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Abstract—Few-shot classification has received great attention
in the field of machine learning and computer vision. Its aim
is to achieve the learning ability close to human recognition
by training from a few labelled samples. The existing few-shot
classification methods have attempted to alleviate the impact of
insufficient samples in a variety of ways, such as meta-learning
and metric learning, but they ignore the noise robustness. This
work proposes a new Anti-Noise Relation Network by embedding
an autoencoder network into a classical neural network of few-
shot classification, Relation Network. Experimental results on
the Stanford Car and CUB-200-2011 datasets demonstrate the
superiority of the proposed method in both classification accuracy
and robustness against different noises.

I. INTRODUCTION

Image classification [1] has been a fundamental and es-
sential task in computer vision [2], [3]. Recently, image
classification algorithms trained on large-scale datasets has
outperformed human beings [4]. However, challenges still
exist for small-sample image classification [5]. Research on
few-shot image classification [4], [6], [7], [8] is valuable both
theoretically and empirically [9].

The main challenge of few-shot image classification is
the deficiency of samples. So far, many methods have been
proposed to alleviate this issue founded on different ap-
proaches [4], [7], [10], [11], such as data augmentation [12],
regularization [11], [13], transfer learning [14], [15], meta-
learning [16], and metric learning [17]. In terms of simplicity
and effectiveness, metric-based few-shot learning methods
obtain the state-of-the-art performance on many few-shot
classification datasets. Metric-based methods assume that, if it
is applicable to learn the metric or similarity measure between
images, few-shot classification can be performed by comparing
the distance or similarity between a new sample and few
samples with known labels.

Depending on whether the distance measure is fixed or
learned, metric-based method can be categorized into two
groups. One group aims to learn a feature embedding to
adapt to a fixed metric, such as the cosine similarity and
the Euclidean distance. Siamese Convolutional Network [18]
adopted two networks with same network parameters to extract
features of images and used the L1 norm to measure the
distance of images. Matching Network [8] introduced attention
mechanism and used the cosine similarity for measuring the

similarity of images. Prototypical Network [19] introduced
the concept of prototype and used the Euclidean distance to
measure the distance of an image and prototype of each class.
Infinite Mixture Prototypical Network built on Prototypical
Network and assumed there are multiple prototypes in each
class. The other group of methods focuses on learning both the
metric and the feature representation. Relation Network [20]
is a representative of this group which employs a relation
module to model the distance between images. Built on
Relation Network, Nearest Neighbor Neural Network, short for
DN4 [21], constructed a module which measures the distance
between local features of a query image and those of its near-
est neighbor. Compared with other few-shot metric learning
methods, the main difference is that DN4 [21] considers local
features of images when measuring the distance.

However, these existing few-shot classification methods did
not consider the robustness of models to noisy test data. On
the other hand, real images usually contain noise because
of various reasons, such as inappropriate operation in image
storage and image transmission. Therefore, this paper aims
to mitigate the sensitivity of few-shot classification methods
to noisy data. Specifically, we introduce an anti-noise module
into Relation Network and propose a new Anti-Noise Relation
Network for few-shot classification. The auti-noise module,
founded an autoencoder network (AE) [22], [23], synthesizes
noise data. By forcing the network to perform well on the
synthetic data, robustness to test-time noise is enhanced.
Experiments on the Stanford-Cars [24] and the CUB-200-
2011 [25] datasets show that the proposed method achieves
better classification performance than existing methods on the
test data with or without different noise signals.

II. THE PROPOSED ANTI-NOISE RELATION WORK

This section will first briefly review the problem formulation
of few-shot learning and Relation Network, and then introduce
the network structure and loss functions of the proposed Anti-
Noise Relation Network.

A. Problem Formulation

In a C-way K-shot classification setting, a dataset is divided
into three sets, namely a training set, a validation set and a test
set. The label space of any two sets are disjoint. The training
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Fig. 1. The Anti-Noise Relation Network.

process contains many tasks, and each task consists of a query
set Q and a support set S. To form a support set, we randomly
select C classes from the training set and K images from each
class, i.e. S = {(xi, yi)}mi=1 (m = C ×K). In addition, from
the remaining images in each class, we randomly select some
samples to form a query set Q = {(xj , yj)}nj=1. We train a
model on these tasks continually and select the optimal model
based on its performance on the validation set. Finally, the
evaluation of C-way K-shot classification is conducted on the
test set.

B. Relation Network

Relation Network [20] is a classical method for few-shot
classification. This method is elegant and has achieved out-
standing empirical performance. It consists of two modules –
one is the embedding module, and the other one is the relation
module.

The embedding module consists of four convolutional
blocks. Each block consists of 64 filters, each of which is
3×3 convolution in size. There is also a batch normalization
and a ReLU nonlinearity layer. For the first two convolutions,
each convolution is followed by a 2×2 max-pooling layer. The
embedding module outputs feature maps, which serve as the
inputs to the relation module. After passing through the rela-
tion module, the concatenated feature maps are transformed
as a relation score.

C. Anti-Noise Relation Network

To alleviate the sensitivity of model to noise data, we
embed the autoencoder network (AE) into Relation Network
and propose a new few-shot learning method termed Anti-
Noise Relation Network. In this section, we will introduce
the network structure, followed by the loss function of the
proposed network.

As shown in Figure 1, the proposed network consists of
an embedding module, an anti-noise module and a relation
module. The embedding module and the relation module are
same as the ones in Relation Network. The feature maps of
the embedding module are fed into both the anti-noise module
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Fig. 2. The anti-noise module is implemented by the autoencoder network.

and the relation module. The feature maps obtained from the
anti-noise module are also fed into the relation module.

1) The anti-noise module: The aim of the anti-noise module
is to synthesize noise data. The anti-noise module, hµ, is
implemented by autoencoder network (AE). The network
architecture is given in Figure 2.

There are two parts in AE: Encoder and Decoder. The
flattened feature maps (23104 dimension) from the embedding
module are fed into encoder first, and then fed into decoder.
The output feature of AE has the same size as the input feature.
The Encoder contains four layers, and the output dimensions



of the four layers are 784, 256, 64 and 20, respectively. The
decoder also contains four layers, in which output dimensions
are 64, 256, 784 and 23104.

2) Loss function: The loss function of the proposed net-
work consists of three parts, namely a loss function on the
original data (Γ), a loss function on the noisy data synthesized
via AE (Γ̂), and a loss function to constrain the distance
between the original data and the synthetic noise data (D).

Samples xi in the support set S and samples xj in the query
set Q are fed into the embedding module, and the output
from the embedding module are feature maps fϕ (xi) and
fϕ(xj). We use F (·, ·) to represent a function of concatenating
the feature maps. The feature maps fϕ(xi) and fϕ(xj) are
concatenated with operator F (fϕ(xj), fϕ(xj)). The similarity
between the concatenated feature maps is learned through the
relation module and the relation score between xi and xj ,
denoted as ri,j , is produced:

ri,j = gφ(F (fϕ(xi), fϕ(xj))), i = 1, 2, · · · ,m,
j = 1, 2, · · · , n.

(1)

Based on the relation score between xi and xj , i.e. ri,j , and
their label yi and yj , we obtain the loss function on original
data, denoted as Γ:

Γ =

m∑
i=1

n∑
j=1

(ri,j − 1(yi == yj))
2, (2)

where 1(yi == yj)) equals one if yi is same as yj and zero
otherwise.

Similarly, we can obtain the relation score based on the
synthetic noise data r̂i,j and the loss function Γ̂: let hµ
represent the anti-noise module, then

r̂i,j = gφ(F (hµ(fϕ(xi)), fϕ(xj))) (3)

Γ̂ =

m∑
i=1

n∑
j=1

(r̂i,j − 1(yi == yj))
2 (4)

We introduce the third loss function, denoted as D, to con-
strain the distance between the original data and the synthetic
noise data. fϕ(x) and hµ(fϕ(x)) are the input feature maps and
output feature maps of the anti-noise module, respectively. The
purpose of D is to ensure that the synthetic feature maps and
the original feature maps are neither exactly identical nor very
distinct from each other. To achieve this goal, we introduce
a hyperparameter β into D, which controls the Euclidean
distance between feature maps fϕ(x) and hµ(fϕ(x)):

D =

(
β −

√
Σ(hµ(fϕ(x))− fϕ(x))2

)2
n

(5)

Finally, integrating Γ, Γ̂ and D, we obtain the loss function
of the proposed method:

Loss = Γ + γΓ̂ + αD; (6)

α and γ are hyperparameters which adjust the influence of Γ̂
and D, respectively.

III. EXPERIMENTAL RESULTS

In this section, we evaluate the robustness of the proposed
method to noises with increasing intensity levels. After de-
scribing datasets and implementation details, we present the
experimental results.

A. Datasets and preprocessing

All methods are evaluated on the Stanford Cars [24] and the
CUB-200-2011 [25] datasets. The datasets differ in content,
number of classes, and sample size.

CUB-200-2011 (CUB): The CUB dataset contains 11,788
images from 200 bird species, proposed by the California
Institute of Technology in 2010. It is also the benchmark
dataset for fine-grained image classification and recognition.

Stanford Cars (Cars): The Cars dataset contains 16,185
images of 196 classes of cars. Classes are typically at the
level of Year, Make, Model, e.g. 2012 Tesla Model S or 2012
BMW M3 coupe.

For both datasets, all classes are divided into the training
set, validation set and test set according to the proportion of
2:1:1. Input images are resized to 84×84 and augmented using
standard techniques including random cropping, left and right
flipping, and color dithering.

B. Implementation details

Our experiment focuses on the 5-way 5-shot task. For
fairness of the experiment, our implementation setting follows
the procedure specified in [15]. In the training stage, we train
our network for 400 epochs and each epoch contains 100
episodes; that is, 40,000 episodes are trained. The validation
set is used to select the training episodes with the highest
accuracy. In each episode, we randomly sample 5 classes
from the training set; for each class, we sample 5 labeled
images to form the support set and 16 images for the query
set. The method is trained from scratch by using the Adam
optimizer. The embedding module of our network uses a 4-
layer convolution with max-pooling in only the first two layers.
Relation scores are normalized through a softmax layer instead
of the L2 standard to speed up training. The initial learning
rate is 10−3.

For comparison, we consider Matching Network (Match-
ingNet) [8], Relation Network (RelationNet) [20], and Pro-
totypical Network (PrototypeNet) [19], implemented follow-
ing [15]. All methods are implemented based on PyTorch.

C. Few-shot classification accuracy under different noise con-
ditions

We compare the robustness of our method with the other
three methods when test images contain Gaussian noise and
Poisson noise. The accuracy on clean images is also reported.
We remark that all methods are trained on clean images, and
noisy images are used only for testing.

In this experiment, we test Gaussian noise and Poisson noise
with different levels of noise intensity. Figure 3 shows an
example image with gradually increased noise. It is clear that,
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Fig. 4. Comparison of 5-way 5-shot classification accuracy obtained by Matching Network, Prototypical Network, Relation Network and the proposed Anti-
Noise Relation Network (Ours) on the CUB-200-2011 (CUB) and Stanford-Cars (Cars) datasets. Gaussian noise and Poisson noise are added to the test data;
noise intensities are labeled on the horizontal axis.

as the noise intensity increases, the extracted feature picture
becomes more and more blurred.

Figure 4 (upper) shows the 5-way 5-shot classification
accuracy of all methods in the presence of Gaussian noise;
Gaussian noise is randomly synthesized for ten times, and
the mean accuracy is reported. First, although our method is
proposed to enhance robustness to test-time noise, its classi-
fication performance on clean data (i.e. Noise=0) is slightly
higher than compared methods. Second, when the intensity
of Gaussian noise increases, the performance gain from our
method becomes more pronounced on the CUB dataset. On
the Cars dataset, our method achieves the highest accuracy in
the scenario of low noise, and outperforms Relation Network
in the scenario of high noise. These results verify that the
proposed method is more effective in safeguarding against

noise.
To further understand the robustness of different methods

against Gaussian noise, we present the boxplots of classifica-
tion accuracy at two noise levels in Figure 5 (upper). In both
low and high noise levels, our method has a smaller spread, as
indicated by a more narrow interquartile range. This suggests
that our method is more reliable in the presence of noises.

In addition to the Gaussian noise, we test the methods under
the Poisson noise. Figure 4 (bottom) shows the classification
accuracy with gradually increasing noise intensities. Similar
patterns to the Gaussian noise can be found. On the CUB
dataset, our method outperforms Relation Network in both
noise-free and noisy cases, and the advantage is clearer as
noise level increases. On the Cars dataset, our method is
optimal in the low-noise case and is competitive in the high-
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Fig. 5. Comparison of the 5-way 5-shot accuracy via boxplot on the CUB-200-2011 (CUB) and Stanford-Cars (Cars) datasets. The methods include Matching
Network, Prototypical Network, Relation Network and the proposed Anti-Noise Relation Network (Ours). Each method runs 10 rounds on each dataset.

noise case. Figure 5 (bottom) shows the boxplots of accuracy
under low and high Poisson noises. The spread of our method
is slightly larger than Relation Network. We hypothesize that
this is caused by the mismatch between the synthetic noise
and the test Poisson noise, as the noise data generated from
the anti-noise module is controlled by the Euclidean distance
(Eq. 5) and implies a Gaussian noise.

In summary, the experimental results demonstrate that the
proposed method achieves better robustness against test-time
noises, without sacrificing accuracy on clean data.

IV. CONCLUSION

In this paper, we have proposed Anti-Noise Relation Net-
work to enhance the robustness of few-shot classification
methods against potential noise on future unseen data. The
proposed network is constructed by embedding an anti-noise
module, i.e. an autoencoder network (AE), into Relation
Network. Experimental results show that, on the Stanford-
Cars and the CUB-200-2011 datasets, the proposed method
achieves better classification performance than other compared
methods on noisy test data. This demonstrates the efficacy of
the anti-noise module.

This work can be considered as the first exploration of
embedding an anti-noise module in metric-based few-shot
classification methods. In the future, we will incorporate it
into other metric-based methods to improve their robustness
to test-time noise.
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