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Purpose: Stringent variant interpretation guidelines can lead to
high rates of variants of uncertain significance (VUS) for genetically
heterogeneous disease like long QT syndrome (LQTS) and Brugada
syndrome (BrS). Quantitative and disease-specific customization of
American College of Medical Genetics and Genomics/Association
for Molecular Pathology (ACMG/AMP) guidelines can address this
false negative rate.

Methods: We compared rare variant frequencies from 1847 LQTS
(KCNQ1/KCNH2/SCN5A) and 3335 BrS (SCN5A) cases from the
International LQTS/BrS Genetics Consortia to population-specific
gnomAD data and developed disease-specific criteria for ACMG/
AMP evidence classes—rarity (PM2/BS1 rules) and case enrich-
ment of individual (PS4) and domain-specific (PM1) variants.

Results: Rare SCN5A variant prevalence differed between
European (20.8%) and Japanese (8.9%) BrS patients (p=
5.7 × 10−18) and diagnosis with spontaneous (28.7%) versus
induced (15.8%) Brugada type 1 electrocardiogram (ECG) (p=

1.3 × 10−13). Ion channel transmembrane regions and specific N-
terminus (KCNH2) and C-terminus (KCNQ1/KCNH2) domains
were characterized by high enrichment of case variants and >95%
probability of pathogenicity. Applying the customized rules, 17.4%
of European BrS and 74.8% of European LQTS cases had (likely)
pathogenic variants, compared with estimated diagnostic yields
(case excess over gnomAD) of 19.2%/82.1%, reducing VUS
prevalence to close to background rare variant frequency.

Conclusion: Large case–control data sets enable quantitative
implementation of ACMG/AMP guidelines and increased sensitiv-
ity for inherited arrhythmia genetic testing.
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INTRODUCTION
The accurate interpretation of genetic variants remains one of
the key challenges in clinical genetic testing for inherited
cardiac conditions. It carries major clinical implications due
to both the danger of assigning causality to variants that are in
fact benign (false positive findings) as well as the possibility
that variants that are truly causal are considered as variants of
uncertain significance. The relatively high rate of rare benign
variants in many genes (revealed by population sequencing
studies such as gnomAD), and the subsequent debunking of
many gene and variant associations with disease in the
scientific literature,1,2 have highlighted the extent of this
challenge and the danger of false positive classifications.
Variant interpretation guidelines produced by the American

College of Medical Genetics and Genomics and the Associa-
tion for Molecular Pathology (ACMG/AMP) in 2015 have
brought much needed consistency and stringency to variant
classification in both clinical and research laboratories.3

However, standard implementation of such guidelines may
lead to overly conservative interpretation and a substantial
rate of variants of uncertain significance (VUS) in clinical

genetic testing.4 Interpretation is particularly challenging for
nontruncating variants, i.e., those causing minor alterations in
the protein sequence while preserving the reading frame (the
majority of which are missense variants) whose functional
consequences are harder to predict. For diseases with high
allelic heterogeneity (i.e., thousands of potential disease-
causing variants) and where nontruncating variants are the
predominant pathogenic variant class, this can correspond to
a high rate of false negative results, evidenced when the
frequency of VUS in cases exceeds the background rare
variant frequency.1

Brugada syndrome (BrS) and long QT syndrome (LQTS)
are inherited disorders that can cause severe arrhythmogenic
events and sudden cardiac death in young individuals.
Pathogenic variants in three genes account for the vast
majority of genotype-positive cases for these conditions.
These three genes code for α-subunits of voltage-gated ion
channels expressed in cardiomyocytes: SCN5A underlying the
cardiac depolarizing sodium current (INa), and KCNH2 and
KCNQ1 underlying the rapid (IKr) and slow (IKs) components
of the repolarizing potassium delayed rectifier current. Rare
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coding variants in SCN5A cause BrS by a loss-of-function
mechanism while LQTS is caused by functional loss-of-
function variants in KCNQ1 (LQT1) and KCNH2 (LQT2) or
gain-of-function variants in SCN5A (LQT3).
Genetic testing is well established for BrS and LQTS, to

inform clinical management and facilitate cascade screening
in families to identify at-risk carriers.5 Despite this, variant
interpretation remains challenging for nontruncating variants
that comprise the majority of causative variants in all three
genes. For example, a recent reappraisal of all SCN5A variants
implicated in BrS using contemporary ACMG/AMP guide-
lines found that only 17% of missense variants could be
classified as (likely) pathogenic.6 While this may partly reflect
some erroneous disease associations in earlier reports, it
highlights the difficulty in identifying pathogenic missense
variants with these guidelines.
The classes of evidence used for variant interpretation can be

broadly grouped based on their interpretative power and the

frequency with which they can be applied (Fig. 1). For
nontruncating variants not common in the population,
supporting evidence, such as variant frequency in the popula-
tion and computational predictions of variant effect, can be
universally applied but has limited ability to distinguish between
pathogenic and benign rare variation. These require informative
variant-specific evidence to establish pathogenicity. However,
due to the high allelic heterogeneity of these disorders, small
pedigree sizes that preclude conclusive cosegregation analysis,
and limited accessibility of functional assays, a large proportion
of likely causative variants detected in patients with LQTS and
BrS are unable to be classified as pathogenic. To address this
false negative rate and improve the detection of pathogenic
nontruncating variants, a third evidence category specific to
gene–disease dyads can be applied: case–control studies that
identify specific variants or classes of variants highly enriched in
disease. Several disease and gene-specific implementations of
the ACMG/AMP guidelines have been proposed by ClinGen
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Fig. 1 For rare nontruncating variants in autosomal dominant disease, evidence classes and American College of Medical Genetics and
Genomics/Association for Molecular Pathology (ACMG/AMP) rules (rule codes from Richards et al.3) can be broadly grouped by their power to
distinguish between pathogenic and benign variants (y-axis) and the likelihood that such evidence will be available (x-axis). Variant-specific
evidence (such as cosegregation in family pedigrees) is powerful but often unavailable for genetically heterogeneous diseases. Supporting evidence (such as
population frequency) can be applied to most variants but is rarely sufficient for definitive classification. If available, data from case–control studies, relating
to enrichment of specific variants or classes of variants, provide powerful gene/disease-specific evidence and help to address the high false negative rate
associated with stringent contemporary guidelines.
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and independent studies detailing how the rules, including those
related to variant enrichment in cases over controls, should be
applied for the particular genetic characteristics of each disease
(Table S1).7

We have previously described a quantitative implementation
of variant class enrichment evidence for sarcomeric genes
involved in hypertrophic cardiomyopathy (HCM).4 By identify-
ing gene regions highly enriched for rare variants in HCM
cohorts compared with population controls, we were able to
substantially decrease the rate of VUS in HCM cases using
adapted ACMG/AMP guidelines (14–20% increase in action-
able HCM variants). Particular ion channel domains are also
known to be enriched for cases variants, as previously
demonstrated for LQTS8,9 and BrS.10 Here, using large case
cohorts from international consortia (1847 LQTS and 3335 BrS
cases), we apply and refine our ACMG/AMP guidelines
adaptation to the three major disease genes of BrS and LQTS.
We demonstrate how we can identify and classify high
confidence pathogenic variant classes in specific clinical genetics
contexts, and apply this evidence within the ACMG/AMP
framework to enable an improved balance between sensitivity
and specificity in clinical genetic testing for these conditions.

MATERIALS AND METHODS
Ethics statement
All subjects or their guardians provided informed consent and
the study was approved by local ethical review committees of
the participating centers (see Supplemental Methods for the
list of committees).

Patient and control cohorts
The primary arrhythmia cohorts comprised patients diagnosed
with BrS or LQTS recruited by the International BrS Genetics
Consortium and the International LQTS Genetics Consortium,
respectively.5,11 The BrS cohort consisted of 2400 unrelated
cases of European origin from 23 predominantly European
referral centers and 935 unrelated cases from 5 Japanese centers.
The LQTS cohort consisted of 1394 unrelated cases of European
origin and 453 unrelated cases from Japan (Table S2). All ECGs
were centrally assessed by a genetic cardiac electrophysiologist
prior to inclusion. For European cases, genetic ancestry was
confirmed using genotypic principal component analysis. All
subjects or their guardians provided informed consent and the
study was approved by local ethical review committees of the
participating centers.
Rare variant data from diagnostic sequencing of SCN5A

(BrS) and KCNQ1, KCNH2, and SCN5A (LQTS) were
provided by the different centers and curated based on the
following canonical transcripts: ENST00000155840 (KCNQ1),
ENST00000262186 (KCNH2) and ENST00000333535
(SCN5A). Details of all rare variants are provided in
Tables S3/S4. Three additional arrhythmia-related data sets
detailed in Supplemental Methods and Table S2 were used for
further analyses as described in Results.
The gnomAD data set (version 2.1) comprising 125,748

individuals with exome sequencing was used for population

controls, with the following population-specific subsets used
for the European and Japanese cases respectively: non-Finnish
European (gnomAD-NFE) comprising 56,885 individuals and
East Asian (gnomAD-EAS) comprising 9197 individuals.

Defining population frequency thresholds for rare variants
The maximum credible population allele frequency thresholds
for rare, pathogenic variants were calculated as previously
described:12

prevalence of disease ´maximumallelic contribution
penetrance

where the maximum allelic contribution is the maximum
proportion of cases potentially attributable to a single
causative variant in these cohorts.
Population frequency thresholds were calculated on the

basis of two estimates of penetrance—50% and 10%—for both
BrS and LQTS. For BrS, we used a disease prevalence of 1/
1000 and a maximum allelic contribution of 0.01 (based on
SCN5A:c.4813+5_4813+6insGTGG, attributable to 15/2400
or 0.6% (0.3–1.0%) of cases in this study). The thresholds for
BrS were calculated as 1.0 × 10−5 and 5.0 × 10−5 respectively.
For LQTS, we used a disease prevalence of 1/2000 and
maximum allelic contribution of 0.022 (based on KCNQ1:
c.1032G>A, attributable to 29/1847 or 1.6% (1.1–2.2%) of
cases in this study). The thresholds for LQTS were calculated
as 1.1 × 10−5 and 5.5 × 10−5 respectively.

Defining case-enriched regions in arrhythmia genes
To define the relative enrichment of rare variants in cases over
controls for arrhythmia gene regions, we used the etiological
fraction (EF), which in the context of Mendelian disease
estimates the proportion of cases with a rare variant of a
particular class in whom that variant is disease-causing. The
EF is derived from the odds ratio (OR) by the formula: EF=
(OR – 1)/OR, with 95% confidence intervals (CI) calculated as
described in Supplemental Methods. For the three arrhythmia
genes (KCNQ1/KCNH2/SCN5A), EFs were calculated for rare
nontruncating (missense and inframe insertions/deletions)
variants by comparing arrhythmia cohorts with population-
relevant gnomAD controls. EFs were calculated for specific
gene/protein regions in KCNQ1/KCNH2/SCN5A, defined
according to recognized domains in the respective UniProt
(version 207) entries (details in Results and Supplemental
Methods), as well as the KCNQ1 C-terminus highly conserved
regions defined by Kapplinger at al.9 and the KCNH2 N-
terminus cluster based on distribution of LQTS variants in
this study. Regions with poor coverage in gnomAD and
founder/recurrent case variants that may inflate regional EFs
were masked from this analysis (see details in Supplemental
Methods).

Variant interpretation with standard ACMG/AMP
guidelines
Case variants were classified according to ACMG/AMP guide-
lines using the CardioClassifier application13 with adaptations
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for the following rules. First, variant population frequency
(PM2/BS1 rules) used gnomAD exomes filtering allele frequen-
cies (FAF) with thresholds defined in this study. Second, loss-of-
function evidence (PVS1) was implemented according to
recommendations from the ClinGen Sequence Variant Inter-
pretation Workgroup.14 Third, functional evidence rules (PS3/
BS3) for BrS/SCN5A were applied using published data curated
by Denham et al.6 and a high-throughput functional study by
Glazer et al.15 Note that evidence relating to cosegregation (PP1/
BS4), de novo inheritance (PS2/PM6), and functional data for
LQTS (PS3/BS3) could not be applied due to the lack of curated
resources. While this will affect the yield of (likely) pathogenic
variants, cosegregation evidence is not expected to be
particularly informative for BrS as family pedigrees tend to be
of limited sizes with numerous examples of non-Mendelian
segregation.6,16

Variant interpretation with case–control evidence
We then implemented refined ACMG/AMP guidelines based
on the case–control evidence we generated to assess the effect
on the yield of (likely) pathogenic variants. For the
enrichment of classes of rare nontruncating variants (PM1
rule), EF data from the protein region analysis were applied.
PM1_strong was applied for rare variants in regions with an
EF ≥ 0.95 (equivalent to OR ≥ 20), PM1_moderate where
0.95>EF ≥ 0.90 (20 > OR ≥ 10), and PM1_supporting where
0.90>EF ≥ 0.80 (10 > OR ≥ 5), as previously described.4 The
EF threshold of 0.95 implies a 95% or greater prior probability
of pathogenicity and therefore the likely pathogenic

classification for variants with EF ≥ 0.95 (PM1_strong, PM2)
aligns with variant interpretation guidelines.3 Individual
variants significantly enriched in cases over population-
specific gnomAD controls were identified (minimum case
count of 3 and Fisher’s exact p value < 0.05 with Bonferroni
multiple testing correction for the number of case variants
assessed for each condition). The PS4 rule strength was
applied based on the lower boundary of the 95% CI of the OR,
≥20, ≥10, and ≥5 for strong, moderate, and supporting
evidence respectively (equivalent to the PM1 OR thresholds).
See Supplemental Methods for full details of how each
ACMG/AMP rule was applied.

RESULTS
Defining population frequency thresholds for rare variants
To define appropriate population allele frequency thresholds for
BrS and LQTS (i.e., the frequency above which variants are
unlikely to be causative), we computed disease odds ratios (OR)
across different frequency bins (comparing nontruncating
variants from European arrhythmia case cohorts and
gnomAD-NFE population controls). Disease-specific frequency
thresholds were calculated as described in Materials and
Methods for variant penetrance estimates of 10% and 50%
(5.0 × 10−5 and 1.0 × 10−5 for BrS, 5.5 × 10−5 and 1.1 × 10−5 for
LQTS respectively), which were used as upper frequency
thresholds along with 1 × 10−3 (BA1 benign variant threshold13)
(Fig. 2a and Table S5).
Variants in the second rarest bin, i.e., corresponding to

estimated penetrance between 10% and 50%, were either not
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significantly enriched in cases or had substantially
lower ORs compared with the rarest bin (where pene-
trance ≥50%): 10–50%:3.8 (2.2–6.6) and >50%:155.8
(128.9–188.2) for KCNQ1/LQTS, 10–50%:2.4 (1.2–4.5) and
>50%:55.5 (46.0–67.0) for KCNH2/LQTS, 10–50%:1.0
(0.5–1.9) and >50%:7.9 (6.2–10.0) for SCN5A/LQTS, and
10–50%:2.7 (1.9–3.6) and >50%:18.6 (16.0–21.7) for
SCN5A/BrS. No significant enrichment of variants with
frequencies between 1 × 10−3 and 5 × 10−5/5.5 × 10−5 was
observed for any gene.
These results indicate that while some variants with a

population frequency above the more stringent thresholds
may be disease-causing, the lower signal-to-noise ratio and
presumably lower penetrance of such variants suggest that a
higher burden of proof should be required to classify them as
(likely) pathogenic (e.g., demonstration of functional effects or
statistical enrichment in cases). For subsequent analysis in this
study, we used the higher, more inclusive thresholds (based on
estimated penetrance of 10%) for describing the prevalence of
rare variants in arrhythmia cohorts. However, the more
stringent thresholds (based on estimated penetrance of ≥50%)
were used when applying the PM2/PM1 variant classification
rules to minimize false positive classifications. The PM2 rule
(rarity in population) was therefore applied to variants with a
gnomAD exomes FAF < 1.0 × 10−5 (BrS) and 1.1 × 10−5

(LQTS) and the BS1 rule (frequency too high for the disorder)
was applied to variants with a FAF > 5.0 × 10−5 (BrS) and
5.5 × 10−5 (LQTS), with a recommended “gray zone”7,17 where
neither is applied for the potential low penetrance variants.

Prevalence of rare variants in primary arrhythmia cohorts
The prevalence of rare (FAF < 5 × 10−5) SCN5A variants in the
BrS cohort was significantly different between the European and
Japanese cohorts, detected in 20.8% and 8.9% of cases
respectively (p= 5.7 × 10−18) (Fig. 2b, Table S6). Nontruncating
variants accounted for 71.0% and 86.7% of rare variants
detected in the European and Japanese BrS cases respectively.
The prevalence of rare (FAF < 5.5 × 10−5) variants in KCNQ1,
KCNH2, and SCN5A in the LQTS cohort was high (as expected)
and similar between European and Japanese cohorts, detected in
85.4% and 85.9% of cases respectively (p= 0.63). The relative
proportions of truncating and nontruncating variants in
KCNQ1 and KCNH2 however are marginally different between
the two populations (p= 0.007) (Fig. 2b).

Assessing enrichment of rare variants in cases in
arrhythmia gene regions
We next assessed variant distribution to identify gene/protein
regions enriched for rare (corresponding to an estimated
penetrance of ≥50% as described above) nontruncating
variants in cases compared with gnomAD (Fig. 3a), as
defined by the EF.
For BrS and LQTS, EFs were calculated separately by

population, with European cases versus gnomAD-NFE and
Japanese cases versus gnomAD-EAS (Tables 1, 2). For BrS, the
yield of rare SCN5A variants was significantly higher for cases

diagnosed with a spontaneous compared with a drug-induced
type 1 electrocardiogram (ECG) pattern (28.7% vs. 15.8% in the
European cases, p= 1.3 × 10−13), therefore EFs were also
calculated for European cases subclassified by ECG pattern
(Table 1). For LQTS, as clinical genetic tests are often referred
based on suspected rather than confirmed diagnosis, we also
calculated EFs from a published referral cohort of 2500 cases,18

where the yield of rare variants in the three LQTS genes (33.6%)
reflects a lower proportion of definitive cases (Table 2).
Variants were highly enriched in cases in the transmem-

brane regions of all three genes (with the exception of SCN5A
variants in LQTS cases) and select N/C-terminus domains in
KCNQ1 and KCNH2 (Tables 1, 2). The regional EFs produced
by this analysis, and consequently the strength of the evidence
applied (PM1 rule), display marked variability by ancestry
(BrS), diagnostic certainty (LQTS), and diagnostic criteria
(BrS spontaneous/drug-induced type 1 ECG pattern), high-
lighting the importance of considering these contexts for
variant interpretation.

Identification of specific variants enriched in arrhythmia
case cohorts
Based on European and Japanese case–control comparisons
as described in Materials and Methods, 48 individual
variants are enriched in BrS cases (with 2, 26, and 20 variants
activating the PS4 strong, moderate, and supporting rules
respectively) (Fig. S1, Table S9) and 108 variants are enriched
in LQTS cases (with 43, 54, and 11 variants activating the
PS4 strong, moderate, and supporting rules respectively)
(Fig. S2, Table S10).

ACMG/AMP classification of rare variants in arrhythmia
cohorts
We classified the variants in the BrS and LQTS cohorts
according to the ACMG/AMP guidelines, using the Cardio-
Classifier application13 (with adaptations as described in
Materials and Methods). The frequency of rare variants in
gnomAD estimates the rate of rare benign variants in both
population and arrhythmia cohorts, and can be used to assess
the sensitivity (and specificity) of variant classification
approaches. In particular, the excess of VUS over this gnomAD
frequency denotes the false negative rate in clinical genetic
testing, i.e., the proportion of cases with variants that are
expected to be disease-causing but for which insufficient
evidence currently exists to classify them as (likely) pathogenic.
For BrS, classification was performed before and after

inclusion of the case–control evidence described above (PM1/
PS4 rules), to assess the effect of these approaches on the
diagnostic yield. With the basic ACMG/AMP rules (including
functional evidence but excluding segregation data), 9.1% of
European BrS cases had a rare nontruncating SCN5A VUS
compared with 1.5% in gnomAD, highlighting a large false
negative rate. After applying the case–control PM1/PS4
evidence, the proportion of cases with VUS was reduced to
3.1% (Fig. 3b). Given the more modest EFs associated with
variants found solely in Japanese BrS cases, the VUS rate was
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reduced from 4.4% to 3.0% in Japanese BrS patients (compared
with a 1.7% background rate in gnomAD-EAS) (Fig. 3c).
For LQTS, familial cosegregation and functional evidence

are critical for the classification of nontruncating variants (all
were VUS with the basic ACMG/AMP classification) but
given the extensive allelic heterogeneity (504 distinct rare
nontruncating variants in 1847 cases) and the lack of high-
throughput functional studies or curated resources, it was not
feasible to include this evidence here. However, using the
case–control PM1/PS4 evidence, the proportion of cases with
VUS was reduced to 2.33% for KCNQ1 (compared with a
gnomAD background frequency of 0.53%), 3.68% for KCNH2
(gnomAD= 0.77%), and 3.14% for SCN5A (gnomAD=
1.5%) (Fig. 3d).

Of the variants upgraded from VUS to (likely) pathogenic,
only 11.1% of BrS and 36.1% of LQTS variants had a
nonconflicting pathogenic or likely pathogenic classification
in ClinVar (Tables S11/S12).

Reclassification of published BrS SCN5A variants
We also reanalyzed the set of published BrS-implicated
SCN5A variants that were classified with contemporary
ACMG/AMP guidelines by Denham et al.,6 where 72%
(231/321) of nontruncating SCN5A variants were classified as
VUS. Applying the case–control (PS4 and PM1 based on all
European BrS cases) and frequency (PM2/BS1) evidence
described here, 152 of these VUS (65.8%) were upgraded to
(likely) pathogenic (Table S13).
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Application to sudden arrhythmic death syndrome
As well as clinical genetic testing for individuals with BrS/
LQTS, sequencing of the major arrhythmia genes is also often
performed for sudden arrhythmic death syndrome (SADS)
cases, i.e., sudden death in usually nonelderly individuals with
a structurally normal heart, including the coronary arteries.
We assessed the enrichment of rare variants (FAF < 1 × 10−5)
in KCNQ1, KCNH2, SCN5A, and RYR2 in a cohort of 505
SADS cases compared with gnomAD to calculate EFs in the
context of SADS and identify interpretable variant classes.19

The yield of rare nontruncating variants in the SADS cohort
was low: KCNQ1 (1.4%), KCNH2 (1.8%), SCN5A (1.8%), and
RYR2 (5.0%), with EFs for most protein regions either too low
for PM1 rule application (EF < 0.8) or based on very limited
case variants. The exception are variants in the pathogenic
hotspots of RYR2 identified in our previous study,4 although
the EF (0.88) yields only PM1_supporting evidence
(Table S14).

DISCUSSION
In this study we have shown that large cohorts of genetically
characterized arrhythmia patients can be used to develop
disease- and gene-specific quantitative applications of the
ACMG/AMP framework and increase the sensitivity of
genetic testing in these conditions. Through case–control
analysis with gnomAD population data, we defined appro-
priate arrhythmia-specific population frequency thresholds to
define variant rarity and then developed rules for variant
enrichment evidence—the association of individual variants
with disease (PS4) and enrichment of region-specific variants
in case cohorts (PM1). The latter allows us to distinguish
between highly pathogenic nontruncating variant classes
(with some approaching truncating variant ORs) that can

be confidently classified as likely pathogenic even when
further corroborating evidence is absent and those with lower
probabilities that require additional evidence to inform
pathogenicity. By incorporating this evidence into ACMG/
AMP guidelines, the prevalence of VUS in the three
arrhythmia genes are reduced close to the background rare
variant frequency (Fig. 3).
As the domain-based PM1 rule adaptations depend on the

case–control signal-to-noise ratio, these should be applied
taking into account factors that affect this ratio (see Tables 1
and 2 for how to apply this evidence). These include patient
ethnicity due to differences in rare variant population
frequencies and disease genetic architecture, such as observed
here between European and Japanese BrS cases. Diagnostic
criteria such as spontaneous or induced type 1 ECG pattern in
BrS patients may also influence diagnostic yield and hence the
interpretability of detected variants. It is also critical to
account for phenotype uncertainty in the individual being
tested. Here, we provide guidelines for LQTS in the context of
either a definitive diagnosis of disease or referral for genetic
testing based on suspicion of disease, and demonstrate that
this approach has limited utility for SADS genetic testing,
given the extremely heterogeneous etiology underlying
these cases.
We applied this method to rare variants defined with

stringent population frequency thresholds, based on the
published framework12 and estimating penetrance of at
least 50%. Such ultrarare variants have the strongest
case–control signals (Fig. 2a), allowing us to identify
interpretable variants with high confidence and minimize
the risk of false positive classifications. We also observed a
modest case excess of variants with population frequencies
corresponding to lower estimated penetrance (10–50%).

Table 1 Etiological fraction (EF) values for gene regions/domains in SCN5A based on comparison of rare (filtering allele
frequency [FAF] < 1 × 10−5) nontruncating variants in Brugada syndrome (BrS) and gnomAD population cohorts.

EF values are colored according to the PM1 rule activated: strong (red), moderate (orange), supporting (green), and none (black). The comparisons shown are European
BrS cases with a spontaneous type 1 electrocardiogram (ECG) (n= 900) vs. gnomAD-NFE, European BrS cases with an induced type 1 ECG (n= 1440) vs. gnomAD-NFE,
all European BrS cases (n= 2400) vs. gnomAD-NFE and Japanese BrS cases (n= 935) vs. gnomAD-EAS (see Table S7 for full details). This evidence should be used only
for nontruncating SCN5A variants detected in patients with BrS as follows: (1) check the variant is rare (gnomAD FAF < 1 × 10−5), (2) select the appropriate comparison
depending on patient ethnicity (European ancestry or Japanese) and type 1 ECG pattern of the patient (spontaneous, induced or use “all cases” if unknown), (3) select
the PM1 evidence level (based on EF) depending on the SCN5A region/domain where the variant is located.
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Some of these variants, if detected in patients, may well
contribute to the disease phenotype as genetic risk factors
with modest effect sizes. However, given the much reduced
signal-to-noise ratio, and the likelihood that many will be
benign variants, a higher evidence threshold should be
applied for establishing any pathogenic role. For this
reason, we have not applied the PM1 or PM2 rules to such
variants—more direct evidence such as enrichment of the
specific variant in cases and validation with established
functional assays is required.
Demonstrating significant enrichment of specific variants in

disease cases is also potentially powerful evidence for
pathogenicity when pedigree or functional data is not available.
However, defining the significance of an observed enrichment
and applying the appropriate evidence strength can be
challenging. While most disease-specific ACMG/AMP frame-
work implementations have proposed specific numbers of
previously described cases for each evidence level (in the
absence of large sequenced case cohorts), these can be arbitrary
and do not demonstrate statistical enrichment (Table S1). The
approach we describe here utilizes large multicenter arrhythmia
cohorts to identify significantly enriched variants compared
with population-matched gnomAD controls, adjusts for the
disparity in cohort size between cases and controls, and applies
conservative thresholds for the different evidence levels to
minimize any false positive classifications. These methods can
also easily incorporate any newly sequenced cohorts to identify
additional enriched variants in the main arrhythmia genes. The
specific PS4 variant evidence (detailed in Tables S9/S10) can be

applied to all BrS/LQTS patients regardless of ethnicity or
clinical context.

Limitations
The same primary arrhythmia cohorts were used to
calculate regional EFs and then test the effect of PM1
evidence on variant classification. However, when account-
ing for population and disease diagnosis, we are confident
that the observed variant frequencies will be consistent with
other equivalent cohorts. We provide variant interpretation
guidelines based on analysis of European and Japanese
arrhythmia patients, therefore these should be used with
caution for other ethnicities if there is an expectation of
different case–control rare variant frequencies in other
population groups. Large-scale sequencing of disease and
population data sets for other populations groups remains a
critical need, especially as quantitative classification meth-
ods like these are likely to be particularly beneficial for non-
European populations, given the increased difficulty of
identifying pathogenic variants for such patients using
standard guidelines.20 For LQTS we were unable to fully
assess the additive effect of these methods on ACMG/AMP
variant classification, as this is dependent on segregation
and functional evidence for which comprehensive curated
data sets are not available.

Conclusion
Through analysis of large sequenced case and control cohorts,
we have developed quantitative and gene/disease-specific

Table 2 Etiological fraction (EF) values for gene regions/domains in KCNQ1, KCNH2, and SCN5A based on comparison of
rare (filtering allele frequency [FAF] < 1.1 × 10−5) nontruncating variants in long QT syndrome (LQTS) and gnomAD
population cohorts.

EF values are colored according to the PM1 rule activated: strong (red), moderate (orange), supporting (green), and none (black). The comparisons shown are European
LQTS cases (n= 1394) vs. gnomAD-NFE, Japanese LQTS cases (n= 453) vs. gnomAD-EAS and the published LQTS referral cohort (n= 2500) vs. gnomAD-ALL. It is uncer-
tain whether the absence of KCNQ1 N-terminus variants in Japanese cases reflects a genuine difference between populations or is due to technical sequencing issues for
this GC-rich region (see Table S8 for full details). This evidence should be used only for nontruncating KCNQ1, KCNH2, or SCN5A variants detected in patients with (or
being genetically tested for) LQTS as follows: (1) check the variant is rare (gnomAD FAF < 1.1 × 10−5); (2) select the appropriate comparison—patients diagnosed with
LQTS of European ancestry, patients diagnosed with LQTS of Japanese ancestry, or individuals of any ethnicity referred for LQTS genetic testing; (3) select the PM1 evi-
dence level (based on EF) depending on the gene and region/domain where the variant is located.
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applications of ACMG/AMP variant interpretation guidelines
for major arrhythmia genes that improve the balance between
sensitivity and accuracy of clinical genetic testing and reduce
the false negative rate associated with these genetically
heterogeneous diseases. The findings also highlight that
population and phenotype context are critical for effectively
interpreting the clinical effect of rare variation. This study will
have significant clinical impact in improving the diagnosis,
treatment, and family screening of BrS/LQTS patients who
currently receive uncertain genetic test results.
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