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Synchronization phase as an indicator of persistent quantum correlations between subsystems
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Spontaneous synchronization is a collective phenomenon that can occur in both dynamical classical and
quantum systems. Here, we analyze the spontaneous synchronization dynamics of vibrations assisting energy
transfer in a bio-inspired system. We find the emergence of a constant nonzero “synchronization phase”
between synchronized vibrational displacements as the natural frequencies of the oscillators are detuned. This
phase difference arises from the asymmetric participation of local modes in the long-lived synchronized state.
Furthermore, we investigate the relationships between the synchronization phase, detuning and the degree of
quantum correlations between the synchronizing subsystems and find that the synchronization phase captures
how quantum correlations persistently exceed classical correlations during the dynamics. We show that our
analysis applies to a variety of spontaneously synchronizing open quantum systems. Our work therefore opens
up a promising avenue to investigate nontrivial quantum phenomena in complex biomolecular and nanoscale

chemical systems.

DOLI: 10.1103/PhysRevA.102.032414

I. INTRODUCTION

When two oscillators interact, they can undergo synchro-
nization, where their frequencies align [1], usually with a
nonzero phase difference. Synchronization is a well-studied
classical phenomenon that appears recurrently throughout the
natural world [2,3]. More recently it has been explored for
physical systems in the quantum domain [4-11]. Oscillating
quantum systems with a stable limit cycle can synchronize
in the steady state to an external driving field [8] or to
another quantum system [9]. The latter is often referred to
as spontaneous synchronization [12]. In the absence of any
external drive, quantum systems can also undergo transient
spontaneous quantum synchronization during the early-time
dynamics prior to relaxation to the ground state [12-17].
The underlying mechanisms leading to this transient be-
havior are effective collective dissipation processes [14] or
combined local dissipation and system-system interactions
[12,16]. Transient spontaneous quantum synchronization is
particularly interesting in bio-inspired quantum settings be-
cause it allows us to understand the possible roles of quantum
coherence in such systems [18]. Furthermore, transient spon-
taneous synchronization has been linked to the appearance of
quantum correlations [12,14,16], suggesting they may be nec-
essary for synchronization to occur [12]. However, research
on transient spontaneous quantum synchronization rarely fo-
cuses on the nature of phase itself between synchronized
systems, despite its classical relevance.

Classically, the “robustness” of synchronization refers to
the ability of oscillators to lock in phase despite their different
natural frequencies: within a certain range of detuning Av, the
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oscillators are able to lock into a new resultant frequency that
lies between the original frequencies. The equation of motion
for the phase difference between two weakly coupled classical
oscillators to first order is [1]

% = —Av+ef(Ad()), (1

where A¢(¢) is the phase difference between oscillations, € is
a constant proportional to their coupling strength, and f(-) is
a time-dependent periodic function. Synchronization can only
occur if the detuning lies between the min and max extrema

of f(A¢(1)):
ngnef(Aqb(t)) < Av < mq?x ef(AP(2)). 2)

Within this detuning region, there is at least one stationary
solution to Eq. (1) corresponding to synchronization. In most
cases this synchronization occurs with a nonzero phase. We
refer to this phase difference as the synchronization phase. As
the detuning Av increases, the synchronization degrades and
eventually disappears.

Quantum-mechanical oscillators typically exhibit analo-
gous behavior regarding detuning and synchronization to
their classical counterparts as described above [14]. Analytic
equations similar to Eq. (1) have been derived in nonlinear
many-body quantum systems [19] and exciton-polariton con-
densates [20]. However, in contrast with classical oscillators,
detuning can enhance steady-state synchronization of van der
Pol oscillators operating in the deep quantum regime [4].
Furthermore, synchronization phase can emerge for identical
quantum harmonic oscillators interacting with a common two-
level system [17].

Here, we employ a modified version of the Pearson correla-
tion factor as a measure of synchronization [18] to investigate
relationships between synchronization phase, detuning, and
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quantum correlations in open quantum systems exhibiting
transient spontaneous synchronization. Our problem of inter-
est is the synchronization of vibrational displacements in a
bio-inspired system featuring exciton-vibration interactions,
as observed in some photosynthetic complexes (see, for ex-
ample, Refs. [21-24]). This is an interesting and relevant
bio-inspired system because it has been argued that such vi-
bronic interactions are a mechanism for sustaining coherent
processes in photosynthetic complexes [23-31]. Thus, inves-
tigating this bio-inspired vibronic system can shed light on
the synchronization processes and quantum correlations in
biophysical systems operating at the interface between the
classical and quantum regimes.

We study the dynamics of this bio-inspired system by
assuming a detuning between the natural frequencies of the
vibrations of interest and show the emergence of a constant
phase difference in their spontaneous synchronized states. We
discuss how the synchronization phase occurs due to the break
of symmetry both in the Hamiltonian and in the dynamics
with respect to mode exchange. To gain further insight into
the information captured by the synchronization phase, we in-
vestigate the quantum correlations between the subsystems of
interest as measured by the quantum discord [32,33]. We show
that, for spontaneous quantum synchronization to emerge, the
quantum discord must be greater than classical information
at all times. We further show that our synchronization mea-
sure is able to capture a change in quantum discord between
subsystems as a function of frequency detuning. By extending
our analysis to the model considered in Ref. [17], we note
that the identified relationships between synchronization, de-
tuning, and quantum correlations hold in a variety of open
quantum system scenarios.

This paper is organized as follows: In Sec. II, we describe
the bio-inspired vibronic system, its open-system evolution,
and the measure for transient spontaneous synchronization
we employ. In Sec. III, we present the effects of detuning on
synchronization in the dimer. In Sec. IV, we study the rela-
tionship between quantum correlations and synchronization
phase. In Sec. V, we contrast our results with that of Ref. [17]
in which synchronization phase occurs without dependence
on detuning. Finally, we conclude in Sec. VI.

Note that, for the rest of the paper, we are focused entirely
on transient spontaneous quantum synchronization, thus we
will typically refer to it simply as synchronization.

II. MODELLING TRANSIENT SPONTANEOUS
SYNCHRONIZATION IN EXCITON-VIBRATION DIMERS

In Sec. I A we introduce the Hamiltonian for the exciton-
vibration dimer model. In Sec. I B we describe the Markovian
master equation for the open quantum system dynamics of
the exciton-vibration dimer and our numerical methods. In
Sec. IIC we describe the measure used to quantify transient
spontaneous quantum synchronization and discuss its limita-
tions.

A. The exciton-vibration dimer with detuning

The exciton-vibration dimer is a prototype light-harvesting
unit formed by a pair of chromophores whose local electronic
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FIG. 1. (a) Schematic diagram of the exciton-vibration dimer.
Two chromophores (subscripts i = 1, 2) with single excited states
le;) interact via dipole-dipole coupling of strength V. Each elec-
tronic state is coupled linearly with strength g; to a harmonic mode
of energy w;. The electronic subsystem (central blue oval) experi-
ences pure dephasing at rate I'gpn, and each mode dissipates into
separate thermal baths (red ovals) of temperature kg7 at rate ['y,.
(b) Value of the transient spontaneous quantum synchronization
measure Cy, », (At = 27 /a) = cos ¢ [Eq. (18)] for two identical si-
nusoids fi, f> as a function of their phase difference ¢, where f; =
sin(at), f» = sin(at + ¢).

excitations interact with quasicoherent vibrational modes and
the system is subjected to relaxation processes due to the
surrounding environment [30]. This simplified yet complex
enough system is of significant relevance because it captures
a main functional unit in natural photosynthetic antennae
[22,25]. It has been investigated from complementary the-
oretical perspectives (e.g., see Refs. [26,27,30]) and could
be experimentally realized via synthetic methods [34]. We
have previously explored synchronization using this model in
Ref. [18] and here we introduce a modified version to allow
us to explore frequency detuning and synchronization.

The chromophores in the system have single excited states
|e;—1 2) with energies e;—; », and they interact via dipole-dipole
coupling of strength V. Each chromophore is then locally
coupled to a quantized intramolecular mode of energy w;—; »
with strength g;—; . Figure 1(a) contains a diagram of the
dimer model. In this detuned situation, we must account prop-
erly for the different reorganization energy contributions to
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the Hamiltonian [35-37] in order to accurately account for
the effects of different frequency modes on the dynamics
of the exciton-vibration dimer. For clarity, in the following
we explicitly derive the dimer Hamiltonian relevant for our
situation.

The Hamiltonian for a two-level electronic system, with
each site locally and linearly coupled to a vibrational mode
[36,38], can be written as follows:

1 2 72
H = (o1 + 501d})le)) (el
1 2 72
+ (o2 + 5033 le2) e

1 1 1 1
+ =ikt + =P+ sw3ky + =P

2 2 2 2
—wikidi]er) (e — W3Radser) (e
+V(lex) (el + ler){eal), 3)

where e; (i = 1,2) are the energies of the bare electronic
states, X; and p; are the position and momentum operators of
mode i coupled to site i, and d; is the displacement of the
equilibrium position of mode i due to electronic state |e;). This
displacement is effectively the site-mode coupling strength.

Now we can define the reorganization energy A; =
%cuizdi2 = w;S; contribution of the mode to the site energy,
where S; is the Huang-Rhys factor which is experimentally
observable through measurements of the Stokes shift [35]. If
w) = w; and d| = dy, the site energies are both shifted by the
same amount and the reorganization energy has no effect on
dynamics. However, because we are interested in w; # w;, the
reorganization-energy contributions to site energies cannot be
discarded.

We can write the position and momentum operators
in terms of the creation and annihilation operators: X; =

L JEG +b) and pi= L @] - b, where b,
(bi= ») are the creation (annihilation) operators for the modes.
Substituting these into the previous expression (3), we obtain

H = (e + wi1S1)ler)(e1| + (€2 + w252)|ea) ez
1 1
+w1<b¥b1 + E) + wz(b;bz + 5)
— on/S1(b] + by)ler) (el
— n/S2 (b5 + by)les) (e
+V(lex)ler] + ler)eal). 4)

We then rotate into a new frequency-dependent exciton basis
with matrix U (6 (w1, w,)) [35],

U= (cos9 siné))’ 5)

—sinf cosé

where

~ 1 2|V|
0(w;, wy) = — arctan

2 (e2 + w282) — (e1 + @181)
is the mixing angle and can be used as a measure of electronic
delocalization and hence the exciton size. We then shift the
ground-state energy of mode 1 by %' and mode 2 by %. The
final the total Hamiltonian for our exciton-vibration dimer is

then
H = +E (w1, o) |[E){E(| + Ex(w1, w2)|E2) (Es|
+a)1b';b1 + a)zb;bz
+@1/S101 X1 + 02/5,0,X5, (6)

where each line corresponds to the exciton Hamiltonian,
vibrational Hamiltonian, and exciton-vibration interaction
Hamiltonian respectively. We have defined

O = U(@(wr, w))le)(e|UT @ (wr, @),

and the position operator for each mode is X;—;1» = b; +
b;. The excitons |E,—; ) have eigenenergies that are mode-
frequency dependent:

Eici2(01, ) = 3[(e1 + w18)) + (e2 + ©25)
+(=DVAS (1, @) +4V2, (])

where Ae(wy, wy) = (e3 + wS82) — (e1 + w157).
The eigenstates of the total Hamiltonian H are exciton-
vibrational, which we can write in the local basis as

M M
W) =" lE) ® Y Bulm) ® D yilna)

d=1,2 n=1 ny=1 (8)
= > c(d.ni.m)|Eq.ny. na),
d,ny,ny

where eigenstates [v;) are labeled in ascending energy, and
|n1) ® |np) where n are the Fock state numbers and the sub-
scripts indicate the mode subspace. To obtain convergent
dynamics we account for a maximum occupation M = 8 in
each mode.

Note that, by including the reorganization energy, large de-
tunings will have a significant effect on the coherent dynamics
of the dimer. In the following, the detunings and associated
reorganization energies considered are small enough for the
overall features of the excitation dynamics to be subtle yet
they do affect the correlations involved in the synchronization
process.

In this paper, we consider the regime of weak electronic
coupling where AE =~ @ > g > V which is characteristic of
chromophore pairs present in a variety of light-harvesting pro-
teins [21,25,26,31,39,40]. We investigate the synchronization
of oscillations in the expectation value of the position opera-
tors, (X;), which we refer to as local mode displacements. In
the regime we consider, excitons are not fully delocalized and
excitonic energies are close to the local energies. The vibronic
eigenstates are of a quasilocalized nature and an analysis
of their dynamics is therefore useful for understanding the
synchronization of local mode displacements [18].

B. Open quantum system model

Let p(¢t) be the density matrix of the exciton-vibration
dimer. In addition to its Hamiltonian from Eq. (6), our
exciton-vibration system undergoes relaxation and deco-
herence caused by local environments. We consider these
processes to be Markovian and of Lindblad form,

pt) = —i[H, p(t)] + Daepn[p(1)] + Dinlp(0)],  (9)

032414-3



SIWIAK-JASZEK, LE, AND OLAYA-CASTRO

PHYSICAL REVIEW A 102, 032414 (2020)

TABLE I. Parameters used for numerical calculations represent-
ing the central dimer in the cryptophyte photosynthetic antennae
PE545 [26,40]. All units in spectroscopic wave numbers cm ™! except
for the rightmost two columns which are specified in the table.

Ae 1% 1) g kgT T Cdeph

[1psl™

1042 92 1111 267.1 207.1 [0.1ps]™!

where Dgepn and Dy, are Lindblad superoperators of the form
D,[p] =T,(0,p0} — $p0}0, — 30[0,p),  (10)

for various operators O, atrates .

We assume that each electronic system undergoes local
pure dephasing [41,42] with operators |e;){e;| and |e;){e>| at
equal rates of gepn = [0.1 ps]_1 such that exciton coherence
decays in approximately 0.5 ps, as suggested for algal photo-
synthetic proteins [21].

We assume that each mode undergoes relaxation [42] due
to thermal reservoirs at temperature 298 K (207.1 cm™"). This
corresponds to transition Lindblad operators b; and b, at rate
(1 + B), and b} and b} at rate T';,B. Here B = (eBT — 1)~
is the mean number of quanta in a thermally occupied mode
of frequency w and I';, = [1 ps]’1 is the rate at which modes
equilibrate. Table I summarizes the various parameters.

To numerically simulate the model, we flatten the master
equation into an ordinary differential equation

o) = Llp®)), an

where L is the Liouvillian superoperator and |p(t))) are flat-
tened density matrices, which can be solved with standard
algorithms.

Our initial state is

p(0) = |Ex)(Ex| ® pil' @ pit, (12)

where the electronic system starts in the higher-energy exci-
tonic state |E,), and both intramolecular modes are initially

in thermal equilibrium with their respective baths: p!" =

> Pulmi)(ni] and B, = (1 — e%sT )e ™.

C. Measuring transient spontaneous synchronization

Typically, the Pearson correlation factor is used in the
quantum synchronization literature because it gives a clear
indication of synchronization and shows some information
about the timescales involved. For any two time-dependent
functions fi(z) and f5(¢), the Pearson correlation coefficient
is defined as follows [10]:

ftt+At 5f16f2dt
(/;I+At Sflzdl /;t+At 8f22dt)

where 8f = f — f, = L [/*%
and At is the averaging window.
However, the usual form of the Pearson correlation fac-
tor does not give sufficient information about the early time
transient dynamics before synchronization is reached, instead
only indicating when it has occurred. Here we present a
modification to the Pearson correlation factor that allows it

Cr.p(tIAL) =

f@)dt' is a time average,

to be used as a continuous measure of phase difference and
therefore reveal information about the early times and the
emergence of synchronization. This was first presented in
Ref. [18]. To do so, we make a particular choice of A¢, such
that our measure of synchronization is

2
Ar = —> (14)

Cxpy, o t
(X1),(X2) w1

where w; is the frequency of oscillation of the first chro-
mophore, and (X;) are the expectation values of the position
operator for each mode. We explain how it works in the
remainder of this section.

The Pearson correlation factor returns a value of 1 for pos-
itive spontaneous synchronization (in phase), —1 for negative
synchronization (7 out of phase), and 0 for asynchrony [10].
If we chose At as close as possible to the time period T of the
dominant frequency in fi, then the correlation Cy, 4, (t|Af =
T) becomes a continuous measure of phase difference be-
tween the two oscillating signals. This function returns a
continuous value in the range of —1 to 1 corresponding to
a phase shift of 7 to 0, respectively, between the functions f
and fz.

We derive this relation analytically for two example si-
nusoids in the following. Consider f; =sinwt and f, =
sin(wt + ¢) with identical frequencies and amplitudes that lie
within the same range. With the choice of At = 2 we find

" _ ©
that both time averages f; and f, are zero:

. e [TE
= / sinwrds =0, (15)
p
_ w [T
f= E,/ sin (ot + ¢)dt = 0. (16)
p

Note that, in general, the functions f; and f, can have
different amplitudes or be displaced from zero. Hence, in
general, their time averages f) and f> are not zero. The shifted
functions 8f; = f; — f; act to subtract the average value of
fi and center any oscillations around zero. This emphasizes
the fluctuations around the mean and allows more accurate
measurement of phase. For our example f; and f,, we have
8 f; = f;- The integral of their product is the main measure of
synchronization:

r+Z
/ 818 fodt
y

r+2Z
/ sin (wt ) sin (wt + @)dt
r

_ ncos¢>. (17

w

This shows that, for a sliding window of one time period T =
%” and two perfect sinusoids, the time dependence disappears.
For any value of ¢, the measure returns a constant value that
depends only on the phase difference ¢ between the signals.

The denominator in Eq. (13) normalizes the measure to
the limits of 1 and —1. For our example oscillations it takes
the value (/"% 8 f2dr [T 5 f2d1)'/> = T Together, this fi-
nally results in the synchronization measure

Cy.p(At =T) = cos ¢. (18)

In Fig. 1(b), the value of the synchronization function
is plotted as a function of constant phase difference ¢.
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FIG. 2. Time evolution of transient spontaneous synchronization
measure Cy, 5, (t|At = T;) for three sets of two uncoupled sinusoids
fi = sin(wt), f» = sin(w,t + ¢) with different frequencies Aw =
w,/w; and constant phase difference ¢. Time ¢ given in units of
21 / wi.

The synchronization measure for three different scenarios is
illustrated in Fig. 2. We observe that, for two waves of differ-
ent frequency, the synchronization measure Cy, 1, (t|At = T7)
does not stabilize and oscillates as the phase relationship shifts
over time. The frequency of oscillation is proportional to the
frequency difference between the two oscillators.

These effects can be understood by analyzing the form of
Eq. (17). For any two functions, Eq. (17) has a maximum
when they are identical, and therefore has a maximum value
of 1. For any phase shift or frequency shift the integral of their
product will be less than the square root of the product of their
integrals.

This measure is used repeatedly throughout the paper as
a dynamic measure of phase and allows us to connect syn-
chronization phase to the Hamiltonian structure and quantum
correlations in novel ways. Other attempts to develop a real-
time phase measure between two oscillating signals have been
conducted along the lines of sliding-window discrete Fourier
transform methods [43], Hilbert transforms with data exten-
sion [44], and other correlation functions [45].

III. EMERGENCE OF SYNCHRONIZATION PHASE

We first consider the effect of detuning in the exciton-
vibration dimer and find the emergence of a synchronization
phase in Sec. III A. Then, we determine the origin of the
synchronization phase in Sec. III B, which for our model is
due to asymmetric vibronic interactions.

A. Detuning in the bio-inspired dimer

We define the detuning Aw = w;/w; and choose to change
the frequency of w, only. This allows us to fix the time
window of the synchronization measure, Cix,),x,)(t|At), as
At = i—f while still probing the detuning. For simplicity of
notation, from here on we denote our time-dependent measure
for this time window simply as Cix,), (x,) (t).

1.00 1 If"l~|—|—l—|—|-—.— -— 85555 =
0.75 14
0.50 4

0.25 4

(x1)(x2)

0.00 -
-0.25 4

—0.50 1

-0.75 - Aw=1.002

1004 Aw=1.02

T T

0 2 4 6 8 10
Time (ps)

FIG. 3. Dynamics of the transient spontaneous synchronization
measure Cy,) (x,)(f) of the expectation value of mode positions
(X1), (X2) for two regimes of detuning, with frequency difference
Aw = 1.002 where synchronization occurs, and Aw = 1.02 where
it does not.

Using the initial state Eq. (12) and the system parameters
listed in Table I, we show in Fig. 3 the effects on the syn-
chronization measure for two different regimes of detuning,
Aw = 1.002 and Aw = 1.02. These are chosen to illustrate
two distinct scenarios in synchronization dynamics, namely,
synchronized and not synchronized, respectively. Recall that
here, a constant C value of the measure corresponds to syn-
chronization.

We find that, for detuning Aw = 1.02, the synchronization
measure oscillates, indicating that the phase between the two
oscillators is continuously changing. Hence, the frequencies
at which the observables (X;) and (X,) oscillate are different
and have not synchronized. We have not shown here, but we
also find that the phase oscillation frequencies are correlated
with increased detuning. This is as expected from classical
dynamics of Eq. (1). The phase relationship A¢(¢) outside the
synchronization region would change at a rate proportional to
their detuning d with periodic fluctuations from eg(A¢(¢)).

In contrast, we have synchronization in the case of small
detuning: the straight line for Aw = 1.002 in Fig. 3 indicates
that there is a constant, nonzero phase relationship between
(X1) and (X,). Their frequencies have synchronized but they
are not perfectly aligned in phase. This result also agrees with
the predictions of Eq. (1) within the synchronization region.

To take a closer look at this relationship we calculate the
synchronization dynamics for a range of detunings, with the
results given in Fig. 4. The figure shows only the detunings for
which a synchronized state is reached, i.e., having a constant
long-time Cix,) (x,) value. We see a clear negative relationship
between the magnitude of detuning and the stable value of
Cix),(x,)(t) reached, i.e., increasing detuning increases the
synchronization phase, up to a breaking point where synchro-
nization can no longer occur.

The overall dynamics of the synchronization measure
Cix,),(x,) (t) at different detunings presented in this section
are similar to what would be expected in the classical
case. There exists a window of detunings within which
synchronization occurs and the time taken to reach a synchro-
nized state increases with detuning. The quantum-mechanical
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FIG. 4. Dynamics of the transient spontaneous synchronization
measure C(x,) (x,)(t) of the expectation values of mode positions,
(X1), (X2), revealing synchronization phase as a function of detuning,
Aw (listed in the figure). To highlight the long-time behavior, the
figure omits the very-short-time regime.

mechanism for this observed behavior is explained fully in the
following section.

B. Origin of synchronization phase with detuning

The origin of the relationship between the synchronization
phase and detuning can be understood by considering how the
associated changes in the Hamiltonian lead to an asymmetric
participation of the local modes in the collective vibronic
eigenstates of the system and in the dynamics. The equations
of motion for each mode’s average displacement are

(X1) =D pjx)X14;,

Jik

(X2) =Y pj)Xa i,

Jik

19)

where X;i; = (Y |X;|y;) with the eigenstates |;) given in
Eq. (8). When w| = w,, the elements X;;; were restricted
to either being equal or opposite upon mode exchange, as
thoroughly discussed in Ref. [18]. In this situation each mode
participates equally or oppositely in every vibronic coher-
ence (cf. Table 2 in Ref. [18], where the values of X;;; are
equal or scaled by —1). Since synchronization is the result of
one specific vibronic coherence significantly out-living others,
the resultant synchronization phase was restricted to either 0
(when Cixy (x,y = 1) or m (when Cx,),(x,) = —1), depending
on which coherence dominated. For the undetuned situation in
our bio-inspired system, mode displacements are found to be
perfectly synchronized and phase-matched in the long-time
regime. Later on in Sec. V we discuss how this reflects a
collective normal mode being effectively decoupled from the
electronic dynamics.

With unequal frequencies w; # w,, the mode exchange
symmetry is broken, leading to an asymmetric participation
of each mode both in the vibronic eigenstates and in the
dynamics. In the far detuning extreme, one mode may be so
far off-resonance with the system energy scales that it does
not participate in system dynamics at all and synchronization

cannot occur. In the smaller detuning regime, the eigenstates
structure do not restrict X; j; and X, j to be symmetric and
antisymmetric but instead they have a range of amplitudes.
The time-dependent parts of Eq. (19) are identical for (X;) and
(X») but the weights of each oscillating component changes
according to X jx and X5 j;. Within the region of synchro-
nization, these amplitude differences are small and manifest
as a constant phase difference between the oscillations of
each expected value (X;). This can be seen by expressing
each amplitude as X; ;; = exp(k; ;) where « is in general a
complex number, thereby contributing a phase to the signal.
Outside the region of synchronization, these differences are
large, and the signals are composed of different frequencies
and have an unstable phase difference.

IV. QUANTUM CORRELATIONS

Given that the exciton-vibration dimer operates in the
quantum regime, a question of interest is how much of its
behavior is uniquely quantum? The quantitative relationships
between spontaneous quantum synchronization and quan-
tum discord, a measure of purely quantum correlation, have
been explored in a range of quantum synchronization set-
tings [13-16,19,46-49]. For example, Ref. [13] finds that
the emergence of spontaneous synchronization is correlated
with the preservation of quantum discord. Spontaneous syn-
chronization can also be correlated with the generation of
entanglement from an initially unentangled state [15], and the
quantum mutual information has been proposed as a measure
of synchronization that is capable of being used in both deep
quantum and semiclassical regimes [46].

In Sec. IV A, we introduce measures of quantum correla-
tions. In Sec. IV B, we investigate the dynamics of quantum
correlations between the spontaneously synchronizing sub-
systems and find further evidence for the connection between
synchronization and quantum correlations. Specifically, we
reveal that the synchronization phase indicates a change in
magnitude of quantum discord between the synchronizing
subsystems. This suggests that our adapted synchronization
measure can be used to quantify a purely quantum feature.

A. Quantum correlation measures

The quantum mutual information /(A : B) is a measure of
the total correlations between two subsystems A and B of a
bipartite quantum system AB and is defined as

I(A: B) = S(pa) + S(p) — S(pag). (20)

where S(p) = —tr[p1n p] is the von Neumann entropy and
density matrices py = trp[papl, pp = tralpap] are subsystems
of pap. This shared information can be decomposed into
classical correlations and quantum correlations. The classical
correlations are equivalently the difference in von Neumann
entropy of a subsystem before and after a measurement is
acted on the other subsystem:

J(BIA) = max {S(pw - Zp,»S(pg)}, @n

l
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where
P = tralA]Aipasl/ iy (22)

is the residual state of B after measurement of A} A; (positive
operator valued measurements) on subsystem A and p; =
trap[A/A;pag] is the probability of this outcome. Numerically,

the measurements A;Ai are generated randomly until the sum
of Eq. (21) satisfactorily converges on its maximum. Note that
this equation would be different for the classical correlations
from subsystem A to B, which we would label J(A|B).

The remaining portion of the mutual information that is not
classical must be quantum, i.e., the quantum discord D(BJ|A)
[32,33]:

D(B|A) =I1(A : B) — J(B|A). (23)

B. Spontaneous synchronization and quantum correlations

Given the structure of our dimer model in Sec. I A, the
density matrices for the subsystems are accessible. Hence,
we can use Eqgs. (21), (20), and (23) to calculate the quan-
tum correlations between mode subspaces. Intuitively we
would expect some mutual information between modes to
be maintained in a synchronized state because, if they were
completely uncorrelated, then they should oscillate at inde-
pendent frequencies and phases. From the work in Ref. [18],
we know that, in the systems considered, synchronization
requires vibronic eigenstates with sufficient participation from
both modes. We postulate that these quantum correlations
would not persist in the long-time limit if synchronization is
not achieved. The detuning scenarios introduced in this paper
provide the ideal regime to test this.

Figure 5 shows numerical calculations of the mutual infor-
mation, quantum discord and classical information between
the two intramolecular modes with PE545 parameters and for
two different scenarios: Figure 5(a) considers the case with
detuning Aw = 1.002 in which synchronization occurs, while
Fig. 5(b) considers Aw = 1.02 in which synchronization does
not occur.

Two time regimes emerge. First, we notice a sharp increase
in all correlations from the uncorrelated initial state at O ps
to a peak at around 0.2 ps. Note that the correlations do not
originate from the initial state—instead, they must be gener-
ated by the coherent interactions in our system. The peak at
0.2 ps coincides with the coherent excitation transfer period
that is characteristic of the dynamics in these bio-inspired
vibronic dimers [cf. Fig. 8(c) from Ref. [18] and Fig. 10(b)
from Ref. [26]]. The excitation transfer mechanism involves
transitions between vibronic eigenstates which involve both
modes, therefore it is unsurprising that the quantum correla-
tions between the modes also peak at the same time.

Second, we note the decay in correlations from 0.4 ps
onward. This behavior is due to the decay of coherent dy-
namics and the dominance of incoherent processes. In the
synchronizing case of Fig. 5(a) we see that the modes re-
main significantly correlated in the long-time limit whereas
in Fig. 5(b) we see that correlations decay rapidly to a much
lower value. This clear correlation between synchronization
and the preservation of quantum correlations is in agreement
with previous findings.

0.5
—#— Mutual Information
Quantum Discord
0.4 4 —¥— Classical Information

0.0 A
0 1 2 3 4 5 6 7 8
Time (ps)
0.5
—#— Mutual Information
Quantum Discord
0.4 —¥— Classical Information
(b)
0.3 4 0.0100
0.0075 -—'+'—'+'—J
0211 0.0050 -
, 000254 4 & oo o o
0.1+ 0.0000 T
6.0 6.2 6.4
0.0 1
0 1 2 3 4 5 6 7 8
Time (ps)

FIG. 5. Dynamics of quantum mutual information, quantum dis-
cord, and classical information between mode subsystems in the
exciton-vibration dimer model with PE545 parameters (Table I)
and initial state (12) for two detuning scenarios: (a) Aw = 1.002
for which transient spontaneous synchronization is achieved and
(b) Aw = 1.02 for which it is not.

Interestingly, we find that, when the systems spontaneously
synchronize, the majority fraction of the mutual informa-
tion consists of quantum discord at every instant in time. In
contrast, if the systems do not synchronize, we see a time
period in which classical information is greater than quantum
discord, as can been noticed in the 1 ps to 2 ps time interval
of Fig. 5(b). This leads us to hypothesize a novel dynamical
relationship between transient spontaneous synchronization
and quantum correlations: for spontaneous quantum synchro-
nization to emerge, the quantum discord must be greater than
classical information at all times, whereas for nonsynchro-
nizing cases there may exist time intervals where the greater
fraction of correlations are classical.

Now consider the in-between detuning regime for which
synchronization phase is also achieved. In Fig. 6, we plot the
long-time value of quantum discord (normalized to the dis-
cord at no detuning) and compare with the long-time constant
synchronization measure Cx,),(x,;. We consider two different
exciton delocalization regimes of our dimer model character-
ized by different values of n = 2V/|Ae| [18]: (i) the long blue
line is for the parameters and detunings from Fig. 4 giving
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FIG. 6. Long-time stable value of quantum discord between
mode subsystems plotted against long-time stable value the synchro-
nization measure Cyx,),(x,)- Each data point corresponds to a value of
detuning, and quantum discord is normalized to 1 for zero detuning.
Two degrees of excitonic delocalization given by n = 2V/|Ae| are
considered: (i) n = 0.17 corresponding to parameters as in Table I
and (ii) adjusted electronic values such that n = 0.5 but all remaining
parameters are the same as in Table I. Linear regressions are plotted
by using standard methods to emphasize the relationship.

n = 0.17 and (ii) the short orange line for a slightly more delo-
calized regime where Ae and V are adjusted such that n = 0.5
but all the remaining parameters are as in Table I. Each point
corresponds to a different detuning that exhibits a synchro-
nization phase (cf. Sec. III A). Hence, for our bio-inspired
system, a larger synchronization phase upon detuning, corre-
sponding to a stable value 0 < Cix,),(x,) < 1, indicates weaker
quantum correlations between the modes. This shows that our
synchronization measure is able to capture the change in quan-
tum discord between subsystems as a function of frequency
detuning. Interestingly, for the quasilocalized regime our sys-
tem operates, the relationship between the normalized discord

1.00 A
0.75 4
0.50 1
—— $1=0
0.25 1 —— ¢1=3n
0.00 1= a u mow

Cix)ixa)

—0.25 A

—0.50 A1

—0.75 A

—1.00 A

0 20 40 60 80 100 120 140
Time (units of 3)

FIG. 7. Dynamics of the transient synchronization measure
Cix)).(xp)(t) of the expectation value of mode positions for dif-
ferent values of (oscillation difference) ¢; as shown in Eq. (27)
for the model of Militello et al. [17]. The initial state is py =
|€1) (€1| ® Pvacuum ® Pcoherent - Parameters Ae = € —€,w= Ae’ 8=
Ae, ', = 0.2Ae. Time ¢ is given in units of 1/w.

0.25 4

—am—

0.00

Cixnixa)

—0.25 A

—0.50

—0.75 A

—1.00 A I I I T
0 50 100 150 200 250 300
Time (units of 3)

FIG. 8. Dynamics of the transient spontaneous synchronization
measure Cix,) (x,)(t) of the expectation value of mode positions for
the model of Militello et al. with ¢; = 7 and ¢, = 0 and two differ-
ent detunings: Aw = 1.2 where synchronization occurs and Aw =
1.35 where it does not. The initial state is py = |e1){e1| @ Pyacuum &
Peoherent- Parameters Ae = e, — e, w = Ae, g = Ae, [',_ = 0.2Ae.
Time ¢ is given in units of 1/w.

and the synchronization phase is linear. The possible reason
behind this linearity is that, in this quasilocalized regime,
the frequency detuning threshold for which synchronization
occurs is much smaller than any relevant system energy scale
(see Fig. 4), such that the variations in quantum correlations
are small, leading to a relationship with the synchronization
phase that appears linear.

In the next section we explore how general our observa-
tions are when considering other forms of interaction between
two-level systems and Harmonic oscillators. In particular, we
show that the trend in which a shift in synchronization phase
upon frequency detuning is accompanied by a decrease in
quantum correlations holds for a wide range of systems.

1.00 A

0.75 A

0.50 1

0.25 A

0.00 A

—0.25 1

—— Mutual Information (x10)
—A&— Quantum Discord (x10)

—0.50 A

=0.75 1 —%¥— Classical Information (x10)
—1.00 - —o— Cixix
0.0 0.2 0.4 0.6 0.8 1.0
¢1(m)

FIG. 9. Long-time-limit stable values of quantum mutual infor-
mation, quantum discord, and classical information between mode
subsystems as functions of ¢; for the interaction Hamiltonian of
Militello et al. given in Eq. (24) with ¢, = 0 and zero detuning.
Values for these functions have been scaled by 10. Also shown is the
long-time limit stable value of the synchronization function Cix,), (x,)
as a function of ¢;.

032414-8



SYNCHRONIZATION PHASE AS AN INDICATOR OF ...

PHYSICAL REVIEW A 102, 032414 (2020)

0.25
—#— Mutual Information
Quantum Discord
0.20 1 —¥— Classical Information

0 25 50 75 100 125 150 175 200

Time (units of 2)
0.25
—@— Mutual Information
Quantum Discord
0.20 4 —¥— Classical Information
(b)

0.15

0.10

0.05

0.00 1

0 25 50 75 100 125 150 175 200

Time (units of %)

FIG. 10. Dynamics of quantum mutual information, quantum
discord, and classical information between mode subsystems in the
model of Militello ef al. [17] for two detuning scenarios: (a) where
synchronization is achieved, Aw = 1 and (b) where it is not, Aw =
1.35. The initial state is py = |e;){e1] ® Pyacuum ® Pcoherent- Parame-
ters Ae =e; — e, w = Ae, g = Ae, I',_ = 0.2Ae. Time ¢ is given
in units of 1/w.

V. THE CASE OF THE MODEL OF MILITELLO et al.

To understand how the emergence of the phase synchro-
nization in the presence of detuning is linked to the structure
of the Hamiltonian and to the dissipative dynamics the system
experiences, we consider the study by Militello ef al. [17]. The
authors demonstrate synchronization phase in an open quan-
tum system that has comparable features to our bio-inspired
model but that exhibits a nonzero synchronization phase in
the absence of detuning. We discuss the physical origin of
their synchronization phase and demonstrate the agreement
with our approach and predictions.

A. Synchronization phase without detuning

The model considered by Militello ef al. consists of a
two-level system with ground and excited states denoted as
le1) and |ey), respectively, and interacting with two quantum
harmonic oscillators whose associated lowering operators are
by and b,. The total Hamiltonian has a Jaynes-Cummings

form:
HMUO — 4 ¢1ley)(er| + eales) (e
+ a)lbibl + wzb;bz
. . (24)
+81(€?'by + e b])o,
+ g2(e”by + e b0y,
where o, = |e1)(ez| + |ez){e1] and ¢; and ¢, are phases in the

range 0 < ¢ < m. Each two-level system is also coupled to a
zero-temperature reservoir modeled by a Markovian master
equation of the form

pt) = p(O)]+ Do _[p(D)], (25)

where D,_ is a Lindblad superoperator of the form given in
Eq. (10) with transition operator o_ = |e;)(e;| and rate [';_
The modes do not experience any direct dissipation.

The authors find that, when synchronization occurs, there
is a constant phase difference between the two mode displace-
ments that is determined by the parameters ¢, and ¢, from
HMilitelo and obeys the relation

¢s =7 — (P1 — P2). (26)

Note that their approximated synchronization phase has no
dependence on detuning and is a function of the variables ¢;
and ¢, only. Militello et al. derive this relation by approxi-
mating the effects of dissipation on an initial coherent state of
the modes. Since the synchronization phase for the model of
Militello et al. can emerge for zero-detuning and symmetric
coupling strength, i.e., w; = w; and g; = g», it is important to
understand the physical origin such a phase in this situation
and how it is subsequently altered as detuning is introduced.

To gain this understanding we focus on the structure of the
interaction part of the Hamiltonian in Eq. (24) by fixing ¢ =
0 and letting ¢, control the specific form of the interaction
between the modes and the two-level subsystem:

—i [H Militello ,

HMEo (6 — 0) = g0, (X, + X)), (27a)
. 1 X Py
H[Mlhtello (¢] — Z7T> = g0, (XZ \/_ \/_> (27b)
" 2
Ml (¢1 _ Z”) = g0,(Xo + P)), (27¢)
. 3 P
HMlhteHo( =27) =g0 (X 27d
e = 2) =g+ 24 Y. a0
HMEo (g — 1) = g0 (X, — X)), (27e)

where P, is the dimensionless momentum operator for mode
1. Evolution in each of these scenarios results in synchro-
nization of the mode observables (X;) with different phase
differences ¢s. In Fig. 7, we consider the model of Militello
et al. and plot the correlation Cx,), (x,)(t) for the five example
interaction Hamiltonians in the set of Eqgs. (27). Using the
relationship between Cyy,, (x,) and the synchronization phase
presented in Fig. 1(b), we can see that our predictions for the
synchronization phase agree in all cases with the predictions
of Militello et al.

For every case in Eqgs. (27) there are effectively two nor-
mal collective modes. As dissipation acts directly only on
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the two-level subsystem, the dynamics of the oscillators de-
pend critically on which collective observables are involved
in the interaction H,Mﬂi‘e“". In the case of Eq. (27), the sum
of the mode position operators, also known as the collective
“center-of-mass” mode X, = (X; + X3), is directly coupled to
the two-level subsystem. In this case, the collective “relative-
displacement” mode X_ = (X; — X5) is fully decoupled and
is therefore free from dissipation. When evolving from an
initial coherent state that contains some amplitude in both
of these collective modes, the center-of-mass motion decays
rapidly while the relative-displacement remains. As we show
in Fig. 7, survival of this collective mode in the long-time
regime implies perfectly anticorrelated motions (Cx,),(x,) =
—1), indicating a constant 7 phase between (X;) and (X3), in
agreement with Eq. (26),i.e.,¢s =7 — (0 —0) = 7.

A similar analysis holds for the case of Eq. (27) where the
collective center-of-mass motion decouples from the interac-
tion with the two-level system and long-time synchronization
of displacements is positive (Cix,),(x,) = 1) with perfect phase
matching, i.e., ¢s = 0. This case is comparable with our
exciton-dimer model with zero-detuning and symmetric cou-
pling, i.e., w; = w; and g; = g» = g, as can be noted by
expressing the interaction part of Eq. (6) in terms of effective
Pauli matrices for the excitonic system [30]:

H;(dimer) = g(cos 200, + sin 200, )(X> — X1), (28)

where 0 = %arctan(ZV/ |Ae|). For the parameters of our
bio-inspired dimer, 6 is small and the interaction with o,
dominates, in contrast with HM®!° where the interaction
couples o,. The specificity of the o, or o, interaction manifests
itself in different short-time synchronization dynamics but the
stable long-time synchronization phase is dominated by the
effectively decoupled collective mode, as discussed above.
We can then conclude that for each in-between value of ¢,
and the corresponding Hamiltonians, i.e., Egs. (27 b)—(27 d),
there exists a collective mode that is decoupled both from
the two-level system and from the collective mode entering
pHMitiello and which dominates the long-time synchroniza-
tion dynamics, as is indeed discussed by Militello et al. [cf.
Egs. (7) and (8) in Ref. [17] ].

In summary, the synchronization phase predicted by
Ref. [17] for zero-detuning is entirely determined by the
relative phases of the collective mode that decouples fully
both from the two-level system and from the collective mode
entering HMillo. When frequency detuning is introduced,
the local mode exchange symmetry is broken, leading to
their asymmetric participation in dynamics and to collec-
tive modes which cannot be decoupled from each other [cf.
Eq. (3a) in Ref. [17] ]. In the presence of a small detun-
ing, synchronization is still determined by a collective mode
that decouples from the two-level system but that remains
weakly coupled to the collective mode entering the inter-
action and therefore undergoes indirect dissipation. Thus, a
shift in the synchronization phase given by Eq. (26) shall be
expected as a function of detuning, as we show in the next
section.

B. Detuning in model of Militello et al.

We now investigate how detuning further influences the
synchronization phase in the model of Militelo et al. To un-
derstand this we consider the Hamiltonian in Eq. (24) with
¢ = and ¢, = 0 and detune the mode frequencies such
that Aw = wy/w; > 1. The results are reported in Fig. 8 and
they strongly resemble the behavior shown in Fig. 3 whereby
a small detuning i.e., Aw = 1.2 renders a synchronized state
with a long-time constant value of Cix,y,(x,) slightly less than
1, thereby signaling a nonzero phase synchronization. As ex-
pected, a larger detuning prevents synchronization.

We expect a similar behavior for all values of ¢; and
¢> when including detuning, with the understanding that the
undetuned situation sets the level from which the shift in
the synchronization phase should be measured. The results in
Fig. 8 also support the understanding that the synchronization
phase in the presence of detuning accounts for the asymmetric
participation of the modes in the eigenstates and dynamics
such that no collective degree of freedom is fully isolated from
dissipation. Our analysis then shows that the observations in
Sec. II A are not exclusive to the exciton-vibration dimer and
apply to a variety of spontaneously synchronizing quantum
systems.

C. Quantum correlations in model of Militello et al.

In the following we measure the quantum correla-
tions between undetuned modes spontaneously synchronizing
with a constant phase as produced by the Hamiltonian of
Militello et al. Eq. (24) with identical mode frequencies and
interaction strengths.

In Fig. 9 we plot the long-time stable values of quantum
mutual information, classical information and quantum dis-
cord for a range of ¢, alongside the corresponding long-time
stable value Cx,) (x,) which quantifies the synchronization
phase. We find that, under undetuned conditions, the long-
time correlations are unchanged as a function of ¢;. This
is expected since changes in ¢; do not alter the coupling
strengths or the individual frequencies of the local modes,
and hence shall not affect the long-time correlations. The
synchronization value Cix,),x,) as a function of ¢; is exactly
what we would expect from two sine functions with a constant
phase shift between them, as can be seen in the characteriza-
tion of our synchronization function presented in Fig. 1(b).
We do expect that, for a fixed set of ¢ and ¢, parameters,
the long-time quantum correlations and synchronization phase
will change for different detunings in a similar manner to the
results shown in Fig. 6.

Finally, in Fig. 10, we investigate the dynamics of quantum
and classical correlations in the model of Militello et al. with
¢1 = and ¢, = 0 and for synchronizing and nonsynchro-
nizing regimes. We find the same qualitative relationship as
in the exciton-vibration dimer model with detuning reported
in Fig. 5. This supports the generality of the hypothesis intro-
duced in Sec. IV B whereby, for spontaneous synchronization
to emerge, the dynamics must be such that quantum discord
is larger than the classical information at all times, whereas,
in nonsynchronizing systems, classical information can out-
weigh quantum discord for nonzero time periods.
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VI. CONCLUSION

In this paper we have defined a synchronization measure
that effectively quantifies the synchronization phase between
oscillating signals and employed this measure to investigate
the dynamics of transient spontaneous synchronization as a
function of detuning in a bio-inspired vibronic dimer sub-
jected to Markovian dissipation. We have also explored the
quantum and classical nature of the information shared be-
tween synchronizing subsystems and how this information
dynamics is captured by our proposed synchronization mea-
sure.

For the bio-inspired quantum system of interest, where
local vibrational modes assist electronic energy transfer,
we determined the detuned regime in which spontaneous
synchronization can occur with a constant nonzero synchro-
nization phase. Transient spontaneous synchronization in this
system reflects the fact that a collective motion undergoes
very weak dissipation. In the case of equal oscillator frequen-
cies, the synchronized state in the long-time regime renders
zero phase difference between the synchronizing subsystems
[18]. We showed that, upon introducing detuning, the syn-
chronization phase is shifted. The origin of this phase shift
can be traced back to the asymmetric participation of the
vibrations in the joint vibronic eigenstates and in the dy-
namics. In a normal-mode picture this means that collective
normal motions are now coupled to each other such that no
collective mode is entirely decoupled from dissipative pro-
cesses, thereby affecting the phase at which local vibrations
synchronize. Through the study of model of Militello et al.
[17], we showed that the mechanisms affecting the shift in the
synchronization phase under detuned conditions applies to a
variety of synchronizing open quantum systems.

We then investigated the relationship between transient
spontaneous synchronization and quantum correlations, in

both our exciton-vibronic dimer and in the model of Militello
et al. [17]. We found that, if synchronization occurs, then
the shared information between synchronizing subsystems is
primarily quantum discord at all times, whereas in the nonsyn-
chronizing cases classical information may sometimes be the
larger fraction. We also found that, as a function of the detun-
ing, the quantum discord between synchronizing subsystems
decreases as the synchronization measure decreases; that is,
the shift in the synchronization phase upon detuning implies
that quantum correlations between the subsystems persist but
are diminished. In the case of our bio-inspired system, the
relationship between quantum discord and synchronization
phase is linear, a fact we attribute to the very small frequency
detuning threshold for which synchronization occurs in the
quasilocalized regime this system operates. Our results then
suggest that our measure is capable of capturing information
about a purely quantum property of synchronizing subsys-
tems, and that the measure can indicate the persistent presence
of, and change in, quantum discord.

We have considered the simplest bio-inspired quantum sce-
nario, capturing key features present in a variety of natural
photosynthetic light-harvesting complexes, to illustrate that
quantum synchronization analysis provides an insightful route
for understanding truly quantum phenomena in such systems.
Thus, our work suggests a promising avenue to investigate
nontrivial quantum phenomena in complex biomolecular and
chemical systems where molecular vibrations play a funda-
mental functional role.
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