G be the induced subgraph of H_{r} on $\hat{V}_{1} \cup \hat{V}_{2}$. To see (2.2), for some $i \in\{1,2\}$, let $S \subseteq \hat{V}_{i}$ be a subset with $|S| \leq m_{1}+m_{2}$. For the contrary, suppose that $\left|N_{G}(S)\right|<6|S|$. Then

$$
\left|N_{H_{r} \backslash A_{i+1}}\left(S \cup A_{i}\right)\right| \leq\left|N_{G}(S)\right|+\left|N_{H_{r} \backslash A_{i+1}}\left(A_{i}\right)\right|<6|S|+6\left|A_{i}\right|=6\left|S \cup A_{i}\right| .
$$

Also, $\left|N_{H_{r} \backslash\left(S \cup A_{i}\right)}\left(A_{i+1}\right)\right| \leq\left|N_{H_{r} \backslash A_{i}}\left(A_{i+1}\right)\right| \leq 6\left|A_{i+1}\right|$. Thus, by maximality of $\left(A_{1}, A_{2}\right)$, we have $\left|S \cup A_{i}\right|>m_{1}+m_{2}$. On the other hand, we have $\left|A_{i}\right|<m_{i+1}$. Therefore, $|S|>m_{i}$. Hence, using (2.1), we have

$$
N_{i+1}-m_{i+1}<\left|N_{H_{r}}(S)\right| \leq\left|N_{G}(S)\right|+\left|A_{i+1}\right|<6|S|+m_{i} \leq 6 m_{1}+6 m_{2}+m_{i}
$$

which implies that $N_{i+1}<7 m_{1}+7 m_{2}$, again a contradiction. This proves the claim.
Now, let G be the subgraph of H_{r} which satisfies (2.2). In the light of Theorem 2.2, G (and so H_{r}) contains a copy of any tree T with maximum degree 3 whose bipartition classes are of size at most $\left\lfloor 3\left(m_{1}+m_{2}\right) / 2\right\rfloor$. Now, for $i \in\{1,2\}$, let T_{i} be a binary tree with m_{i} leaves of depth $\left\lceil\log m_{i}\right\rceil$ and at most $2 m_{i}+\left\lceil\log m_{i}\right\rceil-2$ vertices (which exists due to Lemma 2.1]. Also, let T be a tree on at most $n+2 m_{1}+2 m_{2}-6$ vertices formed by attaching the roots of T_{1} and T_{2} by a path of length $n-1-\left\lceil\log m_{1}\right\rceil-\left\lceil\log m_{2}\right\rceil$. Note that T has maximum degree 3 with leaves $x_{1}, \ldots, x_{m_{1}}, y_{1}, \ldots, y_{m_{2}}$, where there is a path of length $n-1$ from x_{i} to y_{j} for every $1 \leq i \leq m_{1}$ and $1 \leq j \leq m_{2}$. Also note that since n is even, $\left\{x_{1}, \ldots, x_{m_{1}}\right\}$ and $\left\{y_{1}, \ldots, y_{m_{2}}\right\}$ are contained in different parts of the bipartition of T. Without loss of generality, we can assume that $V_{1}^{\prime}=\left\{x_{1}, \ldots, x_{m_{1}}\right\} \subseteq V_{1}$ and $V_{2}^{\prime}=\left\{y_{1}, \ldots, y_{m_{2}}\right\} \subseteq V_{2}$. It can be seen that the size of the bipartition class of T
contained in $V_{i}(i \in\{1,2\})$ is at most $n / 2+3 m_{i} / 2+m_{i+1} \leq 3\left(m_{1}+m_{2}\right) / 2$. To see this, note that half of the vertices in the path from x_{1} to y_{1} are in V_{i+1}, also all vertices in V_{i+1}^{\prime} and all parents of vertices in V_{i}^{\prime} are in V_{i+1}. Thus, $\left|V_{i+1}\right| \geq n / 2+m_{i+1}+m_{i} / 2-2$ and so, $\left|V_{i}\right| \leq n / 2+m_{i+1}+3 m_{i} / 2-4$. Hence, by Theorem 2.2, H_{r} contains a copy of T. This completes the proof.

Given bipartite graphs G_{1}, \ldots, G_{k}, the bipartite Ramsey number $B R\left(G_{1}, \ldots, G_{k}\right)$ is defined as the smallest integer b such that for any edge coloring of the complete bipartite graph $K_{b, b}$ with k colors $1, \ldots, k$, there exists a monochromatic copy of G_{i} of color i in $K_{b, b}$, for some $1 \leq i \leq k$. In other words, it is the smallest integer b such that $K_{b, b} \rightarrow\left(G_{1}, \ldots, G_{k}\right)$. The above lemma can be used to give an upper bound for the bipartite Ramsey number of an even cycle versus a complete bipartite graph.

Lemma 2.4. Let n, m be positive integers such that n is even with $m \geq n \geq 2\lceil\log m\rceil+1$. Then, $B R\left(C_{n}, K_{m, m}\right) \leq 15 m$.

Proof. Let H be a 2-edge-colored complete bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$ such that $\left|V_{1}\right|=\left|V_{2}\right|=15 m$. Suppose that H contains no blue $K_{m, m}$. To prove the lemma, it is enough to show that H contains a red C_{n}.

By Lemma 2.3, there are $V_{i}{ }^{\prime} \subseteq V_{i}$ with $\left|V_{i}{ }^{\prime}\right|=m(i \in\{1,2\})$ such that for every $x \in V_{1}{ }^{\prime}$ and $y \in V_{2}{ }^{\prime}$ there is a red path of length $n-1$ from x to y. Since H has no blue $K_{m, m}$, there is a red edge $x y$ for some $x \in V_{1}{ }^{\prime}$ and $y \in V_{2}{ }^{\prime}$. Adding this edge to the red path of length $n-1$ from x to y gives a red cycle of length n as required.

The following corollary is an immediate consequence of Lemma 2.4 .
Corollary 2.5. Let m and n_{1}, \ldots, n_{t} be positive integers such that for every $1 \leq i \leq t, n_{i}$ is even and $m \geq n_{i} \geq 2\left\lceil\log \left(15^{t-1} m\right)\right\rceil+1$. Then, $B R\left(C_{n_{1}}, \ldots, C_{n_{t}}, K_{m, m}\right) \leq 15^{t} m$.

Proof. We give a proof by induction on t. The case $t=1$ follows from Lemma 2.4. Now, assuming the assertion holds for $t<t_{0}$, we are going to prove it for $t=t_{0}$. To see this,
 and suppose that there is no copy of $C_{n_{i}}$ of color i in H for all $1 \leq i \leq t_{0}$. We show that there is a copy of $K_{m, m}$ of color $t_{0}+1 \mathrm{in} H$. By the induction hypothesis, we have $B R\left(C_{n_{1}}, \ldots, C_{n_{t_{0}-1}}, K_{15 m, 15 m}\right) \leq 15^{t_{0}} m$ and so there is a copy of $K_{15 m, 15 m}$ in H whose edges are colored by colors t_{0} and $t_{0}+1$. Now using Lemma 2.4, this copy contains either a copy of $C_{n_{t_{0}}}$ of color t_{0}, or a copy of $K_{m, m}$ of color $t_{0}+1$. By the assumption, the earlier case does not hold. Hence, there is a copy of $K_{m, m}$ of color $t_{0}+1$ in H and we are done.

For the case of odd cycles, we need a variant of Lemma 2.4 for 3-partite graphs which is stated as follows.

Lemma 2.6. Let n, m_{1}, m_{2} be positive integers, where $\min \left\{m_{1}, m_{2}\right\} \geq n \geq\left(\left\lceil\log m_{1}\right\rceil+\right.$ $\left.\left\lceil\log m_{2}\right\rceil+2\right)$. Then

$$
K_{X, Y, Z} \longrightarrow\left(C_{n}, K_{m_{1}, m_{2}}\right),
$$

where $K_{X, Y, Z}$ is a complete 3-partite graph with color classes X, Y, Z of sizes $|X|=7 m_{1}+$ $8 m_{2},|Y|=8 m_{1}+7 m_{2}$ and $|Z|=m_{1}+m_{2}-1$.

Proof. The case when n is even follows from Lemma 2.3 (it just suffices to consider the subgraph $K_{X, Y}$ of $K_{X, Y, Z}$ and apply Lemma 2.3). Now, let n be odd. Consider a 2-edge coloring of $K_{X, Y, Z}$ and suppose that there is no blue $K_{m_{1}, m_{2}}$.

By Lemma 2.3, there are sets $X^{\prime} \subseteq X$ and $Y^{\prime} \subseteq Y$ with $\left|X^{\prime}\right|=m_{1}$ and $\left|Y^{\prime}\right|=m_{2}$ such that for every $x \in X^{\prime}$ and $y \in Y^{\prime}$ there is a red path of length $n-2$ from x to y contained in $X \cup Y$.

Now, since there is no blue $K_{m_{1}, m_{2}}$ in the 2-edge-colored $K_{X, Z}$, we have $\left|N_{Z}^{r}\left(X^{\prime}\right)\right| \geq m_{1}$, where $N_{Z}^{r}(S)$ is the set of all vertices in Z which have a neighbour in S in the red subgraph of $K_{X, Y, Z}$. Similarly, since there is no blue $K_{m_{1}, m_{2}}$ in the 2-edge-colored $K_{Y, Z}$, we have $\left|N_{Z}^{r}\left(Y^{\prime}\right)\right| \geq m_{2}$. Therefore, since $|Z|=m_{1}+m_{2}-1$, we have $N_{Z}^{r}\left(X^{\prime}\right) \cap N_{Z}^{r}\left(Y^{\prime}\right) \neq \emptyset$. Hence, there are some vertices $x \in X^{\prime}, y \in Y^{\prime}$, and $z \in N_{Z}^{r}(x) \cap N_{Z}^{r}(y)$. Now, the concatenation of the edges $y z$ and $z x$ and the path of length $n-2$ from x to y in $X \cup Y$ comprises a red C_{n}, as required.

Lemma 2.6 along with the fact that the graph $K_{X, Y, Z}$ in Lemma 2.6 is a subgraph of $K_{16 m_{1}+16 m_{2}-1}$ immediately imply the following result.

Corollary 2.7. Let n, m_{1}, m_{2} be positive integers, where $\min \left\{m_{1}, m_{2}\right\} \geq n \geq\left(\left\lceil\log m_{1}\right\rceil+\right.$ $\left.\left\lceil\log m_{2}\right\rceil+2\right)$. Then, $R\left(C_{n}, K_{m_{1}, m_{2}}\right) \leq 16 m_{1}+16 m_{2}-1$.

Let $f_{1}\left(m_{1}, m_{2}\right)=16 m_{1}+16 m_{2}-1$ and for every $t \geq 2$, define

$$
\begin{equation*}
f_{t}\left(m_{1}, m_{2}\right)=f_{t-1}\left(f_{t-1}\left(m_{1}+m_{2}-1,8 m_{1}+7 m_{2}\right), 7 m_{1}+8 m_{2}\right) . \tag{2.3}
\end{equation*}
$$

In the following, we show that $f_{t}\left(m_{1}, m_{2}\right)$ is an upper bound for the Ramsey number of t cycles (with some restrictions on their sizes) versus the graph $K_{m_{1}, m_{2}}$.

Theorem 2.8. Let m_{1}, m_{2} and n_{1}, \ldots, n_{t} be positive integers such that $\min \left\{m_{1}, m_{2}\right\} \geq$ $n_{i} \geq 2\left\lceil\log \left(f_{t}\left(m_{1}, m_{2}\right)\right)\right\rceil+2$ for each $1 \leq i \leq t$. Then,

$$
R\left(C_{n_{1}}, \ldots, C_{n_{t}}, K_{m_{1}, m_{2}}\right) \leq f_{t}\left(m_{1}, m_{2}\right)
$$

Proof. We give a proof by induction on t. The case $t=1$ follows from Corollary 2.7. Now, assuming correctness of the assertion for $t<t_{0}$, we are going to prove it for $t=t_{0}$. Consider the $\left(t_{0}+1\right)$-edge-colored graph $H=K_{N}$ with colors $1,2, \ldots, t_{0}+1$, where $N=f_{t_{0}}\left(m_{1}, m_{2}\right)$. We assume that H contains no copy of $C_{n_{i}}$ of color i for each $1 \leq i \leq t_{0}$ and we show that there is a copy of $K_{m_{1}, m_{2}}$ of color $t_{0}+1$. By the induction hypothesis, we have $R\left(C_{n_{1}}, \ldots, C_{n_{t_{0}-1}}, K_{N_{1}, N_{2}}\right) \leq N$ for $N_{1}=f_{t_{0}-1}\left(m_{1}+m_{2}-1,8 m_{1}+7 m_{2}\right)$ and $N_{2}=7 m_{1}+8 m_{2}$. Thus, there is a copy of 2 -edge-colored $K_{N_{1}, N_{2}}$ with parts X and Y by colors t_{0} and $t_{0}+1$ in K_{N}. Now, again by the induction hypothesis, we have

$$
|X|=N_{1}=f_{t_{0}-1}\left(m_{1}+m_{2}-1,8 m_{1}+7 m_{2}\right) \geq R\left(C_{n_{1}}, \ldots, C_{n_{t_{0}-1}}, K_{m_{1}+m_{2}-1,8 m_{1}+7 m_{2}}\right) .
$$

Therefore, there is a copy of a 2 -edge-colored $K_{m_{1}+m_{2}-1,8 m_{1}+7 m_{2}}$ by colors t_{0} and $t_{0}+1$ with parts X^{\prime} and $X^{\prime \prime}$ in the induced subgraph of K_{N} on X. Thus, the edges of the complete 3-partite graph with the color classes Y, X^{\prime} and $X^{\prime \prime}$ are colored by colors t_{0} and $t_{0}+1$ and so by Lemma 2.6, there is a copy of $K_{m_{1}, m_{2}}$ of color $t_{0}+1$ in H and we are done.

The following corollary follows from Theorem 2.8 and the fact that $f_{2}\left(m_{1}, m_{2}\right)=$ $2416 m_{1}+2176 m_{2}-273$.

Corollary 2.9. Let $m_{1}, m_{2}, n_{1}, n_{2}$ be positive integers such that $\min \left\{m_{1}, m_{2}\right\} \geq n_{1}, n_{2} \geq$ $2\left\lceil\log \left(2416 m_{1}+2176 m_{2}-273\right)\right\rceil+2$. Then, we have

$$
R\left(C_{n_{1}}, C_{n_{2}}, K_{m_{1}, m_{2}}\right) \leq 2416 m_{1}+2176 m_{2}-273
$$

By calculating the function $f_{t}\left(m_{1}, m_{2}\right)$ and using Theorem 2.8, we can prove the following theorem.

Theorem 2.10. Let $t \geq 3$ and m_{1}, m_{2} and n_{1}, \ldots, n_{t} be positive integers such that $\min \left\{m_{1}, m_{2}\right\} \geq n_{i} \geq 2\left\lceil\log \left(10^{2^{t}-1}\left(m_{1}+m_{2}\right)\right)\right\rceil+2$ for each $1 \leq i \leq t$. Then,

$$
R\left(C_{n_{1}}, \ldots, C_{n_{t}}, K_{m_{1}, m_{2}}\right) \leq 10^{2^{t}-1}\left(m_{1}+m_{2}\right)
$$

Proof. Using Theorem 2.8, it just suffices to show that $f_{t}\left(m_{1}, m_{2}\right) \leq 10^{2^{t}-1}\left(m_{1}+m_{2}\right)$. To see this, let $f_{t}\left(m_{1}, m_{2}\right)=a_{t} m_{1}+b_{t} m_{2}+c_{t}$, where a_{t}, b_{t} and c_{t} are three functions in terms of t. From (2.3) one can easily see that for each $t \geq 2$,

$$
\begin{aligned}
& a_{t}=a_{t-1}^{2}+8 a_{t-1} b_{t-1}+7 b_{t-1} \\
& b_{t}=a_{t-1}^{2}+7 a_{t-1} b_{t-1}+8 b_{t-1}
\end{aligned}
$$

and

$$
c_{t}=-a_{t-1}^{2}+a_{t-1} c_{t-1}+c_{t-1}
$$

Clearly for every $i \geq 2$ we have $b_{i}<a_{i}$ and so for every $t \geq 3$,

$$
a_{t}<a_{t-1}^{2}+8 a_{t-1}^{2}+7 a_{t-1} \leq 10 a_{t-1}^{2}
$$

Therefore, by induction on t we can see that for every $t \geq 3$,

$$
b_{t} \leq a_{t} \leq 10^{2^{t}-1}
$$

On the other hand, again by induction on t, we have $c_{t} \leq 0$. Therefore

$$
f_{t}\left(m_{1}, m_{2}\right) \leq a_{t} m_{1}+b_{t} m_{2} \leq 10^{2^{t}-1}\left(m_{1}+m_{2}\right)
$$

With all these results in hand, we can prove the main result of this section, as follows.
Theorem 2.11. Let t_{e} and t_{o} be respectively the number of even and odd integers in the sequence $\left(n_{1}, \ldots, n_{t}\right)$ and suppose that $m \geq n_{i} \geq 2(\lceil\log N\rceil+1)$ for each $1 \leq i \leq t$, where $N=4.6 \times 10^{2^{t_{o}}-1} \times 15^{t_{e}} m$. Then

$$
R\left(C_{n_{1}}, \ldots, C_{n_{t}}, K_{m, m}\right) \leq N
$$

Proof. The case $t_{o}=0$ follows from Corollary 2.5 (note that in this case the complete graph K_{N} has a complete bipartite graph $K_{15^{t_{e} m, 15^{t} e m}}$ as a subgraph). So, let $t_{o} \geq 1$. Also, without loss of generality, assume that n_{i} is odd for all $1 \leq i \leq t_{o}$. Consider a $(t+1)$-edge-colored K_{N} with colors $1,2, \ldots, t+1$. Assume that there is no copy of $C_{n_{i}}$ of color i for each $1 \leq i \leq t$. Our goal is to show that there is a copy of $K_{m, m}$ of color $t+1$. Using Corollary 2.7 and Corollary 2.9 when $t_{o}=1,2$ and Theorem 2.10 when $t_{o} \geq 3$, we have $R\left(C_{n_{1}}, \ldots, C_{n_{t_{o}}}, K_{15^{t_{e}, ~}, 15 t_{e}}\right) \leq N$ and so there is a copy of $K_{15 t_{e}, 15^{t e} m}$ in K_{N} whose edges are colored by $t_{e}+1$ colors $t_{o}+1, \ldots, t+1$. Now, Corollary 2.5 implies that $B R\left(C_{n_{t_{o}+1}}, \ldots, C_{n_{t}}, K_{m, m}\right) \leq 15^{t_{e}} m$ and so there is a copy of $K_{m, m}$ of color $t+1$ in the $\left(t_{e}+1\right)$-edge-colored $K_{15^{t_{e}}, 15^{t_{e}} m}$, as desired.

3 Random graphs and upper bounds

In this section, we will apply the obtained results in Section 2 on random graphs to give some linear upper bounds in terms of the number of vertices for the size-Ramsey number of large cycles. For this purpose, we deploy two random structure models namely binomial random graphs and binomial random bipartite graphs.

The first model called binomial random graph $\mathcal{G}(n, p)$ is the random graph G with the vertex set $[n]:=\{1,2, \ldots, n\}$ in which every pair $\{i, j\} \subseteq[n]$ appears independently as an edge in G with probability p. Note that an event in a probability space is said to hold asymptotically almost surely (or a.a.s.) if the probability that it holds tends to 1 as n goes to infinity. To see more about random graphs we refer the reader to see [1, 3]. We will state some results that hold a.a.s. and we always assume that n is large enough.

The first lemma asserts that there is a graph on N vertices whose number of edges is linear in terms of N, while it has no large hole (a pair of disjoint subsets of vertices with no edge between them). It should be noted that a very similar fact has been proved in 6] to prove a linear upper bound for the size-Ramsey number of paths. Here, we give a proof for completeness. For two subsets of vertices S, T, the number of edges with one end in S and one end in T is denoted by $e(S, T)$.

Lemma 3.1. Let $c \in \mathbb{R}_{+}$and let $d=d(c)$ be such that

$$
\begin{equation*}
(1-2 c) \ln (1-2 c)+2 c \ln (c)+c^{2} d \geq 0 . \tag{3.1}
\end{equation*}
$$

Then, in the graph $G \in \mathcal{G}(N, d / N)$, a.a.s. for every two disjoint sets of vertices S and T with $|S|=|T|=c N$, we have $e(S, T) \geq 1$.

Proof. Let S and T with $|S|=|T|=c N$ be fixed and let $X=X_{S, T}=e(S, T)$. Clearly,

$$
\mathbb{P}(X=0)=\left(1-\frac{d}{N}\right)^{c^{2} N^{2}} \leq \exp \left(-c^{2} d N\right)
$$

Thus, by the union bound over all choices of S and T we have

$$
\begin{aligned}
\mathbb{P}\left(\bigcup_{S, T}\left(X_{S, T}=0\right)\right) & \leq\binom{ N}{c N}\binom{(1-c) N}{c N} \exp \left(-c^{2} d N\right) \\
& =\frac{N!}{(c N)!(c N)!((1-2 c) N)!} \exp \left(-c^{2} d N\right)
\end{aligned}
$$

Using Stirling's formula ($\left.x!\sim \sqrt{2 \pi x}(x / e)^{x}\right)$ we get

$$
\begin{aligned}
& \mathbb{P}\left(\bigcup_{S, T}\left(X_{S, T}=0\right)\right) \leq \frac{1}{2 \pi c \sqrt{1-2 c} N} \cdot\left(\frac{(1-2 c)^{2 c-1} \exp \left(-c^{2} d\right)}{c^{2 c}}\right)^{N} \\
& \quad \leq \frac{1}{2 \pi c \sqrt{1-2 c} N}=o(1)
\end{aligned}
$$

where the last inequality is due to (3.1). This completes the proof.
Combining Theorem 2.11 and Lemma 3.1, gives some information on the size-Ramsey numbers of cycles. Roughly speaking, these two facts imply that for sufficiently large N, $\mathcal{G}(N, d / N) \longrightarrow\left(C_{n_{1}}, \ldots, C_{n_{t}}\right)$ when we have some restrictions on the parameters. In the following result, which is the main result of this paper, we use this fact to give a linear upper bound for the size-Ramsey number of large cycles.
Theorem 3.2. Let $f=4.6 \times 10^{2^{t_{o}}-1} \times 15^{t_{e}}$, where t_{e} and t_{o} are respectively the number of even and odd integers in the sequence $\left(n_{1}, \ldots, n_{t}\right)$. Also let $c=\min \{19773, f\}$ if $t=2$ and $c=f$, otherwise. Suppose that $n=\max \left\{n_{1}, \ldots, n_{t}\right\}$ and for each $1 \leq i \leq t$, we have $n_{i} \geq 2\lceil\log (n c)\rceil+2$. Then, for sufficiently large n, we have

$$
\hat{R}\left(C_{n_{1}}, \ldots, C_{n_{t}}\right) \leq(\ln c+1) c^{2} n .
$$

Proof. Let $N=n c, d=\left(\left(2 c^{-1}-1\right) \ln \left(1-2 c^{-1}\right)-2 c^{-1} \ln \left(c^{-1}\right)\right) / c^{-2}$ and $G=\mathcal{G}(N, d / N)$. By Lemma 3.1, a.a.s. for every two disjoint sets of vertices S and T in $V(G)$ with $|S|=$ $|T|=n$, we have $e(S, T) \geq 1$. Therefore, a.a.s. the complement of G does not contain $K_{n, n}$ as a subgraph. On the other hand, the expected number of edges of G is $\frac{d}{N}\binom{N}{2} \leq N d / 2$ and the concentration around the expectation follows immediately from the Chernoff bound. Hence, for sufficiently large N, there exists a graph H on N vertices with at most $N d / 2$ edges whose complement does not contain $K_{n, n}$ as a subgraph. Hence, by Corollary 2.9 and Theorem 2.11, we have $H \longrightarrow\left(C_{n_{1}}, \ldots, C_{n_{t}}\right)$. This means that for sufficiently large N we have

$$
\hat{R}\left(C_{n_{1}}, \ldots, C_{n_{t}}\right) \leq \frac{N d}{2} \leq \frac{c \ln c-(c-2) \ln (c-2)}{2} c^{2} n \leq(\ln c+1) c^{2} n,
$$

where the last inequality follows by applying the mean value theorem to the function $x \ln x$.

Based on Theorem 3.2, for sufficiently large n, we have

$$
\hat{R}\left(C_{n}, C_{n}\right) \leq \begin{cases}1989 \times 10^{5} n & \text { if } n \text { is odd } \\ 86 \times 10^{5} n & \text { if } n \text { is even }\end{cases}
$$

It should be noted that other random graph models can be applied in the above method to improve the obtained bounds. One of these models is random regular graphs which gives slightly better results, however we omit its computations because it does not give much more improvement. See [7] for an application of this method to size Ramsey numbers.

Another model is the binomial random bipartite graphs, described below, which gives better upper bound when all the cycles are even.

The binomial random bipartite graph $\mathcal{G}(n, n, p)$ (where p may be a function of n) is the random bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$ whose partite sets V_{1}, V_{2} are of order n and each pair $(i, j) \in V_{1} \times V_{2}$ appears independently as an edge in G with probability p. The following is the counterpart of Lemma 3.1 for the random bipartite graphs. Once again, it is well known and we include its proof for completeness.

Lemma 3.3. Let $0<c<1$ and let $d=d(c)$ be such that

$$
2(1-c) \ln (1-c)+2 c \ln c+c^{2} d \geq 0
$$

Then, a.a.s. for every two sets of vertices S and T in different color classes of $G \in$ $\mathcal{G}(N, N, d / N)$ with $|S|=|T|=c N$, we have $e(S, T) \geq 1$.

Proof. Let S and T with $|S|=|T|=c N$ be fixed and let $X=X_{S, T}=e(S, T)$. Clearly,

$$
\mathbb{P}(X=0)=\left(1-\frac{d}{N}\right)^{c^{2} N^{2}} \leq \exp \left(-c^{2} d N\right)
$$

Thus, by the union bound over all choices of S and T we have

$$
\begin{aligned}
\mathbb{P}\left(\bigcup_{S, T}\left(X_{S, T}=0\right)\right) & \leq\binom{ N}{c N}^{2} \exp \left(-c^{2} d N\right) \\
& =\left(\frac{N!}{(c N)!((1-c) N)!}\right)^{2} \exp \left(-c^{2} d N\right)
\end{aligned}
$$

Using Stirling's formula we get

$$
\begin{aligned}
& \mathbb{P}\left(\bigcup_{S, T}\left(X_{S, T}=0\right)\right) \leq \frac{1}{2 \pi c(1-c) N} \cdot\left(\frac{\exp \left(-c^{2} d / 2\right)}{c^{c}(1-c)^{1-c}}\right)^{2 N} \\
& \quad \leq \frac{1}{2 \pi c(1-c) N}=o(1)
\end{aligned}
$$

as desired.
The following theorem gives an improvement of Theorem 3.2 when the lengths of all cycles are even.

Theorem 3.4. Assume that n_{1}, \ldots, n_{t} are even positive integers and $n=\max \left\{n_{1}, \ldots, n_{t}\right\}$. Also, suppose that for each $1 \leq i \leq t$ we have $n_{i} \geq 2\left\lceil\log \left(15^{t} n\right)\right\rceil+2$. Then for sufficiently large n, we have

$$
\hat{R}\left(C_{n_{1}}, \ldots, C_{n_{t}}\right) \leq 2 \times 15^{2 t}(t \ln 15+1) n
$$

Proof. Let $c=15^{-t}, N=n / c, d=(-2(1-c) \ln (1-c)-2 c \ln c) / c^{2}$ and $G=\mathcal{G}(N, N, d / N)$. By Lemma 3.3, a.a.s. for every two sets of vertices S and T in different color classes of G with $|S|=|T|=n$, we have $e(S, T) \geq 1$. Therefore a.a.s. the complement of G with respect to $K_{N, N}$ does not contain $K_{n, n}$ as a subgraph and so by Corollary 2.5, we have $G \longrightarrow\left(C_{n_{1}}, \ldots, C_{n_{t}}\right)$. On the other hand, the expected number of edges of G is $N d$ and
concentration around the expectation follows immediately from the Chernoff bound. This means that for sufficiently large n we have

$$
\hat{R}\left(C_{n_{1}}, \ldots, C_{n_{t}}\right) \leq N d=2 c^{-2}\left(c^{-1} \ln c^{-1}-\left(c^{-1}-1\right) \ln \left(c^{-1}-1\right)\right) n \leq 2 c^{-2}\left(\ln c^{-1}+1\right) n
$$

where the last inequality is due to the mean value theorem.
As a consequence of Theorem 3.4 , for sufficiently large even n, we have

$$
\hat{R}\left(C_{n}, C_{n}\right) \leq 65 \times 10^{4} n
$$

Acknowledgement

The authors would like to thank two anonymous referees for many suggestions improving this paper.

References

[1] N. Alon and J. H. Spencer, The Probabilistic Method, 4th ed., Wiley, New York, 2016.
[2] I. Balla, A. Pokrovskiy, and B. Sudakov. Ramsey goodness of bounded degree trees, Combin. Probab. Comput. 27 (2018), no. 3, 289-309.
[3] B. Bollobás, Random Graphs, Cambridge University Press, Cambridge, 2001.
[4] J. Beck, On size Ramsey number of paths, trees, and circuits I, J. Graph Theory 7 (1983), 115-129.
[5] D. Conlon, J. Fox, B. Sudakov, Recent developments in graph Ramsey theory, in: Surveys in Combinatorics 2015, Cambridge University press, 2015, 49-118.
[6] A. Dudek and P. Prałat, An alternative proof of the linearity of the size-Ramsey number of paths, Combin. Probab. Comput. 24 (2015), 551-555.
[7] A. Dudek and P. Prałat, On some multicolour Ramsey properties of random graphs, SIAM J. Discrete Math. 31 (2017), no. 3, 2079-2092.
[8] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292-294.
[9] P. Erdős, R. Faudree, C. Rousseau and R. Schelp, The size Ramsey number, Period. Math. Hungar. 9 (1978), no. 1-2, 145-161.
[10] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463-470.
[11] R. Faudree and R. Schelp, A survey of results on the size Ramsey number, Paul Erdos and his mathematics, II (Budapest, 1999), Bolyai Soc. Math. Stud., 11, Janos Bolyai Math. Soc., Budapest, 2002, 291-309.
[12] P. E. Haxell and Y. Kohayakawa, The size-Ramsey number of trees, Israel J. Math. 89 (1995), no. 1-3, 261-274.
[13] P. Haxell, Y. Kohayakawa, and T. Luczak, The induced size-Ramsey number of cycles, Combin. Probab. Comput. 4 (1995), no. 3, 217-239.
[14] S. Letzter, Path Ramsey number for random graphs, Combin. Probab. Comput. 25 (2016), 612-622.
[15] S. P. Radziszowski, Small Ramsey numbers. Electron. J. Combin. 1 (1994), Dynamic Surveys, DS1. 14 (Jan 9, 2014).
[16] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264-286.

[^0]: ${ }^{1}$ This research is partially carried out in the IPM-Isfahan Branch and in part supported by a grant from IPM (No. 95050217).
 ${ }^{2}$ This research is partially supported by SNSF grant 200021-149111.

