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Abstract

Bioprocesses have received a lot of attention to produce clean and sustainable alternatives to fossil-
based materials. However, they are generally difficult to optimize due to their unsteady-state operation
modes and stochastic behaviours. Furthermore, biological systems are highly complex, therefore plant-
model mismatch is often present. To address the aforementioned challenges we propose a Reinforcement
learning based optimization strategy for batch processes.

In this work we applied the Policy Gradient method from batch-to-batch to update a control policy
parametrized by a recurrent neural network. We assume that a preliminary process model is available,
which is exploited to obtain a preliminary optimal control policy. Subsequently, this policy is updated
based on measurements from the true plant. The capabilities of our proposed approach were tested on
three case studies (one of which is nonsmooth) using a more complex process model for the true system
embedded with adequate process disturbance. Lastly, we discussed advantages and disadvantages of
this strategy compared against current existing approaches such as nonlinear model predictive control.

Keywords: Machine Learning, Batch optimization, Recurrent Neural Networks, Bioprocesses, Policy
Gradient, Uncertain dynamic systems, nonsmooth

1. Introduction

There has been a global interest in using sustainable bio-production systems to produce a broad
range of chemicals to substitute fossil derived synthetic routes [11, 21]. Bioprocesses exploit mi-
croorganisms to synthesize platform chemicals and high-value products by utilizing different means of
resources [22]. Compared to a traditional chemical process, a biochemical process is highly complex
due to the intricate relationships between metabolic reaction networks and culture fluid dynamics [16].
As a result, it is difficult to construct accurate physics-based models to simulate general large-scale
biosystems, and plant-model mismatch is inevitable. Furthermore, the behaviour of bioprocesses is
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often stochastic in the macro-scale, because biological metabolic pathways are sensitive even to mild
changes of process operating conditions [58, 51]. Therefore, developing control and optimization strate-
gies for bioprocesses remains an open challenge. Given these critical limitations in mechanistic models,
in this work we propose a data-driven approach to address this issue.

We must seek a strategy that can optimize our process and handle both the system’s stochastic
behaviours (e.g. process disturbances) and plant-model mismatches. It is here that we have opted
to use Reinforcement learning and more specifically, Policy Gradients, as an alternative to current
existing methods. Reinforcement learning (RL) was developed to address nonlinear and stochastic
optimal control problems [6]. Two main branches have been established on how to solve dynamic
optimization problems via RL.

The first branch is based on Dynamic Programming (DP), hence termed Approximate Dynamic
Programming (ADP). DP relies on the Hamilton-Jacobi-Bellman equation (HJBE), the solution of
which becomes intractable for small size problems with nonlinear dynamics and continuous state and
control actions. Because of this, past research has relied on using ADP techniques to find approximate
solutions to these problems [48].

The second branch is to use Policy Gradients, which directly obtains a policy by maximizing a
desired performance index. This approach is particularly well suited to deal with problems where both
the state space and the control space are continuous. Given the advantages that Policy Gradients
can offer when confronted with bioprocess optimization, we have adopted this approach in the current
work. Policy Gradient methods, along with their benefits, are further explained in Section 2.2.

1.1. Related Work

Given that chemical engineers have always dealt with complex and uncertain systems there have
been several approaches that address specific instances of the aforementioned problems, we highlight
some related previous work in the sections below.

One example to track stochastic batch-to-batch systems is Iterative Learning Control (ILC) which
was initially introduced for robot manipulators [2], and later implemented by the process control
community [56]. ILC deals with the problem of tracking the control performance in batch processes
given a reference trajectory for runs that last a fixed time, and where the process state is reset to the
same value at the start of each run. An overview of ILC strategies in process control can be found in
[28].

Real-time optimization (RTO) is another method that deals with uncertain processes. The main
idea is to represent the process dynamics by a nonlinear input/output mapping where the disturbances
are explicitly accounted for. This mapping is then used to optimize some desired performance index.
For the interested reader, further details can be found in [8] and [12]. A recent review on this topic can
be found in [32]. For the dynamic systems, these methodologies are usually referred to as Dynamic
Real-time optimization (DRTO) which is closely related to NMPC. More details can be found in
[41, 42].

Another technique that deals with stochastic systems is model predictive control (MPC), and its
extension to nonlinear systems, NMPC. NMPC has a vast variety of methods that can incorporate
uncertainty or maintain properties under the presence of stochastic environments. The most common
paradigms are the stochastic NMPC [33] and the Robust NMPC [4], where the former incorporates
the uncertainty by minimizing (usually) the expectation of the objective function, whilst the latter
approach solves a min-max optimization by minimizing the worst case scenario of the uncertainty. Both
of these approaches require knowledge regarding the nature of the uncertainty in order to proceed.
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There are different approaches that have been proposed for NMPC frameworks, including sce-
nario [5] based multi-stage schemes for nonlinear systems [31, 25], where stochastic programming is
utilized and future information is incorporated in an adaptive manner. Another approach is the use
of Gaussian processes [9, 10] or using (generalized) polynomial chaos expansions [23] to model effec-
tively the uncertainties of the process. In the case where no proper information for the uncertainty
is available, e.g. there is not enough data to conduct uncertainty quantification, optimal control is
explored using the nominal linear or nonlinear available model. In terms of solution procedures for
the dynamic optimization problem, it is common to use a direct approach after parametrizing and
discretizing the control inputs [52] or the system dynamics [7] resulting in a nonlinear programming
problem. Although much less common, indirect approaches can also be used, where the necessary
conditions of optimality are solved explicitly [3]. If no information on structural information is known,
conservative assumptions can be made in order to establish stability conditions [19, 39, 38].

Reinforcement Learning (in an Approximate Dynamic Programming philosophy), has lately caught
significant attention for chemical process control. For example, in [30] a model-based strategy and a
model-free strategy for control of nonlinear processes were proposed, in [37] ADP strategies were used
to address fed-batch reactor optimization, in [27] mixed-integer decision problems were addressed with
applications to scheduling. In [50] with the inclusion of distributed optimization techniques, an input-
constrained optimal control problem solution technique was presented, among other works (e.g. [13],
[45]). All these approaches rely on the (approximate) solution of the HJBE, and have been shown to
be reliable and robust for several problem instances.

In this paper, we present another take on RL, that of using Policy Gradients. Policy Gradient
methods directly estimate the control policy, without the need of a model, or the solution of the
HJBE, its advantages are highlighted in the following section.

In addition to the above, for recent reviews of Machine Learning and Artificial Intelligence applied
to chemical engineering the reader is referred to [29] and [53]. A shorter review focused on modelling
bioprocesses with ML tools can be found in [17].

1.2. Motivation

The process systems engineering community has been dealing with stochastic batch-to-batch sys-
tems for a long time. For example, nonlinear dynamic optimization and particularly NMPC are a
powerful methodology to address uncertain dynamic systems, however there are several properties
that make its application less attractive. All the approaches in NMPC require the knowledge of a
detailed model that describe the system dynamics, and stochastic NMPC additionally requires an as-
sumption for the uncertainty quantification/propagation. Furthermore, the online computational time
may be a bottleneck for real time applications since a (possibly) nonlinear optimization problem has
to be solved.

In contrast, RL directly accounts for the effect of future uncertainty and its feedback in a proper
closed-loop manner, whereas conventional NMPC assumes open-loop control actions at future time
points in the prediction, which can lead to overly conservative control actions [30]. In addition, policy
gradients can establish a policy in a model-free fashion and excel at on-line computational time. This
is because the online computations require only evaluation of a policy, since all the computational cost
is shifted off-line.

As mentioned previously, Real-time optimization (RTO) has been used to address many instances
of batch-to-batch problems. Interestingly, some recent approaches have suggested a hybrid modeling
strategy, where function approximates are used in conjunction with a pre-existing model [14, 20]. From
some perspectives these recent algorithms could be thought of as model-based Reinforcement learning
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approaches. However, there is not yet a clear consensus on how to address problems with plant-model
mismatch, measurement noise, and disturbances in an RTO framework.

In terms of previous RL approaches in chemical engineering to address process control and opti-
mization, they have relied on action-value methods (e.g. Q-learning, solution of the HJBE). However,
to address continuous nonlinear action domains Policy Gradient methods present several advantages:

• In Policy Gradient methods, the approximate policy can naturally approach a deterministic
policy, whereas action-value methods (that use epsilon-greedy or Boltzmann functions) select a
random control action with some heuristic rule [48].

• Although it is possible to estimate the objective value of state-action pairs in continuous action
spaces by function approximators, this does not help choose a control action. Therefore, on-
line optimization over the action space for each time-step should be performed, which can be
slow and inefficient. Policy Gradient methods work directly with policies that emit probability
distributions, which is much faster and does not require an online optimization step.

• Policy Gradient methods are guaranteed to converge at least to a locally optimal policy even in
high dimensional continuous state and action spaces, unlike action-value methods where conver-
gence to local optima is not guaranteed [48].

• Policy Gradient methods enable the selection of control actions with arbitrary probabilities. In
such cases, the best approximate policy may be stochastic [48].

Due to the above advantages, in this work we propose an optimization strategy that uses a Pol-
icy Gradient algorithm to optimize batch-to-batch bioprocesses. This work extends our proposed
methodology in [40], the new approach presents a much faster adaptation time by implementing trans-
fer learning for the efficient adaptation of the policies. Additional more complex case studies and a
comparison against NMPC are included. Furthermore, we exemplify both approaches (NMPC and
our approach) in a system described by a nonsmooth differential equation model. The difficulty for
nonsmooth models is highlighted in [46].

2. Methodology

2.1. Problem Statement

In this work, we assume that the system’s dynamics are given by an (generally) unknown probability
distribution, following a Markov process:

xt+1 ∼ p(xt+1|xt,ut) (1)

This system can be approximated by the following discrete time stochastic nonlinear system represented
as a state-space model:

xt+1 = f(xt,ut,dt) (2)

where t represents the discrete time, xt ∈ Rnx is the vector of states, ut ∈ Rnu is the vector of inputs,
dt ∈ Rnd is the the vector of process disturbances, and f(·) are the nonlinear dynamics of the physical
system.
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Our strategy seeks to find the optimal policy for a batch process under the presence of disturbances
and measurement noise. Then, the problem can be written as an Optimal Control Problem (OCP):

P(π(·)) :=



max
π(·)

E[J(xkt ,u
k
t )]

s.t.

xk0 = xk(0)

xkt+1 = f(xkt ,u
k
t ,d

k
t ) ∀t ∈ {1, ..., T − 1}

ut ∼ π(xkt )

u ∈ U
given

xjt ∀j ∈ {0, ..., k − 1} ∀t ∈ {1, ..., T}

(3)

The objective is to maximize the expectation of an economic criterion J , where k is the current batch,
while j refers to previous batch realizations. Additionally, the optimization problem (3) searches for a
set of functions π(·) that maps the probability of ukt given xkt . Notice that in problem (3) we make no
assumptions about the nature of d. Even in the case where the dynamics are fully known, the solution
of problem (3) may be intractable for medium size systems.

To overcome this limitation a novel strategy is proposed, where a policy πθ(·), parametrized by the
parameters θ, is constructed that maximizes the expectation of a performance index J . The states at
the time t+ 1 are assumed to be given by the probability density p(xt+1|xt,ut). The interaction with
the policy can be depicted as a closed-loop, see Fig. 1.

Figure 1: Representation of interaction between policy and the physical system

Let τττ denote a joint random variable of states and controls defining a trajectory with a time horizon
T : τττ = (x0,u0, R0, ...,xT−1,uT−1, RT−1,xT , RT ), the performance index being

J(τττ) =

T∑
t=0

γtRt(ut,xt) (4)

where γ ∈ (0, 1] is the discount factor and Rt a given reward at the time instance t for the values of
ut, xt. We represent the probability density of a trajectory as:

p(τττ |θ) = µ̂(x0)

T−1∏
t=0

[π(ut|xt, θ)p(xt+1|xt,ut)] (5)

where µ̂(x0) is the probability density of the initial state. We can therefore state the following opti-
mization problem:

max
π(·)

Eτττ∼p(τττ |θ)[J(τττ)] (6)
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notice that the process dynamics are implicit in τττ . To solve problem (6) we turn our attention to
policy gradient methods.

2.2. Policy Gradient Methods

Policy gradient methods compute a policy that maximizes the expectation over some objective
function (i.e. problem (6) ). They rely on a parametrized policy function πθ(·) that returns an action
u given a state of the system x and a set of intrinsic parameters θ of the policy. In the case of
stochastic policies, the policy function returns the defining parameters of a probability distribution
over all possible actions, from which the actions are sampled:

u ∼ πθ(u|x) = π(u|x, θ) = p(ut = u|xt = x, θt = θ). (7)

In this work, a Recurrent neural network (RNN) is used as the parametrized policy, which takes (a num-
ber of past) states and control actions as inputs and returns the moments of a probability distribution.
Then the next control action is drawn from the corresponding probability distribution. For example,
if the control actions live in a normal distribution then a mean and a variance are computed, from
these mean and variance a control action can be drawn. In this setting, the exploitation-exploration
trade-off is represented explicitly by the value of the variance of the underlying distribution of the
policy. Deterministic policies can be seen as a limiting case where the variance converges to zero.

To learn the optimal policy, we seek to maximize our performance metric, and hence we can follow
a gradient ascent strategy:

θm+1 = θm + αm∇θEτττ∼p(τττ |θ)[J(τττ)] (8)

where m is the current iteration that the parameters are updated (epoch), Eτττ∼p(τττ |θ)[J(τττ)] is the
expectation of J over τττ and αm is the step size (also termed learning rate in the RL community) for
the mth iteration. Computing Ĵ(θ) = Eτττ∼p(τττ |θ)[J(τττ)] directly is difficult, therefore we use the Policy
Gradient Theorem [49], which shows the following:

Ĵ(θ) = ∇θEτττ∼p(τττ |θ)[J(τττ)] = ∇θ
∫
p(τττ |θ) J(τττ)dτττ (9a)

=

∫
∇θp(τττ |θ) J(τττ)dτττ (9b)

=

∫
p(τττ |θ) ∇θp(τ

ττ |θ)
p(τττ |θ)

J(τττ)dτττ (9c)

=

∫
p(τττ |θ) ∇θlog (p(τττ |θ)) J(τττ)dτττ (9d)

= Eτττ [J(τττ)∇θlog (p(τττ |θ))] (9e)

Notice from (9b) that, p(τττ |θ) J(τττ) is an objective function value multiplied by its probability density,
therefore, integrating this over all possible values of τττ we obtain the expected value. From there we
arrive at (9e), where, dropping the explicit distribution of τττ , gives us an unbiased gradient estimator,
(8) now becomes:

θm+1 = θm + αmEτττ [J(τττ)∇θlog (p(τττ |θ))] (10)
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Using the expression for p(τττ |θ) in (5) and taking its logarithm, we obtain:

∇θlog (p(τττ |θ)) = ∇θ
T−1∑
t=0

log (π(ut|xt, θ)) (11)

Note that since p(xt+1|xt,ut) and µ̂(x0) are independent of θ they disappear from the above expression.
Then we can rewrite (9e) for a trajectory as:

∇θEτττ [J(τττ)] = Eτττ

[
J(τττ)∇θ

T−1∑
t=0

log (π(ut|xt, θ))

]
(12)

Notice that expression (12) does not require the knowledge of of the dynamics of the physical system.
However, the above update presents two challenges: the selection of the policy π(ut|xt, θ) and the
computation of the expectation. To address these possible issues, in this work, recurrent neural
networks are used to parametrize the policy of the policy gradient (presented in Section 2.3), while a
Monte-Carlo method is utilized to approximate the expectation (presented in Section 2.4).

2.3. Recurrent Neural Network

Recurrent neural networks, (RNNs) [43], are a type of artificial neural network that has been
tailored to address sequential data. RNNs produce an output at each time step and have recursive
connections between hidden units. This allows them to have a ‘memory’ of previous data and hence be
well suited to model time-series. In general, RNNs can be depicted as a folded computational graph
as presented in Fig. 2.

Figure 2: Computational graph of recurrent neural network

Fig. 2 shows how an input x̂t is presented to the network as well as the recursive state of RNN, ut−1
and outputs νννt. A more detailed representation of an RNN is depicted in Fig. 3, which is equivalent
to a series of unfolded nodes associated with a particular time instance.

Figure 3: Recurrent neural networks as unfolded computational graph, with one step delay (z−1)
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In Fig. 3 we can appreciate that each node receives two inputs xt−i and ut−i−1. Generally speaking,
the input xt−i corresponds to the data supplied to that node, such as in a traditional artificial neural
network (also referred to as feedforward). The unfolded computational graph in this case can be
represented as a dynamic system:

νννt = hθ(x̂t,ut−1)

ut = Gt(νννt)
(13)

where x̂t is the vector that contains all the external variables for the RNN,G the function that computes
the output of the network u, and hθ represents the layers of the neural networks. Deep structures (which
means having more than one hidden layer) can be employed to enhance the performance of the network
(deep neural networks) which have been combined with Reinforcement learning recently in [35, 36].
Previous realizations of the states x and the controls u are also used as input variables to the network,

e.g. x̂t =
[
xTt , . . . ,x

T
t−N ,u

T
t−2, . . . ,u

T
t−N−1

]T
, to model dynamic systems. RNNs have previously been

applied either as a surrogate model of the process dynamics [47] or as a parametrization of the agent
(control policy) [34].

In this work, RNNs are applied to parameterize the stochastic policy. We must remark that in
theory the Markov decision process does not require RNNs (due to the Markov property), however in
practice the use of RNNs can improve the performance of the policy by exploiting additional memory
that is provided. In the current work the RNN initially computes the mean and the variance of
a multivariate normal distribution where the control actions live. Subsequently, the actual control
action is drawn. Precisely, νννt = [µµµt,ΣΣΣt] where the µµµ and ΣΣΣ are the mean and variance, respectively,
and ut = Gt(νννt) is substituted by ut ∼ N (µµµt,ΣΣΣt) making it a stochastic policy. Under the presence of
uncertainty (stochastic in nature) a deterministic policy will fail as the control action will always be
the same for the same states since it learns a deterministic mapping from states to control actions at
the exact same state. On the contrary, a stochastic policy draws a control action from a probability
distribution which can account for stochastic environments.

Figure 4: Graphical representation of a stochastic policy network

In Figure 4, a schematic representation of a policy network where the stochastic policy follows a
Gaussian distribution is depicted. In this figure, we can observe how the states x̂t are used as input
to the network, and how the network computes the mean µt+1 and standard deviation σt+1 for the
subsequent time step. Then, the control action ut+1 is drawn from the distribution defined by the
outputs of the network.
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2.4. Reinforce Algorithm

Given that the parametrized policy used in this work is a RNN, it must be trained to adjust its
weights so that the output corresponds to an optimal control action. To this end, we use the steepest
ascent strategy mentioned in (8). However, computing the expectation in (12) can be an intractable
problem, and this expression is needed to compute the steepest ascent update ( 10). Therefore, we
propose to use the Reinforce algorithm to compute the policy gradient. The Reinforce algorithm
[55] approximates the gradient of the policy to maximize the expected reward with respect to the
parameters θ without the need of a dynamic model of the process. To compute the expectation we

take several sample trajectories and then approximately calculate Eτττ
[
J(τττ)∇θ

∑T−1
t=0 log (π(ut|xt, θ))

]
as an average of K samples:

∇θEτττ ≈
1

K

K∑
k=1

[
J(τττk)∇θ

T−1∑
t=0

log
(
π(ukt |x̂

k
t , θ)

)]
(14)

where we denote the sample k as a super-index. The variance of this estimation can be reduced with
the aid of an action-independent baseline b, which does not introduce a bias [48]. A simple but effective
baseline is the expectation of reward under the current policy, approximated by the mean over the
sampled paths:

b = Ĵ(θ) ≈ 1

K

K∑
k=1

J(τττ (k)), (15)

which leads to:

∇θĴ(θ) ≈ 1

K

K∑
k=1

[
(J(τττk)− b)∇θ

T−1∑
t=0

log
(
π(ukt |x̂

k
t , θ)

)]
(16)

This selection increases the log likelihood of an action by comparing it to the expected reward of the
current policy. (16) is the gradient that we can now incorporate into our steepest ascent strategy. The
algorithm that trains the RNN and obtains the optimal policy network is the following.

Algorithm 1 Policy Gradient Algorithm

Input: Initialize policy parameter θ = θ0, with θ0 ∈ Θ0, learning rate, its update rule α, m := 0, the
number of episodes K and the number of epochs N .
Output: policy π(·|·, θ) and Θ

for m = 1,. . . , N do

1. Collect ukt ,x
k
t for T time steps for K trajectories along with J(xkT ), also for K trajectories.

2. Update the policy, using a policy gradient estimate θm+1 = θm +

αm
1
K

∑K
k=1

[
(J(τττk)− b)∇θ

∑T−1
t=0 log

(
π(ukt |x̂

k
t , θ)

)]
3. m := m+ 1

The steps in the Algorithm 1 are explained below.
Initialization: The RNN policy network and its weights θ are initialized, along with the algo-

rithm’s hyperparameters such as learning rate, number of episodes and number of epochs.
Training loop: The weights on the RNN are updated by a policy gradient scheme for a total of

N epochs. In Step 1 K trajectories are computed, each trajectory consists of T time steps, and states
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and control actions are collected. In Step 2 the weights of the RNN are updated based on the policy
gradient framework. In Step 3, either the algorithm terminates or returns to Step 1.

2.5. Reinforcement Learning for Bioprocess Optimization under Uncertainty

The methodology presented aims to overcome plant-model mismatch in uncertain dynamic systems,
a usual scenario in bioprocesses. It is common to construct simple deterministic models according to
a hypothesized mechanism, however the real system is more complex and presents disturbances. We
propose the following methodology to address this problem (following from Algorithm 2).

Step 0, Initialization: The algorithm is initialized by considering an initial policy network (e.g.
RNN policy network) with untrained parameters θ0.

Step 1, Preliminary Learning (Off-line): It is assumed that a preliminary mechanistic model
can be constructed from previous existing process data, hence, the policy learns this preliminary
mechanistic model. This is done by running Algorithm 1 in a simulated environment by the mechanistic
model. This allows the policy to incorporate previously believed knowledge about the system. The
policy will therefore end with an optimal control policy for the mechanistic model. The termination
criteria can be defined either by the designer or by the difference from the solution of the OCP, since
the process model is known.

Given that the experiments are in silico, a large number of episodes and trajectories can be generated
that corresponds to different actions from the probability distribution of ut, and a specific set of
parameters of the RNN, respectively. The resulting control policy is a good approximation of the
optimal policy. Notice that if a stochastic preliminary model exists, this approach can immediately
exploit it, contrary to traditional NMPC approaches. This finishes the in silico part of the algorithm,
subsequent steps would be run in the true system. Therefore, emphasis after this step is given on
sampling as least as possible, as every new sample would result in a new batch run from the real plant.

Step 2-3, Transfer Learning: The policy could directly be retrained using the true system and
adapt all the weights according to the Reinforce algorithm. However, this may result in undesired
effects. The control policy proposed in this work has a deep structure, as a result a large number
of weights could be present. Thus, the optimization to update the policy may easily be stuck in a
low-quality local optima or completely diverge. To overcome this issue the concept of transfer learning
is adopted. In transfer learning, a subset of training parameters is kept constant to avoid the use of a
large number of epochs and episodes, applying knowledge that has been stored in a different but related
problem. This technique is originated from the task of image classification, where several examples
exists, e.g. in [26], [44], [18].

Using transfer learning, the current work only retrained the last hidden layers, and the policy is
able to adapt to new situation without losing previously obtained knowledge, as shown in Fig.5.
Alternatively, an additional set of layers could be added on the top of the network.
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Figure 5: Part of the network is kept frozen to adapt to new situations more efficiently

Step 4, Transfer Learning Reinforce (On-line): In this step, Algorithm 1 is applied again, but
now, on the true system. This algorithm aims to maximize a given reward (e.g. product concentration,
economic objective)

Step 5: Terminate policy update and output Θ that defines the optimal RNN policy.
The methodology is described in Algorithm 2 and depicted in Fig. 6.

Algorithm 2 Batch to batch algorithm

Input: Initialize the set of policy parameter Θ0, learning rate and its update rule α, epochs N := N0,
maximum number of epochs Nmax, epochs for the true system Ntrue, episodes K0, and episodes for
the true system K with K0 >> K.

1. while N ≤ Nmax do:

(a) Apply Algorithm 1 using an approximate model and get the trained parameters Θ̂0 using
N epochs and T0 episodes.

(b) increase N .

2. Θ̂1:=Θ̂0 Initial values of the parameters Θ̂1 are set as those identified in Step 1

3. Transfer Learning: Pick Θ̂∗1 ⊂ Θ̂1 to be constant

4. For i = 1, . . . , Ntrue do:

(a) Apply Algorithm 1 on the true system and get the trained parameters Θ̂1 for one epoch
and K episodes.

5. Θ = Θ̂1

Output: Preliminary trained policy network with parameters Θ that takes states as inputs (e.g. xt)
and outputs the statistical parameter (e.g. µµµt+1, σσσt+1) of an optimal stochastic action.
Note: We denote Θ0 as the set of parameters of the RNN before any training, Θ̂0 the set of parameters
after the training in Step 1. Θ̂1 denotes the set of parameters passed along to the training by the
true system, and subsequent set of parameters during Step 4 as Θ̂i, where i is the current epoch.
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Figure 6: Batch-to-Batch algorithm (Algorithm 2)

3. Computational Case Studies

In this section three case studies are presented to illustrate the effectiveness of the proposed batch-
to-batch strategy. Our strategy is applied to 3 fed-batch bioreactors, where the objective is to maximize
the concentration of a target product (y2 or cq) at the end of the batch time, using light and an inflow
rate (u1 or I and u2 or FN ) as manipulated variables.

3.1. Case Study 1 - Ordinary Differential Equations

In the first case study, the “real” photo-production system (plant) is described by the following
equations plus an additional random disturbance:

dy1
dt

= −(u1 + 0.5 u21)y1 + 0.5
u2y2

(y1 + y2)
(17)

dy2
dt

= u1 y1 − 0.7u2 y1 (18)

where u1, u2 and y1, y2 are the manipulated variables and the outlet concentrations of the reactant
and product, respectively. The batch operation time course is normalized to 1. Additionally, a random
disturbance is assumed, which is given by a Gaussian distribution with mean value 0 and standard
deviation 0.02 on the states y1 and y2. We discretize the time horizon into 10 intervals of the di-
mensionless time, with one constant control input in each interval, resulting in a total of 20 control
inputs.

The exact model is usually not known, and a simplified deterministic model is assumed according
to some set of parameters. This preliminary model, given in (19 - 20), is utilized in an extensive offline
training in order to construct the control policy network. As illustrated in the previous section 2.4,
there is a potential to have a close approximation of the solution of the OCP using the RNN-Reinforce.

dy1
dt

= −(u1 + 0.5 u21)y1 + u2 (19)

dy2
dt

= u1 y1 − u2 y1 (20)
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The training consist of 100 epochs and 800 episodes using the simplified model to search the optimal
control policy that maximizes the reward of (19 - 20) in this case the concentration of y2 at the final
instance (21).

Rt = 0, t ∈ {0, T − 1}
RT = y2(T ).

(21)

The control actions are constrained to be in the interval [0, 5]. The control policy RNN is designed
to contain 2 hidden layers, each of which comprises 20 neurons embedded by a hyperbolic tangent
activation function. It was observed that 2 hidden layers are sufficient to approximate the optimal
control policy, however there is the potential to use deeper structures with more layers for more complex
systems. Furthermore, we employed two policy networks instead of one for simplicity. This approach
assumes that the two manipulated variables are independent resulting in diagonal variance.

The algorithm is implemented in Pytorch version 0.4.1. Adam [24] is employed to compute the
network’s parameter values using a step size of 10−2 with the rest of hyperparameters at their default
values. After the training, using the simplified model the reward has the same value with the one
computed by the optimal control problem, as expected. It should be noted that the computation
cost of the control action using the policy is insignificant since it only requires the evaluation of the
corresponding RNN, and does not depend directly on the complexity or the number of variables. In
contrast, the solution of the OCP scale very badly with respect to both the complexity and the number
of variables. Precisely, the maximum rewards for RL and OCP for both cases is 0.64. The reward
for its epoch is illustrated in Fig. 8 and the process trajectories after the final update of the policy
networks are shown in Fig. 7.

(a) Solution of y for the nominal system (b) Solution of u for the nominal system

Figure 7: The time trajectories of of the output variables of the approximate model and the piecewise constant control
actions associated with the preliminary trained policies.
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Figure 8: The reward computed for the approximate model for each epoch

Fig. 8 shows that the reward has a large variance at the beginning of the training but is undetectable
at the end. This can be explained as the trade-off between exploration and exploitation, where initially
there is a lack of information and policy explores possible control actions, while at the end the policy
exploits the available information. This policy can be considered as an initialization of the Reinforce
algorithm which uses transfer learning to incorporate new knowledge gained from the true plant (Steps
3-5 in Algorithm 2). New data-sets from 25 batches are used (i.e. 25 real plant epochs) to update
the true plant’s RL policy. The solution after only 4 epochs is 0.591 while the stochastic-free optimal
solution identified using the unknown (complex) model of the plant is 0.583. This results show that
the stochastic nature of the system can also affect the performance. The reward for each epoch is
depicted in Fig. 10 and the process trajectories after the last epoch are depicted in Fig. 9. Notice
that even before having any interaction with the “real” system the proposed approach has a superior
performance than NMPC. This is because RL directly accounts for the effect of future uncertainty
and its feedback in a proper closed-loop manner, whereas NMPC assumes open-loop control actions
at future time points in the prediction.
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(a) Solution of y2 for the “real” system (b) Solution of y1 for the “real” system

Figure 9: The time trajectories produced by the real plant using our approach (dash) and NMPC (solid).

Figure 10: The reward computed by the updated training using the plant (“real” system) for each epoch (circle) and
the average performance of the NMPC (triangle) with 2 times the standard deviation.

There is a variation on the results after the last batch upon which the policy is updated. This
makes sense, since the system appears to have some additive noise (i.e. Gaussian disturbance) and the
policy maintains its stochastic nature.

The results are also compared with the use of NMPC using shrinking horizon. The results can
be seen in Fig. 10, where 100 Monte-Carlo simulations were conducted. The optimization using our
approach appears to be superior to the one given by the NMPC, showing the significance of our result.
Furthermore, it should be noted that the performance of our proposed policy is better even in epoch
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1, before the adaptation is started. In addition, in Fig. 11, the comparison between the control inputs
of that are computed using our approach and the NMPC.

(a) Solution of RNN for the “real” system (b) Solution of NMPC for the “real” system

Figure 11: Comparison of the time trajectories of the piecewise constant control actions between our approach (left) and
NMPC (right)

3.2. Case Study 2 - Stochastic Differential Equations

In this case study the same type of reaction is assumed to follow a stochastic differential equations:

dy1 =

[
−(u1 + 0.5 u21)y1 + 0.5

u2y2
(y1 + y2)

]
dt

dy2 = [u1 y1 − 0.7u2 y1] dt+ [0.1
√
y1] dW

where W is Wiener stochastic process. The simplified model is assumed to be the same with the
previous case study. As a result the same policy that is trained off-line is used here. The purpose of
this case study is to observe how the same policy can adapt in different environments. Now the model
that describes the real system is not only structurally different, but also stochastic in nature.

The same hyperparmeters and networks are utilized for the policies in both stages, in order to show
that the same policy can adapt to different environments successfully.
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Figure 12: The reward computed by the updated training using the plant (“real” system) for each epoch (circle) and
the average performance of NMPC (triangle) with 2 times the standard deviation.

The same validation is conducted here using 100 Monte-Carlo simulations. Through comparison,
our approach is found to be superior to the NMPC. In this case, our proposed algorithm adapts more
rapidly to the new conditions, reducing significantly the requirement for a large number of episodes
and epochs, as it can be seen in Fig. 12. This is attributed to the systematic transfer learning proposed
in our algorithm. The computationally intensive part has been shifted off-line where the preliminary
inaccurate model was used to train the policy. Then the (deep) recurrent neural network adapts
successfully to the new environment that consists of a system of stochastic differential equations. The
comparison is also depicted in Fig. 13. This result is also observed in the previous case study where
the stochastic part of the physical system has a different nature. The control inputs are depicted in
Fig. 14.
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(a) Solution of y2 for the “real” system (b) Solution of y1 for the “real” system

Figure 13: The time trajectories produced by the real plant using our approach (dash) and NMPC (solid).

(a) Solution of RNN for the “real” system (b) Solution of NMPC for the “real” system

Figure 14: Comparison of the time trajectories of the piecewise constant control actions between our approach and
NMPC

It should be noted that in both case studies the NMPC produced very similar control actions, with
the only difference being the variance, compared to our approach which shapes the control actions to
fit the needs of the different dynamics and uncertainty.

The methods used in the Reinforce algorithm usually require substantial number of episodes and
epochs, therefore a good initial solution in combination with transfer learning is paramount so that
Step 4 can be completed with a few batch-to-batch runs. In order to keep the problem realistic, only
a small number of batches is utilized in Step 2-3 to refine the policy network.
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3.3. Case Study 3 - Nonsmooth Model

The last case study in this paper focuses on the photo-production of phycocyanin synthesized
by cyanobacterium Arthrospira platensis. Phycocyanin is a high-value bioproduct and its biological
function is to enhance the photosynthetic efficiency of cyanobacteria and red algae. It has applications
as a natural colorant to replace other toxic synthetic pigments in both food and cosmetic production.
Additionally, the pharmaceutical industry considers it as beneficial because of its unique antioxidant,
neuroprotective, and anti-inflammatory properties.

Both the “real” and simplified model in this case are considered to be nonmooth. Due to differ-
ent growth phases, nonmooth behaviour is observed for the physical system. To accommodate this
difficulty, switching functions have been proposed [15, 57]. In this work the nonsmooth behaviour is
modelled using a sign(·) function. The “real” dynamic system consists of three nonsmooth ODEs de-
scribing the evolution of the concentration of biomass (X), nitrate (N), and product (q). The dynamic
model is based on Monod kinetics, which describes microorganism growth in nutrient sufficient cul-
tures, where intracellular nutrient concentration is kept constant because of the rapid replenishment.
We assume a fixed volume fed-batch. The manipulated variables as in the previous examples are the
light intensity (I) and inflow rate (FN ). The mass balance equations are

dcx
dt

= um
I

I + ks + I2/ki
cx

cN
cN +KN

− udcX (22)

dcN
dt

= −YN/Xum
I

I + ks + I2/ki
cx

cN
cN +KN

+ FN (23)

dcq
dt

=

km
I

I + ksq + I2/kiq
cx

cN
cN +KN

− kd
cq

CN +KNq
, if cN ≤ 500mgL−1&cX ≥ 10gL−1

0 , otherwise,
(24)

where the parameters are given in Table 1. The real physical system consists of additive disturbance

w(t) = sin(t)σd + σn (25)

σd = diag(4× 10−3, 1., 1× 10−7) (26)

σn ∼ N (0, σd), (27)

and measurement noise

noise(t) ∼ N (0, diag(4× 10−4, .1, 1× 10−8)). (28)

Additionally, uncertainty is assumed for the initial concentration, where

[
cx(0) cN (0) cq(0)

]
∼ N (

[
1. 150. 0.

]
, diag(1× 10−3, 22.5, 0.)). (29)

The reward is additionally penalized by the change of the control actions u(t) = [I, FN ]
T

. As a
result the reward is given as:

Rt = −∆uTt diag(3.125× 10−8, 3.125× 10−6)∆uTt , t ∈ {0, T − 1}
RT = cq(T ),

(30)

19



where ∆ut = ut − ut−1.
The simplified deterministic model is assumed without the noise or the additive disturbance. This

preliminary model, is utilized in an extensive offline training in order to construct the control policy
network. As illustrated in the previous section 3.4, there is a potential to have a close approximation
of the solution of the OCP using RNN-Reinforce.

The training consists on 100 epochs and 500 episodes and the optimal control policy that maximizes
the reward in equation 30. The control actions are constrained to be in the interval 0 ≤ FN ≤ 40 and
120 ≤ T ≤ 400. The control policy RNN is designed to contain 4 hidden layers, each of which comprises
20 neurons embedded by a leaky rectified linear unit (ReLU) activation function. Furthermore, in this
case a unified policy network with diagonal variance is utilized such that the control actions share
memory and the previous states are used from the RNN (together the current measured states).

The algorithm is implemented in Pytorch with the same configurations. It should be noted that
the computational cost of computing the control action online is insignificant since it only requires the
evaluation of the corresponding RNN, and does not depend directly on the complexity or the number
of variables. In contrast, the solution of the OCP scales badly in this case due to the presence of
integer variables. The reward for each epoch is depicted in Fig 15. In this case the probability density
is shown due to the nonsmoothness of the model, that may result in multiple peaks. The lines are
faded out towards earlier epochs. Additionally, there is no guarantee of global optimality in the current
work, as a result the reward may get stuck in other local minima. It should be noted that in this case
the uncertain initial conditions are applied during this training phase.

Figure 15: The reward computed for the approximate model for each epoch

The nominal control actions are depicted in Fig. 16, where the shaded areas are the 98% and 2%
percentiles. The corresponding states are depicted in Fig.17 with their 98% and 2% percentiles. The
nominal behaviour is subject to the corresponding initial conditions since no other uncertainty is taken
into account in the offline procedure. The probability density of the product cq has clearly only one
peak, this is shown in Fig. 17c.
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(a) Nominal solution for I (b) Nominal solution for FN

Figure 16: Solution for control actions of the nominal system using RNN

Table 1: Parameter values for physical system (22 - 24)

Parameter Values
um 0.0572 h−1

ud 0.0 h−1

KN 393.1 mg/L
YNX 504.1 mg/g
km 0.00016 mg/g/h
kd 0.281 h−1

ks 178.9 µmol/m2/s
ki 447.1 µmol/m2/s
ksq 23.51 µmol/m2/s
kiq 800 µmol/m2/s
KNP 16.89 mg/L

As in the previous case studies, the results are compared with the use of NMPC using shrinking
horizon. The optimization is a mixed integer nonlinear programming problem (MINLP). Local op-
timization is used in order to be numerically tractable. Orthogonal collocation is implemented and
integer variables have been used to model the switches. It should be noted that this MINLP takes 2-4
mins to be solved.

The results can be seen in Fig. 18 with their 98% & 2% percentile respectively, where 100 Monte-
Carlo simulations were conducted. The optimization using our approach appears to be superior to the
one given by the NMPC, showing the significance of our result. After the adaptation the probability
densities are depicted in Fig. 19. Next, the control inputs are depicted in Fig. 20 with their 98% &
2% percentile respectively. It is clear that the NMPC control actions have large variance compare to
the ones produce by our proposed methodology. This is due to the nonsmoothness of the model and
the uncertainty which the NMPC struggles with.
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(a) The nominal solution for cX (b) The nominal solution for cN

(c) The nominal solution for cq

Figure 17: Comparison of the responses when RNN and NMPC are applied to the “real” physical system.
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(a) The solution for cX (b) The solution for cN

(c) The solution for cq

Figure 18: Comparison of the responses when RNN and NMPC are applied to the “real” physical system.

In addition, in Fig. 20, the comparison between the control inputs of our approach and the NMPC
is presented.
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Figure 19: Probability density function for the reward computed by the updated training using the plant (“real” system)
for each epoch and performance of NMPC.

(a) Solution for I of the “real” system (b) Solution for FN of the “real” system

Figure 20: Comparison of the time trajectories of the piecewise constant control actions between our approach and
NMPC

4. Conclusions and Future Work

In this work we propose a new methodology for batch-to-batch learning by adapting Reinforcement
learning techniques to uncertain and complex bioprocesses. The results reveal that it is possible to
obtain a near optimal policy for a stochastic system when the true dynamics are unknown. In real
systems with the absence of a true model, it is impossible to generate highly accurate datasets to train
the policy network. As a result we propose a 2-stage framework where first an approximate (possibly
stochastic) model is used to train the policy network. Subsequently, this policy is implemented into
the true system. In this way, there is no need for a large number of evaluations of the true system
which can be costly and time consuming.
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A systematic adaptation to the new environment is achieved using transfer learning. In Step 4:
Transfer Learning Reinforce the policy is trained using T << T0 episodes conducting the Steps 1-3
of Algorithm 1. The proposed algorithm is validated using two case studies for different nature of
stochastic processes. Our proposed methodology results in a policy that overcomes the performance
of the NMPC, where only simple policy evaluations are needed.

The off-line CPU time is 3 hours, however the online implementation of the needs only 0.002 secs.
This means that all the computational complexity is shifted offline and an efficient optimal control
policy is constructed. One should also keep in mind that after the off-line training the solution to a
nonlinear stochastic dynamical system is provided, in the form of a stochastic policy. This is a more
complete and efficient solution as it is a closed-loop solution, rather than an open-loop optimization.
Furthermore, a nonsmooth system was integrated with Casadi [1], which is more time consuming than
integrating a smooth dynamic system.

For both the case studies 4 epochs and 25 batches were implemented. In this work, the training
was stopped after the 4th epoch, but the training could have been continued or stopped earlier. Here,
the total number of batches is 4 × 25 = 100; however, the policy for all case studies performs better
from the beginning of the online implementation. This means that a smaller number of batches can
be used and still outperform NMPC.

We emphasize that our considered systems contain both stochasticity and plant-model mismatch,
and there is no process structure available. The optimisation of such systems is generally known to be
intractable. Given the early stage of this research, there are still disadvantages of this method which
must be accommodated in the future, including the robust satisfaction of constraints. In addition,
there is a wide discussion regarding the safety in reinforcement learning [54], which is also a result of
the difficulty of robust satisfaction of constraints. Future work will focus on the robust satisfaction of
constraints in RL methods.

The codes are available at: https://gitlab.com/Panos108/rl-with-nonsmooth
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