
1

Dynamic Markov Chain Monte Carlo-Based Spectrum Sensing
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Abstract—In this letter, a random sampling strategy is pro-
posed for the non-cooperative spectrum sensing to improve its
performance and efficiency in cognitive radio (CR) networks.
The proposed refined Metropolis-Hastings (RMH) algorithm
generates the desired channel sequence for fine sensing by sam-
pling from the approximated channel availability distributions
in an Markov chain Monte Carlo (MCMC) way. The proposal
distribution during the sampling is fully exploited and the
convergence of the Markov chain is studied in detail, which
theoretically demonstrate the superiorities of the proposed RMH
sampling algorithm in both sensing performance and efficiency.
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I. INTRODUCTION

Cognitive radio (CR) has emerged as a promising technique
for wireless communications to opportunistically access the
available spectrum resources without affecting the primary
user networks. As a key process for cognitive radio, spectrum
sensing aims to identify the available channels through co-
operative or non-cooperative approaches [1]–[4], where chan-
nel access and data transmission are subsequently performed
based on these available channels. Specifically, with respect
to non-cooperative approaches, a salient issue is that their
sensing performance are heavily determined by the assumed
parametric traffic model. Once the estimation of the parametric
traffic model becomes inaccurate, the spectrum sensing per-
formance would be severely deteriorated. However, with the
development of the highly dynamic heterogeneous CR ad hoc
networks, it tends to be quite challenging to obtain the accurate
traffic model instantaneously, rendering the non-parametric-
based approach a valuable alternative for the non-cooperative
spectrum sensing [5].

In order to overcome the sensing dependence on the
parametric traffic model, a non-parametric sensing approach
was proposed in [6], which performs the statistical inference
through randomly sampling over channel availability distri-
butions. In particular, it formulates the problem of seeking
the optimal available channel sequence for fine sensing as an
optimization problem to maximize the probability of channel
availabilities, where the required channel availability distri-
bution is approximated by the latest results of fast sensing.
Then, the choices in the desired channel sequence are sampled
one by one, and the channels with large availabilities would
more likely be returned, thus leading to a guaranteed sensing
performance. However, since sampling from the channel avail-
ability distribution directly is difficult, the method of MCMC
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was introduced to obtain the samples from the mixing of
Markov chain, then the target channel sequence is generated
by selecting valid candidates from these samples.

In this paper, the refined Metropolis-Hastings (RMH) is pro-
posed to improve both the performance and efficiency of the
non-parametric spectrum sensing. Typically, according to the
flexibility of the proposal distribution in Metropolis-Hastings
(MH) sampling, a refined proposal distribution is proposed,
which results in a more accurate sampling approximation
due to a faster Markov chain convergence rate. Meanwhile,
the selection judgement of the channel sequence is carefully
considered to improve the acceptance rate of the samples from
the Markov mixing being accepted by the channel sequence,
thus leading to a more efficient spectrum sensing.

II. SYSTEM MODEL

Consider a spectrum containing M non-overlapping chan-
nels, for each secondary user, a fast sensing over these M
channels is performed periodically by the way of energy detec-
tion. After that, a selected channel sequence S = [s1, . . . , sT ]
is generated based on the results of fast sensing, and a fine
sensing process over the spectrum is then carried out along S
to ensure the following channel access and data transmission.
Typically, the problem of identifying the optimal channel
sequence Ŝ for fine sensing was formulated as to maximize
the probability of channel availability

Ŝ = arg max
s1,...,sT

P (Xs1 = 1, . . . , XsT = 1), (1)

where Xsi ∈ {0, 1} is a binary availability indicator of channel
si. In [6], a feasible way to solve this optimization problem
is to sample each element of S from the distributions

P (si) = f(si)/K, 1 ≤ si ≤M, (2)

where f(si) = 1
$

∫∞
0

∫∞
λ
l(si)e

− ω
$ dsidω represents the chan-

nel availability discovered by fast sensing, and K > 0 is a
normalized constant. More specifically, ω and $ are the in-
stantaneous signal-to-interference-plus-noise ratio (SINR) and
average SINR respectively, λ is determined by the probability
of false alarm, and l(si) stands for the PDF of the test statistics
of channel si [7]

l(si) =

{
1

2k/2Γ(k/2)
s

(k/2)−1
i e−si/2, H0;

1
2e
−(si/2+µ)( si2µ )k/4−0.5I(k/2)−1(

√
2µsi), H1,

(3)

where H0 and H1 indicate the absence and presence of the
primary network signals on channel i, k is the degrees of
freedom, Γ is Gamma function, and I is Bessel function.

However, direct sampling from (2) is difficult so that the
Metropolis-Hastings (MH) sampling from MCMC was intro-
duced, which generates S through a Markov chain M =
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[M1 = m1,M2 = m2, . . .] mixing towards the target dis-
tribution P (si) in an exponential convergence rate

‖P t(m, ·)− P (·)‖TV ≤ %t. (4)

Here, t is the index of Markov move, ‖ · ‖TV denotes the
total variation distance, 0 < % < 1 stands for the convergence
rate, Mt and mt represent the Markov state at move t and its
realization respectively. In general, MH sampling employs a
proposal distribution Q(·) to activate an acceptance-rejection
mechanism during the Markov move [8]. Specifically, given
the incomplete channel sequence [s1, . . . , si−1], the operations
of MCMC sampling for identifying the channel choice si
during one Markov move can be described as follows:

Markov mixing:
1) Sample from the proposal distribution Q(mt+1|mt) to

obtain a candidate state m∗ for the Markov state Mt+1.
2) Calculate the acceptance ratio α(m∗|mt)

α(m∗|mt) = min
{

1,
P (m∗)Q(mt|m∗)
P (mt)Q(m∗|mt)

}
. (5)

3) With probability α(m∗|mt) to accept m∗ by Mt+1, i.e.
Mt+1 = m∗, otherwise let Mt+1 = mt.

Channel selection:
4) If m∗ is accepted by Mt+1 and if m∗ /∈ {s1, . . . , si−1},

add si = m∗ into the channel sequence as S = [s1, . . . , si],
otherwise try to obtain a valid si at the next Markov move.

Consequently, the above process is performed subsequently
until the target channel sequence S = [s1, . . . , sT ] for fine
sensing is generated. Note that each channel choice si in S
should be different from each other.

III. REFINED MH SAMPLING ALGORITHM

In essence, there are two loops in the above MCMC-based
sensing process, namely, the Markov mixing and the channel
selection. The inner loop maintains a valid Markov chain while
the outer loop selects the eligible sample Mt+1 = m∗ with
m∗ /∈ {s1, . . . , si−1} into the channel sequence S. Undoubt-
edly, the sensing performance depends on the convergence
performance of the Markov mixing as a faster convergence
rate naturally accounts for a better sampling approximation of
the target distribution P (·). On the other hand, the sensing
efficiency is partially determined by the selection judgement
m∗ /∈ {s1, . . . , si−1} at step (4). However, the possibility
m∗ /∈ {s1, . . . , si−1} decreases rapidly along with the in-
crement of i so that the sample from Markov chain would
be rejected more and more frequently, resulting in a poor
sensing efficiency as the inner loop for Markov mixing would
be invoked intensively. Unfortunately, such a latent efficiency
problem was not considered [6].

A. Algorithm Description and Efficiency Improvement

We now present the proposed refined MH (RMH) sam-
pling algorithm, which attempts to incorporate the restriction
m∗ /∈ {s1, . . . , si−1} into the sampling at each Markov move
to reduce the possibility m∗ ∈ {s1, . . . , si−1}.

Specifically, observe that the sampling candidate m∗ for
Mt+1 could be the same with the Markov states of the previous

Markov moves, i.e., m∗ ∈ {m1, . . . ,mt}. Once it happens,
m∗ must be rejected by the requirement m∗ /∈ {s1, . . . , si−1},
thus resulting in a sampling waste. To this end, it is strongly
motivated to expand the sampling diversity of the underlying
Markov chain. Interestingly, the proposal distribution Q(·) in
MH sampling can be any fixed distribution from which one
can conveniently draw samples [9]. For this reason, we try to
fully take advantage of such a freedom and propose to update
the proposal distribution as

Q′(m∗|mt) =
Q(m∗|mt)

1−Q(m∗ = mt|mt)
(6)

to generate the sampling candidate m∗ for Mt+1. This means
the Markov state mt at the previous sampling step is elimi-
nated from the candidate state space in sampling m∗.

By doing this, we can simply guarantee that the candidate
sample m∗ from the proposal distribution is different from
the last Markov state Mt = mt, thereby establishing a
more diverse Markov chain M = [M1,M2, . . .]. Thanks to
the introduced diversity, the possibility m∗ ∈ {s1, . . . , si−1}
would be reduced, and this corresponds to a higher acceptance
rate in tackling with the requirement m∗ /∈ {s1, . . . , si−1}. On
the other hand, once s∗ from Q′(m∗|mt) is obtained, then the
updated acceptance ratio α′ is calculated as follows

α′(m∗|mt) = min
{

1,
P (m∗)Q′(mt|m∗)
P (mt)Q′(m∗|mt)

}
, (7)

and the decision about whether to accept it into the sequence S
as si = m∗ is performed thereafter. Therefore, a more efficient
spectrum sensing is achieved due to a larger acceptance rate in
the selection judgement. Typically, in the proposed RMH sam-
pling, given the incomplete channel sequence {s1, . . . , si−1},
the sampling operations for the target choice si within one
Markov move is summarised as follows:

Markov Mixing:
1) Sample from the proposal distribution Q′(mt+1|mt) to

obtain a candidate state m∗ for the Markov state Mt+1.
2) Calculate the acceptance ratio α′(m∗|mt)

α′(m∗|mt) = min
{

1,
P (m∗)Q′(mt|m∗)
P (mt)Q′(m∗|mt)

}
. (8)

3) With probability α′(m∗|mt) to accept m∗ by Mt+1, i.e.
Mt+1 = m∗, otherwise let Mt+1 = mt.

Channel selection:
4) If m∗ is accepted by Mt+1 and if m∗ /∈ {s1, . . . , si−1},

add si = m∗ into the channel sequence as S = [s1, . . . , si],
otherwise try to obtain a valid si at the next Markov move.

It should be noticed that similar to the original MH sam-
pling, the Markov chain built by the RMH algorithm is
also reversible by fulfilling the detailed balance condition
[8]. Therefore, the Markov chain is valid as the Markovian
property is reserved. To conclude, the details of the proposed
RMH sampling algorithm for spectrum sensing is presented
in Algorithm 1.

B. Convergence Analysis and Performance Enhancement
Besides the efficiency improvement, now we show that the

proposed RMH sampling also achieves a better convergence
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performance than the MCMC sampling so that a better sam-
pling accuracy can be achieved by the underlying Markov
chain in the approximation of the target distribution P (st),
which accounts for a better spectrum sensing performance.
Intuitively, from the convergence shown in (4), a smaller
convergence rate % means a better convergence performance
to approximate the target distribution.

Theorem 1. Given the target distribution P (·), the proposed
RMH sampling achieves a better exponential convergence
performance than MH by a smaller convergence rate

%RMH < %MH. (9)

Proof: First of all, according to (6) and (7), the transition
probability of RMH sampling is derived as

PRMH(mt,m
∗) = Q′(m∗|mt) · α′(m∗|mt)

=min
{
Q′(m∗|mt),

P (m∗)Q′(mt|m∗)
P (mt)

}
=min

{
Q(m∗|mt)

1−Q(m∗=mt|mt)
,

P (m∗)Q(mt|m∗)
P (mt)(1−Q(mt=m∗|m∗))

}
. (10)

Compared to the transition probability of the MH sampling

PMH(mt,m
∗) = Q(m∗|mt) · α(m∗|mt)

=min
{
Q(m∗|mt),

P (m∗)Q(mt|m∗)
P (mt)

}
,(11)

it is straightforward to see that

PRMH(mt,m
∗)>PMH(mt,m

∗) (12)

for cases of Mt = mt 6= Mt+1 = m∗. More essentially, it
means that each off-diagonal element in the transition matrix
PRMH is always larger than that of PMH. From literatures of
MCMC, such a case is known as Peskun ordering written by

PRMH(Mt,Mt+1) � PMH(Mt,Mt+1). (13)

Now, we invoke the following Lemma to reveal the relation
between Peskun ordering and convergence rate.

Lemma 1 ([10]). Given reversible Markov chains P and
G with stationary distribution π, if P � G, then their
convergence rates satisfy %P ≤ %G.

Note that the definition of Peskun ordering P (Mt,Mt+1) �
G(Mt,Mt+1) given in [10] is based on the inequality
P (Mt,Mt+1) ≥ G(Mt,Mt+1), where the equality %P = %G
holds only if P (Mt,Mt+1) = G(Mt,Mt+1). Here, because
the case of equality is not included, according to (13) and
Lemma 1, we can immediately obtain %RMH < %MH, complet-
ing the proof.

The insight behind Peskun ordering is that a Markov chain
has smaller probability of remaining in the same position
would explore the state space more efficiently, thus providing
a better Markov mixing. This is straightforward to understand
since if the Markov chain retains the same state over subse-
quent Markov moves, the autocorrelation along the exploration
path will increase intensively, which naturally leads to a slow
Markov mixing. Hence, according to Peskun ordering, the

Algorithm 1 Refined Metropolis-Hastings Sampling Algorith-
m for Spectrum Sensing
Input: S = ∅,M0 = m0, T
Output: S = [s1, . . . , sT ] for spectrum sensing

1: let i = 1
2: while i ≤ T do
3: sample m∗ for Mt by proposal distribution Q′ in (6)
4: calculate the acceptance quantity α′ shown in (7)
5: generate a sample u ∼ U [0, 1]
6: if u ≤ α′ then
7: let Mt = m∗

8: if m∗ /∈ S then
9: let si = m∗ and S = [s1, . . . , si]

10: i = i+ 1
11: else
12: end if
13: else let Mt = mt−1

14: end if
15: t = t+ 1
16: end while
17: output the channel sequence S = [s1, . . . , sT ]

accuracy of spectrum sensing could be strengthened by the
proposed RMH sampling algorithm as well.

C. The Choice of the Proposal Distribution Q

Next, the choice of the proposal distribution Q(·) is investi-
gated, so as to determine the refined proposal distributions
Q′ in the proposed RMH sampling algorithm. In order to
reduce the computational cost within each Markov move, the
symmetric Gaussian proposal distribution Q is considered,
thus leading to an efficient Markov chain implementation. In
particular, at each sampling stage, the proposal distribution Q
is designed as a conditional symmetric Gaussian distribution

Q(m∗|mt) =
e−

1
2σ2
|m∗−mt|2∑

m∗ e
− 1

2σ2
|m∗−mt|2

= Q(mt|m∗), (14)

and the refined proposal distributions Q′(m∗|mt) can be easily
obtained based on (6). It is straightforward to verify that the
refined proposal distributions Q′ is also symmetric as well. In
addition, the standard deviation σ > 0 is flexible to set, which
serves as temperature to adjust the Markov mixing [9].

By doing this, the sampling of m∗ heavily depends on the
previous Markov state mt. Meanwhile, due to the symmetric
property, the calculation of the acceptance ratio α′(m∗|mt) is
also greatly reduced by such an inhere elegance:

α′(m∗|mt) = min
{

1,
P (m∗)Q′(mt|m∗)
P (mt)Q′(m∗|mt)

}
= min

{
1,
f(m∗)

f(mt)

}
. (15)

Intuitively, m∗ is accepted by the Markov state M t+1 if
f(m∗) > f(mt), otherwise it would be accepted with
probability f(m∗)

f(mt)
. Clearly, by fully making use of the sym-

metric Gaussian distribution, the sampling operations from
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Fig. 1. Comparison of the average percentage of the missed opportunities
over different traffic scenarios.

the Markov mixing could be significantly simplified for the
complexity reduction, which further improves the sensing
efficiency.

IV. SIMULATION RESULTS

To evaluate the effectiveness of the proposed RMH sampling
algorithm for spectrum sensing, simulations are presented to
illustrate the comparisons in terms of spectrum performance
and efficiency. Specifically, we assume 40 channels in the
licensed spectrum (i.e., M = 40). The SINR is set to be
20 dB and the probability of false alarm is 0.01. In Fig. 1,
the average percentages of the missed spectrum opportunities
under different traffic models (i.e., exponential packet arrival
with an average arrival rate of 10 arrival/sec and constant
packet arrival with an average arrival rate of 10 arrival/sec) are
given for nmax = 8, where nmax denotes the maximum number
of channels for fine sensing. Following the configurations in
[6], the percentage of the missed spectrum opportunities pm
is defined as

pm = 1− n∗

nmax
, (16)

where n∗, nreq and nava are the obtained number of available
channels, the number of request available channels and the
average number of available channels, respectively. As clearly
can be seen, the proposed RMH sampling remains smaller
probabilities of missing opportunities than the MCMC sam-
pling in [6], implying a better sensing performance. On the
other hand, the sensing efficiency is evaluated by the average
sensing overhead in obtaining the available channels, where
the sensing overhead o is defined as

o =

{
nmax − n∗ for n∗ = nreq,

nmax for n∗ 6= nreq.
(17)

From it, the average overhead in obtaining an available channel
(i.e., n∗ = 1) with respect to the maximum number of fine
sensing is shown in Fig. 2. As expected, the average sensing
overhead of the proposed RMH sampling is noticeably lower
than that of the MCMC sampling. Furthermore, as a comple-
mentary to show the efficiency improvement, Table I shows the
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Fig. 2. Average overhead of obtaining an available channel with different
maximum numbers of fine sensing.

TABLE I
AVERAGE PROBABILITIES OF BEING ACCEPTED BY THE CHANNEL
SEQUENCE S DUE TO THE REQUIREMENT m∗ /∈ {s1, . . . , si−1}.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

MCMC 1 0.71 0.50 0.41 0.35 0.28

RMH 1 0.85 0.75 0.68 0.60 0.56

acceptance rates due to the requirement m∗ /∈ {s1, . . . , si−1}
in both RMH and MCMC sampling. Intuitively, the proposed
RMH sampling achieves a much more efficient sensing process
than MCMC sampling due to a higher acceptance rate of the
selection judgement in all cases of i.
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