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Abstract

The classical model of an isolated selfgravitating gaseous star is given by the
Euler–Poisson system with a polytropic pressure law P(ρ) = ργ , γ > 1. For any
1 < γ < 4

3 , we construct an infinite-dimensional family of collapsing solutions to
the Euler–Poisson system whose density is in general space inhomogeneous and
undergoes gravitational blowup along a prescribed space-time surface, with contin-
uous mass absorption at the origin. The leading order singular behavior is described
by an explicit collapsing solution of the pressureless Euler–Poisson system.

1. Introduction

The basicmodel of aNewtonian star is given by the 3-dimensional compressible
Euler–Poisson system [1,11,62]

∂tρ + div (ρu) = 0, (1.1a)

ρ (∂tu + (u · ∇)u) + ∇ P(ρ) + ρ∇� = 0, (1.1b)

�� = 4π ρ, lim|x |→∞ �(t, x) = 0. (1.1c)

Here ρ,u, P(ρ),� denote the gas density, the gas velocity vector, the gas pressure,
and the gravitational potential respectively. To close the system we impose the so-
called polytropic equation of state:

P(ρ) = ργ , γ > 1. (1.2)

The power γ is called the adiabatic exponent.
Here a star is modelled as a compactly supported compressible gas surrounded

by vacuum, which interacts with a self-induced gravitational field. To describe

http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-020-01580-w&domain=pdf
http://orcid.org/0000-0002-9816-1157


Y. Guo et al.

the motion of the boundary of the star we must consider the corresponding free-
boundary formulation of (1.1). In this case, a further unknown in the problem is the
support of ρ(t, ·) denoted by �(t). We prescribe the natural boundary conditions

ρ = 0, on ∂�(t), (1.3a)

V(∂�(t)) = u · n on ∂�(t), (1.3b)

and the initial conditions

(ρ(0, ·),u(0, ·)) = (ρ0,u0) , �(0) = �. (1.4)

Here V(∂�(t)) is the normal velocity of the moving boundary ∂�(t) and condi-
tion (1.3b) simply states that the movement of the boundary in normal direction is
determined by the normal component of the velocity vector field. We refer to the
system (1.1)–(1.3) as the EPγ -system. We point the reader to the classical text [11]
where the existence of static solutions of EPγ is studied under the natural boundary
condition (1.3a).

We next impose the physical vacuum condition on the initial data:

−∞ < ∇
(
dP

dρ
(ρ)

)
· n∣∣

∂�
< 0. (1.5)

Condition (1.5) implies that the normal derivative of the squared speed of sound
c2s (ρ) = dP

dρ (ρ) is discontinuous at the vacuum boundary. This condition is fa-
mously satisfied by the well-known class of steady states of the EPγ -system known
as the Lane–Emden stars. At the same time, condition (1.5) is the key assump-
tion that guarantees the well-posedness of the Euler–Poisson system with vacuum
regions.

For any ε̄ > 0 consider themass preserving rescaling applied to theEPγ -system:

ρ = ε̄−3ρ̃(s, y), u = ε̄−1/2ũ(s, y), � = ε̄−1�̃(s, y), (1.6)

where

s = ε̄−3/2t, y = ε̄−1x .

It is easy to see that the above rescaling ismass-critical, that is M[ρ] = M[ρ̃].A
simple calculation reveals that if (ρ,u,�) solve the EPγ -system, then the rescaled
quantities (ρ̃, ũ, �̃) solve

∂s ρ̃ + div (ρ̃ũ) = 0, (1.7a)

ρ̃ (∂s ũ + (ũ · ∇)ũ) + ε∇(ρ̃γ ) + ρ̃∇�̃ = 0, (1.7b)

��̃ = 4π ρ̃, lim|x |→∞ �̃(t, x) = 0, (1.7c)

where

ε := ε̄4−3γ .
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Observe that for ε̄ � 1 the factor ε in front of the pressure in (1.7b) is small
precisely in the supercritical range 1 < γ < 4

3 . The system obtained by dropping
the ε-term in (1.7b) is known as the pressureless- or dust-Euler system. This gives
a vague heuristics that, if one for a moment thinks of ε as a sufficiently small
length scale of density concentration, the effects of the pressure term may become
negligible and the leading order singular behavior will be driven by the pressure-
less dynamics. On the other hand, at this stage, this scaling heuristics is at best
doubtful, as the pressure term enters the equation at the top order from the point of
view of the derivative count.

Parameter ε serves the purpose of a “small” parameter in our analysis. Defining

�̃(s) = ε̄−1�(t) = ε
− 1

4−3γ �(t), a homothetic image of �(t), boundary condi-
tions (1.3) take the form

ρ̃ = 0, on ∂�̃(s), (1.8a)

V(∂�̃(s)) = ũ · ñ on ∂�̃(s), (1.8b)

and the initial conditions read

(ρ̃(0, ·), ũ(0, ·)) = (ρ̃0, ũ0) , �̃(0) = �̃. (1.9)

1.1. Lagrangian Coordinates

To address the problem of collapse we express (1.8) in the Lagrangian coordi-
nates. Firstly, if we wish to follow the collapse process in its entirety until all of the
stellar mass is absorbed, it is clear that the Eulerian description becomes inadequate
at and after the first collapse time. In order to describe particle trajectories after the
first collapse time, it is advantageous to work in a coordinate system that avoids this
issue. Secondly, the free boundary is automatically fixed in Lagrangian description
and thus more amenable to rigorous analysis.

For the remainder of the paper we make the assumption of radial symmetry and
assume that the reference domain �̃ is the unit ball {y ∈ R

3
∣∣ |y| ≤ 1}. Let the flow

map η : �̃ → �̃(s) be a solution of

∂sη(s, y) = ũ(s, η(s, y)), (1.10)

η(0, y) = η0(y). (1.11)

Here the boundary ∂�̃ is mapped to the moving boundary ∂�̃(s). The choice of
η0 corresponds to the initial particle labelling and represents a gauge freedom in
the problem. Equation (1.10) automatically incorporates the dynamic boundary
condition (1.8b) when we pull-back the problem on �̃

Since the flow is spherically symmetric, η is parallel to the vectorfield y. We
introduce the ansatz

η(s, y) = χ(s, r)y, r = |y|, r ∈ [0, 1], (1.12)

and denote χ(0, r) by χ0(r). The Jacobian determinant of Dη expressed in terms
of χ takes the form

J [χ ] := χ2(χ + r∂rχ). (1.13)
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Since ∂sJ = J (divũ) ◦ η, as a consequence of the continuity equation the
Eulerian density ρ̃ evaluated along the particle world-lines satisfies

d

ds

(
ρ̃(s, χ(s, r)y)J [χ ](s, r)

) = 0. (1.14)

Let

α := 1

γ − 1
. (1.15)

The fluid enthalpy is a function r 	→ w(r) defined through the relationship

w(r)α = ρ̃0(χ0(r)r)J [χ0](r), (1.16)

and this is a fundamental object in our work. Instead of specifying ρ̃0 and χ0,
throughout the paper we fix the choice of the fluid enthalpy w satisfying properties
(w1)–(w3) below.

(w1) We assume that w : �̃ → R+ is a non-negative radial function such that
[0, 1) 
 r 	→ w(r)α is C∞, w > 0 on [0, 1) and w(1) = 0.

Assuming further that χ0(r) is uniformly bounded from below and C2, from
ρ̃(χ0(1)) = 0 and the physical vacuum condition (1.5), we conclude ∇w · ñ < 0
at the boundary ∂�̃ of the reference domain.

(w2) This leads us to the second basic assumption on w:

∇w · ñ
∣∣∣
∂�̃

= w′(1) < 0.

(w3) Finally we denote the mean density of the gas by

G(r) := 1

r3

∫ r

0
4πwαs2 ds, (1.17)

and let

g(r) := 3

√
G(r)

2
, r ∈ [0, 1]. (1.18)

Clearly g > 0. Observe that G(0) = 4π
3 w(0)α . We shall require that g :

[0, 1] → R is a smooth function such that there exist positive constants
c1, c2 > 0 and n ∈ Z>0 so that

c1rn ≤ −r∂r (log g(r)) ≤ c2rn, r ∈ [0, 1]. (1.19)

The purpose of the next lemma is to show that there exist choices of the enthalpy
w consistent with the above assumptions.

Lemma 1.1. For any n ∈ N there exists a choice of the enthalpy w satisfying
properties (w1)–(w3). In particular, the resulting map g defined by (1.18) satis-
fies (1.19).
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Proof. Let w(r) = a(1 − rn)+ We observe that for any r ∈ (0, 1] G(r) =
aα

r3
∫ r
0 4π(1 − sn)αs2 ds = 4πaα

3 − aαcn,α

n rn + or→0(rn), with 1 � cn,α � 1.
Note that

r∂r (log g(r)) = 1

2
r∂r (logG(r)),

which implies (1.19). �

Remark 1.2. It is evident from the proof that one can easily modify the enthalpy w

in the regions away from r = 0 so that (1.19) is still satisfied. In fact, the family of
enthalpies w which satisfy the assumptions (w1)–(w3) is infinite-dimensional.

As a simple, but important corollary of (w3), specifically (1.19), we have

Corollary 1.3. Let g be given by (1.18). Then the following properties hold:

(i) the map r 	→ g(r) is monotonically decreasing on [0, 1];
(ii) in the vicinity of the origin the following Taylor expansion for g holds:

g(r) = g(0) − c

n
rn + or→0(r

n) (1.20)

for some constant c > 0;
(iii) for any k ∈ N there exists a positive constant ck such that

∣∣∣(r∂r )
k g(r)

∣∣∣ ≤ ckrn . (1.21)

As shown in [34], the momentum Equation (1.7b) expressed in the Lagrangian
variables (s, r) reduces to a nonlinear second order degenerate hyperbolic equation
for χ :

χss + G(r)

χ2 + εP[χ ] = 0, (1.22)

where r 	→ G(r) is given above in (1.17) and the nonlinear pressure operator P is
given by

P[χ ] := χ2

wαr2
(r∂r )

(
w1+αJ [χ ]−γ

)
. (1.23)

We may explicitly relate the Eulerian density, the fluid enthalpy and the Jacobian
determinant; as long as J [χ ] > 0 by (1.14) and (1.16) we have the fundamental
formula

ρ̃(s, χ(s, r)y) = wα(r)J [χ ]−1. (1.24)

Remark 1.4. Without being precise about the definition of the gravitational collapse
for the moment, our goal is to prove that there exists a choice of initial conditions

χ(0) = χ0, ∂sχ(0) = χ1, (1.25)
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with a particular choice of the enthalpy w so that J [χ ] becomes zero in finite
time.We shall then show that there indeed exists a density ρ̃0 satisfying the physical
vacuum condition

∇(ρ̃
γ−1
0 ) · ñ < 0 on ∂�̃(0),

as both the profile wα and the initial labelling of the particles χ0 are necessary to
recover the Eulerian density ρ̃0, see (1.16).

Remark 1.5. In the special case when χ0 = 1,wα and ρ̃0 coincide. We refrain from
imposing the initial condition χ0 = 1, but we shall prove a posteriori that the initial
conditions that we use for the construction of the collapsing stars indeed satisfy
χ0 = 1 + O(ε) in a suitable norm.

Finally, from (1.17) we have r∂r G + 3G = 4πwα and therefore

r∂r log g + 3

2
= 9πwα

g2 . (1.26)

Since ∂r g ≤ 0, wα|r=1 = 0 and 9πwα

g2
> 0 for r ∈ [0, 1) it follows that

|r∂r (log g)| <
3

2
, r ∈ [0, 1), r∂r (log g)

∣∣
r=1 = 3

2
. (1.27)

Bounds (1.26)–(1.27) are crucial in proving sharp coercivity properties of our high-
order energies later in the article.

1.2. Pressureless Collapse

The first step in our analysis is to describe the solutions of (1.22) when ε = 0.
We are led to the ordinary differential equation (ODE)

χss + G(r)

χ2 = 0, (1.28)

with initial conditions

χ(0, r) = χ0 > 0, χs(0, r) = χ1. (1.29)

Wenowgive a detailed description of the dust collapse fromboth theLagrangian
and Eulerian perspective, as this will serve as the leading order description of the
collapsing stars for the EPγ system.

Notice that for any fixed r ∈ [0, 1] the coefficient G(r) merely serves as a
parameter in the above ODE. The total energy

E(s) = 1

2
χ2

s − G(r)

χ
(1.30)

is clearly a conserved quantity. We are interested in the collapsing solutions,
that is solutions of (1.28)–(1.29) such that there exists a 0 < T < ∞ so that
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lims→T − χ(s, r) = 0 for some r ∈ [0, 1]. We consider the inward moving initial
velocities with χ1 < 0. From the conservation of (1.30) we obtain the formula

χs = −
√

χ2
1 + 2G

(
1

χ
− 1

χ0

)
. (1.31)

Integrating (1.31) one sees that for every r there exists a 0 < t∗(r) < ∞ such that
χ(t∗(r), r) = 0. A simple calculation reveals that for any r ∈ [0, 1] we have the
universal blow-up exponent 2/3

χ(s, r) ∼ c(r)(t∗(r) − s)
2
3 , s → t∗(r). (1.32)

We may further define the first blow-up time

t∗ := min
r∈[0,1] t∗(r).

Observe that the Eulerian description of the solution ceases to make sense at and
after time s ≥ t∗. On the other hand, for different values of r the Lagrangian
solution may make sense even after t∗. In particular, when t∗(r) is a non-constant
function,we can speak of a “fragmented” or “continued” collapse, wherein particles
with a different Lagrangian label r collapse at different times. This is the hallmark
behavior of inhomogeneous collapse (Fig. 1).

For simplicity, we shall consider a special subclass of solutions of (1.28)–(1.29)
with zero energy. Up to multiplication by a constant such profiles have the form

χdust(s, r) = (1 − g(r)s)
2
3 , (1.33)

where g is given by (1.18). It follows that χdust becomes zero along the space-time
curve


 := {(s, r) | 1 − g(r)s = 0}. (1.34)

The solution is only well-defined in the region

� := {(s, r)
∣∣ 1 − g(r)s > 0}.

After a simple calculation we have

J [χdust](s, r) = (1 − g(r)s)2
(
1 − 2

3

srg′(r)

1 − g(r)s

)
, (s, r) ∈ �.

In particular, χdust and J [χdust] vanish along 
 and therefore, since the Eulerian
density satisfies

ρ̃dust(s, χdust(s, r)y) = wα(r)J [χdust](s, r)−1, r = |y|, sg(r) < 1, (1.35)

the value of ρ̃dust(s, 0) diverges to infinity at the first blow-up time t∗ := 1
g(0) . In

the region χdust > 0, the Eulerian density Y 	→ ρ̃dust(s, Y ) is always well-defined
away from the origin Y = 0. Moreover for any r ∈ [0, 1]

lim
s→ 1

g(r)

ρ̃dust(s, χdust(s, r)y) = ∞.
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Fig. 1. Dust collapse in Lagrangian coordinates

Since r 	→ g(r) is monotonically decreasing, particles that start out closer to the
boundary of the star take longer to vanish into the singularity.
Remaining mass. For any time s ∈ ( 1

g(0) ,
1

g(1) ) the remaining star mass is given by

M(s) = 4π
∫ 1

g−1◦( 1s )

wα(z)z2 dz =
∫

(0,χdust(s,1))
4πρ̃dust(s, Z)Z2 dZ , (1.36)

where we have changed variables: z → Z = χ(s, z)z and used wα(z) =
ρ̃(s, χ(s, z)z)J [χdust] and 4πJ [χdust]z2 dz = 4π Z2 dZ . Since for any 1

g(0) <

s < 1
g(1) J [χdust](s, r) > 0 for all r ∈ (g−1 ◦ ( 1s ), 1], this change of variables is

justified.
Finally, the support of the collapsing dust star shrinks to zero as s → 1

g(1) . This
is clear, as the free boundary in the Eulerian description is at distance χdust(s, 1) =
(1 − g(1)s)

2
3 from the origin. As s → 1

g(1) the star concentrates with its mass
completely absorbed at the origin:

lim
s→ 1

g(1)

χdust(s, 1) = 0 and lim
s→ 1

g(1)

M(s) = 0.

Therefore the time s = 1
g(1) has a natural interpretation as the end-point of star

collapse for the dust example considered here.

1.3. Main Theorem and Related Works

Stellar collapse is one of the most important phenomena of both Newtonian and
relativistic astrophysics. Even though extensively studied in the physics literature,
very little is rigorously known about the compactly supported solutions to EPγ -
system that lead to the gravitational collapse.
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1. When P(ρ) = 0 and therefore the star content is the pressureless dust, there
exists an infinite-dimensional family of collapsing dust solutions, as described
in Section 1.2.

2. If γ = 4
3 in (1.2), due to the special symmetries of the problem, “homologous”

self-similar collapsing solutions exist and were discovered by Goldreich
and Weber [25] in 1980. Further rigorous mathematical works about such
solutions are given in [22,24,43]. Here all the gas contracts to a point at the
same time and the dynamics is described by a reduction to a finite-dimensional
system of ODEs.

3. When γ > 4
3 it is shown in [21] that the collapse by density concentration

cannot occur.

We refer to the values 1 < γ < 4
3 , γ = 4

3 , and γ > 4
3 of the adiabatic exponent

as the mass supercritical, mass-critical, and mass subcritical cases respectively.
This terminology is motivated by the invariant scaling analysis of the EPγ -system,
see for example [29].

It has been an outstanding open problem to prove or disprove the existence of
collapsing solutions in the supercritical range 1 < γ < 4

3 .

Theorem 1.6. (Main theorem). For any γ ∈ (1, 4
3 ) there exist classical solutions

χ(s, r) of (1.22) defined in � = {(s, r)
∣∣ 1 − g(r)s > 0}. The solution behaves

qualitatively like the collapsing dust solution χdust and in particular

1 �
∣∣∣∣ χ

χdust

∣∣∣∣ � 1, 1 �
∣∣∣∣ J [χ ]
J [χdust]

∣∣∣∣ � 1, (s, r) ∈ �. (1.37)

Further, for any r ∈ [0, 1],

lim
s→ 1

g(r)

χ

χdust
= lim

s→ 1
g(r)

J [χ ]
J [χdust] = 1. (1.38)

Finally, the following three properties hold:

1. (Density blows up) For any r ∈ [0, 1]
lim

s→ 1
g(r)

ρ̃(s, χ(s, r)r) = lim
s→ 1

g(r)

w(r)αJ [χ ]−1 = ∞. (1.39)

2. (Support shrinks to a point)

lim
s→ 1

g(1)

χ(s, 1) = 0. (1.40)

3. (Mass is continuously absorbed into the singularity)

lim
s→ 1

g(1)

M(s) = lim
s→ 1

g(1)

4π
∫ 1

g−1◦ 1
s

w(z)αz2 dz = 0. (1.41)

Remark 1.7. One distinctive feature of our proof is that the singularity occurs along
the prescribed space-like surface
 (1.34)which coincideswith the blow-up surface
of the underlying dust solution χdust.
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Remark 1.8. Our result shows a finite time density blow up and a loss of total mass
during the collapse. This phenomenon is very different from the shock formation
where the singularity occurs in the form of density discontinuity.

Remark 1.9. We have used the vacuum free boundary framework to deal with the
dynamics of compactly supported isolated star configurations in space that are phys-
ically important. Gravitational collapse, however, is not dependent on the presence
of the vacuum boundary. In fact, dust solutions describe pressureless collapse for
non-compact densities and our methodology would lead to analogous results for
for example densities with infinite support having sufficient decay at infinity.

Theorem 1.6 identifies an infinite-dimensional family of monotonically de-
creasing initial densities that lead to the gravitational collapse. This is a global
characterization of the dynamics, as the region � corresponds to the maximal for-
ward development of the data at s = 0.

The best known class of global solutions to the EPγ system are the famous
static Lane–Emden stars [1,11,62]. In the range 6

5 < γ < 2 one finds compactly
supported radially symmetric time-independent solutions of finite mass, whose
stability still remains an outstanding open problem. In the subcritical range γ >
4
3 the question of nonlinear stability is open despite the promising conditional
nonlinear stability result proven by Rein [48] (see [41] for rotating stars). If the
solution exists globally in time when γ > 4

3 and the energy is strictly positive, then
the support of the star must grow at least linearly in t , as shown in [44]. A similar
conditional result holds when γ = 4

3 [21]. In the supercritical range 6
5 ≤ γ < 4

3
it has been shown by Jang [33,34] that the Lane–Emden stars are dynamically
nonlinearly unstable. Besides the stationary states and the homologous collapsing
stars in the mass-critical case γ = 4

3 , the only other global solutions of EPγ were
constructed by Hadžić and Jang [29,31].

Since the works of Sideris [52,53] it has been well-known that solutions of
the compressible Euler equation (without gravity) develop singularities even with
small and smooth initial perturbations of the steady state (ρ,u) = (1, 0). This
type of blow up is generally attributed to the loss of regularity in the fluid un-
knowns which typically results in a shock. Under the assumption of irrotationality,
Christodoulou [15] gave a very precise information on the dynamic process of
shock formation for the relativistic Euler equation. In the context of nonrelativis-
tic fluids, a related result was given by Christodoulou and Miao [16], while a
wider range of quasilinear wave equations is treated extensively by Speck [56],
Holzegel et al. [32]. Most recently, shock formation results have been obtained
even in the presence of vorticity by Luk and Speck [40], for an overview we refer
the reader to [57]. A very different type of singular behavior which results in a wild
nonuniqueness for the weak solutions of compressible Euler flows was obtained by
Chiodaroli et al. [13], inspired by the methods of convex integration, see [20] for
an overview.

The above mentioned mechanisms of singularity formation are different from
the singularity exhibited in Theorem 1.6, where the density and the velocity remain
smooth in the vicinity of the origin and no shocks are formed before the gravitational
collapse occurs.
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In the absence of gravity, a finite dimensional class of special affine expanding
solutions to the vacuum free boundary compressible Euler flowswas constructed by
Sideris [54,55]. Their support takes on the shape of an expanding ellipsoid. Related
finite-dimensional reductions of compressible flows with the affine ansatz on the
Lagrangian flow map go back to the works of Ovsiannikov [46] and Dyson [23],
with different variants of the equation of state. Nonlinear stability of the Sideris
motions was shown by Hadžić and Jang [30] for the range of adiabatic exponents

1 < γ ≤ 5
3 and it was later extended to the range γ > 5

3 by Shkoller and
Sideris [50].

In the setting of compressible non-isentropic gaseous stars (where the equation
of state (1.2) is replaced by the requirement p = P(ρ, T ), T being the internal
temperature) it is possible to impose an affine ansatz (separation of variables) for
the Lagrangian flow map and thus reduce the infinite-dimensional PDE dynam-
ics to a finite-dimensional system of ODEs. The resulting solutions have space-
homogeneous gas densities and the system is therefore closed—the star takes on
the shape of a moving ellipsoid. For an overview we refer to [3,4]. A number of
finite-dimensional reductions in the absence of vacuum regions relying on self-
similarity and scaling arguments can be found in the physics literature for exam-
ple [2,5,6,39,47,49,51,59,61].

Without the free boundary, in the context of finite-time break up ofC1-solutions
for the gravitational Euler–Poisson systemwith a fixed background we refer to [12]
and references therein. There are various models in the literature where the stabi-
lizing effects of the pressure are contrasted to the attractive effects of a nonlocal
interaction; we refer the reader to [7–9] for a review and many references for dif-
ferent choices of repulsive/attractive potentials.

The analogues of the collapsing dust solutions in the general relativistic con-
text were discovered in 1934 by Tolman [60]. In their seminal work from 1939,
Oppenheimer and Snyder [45] studied in detail the causal structure of a subclass
of asymptotically flat Tolman solutions with space-homogeneous density distribu-
tions, thus providing basic intuition for the concept of gravitational collapse. Never-
theless, in 1984 Christodoulou [14] showed that the causal structure of solutions
described in [45] is in a certain sense non-generic in the wider family of Tolman
collapsing solutions, proving thereby that for densities given as small inhomoge-
neous perturbations of the Oppenheimer–Snyder density, one generically obtains
naked singularities. This, in particular, highlights the importance of the rigorous
study of the gravitational collapse of gaseous stars with more realistic equations
of state, that is with nontrivial pressure. In the absence of any matter, existence of
singular solutions containing black holes has been known since 1915. This is the
1-parameter family of Schwarzschild solutions, which is embedded in the larger
family of Kerr solutions. The nonlinear stability of the Kerr solution has been an
important open problem in the field. Substantial progress has been made over the
recent years by Dafermos, Rodnianski, Holzegel, Shlapentokh-Rothman,
Taylor, see [18,19,58] and references therein.
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0 1

1 − g(r)s = const.

1 − g(r)s = const.

1 − g(r)s = 0

0 1

τ = const.

τ = const.

τ = 0

(s, r) �→ (τ, r)

Fig. 2. Foliation by the level sets of χdust

1.4. Foliation by the Level Sets of χdust

Wewould like to build a solution of (1.22) “around” the fundamental collapsing
profile (1.33). To that end it is natural to consider the change of variables

τ = 1 − g(r)s, (1.42)

and introduce the unknown

φ(τ, r) := χ(s, r).

Note that 0 ≤ τ ≤ 1 and τ = 0 corresponds to the space-time curve 
, while τ = 1
represents the initial time. It is clear that the change of variables (s, r) 	→ (τ, r) is
nonsingular since g(r) > 0 on [0, 1] (Fig. 2).

The operator r∂r expressed in the new variables is denoted by � and it reads

� := −rg′(r)(1 − τ)

g(r)
∂τ + r∂r = (τ − 1)r∂r (log g)∂τ + r∂r . (1.43)

We also use the abbreviation

Mg(τ, r) := (τ − 1)r∂r (log g), (1.44)

so that
� = Mg∂τ + r∂r . (1.45)

From (1.22) we immediately see that the unknown φ solves

φττ + 2

9φ2 + εP[φ] = 0, (1.46)

where

P[φ] := φ2

g2(r)wαr2
�

(
w1+α

[
φ2 (φ + �φ)

]−γ
)

(1.47)
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is the pressure term in new variables (τ, r). In (τ, r)-coordinates the dust collapse
solution (1.33) is denoted by φ0, it solves

∂ττ φ0 + 2

9
φ−2
0 = 0, (1.48)

and is given explicitly by

φ0(τ, r) = τ
2
3 . (1.49)

After a simple calculation we obtain

J [φ0](τ, r) = τ 2
(
1 + 2

3

Mg

τ

)
. (1.50)

In particular, J [φ0](τ, r) > 0 for all (τ, r) ∈ (0, 1] × [0, 1], and

lim
τ→0+ J [φ0] = 0, J [φ0]

∣∣∣
τ=1

= 1.

The connection between the above formulas and mass conservation for the dust
solution is detailed in Section 1.2. From the formula (1.50), (1.44), and (1.19) we
conclude that for 0 < τ � 1

J [φ0](τ, r) ≈ τ 2
(
1 + rn

τ

)
, (1.51)

from which the scale rn/τ emerges naturally and will play an important role in our
work.

We will prove Theorem 1.6 in the (τ, r)-coordinate system, using (1.46) as a
starting point. This is natural, as the collapse surface in the new coordinates takes
on a simpler description 
 = {τ = 0}.

1.5. Methodology and Outline of the Proofs

The continuity equation in Lagrangian coordinates reduces to (1.24), which
implies that the blow-up points of the density coincide with the zero set of the
Jacobian determinant

J [φ] := φ2(φ + �φ), � = Mg∂τ + r∂r .

Therefore, the key goal of this work is to identify a class of initial data that in a
suitable sense mimic the bahavior of the dust solution and we do that by showing

1 � J [φ]
J [φ0] � 1.

A natural idea is to consider the dynamic splitting

φ = φ0 + εφ0R, (1.52)
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where the relative remainder R is expected to be small in an appropriate sense.
A straightforward calculation gives a partial differential equation satisfied by R,
which at the leading order takes the schematic form,

ḡ00∂ττ R + ḡ01∂r∂τ R + 4

3τ
∂τ R − 2

3φ3
0

R − εγ c[φ0] 1

wα
∂r

(
w1+α

r2
∂r [r2R]

)
= F̄,

(1.53)
where one can show that

ḡ00 ≈ 1, ḡ01 ≈ ε

τ
, c[φ0] ≈ τ

5
3−γ

τ + rn
.

The source term F̄ contains, as a leading order contribution the expression

−εP[φ0]φ−1
0

which in the region 0 < τ � 1, 0 < r � 1 has the asymptotic form

ετ
2
3−2γ− 2

n

(
rn

τ

)1− 2
n

(
1 + ( rn

τ

))γ ≈ ετ
2
3−2γ− 2

n = τ−2+δ

in the zone { rn

τ
≈ 1}, where 0 < δ = δ(γ, n) < 2

3 is a quantity defined later
in (1.60) with the property limγ→ 4

3
δ(γ, n) = 0. The simplest way of interpreting

the relative “strength” of each of the terms in (1.53) is to compute the associated
energies by taking the inner product with ∂τ R. Assuming that we can obtain a
coercive energy contribution on the left-hand side which roughly controls

‖∂τ R‖2L2 +
∫ T

0
τ−1‖∂τ R‖2 dτ + (w-weighted 1st order spatial derivatives),

(1.54)
we then have to control a source term of the form

ε

∣∣∣∣
∫ T

0

∫
τ−2+δ Rτ dx dτ

∣∣∣∣ � ε

∫ T

0

∫
τ− 3

2+δ
∣∣∣τ− 1

2 Rτ

∣∣∣ dx dτ, (1.55)

which is clearly too singular to be controlled by the quadratic form (1.54), since
0 < δ < 2

3 . We must therefore refine our approximate solution φ0 so to obtain a
less singular source term.

We note that we have already implicitly used the assumption γ < 4
3 via the

scaling transformation (1.6),which resulted in the occurrence of the small parameter
ε in (1.46).Wewant to further use γ < 4

3 , but with a more refined dynamic splitting
ansatz. Namely, our main idea is to seek a more special solution φ of the form

φ = φapp + τm

r
H, (1.56)

where φapp will be chosen as a more accurate approximate solution of the Euler–
Poisson system (1.46) in hope ofmitigating the issue explained above. The exponent
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m > 0 is a sufficiently large positive number, so that H is a weighted remainder,

small relative to τm = φ
3
2 m
0 � φ0 for small values of τ .

Step 1. Hierarchy and the construction of the approximate solution φapp (Sec-
tion 2).

We shall find the approximate profile φapp as a finite order expansion into the
powers of ε around the background dust profile φ0, that is

φapp = φ0 + εφ1 + ε2φ2 + · · · + εMφM , M � 1. (1.57)

With the solution ansatz (1.57) we can formally Taylor expand the pressure term
εP[φ0 + εφ1 + · · · ] into the powers of ε, thus giving us a hierarchy of ODEs
satisfied by the φ j :

∂ττ φ j+1 − 4

9τ 2
φ j+1 = f j+1[φ0, φ1, . . . , φ j ], j = 0, 1, . . . , M. (1.58)

Functions f j+1, j = 0, 1, . . . , M are explicit and generally depend nonlinearly on
φk , 0 ≤ k ≤ j , and their spatial derivatives (up to the second order).

The system of ODEs (1.58) can be solved iteratively as the right-hand side f j+1
is always known as a function of the first j iterates.1 To show that finite sums of
the form (1.57) are good approximate solutions of (1.46), we must prove that the
iterates φ j , j ≥ 1, are effectively “small” with respect to φ0. The mechanism by
which this is indeed true is one of the key ingredients of the paper, in both the
conceptual and the technical sense. In particular we shall have to choose special
solutions of (1.58), as they are in general not unique (the two general solutions
of the homogeneous problem are τ 4/3 and τ−1/3), which will allow us to see the
above mentioned gain. We now proceed to explain these ideas in more detail. To
provide a quantitative statement, we assume that the enthalpy profile w satisfies

wα(r) = 1 − crn + or→0(r
n) (1.59)

in a neighbourhood of the center of symmetry r = 0. The exponent n ∈ N is our
effective measure of flatness of the star close to the center. For a given γ ∈ (1, 4

3 )

we consider densities (1.59) with n so large that

δ := 2

(
4

3
− γ − 1

n

)
> 0. (1.60)

With this assumption in place we prove that the iterates {φ j } j∈N “gain” small-
ness and this conclusion is summarized in the following theorem:

Theorem 1.10. Let M, K ∈ Z>0 be given. There exists a sequence {φ j } j∈{0,...,M}
of solutions to (1.58) with φ0(τ, r) = τ

2
3 , constants C jkm depending on K and M,

and a λ > 2
n such that for j ∈ {1, . . . , M} and �, m ∈ {0, 1, . . . , K } we have

∣∣∣∂m
τ (r∂r )

�φ j

∣∣∣ ≤ C jkmτ
2
3+ jδ−m

(
rn

τ

)λ− 2
n

(1 + ( rn

τ

)
)λ

. (1.61)

1 We note that a related idea of finding an approximate solution has been used recently in
the semilinear and energy subcritical wave equation [10].
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Therefore the iterates φ j exhibit a crucial gain of τ jδ with respect to the dust

profileφ0 = τ
2
3 ! This is onemanifestation of the supercriticality (that is 1 < γ < 4

3 )
of the problem and it can be viewed as the gain of smallness in the singular regime
0 < τ � 1.

To motivate (1.61), we explain informally how the gain happens for φ1. To find
φ1 we solve the ODE

∂ττ φ1 − 4

9τ 2
φ1 = −P[φ0] = − φ2

0

g2(r)wαr2
�
(
w1+αJ [φ0]−γ

)
(1.62)

For 0 ≤ r � 1 we have w ≈ g(r) ≈ 1. Approximating � ≈ rn∂τ + r∂r , and
by (1.51) J [φ0] ≈ τ(τ + rn), r � 1, we obtain

P[φ0] ≈ τ
2
3 τ

2
3−2γ

(
rn

τ

)1− 2
n

(1 + rn

τ
)γ

, r � 1.

We expect φ1 to “gain” 2 powers of τ with respect to the right-hand side of (1.62),
and thus

φ1 ≈ τ
2
3 τ

8
3−2γ− 2

n

(
rn

τ

)1− 2
n

(1 + rn

τ
)γ

= τ
2
3+δ

(
rn

τ

)1− 2
n

(1 + rn

τ
)γ

,

with δ defined in (1.60). Of course δ can be positive if and only if γ < 4
3 and the

exponent n from (1.59) is sufficiently large!
Most important consequence of Theorem 1.10 is that it leads to a source term

S (φapp) generated by φapp (see Lemma 5.14) which satisfies a natural improved
bound ∣∣S (φapp)

∣∣ � ε2M+1τ− 4
3+(M+1)δ−1.

Therefore, if M � 1, it is reasonable to expect that the remainder ansatz τm H
r

(with m ≥ Mδ) is consistent with our strategy of treating H as an error term, in
the regime τ � 1.

Another crucial input in (1.61) is the factor

(
rn
τ

)λ− 2
n

(1+
(

rn
τ

)
)λ

≤ 1. The gain is visible

only in the asymptotic regime rn/τ � 1, which suggests that the scale

rn/τ

plays a critical role in our problem. Indeed, this gain is important in the closure of
the energy estimate for H—it is used to absorb various negative powers of r which
inevitably appear in our high order energy scheme intimately tied to the assumed
spherical symmetry.

The proof of Theorem 1.10 is complex and delicate. It is based on the intro-
duction of special solution operators S1 and S2 (2.28)–(2.29) for the ODE (1.58).
In addition to a careful and precise tracking of the powers of τ and rn

τ
, to see the
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gain of τ jδ one has to use different solution operators S1 and S2 for j � � 2
3δ � and

for j > [ 2
3δ ], respectively. The precise estimate (1.61) and the emergence of rn

τ
as

a critical quantity is intimately tied to the algebraic structure of f j , j = 1, . . . , M ,
which in turn possesses a rich geometric information related to the Taylor expansion
of the negative powers of the Jacobian determinant J [φ].

Step 2. Equation for the remainder H (Section 3).
Thanks to the crucial gain of τ jδ and in the presence of τm factor, now H

satisfies the following quasilinear wave-like equation:

g00∂ττ H + 2g01∂r∂τ H + 2m

τ
∂τ H +

[
m(m − 1)

τ 2
− 4

9φ3
app

]
H

− εγ c[φ] 1

wα
∂r

(
w1+α

r2
∂r [r2H ]

)
= F, (1.63)

where at the leading order

g00 = g00[φ] ≈ 1, g01 = g01[φ] ≈ ε

τ
, c[φ] ≈ c[φapp] ≈ τ

5
3−γ

τ + rn
.

The precise formulas for the right-hand side F , g00, g01, and c[φ] are given
in (3.26)–(3.28), (3.19) respectively. In comparison to (1.53), the remarkable new
feature of (1.63) is the presence of the coefficient m(m−1)

τ 2
so that

m(m − 1)

τ 2
>

4

9φ3
app

� 1

τ 2
,

for m sufficiently large. This leads to a coercive positive definite control of the
solution at the singular surface {τ = 0}.

Step 3. The physical vacuum and weighted energy spaces (Section 4)
Much of the difficulty in producing energy estimates for (1.63) comes from an

antagonism between two different singularities present in the equation.

• at τ = 0 the coefficient c[φapp] and various others formally blow up to infinity.
This is the singularity associated with the collapse at the singular surface τ = 0
and already explained above;

• at r = 1 we have w = 0 and therefore the elliptic part of the quasilinear
operator on the left-hand side of (1.63) does not scale like the Laplacian as
r → 1. This is a well-known degeneracy associated with the presence of the
vacuum boundary.

The assumption of physical vacuum can be recast as the requirement that the
enthalpy w ≥ 0 behaves like a distance function when r ∼ 1, that is

1

C
(1 − r) ≤ w(r) ≤ C(1 − r), r ∈ [0, 1]. (1.64)

Requirement (1.64) is important in establishing the well-posedness of (1.63). The
local well-posedness theory for the physical vacuum problem was first developed
in the Euler case [17,37], while the well-posedness statements for the gravitational
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Euler–Poisson system can be found in [26,29,31,34,42]. Nevertheless, the well-
posedness theory cannot be directly applied to our setting, as (1.63) differs from
the above mentioned works in two important aspects: the problem has explicit
singularities at τ = 0 and the space time domain (τ, r) ∈ (0, 1] × [0, 1] is strictly
larger than the domain (s, r) ∈ [0, 1

g(0) )×[0, 1]which only covers the star dynamics

up to the first stipulated collapse time t∗ = 1
g(0) , see Section 1.4.

Step 4. Energy estimates and the conclusion (Sections 5, 6).
Since φapp ∼ φ0 = τ 2/3, τ -derivatives of φapp create severe singularities

in τ as τ → 0, which leads to difficulties in our energy estimates. We must in
particular abandon the use vector field ∂τ to form the natural high-order energy
and instead rely on purely spatial derivatives. Due to very precise and delicate
features of the approximate solution φapp near the center r = 0 (as described in
Theorem 1.10), we are forced to use polar coordinates throughout [0, 1], which
results in the introduction of many novel analytic tools to control the singularity at
r = 0.

To motivate the definition of high-order energy spaces we isolate the leading
order spatial derivatives contribution from the left-hand side of (1.63):

Lα H := − 1

wα
∂r

[
w1+α Dr H

]
, (1.65)

where

Dr := 1

r2
∂r

(
r2·
)

is the radial expression for the three-dimensional divergence operator. This par-
ticular form of Lα suggests that we have to carefully apply high-order derivatives
to (1.63) in order to avoid singularities at r = 0. We therefore introduce a class of
operators defined as concatenations of ∂r and Dr :

D j :=
{

(∂r Dr )
j
2 if j is even

Dr (∂r Dr )
j−1
2 if j is odd

(1.66)

and set D0 = 1. The operators D j are then commuted with the Equation (1.63).
For some N sufficiently large, the idea is to form the energy spaces by evaluating
the inner product of the commuted equation with D j Hτ , j = 1, . . . , N . However,
following the ideas developed in [29,30,37], we need to perform our energy esti-
mates in a cascade of weighted Sobolev-like spaces. For any given j ∈ {1, . . . , N }
the correct choice is the inner product associated with the weights wα+ j .

Definition 1.11. (Weighted spaces). For any i ∈ Z≥0 we define weighted spaces
L2

α+i as a completion of the space C∞
c (0, 1) with respect to the norm ‖ · ‖α+i

generated by the inner product

(χ1, χ2)α+i :=
∫ 1

0
χ1χ2w

α+i r2 dr (1.67)

and denote the associated norm by ‖ · ‖α+i .
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Definition 1.12. (Weighted space-time norm). For any 0 < κ ≤ 1, N ∈ Z>0,
κ ≤ τ ≤ 1 we define the weighted space-time norm

SN
κ (H, Hτ )(τ ) = SN

κ (τ )

:=
N∑

j=0

sup
κ≤τ ′≤τ

{
(τ ′)γ− 5

3 ‖D j Hτ‖2α+ j + (τ ′)γ− 11
3 ‖D j H‖2α+ j

+ε(τ ′)−γ−1‖q− γ+1
2

(
rn

τ ′

)
D j+1H‖2α+ j+1

}

+
N∑

j=0

∫ τ

κ

{
(τ ′)γ− 8

3 ‖D j Hτ‖2α+ j + (τ ′)γ− 14
3 ‖D j H‖2α+ j

+ε(τ ′)−γ−2‖q− γ+2
2

(
rn

τ ′

)
D j+1H‖22α+ j+1

}
dτ ′

where qν(x) = (1 + x)ν , ν ∈ R.

We see that the powers of thew-weights increasewith the number of derivatives.
Such spaces are carefully designed to control the motion of the free boundary at
r = 1 and the key technical tool in our estimates is the Hardy inequality. This is
natural sincew ∼ 1−r near r = 1. Similarly, the presence of τ -weights allows us to
precisely capture the degeneration of our wave operator at the singular space-time
curve {τ = 0}.

The positive function x 	→ qν(x) serves as a weight for the top order spatial
derivative contributions in the above definition, with powers ν = − γ+1

2 and ν =
− γ+2

2 respectively. Such weights appear in the dust JacobianJ [φ0] and by means
of expanding the true solution around φ0, functions qν appear naturally in our
energies. The presence of qν highlights again the importance of the characteristic
scale rn/τ in our problem. We shall prove the following key theorem.

Theorem 1.13. (The κ-problem). Let γ ∈ (1, 4
3 ) and m ≥ 5

2 be given. Set N =
N (γ ) = � 1

γ−1�+6. For a sufficiently large n = n(γ ) ∈ Z>0, there exist σ∗, ε∗ > 0,
M = M(m, γ, n) � 1 and C0 > 0, such that for any 0 < σ < σ∗ and any
0 < ε < ε∗ the following is true: for any κ ∈ (0, 1) and any initial data (Hκ

0 , Hκ
1 ]

satisfying

SN
κ (Hκ

0 , Hκ
1 )(τ = κ) ≤ σ 2,

there exists a unique solution solution τ 	→ Hκ(τ, ·) to (1.63) on [κ, 1] satisfying

SN
κ (Hκ , Hκ

τ )(τ ) ≤ C0

(
σ 2 + ε2M+1

)
, τ ∈ [κ, 1].

Theorem 1.13 gives uniform-in-κ bounds for the sequence Hκ with initial data
specified at time τ = κ . One may for example choose trivial data at τ = κ , that is
set σ = 0 in the above theorem to generate a family of solutions {Hκ}κ∈(0,1]. As
κ → 0 we conclude the existence of a solution H on (0, 1]. By (1.56), this gives
a solution φ = φapp + τm H

r of the original problem (1.46), thus allowing us to
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prove Theorem 1.6 (after going back to the (s, r) coordinate system). The proof of
Theorem 1.13 is given in Section 5.6, while the proof of Theorem 1.6 is given in
Section 6.

Remark 1.14. Note that the small parameter ε used for the construction of the
approximate solution φapp enters explicitly in (1.63).

Remark 1.15. As part of the proof of Theorem 1.13, we also obtain a lower bound
on the parameter M—the expansion order of the approximate solution φapp =∑M

j=0 ε jφ j . A precise formula is given in (5.122).

Many of our energy estimates depend crucially on both the gain of a τ δ-power
and a power of rn

τ
in Theorem 1.10. The former allows us to obtain a crucial gain

of integrability-in-τ close to the singular surface τ = 0, while the latter is needed
to absorb negative powers of r arising from the application of the operators D j

on φapp. This delicate interplay works out, but requires a certain “numerological”
constraint, namely the coefficient n has to be large enough relative to the total
number of derivatives N used in our energy scheme.

Despite the delicate tools and analysis, one term stands out and seemingly causes
a major obstruction to our method. After commuting the equation with high-order
operators D j and evaluating the (·, ·)α+ j -inner product with D j Hτ , an error term
M [H ] defined in (4.8) emerges. A simple counting argument suggests that the
number of powers of w in M [H ] is insufficient to close the estimates near the
vacuum boundary, but we carefully exploit a remarkable algebraic structure within
the term and obtain the necessary cancellation, see Lemma 5.8.

The last claim of Theorem 1.6 shows that the infinitesimal volume of the shrink-
ing domain of our collapsing solution behaves like the infinitesimal volume of the
collapsing dust profile. More importantly, using (1.24), one can conclude that the
qualitative behavior on approach to the singular surface τ = 0 of the Eulerian
density ρ̃ is the same as that of the dust density, see Section 6.

Plan of the Paper Section 2 is devoted to the derivation of the hierarchy of
ODEs (1.58) and the proof of Theorem 1.10. In Section 3 we derive the equation
for the remainder term H . In Section 4 we introduce the high-order differentiated
version of the H -equation derived in Section 3. We also define high-order energies
that arise naturally from integration-by-parts and show (Section 4.2) that they are
equivalent to norm Sκ

N fromDefinition 1.12. The remainder of the section is devoted
to various a priori estimates and preparatory bounds. In Section 5 we prove the key
energy estimates, culminating in the proof of Theorem 1.13 in Section 5.6. Finally,
Theorem 1.6 is shown in Section 6. In Appendices A–C many important properties
and analytic tools used in our estimates are shown.We present details of the product
and chain rule within vector field classes P and P̄ (“Appendix A”), commutator
identities (“Appendix B”), and the Hardy–Sobolev embeddings (“Appendix C”).
Finally, for the sake of completeness, we sketch the local well-posedness argument
in “Appendix D”.
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1.6. Notation

• By Z≥0, Z>0 we denote the sets of non-negative and strictly positive integers
respectively.

• C0([a, b], [c, d]) denotes the space of continuous functions (τ, r) 	→ f (τ, r)

on the set [a, b] × [c, d].
• We use ‖·‖L2 to denote ‖·‖L2([0,1];r2dr) and ‖ · ‖∞ to denote ‖·‖L∞([0,1]).
• Writing A � B means that there exists a universal constant C > 0 such that

A ≤ C B. A � B simply means B � A. If we write A ≈ B we mean A � B
and A � B.

• For a given a > 0 we denote the closed three-dimensional ball of radius a
centered at 0 by Ba(0).

2. The Hierarchy

Formally wewould like to build a solution of (1.46) as a sum of the approximate
profile φapp (given as a finite series expansion in the powers of ε) and the remainder
term θ which we hope to show to be suitably small. In other words, we are looking
to write

φ = φapp + θ =
M∑

j=0

ε jφ j + θ. (2.1)

Plugging (2.1) into (1.46), we will now derive a formal hierarchy of ODEs
satisfied by the functions φ j , j ∈ {1, . . . , M}. We define the source term S(φapp):

S(φapp) := −∂2τ φapp − 2

9φ2
app

− εP[φapp]. (2.2)

We first recall the formula of Faa Di Bruno (see for example [38]) which will be
repeatedly used in this section. Given two functions f, g with formal power series
expansions,

f (x) =
∞∑

n=0

fn

n! xn, g(x) =
∞∑

n=1

gn

n! xn, (2.3)

we can compute the formal Taylor series expansion of the composition h = f ◦ g
via

h(x) =
∞∑

n=0

hn

n! xn,

where fn , gn and hn are constants with respect to x . Faa Di Bruno’s formula gives

hn =
n∑

k=1

∑
π(n,k)

n!
λ1! . . . λn ! fk

(g1
1!
)λ1

. . .
(gn

n!
)λn

, h0 = f0, (2.4)
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where

π(n, k) = {(λ1, . . . , λn) : λi ∈ Z≥0,

n∑
i=1

λi = k,

n∑
i=1

iλi = n}. (2.5)

An element of π(n, k) encodes the partitions of the first n numbers into λi

classes of cardinality i for i ∈ {1, . . . , k}. Observe that by necessity λ j = 0 for any
n − k + 2 ≤ j ≤ n.

Lemma 2.1. (Detailed structure of the source term S(φapp)). The source term
S(φapp) given by (2.2) satisfies

S(φapp) = −
M∑

j=0

ε j
(

∂ττ φ j − 4

9
φ jτ

−2 − f j

)
− εM+1

(
Rε

P + φ−2
0 Rε

M,2

)
,

(2.6)

where Rε
P = Rε

P [φ0, φ1, . . . , φM ] and Rε
M,2 = Rε

M,2[φ0, φ1, . . . , φM ] are explic-
itly given by (2.17), (2.9) below, f0 := 0, and

f j := −φ−2
0

Õ j

j ! −
∑

m+i= j−1,
0≤m,i≤M

i∑
k=0

φkφi−k

wαr2
�

(
w1+αJ [φ0]−γ hm

m!
)

, j = 1, . . . , M − 1,

with Õ j and hm given explicitly below by (2.10) and (2.15).

Proof. For any m ∈ N, ν ∈ R, there exists a smooth function Rε
m,ν : Rm → R

such that

(1+ εx1 + ε2x2 +· · · εm xm)−ν = 1+
m∑

j=1

ε j Fj

j ! + εm+1Rε
m,ν(x1, . . . , xm), (2.7)

where by the formula of Faa Di Bruno

Fj =
j∑

k=1

∑
π( j,k)

(−ν)k
j !

λ1! . . . λ j ! xλ1
1 . . . x

λ j
j , j = 1, . . . , m,

and Rε
m,ν is smooth in a neighbourhood of 0,

Rε
m,ν(0) = 0, ∂x1 Rε

m,ν(0) = 0, (2.8)

and for any ε ∈ (0, 1),

‖Rε
m,ν‖C� ≤ C�,

for some constant C� > 0 which grows as � gets larger.
Recalling (2.1),

φ−2
app = φ−2

0

⎛
⎝1 +

M∑
j=1

ε j φ j

φ0

⎞
⎠

−2
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= φ−2
0

⎛
⎝1 +

M∑
j=1

ε j O j

j ! + εM+1Rε
M,2(

φ1

φ0
, . . . ,

φM

φ0
)

⎞
⎠

= φ−2
0 +

M∑
j=1

ε jφ−2
0

O j

j ! + εM+1φ−2
0 Rε

M,2(
φ1

φ0
, . . . ,

φM

φ0
), (2.9)

where

O j =
∑

π( j,k)

j !
λ1! . . . λ j ! (−2)k

(
φ1

φ0

)λ1

. . .

(
φ j

φ0

)λ j

=
∑

π( j,k)

j !
λ1! . . . λ j ! (−2)kφ

−k
0 (φ1)

λ1 . . . (φn)
λ j

=
[ ∑

π( j,k)
k≥2

+
∑
π( j,k)
k=1

] j !
λ1! . . . λ j ! (−2)kφ

−k
0 (φ1)

λ1 . . .
(
φ j
)λ j

=
∑
π( j,k)
k≥2

j !
λ1! . . . λ j ! (−2)kφ

−k
0 (φ1)

λ1 . . . (φn)λ j − 2
φ j

φ0

=: Õ j − 2
φ j

φ0
. (2.10)

Note that from (2.5), for k = 1, λ j = 1, and λi = 0 for i < j, so that the

summation for k = 1 is given by −2
φ j
φ0

. From (2.5) again, for k � 2, λ j = 0,

and therefore in the definition of Õ j , the expression depends only on φ1, . . . φ j−1,
justifying the notation Õ j = Õ j [φ0, . . . , φ j−1]. Note that Õ1 = 0.

Our next goal is to expand the functionJ [φapp]−γ in the powers of ε. To that
end we first observe that

J [φapp] = J

[
M∑

k=0

εkφk

]

= J [φ0]
M−1∑
k=0

εkJ̄k + εM RJ [φ0, φ1, . . . , φM ], (2.11)

where

J̄k = Jk

J [φ0] :=
∑

m+i+ j=k
0≤m,i, j≤M−1

φmφi
(
φ j + �φ j

)
J [φ0] , k ∈ {0, 1, . . . , M − 1} (2.12)

where we note that J̄0 = 1 since J0 = J [φ0]. The remainder RJ is given by
the formula

RJ [φ0, φ1, . . . , φM ] :=
∑

m+i+ j≥M
0≤m,i, j≤M

εm+i+ j−M φmφi
(
φ j + �φ j

)
J [φ0] . (2.13)
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We have

(
J [φapp]

)−γ = (J [φ0]
)−γ

(
1 +

M−1∑
k=1

εkJ̄k + εM RJ [φ0, φ1, . . . , φM ]
)−γ

= (J [φ0]
)−γ

⎛
⎝M−1∑

j=0

ε j h j

j ! + εM hM

M ! + εM+1Rε
M,γ (J̄1, . . . , J̄M−1, RJ )

⎞
⎠ ,

(2.14)

where we use (2.7). Here h0 = 1 and the formula of Faa Di Bruno gives

h j =
j∑

k=1

∑
π( j,k)

j !
λ1! . . . λ j ! (−γ )k

(
J̄1
)λ1

. . .
(
J̄ j
)λ j

=
j∑

k=1

∑
π( j,k)

j !
λ1! . . . λ j ! (−γ )kJ [φ0]−k (J1

)λ1 . . .
(
J j
)λ j , j = 1, . . . M − 1,

(2.15)

and

hM =
M∑

k=1

∑
π(M,k)

M !
λ1! . . . λM ! (−γ )kJ [φ0]−k (J1

)λ1 . . .

(
JM−1

)λM−1 Rε
M,γ (J̄1, . . . , J̄M−1, RJ )λM .

Similarly

φ2
app =

M−1∑
j=0

ε j
j∑

k=0

φkφ j−k + εM Rε[φ1, . . . , φM ],

where

Rε[φ1, . . . , φM ] :=
∑

k+m≥M
0≤k,m≤M

εk+m−Mφkφm,

so we finally have

P[φapp]

=
∑M−1

j=0 ε j ∑ j
k=0 φkφ j−k + εM Rε

g2(r)wαr2
�

⎛
⎝w1+αJ [φ0]−γ

⎛
⎝M−1∑

j=0

ε j h j

j ! + εM hM

M ! + εM+1Rε
M,γ

⎞
⎠
⎞
⎠

=
M−1∑
j=0

ε j

⎧⎪⎨
⎪⎩

∑
m+i= j,

0≤m,i≤M−1

i∑
k=0

φkφi−k

wαr2
�

(
w1+αJ [φ0]−γ hm

m!
)⎫⎪⎬
⎪⎭+ εM Rε

P [φ0, φ1, . . . , φM ], (2.16)

where

Rε
P =

∑
m+i≥M,
0≤m,i≤M

εm+i−M
j∑

k=0

φkφi−k

wαr2
�

(
w1+αJ [φ0]−γ hm

m!
)



Continued Gravitational Collapse for Newtonian Stars

+ Rε

g2(r)wαr2
�
(
w1+αJ [φapp]−γ

)

+
∑M−1

j=0 ε j ∑ j
k=0 φkφi−k

g2(r)wαr2
�

(
w1+αJ [φ0]−γ

(
hM

M ! + εRε
M,γ

))
(2.17)

From the definition of the source term (2.2) it therefore follows that

S(φapp) = −
M∑

j=0

ε j∂ττ φ j + 4

9

M∑
j=0

ε jφ jτ
−2 −

M−1∑
j=0

ε j+1φ−2
0

Õ j+1

( j + 1)!

−
M−1∑
j=0

ε j+1

⎧⎪⎨
⎪⎩
∑

m+i= j,
0≤m,i≤M

i∑
k=0

φkφi−k

wαr2
�

(
w1+αJ [φ0]−γ hm

m!
)⎫⎪⎬
⎪⎭

− εM+1
(

Rε
P [φ0, φ1, . . . , φM ] + φ−2

0 Rε
M,2[

φ1

φ0
, . . . ,

φM

φ0
]
)

= −
M∑

j=0

ε j
(

∂ττ φ j − 4

9
φ jτ

−2 − f j

)
− εM+1

(
Rε

P + φ−2
0 Rε

M,2

)
,

(2.18)

with f0 := 0 and

f j := −φ−2
0

Õ j

j ! −
∑

m+i= j−1,
0≤m,i≤M

i∑
k=0

φkφi−k

wαr2
�

(
w1+αJ [φ0]−γ hm

m!
)

, j = 1, . . . , M − 1,

(2.19)
as claimed. �


Motivated by the previous lemma, we define the hierarchy of ODEs as

∂ττ φ j+1 − 4φ j+1

9τ 2
= f j+1, j ∈ {0, 1, . . . M − 1}, (2.20)

where φ3
0 = τ 2, f j is given by (2.19) and Õ j and h j given by

(2.10) and (2.15) respectively.
With {φ j } j=1,...,M satisfying (2.20), Lemma 2.1 in particular implies that

S(φapp) = −εM+1
(

Rε
P + φ−2

0 Rε
M,2

)
, (2.21)

with Rε
P = Rε

P [φ0, φ1, . . . , φM ] and Rε
M,2 = Rε

M,2[φ0, φ1, . . . , φM ] given by
(2.17), (2.9). Therefore, by solving the hierarchy up to order M we force the source
term to be of order εM+1.
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2.1. Solution Operators and Definition of φ j , j ∈ Z>0

For any γ ∈ (1, 4
3 ) we define

N = N (γ ) :=
⌊

1

γ − 1

⌋
+ 6 = �α� + 6. (2.22)

The number N will later correspond to the total number of derivatives used in our
energy estimates.

Definition 2.2. (The “gain” δ and δ∗). Let γ ∈ (1, 4
3 ) be given and let γ̄ = 4

3 − γ .
For any natural number n > N+2

2γ̄ we define

δ = δ(n) := 2

(
4

3
− γ − 1

n

)
(2.23)

δ∗ = δ∗(n) := δ(n) − N

n
= 8

3
− 2γ − N + 2

n
. (2.24)

Lemma 2.3. Let γ ∈ (1, 4
3 ) be given and fix an arbitrary natural number a ∈ Z>0.

Then there exists an n∗ = n∗(γ, a) such that
⌊

2

3δ(n)

⌋
δ(n) + 2

n
<

2

3
<

(⌊
2

3δ(n)

⌋
+ 1

)
δ(n) − a

n
, n ≥ n∗. (2.25)

In fact ⌊
2

3δ(n)

⌋
=
⌊

1

3γ̄

⌋
, n ≥ n∗.

Proof. For the simplicity of notation let j :=
⌊

2
3δ(n)

⌋
. Then it is easy to check

that (2.25) is equivalent to

j + 1

nγ̄ − 1
<

1

3γ̄
+ 1

3γ̄ (nγ̄ − 1)
< j + 1 − a

2(nγ̄ − 1)
. (2.26)

Since 1 < 1
3γ̄ it is clear that the above inequality will be true if n is chosen

sufficiently large. �

Remark 2.4. Lemma 2.3 implies in particular 2

3δ /∈ Z>0 since by (2.25)
⌊ 2
3δ

⌋
< 2

3δ .

Definition 2.5. (Regularity parameter λ). Let γ ∈ (1, 4
3 ) be given. Choose an n >

n∗(γ, 2N (γ )) (where n∗(γ, a) is given by Lemma 2.3) sufficiently large so that

λ := 2N

n
< 1.

Remark 2.6. A simple consequence of Lemma 2.3 and Definition 2.5 is the bound

δ >
2N + 2

n
, that is δ∗ >

N + 2

n
. (2.27)
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Motivated by (2.20), consider for a moment a general inhomogeneous ODE of
the form

∂ττ φ − 4

9τ 2
φ = f.

A simple calculation shows that the previous ODE is formally equivalent to

τ− 4
3 ∂τ

(
τ

8
3 ∂τ

(
τ− 4

3 φ
))

= f.

This motivates the following definition of the solution operators:

S1[ f, g, h](τ, r) = f (τ, r)

∫ 1

τ

g(τ ′, r)

∫ 0

τ ′
h(τ ′′, r) dτ ′′dτ ′, τ ∈ [0, 1], (2.28)

S2[ f, g, h](τ, r) = f (τ, r)

∫ τ

0
g(τ ′, r)

∫ τ ′

0
h(τ ′′, r) dτ ′′dτ ′, τ ∈ [0, 1]. (2.29)

Bydirect inspection, one can check that for a given f functions Si [τ 4
3 , τ− 8

3 , τ
4
3 f ],

i = 1, 2 are solutions of ∂ττ φ − 4
9τ 2

φ = f . We define

φ j :=
⎧⎨
⎩

S1[τ 4
3 , τ− 8

3 , τ
4
3 f j ] if j ≤

⌊
1
3γ̄

⌋
,

S2[τ 4
3 , τ− 8

3 , τ
4
3 f j ] if j >

⌊
1
3γ̄

⌋
.

(2.30)

The above definition of the solution is designed to enforce the gain of τ δ with
respect to the previous iterate for all j ∈ {1, . . . , M}. Since M � � 1

3γ̄ �, the above
choice of the formula at the index values j > � 1

3γ̄ � is crucial; see Proposition 2.8
and Lemma 2.14.

2.2. Bounds on φ j and Proof of Theorem 1.10

The main goal of this section is the proof of Theorem 1.10. To that end, we
need a number of preparatory steps. We first introduce the notation

qν(x) := (1 + x)ν, ν ∈ R, x ≥ 0, (2.31)

pμ,ν(x) := xμ+ν

(1 + x)μ
, μ, ν ∈ R, x ≥ 0. (2.32)

For the remainder of the section, constants M, K ∈ Z>0 are arbitrarily large
fixed constants.

Lemma 2.7. (Basis of the induction). Let φ1 be given by (2.30). Then

∣∣∣∂m
τ (r∂r )

�φ1

∣∣∣ � τ
2
3+δ−m pλ,− 2

n

(
rn

τ

)
, �, m ∈ {0, 1, . . . , K }. (2.33)

The main result of this section is the quantitative estimate on the space-time
derivatives of the iterates φ j .
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Proposition 2.8. (Inductive step). Let φ j be given by (2.30). Let 1 ≤ I < M be
given and assume that for any j ∈ {1, . . . , I } and any �, m ∈ {0, 1, . . . , K } we
have∣∣∣∂m

τ (r∂r )
�φ j

∣∣∣ � τ
2
3+ jδ−m pλ,− 2

n

(
rn

τ

)
, (Inductive Assumptions). (2.34)

Then, for any �, m ∈ {0, 1, . . . , K }, the following bound holds:
∣∣∣∂m

τ (r∂r )
�φI+1

∣∣∣ � τ
2
3+(I+1)δ−m pλ,− 2

n

(
rn

τ

)
, (2.35)

where λ = 2N
n is given in Definition 2.5.

Remark 2.9. The constants in the above statement depend on K , M ∈ Z>0 and they
generally grow as K and M get larger.

Proofs of Lemma 2.7, Proposition 2.8, and finally Theorem 1.10 are contained
in Section 2.2.2. Before that we need a number of auxiliary bounds.

2.2.1. Auxiliary Lemmas Since

[(τ − 1)r∂r (log g)∂τ , r∂r ] = −(r∂r )
2(log g)(τ − 1)∂τ ,

it is easy to see that for any � ∈ N there exist some universal constants kabc1...ca ≥ 0,
a, b, c j = 1, . . . , �, j = 1, . . . a, such that

�� = ((τ − 1)r∂r (log g)∂τ + r∂r )
�

=
∑

a+b+c1+···ca=�

1≤a,b,c j ≤�

kabc1...ca

a∏
j=1

(r∂r )
c j (log g) ((τ − 1)∂τ )

a (r∂r )
b. (2.36)

Lemma 2.10. (Auxiliary estimates). Let �, m ∈ {0, 1, . . . , K } be given nonnega-
tive integers. Under the inductive assumptions (2.34) the following estimates hold:

∣∣∣∂m
τ (r∂r )

�J [φ0]
∣∣∣ �

⎧⎨
⎩

τ 2r−nmqm+1

(
rn

τ

)
, � = 0

τ 2r−nmqm

(
rn

τ

)
rn

τ
, � > 0; (2.37)

∣∣∣∂m
τ (r∂r )

�
(
φ−k
0

)∣∣∣ � τ− 2k
3 −m , k ∈ Z≥0; (2.38)

∣∣∣∂m
τ

(
J [φ0]−k

)∣∣∣ � τ−2k−mq−k

(
rn

τ

)
, k ∈ Z≥0; (2.39)

∣∣∣∂m
τ (r∂r )

�
(
J [φ0]−k

)∣∣∣ � τ−2k−mq−k−1

(
rn

τ

)
rn

τ
, k ∈ Z≥0, � > 0; (2.40)

∣∣∣∂m
τ (r∂r )

�Jk

∣∣∣ � τ 2+kδ−mq1

(
rn

τ

)
pλ,− 2

n

(
rn

τ

)
, k ∈ {1, . . . , I }, (2.41)

∣∣∣∂m
τ (r∂r )

�
((
Jk
)a)∣∣∣ � τ (2+kδ)a−mqa

(
rn

τ

)
pλ,− 2

n

(
rn

τ

)
, k ∈ {1, . . . , I }, a ≥ 0,

(2.42)
∣∣∣∂m

τ (r∂r )
�
(
(φk)

a)∣∣∣ � τ ( 23 +kδ)a−m pλ,− 2
n

(
rn

τ

)a

, k ∈ {1, . . . , I }, a ≥ 0. (2.43)
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Proof. Proof of (2.37). By the Leibniz rule for any k1, k2 ∈ N and any smooth
function ϕ we have∣∣∣∂k1

τ (r∂r )
k2�ϕ

∣∣∣
�
∣∣∣∂k1

τ (r∂r )
k2+1ϕ

∣∣∣+
k2∑

m=0

∣∣∣(r∂r )
m+1 (log g)

∣∣∣ (∣∣∣(r∂r )
k2−m∂k1

τ ϕ

∣∣∣+ |(τ − 1)(r∂r )
k2−m∂k1+1

τ ϕ|
)

�
∣∣∣∂k1

τ (r∂r )
k2+1ϕ

∣∣∣+ rn
k2∑

m=0

(∣∣∣∂k1
τ (r∂r )

k2−mϕ

∣∣∣+ ∣∣∣∂k1+1
τ (r∂r )

k2−mϕ

∣∣∣) , (2.44)

where we have used (1.20) and τ ≤ 1 in the last estimate. Letting ϕ = φ0 = τ
2
3

above we obtain ∣∣∣∂k1
τ (r∂r )

k2�φ0

∣∣∣ � rnτ− 1
3−k1 . (2.45)

Now for any �, m ∈ {0, 1, . . . , K }, we have
∣∣∣∂m

τ (r∂r )
�
(
J [φ0]

)∣∣∣
�

∑
α1+α2+α3=m
β1+β2+β3=�

∣∣∂α1
τ (r∂r )

β1φ0∂
α2
τ (r∂r )

β2φ0
(
∂α3
τ (r∂r )

β3φ0 + ∂α3
τ (r∂r )

β3�φ0
)∣∣ ,

(2.46)

where we recall J [φ0] = φ2
0(φ0 + �φ0). Therefore, if � = 0, we have

∣∣∂m
τ

(
J [φ0]

)∣∣ � τ
2
3−α1τ

2
3−α2

(
τ

2
3−α3 + rnτ− 1

3−α3
)

= τ 2−mq1

(
rn

τ

)
,

and if � > 0, since (r∂r )
βφ0 = 0 for β �= 0, we have

∣∣∣∂m
τ (r∂r )

�
(
J [φ0]

)∣∣∣ � τ
2
3−α1τ

2
3−α2rnτ− 1

3−α3 = τ 2−m(
rn

τ
),

which leads to (2.37). �

Proof of (2.38). The bound is obvious. �

Proof of (2.39). We use the formula of Faa Di Bruno. We may write
J [φ0]−k(t, r) = f (h(r)) where f (x) = x−k and h(r) = J [φ0]. Derivatives
of x 	→ f (x) are easily computed:

f ( j)(σ ) = (−k) j σ−k− j , k ∈ N.

Formula of Faa Di Bruno then gives

∂m
τ

(
J [φ0]−k

)
=

m∑
j=1

(−k) j J [φ0]−k− j
∑

π(m, j)

m!
m∏

i=1

(
∂ i
τJ [φ0]

)λi

λi !(i !)λi
, (2.47)
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where we refer to (2.5) for the definition of π(m, j). Since

J [φ0] = τ 2
(
1 + 2

3

(τ − 1)

τ
r∂r (log g)

)
(2.48)

and
rn � −r∂r (log g) � rn, r ∈ [0, 1], (2.49)

it follows that

τ 2q1

(
rn

τ

)
� J [φ0] � τ 2q1

(
rn

τ

)
, τ ∈ (0, 1]. (2.50)

Therefore, since
∑

λi = j and
∑

iλi = m, we have

∣∣∣∂m
τ

(
J [φ0]−k

)∣∣∣ �
m∑

j=1

τ−2k−2 j q−(k+ j)

(
rn

τ

) ∑
π(m, j)

m∏
i=1

τ (2−i)λi qλi

(
rn

τ

)

� τ−2k−mq−(k+ j)

(
rn

τ

)
q j

(
rn

τ

)

� τ−2k−mq−k

(
rn

τ

)
. (2.51)

�

Proof of (2.40). Using the formula of Faa Di Bruno like above, replacing formally
∂m
τ by (r∂r )

� we obtain

(r∂r )
�
(
J [φ0]−k

)
=

�∑
j=1

(−k) j J [φ0]−k− j
∑

π(�, j)

�!
�∏

i=1

(
(r∂r )

iJ [φ0]
)λi

λi !(i !)λi
,

(2.52)

where we refer to (2.5) for the definition of π(�, k). Therefore, for � ∈ Z≥1, by
using the Leibniz rule, we get

∂m
τ (r∂r )

�
(
J [φ0]−k

)

=
m∑

m′=0

(
m

m′

) �∑
j=1

(−k) j ∂m−m′
τ

(
J [φ0]−k− j

) ∑
π(�, j)

�! ∂m′
τ

(
�∏

i=1

(
(r∂r )

iJ [φ0]
)λi

λi !(i !)λi

)
.

(2.53)

Notice that for any d, � ∈ Z≥0, i ∈ Z≥1,

∣∣∣∣∂d
τ

((
(r∂r )

iJ [φ0]
)�
)∣∣∣∣ �

∑
d1+···+d�=d

�∏
j=1

∣∣∣(∂d j
τ (r∂r )

iJ [φ0]
)∣∣∣

�
∑

d1+···+d�=d

�∏
j=1

(
τ 2−d j

rn

τ

)
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� τ 2�−d
(

rn

τ

)�

(2.54)

where we have made use of (2.37). From this bound, the product rule, and (2.53),
we conclude that∣∣∣∂m

τ (r∂r )
�
(
J [φ0]−k

)∣∣∣
�

m∑
m′=0

�∑
j=1

τ−2(k+ j)−m+m′
q−(k+ j)

(
rn

τ

) ∑
π(�, j)

∑
m1+···+m�=m′

�∏
i=1

τ 2λi −mi

(
rn

τ

)λi

� τ−2k−m
m∑

m′=0

�∑
j=1

∑
π(�, j)

∑
m1+···+m�=m′

τ−2 j τ 2
∑�

i=1 λi q−k− j

(
rn

τ

)(
rn

τ

)∑�
i=1 λi

� τ−2k−mq−k−1

(
rn

τ

)
rn

τ
, (2.55)

where we have used (2.37), (2.54), (2.31), the identity
∑�

i=1 λi = j which follows
from the definition of the index set π(�, j), and the trivial estimate x ≤ q1(x). �

Proof of (2.41). By letting ϕ = φ j , j ∈ {1, . . . , I }, in (2.44) we obtain

∣∣∣∂a
τ (r∂r )

b�φ j

∣∣∣ � ∣∣∣∂a
τ (r∂r )

b+1φ j

∣∣∣+ rn
b∑

m=0

(∣∣∣∂a
τ (r∂r )

b−mφ j

∣∣∣+ ∣∣∣∂a+1
τ (r∂r )

b−mφ j

∣∣∣)

� τ
2
3 + jδ−a pλ,− 2

n

(
rn

τ

)
+ rnτ

2
3 + jδ−(a+1) pλ,− 2

n

(
rn

τ

)

� τ
2
3 + jδ−aq1

(
rn

τ

)
pλ,− 2

n

(
rn

τ

)
, (2.56)

where we have used the inductive assumption (2.34). If j = 0, from (2.45) we have
∣∣∣∂a

τ (r∂r )
b�φ0

∣∣∣ � τ
2
3−a(

rn

τ
) � τ

2
3−aq1

(
rn

τ

)
. (2.57)

Recalling Jk from (2.12), applying the Leibniz rule and using (2.34) and (2.56)–
(2.57), we obtain∣∣∣∂m

τ (r∂r )
�Jk

∣∣∣ � ∑
d+n+ j=k
d,n, j≥0

∑
α1+α2+α3=m
β1+β2+β3=�

∣∣∂α1
τ (r∂r )

β1φd∂α2
τ (r∂r )

β2φn

(
∂α3
τ (r∂r )

β3φ j + ∂α3
τ (r∂r )

β3�φ j
)∣∣

�
∑

d+n+ j=k
d,n, j≥0

∑
α1+α2+α3=m
β1+β2+β3=�

τ
2
3 +dδ−α1τ

2
3 +nδ−α2

(
τ

2
3 + jδ−α3 + τ

2
3 + jδ−α3q1

(
rn

τ

))
pλ,− 2

n

(
rn

τ

)

�
∑

d+n+ j=k
d,n, j≥0

∑
α1+α2+α3=m
β1+β2+β3=�

τ 3×
2
3 +(d+n+ j)δ−(α1+α2+α3)q1

(
rn

τ

)
pλ,− 2

n

(
rn

τ

)

� τ 2+kδ−mq1

(
rn

τ

)
pλ,− 2

n

(
rn

τ

)
. (2.58)

�
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Proof of (2.42). We use the Faa Di Bruno formula again. Analogously to (2.53),
we obtain

∂m
τ (r∂r )

�
(
J a

k

) =
m∑

m′=0

(
m

m′

) �∑
j=1

(a) j ∂m−m′
τ

(
J a− j

k

) ∑
π(�, j)

�! ∂m′
τ

(
�∏

i=1

(
(r∂r )

iJk
)λi

λi !(i !)λi

)
,

where (a) j = a(a − 1) . . . (a − j + 1). Notice that for any d, � ∈ Z≥0, i ∈ Z≥1,

∣∣∣∣∂d
τ

((
(r∂r )

iJk

)�
)∣∣∣∣ �

∑
d1+···+d�=d

�∏
j=1

∣∣∣(∂d j
τ (r∂r )

iJk

)∣∣∣

�
∑

d1+···+d�=d

�∏
j=1

(
τ 2+kδ−d j q1

(
rn

τ

)
pλ,− 2

n

(
rn

τ

))

� τ (2+kδ)�−dq�

(
rn

τ

)
pλ,− 2

n

(
rn

τ

)�

,

where we have made use of (2.41). Using this bound just like in (2.55), we ob-
tain (2.42). �

Proof of (2.43). Using the formula of Faa Di Bruno, for any k ∈ {1, . . . , I } we
have

∣∣∂m
τ

(
φa

k

)∣∣ �
m∑

j=1

|φk |a− j
∑

π(m, j)

m∏
i=1

∣∣∣∂ i
τ φk

∣∣∣λi

�
m∑

j=1

τ ( 23+kδ)(a− j) pλ,− 2
n

(
rn

τ

)a− j ∑
π(m, j)

m∏
i=1

(
τ

2
3+kδ−i pλ,− 2

n

(
rn

τ

))λi

� τ ( 23+kδ)a−m pλ,− 2
n

(
rn

τ

)a

,

where we have used the inductive assumption (2.34), identities
∑m

i=1 λi = j ,∑m
i=1(iλi ) = m from (2.5), and the additive property of pμ,ν .
By analogy to (2.55) we have

∣∣∣∂m
τ (r∂r )

� (φk)
a
∣∣∣ �

m∑
m′=0

�∑
j=1

∣∣∣∂m−m′
τ (φk)

a− j
∣∣∣ ∑
π(�, j)

∑
m1+···+m�=m′

�∏
i=1

∣∣∣∣∂mi
τ

((
(r∂r )

i φk

)λi
)∣∣∣∣

�
m∑

m′=0

�∑
j=1

τ ( 23 +kδ)(a− j)−m+m′
pλ,− 2

n

(
rn

τ

)a− j ∑
π(�, j)

∑
m1+···+m�=m′

τ ( 23 +kδ)λi −mi pλ,− 2
n

(
rn

τ

)λi

� τ ( 23 +kδ)a−m pλ,− 2
n

(
rn

τ

)a

, k ∈ {1, . . . , I },

where we have used the inductive assumption (2.34), identities
∑m

i=1 λi = j ,∑m
i=1(iλi ) = m and the additive property of qν . �
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Lemma 2.11. Recall h j and Õ j from (2.15) and (2.10). Under the inductive as-
sumptions (2.34) the following estimates hold:

∣∣∣∂m
τ (r∂r )

�h j

∣∣∣ � τ jδ−m p1+λ,− 2
n

(
rn

τ

)
, j ∈ {1, . . . , I }, (2.59)

∣∣∣∂m
τ (r∂r )

� Õ j+1

∣∣∣ � τ jδ−m p2λ,− 4
n

(
rn

τ

)
, j ∈ {1, . . . , I }, (2.60)

∣∣∣∂m
τ (r∂r )

�
(
w−α�

(
w1+αJ [φ0]−γ h j

))∣∣∣

�

⎧⎨
⎩

τ−2γ+ jδ−mq−γ+1

(
rn

τ

)
p2+λ,− 2

n

(
rn

τ

)
j ∈ {1, . . . , I }

τ−2γ−mq−γ+1

(
rn

τ

)
p1,0

(
rn

τ

)
j = 0.

(2.61)

Proof. Proof of (2.59). Recall (2.15). For any j ∈ {1, . . . , I } by the Leibniz rule
∣∣∣∂m

τ (r∂r )
�h j

∣∣∣
�

j∑
k=1

∑
π( j,k)

∑
α0+α1+···+α j =m
β0+β1+···+β j =�

∣∣∣∂α0
τ (r∂r )

β0
(
J [φ0]−k

)∣∣∣
∣∣∣∂α1

τ (r∂r )
β1
((
J1
)λ1)∣∣∣ . . .

∣∣∣∂α j
τ (r∂r )

β j
((
J j
)λ j
)∣∣∣

�
j∑

k=1

∑
π( j,k)

∑
α0+α1+···+α j =m
β0+β1+···+β j =�

τ−2k+∑ j
i=1(2+iδ)λi −(α0+α1+···α j )q−k

(
rn

τ

)
p1,0

(
rn

τ

)

qλ1

(
rn

τ

)
pλ,− 2

n

(
rn

τ

)λ1

. . . qλ j

(
rn

τ

)
pλ,− 2

n

(
rn

τ

)λ j

� τ jδ−m
j∑

k=1

p1+kλ,− 2k
n

(
rn

τ

)
� τ jδ−m p1+λ,− 2

n

(
rn

τ

)
,

where we have used (2.40), (2.41), the additive property of pμ,ν and the exponent
of τ is simplified from (2.5):

−2k +
j∑

i=1

(2 + iδ)λi − (α0 + · · · α j ) = −2k + 2 j + 2 jδ − m � jδ − m.

�

Proof of (2.60). Recall (2.10). By the Leibniz rule∣∣∣∂m

τ (r∂r )
� Õ j+1

∣∣∣
�

∑
α0+α1+···+α j+1=m

β0+β1+···+β j =�

j+1∑
k=2

∑
π( j+1,k)

∣∣∣∂α0
τ (r∂r )

β0
(
φ−k
0

)
∂α1
τ (r∂r )

β1
(
(φ1)

λ1
)
. . . ∂

α j+1
τ (r∂r )

β j+1
((

φ j+1
)λ j+1

)∣∣∣
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�
∑

α0+α1+···+α j+1=m
β0+β1+···+β j+1=�

j+1∑
k=2

∑
π( j+1,k)

τ− 2
3 k+∑ j+1

i=1 ( 23+iδ)λi −∑ j+1
i=0 αi pλ,− 2

n

(
rn

τ

)∑ j+1
i=1 λi

� τ ( j+1)δ−m p2λ,− 4
n

(
rn

τ

)
, j ∈ {1, . . . , I },

where we have used (2.38), (2.43), additive property of pμ,ν , the bound pλ,− 2
n

≤ 1

and the bound
∑ j

i=1 λi = k ≥ 2. Note that for any k ≥ 2 and (λ1, . . . , λ j+1) ∈
π( j, k), we have λ j+1 = 0. �


Proof of (2.61). Assume first j ∈ {1, . . . , I }. Note that

w−α�
(
w1+αJ [φ0]−γ h j

)
= (1 + α)r∂rwJ [φ0]−γ h j + w�

(
J [φ0]−γ h j

)
.

Using the bound |(r∂r )
aw| � rn for a ≥ 1, by the previous identity and (2.44)

∣∣∣∂m
τ (r∂r )

�
(
w−α�

(
w1+αJ [φ0]−γ h j

))∣∣∣
� ∂m

τ (r∂r )
�+1 (J [φ0]−γ h j

)

+ rn
�∑

d=0

(∣∣∣∂m+1
τ (r∂r )

d (J [φ0]−γ h j
)∣∣∣+

∣∣∣∂m
τ (r∂r )

d (J [φ0]−γ h j
)∣∣∣)

�
∑

α1+α2=m
β1+β2=�+1

∣∣∂α1
τ (r∂r )

β1
(
J [φ0]−γ

)
∂α2
τ (r∂r )

β2h j
∣∣

+ rn
�∑

d=0

∑
α1+α2=m+1

β1+β2=d

∣∣∂α1
τ (r∂r )

β1
(
J [φ0]−γ

)
∂α2
τ (r∂r )

β2h j
∣∣

+ rn
�∑

d=0

∑
α1+α2=m
β1+β2=d

∣∣∂α1
τ (r∂r )

β1
(
J [φ0]−γ

)
∂α2
τ (r∂r )

β2h j
∣∣

�
∑

α1+α2=m

τ−2γ+ jδ−α1−α2q−γ

(
rn

τ

)
p1,0

(
rn

τ

)
p1+λ,− 2

n

(
rn

τ

)
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+
∑

α1+α2=m+1

rnτ−2γ+ jδ−α1−α2q−γ

(
rn

τ

)
p1,0

(
rn

τ

)
p1+λ,− 2

n

(
rn

τ

)

� τ−2γ+ jδ−mq−γ+1

(
rn

τ

)
p2+λ,− 2

n

(
rn

τ

)
,

where we have used (2.59), (2.40), and the additive property of qν, pμ,ν . If on the
other hand j = 0, then the above proof and h0 = 1 give∣∣∣∂m

τ (r∂r )
�
(
w−α�

(
w1+αJ [φ0]−γ h0

))∣∣∣ =
∣∣∣∂m

τ (r∂r )
�
(
w−α�

(
w1+αJ [φ0]−γ

))∣∣∣
� τ−2γ−mq−γ+1

(
rn

τ

)
p1,0

(
rn

τ

)
.

�

Lemma 2.12. Under the inductive assumptions (2.34), for any�, m ∈ {0, 1, . . . , K }
the following estimate holds:

∣∣∣∂m
τ (r∂r )

� f j

∣∣∣ � τ− 4
3+ jδ−m pλ,− 2

n

(
rn

τ

)
, j ∈ {1, . . . , I + 1} (2.62)

Proof. Using the Leibniz rule and the formula (2.19), we have∣∣∣∂m
τ (r∂r )

� f j

∣∣∣

=

∣∣∣∣∣∣∣
∂m
τ (r∂r )

�

⎛
⎜⎝−2

9
φ−2
0

Õ j

j ! +
∑

d+i= j−1,
d, j≥0

i∑
k=0

φkφi−k

wαr2
�

(
w1+αJ [φ0]−γ hd

d!
)

,

⎞
⎟⎠
∣∣∣∣∣∣∣

�
∑

α1+α2=m
β1+β2=�

∣∣∣∂α1
τ (r∂r )

β1
(
φ−2
0

)
∂α2
τ (r∂r )

β2 Õ j

∣∣∣

+
∑

d+i= j−1,
d,i≥0

i∑
k=0

∑
α1+···+α4=m
β1+···+β4=�∣∣∣∂α1

τ (r∂r )
β1φk∂

α2
τ (r∂r )

β2φi−k∂
α3
τ (r∂r )

β3(r−2)∂α4
τ (r∂r )

β4

(
w−α�

(
w1+αJ [φ0]−γ hd

d!
))∣∣∣∣ .

The worst case is j − 1 = 0 where we have d = i = k = 0, as in (2.61), since
p2+λ,−2/n ≤ p1,0 by our choices of λ in Definition 2.5. We now choose p1,0 in
(2.61) to obtain:

�
∑

α1+α2=m

τ− 4
3+ jδ−(α1+α2) p2λ,− 4

n

(
rn

τ

)

+ p1,0

(
rn

τ

) ∑
d+i= j−1,

d,i≥0

i∑
k=0

∑
α1+···+α4=m
β1+···+β4=�

τ
2
3+kδ−α1τ

2
3+(i−k)δ−α2
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r−2τ−2γ+dδ−α4q−γ+1

(
rn

τ

)

� τ− 4
3+ jδ−m p2λ,− 4

n

(
rn

τ

)

+ p1,0

(
rn

τ

) ∑
d+i= j−1,

d,i≥0

τ
4
3−2γ+(d+i)δ−mr−2q−γ+1

(
rn

τ

)

� τ− 4
3+ jδ−m p2λ,− 4

n

(
rn

τ

)
+ τ

4
3−2γ+( j−1)δ−mr−2q−γ+1

(
rn

τ

)
p1,0

(
rn

τ

)

= τ− 4
3+ jδ−m

(
p2λ,− 4

n

(
rn

τ

)
+ q−γ

(
rn

τ

)(
rn

τ

)1− 2
n
)

� τ− 4
3+ jδ−m pλ,− 2

n

(
rn

τ

)
,

where we have used (2.34), (2.60), (2.61), and from the definition of δ (2.23), the
exponent

4

3
− 2γ + ( j − 1)δ − m = −4

3
+ jδ − m + 8

3
− 2γ − δ

= −4

3
+ jδ − m + 2

n
,

and the estimates p2λ,− 4
n

≤ pλ,− 2
n
and q−γ (x)x1− 2

n = x1− 2
n

(1+x)γ
≤ xλ− 2

n

(1+x)λ
=

pλ,− 2
n
(x). (We remind the reader of definitions (2.32) and (2.31) of x 	→ pμ,ν(x)

and x 	→ qν(x) respectively.) �

Remark 2.13. When j = 1 we have Õ1 = 0, and thus from (2.19)

f1 = − φ2
0

wαr2
�
(
w1+αJ [φ0]−γ

)
= −P[φ0].

In particular f1 depends only on φ0 and the inductive assumption (2.34) is not used
in the proof of (2.62).

Lemma 2.14. 1. Let 0 < λ < 1 be given and let β satisfy

β − λ + 2

n
> −1.

Then the following bound holds:

∣∣∣∣
∫ τ

0
(τ ′)β pλ,− 2

n
(
rn

τ ′ ) dτ
′
∣∣∣∣ � τβ+1 pλ,− 2

n

(
rn

τ

)
, (2.63)

where x 	→ pμ,ν(x) is defined in (2.32).
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2. Let b satisfy

b + 2

n
< −1.

Then the following bound holds:
∣∣∣∣
∫ 1

τ

(τ ′)b pλ,− 2
n

(
rn

τ ′

)
dτ ′
∣∣∣∣ � τ b+1 pλ,− 2

n

(
rn

τ

)
. (2.64)

Proof. Proof of part (i). Applying the change of variables x = τ ′/rn we have

∫ τ

0
(τ ′)β pλ,− 2

n

(
rn

τ ′

)
dτ ′ = rn(β+1)

∫ τ
rn

0

xβ+ 2
n

(1 + x)λ
dx . (2.65)

Case 1: rn ≥ τ . We have

rn(β+1)
∫ τ

rn

0

xβ+ 2
n

(1 + x)λ
dx ≤ rn(β+1)

∫ τ
rn

0
xβ+ 2

n dx

� τβ+1+ 2
n r−2 = τβ+1

(
rn

τ

)− 2
n

� τβ+1 pλ,− 2
n

(
rn

τ

)
,

where the very last inequality follows from 1 � pλ,0

(
rn

τ

)
which in turn relies on

rn ≥ τ .
Case 2: rn ≤ τ . We have from β − λ + 2

n > −1

rn(β+1)
∫ τ

rn

0

xβ+ 2
n

(1 + x)λ
dx ≤ rn(β+1)

∫ τ
rn

0
xβ−λ+ 2

n dx

� τβ+1
(

rn

τ

)λ− 2
n

� τβ+1 pλ,− 2
n

(
rn

τ

)
,

where the very last inequality follows from 1 � 1
(1+ rn

τ
)λ

which in turn relies on

rn ≤ τ . �

Proof of part (ii). By the same change of variables as in (2.65) we have

∫ 1

τ

(τ ′)b pλ,− 2
n

(
rn

τ ′

)
dτ ′ = rn(b+1)

∫ 1
rn

τ
rn

xb+ 2
n

(1 + x)λ
dx . (2.66)

We distinguish two cases again.
Case 1: rn ≥ τ . We have from b + 2

n < −1,

rn(b+1)
∫ 1

rn

τ
rn

xb+ 2
n

(1 + x)λ
dx ≤ rn(b+1)

∫ ∞
τ

rn

xb+ 2
n dx

� rn(b+1)
(

rn

τ

)−b−1− 2
n



Y. Guo et al.

= τ b+1
(

rn

τ

)− 2
n

� τ b+1 pλ,− 2
n

(
rn

τ

)
,

where the last inequality follows from1 � pλ,0

(
rn

τ

)
which in turn relies on rn ≥ τ ,

just like in Case 1 in part (i).
Case 2: rn ≤ τ . We have

rn(b+1)
∫ ∞

τ
rn

xb+ 2
n

(1 + x)λ
dx ≤ rn(b+1)

∫ ∞
τ

rn

xb−λ+ 2
n dx

� τ b+1
(

rn

τ

)λ− 2
n ≤ τ b+1 pλ,− 2

n

(
rn

τ

)
,

where the very last inequality follows from 1 ≤ 1
(1+ rn

τ
)λ

which in turn relies on

rn ≤ τ . The two previous estimates together with (2.66) give (2.64). �


2.2.2. Proofs of Proposition 2.8, Lemma 2.7, and Theorem 1.10

Proof of Proposition 2.8. We first assume that m = 0. Let k ∈ N and | f | � τ 4/3,

|g| � τ−8/3, |h(τ, r)| � τ kδ pλ,− 2
n

(
rn

τ

)
. If k ≤

⌊
1
3γ̄

⌋
we then have

|S1[ f, g, h](τ, r)| � τ
4
3

∫ 1

τ

(τ ′)−
8
3

∫ τ ′

0

(
τ ′′)kδ

pλ,− 2
n

(
rn

τ ′′

)
dτ ′′dτ ′

� τ
4
3

∫ 1

τ

(τ ′)−
5
3+kδ pλ,− 2

n

(
rn

τ ′

)
dτ ′ � τ

2
3+kδ pλ,− 2

n

(
rn

τ

)
,

(2.67)

since kδ−λ+ 2
n > −1,wherewe have first used (2.63) and then (2.64). Note that we

have used the assumption k ≤
⌊

1
3γ̄

⌋
and Lemma 2.3 to ensure that − 5

3 + kδ + 2
n <

−1 and therefore (2.64) is applicable in the last line of (2.67). If k >
⌊

1
3γ̄

⌋
we then

have

|S2[ f, g, h](t, r)| � τ
4
3

∫ τ

0
(τ ′)−

8
3

∫ τ ′

0

(
τ ′′)kδ

pλ,− 2
n

(
rn

τ ′′

)
dτ ′′dτ ′

� τ
4
3

∫ τ

0
(τ ′)−

5
3+kδ pλ,− 2

n

(
rn

τ ′

)
dτ ′ � τ

2
3+kδ pλ,− 2

n

(
rn

τ

)
,

(2.68)

where we have used (2.63) twice. We note that for any k >
⌊

1
3γ̄

⌋
we have by

Lemma 2.3 − 5
3 + kδ − λ + 2

n > −1 where we set a = 2N − 2 and we recall
Definition 2.5 of λ. Therefore (2.63) is applicable in the second line.
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By (2.20) and (2.30), and the facts φ2
0 = τ 4/3, φ−4

0 = τ−8/3,

∣∣∣(r∂r )
�φI+1

∣∣∣
�

∑
�1+�2+�3+�4=�

∣∣∣Si [(r∂r )
�1
(
φ2
0

)
, (r∂r )

�2(φ−4
0 ), (r∂r )

�3(φ2
0)(r∂r )

�4 f I+1]
∣∣∣ ,

where i = 1 or i = 2 according to (2.30). Since
∣∣(r∂r )

�1
(
φ2
0

)∣∣ � τ
4
3 ,∣∣∣(r∂r )

�2

(
φ−4
0

)∣∣∣ � τ− 8
3 by (2.40) and

∣∣(r∂r )
�4 f I+1

∣∣ � τ− 4
3+(I+1)δ pλ,− 2

n

(
rn

τ

)
by (2.62), we may apply (2.67)–(2.68) to conclude

∣∣∣(r∂r )
�φI+1

∣∣∣ � τ
2
3+(I+1)δ pλ,− 2

n

(
rn

τ

)
. (2.69)

When m = 1 we observe by taking τ derivative of (2.28) and (2.29) and by Lemma
2.12, 2.14

|∂τφI+1| ≤ 4

3

∣∣∣τ−1φI+1

∣∣∣+ τ− 4
3

∣∣∣∣∣
∫ τ ′

0
(τ ′′)(I+1)δ pλ,− 2

n

(
rn

τ ′′

)
dτ ′′
∣∣∣∣∣

� τ
2
3+(I+1)δ−1 pλ,− 2

n

(
rn

τ

)
.

Similarly, using the Leibniz rule like above,

∣∣∣∂τ (r∂r )
�φI+1

∣∣∣ � τ
2
3+(I+1)δ−1 pλ,− 2

n

(
rn

τ

)
.

For m ≥ 2 we simply use the equation

∂ττ φI+1 − 4

9
φI+1τ

−2 = f I+1 (2.70)

Applying ∂m−2
τ (r∂r )

� to (2.70) we obtain

∣∣∣∂m
τ (r∂r )

�φI+1

∣∣∣ �
m−2∑
m′=0

∣∣∣∂m′
τ (τ−2)

∣∣∣
∣∣∣∂m−2−m′

τ φI+1

∣∣∣+
∣∣∣∂m−2

τ (r∂r )
� f I+1

∣∣∣

�
m−2∑
m′=0

τ−2−m′
τ

2
3+(I+1)δ−m+2+m′

pλ,− 2
n

(
rn

τ

)

+ τ− 4
3+(I+1)δ−(m−2) pλ,− 2

n

(
rn

τ

)

� τ
2
3+(I+1)δ−m pλ,− 2

n

(
rn

τ

)
,

wherewe have used the inductive assumption (that has been verified for allm′ < m)
and Lemma 2.12. This completes the proof of Proposition 2.8. �
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Proof of Lemma 2.7. It remains to show the basis of induction, that is Lemma 2.7.
By Lemma 2.12 for any �, m ∈ {0, 1, . . . , K } we have the bound

∣∣∣∂m
τ (r∂r )

� f1
∣∣∣ � τ− 4

3+δ−m pλ,− 2
n

(
rn

τ

)
. (2.71)

By Remark 2.13, bound (2.71) does not rely on the inductive assumptions (2.34).
Using an argument identical to theproof ofProposition2.8,weconcludeLemma2.7.

�

Proof of Theorem 1.10. The proof follows by induction on the index j ∈ {1, . . . ,
M}. The claim is shown for j = 1 in Lemma 2.7, while the inductive step follows
from Proposition 2.8. �


3. Remainder Equations and the Main Results

We look for a solution of (1.46) in the form

φ(τ, r) =
M∑

k=0

εkφk(τ, r) + θ(τ, r) =: φapp + θ, (3.1)

where M is to be specified later.

3.1. Derivation of the Remainder Equations

Lemma 3.1. (PDE satisfied by θ ). Let φ, φapp, and θ be related by (3.1). Then the
equation satisfied by θ reads(

1 − εγwc
M2

g

r2

)
∂2τ θ − 2εγwc

Mg

r2
∂τ ∂r (rθ) − εγ c

1

rwα
∂r

(
w1+α 1

r2
∂r [r3θ ]

)

+ εK3[θ ]

− 4θ

9φ3
app

+ 2ε
P[φapp]
φapp

θ + εK1[θ ] + 2

9

(
1

φ2 − 1

φ2
app

+ 2θ

φ3
app

)

+ ε
P[φapp]θ2

φ2
app

+ εK2[θ ] = S(φapp) (3.2)

where the source term S(φapp) and the expressions K j [θ ], j = 1, 2, 3 are given by
(2.2), (3.15), (3.16), (3.17) below respectively and c is given by (3.19).

Proof. We recall the formulas (1.44), (1.45), (1.47) of Mg , the operator �, and the
nonlinear pressure term P[φ] respectively. Finally, recall the fundamental formula

J [φ] = φ2(φ + �φ)

Let
Km[θ ] := J [φ]m − J [φapp]m . (3.3)
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Then

K1[θ ] = (2φappθ + θ2)(φapp + �φapp) + φ2(θ + �θ)

= φ2�θ + (3φ2
app + 2φapp�φapp)θ + (3φapp + �φapp)θ

2 + θ3

We want to find alternative expression for

P[φ] − P[φapp] = φ2

g2(r)wαr2
�
(
w1+α

(
J [φ]−γ − J [φapp]−γ

))

+ φ2 − φ2
app

g2(r)wαr2
�
(
w1+αJ [φapp]−γ

)
(3.4)

Note that

1

wα
�
(
w1+α

(
J [φ]−γ − J [φapp]−γ

))

= 1

wα
�
(
w1+α K−γ [θ ]

)

= wMg∂τ K−γ [θ ] + wr∂r K−γ [θ ] + (1 + α)rw′K−γ [θ ] (3.5)

Since

∂τ K−γ [θ ] = −γJ [φ]−γ−1∂τ

(
J [φ] − J [φapp]

)
− γ (J [φ]−γ−1 − J [φapp]−γ−1)∂τJ [φapp]

= −γJ [φ]−γ−1∂τ K1[θ ] − γ K−γ−1[θ ]∂τJ [φapp]
and

∂τ K1[θ ] = φ2(Mg∂
2
τ θ + ∂τ ∂r (rθ)) (3.6)

+
[
φ2∂τ Mg + 2φ∂τφMg + 2φ2 + 2φ�φapp

]
∂τ θ (3.7)

+ 2φ∂τφr∂rθ +
[
∂τ (3φ

2
app + 2φapp�φapp) + ∂τ (3φapp + �φapp)θ

]
θ

(3.8)

=: φ2(Mg∂
2
τ θ + ∂τ ∂r (rθ)) + K1, (3.9)

where we have used the identity 3φ2
app + 6φappθ + 3θ2 = 3φ2. We may rewrite

wMg∂τ K−γ [θ ] = − γwJ [φ]−γ−1φ2(M2
g∂2τ θ + Mg∂τ ∂r (rθ))

− γwMgJ [φ]−γ−1K1

− γwMg K−γ−1[θ ]∂τJ [φapp] (3.10)

Similarly,

∂r K−γ [θ ] = −γJ [φ]−γ−1∂r K1[θ ] − γ K−γ−1[θ ]∂rJ [φapp]
and

∂r K1[θ ] = φ2(Mg∂r∂τ θ + r∂2r θ)
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+
[
φ2 + 2φ∂rφr + 3φ2 + 2φapp�φapp + 2�φappθ

]
∂rθ

+ (φ2∂r Mg + 2φ∂rφMg)∂τ θ

+
[
∂r (3φ

2
app + 2φapp�φapp) + ∂r (3φapp + �φapp)θ

]
θ.

We may write

wr∂r K−γ [θ ]
= −γwJ [φ]−γ−1φ2Mg∂τ ∂r (rθ) − γwrJ [φ]−γ−1φ2

(
r∂2r θ + 4∂rθ

)

− γwrJ [φ]−γ−1K2 − γwr K−γ−1[θ ]∂rJ [φapp], (3.11)

where

K2 := [2φ∂rφr + 2φapp�φapp + 2�φappθ
]
∂rθ

+ (φ2∂r Mg + 2φ∂rφMg − r−1φ2Mg)∂τ θ

+
[
∂r (3φ

2
app + 2φapp�φapp) + ∂r (3φapp + �φapp)θ

]
θ. (3.12)

Plugging (3.10) and (3.11) into (3.5), we deduce that

1

wα
�
(
w1+α

(
J [φ]−γ − J [φapp]−γ

))

= −γwJ [φ]−γ−1φ2(M2
g∂2τ θ + 2Mg∂τ ∂r (rθ))

− γ rJ [φ]−γ−1φ2w−α∂r

(
w1+α 1

r2
∂r [r3θ ]

)

− γwMgJ [φ]−γ−1K1 − γwrJ [φ]−γ−1K2 − γwK−γ−1[θ ]�J [φapp]
+ (1 + α)rw′ (K−γ [θ ] + γJ [φ]−γ−1φ2[r∂rθ + 3θ ]

)
. (3.13)

Note that

− γwMgJ [φ]−γ−1K1 − γwrJ [φ]−γ−1K2

= −γwJ [φ]−γ−1[(�(φ2Mg) + φ2Mg + 2φ�φappMg)∂τ θ + (�(φ2)

+ 2φ�φapp)r∂rθ + �(3φ2
app + 2φapp�φapp)θ

]
− γwJ [φ]−γ−1�(3φapp + �φapp)θ

2.

By writing

K−γ [θ ] = −γJ [φapp]−γ−1K1[θ ] +
(

K−γ [θ ] + γJ [φapp]−γ−1K1[θ ]
)

and

γJ [φ]−γ−1φ2[r∂rθ + 3θ ]
= γJ [φapp]−γ−1φ2[r∂rθ + 3θ ] + γ K−γ−1φ

2[r∂rθ + 3θ ],
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the last line of (3.13) can be rewritten as

K−γ [θ ] + γJ [φ]−γ−1φ2[r∂rθ + 3θ ]
= −γJ [φapp]−γ−1[φ2Mg∂τ θ + 2φapp�φappθ

]
− γJ [φapp]−γ−1[(�φapp − 3φapp)θ

2 − 2θ3
]

+ K−γ [θ ] + γJ [φapp]−γ−1K1[θ ] + γ K−γ−1[θ ]φ2[r∂rθ + 3θ ].
Observe that

K−γ [θ ] + γJ [φapp]−γ−1K1[θ ]
= γ (γ + 1)J [φapp]−γ−2

(∫ 1

0
(1 − s)(1 + s

K1[θ ]
J [φapp] )

−γ−2 ds

)
(K1[θ ])2,

which asserts that the expression is a nonlinear term. Therefore by splitting

K−γ−1[θ ] = −(γ + 1)J [φapp]−γ−2K1[θ ]
+
(

K−γ−1[θ ] + (γ + 1)J [Q]−γ−2K1[θ ]
)

,

we obtain

φ2

g2(r)wαr2
�
(
w1+α

(
J [φ]−γ − J [φapp]−γ

))

= −γw
φ4

g2J [φ]γ+1r2
(M2

g∂2τ θ + 2Mg∂τ ∂r (rθ))

− γ
φ4

g2J [φ]γ+1rwα
∂r

(
w1+α 1

r2
∂r [r3θ ]

)

+ K1[θ ] + K2[θ ] + K3[θ ], (3.14)

where

K1[θ ] := − γw
φ2

g2J [φ]γ+1r2
[
(�(φ2Mg) + φ2Mg + 2φ�φappMg)∂τ θ

+ 4φ�φappr∂rθ + �(3φ2
app + 2φapp�φapp)θ

]

+ γ (γ + 1)w
φ2

g2J [φapp]γ+2r2
[
φ2�θ + (3φ2

app

+ 2φapp�φapp)θ
]
�J [φapp]

− γ (1 + α)rw′ φ2

g2J [φapp]γ+1r2
[
φ2Mg∂τ θ + 2φapp�φappθ

]
(3.15)

K2[θ ] := − 2γw
φ3

g2J [φ]γ+1r2
(r∂rθ)2 − 2γw

φ3

g2J [φ]γ+1r2
Mg∂τ θ(r∂rθ)

− γw
φ2

g2J [φ]γ+1r2
�(3φapp + �φapp)θ

2
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+ γ (γ + 1)w
φ2

g2J [φapp]γ+2r2
[
(3φapp + �φapp)θ

2 + θ3
]
�J [φapp]

− γ (1 + α)rw′ φ2

g2J [φapp]γ+1r2
[
(�φapp − 3φapp)θ

2 − 2θ3
]

− γw
φ2

g2r2
(K−γ−1[θ ] + (γ + 1)J [φapp]−γ−2K1[θ ])�J [φapp]

(3.16)

and

K3[θ ] := (1 + α)rw′ φ2

g2r2(
K−γ [θ ] + γJ [φapp]−γ−1K1[θ ] + γ K−γ−1[θ ]φ2[r∂rθ + 3θ ]

)
.

(3.17)

Note that K1[θ ] contains both linear and nonlinear terms in terms of θ and we
view them as linear terms with nonlinear coefficients. K2[θ ] and K3[θ ] consist of
quadratic and higher terms. We have distinguished them because K3[θ ] needs to be
estimated together with the main linear elliptic operator in higher order estimates
due to the presence of nonlinear factor c.

The φ Equation (1.46) can be written as(
1 − εγwc

M2
g

r2

)
∂2τ θ − 2εγwc

Mg

r2
∂τ ∂r (rθ)

− εγ c
1

rwα
∂r

(
w1+α 1

r2
∂r [r3θ ]

)
+ εK3[θ ]

− 4θ

9φ3
app

+ 2ε
P[φapp]
φapp

θ + εK1[θ ] + 2

9

(
1

φ2 − 1

φ2
app

+ 2θ

φ3
app

)

+ ε
P[φapp]θ2

φ2
app

+ εK2[θ ] = S(φapp), (3.18)

where the source term S(φapp) is given by (2.2) and

c := c[φ] = φ4

g2J [φ]γ+1 (3.19)

�

Lemma 3.2. (The H equation). Let

H := τ−mrθ. (3.20)

Then H solves(
1 − εγwc[φ] M2

g

r2

)
∂2τ H − 2εγwc[φ] Mg

r
∂r∂τ H + 2m

τ
∂τ H
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+
[

m(m − 1)

τ 2
− 4

9φ3
app

]
H

− εγ c[φ] 1

wα
∂r

(
w1+α 1

r2
∂r [r2H ]

)
+ εN0[H ] + εLlowH

= S (φapp) + N [H ], (3.21)

where

N0[H ] := r

τm
K3[τ

m H

r
] (3.22)

LlowH := −γwc[φ] M2
g

r2

[
2m

τ
∂τ H + m(m − 1)

τ 2
H

]

− 2mγwc[φ] Mg

rτ
∂r H + 2

P[φapp]
φapp

H + r

τm
K1[τ

m H

r
] (3.23)

S (φapp) := r

τm
S(φapp) (3.24)

N [H ] := − r

τm
N[τ

m H

r
], N[θ ] := εK2[θ ] + 2

9

(
1

φ2 − 1

φ2
app

+ 2θ

φ3
app

)

+ ε
P[φapp]θ2

φ2
app

, (3.25)

where the source term S(φapp) and the expressions K j [θ ], j = 1, 2, 3 are given by
(2.2), (3.15), (3.16), (3.17).

Proof. The proof follows by a direct verification after plugging in θ = τmr−1H
in (3.18). �


We rewrite (3.21) in the form

g00∂2τ H + 2g01∂r∂τ H + 2m

τ
∂τ H + d(τ, r)2

H

τ 2
− εγ c[φ]

1

wα
∂r

(
w1+α 1

r2
∂r [r2H ]

)
+ εN0[H ]

= S (φapp) − εLlowH + N [H ], (3.26)

where

g00 := 1 − εγwc[φ] M2
g

r2
, (3.27)

g01 := −εγwc[φ] Mg

r
, (3.28)

d2(τ, r) := m(m − 1) − 4τ 2

9φ3
app

. (3.29)
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The leading order operator

� := g00∂2τ + 2g01∂r∂τ − εγ c[φ] 1

wα
∂r

(
w1+α 1

r2
∂r [r2·]

)
(3.30)

will be shown to be hyperbolic due to the bound 1 � g00 � 1 shown later in
Lemma 4.6. We shall see that the former estimate is crucially tied to the supercrit-
icality (γ < 4

3 ) and the flatness assumption on the enthalpy w near r = 0 (that is
n sufficiently large in (1.19), that is Lemma 1.1). Moreover, � is also manifestly
quasilinear as c[φ] depends on the space-time derivatives of H . The twofold singu-
lar nature of � coming from the gravitational singularity at τ = 0 and the vacuum
singularity at r = 1 is discussed at length in Section 1.5.

The basic equation for our energy estimates is obtained by dividing (3.26) by
g00:

∂2τ H + 2
g01

g00 ∂r∂τ H + 2m

g00

∂τ H

τ
+ d2

g00

H

τ 2

− εγ
c[φ]
g00

1

wα
∂r

(
w1+α 1

r2
∂r [r2H ]

)
+ ε

N0[H ]
g00

= 1

g00

(
S (φapp) − εLlowH + N [H ]) . (3.31)

We denote the first summation without sup in Definition 1.12 of SN
κ by E N and

the second summation without the time integral by DN , that is for any τ ∈ (0, 1]
we let

E N (τ ) :=
N∑

j=0

{
τγ− 5

3 ‖D j Hτ‖2α+ j + τγ− 11
3 ‖D j H‖2α+ j

+ετ−γ−1‖q− γ+1
2

(
rn

τ

)
D j+1H‖2α+ j+1

}
(3.32)

DN (τ ) :=
N∑

j=0

{
τγ− 8

3 ‖D j Hτ‖2α+ j

+τγ− 14
3 ‖D j H‖2α+ j + ετ−γ−2‖q− γ+2

2

(
rn

τ

)
D j+1H‖22α+ j+1

}
.

(3.33)

Then the space-time norm can be written as

SN
κ (τ ) = sup

κ≤τ ′≤τ

E N (τ ′) +
∫ τ

κ

DN (τ ′) dτ ′.
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4. High-Order Energies and Preparatory Bounds

4.1. High-Order Equations and Energies

In order to derive high-order equations, we first introduce the elliptic operators

Lk f := − 1

wk
∂r

[
w1+k Dr f

]
, (4.1)

L∗
k h := − 1

wk
Dr

[
w1+k∂r h

]
. (4.2)

Then for any f, h we have

( f, Lkh)k = (Dr f, Dr h)1+k and ( f, L∗
k h)k = (∂r f, ∂r h)1+k (4.3)

where we recall the inner product (·, ·)k given in (1.67).
We recall here the definition of the fundamental high-order differential operators

D j given in (1.66). We then define

L j+αD j :=
{

L j+αD j if j is even

L∗
j+αD j if j is odd

. (4.4)

Important role is played by the operator D̄i defined as

D̄i =
{
D0 for i = 0

Di−1∂r for i � 1
(4.5)

Let 1 ≤ i ≤ N . After applying Di to (3.31) we use Lemmas B.1–B.2 to derive
the equation for Di H :

∂2τDi H + 2
g01

g00 ∂rDi∂τ H + 2m

g00

Di∂τ H

τ
+ d2

g00

Di H

τ 2
+ εγ

c[φ]
g00 Li+αDi H

= Di

(
1

g00

(
S (φapp) − εLlowH + N [H ])

)
+ Ci [H ] + D̄i−1M [H ]. (4.6)

Here Ci contains all the commutators

Ci [H ] := − 2

[
Di ,

g01

g00 ∂r

]
∂τ H − 2m

[
Di ,

1

g00

]
∂τ H

τ
−
[
Di ,

d2

g00

]
H

τ 2

− εγ
c[φ]
g00

i−1∑
j=0

ζi jDi− j H − εγ

[
D̄i−1,

c[φ]
g00

]
Dr Lα H, (4.7)

where the functions ζi j are given by (B.416) and the commutators [·, ·] are defined
in (B.417). Furthermore,

M [H ] := −εγ ∂r

(
c[φ]
g00

)
Lα H − εDr

(
N0[H ]

g00

)
. (4.8)
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Note that we have written for i � 1,

Di (εγ
c[φ]
g00 Lα H + ε

N0[H ]
g00 )

= εγ
c[φ]
g00 Li+αDi H + εγ

c[φ]
g00

i−1∑
j=0

ζi jDi− j H

+ εγ

[
D̄i−1,

c[φ]
g00

]
Dr Lα H + D̄i−1M [H ]

Definition 4.1. (Weighted high-order energies). For any 0 < κ ≤ 1 and N ∈ N we
define the high-order energies

E N (τ ) =
N∑

j=0

E j (τ
′), DN (τ ) =

N∑
j=0

D j (τ ), (4.9)

where for any 0 � j � N we have

E j (τ ) = 1

2

∫ 1

0

{
τγ− 5

3
∣∣D j Hτ

∣∣2 + d2

g00 τγ− 11
3
∣∣D j H

∣∣2

+εγ τγ− 5
3

c[φ]
g00 w

∣∣D j+1H
∣∣2} wα+ j r2 dr (4.10)

and

D j (τ ) =
∫ 1

0

⎛
⎝[ 2m

g00 + 1

2
(
5

3
− γ )

]
τγ− 8

3 − τγ− 5
3

∂r

(
g01

g00
wα+ j r2

)
wα+ j r2

⎞
⎠

∣∣D j Hτ

∣∣2 wα+ j r2 dr

− 1

2
εγ

∫ 1

0

(
τγ− 5

3 c[φ0]
)

τ

c[φ]
c[φ0]g00

∣∣D j+1H
∣∣2 w1+α+ j r2 dr

− 1

2

∫ 1

0

(
d2

g00 τγ− 11
3

)
τ

∣∣D j H
∣∣2 wα+ j r2 dr.

Remark 4.2. It will be shown in Section 4.2, Lemma 4.6, that every summand
appearing in the definition of D j above is positive in our bootstrap regime.

Proposition 4.3. Assume that H is a sufficiently smooth solution to (3.26). The the
following energy identity holds:

∂τE
N (τ ) + DN (τ ) =

N∑
i=0

Ri , (4.11)

where for any i ∈ {1, . . . , N }, the error terms Ri are explicitly given by

Ri =τγ− 5
3

(
Di

(
S (φapp)

g00 − ε

g00LlowH + N [H ]
g00

)
, Di Hτ

)
α+i
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+ τγ− 5
3
(Ci [H ] + D̄i−1M [H ], Di Hτ

)
α+i

1

2
εγ τγ− 5

3

∫ 1

0
c[φ0]

(
c[φ]

c[φ0]g00

)
τ

w1+α
∣∣D j+1H

∣∣2 w j r2 dr, (4.12)

where Ci [H ] is given by (4.7) andM [H ] by (4.8). When i = 0, we replace Ci [H ]+
D̄i−1M [H ] in the above formula by −εN0[H ]

g00
.

Proof. We evaluate the (·, ·)α+i -inner product of (4.6) with τγ− 5
3Di Hτ , and use

Definition 4.1. �


4.2. A Priori Bounds and the Energy-Norm Equivalence

Assume that H is a solution to (3.26) on a time interval [κ, T ] for some T ≤ 1.
For a sufficiently small σ ′ < 1, to be fixed later, we stipulate the following a priori
bounds.∥∥∥∥(r∂r )

�1(τ∂τ )
�2

(
H

r

)∥∥∥∥
C0([κ,T ]×[0,1])

≤ σ ′, 0 ≤ �1 + �2 ≤ 2, �1, �2 ∈ Z≥0.

(4.13)

Lemma 4.4. Assume that H is a solution to (3.26) on a time interval [κ, T ] for
some T ≤ 1 and assume that the a priori assumptions (4.13) hold. Then for any
(τ, r) ∈ [κ, T ] × [0, 1]

1 �
∣∣∣∣ φ

φ0

∣∣∣∣ � 1, (4.14)

1 �
∣∣∣∣J [φ]
J [φ0]

∣∣∣∣ � 1, (4.15)

|∂τφ| � τ− 1
3 , (4.16)

|(r∂r )∂τφ| �
(
ε + σ ′) τ− 1

3+δ (4.17)

|φττ | � τ− 4
3 , (4.18)∣∣∣(r∂r )

�φ

∣∣∣ � (ε + σ ′) τ 2
3+δ, � = 1, 2, (4.19)

|�φ| � τ
2
3 q1

(
rn

τ

)
, (4.20)

|∂τ�φ| � τ− 1
3 q1

(
rn

τ

)
, (4.21)

|r∂r�φ| � τ
2
3 q1

(
rn

τ

)
, (4.22)

∣∣∣∣( φ

φ0
)τ

∣∣∣∣ � (ε + σ ′) τ δ−1, (4.23)
∣∣∣∣( J [φ]
J [φ0] )τ

∣∣∣∣ � (ε + σ ′) τ δ−1. (4.24)
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Proof. Proof of (4.14). Let h := φ
φ0
. By (3.1) and (3.20) we have

h = φ

φ0
= 1 +

M∑
j=1

ε j φ j

φ0
+ τm− 2

3
H

r
. (4.25)

By Proposition 2.8 and the a priori assumption (4.13) for any (τ, r) ∈ [κ, T ]×[0, 1]
we have

|h − 1| �
M∑

j=1

ε jτ jδ + σ ′τm− 2
3 ≤ 1

10

for ε, σ ′ > 0 sufficiently small. �

Proof of (4.15). Note that

J [φ]
J [φ0] =

∣∣∣∣ φ

φ0

∣∣∣∣
2

φ + �φ

φ0 + �φ0
= h2 φ + �φ

φ0 + �φ0
. (4.26)

Therefore, in view of (4.14) it suffices to prove

φ0 + �φ0 � φ + �φ � φ0 + �φ0. (4.27)

Recall that

φ0 + �φ0 = τ
2
3 + 2

3
Mgτ

− 1
3 = τ

2
3

(
1 + 2

3

(τ − 1)

τ
r∂r (log g)

)
.

By (1.20)–(1.21) we have

τ
2
3 q1

(
rn

τ

)
� |φ0 + �φ0| � τ

2
3 q1

(
rn

τ

)
(4.28)

Moreover,

φ + �φ = h(φ0 + �φ0) + φ0�h. (4.29)

From (4.25), and Proposition 2.8 with the crude bound pλ,− 2
n

(
rn

τ

)
� 1 and the

bound

τ−1 =
(

rn

τ

)
r−n � r−nq1

(
rn

τ

)
,

we have

|�h| � q1

(
rn

τ

) M∑
j=1

ε jτ jδ + rnτm− 2
3

∣∣∣∣Hτ

r

∣∣∣∣+ rnτm− 5
3

∣∣∣∣H

r

∣∣∣∣+ τm− 2
3

∣∣∣∣r∂r

(
H

r

)∣∣∣∣

� ετ δq1

(
rn

τ

)
+ q1

(
rn

τ

)
τm− 2

3

(∣∣∣∣τ Hτ

r

∣∣∣∣+
∣∣∣∣H

r

∣∣∣∣
)

+ τm− 2
3

∣∣∣∣r∂r

(
H

r

)∣∣∣∣
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� q1

(
rn

τ

)(
ε +

∣∣∣∣τ Hτ

r

∣∣∣∣+
∣∣∣∣H

r

∣∣∣∣+
∣∣∣∣r∂r

(
H

r

)∣∣∣∣
)

� q1

(
rn

τ

) (
ε + σ ′) .

Now the bound (4.15) follows from (4.29), (4.28), (4.14), and (4.13). �

Proof of (4.16). By (3.1), (3.20), and Proposition 2.8 we have

|φτ | � τ− 1
3 +

M∑
j=1

ε jτ− 1
3+ jδ pλ,− 2

n

(
rn

τ

)
+τm−1

∣∣∣∣H

r

∣∣∣∣+τm
∣∣∣∣Hτ

r

∣∣∣∣

� τ− 1
3 + ετ− 1

3+δ pλ,− 2
n

(
rn

τ

)
+ σ ′τm−1 � τ− 1

3 ,

wherewe have used the a priori bounds (4.13), the crude bound ετ δ pλ,− 2
n

(
rn

τ

)
� 1

and the assumption m ≥ 5
2 . �


Proof of (4.17). This is similar to the proof of (4.16). With r∂rφ0 = 0, applying
r∂r we obtain

|r∂rφτ | � ετ− 1
3+δ pλ,− 2

n

(
rn

τ

)
+ τm−1

∣∣∣∣r∂r

(
H

r

)∣∣∣∣+ τm
∣∣∣∣r∂r

(
Hτ

r

)∣∣∣∣
� (ε + σ ′)τ− 1

3+δ,

where we have used (4.13) in the last line and the crude bound pλ,− 2
n

(
rn

τ

)
� 1. �


Proof of (4.18). By (3.1), (3.20), and Proposition 2.8 we have

|φττ | � τ− 4
3 +

M∑
j=1

ε jτ− 4
3+ jδ pλ,− 2

n

(
rn

τ

)
+ τm−2

∣∣∣∣H

r

∣∣∣∣+ τm−1
∣∣∣∣Hτ

r

∣∣∣∣+ τm
∣∣∣∣Hττ

r

∣∣∣∣
� τ− 4

3 + σ ′τm−2 � τ− 4
3 ,

where we have used the a priori bounds (4.13), σ ′ < 1, pλ,− 2
n

(
rn

τ

)
� 1, and the

assumption m ≥ 5
2 . �


Proof of (4.19). By (3.1), (3.20), and Proposition 2.8, for any � = 0, 1, 2, we have

|(r∂r )
�φ| �

M∑
j=1

ε jτ
2
3+ jδ + τm

∣∣∣∣(r∂r )
�

(
H

r

)∣∣∣∣ � ετ
2
3+δ + σ ′τm �

(
ε + σ ′) τ 2

3+δ

where we have used the a priori bounds (4.13) and the assumption m ≥ 5
2 . �
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Proof of (4.20). By (4.16) and (4.19) we have

|�φ| � rn
(

τ− 1
3 + (ε + σ ′) τ 2

3+δr−nq1

(
rn

τ

))
+ (ε + σ ′) τ 2

3+δ

� τ
2
3 q1

(
rn

τ

)
+ (ε + σ ′) τ 2

3+δq1

(
rn

τ

)

� τ
2
3 q1

(
rn

τ

)
.

�

Proof of (4.21). From the definition of � we have

|∂τ�φ| � |r∂r (log g)φτ | + |r∂r (log g)φττ | + |r∂rφτ | � rnτ− 4
3 + (ε + σ ′)τ− 1

3+δ

� τ− 1
3 q1

(
rn

τ

)
,

where we have used the crude bound ετ δ pλ,− 2
n

(
rn

τ

)
� 1. �


Proof of (4.22). From the definition of � we have

|r∂r�φ| �
∣∣∣(r∂r )

2(log g)φτ

∣∣∣+ |r∂r (log g)r∂rφτ | +
∣∣∣(r∂r )

2φ

∣∣∣
� rnτ− 1

3 + (ε + σ ′) rnτ− 1
3+δ + (ε + σ ′) τ 2

3+δ

� τ
2
3 q1

(
rn

τ

)
,

where we have used (4.16), (4.17), and (4.18). �

Proof of (4.23) and (4.24). By (4.25) and (4.13), we have (4.23). To show (4.24)
we first observe that |�h| + |τ∂τ�h| � τ δ , which is a simple consequence of the
bounds shown above. We recall here h = φ

φ0
. Now the bound follows from (4.26),

(4.29), (4.13). �

Lemma 4.5. Assume that H is a solution to (3.26) on a time interval [κ, T ] for
some T ≤ 1 and assume that the a priori assumptions (4.13) hold. Then for any
(τ, r) ∈ [κ, T ] × [0, 1]

τ δ−2+ 2
n q−γ−1

(
rn

τ

)
� c[φ] � τ δ−2+ 2

n q−γ−1

(
rn

τ

)
. (4.30)

∣∣∂τJ [φ]∣∣ � τq1

(
rn

τ

)
, (4.31)

∣∣r∂rJ [φ]∣∣ � τ 2q1

(
rn

τ

)
, (4.32)

|∂τ c[φ]| � c[φ]τ−1, (4.33)

|r∂r c[φ]| � τ δ−2+ 2
n q−γ−1

(
rn

τ

)
. (4.34)
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Proof. Proof of (4.30). Recall the definition of c[φ] (3.19). By (4.15) we have

J [φ] ≈ J [φ0] ≈ τ 2q1
(

rn

τ

)
, where we have used (4.28) to infer the last equiv-

alence. By (4.15) φ4 ≈ τ
8
3 . Therefore

c[φ] ≈ τ
2
3−2γ q−γ−1

(
rn

τ

)
= τ δ−2+ 2

n q−γ−1

(
rn

τ

)
.

�

Proof of (4.31). Since ∂τJ [φ] = 2φφτ (φ+�φ)+φ2(φτ +∂τ�φ), bounds (4.16),
(4.20), and (4.21) imply

∣∣∂τJ [φ]∣∣ � τ
2
3 τ− 1

3

(
τ

2
3 + τ

2
3 q1

(
rn

τ

))

+ τ
4
3

(
τ− 1

3 τ− 1
3 q1

(
rn

τ

))
� τq1

(
rn

τ

)
.

�

Proof of (4.32). Since r∂rJ [φ] = 2φr∂rφ(φ+�φ)+φ2(r∂rφ+r∂r�φ), bounds
(4.19), (4.20), and (4.22) imply

∣∣r∂rJ [φ]∣∣ � τ
2
3
(
ε + σ ′) τ 2

3+δ

(
τ

2
3 + τ

2
3 q1

(
rn

τ

))
+ τ

4
3

((
ε + σ ′) τ 2

3+δ + τ
2
3 q1

(
rn

τ

))
� τ 2q1

(
rn

τ

)
.

�

Proof of (4.33). From the definition of c[φ] it is easy to check the identity ∂τ c[φ] =
c[φ]

(
4φτ

φ
− (γ + 1) ∂τJ [φ]

J [φ]
)
. Therefore

|∂τ c[φ]| � c[φ]
⎛
⎝τ−1 +

τq1
(

rn

τ

)
τ 2q1

( rn

τ

)
⎞
⎠ � c[φ]τ−1,

where we have used (4.16), (4.31), and (4.15). �

Proof of (4.34). Like in the proof of (4.33) we have

|r∂r c[φ]| � |c[φ]|
(∣∣∣∣r∂rφ

φ

∣∣∣∣+
∣∣∣∣r∂rJ [φ]

J [φ]
∣∣∣∣
)

� τ δ−2+ 2
n q−γ−1

(
rn

τ

) ((
ε + σ ′) τ δ + 1

)
� τ δ−2+ 2

n q−γ−1

(
rn

τ

)
,

where we have used bounds (4.19), (4.30), and (4.32). �
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Lemma 4.6. Assume that H is a solution to (3.26) on a time interval [κ, T ] for
some T ≤ 1 and assume that the a priori assumptions (4.13) hold. Then for any
(τ, r) ∈ [κ, T ] × [0, 1] the following bounds hold:

1 � g00 � 1 (4.35)

∣∣∣∂r g00
∣∣∣ � ετ δ− 1

n q−γ−1

(
rn

τ

)(
rn

τ

)2− 3
n

,

(4.36)∣∣∣∂τ g00
∣∣∣ � ετ δ−1 (4.37)

∣∣∣r−1g01
∣∣∣+
∣∣∣∂r g01

∣∣∣ � ετ δ−1q−γ−1

(
rn

τ

)(
rn

τ

)1− 2
n

,

(4.38)∣∣∣∣∣∣
∂r

(
g01

g00
wαr2

)
wαr2

∣∣∣∣∣∣ � ετ δ−1 (4.39)

τγ− 14
3 � −

(
d(τ, r)2

g00 τγ− 11
3

)
τ

� τγ− 14
3 (4.40)

wα(τ + Mg)
−γ−2 � −

(
τγ− 5

3 c[φ0]
)

τ
� wα(τ + Mg)

−γ−2 (4.41)

Proof. Proof of (4.35). By definition (3.27) of g00 it suffices to check that∥∥c[φ](∂r g)2
∥∥

C0([κ,T ]×[0,1]) � 1. By (4.30) and the bound |∂r g| � rn−1 for all
r ∈ [0, 1] (by (1.21)) we have

∣∣∣c[φ](∂r g)2
∣∣∣ � τ δ−2+ 2

n q−γ−1

(
rn

τ

)
r2n−2 � τ δ

(
rn

τ

)2− 2
n

qγ+1
( rn

τ

) � τ δ

where we recall δ = 8
3 − 2γ − 2

n > 0 and x 	→ x2− 2
n

(1+x)γ+1 is clearly bounded for all
x ≥ 0 and any γ > 1. This proves (4.35). �

Proof of (4.36). From (3.27) we have∣∣∣∂r g00

∣∣∣ � ε|∂rw||c[φ]|r2n−2 + ε |∂r c[φ]| r2n−2 + ε |c[φ]| r2n−3

� ετ δ−2+ 2
n q−γ−1

(
rn

τ

)
r2n−3 = ετ δ− 1

n q−γ−1

(
rn

τ

)(
rn

τ

)2− 3
n

,

where we have used (4.34), (4.30). �

Proof of (4.37). Like above, we need to show |∂τ c[φ]| r2n−2 � τ δ−1. Apply-
ing (4.33), it then follows

|∂τ c[φ]| r2n−2 � τ δ−1
(

rn

τ

)2− 2
n

q−γ−1

(
rn

τ

)
� τ δ−1.

�




Continued Gravitational Collapse for Newtonian Stars

Proof of (4.38). From (3.28) we have∣∣∣∂r g01
∣∣∣ � ε|∂rw||c[φ]|rn−1 + ε |∂r c[φ]| rn−1 + ε |c[φ]| rn−2

� ετ δ−2+ 2
n q−γ−1

(
rn

τ

)
rn−2 = ετ δ−1q−γ−1

(
rn

τ

)(
rn

τ

)1− 2
n

,

where we have used (4.34), (4.30). The bound for
∣∣∣ g01

r

∣∣∣ follows analogously. �

Proof of (4.39). It is clear that∣∣∣∣∣∣

∂r

(
g01

g00
wαr2

)
wαr2

∣∣∣∣∣∣ � r−1
∣∣∣∣ g01

g00w

∣∣∣∣+
∣∣∣∣∂r g01

g00

∣∣∣∣+
∣∣∣∣ g

01∂r g00

(g00)2

∣∣∣∣
�
∣∣c[φ]rn−2

∣∣+ ∣∣∂r g01
∣∣+ ∣∣g01

∣∣ ∣∣∂r g00
∣∣

� ετ δ−1q−γ−1

(
rn

τ

)(
rn

τ

)1− 2
n + ε2rτ δ−1q−γ−1

(
rn

τ

)(
rn

τ

)1− 2
n

+ τ δ− 1
n q−γ−1

(
rn

τ

)(
rn

τ

)2− 3
n

� ετ δ−1,

where we have used (4.35), (4.38), (4.36) and g01w−1 = −εγ c[φ] Mg
r , Mg defined

in (1.44). Note that a negative power of w is fortunately cancelled away as one
positive power of w is contained in the definition of g01. �

Proof of (4.40). It clearly suffices to show ∂τ

(
d(τ,r)2

g00

)
� ετ δ−1. Observe that

∂τ

(
d2
) = 4

3

(
φapp
φ0

)−4
∂τ

(
φapp
φ0

)
. Since ∂τ

(
φapp
φ0

)
= ∑M

j=1 ε j∂τ

(
φ j
φ0

)
, it follows

that
∣∣∣∂τ

(
φapp
φ0

)∣∣∣ � ετ δ−1. Therefore
∣∣∂τ

(
d(τ, r)2

)∣∣ � ετ δ−1. Together with (4.37)

the claim follows. �

Proof of (4.41). Observe the identity τγ− 5

3 c[φ0] = g−2
(
τ + 2

3 Mg
)−γ−1

. Taking
a τ -derivative we obtain

−(γ + 1)g−2
(

τ + 2

3
Mg

)−γ−2

(1 + 2

3
r∂r log r)

= −(γ + 1)g−2
(

τ + 2

3
Mg

)−γ−2 8πwα

3G
,

where we have used (1.26). Since 1 � g, G � 1, the claim follows. �

A corollary of Lemma 4.6 is the proof of equivalence between the norms and

energies given respectively by Definitions 1.12 and 4.1.

Proposition 4.7. Let H be a solution to (3.26) on a time interval [κ, T ] for some
T ≤ 1. We assume that the a priori bound (4.13) are valid on [κ, T ] for some
sufficiently small σ ′. Then there exists a κ-independent constant C > 0 such that

1

C
SN
κ (τ ) ≤ sup

κ≤τ ′≤τ

E N (τ ′) +
∫ τ

κ

DN (τ ′) dτ ′ ≤ C SN
κ (τ ), τ ∈ [κ, T ]. (4.42)
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4.2.1. Vector Field Classes P and P̄ We now introduce a set of auxiliary, ad-
missible vector fields associated with differential operators Di and D̄i that allow
us to circumvent coordinate singularities near the origin and to obtain high order
estimates effectively. They are obtained by allowing 1

r in addition to Dr whenever
Dr appears in the chains of Di and D̄i . In other words,

P2 j+2 :=
⎧⎨
⎩

j+1∏
k=1

∂r Vk : Vk ∈
{

Dr ,
1

r

}⎫⎬
⎭ , P2 j+1

:=
⎧⎨
⎩Vj+1

j∏
k=1

∂r Vk : Vk ∈
{

Dr ,
1

r

}⎫⎬
⎭ (4.43)

for j � 0 and set P0 = {1}. Likewise, we define
P̄2 j+2 := {W∂r : W ∈ P2 j+1

}
, P̄2 j+1 := {W∂r : W ∈ P2 j

}
(4.44)

for j � 0 and set P̄0 = {1}. The properties of P and P̄ are presented in detail in
“Appendix A”.

In what follows, we derive the bounds of P̄ of various quantities involving φapp,
φ, φ + �φ and so on that will be useful for the high-order energy estimates.

4.3. Pointwise Bounds on φapp

Recall φapp in (1.57).

Lemma 4.8. The following bounds hold true:

∑
V ∈P̄i

∣∣V φapp
∣∣ � εr−iτ

2
3+δ pλ,− 2

n

(
rn

τ

)
, i = 1, . . . , N , (4.45)

∑
V ∈P̄i

∣∣V �φapp
∣∣ � rn−iτ− 1

3 + εr−iτ
2
3+δ pλ,− 2

n

(
rn

τ

)

� τ
2
3 r−i q1

(
rn

τ

)(
p1,0

(
rn

τ

)
+ pλ,− 2

n

(
rn

τ

))
, i = 0, 1, . . . , N ..

(4.46)

Proof. Let V ∈ P̄i be given. By Lemma A.7 we have

∣∣V φapp
∣∣ � r−i

i∑
�=1

∣∣∣(r∂r )
�φapp

∣∣∣ � r−i
M∑

j=1

i∑
�=1

ε j
∣∣∣(r∂r )

�φ j

∣∣∣

� r−i
M∑

j=1

ε jτ
2
3+ jδ pλ,− 2

n

(
rn

τ

)
� εr−iτ

2
3+δ pλ,− 2

n

(
rn

τ

)
(4.47)

where we have used Proposition 2.8 in the second line.
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Recall that �φapp = Mg∂τφapp + r∂rφapp. By Lemma A.7, definition (1.44) of
Mg , and the property (1.21) we obtain

∣∣V �φapp
∣∣ � rn−i

M∑
j=0

i∑
�=0

∣∣∣∂τ (r∂r )
�φ j

∣∣∣+ r−i
M∑

j=1

i+1∑
�=2

ε j
∣∣∣(r∂r )

�φ j

∣∣∣

� rn−iτ− 1
3 + εr−iτ

2
3+δ pλ,− 2

n

(
rn

τ

)
, (4.48)

where we have used the same argument as in the proof of (4.45) to obtain the second
summand in the last bound above. �


A simple consequence of Lemma 4.8 is the following corollary:

Corollary 4.9. The following bounds hold true:

∑
V ∈P̄i

∣∣V φapp
∣∣ � ετ

2
3+δ∗

p
λ,− N+2

n

(
rn

τ

)
� ετ

2
3+δ∗

, i = 1, . . . , N . (4.49)

∑
V ∈P̄i

∣∣V �φapp
∣∣ � τ

2
3 r−i q1

(
rn

τ

)
, i = 0, 1, . . . , N , (4.50)

where we recall that δ∗ is given by (2.24).

Lemma 4.10. For any 1 ≤ i ≤ N we have
∑

V ∈P̄i

∣∣∣V �2φapp

∣∣∣ � τ
2
3 r−i q2

(
rn

τ

)(
p1,0

(
rn

τ

)
+ p

λ,− 2
n

(
rn

τ

))
(4.51)

∑
V ∈P̄i

∣∣∣V �
(
3φ2

app + 2φappDφapp

)∣∣∣ � τ
4
3 r−i q2

(
rn

τ

)(
p1,0

(
rn

τ

)
+ p

λ,− 2
n

(
rn

τ

))
(4.52)

∑
V ∈P̄i

∣∣V �J [φapp]
∣∣ � τ2r−i q2

(
rn

τ

)(
p1,0

(
rn

τ

)
+ p

λ,− 2
n

(
rn

τ

))
(4.53)

∑
V ∈P̄i

∣∣V (J [φapp]a
)∣∣ � τ2ar−i qa

(
rn

τ

)
(4.54)

∑
V ∈P̄i

∣∣∣∣∣V
(

�J [φapp]
J [φapp]γ+2

)∣∣∣∣∣ � τ−2γ−2r−i q−γ

(
rn

τ

)(
p1,0

(
rn

τ

)
+ p

λ,− 2
n

(
rn

τ

))

(4.55)
∑

V ∈P̄i

∣∣∣∣∣V
(

φapp�φapp

J [φapp]γ+1

)∣∣∣∣∣ � τ
−2γ− 2

3 r−i q−γ

(
rn

τ

)(
p1,0

(
rn

τ

)
+ p

λ,− 2
n

(
rn

τ

))

(4.56)
∑

V ∈P̄i

∣∣∣∣∣V
(

�φapp

J [φapp]γ+1

)∣∣∣∣∣ � τ
−2γ− 4

3 r−i q−γ

(
rn

τ

)(
p1,0

(
rn

τ

)
+ p

λ,− 2
n

(
rn

τ

))
.

(4.57)
∑

V ∈P̄i

∣∣∣∣V
(

P[φapp]
φapp

)∣∣∣∣ � τ
2
3−2γ− i+2

n
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q−γ+1

(
rn

τ

)(
τp

1,− i+2
n

(
rn

τ

)
+ p

λ,− i+4
n

(
rn

τ

))

� τ
2
3−2γ− i+2

n (4.58)

Proof. Proof of (4.51). By a simple calculation �2 = M2
g∂ττ + 2r Mg∂rτ +

Mg∂τ Mg∂τ +r∂r Mg∂τ +(r∂r )
2. By the product rule V (M2

g∂ττ φapp) can be written
as a linear combination of expression of the form

A(M2
g ) B∂ττ φapp, A ∈ P̄k, B ∈ P̄i−k, 0 ≤ k ≤ i.

Anysuch expression is boundedby r2n−i τ
2
3−2 = τ

2
3

(
rn

τ

)2
r−i .A similar argument

shows that
∣∣V (r Mg∂rτ φapp)

∣∣ � ετ
2
3+δ rn

τ
pλ,− 2

n

(
rn

τ

)
r−i ,

∣∣V (Mg∂τ Mg∂τφapp)
∣∣ �

τ
2
3 r2n

τ
r−i ,

∣∣V (r∂r Mg∂τφapp)
∣∣ � τ

2
3 rn

τ
r−i ,

∣∣V ((r∂r )
2φapp)

∣∣ � ετ
2
3+δ pλ,− 2

n

(
rn

τ

)
r−i .

Summing the above bounds we obtain (4.51). �


Proof of (4.52). Note that�
(
3φ2

app + 2φappDφapp

)
= 6φapp�φapp+2(�φapp)

2+
2φapp�

2φapp. Using the product rule, bounds (4.45), (4.46), and (4.51) we ob-
tain (4.52). �

Proof of (4.53). The proof is similar to (4.52). From (1.13) we have �J [φapp] =
3φ2

app�φapp + 2φapp(�φapp)
2 + φ2

app�
2φapp. Now the statement follows from the

product rule and bounds (4.45), (4.46), and (4.51). �

Proof of (4.54). We must use the chain rule. We note that V (J [φapp]a) can be
expressed as a linear combination of expressions of the form

J [φapp]a

⎛
⎝ jm∏

j=1

W jJ [φapp]
J [φapp]

⎞
⎠

W j ∈P̄i j , i1+···+i jm =i

.

We may use (4.45) and (4.50) to conclude that
∣∣WJ [φapp]

∣∣ � τ 2q1
(

rn

τ

)
r− j for

any W ∈ P̄ j . Since τ 2q1
(

rn

τ

)
� J [φapp] � τ 2q1

(
rn

τ

)
, we can bound the above

expression by τ 2aqa

(
rn

τ

)
r−i . �


Proof of (4.55)–(4.57). The proof follows by the product rule (A.405) and (4.53),
(4.54), (4.45), (4.46). �

Proof of (4.58). Recalling (1.47) it is easy to check that

P[φapp]
φapp

= (1 + α)
w′

g2r
φappJ [φapp]−γ − γ

w

g2r2
φappJ [φapp]−γ−1�J [φapp].

(4.59)
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We now apply the product rule (A.405) and bounds (4.54), (4.53), (4.45) and the
estimate |w′| � rn−1 to conclude
∣∣∣∣V
(

P[φapp]
φapp

)∣∣∣∣ � τ
5
3−2γ rn

τ
r−(i+2)q−γ

(
rn

τ

)
+ τ

2
3−2γ r−(i+2)q−γ+1

(
rn

τ

)(
p1,0

(
rn

τ

)
+ pλ,− 2

n

(
rn

τ

))

� τ
2
3−2γ r−(i+2)q−γ+1(

rn

τ

)(
τp1,0

(
rn

τ

)
+ p1,0

(
rn

τ

)
+ pλ,− 2

n

(
rn

τ

))

� τ
2
3−2γ r−(i+2)q−γ+1

(
rn

τ

)(
p1,0

(
rn

τ

)
+ pλ,− 2

n

(
rn

τ

))

since τ ≤ 1. Replacing r−(i+2) by τ− i+2
n

(
rn

τ

)− i+2
n

above, we obtain the claim,

where in particular we use γ > 1. �


4.4. Preparatory Bounds

Recall φ = φapp + τm H
r .

Lemma 4.11. For any 1 � i � N, we have

|D̄iφ| � |D̄iφapp| + τm
∣∣D̄i

(
H

r

) ∣∣ (4.60)

|D̄i (φ + �φ)|
� |D̄i (φapp + �φapp)|

+ τm

⎛
⎜⎜⎝
∣∣∣∣Mg

r
Di∂τ H

∣∣∣∣+
∑
1�k�i

B∈P̄i−k

∣∣∣∣∂k
r (Mg)B

(
∂τ H

r

)∣∣∣∣+ |Di+1H | +
∣∣∣∣D̄i

(
H

r

)∣∣∣∣
⎞
⎟⎟⎠

+ τm−1

⎛
⎜⎜⎝
∣∣∣∣Mg

r
Di H

∣∣∣∣+
∑
1�k�i

B∈P̄i−k

∣∣∣∣∂k
r (Mg)B

(
H

r

)∣∣∣∣
⎞
⎟⎟⎠ . (4.61)

Proof. Bound (4.60) follows directly follows from

D̄iφ = D̄i (φapp + τm H

r
) = D̄iφapp + τmD̄i

(
H

r

)
.

Further more

D̄i (φ + �φ) = D̄i (φapp + �φapp) + D̄i (1 + Mg∂τ + r∂r )

(
τm H

r

)
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= D̄i (φapp + �φapp) + τm D̄i (Mg
∂τ H

r
)︸ ︷︷ ︸

(∗)

+mτm−1 D̄i

(
Mg

H

r

)
︸ ︷︷ ︸

(∗∗)

+ τm
(
Di+1H − 2D̄i

(
H

r

))
, (4.62)

where we have used the identities r∂r
( H

r

) = ∂r H − H
r and D̄i∂r H = D̄i(

Dr H − 2
r H
) = Di+1H − 2D̄i

( H
r

)
. For (∗), we first note that

(∗) = MgD̄i

(
∂τ H

r

)
+

∑
1�k�i

A∈P̄k ,B∈P̄i−k

ci AB
k A(Mg)B(

∂τ H

r
). (4.63)

For the first term, we use (A.401) to rewrite

MgD̄i

(
∂τ H

r

)
=
⎧⎨
⎩

Mg
r

(
Di∂τ H − (i − 1)D̄i−1

(
∂τ H

r

))
if i is even

Mg
r

(
Di∂τ H − (i + 1)D̄i−1

(
∂τ H

r

))
if i is odd.

(4.64)

Therefore we deduce that

|(∗)| �
∣∣∣∣Mg

r
Di∂τ H

∣∣∣∣+
∑
1�k�i

B∈P̄i−k

∣∣∣∣∂k
r (Mg)B

(
∂τ H

r

)∣∣∣∣ . (4.65)

It is easy to see that

|(∗∗)| �
∣∣∣∣Mg

r
Di H

∣∣∣∣+
∑
1�k�i

B∈P̄i−k

∣∣∣∣∂k
r (Mg)B(

H

r
)

∣∣∣∣ . (4.66)

Putting together the above bounds we obtain (4.61). �

The same conclusions hold in Lemma 4.11 when we replace D̄i by any V ∈ P̄i .

Lemma 4.12. (High-order φ-bounds). The following L∞-bounds hold:

∑
V ∈P̄ j

∥∥∥∥V φ

φ

∥∥∥∥∞
� ετ δ∗ + τm− 2

3+ 1
2 ( 113 −γ )(E N )

1
2 for 1 � j � 2 (4.67)

∑
V ∈P̄ j

∥∥∥∥w j−2 V φ

φ

∥∥∥∥∞
� ετ δ∗ + τm− 2

3+ 1
2 ( 113 −γ )(E N )

1
2 for 2 � j � N − 3

(4.68)
∑

V ∈P̄ j

∥∥∥∥rw j−2 V φ

φ

∥∥∥∥∞
� ετ δ∗ + τm− 2

3+ 1
2 ( 113 −γ )(E N )

1
2 for j = N − 2 (4.69)
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The following L2-bounds hold:

∑
V ∈P̄ j

∥∥∥∥V φ

φ

∥∥∥∥
α+2 j+2−N

� ετ δ∗ + τm− 2
3+ 1

2 ( 113 −γ )(E N )
1
2 for

N − α − 2

2
� j � N − 1 (4.70)

ε
1
2
∑

V ∈P̄N

∥∥∥∥V φ

φ

∥∥∥∥
α+N+1

� ε
3
2 τ δ∗ + τm− 2

3 (E N )
1
2 (4.71)

Proof. Note that from (4.60) and (4.49),∣∣∣∣Vjφ

φ

∣∣∣∣ � ετ δ∗ + τm− 2
3 |Vj (

H

r
)|. (4.72)

Therefore from (C.432), (C.435) and (C.436) we deduce (4.67)–(4.69). Bounds
(4.70)–(4.71) follow from (C.429) and (C.430), where we use the bound

ε

∫
wα+2k+1−N |Dk+1H |2r2 dr � ε

∫
wα+2k+1−N

(τ + 2
3 Mg)1+γ

|Dk+1H |2r2 dr � E N .

�

Lemma 4.13. (High-order φ + �φ-bounds). The following L∞-bounds hold:

∑
W∈P̄ j

∥∥∥∥W (φ + �φ)

φ + �φ

∥∥∥∥∞
� τ− j

n

(
1 + τm− 2

3+ 1
2 ( 53−γ )+1(E N )

1
2

)
for j = 1

(4.73)
∑

W∈P̄ j

∥∥∥∥w j−1 W (φ + �φ)

φ + �φ

∥∥∥∥∞
� τ− j

n

(
1 + τm− 2

3+ 1
2 ( 53−γ )+1(E N )

1
2

)

for 2 � j � N − 3 (4.74)
∑

W∈P̄ j

∥∥∥∥rw j−1 W (φ + �φ)

φ + �φ

∥∥∥∥∞
� τ− j

n

(
1 + τm− 2

3+ 1
2 ( 53−γ )+1(E N )

1
2

)

for j = N − 2. (4.75)

The following L2-bounds hold:

∑
W∈P̄ j

∥∥∥∥W (φ + �φ)

φ + �φ

∥∥∥∥
α+2 j+2−N

� τ− j
n

(
1 + τm− 2

3+ 1
2 ( 53−γ )+1(E N )

1
2

)

for
N − α − 2

2
� j � N − 1 (4.76)

ε
1
2
∑

W∈P̄N

∥∥∥∥W (φ + �φ)

φ + �φ

∥∥∥∥
α+N+1

� ε
1
2 τ− N

n + τm− 2
3 (E N )

1
2 . (4.77)
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Proof. From (4.61) and (4.46), we note that∣∣∣∣W (φ + �φ)

φ + �φ

∣∣∣∣
� r− j

(
p1,0

(
rn

τ

)
+ pλ,− 2

n

(
rn

τ

))
+ τm− 2

3 q−1

(
rn

τ

) ∣∣∣∣W
(

H

r
+ �(

H

r
)

)∣∣∣∣ .
(4.78)

Therefore, bounds (4.73)–(4.75) follow from (C.432)–(C.436). Bounds (4.76)–
(4.77) follow from (C.429) and (C.430), respectively. �


Finally, the key collection of a priori bounds is provided by the following lemma,
and will be used repeatedly in our energy estimates in Section 5.

Lemma 4.14. Let a, b, c ∈ R, b < 0, c ≤ −b, be given. For any i ∈ {0, 1} we have

∑
V ∈P̄i

|V
(
φaJ [φ]b

)
| � τ

2
3 a+2b− i

n qb

(
rn

τ

)
. (4.79)

If 2 ≤ i ≤ N − 1 then

∑
V ∈P̄i

∥∥∥∥qc

(
rn

τ

)
V
(
φaJ [φ]b

)∥∥∥∥
α−N+2i+2

� τ
2
3 a+2b− i

n (1 + (E N )
1
2 ). (4.80)

If 2 ≤ i ≤ N − 3 then

∑
V ∈P̄i

∥∥∥∥wi qc

(
rn

τ

)
V
(
φaJ [φ]b

)∥∥∥∥∞
� τ

2
3 a+2b− i

n (1 + (E N )
1
2 ). (4.81)

Finally, if i = N we have

√
ε
∑

V ∈P̄N

∥∥∥∥qc

(
rn

τ

)
V
(
φaJ [φ]b

)∥∥∥∥
α+N+2

� τ
2
3 a+2b− N

n (1 + (E N )
1
2 ). (4.82)

Proof. By definition of J [φ] we have
φaJ [φ]b = φa+2b(φ + �φ)b. (4.83)

Applying the product and the chain rule, for any V ∈ P̄i , i � 1, V
(
φaJ [φ]b

)
can

be written as a linear combination of

φa+2b(φ + �φ)b

⎛
⎝ jm∏

j=1

Vjφ

φ

⎞
⎠

Vj ∈P̄i j ,i1+···+i jm =i−p

×
(

�m∏
�=1

W�(φ + �φ)

φ + �φ

)

W�∈P̄a�
,a1+···+a�m =p

(4.84)
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where 0 � p � i . In order to estimate Vjφ and W j (φ +�φ), it suffices to estimate
D̄iφ and D̄i (φ + �φ).

Let k∗ = max{i j , a�} in (4.84). Without loss of generality, we may assume that
indices appearing in (4.84) are non-decreasing: i1 � · · · � i jm and a1 � · · · � a�m .
Then k∗ = max{i jm , a�m }. �

Proof of (4.79). Bound (4.79) is obvious from (4.83) if i = 0. If i = 1 then the
claim follows from (4.67) and (4.73). �

Proof of (4.80). If k∗ = 1, by using (4.67) and (4.73), the expression in (4.84) is
bounded by

τ
2
3 (a+3b)qb

(
rn

τ

)(
ετ δ∗ + τm− 2

3+ 1
2 ( 113 −γ )(E N )

1
2

)k−p

(
τ− 1

n + τm− 2
3+ 1

2 ( 53−γ )+1− 1
n (E N )

1
2

)p

and therefore, the worst bound occurs at p = k and the last line is bounded by

τ
2
3 a+b− k

n +mqb

(
rn

τ

)
(1 + (E N )

1
2 ), (4.85)

where we note that that ‖wα−N+2i+2‖L∞ � 1 since i ≥ 2 and N = �α� + 6.
Suppose that 2 � k∗ � N − 1.

We first consider k∗ = a�m � i jm . Let jm0 + 1 be the first index for which
i jm0+1 � 2 so that i j = 1 for j � jm0 . In this case, we rearrange the w-weight
in (4.84) as follows:

∣∣w α−N+2i+2
2 φa+2b(φ + �φ)b

⎛
⎝ jm∏

j=1

Vjφ

φ

⎞
⎠

Vj ∈P̄i j ,i1+···+i jm =i−p

×
(

�m∏
�=1

W�(φ + �φ)

φ + �φ

)

W�∈P̄a�
,a1+···+a�m =p

∣∣

= ∣∣φa+2b(φ + �φ)b
jm0∏
j=1

(
Vjφ

φ

) jm∏
j= jm0+1

(
wi j −2 Vjφ

φ

) �m−1∏
�=1

(
wa j −1 W�(φ + �φ)

φ + �φ

)

w
i−a�m −∑ jm

j= jm0+1(i j −2)−∑�m−1
�=1 (a�−1)

w
α+2a�m +2−N

2
W�m (φ + �φ)

φ + �φ

∣∣ (4.86)

The goal is to estimate the last termw
α+2a�m +2−N

2
W�m (φ+�φ)

φ+�φ
in L2-norm and all the

remaining ones in L∞. Note that

jm∑
j= jm0+1

(i j − 2) +
lm−1∑
l=1

(al − 1)
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= i − p − 2{ jm − jm0} + p − alm − {lm−1}
= i − alm − 2{ jm − jm0} − lm−1

� i − alm .

Therefore, the exponent of the first w in the second line is non-negative and there-
fore, that factor is bounded. Now all i j ’s and a�’s except a�m cannot be bigger
than N − 3, otherwise, it would contradict the definition of k∗. Thus we can apply
(4.68) and (4.74) to the first line above. Moreover, since 2 � a�m � N − 1, we can
apply the weighted L2-embedding (4.76) to the W�m term in the second line of the

right-hand side of (4.86). By (4.79) ‖qc

(
rn

τ

)
φa+2b(φ +�φ)b‖L∞ ≤ τ

2
3 a+b since

b + c ≤ 0 by our assumptions. This gives the bound

‖w α−N+2i+2
2 qc

(
rn

τ

)
V
(
φaJ [φ]b

)
‖L2 � τ

2
3 a+2b− i

n (1 + (E N )
1
2 ), V ∈ P̄i .

(4.87)

The case k∗ = i jm > a� can be treated in the same fashion where we use (4.70)
instead of (4.76). �

Proof of (4.81). In this case, since k∗ ≤ N − 3 and as above we first consider the
case k∗ = a�m . We then have

∣∣wiφa+2b(φ + �φ)b

⎛
⎝ jm∏

j=1

Vjφ

φ

⎞
⎠

Vj ∈P̄i j ,i1+···+i jm =i−p(
�m∏
�=1

W�(φ + �φ)

φ + �φ

)

W�∈P̄a�
,a1+···+a�m =p

∣∣

= ∣∣wi−∑ jm
j= jm0+1(i j −2)−∑�m

�=1(a�−1)
φa+2b(φ + �φ)b

jm0∏
j=1

(
Vjφ

φ

) jm∏
j= jm0+1(

wi j −2 Vjφ

φ

)

�m∏
�=1

(
wa�−1 W�(φ + �φ)

φ + �φ

) ∣∣ (4.88)

Note that
∑ jm

j= jm0+1(i j − 2) +∑�m
�=1(a� − 1) � i and therefore, the exponent of

the first w in the next-to-last line above is non-negative as before. Using (4.67)–

(4.68), (4.73)–(4.74), and the bound ‖qc

(
rn

τ

)
φa+2b(φ + �φ)b‖L∞ ≤ τ

2
3 a+b, we

can bound all the remaining factors to finally obtain (4.81). �

Proof of (4.82). When i = N and k∗ ≤ N−1wemayuse the already proven (4.80)
to infer that the ‖ · ‖α+N+2-norm of (4.84) is bounded by the right-hand side
of (4.82). It now remains to discuss the case k∗ = N in which case either 1) jm = 1
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and i jm = N (a�m = 0) or 2) �m = 1 and a�m = N (i jm = 0). When a�m = N , the
expression (4.84) reads as

φa+2b(φ + �φ)b W�m (φ + �φ)

φ + �φ
, (4.89)

and therefore, by (4.77) and (4.79), we deduce

ε‖φa+2b(φ + �φ)bqc

(
rn

τ

)
W�m (φ + �φ)

φ + �φ
‖α+N+2

� ε
1
2 τ

2
3 a+2b(ε

1
2 τ− N

n + τm− 2
3 (E N )

1
2 )

� τ
2
3 a+2b− N

n (1 + (E N )
1
2 ),

as claimed. When i jm = N , the corresponding estimate reads as

ε‖φa+2b(φ + �φ)bqc

(
rn

τ

)
Vjm φ

φ
‖α+N+2 � ε

1
2 τ

2
3 a+2b(ε

3
2 τ δ∗ + τm− 2

3 (E N )
1
2 )

� τ
2
3 a+2b− N

n (1 + (E N )
1
2 ),

where we have used (4.71). �

We conclude the section with several a priori estimates that will be important

for the energy estimates in Section 5.

Lemma 4.15. Recall g00 defined in (3.27). The following bounds hold:

∑
V ∈P̄1

(∣∣∣V g00
∣∣∣+
∣∣∣∣V (

1

g00 )

∣∣∣∣
)

� ετ δ− 1
n (4.90)

∑
V ∈P̄i

(∥∥∥V g00
∥∥∥

α−N+2i+2
+
∥∥∥∥V (

1

g00 )

∥∥∥∥
α−N+2i+2

)
� ετ δ− i

n (1 + (E N )
1
2 ),

2 ≤ i ≤ N − 1, (4.91)
∑

V ∈P̄i

(∥∥∥wi V g00
∥∥∥∞ +

∥∥∥∥wi V (
1

g00 )

∥∥∥∥∞

)
� ετ δ− i

n (1 + (E N )
1
2 ),

2 ≤ i ≤ N − 3, (4.92)

√
ε
∑

V ∈P̄N

(∥∥∥V g00
∥∥∥

α+N
+
∥∥∥∥V (

1

g00 )

∥∥∥∥
α+N

)
� ετ δ− i

n (1 + (E N )
1
2 ).

(4.93)

Proof. It suffices to prove the bounds for V g00 as the corresponding bound for
V ( 1

g00
) is a simple consequence of the chain rule (A.407) and the bound (4.35).

From (3.27) and (3.19) it follows that for any V ∈ P̄i with i ≥ 1 we have

V g00 = −εγ
∑

A1,2∈P̄�1,�2
�1+�2=i

cA1 A2
i A1(

wM2
g

g2r2
)A2(φ

4J [φ]−γ−1). (4.94)
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In particular, if �2 ≤ i − 1 we may estimate

∣∣∣∣∣A1(
wM2

g

g2r2
)A2(φ

4J [φ]−γ−1)

∣∣∣∣∣ � r2n−2−i
∣∣∣A2(φ

4J [φ]−γ−1)

∣∣∣ .

Using Lemma 4.14 now with c = 2− 2
n (< γ + 1), estimates (4.90)–(4.92) follow

easily. If �2 = i and additionally i ≤ N − 1 we may still run the same argument.
If however �2 = N , we lose

√
ε in (4.93) due to (4.82). �


Since by (3.28) for any V ∈ P̄i with i ≥ 1 we have

V (g00) = V (
Mg

r
g01),

and by an analogous argument we have the following lemma:

Lemma 4.16. Recall g01 defined in (3.28). The following bounds hold:

∑
V ∈P̄1

(∣∣∣∣V (
g01

r
)

∣∣∣∣+
∣∣∣∣V (

g01

rg00 )

∣∣∣∣
)

� ετ δ−1− 1
n (4.95)

∑
V ∈P̄i

(∥∥∥∥V (
g01

r
)

∥∥∥∥
α−N+2i+2

+
∥∥∥∥V (

g01

rg00 )

∥∥∥∥
α−N+2i+2

)
� ετ δ−1− i

n (1 + (E N )
1
2 ),

2 ≤ i ≤ N − 1, (4.96)
∑

V ∈P̄i

(∥∥∥∥wi V (
g01

r
)

∥∥∥∥∞
+
∥∥∥∥wi V (

g01

rg00 )

∥∥∥∥∞

)
� ετ δ−1− i

n (1 + (E N )
1
2 ),

2 ≤ i ≤ N − 3, (4.97)

√
ε
∑

V ∈P̄N

(∥∥∥∥V (
g01

r
)

∥∥∥∥
α+N+2

+
∥∥∥∥V (

g01

rg00 )

∥∥∥∥
α+N+2

)
� ετ δ−1− i

n (1 + (E N )
1
2 )

(4.98)

5. Energy Estimates

To facilitate our proof and carry out the energy estimates, for the remainder
of this section we assume that H be a solution to (3.26) on a time interval [κ, T ]
for some T ≤ 1, the a priori assumptions (4.13) hold, and the following (rough)
bootstrap condition is true:

SN
κ (τ ) ≤ 1, τ ∈ [κ, T ]. (5.1)
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5.1. Estimates for Llow-terms

The goal of this section is the following proposition.

Proposition 5.1. Let H be a solution to (3.26) on a time interval [κ, T ] for some
T ≤ 1 and assume that the a priori assumptions (4.13) and the bootstrap assump-
tion (5.1) hold. Then for any (τ, r) ∈ [κ, T ] × [0, 1] the following bound holds:

ετ
1
2 (γ− 2

3 )‖Di

(
1

g00LlowH

)
‖α+i

�
√

ετ δ∗
(DN )

1
2 + √

ετmin{δ∗, δ
2 }− 1

2 (E N )
1
2 , i = 0, 1, . . . , N . (5.2)

5.1.1. Decomposition ofLlowH We rewrite the linear operatorLlow in the form

LlowH = L 1
lowH + L 2

lowH, (5.3)

where

L 1
lowH :=2

P[φapp]
φapp

H − γw
φ2

g2J [φ]γ+1r2
�(3φ2

app + 2φapp�φapp)H

+ γ (γ + 1)w
φ4Mg�J [φapp]
g2J [φapp]γ+2r2

[
∂τ H + m

τ
H
]

+ γ (γ + 1)w
φ2�J [φapp]

g2J [φapp]γ+2r2
(3φ2

app + 2φapp�φapp)H

− γ (1 + α)rw′ φ4Mg

g2J [φapp]γ+1r2

[
∂τ H + m

τ
H
]

− 2γ (1 + α)rw′ φ2φapp�φapp

g2J [φapp]γ+1r2
H

− γwc[φ] M2
g

r2

[
2m

τ
∂τ H + m(m − 1)

τ 2
H

]

− γw
φ2

g2J [φ]γ+1r2
[
(�(φ2Mg) + φ2Mg

+ 2φ�φappMg)
[
∂τ H + m

τ
H
]

(5.4)

L 2
lowH := −4γw

φ3�φapp

g2J [φ]γ+1r
r∂r

(
H

r

)
− 2mγwc[φ] Mg

rτ
∂r H

+ γ (γ + 1)w
φ4�J [φapp]

g2J [φapp]γ+2r
r∂r

(
H

r

)
. (5.5)

Lemma 5.2. (Estimates forL 1
low). Let H be a solution to (3.26) on a time interval

[κ, T ] for some T ≤ 1 and assume that the a priori assumptions (4.13) and the
bootstrap assumption (5.1) hold. Then

ετ
1
2 (γ− 2

3 )‖Di

(
1

g00L
1
lowH

)
‖α+i �

√
ετ δ∗

(DN )
1
2 . (5.6)
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Proof. By the product rule (A.405)

Di

(
P[φapp]
g00φapp

H

)
=

∑
A1∈P̄�1

,A2∈P�2
�1+�2=i

cA1 A2
i A1(

P[φapp]
g00φapp

)A2H. (5.7)

We now use (4.58) and the L2-embeddings (C.429) if �2 ≥ 3 and otherwise (C.431)
to conclude

ετ
1
2 (γ− 2

3 )‖A1(
P[φapp]
φapp

)A2H‖α+i � ετ
1
2 (γ− 2

3 )+ 2
3−2γ+ 1

2 ( 143 −γ )− (i+2)
n (DN )

1
2

� ετ δ∗
(DN )

1
2 , (5.8)

where we have used the bound wα+i � wα+2i−N � wα+2�2−N .
We now focus on the second term in the first line of (5.4).

− γ
w

g2r2g00

φ2

J [φ]γ+1�(3φ2
app + 2φapp�φapp)H

= −γ
w

g00g2r2
φ−2γ (φ + �φ)−(γ+1)�(3φ2

app + 2φapp�φapp)H. (5.9)

By the product rule (A.405)

ετ
1
2 (γ− 2

3 )

∣∣∣∣Di

(
w

g2r2g00

φ2

J [φ]γ+1�(3φ2
app + 2φapp�φapp)H

)∣∣∣∣
�

∑
A1,2,3∈P̄�1,�2,�3

,A4∈P�4
�1+···+�4=i

ετ
1
2 (γ− 2

3 )

∣∣∣∣A1

(
w

g2r2g00

)∣∣∣∣
×
∣∣∣A2

(
�(3φ2

app + 2φapp�φapp)
)∣∣∣
∣∣∣∣A3

(
φ2

J [φ]γ+1

)∣∣∣∣ |A4H | , (5.10)

since
∣∣∣A1

(
w

g2r2g00

)∣∣∣ � r−2−�1 . Consider first Case I. �3 ≤ i − 1. By (4.52) the

third line of (5.10) is bounded by

ετ
4
3+ 1

2 (γ− 2
3 )− �1+�2+2

n(
p
1,− �1+�2+2

n

(
rn

τ

)
+ p

λ,− �1+�2+4
n

(
rn

τ

))
q2

(
rn

τ

) ∣∣∣∣A3

(
φ2

J [φ]γ+1

)∣∣∣∣ |A4H | .
(5.11)

We now distinguish two cases.
Case I-1. �3 ≥ �4. If �3 ≤ 1 by Lemma 4.14 and (C.431) we then have

q2

(
rn

τ

) ∣∣∣∣A3

(
φ2

J [φ]γ+1

)∣∣∣∣ |A4H | � τ− 2
3−2γ− �3

n + 1
2 ( 143 −γ )(DN )

1
2 .



Continued Gravitational Collapse for Newtonian Stars

Therefore, since wα+i � 1, by (2.23)–(2.24),

‖ετ 4
3+ 1

2 (γ− 2
3 )− �1+�2+2

n

(
p
1,− �1+�2+2

n

(
rn

τ

)
+ p

λ,− �1+�2+4
n

(
rn

τ

))
q2

(
rn

τ

)
A3

(
φ2

J [φ]γ+1

)
A4H‖α+i

� ετ δ− �1+�2+�3+2
n (DN )

1
2 � ετ δ∗

(DN )
1
2 . (5.12)

If 2 ≤ �3 ≤ i − 1, then in case �4 ≥ 3,

ετ
4
3+ 1

2 (γ− 2
3 )− �1+�2+2

n∥∥∥∥
(

p
1,− �1+�2+2

n

(
rn

τ

)
+ p

λ,− �1+�2+4
n

(
rn

τ

))
q2

(
rn

τ

)
A3

(
φ2

J [φ]γ+1

)
A4H

∥∥∥∥
α+i

= ετ
4
3+ 1

2 (γ− 2
3 )− �1+�2+2

n

∥∥∥w N+i−2�3−2�4+2
2

(
p
1,− �1+�2+2

n

(
rn

τ

)
+ p

λ,− �1+�2+4
n

(
rn

τ

))
q2

(
rn

τ

)

w
α−N+2�3+2

2 A3

(
φ2

J [φ]γ+1

)
w�4−2A4H

∥∥∥
L2

� ετ
4
3+ 1

2 (γ− 2
3 )− �1+�2+2

n ‖w N+i−2�3−2�4+2
2 ‖L∞

‖q2

(
rn

τ

)
w

α−N+2�3+2
2 A3

(
φ2

J [φ]γ+1

)
‖L2‖w�4−2A4H‖L∞ . (5.13)

Recall that the total derivative number N is defined in (2.22). Since N + i − 2�3 −
2�4+2 ≥ N+i−2i+2 = N−i+2 ≥ 0 the L∞-normofw

N+i−2�3−2�4+2
2 is bounded.

Moreover, by Lemma 4.14 ‖q2
(

rn

τ

)
w

α−N+2�3+2
2 A3

(
φ2

J [φ]γ+1

)
‖L2 � τ− 2

3−2γ− �3
n

and by (C.433) ‖w�4−2A4H‖L∞ � τ
1
2 ( 143 −γ )(DN )

1
2 . Plugging this into (5.13)

we obtain the upper bound ετ δ∗
(DN )

1
2 just like in (5.12). If on the other hand

�4 ≤ 2,we replace the L∞-bound ofw�4−2A4H by an L∞-bound on A4H provided
by (C.431). This allows us to estimate the first line of (5.12) by

ετ
4
3+ 1

2 (γ− 2
3 )− �1+�2+2

n ‖w N+i−2�3−2
2 ‖∞‖q2

(
rn

τ

)
w

α−N+2�3+2
2 A3

(
φ2

J [φ]γ+1

)
‖L2‖A4H‖∞

� ετ δ∗
(DN )

1
2 ,

where we have used N + i − 2�3 − 2 ≥ N + i − 2(i − 1) − 2 = 0, Lemma 4.14,
and (C.431).
Case I-2. �3 < �4. If �4 ≤ 2 then we are in the regime that has already been
discussed above. Assume �4 ≥ 3. If �3 ≥ 2 we use (4.81) and (C.429) to obtain

ετ
4
3+ 1

2 (γ− 2
3 )− �1+�2+2

n ‖w α+i
2 p

1,− �1+�2+2
n

(
rn

τ

)
q2

(
rn

τ

)
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A3

(
φ2

J [φ]γ+1

)
|A4H | ‖L2

� ετ
4
3+ 1

2 (γ− 2
3 )− �1+�2+2

n ‖w i−2(�3+�4)+N
2 ‖∞‖q2

(
rn

τ

)
w�3

A3

(
φ2

J [φ]γ+1

)
‖∞‖w α+2�4−N

2 A4H‖L2

� ετ
4
3+ 1

2 (γ− 2
3 )− �1+�2+2

n − 2
3−2γ− �3

n + 1
2 ( 143 −γ )(DN )

1
2

� ετ δ∗
(DN )

1
2 . (5.14)

We have used the inequality i − 2(�3 + �4) + N ≥ N − i ≥ 0. The case �3 ≤ 2 is
handled similarly, with (4.79) instead of (4.81).
Case II. �3 = i . In this case we need to bound

ετ
1
2 (γ− 2

3 )‖ 1

g2r2g00 V

(
φ2

J [φ]γ+1

)
�(3φ2

app + 2φapp�φapp)H‖α+i+2 (5.15)

with V ∈ P̄i . If i ∈ {0, 1}we can use (4.79) and if 2 ≤ i ≤ N −1wemay use (4.80)

to bound ‖V
(

φ2

J [φ]γ+1

)
‖L2 and ‖w α−N+2i+2

2 V
(

φ2

J [φ]γ+1

)
‖L2 respectively. The

remaining terms are estimated in L∞ and we conclude that the expression in (5.15)

is bounded by ετ δ∗
(DN )

1
2 just like above. If however i = N we must use (4.82).

It then follows that the expression in (5.15) is bounded by

√
ετ

1
2 (γ− 2

3 )
√

ε‖q2

(
rn

τ

)
w

α+N+2
2 V

(
φ2

J [φ]γ+1

)
‖L2‖q−2

(
rn

τ

)
�(3φ2

app

+ 2φapp�φapp)‖L∞‖H‖∞
�

√
ετ

1
2 (γ− 2

3 )− 2
3−2γ− N+2

n + 4
3+ 1

2 ( 143 −γ )(DN )
1
2

�
√

ετ δ∗
(DN )

1
2 . (5.16)

The 3rd-7th term in (5.4) are estimated analogously. Note that the terms ∂τ H
and H

τ
and similarly ∂τ H

τ
and H

τ 2
are on equal footing from the energy stand point

or more precisely

τγ− 5
3

(
‖∂τ H‖2α+ j + ‖ H

τ
‖2α+ j

)
� E N

τγ− 8
3

(
‖∂τ H‖2α+ j + ‖ H

τ
‖2α+ j

)
� DN ,

where we recall the definitions (3.32)–(3.33) of E N and DN . In particular, the
estimates for the 3rd, 5th, and the 7th term in (5.4) are very similar and we sketch
the details for the 7th (next-to-last) term. By the product rule (A.405) we have

Di

(
wc[φ] M2

g

g2r2
Hτ

τ

)
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=
∑

A1,2∈P̄�1,�2
,A3∈P�3

�1+�2+�3=i

τ−1A1

(
M2

gw

g2r2

)
A2

(
φ4

J [φ]γ+1

)
A3Hτ . (5.17)

Acase-by-case analysis analogous to theone above,Lemma4.14, andLemmasC.3–
C.5 yield

τ
1
2 (γ− 2

3 )‖Di

((
wc[φ] M2

g

g2r2
Hτ

τ

))
‖α+i

� ‖r2n−2q−γ−1

(
rn

τ

)
‖L∞τ

1
2 (γ− 2

3 )τ
2
3−2γ+ 1

2 ( 23−γ )(DN )
1
2

� τ
8
3−2γ− 2

n

∥∥∥∥∥∥∥∥

(
rn

τ

)2− 2
n

(1 + ( rn

τ

)
)γ+1

∥∥∥∥∥∥∥∥∞

(DN )
1
2

� τ δ

∥∥∥∥p2,− 2
n

(
rn

τ

)∥∥∥∥∞
(DN )

1
2 � τ δ(DN )

1
2 . (5.18)

The same bound, with Hτ

τ
replaced by H

τ 2
follows analogously.

The 4-th and the 6-th term on the right-hand side of (5.4) are easier to bound.
In the 6-th term the factor w′ gives a regularising power of r near the center r = 0
due to the bound |∂a

r w′| ≤ rn−a−1 (which in turn follows from (1.19)). Similarly,
the presence of �J [φapp] in the 4-th term, by virtue of (4.53) affords a power of(

rn

τ

)
in our estimates, which again counteracts any potential singularities coming

from the negative powers of r near r = 0. Routine application of Lemmas C.3–C.5
and Lemma 4.14 yields the desired bound.

To estimate the last line in (5.4) we first observe that

(�(φ2Mg) + φ2Mg + 2φ�φappMg)

= φ2 (�Mg + Mg
)+ 2φ(2�φappMg + �φMg).

Therefore

− γw
φ2

g2J [φ]γ+1r2
[
(�(φ2Mg) + φ2Mg + 2φ�φappMg)

= −γw
φ4

g2J [φ]γ+1r2
(
�Mg + Mg

)

− 2γw
φ3

g2J [φ]γ+1r2
(2�φappMg + �φMg).

We can therefore break up the last line of (5.4) into a sum of terms that are of similar
structure as the ones showing up above, and thus the estimate follows analogously
and thus obtain the same bound as in (5.16). �
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Lemma 5.3. (Estimates forL 2
low). Let H be a solution to (3.26) on a time interval

[κ, T ] for some T ≤ 1 and assume that the a priori assumptions (4.13) and the
bootstrap assumption (5.1) hold. Then

ετ
1
2 (γ− 2

3 )‖Di

(
1

g00L
2
lowH

)
‖α+i �

√
ετmin{δ∗, δ

2 }− 1
2 (E N )

1
2 . (5.19)

Proof. We focus on the first and the most complicated term on the right-hand side
of (5.5). Recall that r∂r

( H
r

) = Dr H − 3 H
r . By analogy to (5.10) we have

ετ
1
2 (γ− 2

3 )

∣∣∣∣Di

(
w

g2rg00

φ3

J [φ]γ+1�φapp(Dr H − 3
H

r
)

)∣∣∣∣
�

∑
A2,3,4∈P̄�2,�3,�4

,A1∈P�1
�1+···+�4=i

ετ
1
2 (γ− 2

3 )

∣∣∣∣A1

(
w

g2rg00

)∣∣∣∣ ∣∣A2�φapp
∣∣ ∣∣∣∣A3

(
φ3

J [φ]γ+1

)∣∣∣∣
∣∣∣∣A4(Dr H − 3

H

r
)

∣∣∣∣
(5.20)

Case I-1. �3 = i . In this case �1 = �2 = �4 = 0 and we note that

∣∣∣∣ w

g2rg00

∣∣∣∣ � w

(
rn

τ

)− 1
n

τ− 1
n ,
∣∣�φapp

∣∣

� τ
2
3 q1

(
rn

τ

)(
p1,0

(
rn

τ

)
+ pλ,− 2

n

(
rn

τ

))
, (5.21)

where we we have used (4.46). Therefore we bound the ‖ · ‖α+i norm of the last
line of (5.20) by

ετ
1
2 (γ− 2

3 )− 1
n + 2

3+ 1
2 ( 113 −γ )

(
p1,0

(
rn

τ

)
+ pλ,− 2

n

(
rn

τ

))

‖q1

(
rn

τ

)
w

α+i+2
2 A3

(
φ3

J [φ]γ+1

)
‖L2(E N )

1
2 (5.22)

If i = N by (4.82) we have

√
ε‖q1

(
rn

τ

)
w

α+N+2
2 A3

(
φ3

J [φ]γ+1

)
‖L2 � τ−2γ− N

n .

Since 1
2 (γ − 2

3 ) − 1
n + 2

3 + 1
2 (

11
3 − γ ) − 2γ = δ∗ + 1

n − 1
2 (recall (2.24)), and(

p1,0
(

rn

τ

)
+ pλ,− 2

n

(
rn

τ

))
� 1, it follows that (5.22) is bounded by

√
ετ δ∗− 1

2 (E N )
1
2 (5.23)

as needed. If 2 ≤ i ≤ N − 1 we use (4.80) instead and if i = 1 we use (4.79)
instead, to bound (5.22) by ετ δ∗− 1

2 (E N )
1
2 .
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Case I-2. �4 = i . In this case �1 = �2 = �3 = 0 and A4 = D̄i . Using (5.21)
and (4.79) we can bound the last line of (5.20) by

ετ
1
2 (γ− 2

3 )− 1
n + 2

3 p1,0

(
rn

τ

)
‖w α+i+2

2 q− γ+1
2

(
rn

τ

)
A4(Dr H − 3

H

r
)‖L2

‖q 3+γ
2

(
rn

τ

)(
φ3

J [φ]γ+1

)
‖∞

� ετ
1
2 (γ− 2

3 )− 1
n + 2

3−2γ ‖q− γ+1
2

(
rn

τ

)
w

α+i+2
2 A4(Dr H − 3

H

r
)‖L2 . (5.24)

If i = N we have D̄N Dr = DN+1. Therefore, by (C.430), wα+N+2 � wα+N+1,

and q− γ+1
2

(
rn

τ

)
� 1,

√
ε‖q− γ+1

2
w

α+N+2
2 D̄N Dr H‖L2 � τ

γ+1
2 (E N )

1
2 .

On the other hand, using (A.403), we also have

√
ε‖q− γ+1

2

(
rn

τ

)
w

α+N+2
2 D̄i

(
H

r

)
‖L2

�
√

ε‖q− γ+1
2

(
rn

τ

)
w

α+N+2
2 DN+1X‖L2 � τ

1
2 (γ+1)(EN )

1
2 .

Plugging the last bounds into the last line of (5.24) and recalling (2.23) we bound
it by

√
ετ

1
2 (γ− 2

3 )− 1
n + 2

3−2γ+ γ+1
2 (E N )

1
2 = √

ετ
δ−1
2 (E N )

1
2 . (5.25)

If 2 ≤ i ≤ N − 1 we use (C.429) instead of (C.430) above and obtain the upper

bound ετ δ∗− 1
2 (E N )

1
2 . Similarly, if i ≤ 2 we may use (C.431) instead.

Case II. �3, �4 ≤ i − 1. Recalling (4.46) and the bound |A1(
w

g2rg00
)| � r−1−�1 ,

by (5.21) we have

ετ
1
2 (γ− 2

3 )

∣∣∣∣A1

(
w

g2rg00

)∣∣∣∣ ∣∣A2�φapp
∣∣
∣∣∣∣A3

(
φ3

J [φ]γ+1

)∣∣∣∣
∣∣∣∣A4(Dr H − 3

H

r
)

∣∣∣∣
� ετ

1
2 (γ− 2

3 )+ 2
3− �1+�2+1

n

(
p
1,− �2

n

(
rn

τ

)
+ p

λ,− �2+2
n

(
rn

τ

))
∣∣∣∣q1
(

rn

τ

)
A3

(
φ3

J [φ]γ+1

)∣∣∣∣
∣∣∣∣A4(Dr H − 3

H

r
)

∣∣∣∣ . (5.26)

Case II-1. �3 ≤ �4 ≤ i − 1. If �4 ≤ 1 and therefore �3 ≤ 1, we can estimate the
‖ · ‖α+i -norm of the last line of (5.26) using (4.79) and (C.432) by

ετ
1
2 (γ− 2

3 )+ 2
3− �1+�2+1

n ‖q1

(
rn

τ

)
A3

(
φ3

J [φ]γ+1

)
‖∞‖A4(Dr H − 3

H

r
)‖∞

� ετ
1
2 (γ− 2

3 )− �1+�2+�3+1
n + 2

3+ 1
2 ( 113 −γ )−2γ (E N )

1
2
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� ετ δ∗− 1
2 (E N )

1
2 . (5.27)

If 2 ≤ �4 ≤ i − 1, assume first that �3 ≥ 2. We rely on (C.429) and (4.81) to
bound the ‖ · ‖α+i -norm of the last line of (5.26) by

ετ
1
2 (γ− 2

3 )+ 2
3− �1+�2+�3+1

n ‖w i+N−2(�3+�4+1)
2 ‖∞‖w�3q1

(
rn

τ

)
A3

(
φ3

J [φ]γ+1

)
‖∞

‖w α+2(�4+1)−N
2 A4(Dr H − 3

H

r
)‖L2

� ετ
1
2 (γ− 2

3 )+ 2
3−2γ+ 1

2 ( 113 −γ )− �1+�2+�3+1
n (E N )

1
2 � ετ δ∗− 1

2 (E N )
1
2 , (5.28)

where we have used the bound i + N − 2(�3 + �4 + 1) ≥ 0, which is true if

�3 + �4 ≤ i − 1, to bound ‖w i+N−2(�3+�4+1)
2 ‖∞ by a constant. If on the other hand

�3 + �4 = i , then �1 = 0 and therefore we have an additional power of w in our
estimate which by the same idea as above allows us to obtain the bound (5.28).

If �3 ≤ 1 we then use (4.79) instead of (4.81) and deduce the same bound
analogously.
Case II-2. �4 ≤ �3 ≤ i − 1. This case is handled analogously to the case II-1 above
and relies on a similar case distinction (�4 ≥ 2 and �4 ≤ 1) as well as Lemma 4.14
and estimates (C.431), (C.429).

This completes the bound of the first term on the right-hand side of (5.5). The
estimates for the remaining 2 terms proceed analogously. Note that we use (4.55)
crucially to estimate the third term on the right-hand side of (5.5). �


5.2. High Order Commutator Estimates

The goal of this section is to establish the following proposition:

Proposition 5.4. Let H be a solution to (3.26) on a time interval [κ, T ] for some
T ≤ 1 and assume that the a priori assumptions (4.13) holds. Then

τ
1
2 (γ− 2

3 )‖Ci [H ]‖α+i �
√

ετ δ∗
(DN )

1
2 + √

ετ
δ
2− 1

2 (E N )
1
2 , i = 1, . . . , N .

(5.29)

Lemma 5.5. (The commutator estimates). Let H be a solution to (3.26) on a time
interval [κ, T ] for some T ≤ 1 and assume that the a priori assumptions (4.13)
holds. Then

τ
1
2 (γ− 2

3 )

(
‖
[
Di ,

1

g00

]
∂τ H

τ
‖α+i + ‖

[
Di ,

g01

g00 ∂r

]
∂τ H‖α+i

+‖
[
Di ,

d2

g00

]
H

τ 2
‖α+i

)
�

√
ετ δ∗

(DN )
1
2 (5.30)

ετ
1
2 (γ− 2

3 )‖
[
D̄i−1,

c[φ]
g00

]
Dr Lα H‖α+i �

√
ετ

δ
2− 1

2 (E N )
1
2 + ετ δ∗

(DN )
1
2

(5.31)
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ετ
1
2 (γ− 2

3 )‖c[φ]
g00

i−1∑
j=0

ζi jDi− j H‖α+i � ετ δ∗
(DN )

1
2 , (5.32)

where we remind the reader that the coefficients ζi j , i = 1, . . . , N, j = 0, . . . i − 1
are defined in Lemma B.1.

Proof. Proof of (5.30). By (B.418) we have the formula

[
Di ,

g01

g00 ∂r

]
∂τ H = i∂r

(
g01

g00

)
Di Hτ +

∑
A1∈P̄�1

,A2∈P�2
�1+�2=i, �1≥1

cA1 A2
i A1(

g01

rg00 )A2Hτ

+
∑

A1∈P̄�1
,A2∈P̄�2

�1+�2=i, �1≥2

c̄A1 A2
i r A1(

g01

rg00 )A2Dr Hτ . (5.33)

Since
∣∣∣∂r

(
g01

g00

)∣∣∣ � ετ δ∗−1 by Lemma 4.16, the bound wα+i � wα+2i−N , and

definitions (2.23)–(2.24) of δ and δ∗, we have

τ
1
2 (γ− 2

3 )‖w α+i
2 ∂r

(
g01

g00

)
Di Hτ‖L2 � ετ δ∗+ 1

2 (γ− 8
3 )‖w α+i

2 Di Hτ‖L2

� ετ δ∗
(DN )

1
2 . (5.34)

In order to bound the second term on the right-hand side of (5.33)we distinguish
several cases by analogy to Lemma 5.2.
Case I: �1 ≤ �2. If �2 ≤ 2 and therefore �1 ≤ 2, we can use (C.431) and (4.95) to
obtain

τ
1
2 (γ− 2

3 )‖w α+i
2 A1(

g01

rg00 )A2Hτ‖L2 � ετ
1
2 (γ− 2

3 )+δ−1− �1
n + 1

2 ( 83−γ )(DN )
1
2

� ετ δ∗
(DN )

1
2 . (5.35)

If 3 ≤ �2 ≤ N we again distinguish 2 cases. If �1 ≥ 2 we can use (C.429), (4.97),
and (2.23)–(2.24) to obtain

τ
1
2 (γ− 2

3 )‖w α+i
2 A1(

g01

g00r
)A2Hτ‖L2

� τ
1
2 (γ− 2

3 )‖w i+N−2(�1+�2)

2 ‖∞‖w�1 A1(
g01

g00r
)‖∞‖w α−N+2�2

2 A2Hτ‖L2

� ετ δ∗
(DN )

1
2 . (5.36)

If �1 = 1 we then use (4.95) instead of (4.97) and obtain the same conclusion.
Case II: �1 ≥ �2. In this case we proceed analogously and rely crucially on Lem-
mas 4.16 and estimates (C.431)–(C.433). The only nonstandard situation occurs
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when �1 = N . In that case �2 = 0 and we must use the bound (4.98) together
with (C.431). We then obtain

τ
1
2 (γ− 2

3 )‖w α+N
2 A1(

g01

g00r
)Hτ‖L2 � τ

1
2 (γ− 2

3 )‖w α+N
2 A1(

g01

g00r
)‖L2‖Hτ‖L∞

� τ
1
2 (γ− 2

3 )+ 1
2 ( 83−γ )+δ−1− N

n (DN )
1
2

�
√

ετ δ∗
(DN )

1
2 . (5.37)

To estimate the last term on the right-hand side of (5.33) we note that for any
A2 ∈ P̄�2 , we have A2Dr ∈ P�2+1 and since �2 ≤ i − 2 we are in the regime

treated above. This concludes the proof of the bound for ‖
[
Di ,

g01

g00
∂r

]
∂τ H‖α+i .

The remaining 2 terms on the left-hand side of (5.30) are estimated analogously
and their proofs rely crucially on Lemmas 4.15 and 4.16. The second term is less
singular with respect to τ and the presence of the g01 does not change the structure
of the estimates due to Lemma 4.16. The third term contains the factor H

τ 2
which,

from the point of view of the energy, scales just like Hτ

τ
and thus the structure of

the estimates is similar to the above. �

Proof of (5.31). From (4.1) we have

Lα H = −wD2H − (1 + α)w′Dr H. (5.38)

By the commutator formula (B.420) we have
[
D̄i−1,

c[φ]
g00

]
Dr Lα H =(i − 1)∂r

(
c[φ]
g00

)
D̄i−2Dr Lα H

+
∑

A1,2∈P̄�1,�2
, �1+�2=i−1

�1≥2

c̄A1 A2
i A1

(
c[φ]
g00

)
A2Dr Lα H.

(5.39)

The second sum on the right-hand side of (5.39) can be estimated analogously
to the estimates for (5.30) above, using (5.38). Thereby we observe that the total
number of derivatives in the operator A2Dr Lα is at most i , since �2 ≤ i − 3. We
next focus on the first term on the right-hand side of (5.39). Since D̄i−2Dr = Di−1,
using (5.38) we can write it as

−(i − 1)∂r

(
c[φ]
g00

)
Di−1

(
wD2H + (1 + α)w′ Dr H

)
. (5.40)

By the product rule (A.405) we can isolate the top-order term

Di−1
(
wD2H + (1 + α)w′Dr H

)
= wDi+1H +

∑
A1∈P̄�1

,A2∈P�2
�1+�2=i−1, �1≥1

A1wA2D2H + (1 + α)Di−1
(
w′Dr H

)
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We now use (4.79), (C.430) and conclude, in the case i = N

ετ
1
2 (γ− 2

3 )‖w α+N
2 ∂r

(
c[φ]
g00

)
wDN+1H‖L2

� ετ
1
2 (γ− 2

3 )‖q γ+1
2

∂r

(
c[φ]
g00

)
‖∞‖q− γ+1

2
w

α+N+2
2 DN+1H‖L2

�
√

ετ
1
2 (γ− 2

3 )+ 2
3−2γ− 1

n + 1
2 (γ+1)(E N )

1
2

= √
ετ

δ
2− 1

2 (E N )
1
2 , (5.41)

where the estimate (4.79) has been used in the third line. When using (4.79), we
first recall (3.19) and use the product rule to write

∂r

(
c[φ]
g00

)
= ∂r

(
φ4

J [φ]γ+1

)
1

g2g00 + φ4

J [φ]γ+1 ∂r

(
1

g2g00

)
.

We note that by Lemma 4.15 and (1.19) we have
∣∣∣ 1

g2g00

∣∣∣ + ∣∣∣∂r

(
1

g2g00

)∣∣∣ � 1 and

therefore (4.79) yields the third line above. The remaining below-top-order terms
can be estimated analogously to (5.30) to finally obtain (5.31). �


Proof of (5.32). Since
∣∣∂k

r w
∣∣ � rn−k for any k ∈ {1, . . . , n} it follows from (B.416)

|ζi j | � rn− j−2. Therefore by (4.79) for any j ≤ i we have

∣∣∣∣c[φ]
g00 ζi j

∣∣∣∣ � τ
2
3−2γ q−γ−1

(
rn

τ

)
rn− j−2

� τ
5
3−2γ− j+2

n q−γ−1

(
rn

τ

)(
rn

τ

)1− j+2
n

� τ δ∗−1.

Therefore for any j ≥ 3 we have

ετ
1
2 (γ− 2

3 )‖c[φ]
g00 ζi jDi− j H‖α+i

� ετ
1
2 (γ− 2

3 )+δ∗−1‖w N−2(i− j)+i
2

‖∞‖w α+2(i− j)−N
2 Di− j H‖L2

� ετ
1
2 (γ− 2

3 )+δ∗−1+ 1
2 ( 83−γ )(DN )

1
2

� ετ δ∗
(DN )

1
2 , (5.42)

where we have used (C.429) in the second line. If j ≤ 2 we use (C.431) instead
of (C.429) and obtain the same bound. �
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5.3. High-Order Estimates for M [H ]
We first recall Ka[θ ], a ∈ R in (3.3):

Ka[θ ] = J [φ]a − J [φapp]a,

and also

Ka[θ ] = aJ [φapp]a−1K1[θ ] + a(a − 1)J [φapp]a−2

(∫ 1

0
(1 − s)(1 + s

K1[θ ]
J [φapp] )

a−2 ds

)
(K1[θ ])2 (5.43)

Lemma 5.6. We have the following bound:

|Ka[θ ]| � τm− 2
3+ 1

2 ( 53−γ )τ 2aqa

(
rn

τ

)
(E N )

1
2 (5.44)

|w j−1D̄ j Ka[θ ]| � τm− 2
3+ 1

2 ( 53−γ )r− jτ 2aqa

(
rn

τ

)
(E N )

1
2 , 1 � j � N − 3

(5.45)

‖r j q−1

(
rn

τ

)
D̄ j K1[θ ]‖α+2 j+2−N � τm+ 4

3+ 1
2 ( 53−γ )(E N )

1
2 , 2 � j � N − 1

(5.46)

Remark 5.7. τ
1
2 ( 53−γ )(E N )

1
2 canbe replacedby τ

1
2 ( 83−γ )(DN )

1
2 in the abovebounds.

Proof. First we recall that (3.3) implies

K1[θ ] = (2φappθ + θ2)(φapp + �φapp) + φ2(θ + �θ), (5.47)

which together, with (C.432) and θ = τm H
r , yields

|K1[θ ]| � τm− 2
3+ 1

2 ( 53−γ )τ 2q1

(
rn

τ

)
(E N )

1
2 , (5.48)

or equivalently, ∣∣∣∣ K1[θ ]
J [φapp]

∣∣∣∣ � τm− 2
3+ 1

2 ( 53−γ )(E N )
1
2 . (5.49)

The representation (5.43) then gives (5.44) or equivalently∣∣∣∣ Ka[θ ]
J [φapp]a

∣∣∣∣ � τm− 2
3+ 1

2 ( 53−γ )(E N )
1
2 . (5.50)

Next we evaluate D̄ j Ka[θ ]. We start with a = 1. By applying the product rule
to (5.47) and using (C.432), (C.433) and (C.435), (4.45), (4.46), we deduce that

|w j−1D̄ j K1[θ ]| � τm− 2
3+ 1

2 ( 53−γ )r− jτ 2q1

(
rn

τ

)
(E N )

1
2 , 1 � j � N − 3.

(5.51)
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For general a ∈ R, let us write down the expression for D̄ j Ka[θ ]. For j = 1,
using (3.11), we have

D̄1Ka[θ ] = aJ [φ]a−1D̄1K1[θ ] − aKa−1[θ ]D̄1J [φapp]. (5.52)

For j � 2, by applying the product rule and chain rule, we deduce that

D̄ j Ka[θ ] =
∑
1��� j

C1∈P̄ j−�,C2∈P̄�

cC1C2
j C1

(
J [φ]a−1

)
C2 (K1[θ ])

+
∑

1��� j,1�k1�k2� j−1
B1∈P̄ j−k2−�,B2∈P̄�

c j B1B2
k1k2�

B1

⎛
⎜⎜⎝J [φ]a−1−k1

(
k1∏

k′=1

Vk′J [φapp]
)

j1+···+ jk1
=k2, jk′ �1

Vk′ ∈P̄ jk′

⎞
⎟⎟⎠ B2 (K1[θ ])

+
∑

1�k1�k2� j

c j
k1

Ka−k1 [θ ]
(

k1∏
k′=1

Vk′J [φapp]
)

j1+···+ jk=k2, jk′�1

Vk′ ∈P̄ jk′

(5.53)

which can be proved based on the induction argument on j . Therefore, we deduce
(5.45). Also, by (C.429) we have (5.46). �


Before we proceed with the estimates, we examine the structure of M [H ].
Recall (4.8) and the formula (3.19) c[φ] = φ4

g2J [φ]γ+1 . Then

M [H ] = εγ ∂r

(
c[φ]
g00

)
Lα H + εDr

(
N0[H ]

g00

)

= ε

g00

[
−γ (1 + α)w′ φ4

g2 ∂r (J [φ]−γ−1)Dr H + ∂r (N0[H ])
]

− εγw
φ4

g2g00 ∂r (J [φ]−γ−1)∂r Dr H + εγ ∂r

(
φ4

g2g00

)
J [φ]−γ−1Lα H

+ ε

(
∂r

(
1

g00

)
+ 2

r

)
N0[H ], (5.54)

where we have used (4.1) and written Lα H = −(1 + α)w′Dr H − w∂r Dr H .
Our source of concern is rectangular bracket above, as it contains top-order terms
with two derivatives falling on H (either through ∂r (J [φ]−γ−1) or ∂rN0[H ]) and
seemingly insufficient number of w-powers to allow us to bound them through
our w-weighted norms. This situation is a typical manifestation of the vacuum
singularity at the outer boundary. Our key insight is that, due to special algebraic
structure of the equation, the terms involving two spatial derivatives of H without
the corresponding multiple of w will be cancelled. In the following lemma, we
present the rearrangement ofM [H ] that elucidates such an important cancelation.
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Lemma 5.8. (Cancellation lemma):

(i) M [H ] can be rewritten into the following form

M [H ] =εγ (γ + 1)(1 + α)w′ φ4

g2g00J [φ]−γ−2∂rJ [φapp]Dr H

− εγ (1 + α)w′∂r

(
φ4

g2g00

)
J [φ]−γ−1Dr H

− εγw∂r

(
c[φ]
g00

)
∂r Dr H

+ ε
1

τm g00K4[τ
m H

r
] + ε

(
∂r

(
1

g00

)
+ 1

g00

2

r

)
N0[H ], (5.55)

where

K4[θ ] = −γ (1 + α)w′ φ2

g2
K−γ−1[θ ](∂r K1[θ ] − φ2[r∂2r θ + 4∂r θ ])

+ (1 + α)w′ φ2

g2
{− γ K−γ−1[θ ]∂rJ [φapp] + γ ∂r (J [φapp]−γ−1)K1[θ ]

− γ (γ + 1)K−γ−2[θ ]∂rJ [φapp]φ2[r∂r θ + 3θ ] + 2γ K−γ−1[θ ]φ∂r φ[r∂r θ + 3θ ]}

+ (1 + α)∂r

(
w′ φ2

g2

)(
K−γ [θ ]+γJ [φapp]−γ−1K1[θ ]+γ K−γ−1[θ ]φ2[r∂r θ+3θ ]

)

(5.56)

and N0[H ] = r
τm K3[ τm H

r ] where K3 is defined by (3.17).
(ii) Each expression in the right-hand side of (5.55) contains at most two spatial

derivatives. If two spatial derivatives of H appear in the expression, they
always contain a factor of w. In particular, the last bracket of the first line of
K4[θ ] in (5.56) can be rewritten without any second spatial derivatives of H:

∂r K1[θ ] − φ2[r∂2r θ + 4∂rθ ]
= φ2Mg∂r∂τ θ + ∂r (φ

2Mg)∂τ θ + 2φ(�φapp + r∂rφ)∂rθ

+
[
∂r (3φ

2
app + 2φapp�φapp) + ∂r (3φapp + �φapp)θ

]
θ
}
. (5.57)

Proof. To verity (5.55), we will first rewrite the rectangular bracket in (5.54).
By (3.22) N0[H ] = r

τm K3[ τm H
r ] where K3 is defined by (3.17). Then

∂r (rK3[θ ])

= ∂r

[
(1 + α)w′ φ2

g2

(
K−γ [θ ] + γJ [φapp]−γ−1K1[θ ] + γ K−γ−1[θ ]φ2[r∂r θ + 3θ ]

)]

= (1 + α)∂r

(
w′ φ2

g2

)(
K−γ [θ ] + γJ [φapp]−γ−1K1[θ ] + γ K−γ−1[θ ]φ2[r∂r θ + 3θ ]

)

+ (1 + α)w′ φ2

g2
∂r

[
K−γ [θ ] + γJ [φapp]−γ−1K1[θ ] + γ K−γ−1[θ ]φ2[r∂r θ + 3θ ]

]
︸ ︷︷ ︸

(∗)
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By using ∂r K−γ [θ ] = −γJ [φ]−γ−1∂r K1[θ ] − γ K−γ−1[θ ]∂rJ [φapp], we have

(∗) = −γJ [φ]−γ−1∂r K1[θ ] − γ K−γ−1[θ ]∂rJ [φapp]
+ γJ [φapp]−γ−1∂r K1[θ ] − γ (γ + 1)J [φapp]−γ−2∂rJ [φapp]K1[θ ]
− {γ (γ + 1)J [φ]−γ−2∂r K1[θ ]
+ γ (γ + 1)K−γ−2[θ ]∂rJ [φapp]}φ2[r∂rθ + 3θ ]
+ γ K−γ−1[θ ]∂r (φ

2[r∂rθ + 3θ ])
= −γ (γ + 1)J [φ]−γ−2∂r K1[θ ]φ2[r∂rθ + 3θ ]

− γ K−γ−1[θ ]{∂rJ [φapp] − ∂r (φ
2[r∂rθ + 3θ ])}

+ {γJ [φapp]−γ−1 − γJ [φ]−γ−1}∂r K1[θ ]
− γ (γ + 1)J [φapp]−γ−2∂rJ [φapp]K1[θ ]
− γ (γ + 1)K−γ−2[θ ]∂rJ [φapp]φ2[r∂rθ + 3θ ]

= −γ (γ + 1)J [φ]−γ−2∂r K1[θ ]φ2[r∂rθ + 3θ ]
− γ K−γ−1[θ ]{∂r K1[θ ] − φ2[r∂2r θ + 4∂rθ ]}
− γ K−γ−1[θ ]∂rJ [φapp] − γ (γ + 1)J [φapp]−γ−2∂rJ [φapp]K1[θ ]
− γ (γ + 1)K−γ−2[θ ]∂rJ [φapp]φ2[r∂rθ + 3θ ]
+ 2γ K−γ−1[θ ]φ∂rφ[r∂rθ + 3θ ],

which in turn implies

∂rN0[H ] = −(1 + α)γ (γ + 1)w′ φ2

g2J [φ]−γ−2∂r K1[θ ]φ2Dr H + τ−mK4[θ ],
(5.58)

where we have used r∂r
( H

r

)+ 3 H
r = Dr H and θ = τm H

r .
For the first term in the rectangular bracket in (5.54), we note

∂r (J [φ]−γ−1) = −(γ + 1)J [φ]−γ−2∂r K1[θ ] − (γ + 1)J [φ]−γ−2∂rJ [φapp].
Together with (5.58), the rectangular bracket in (5.54) gives rise to the first line and
the first term of the third line of (5.55). The following line of (5.54) corresponds to
the second line of (5.55) where we have used Lα H = −(1+α)w′ Dr H −w∂r Dr H .

Finally we will count the number of spatial derivatives and the weight w. First
of all, it is clear that all the terms appearing in (5.55) contain at most two spatial
derivatives of H . For instance, the first term in (5.55) does not contain the second
derivatives of H . In the second line, both terms contain the second derivatives of
H and they have a factor ofw. Note that ∂r g00 has a term involving two derivatives
(see (3.27)) but that comes with w. The same counting applies to the rest. The only
expression that is not obvious at first sight is the first line of (5.56) because we do
see the two spatial derivatives of H without the weight w. It turns out that those
second derivatives disappear after cancelation. A direct computation using (5.47)
yields the identity (5.57). �
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Lemma 5.9. Let H be a solution to (3.26) on a time interval [κ, T ] for some T ≤ 1
and assume that the a priori assumptions (4.13) holds. Then

τ
1
2 (γ− 2

3 )‖D̄i−1M [H ]‖α+i �
√

ετmin{δ∗, δ
2 }− 1

2

× (E N )
1
2 + ετm− 1

2+ 5
2 ( 43−γ )(E N )

1
2 (DN )

1
2 . (5.59)

Proof. We note that the terms in the first two lines of (5.55) have the similar
structure as the terms resulting from Dr (

1
g00

L 2
lowH) in terms of the highest order

derivative count and the weight w count. For instance, the first line of (5.55) is
comparable to the case when the derivative falls into w of the last term of (5.5).
The difference is whether the coefficients are set by φapp, J [φapp] or φ, J [φ],
but the coefficients enjoy similar bounds due to Lemmas 4.8 4.10 for φapp, Lemma
4.14 for φ and our a priori assumption (5.1). We therefore have

τ
1
2 (γ− 2

3 )‖D̄i−1(M12)‖α+i �
√

ετmin{δ∗, δ
2 }− 1

2 (E N )
1
2 (5.60)

where M12 denotes the first two lines of (5.55).
We focus on the last line of (5.55) and present the detail for the bound on

ετ−m ‖̄D̄i−1(
1

g00
K4[ τm H

r ])‖α+i . We restrict our attention first to the following term
coming from the first line of (5.56):

(�) := ε
1

τm
w′ φ2

g2g00 K−γ−1[θ ]
(
∂r K1[θ ] − φ2[r∂2r θ + 4∂rθ ]

)
where θ = τm H

r
.

Asshown in theprevious lemma, the identity (5.57) assures that ∂r K1[θ ]−φ2[r∂2r θ+
4∂rθ ] contains at most one spatial derivative of H and therefore no issues associated
with the w-weights near the boundary will occur.

We proceed with D̄i−1(�) for 1 � i � N . By the product rule, D̄i−1(�) can be
written as a linear combination of the following form:

ε
1

τm
A1

(
w′

r

φ2

g2g00

)
A2(K−γ−1[θ ])A3

(
r{∂r K1[θ ] − φ2[r∂2r θ + 4∂rθ ]}

)
(5.61)

where A1 ∈ P̄�1 , A2 ∈ P̄�2 , A3 ∈ P̄�3 , �1 + �2 + �3 = i − 1. As before, we divide
into several cases. If �k � 2 for all k = 1, 2, 3, all the indices are low and we just
use L∞ bounds (4.67), (4.90), (4.92), (5.45). In the following, we assume that at
least one index is greater than 2.

Case I: �3 � max{�1, �2}. In this case, 3 � �3 � i − 1. Since �1, �2 � N−1
3 �

N − 4, and we apply L∞ bounds for A1 and A2 factors and L2 bounds for A3
factor. In particular, by assuming �1 � 1 (the case of �1 = 0 follows similarly), we
arrange the w weights as follows:

ε
1

τm
w�1 A1

(
w′

r

φ2

g2g00

)
w�2 A2(K−γ−1[θ ])w α+i−2(�1+�2)

2 A3

×
(

r{∂r K1[θ ] − φ2[r∂2r θ + 4∂rθ ]}
)
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By the product rule and by using (4.67), (4.68), (4.90), (4.92), we deduce that
∣∣∣∣w�1 A1

(
w′

r

φ2

g2g00

)∣∣∣∣ � rn−2−�1τ
4
3 (1 + ετ δ∗

), (5.62)

and, by further using (5.45), that

∣∣∣w�2 A2(K−γ−1[θ ])
∣∣∣ � τm− 2

3+ 1
2 ( 83−γ )r−�2τ−2γ−2q−γ−1

(
rn

τ

)
(DN )

1
2 . (5.63)

We have derived so far that

‖D̄i−1(�)‖α+i � ετ− 5γ
2 (DN )

1
2 ‖rn−�1−�2−2q−γ−1

(
rn

τ

)

A3

(
r{∂r K1[θ ] − φ2[r∂2r θ + 4∂rθ ]}

)
‖α+i−2(�1+�2)

We claim that

‖rn−�1−�2−2q−γ−1

(
rn

τ

)
A3

(
r{∂r K1[θ ] − φ2[r∂2r θ + 4∂rθ ]}

)
‖α+i−2(�1+�2)

� τm+ 19
6 − γ

2 (E N )
1
2 . (5.64)

Note that from (5.57) we may rewrite r{∂r K1[θ ] − φ2[r∂2r θ + 4∂rθ ]} as
r{∂r K1[θ ] − φ2[r∂2r θ + 4∂rθ ]}

= τm
{
φ2Mg(Dr∂τ H − 3

∂τ H

r
+ m

τ
(Dr H − 3

H

r
)) + r∂r (φ

2Mg)

×
(

∂τ H

r
+ m

τ

H

r

)

+ 2φ(�φapp + r∂rφ)

(
Dr H − 3

H

r

)

+
[

r∂r

(
3φ2

app + 2φapp�φapp

)
+ τmr∂r (3φapp + �φapp)

H

r

]
H

r

}
. (5.65)

Apply A3 to the above. We focus on the first term which can be written as

A31(φ
2Mg)A32(Dr∂τ H − 3

∂τ H

r
+ m

τ

H

r
)

for A31 ∈ P̄�31 and A32 ∈ P̄�32 where �31 + �32 = �3 � i − 1. As previously done,
depending on the size of �31, �32, we may use L∞ and L2 bounds. We verify the
claim (5.64) when �31 = 0 and �32 = �3. Note that

|q−γ−1

(
rn

τ

)
φ2Mg A3(Dr∂τ H − 3

∂τ H

r
+ m

τ

H

r
)|

� τ
7
3 (|B∂τ H | + |A3

(
∂τ H

r

)
| + 1

τ
|A3(

H

r
)|)
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for B ∈ P�3+1.Nowwehavewα+i−2(�1+�2) = wα+2(�3+1)−N wN+i−2(�1+�2+�3+1) �
wα+2(�3+1)−N since �1 + �2 + �3 + 1 = i and i � N and hence by the definition
of E N and L2 embedding, we obtain

‖rn−�1−�2−2q−γ−1

(
rn

τ

)
φ2Mg A3(Dr∂τ H − 3

∂τ H

r
+ m

τ

H

r
)‖α+i−2(�1+�2)

� τ
19
6 − γ

2 (E N )
1
2 ,

which gives (5.64). Other terms can be estimated similarly.
Therefore we deduce that

‖D̄i−1(�)‖α+i � ετm− 5
6+3( 43−γ )(E N )

1
2 (DN )

1
2 (5.66)

Case II: �2 � max{�1, �3}. In this case, 3 � �2 � i − 1 and �1, �3 � i−1
3 . We

apply L∞ bounds for A1 and A3 factors and L2 bounds for A2 factor. We arrange
the w weights as follows:

ε 1
τm w�1 A1

(
w′
r

φ2

g2g00

)
w

α+i−2(�1+�3)

2 A2(K−γ−1[θ ])w�3

×A3
(
r{∂r K1[θ ] − φ2[r∂2r θ + 4∂rθ ]}) .

We have the same bound for A1 factor as in (5.62). For A3 factor, from (5.65), we
deduce that

|w�3 A3(r{∂r K1[θ ] − φ2[r∂2r θ + 4∂rθ ]})| � τm+ 7
3+ 1

2 ( 83−γ )r−�3q1

(
rn

τ

)
(DN )

1
2 .

It suffices to estimate

‖rn−�1−�3−2q1

(
rn

τ

)
D̄�2

(
K−γ−1[θ ]) ‖α+i−2(�1+�3)

Using (5.53) for a = −γ − 1, we have the expression

D̄�2 K−γ−1[θ ] =
∑

1����2
C1∈P̄�2−�,C2∈P̄�

cC1C2
�2

C1

(
J [φ]−γ−2

)
C2 (K1[θ ]) (5.67)

+
∑

1����2,1�k1�k2��2−1
B1∈P̄�2−k2−�,B2∈P̄�

c�2B1B2
k1k2�

B1

⎛
⎜⎜⎝J [φ]−γ−2−k1

(
k1∏

k′=1

Vk′J [φapp]
)

j1+···+ jk1
=k2, jk′�1

Vk′ ∈P̄ jk′

⎞
⎟⎟⎠ B2 (K1[θ ]) (5.68)

+
∑

1�k1�k2��2

c j
k1

K−γ−1−k1 [θ ]
(

k1∏
k′=1

Vk′J [φapp]
)

j1+···+ jk=k2, jk′�1

Vk′ ∈P̄ jk′

. (5.69)
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Following the case-by-case analysis as before and using (5.44), (5.45), (5.46),
Lemma 4.14 and (4.54), we deduce that

‖rn−�1−�3−2q1

(
rn

τ

)
D̄�2

(
K−γ−1[θ ]) ‖α+i−2(�1+�3)

� τm− 2
3+ 1

2 ( 53−γ )τ−2γ−2(E N )
1
2 .

Therefore we obtain the same bound as Case I

‖D̄i−1(�)‖α+i

� ετm− 5
6+3( 43−γ )(E N )

1
2 (DN )

1
2 , (5.70)

where we have used (4.91).
Case III: �1 � max{�2, �3}. In this case, 3 � �1 � i − 1 and �2, �3 � i−1

3 .

We apply L∞ bounds for A2 and A3 factors and L2 bounds for A1 factor. For L2

bounds for A1(
1

g00
), we use Lemma 4.15. The proof follows in the same fashion

and we get the same bound as in the previous cases.
All the other terms in (5.56) are estimated analogously and we have the follow-

ing bound:

ετ−m‖D̄i−1(
1

g00K4[τ
m H

r
])‖α+i � ετm− 5

6+3( 43−γ )(E N )
1
2 (DN )

1
2 . (5.71)

The last term in (5.55) can be estimated similarly by using Lemma 4.15, (5.58),
and the previous estimates on K4[θ ]:

ε‖D̄i−1

(
(∂r

(
1

g00

)
+ 1

g00

2

r
)N0[H ]

)
‖α+i � ετm− 5

6+3( 43−γ )(E N )
1
2 (DN )

1
2 .

(5.72)
This finishes the proof Lemma. �


5.4. Nonlinear Estimates

Before we formulate the main estimate in Proposition 5.11, we collect several
identities that can be regarded as a special form of the product rule that connects
the algebraic structure of the nonlinearity to the algebraic properties of the vector
field class P .

Lemma 5.10. For any i ∈ {0, . . . , N } there hold the identities

Di

(
1

r

(
r∂r

(
H

r

))2
)

=
∑

1�k�i

∑
B∈Pk+1

C∈Pi−k+2

ci BC
k (B H)(C H) (5.73)

Di

(
H2

r

)
=

∑
A1,2∈P�1,�2

�1+�2=i+1, �1,�2≤i

a A1 A2
i A1H A2H (5.74)
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Di

(
H3

r2

)
=

∑
A1,2,3∈P�1,�2,�3

�1+�2+�3=i+1, �1,�2,�3≤i

bA1 A2 A3
i A1H A2H A3H, (5.75)

where a A1 A2
i , bA1 A2 A3

i , ci BC
k are some universal real constants. Note that the oper-

ators A j , j = 1, 2, 3 are at most of order i .

Proof. Proof of (5.73). The proof is based on the induction on i . Note that

r∂r

(
H

r

)
= Dr H − 3

H

r

Let i = 1. Then

Dr

[
1

r
(Dr H − 3

H

r
)2
]

= 2

r
(Dr H − 3

H

r
)

(
∂r Dr H − 3∂r (

H

r
)

)
+ 1

r2
(Dr H − 3

H

r
)2

= 2∂r

(
H

r

)(
∂r Dr H − 3∂r (

H

r
)

)
+
(

∂r

(
H

r

))2

= 2∂r

(
H

r

)
∂r Dr H − 5

(
∂r

(
H

r

))2

.

Since both ∂r
( ·

r

)
and ∂r Dr belong to P2, the claim is true for i = 1. Now suppose

the claim is true for all i � � and let

G := 1

r

(
r∂r

(
H

r

))2

.

If � is even,

D�+1G

= Dr

∑
1�k��

k: even

∑
B∈Pk+1

C∈P�−k+2

c�BC
k (B H)(C H) + Dr

∑
1�k��

k: odd

∑
B∈Pk+1

C∈P�−k+2

c�BC
k (B H)(C H)

=
∑
1�k��

k: even

∑
B∈Pk+1

C∈P�−k+2

c�BC
k [(B H)Dr (C H) + ∂r (B H)(C H)]

+
∑
1�k��

k: odd

∑
B∈Pk+1

C∈P�−k+2

c�BC
k [Dr (B H)(C H) + (B H)∂r (C H)] .

Note that each term in the summation belongs to P j for some j . Therefore, the
claim is true for i = � + 1. If � is odd, we can rearrange terms as follows:

D�+1G = ∂r

∑
1�k��

k: even

∑
B∈Pk+1

C∈P�−k+2

c�BC
k (B H)(C H) + ∂r

∑
1�k��

k: odd

∑
B∈Pk+1

C∈P�−k+2

c�BC
k (B H)(C H)
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=
∑
1�k��

k: even

∑
B∈Pk+1

C∈P�−k+2

c�BC
k [∂r (B H)(C H) + (B H)∂r (C H)]

+
∑
1�k��

k: odd

∑
B∈Pk+1

C∈P�−k+2

c�BC
k

[
(Dr − 2

r
)(B H)(C H) + (B H)(Dr − 2

r
)(C H)

]
,

which shows that the claim is true for i = � + 1. The proofs of (5.74)–(5.75) are
similar. �

Proposition 5.11. (Estimates for the nonlinear term). Let H be a solution of (3.21).
Then for any i ∈ {0, 1, . . . , N } the following bound holds:

τ
1
2 (γ− 2

3 )‖DiN [H ]‖α+i �
√

ετm+ 3
4 δ∗

E N + τm+δ∗− 3
2− 3

2 ( 43−γ )(E N )
1
2 (DN )

1
2 .

(5.76)

Since φ = φapp + θ , we have by simple algebra

1

φ2 − 1

φ2
app

+ 2θ

φ3
app

= 3φappθ
2 + 2θ3

φ2φ3
app

. (5.77)

From (3.25) we may writeN [H ] in the form

N [H ] = −εrτ−mK2[τm H

r
] − 2

3φ2φ2
app

τm H2

r

− 4

9φ2φ3
app

τ 2m H3

r2
− ετm P[φapp]H2

φ2
appr

. (5.78)

Using (3.16), the first term on the right-hand side of (5.78) takes the form

− εrτ−mK2[τm H

r
]

= 2εγ τmw
φ3

g2J [φ]γ+1

1

r

(
r∂r

(
H

r

))2

+ 2εγ τmw
φ3

g2J [φ]γ+1

Mg

r2

(
∂τ H + m

τ
H
)

r∂r

(
H

r

)

+ εγ τmw
φ2

g2J [φ]γ+1r
�(3φapp + �φapp)H2

− εγ (γ + 1)τmw
φ2

g2J [φapp]γ+2r

[
(3φapp + �φapp)

H2

r2
+ τm H3

r3
]
�J [φapp]

+ εγ (1 + α)τmw′ φ2

g2J [φapp]γ+1

[
(�φapp − 3φapp)

H2

r2
− 2τm H3

r3
]

+ εγ τ−mw
φ2

g2r
(K−γ−1[τm H

r
] + (γ + 1)J [φapp]−γ−2K1[τm H

r
])�J [φapp].

(5.79)

We denote the first and second terms of the right-hand side of (5.79) byN1[H ]
and N2[H ]. We first present the estimation of N1[H ] and N2[H ].
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Estimates for N1[H ] = 2γ τmw
φ3

g2J [φ]γ+1
1
r

(
r∂r
( H

r

))2
Lemma 5.12. For each 1 � i � N − 1, we have the following:

ετ
1
2 (γ− 2

3 )‖Di (N1[H ])‖α+i � ετm+ 5
4 δ∗

E N . (5.80)

For i = N,

ετ
1
2 (γ− 2

3 )‖DN (N1[H ])‖α+N � ε
1
2 τm+ 3

4 δ∗
E N . (5.81)

Proof. Using the product rule (A.405) we have

ετ
1
2 (γ− 2

3 )Di (N1[H ])

= −2γ ετ
1
2 (γ− 2

3 )+m
∑

j+k+�=i

∑
A∈P̄ j ,B∈P̄k

C∈P�

ci ABC
k j A

(
w

g2

)
B

(
φ3

J [φ]γ+1

)
(CG )

︸ ︷︷ ︸
I i ABC

,

where we recall the notation G = 1
r

(
r∂r
( H

r

))2
from the proof of Lemma 5.10.

Case I: � = 0. First we have CG = G and G = ∂r (
H
r )(Dr H − 3 H

r ). By using
L∞ bound (C.431), we have

|G | � τ
1
2 ( 113 −γ )(E N )

1
2 |D1H | � τ

11
3 −γ E N (5.82)

Case I-1: � = 0 and 0 ≤ k ≤ 1. By (4.79) |A
(

w
g2

)
B
(

φ3

J [φ]γ+1

)
| �

τ−2γ q−γ−1

(
rn

τ

)
. Therefore, recalling (2.24) and the above definition of I i ABC

we obtain

ετ
1
2 (γ− 2

3 )
∣∣∣I i ABC

∣∣∣ � ετ
1
2 (γ− 2

3 )+m−2γ− i
n + 11

3 −γ E N = ετ
5
6 (4−3γ )− i

n +m E N

� ετm+ 5
4 δ∗

E N . (5.83)

s
Case I-2: � = 0, k � 2. If j = 0 and k = i ≤ N − 1 we use (4.80) to conclude

ετ
1
2 (γ− 2

3 )+m‖I i ABC‖α+i � ετ
1
2 (γ− 2

3 )+m‖A

(
w

g2

)
‖L∞‖B

(
φ3

J [φ]γ+1

)

‖α−N+2i+2‖ (CG ) ‖L∞‖wN−i−1‖L∞

� ετ
1
2 (γ− 2

3 )−2γ− k
n + 11

3 −γ+m E N = ετ
5
6 (4−3γ )− i

n +m E N

� ετm+ 5
4 δ∗

E N . (5.84)

If j = 0 and k = i = N we use (4.82) instead of (4.80) and thanks to an
additional power of w, this leads to

ετ
1
2 (γ− 2

3 )+m‖I N ABC‖α+N � ετ
1
2 (γ− 2

3 )+m‖ w

g2 B

(
φ3

J [φ]γ+1

)
‖α+N ‖ (CG ) ‖L∞
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� ετ
1
2 (γ− 2

3 )+m‖B

(
φ3

J [φ]γ+1

)
‖α+N+1‖ (CG ) ‖L∞

�
√

ετ
1
2 (γ− 2

3 )−2γ− N
n + 11

3 −γ+m E N �
√

ετm+ 5
4 δ∗

E N .

If j ≥ 1 we have k ≤ N − 1 and
∣∣∣A ( w

g2

)∣∣∣ � rn− j � τ 1−
j
n q1− j

n

(
rn

τ

)
. Using

the bound analogous to (5.84) we conclude

ετ
1
2 (γ− 2

3 )+m‖I i ABC‖α+i

� ετ
1
2 (γ− 2

3 )+m‖A

(
w

g2

)
B

(
φ3

J [φ]γ+1

)
‖α−N+2k+2‖ (CG ) ‖L∞‖wN−k−1‖L∞

� τ
1
2 (γ− 2

3 )+m+1− j
n ‖q1− j

n

(
rn

τ

)
B

(
φ3

J [φ]γ+1

)
‖α−N+2k+2‖ (CG ) ‖L∞

� ετ
1
2 (γ− 2

3 )+m−2γ+1− k+ j
n + 11

3 −γ E N

� ετ 1+
5
6 (4−3γ )− i

n +m E N � ετm+ 5
4 δ∗+1E N . (5.85)

Case II: � � 1. In this case, we will make use of the representation obtained in
(5.73): for C ∈ P�, we write it as

CG =
∑

1�q��

∑
C1∈Pq+1

C2∈P�−q+2

c�C1C2
q (C1H)(C2H) (5.86)

Let �∗ = max{q + 1, � − q + 2}. Without loss of generality, we may assume that
�∗ = � − q + 2 so that C2 ∈ P�∗ and C1 ∈ P�−�∗+3. Note that �+3

2 � �∗ � � + 1
and 1 � q = � − �∗ + 2 � �+1

2 .
Case II-1: � � 1, j = 0 and k = 0. We first consider N−α

2 � �∗ � N . In this
case, by (4.79) and thanks to an additional power of w,

ετ
1
2 (γ− 2

3 )+m‖I i ABC‖α+i

= ετ
10
3 − γ

2 +m‖ φ3

g2J [φ]γ+1 τ
1
2 (γ− 11

3 )w
N+i−2�∗+2

2 −q+1wq−1C1Hτ
1
2 (γ− 11

3 )

w
α+2�∗−N

2 C2H‖L2

� ετ
10
3 − γ

2 −2γ+mτ
1
2 (γ− 11

3 )‖wq−1C1H‖L∞τ
1
2 (γ− 11

3 )‖w α+2�∗−N
2 C2H‖L2

� ετ
10
3 − γ

2 −2γ+m E N = ετ
5
2 ( 43−γ )+m E N � ετm+ 5

4 δ∗
E N , (5.87)

where we note that since p + �∗ = � + 2, N+i−2�∗+2
2 − q + 1 = N+i−2�

2 � 0, and

thus ‖w N+i−2�∗+2
2 −q+1‖L∞ � 1.

Furthermore, since �−�∗+1 = q −1 � �−1
2 � N −4 due to N = �α�+6 � 9,

τ
1
2 (γ− 11

3 )w
N+i−2�∗+2

2 −q+1wq−1C1H is bounded by (E N )
1
2 via (C.433). Finally, we

used the L2 embedding (C.429) to bound ‖w α+2�∗−N
2 C2H‖L2 .
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Now suppose �∗ = N + 1 (� = N and q = 1). We then have

ετ
1
2 (γ− 2

3 )+mw
α+N
2 I N ABC =ε

1
2 τ

3
2 τ

γ+1
2 q γ+1

2

(
rn

τ

)
φ3

g2J [φ]γ+1 τ
1
2 (γ− 11

3 )C1H

ε
1
2 τ− γ+1

2 q− γ+1
2

(
rn

τ

)
w

α+N+2
2 C2H. (5.88)

We estimate the L2-norm of the above expression by estimating the first line in L∞
normand the second line in the L2-norm.Recalling (2.22), by (C.430), (4.79), (C.431)
we obtain

ετ
1
2 (γ− 2

3 )+m‖I N ABC‖α+i �
√

ετ
1
2 (4−3γ )+m E N �

√
ετm+ 3

4 δ∗
E N . (5.89)

The only remaining case is when �∗ < N−α
2 , namely �∗ = 2 and � = 1. In this

case, we can just use the L∞ bound (C.433) to derive the same bound as in (5.87).
Case II-2: � � 1, j = 0 and k � 1. In this case, 2 � �∗ � i and k � N − 1

since � + k = i ≤ N . If �∗ ≥ k we have

ετ
1
2 (γ− 2

3 )+m‖I i ABC‖α+i � ετ
10
3 − γ

2 +m‖wk B

(
φ3

J [φ]γ+1

)

‖L∞‖w N+i−2k−2q+4−2�∗
2 ‖L∞

τ
1
2 (γ− 11

3 )‖wq−1C1H‖L∞τ
1
2 (γ− 11

3 )‖w α+2�∗−N
2 C2H‖L2 (5.90)

� ετ
5
6 (4−3γ )+m E N � ετm+ 5

4 δ∗
E N , (5.91)

where we have used (4.81) and the embeddings (C.429) and (C.435). Moreover,

‖w N+i−2k−2q+2−2�∗
2 ‖L∞ � 1 since N + i − 2k − 2q + 4 − 2�∗ = N − i ≥ 0.

If �∗ < k, as in Case I-2, we estimate w
α+N−2k

2 B
(

φ3

J [φ]γ+1

)
in the L2-norm

and the appropriately weighted terms C1H and C2H in the L∞-norm and obtain
the same bound as in (5.91).

Case II-3: � � 1 and j � 1. In this case, we have 2 � �∗ � i + 1 − j , k �
i − j − 1 and � + k = i − j . If k = 0 we proceed as in Case II-1:

ετ
1
2 (γ− 2

3 )+m‖I i ABC‖α+i

� τ
10
3 − γ

2 +1− j
n +m‖q1− j

n

(
rn

τ

)
φ3

J [φ]γ+1 ‖L∞‖w N+i−2�−2
2 ‖L∞

τ
1
2 (γ− 11

3 )‖wq−1C1H‖L∞τ
1
2 (γ− 11

3 )‖w α+2�∗−N
2 C2H‖L2

� ετ
5
6 (4−3γ )+m+1− N

n E N � ετm+ 5
4 δ∗+1E N , (5.92)

where we have used N + i − 2�∗ − 2q + 2 = N + i − 2� − 2 � 0 because
� = i − j � i − 1. If k � 1. We proceed as in Case II-2. We distinguish the
two cases �∗ ≥ k and �∗ < k. Proceeding analogously to Case II-2, relying on the
embeddings (C.429) and (C.435), and Lemma 4.14 we conclude

ετ
1
2 (γ− 2

3 )+m‖I i ABC‖α+i � ετ
5
6 (4−3γ )+m+1− N

n E N � ετm+ 5
4 δ∗+1E N . (5.93)

�
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Estimates for N2[H ] = 2γ τmw
φ3

g2J [φ]γ+1
Mg

r2
(
∂τ H + m

τ
H
)

r∂r
( H

r

)

Lemma 5.13. For any i ∈ {0, 1, . . . , N } the following bound holds:

ετ
1
2 (γ− 2

3 )‖DiN2[H ]‖α+i �
√

ετm+ 5
4 δ∗− 1

2 (E N )
1
2 (DN )

1
2 . (5.94)

Proof. By the product rule (A.405) and the identity r∂r
( H

r

) = Dr H − 3 H
r we

have

ετ
1
2 (γ− 2

3 )Di

(
2γ τmw

φ3

g2J [φ]γ+1

Mg

r2

(
∂τ H + m

τ
H
)

r∂r

(
H

r

))

= 2εγ τ
1
2 (γ− 2

3 )+m
∑

A1,2,3∈P̄�1,�2,�3
,A4∈P�4

�1+···+�4=i

A1

(
wMg

g2r2

)
A2

(
φ3

J [φ]γ+1

)

× A3

(
Dr H − 2

H

r

)(
A4∂τ H + m

τ
A4H

)
. (5.95)

Case I. �3 ≤ i − 1. Each factor in the last line of (5.95) can be estimated by

ετ
1
2 (γ− 2

3 )+mrn−�1−2
∣∣∣∣A2

(
φ3

J [φ]γ+1

)
A3

(
Dr H − 2

H

r

)(
A4∂τ H + m

τ
A4H

)∣∣∣∣
ετ

1
2 (γ− 2

3 )+m+1− �1+2
n p

1,− �1+2
n∣∣∣∣q1

(
rn

τ

)
A2

(
φ3

J [φ]γ+1

)
A3

(
Dr H − 3

H

r

)(
A4∂τ H + m

τ
A4H

)∣∣∣∣ . (5.96)

We now distinguish several cases.
Case I-1. �3 = max{�2, �3, �4}. Assume first �2 ≤ �4 ≤ �3 and �2 ≥ 2. In this case
the ‖ · ‖α+i norm of (5.96) is bounded by

ετ
1
2 (γ− 2

3 )+m+1− �1+2
n ‖w N+i−2(�2+�3+�4)

2 ‖∞‖w�2q1

(
rn

τ

)
A2

(
φ3

J [φ]γ+1

)
‖∞

‖w�4−2(A4Hτ − m

τ
A4H)‖∞‖w α+2�3−N

2 A3

(
Dr H − 3

H

r

)
‖L2

� ετ
1
2 (γ− 2

3 )+m+1− �1+2
n −2γ− �2

n + 1
2 ( 53−γ )+ 1

2 ( 83−γ )E
1
2
N D

1
2
N

� ετm+ 17
6 − 5

2 γ− i+2
n (E N )

1
2 (DN )

1
2 � ετm+ 5

4 δ∗− 1
2 (E N )

1
2 (DN )

1
2 , (5.97)

where we have used (4.81) to bound ‖w�2q1
(

rn

τ

)
A2

(
φ3

J [φ]γ+1

)
‖∞, (C.433) to

bound ‖w�4−2(A4Hτ − m
τ

A4H)‖∞ and (C.429) to bound ‖w α+2�3−N
2 A3(

Dr H − 3 H
r

) ‖L2 . Note that we have used the bounds τ
1
2 (γ− 5

3 )‖D j Hτ‖α+ j +
τ

1
2 (γ− 11

3 )‖D j H‖α+ j � (E N )
1
2 , j ∈ {0, 1, . . . , N }. The case �4 ≤ �2 ≤ �3 is

handled analogously.
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If �2 ≤ 1 and �3 ≥ 3 we then use (4.79) instead of (4.81) above and obtain
the same bound. If �2 ≤ 1 and �3 ≤ 2 we then use (4.79) and (C.431) instead
of (C.433) in the aboive argument and obtain the same upper bound.
Case I-2. �4 = max{�2, �3, �4} or �2 = max{�2, �3, �4}. These cases can be treated
similarly, with a similar case distinction, and with help of Lemma 4.14, (C.431)–
(C.433) and (C.429).

Case II. �3 = i . If i ≤ N − 1 we proceed as in Case I. Assume now �3 = N .
Since in this case A3 = D̄N the last line of (5.95) takes the form

2εγ τ
1
2 (γ− 2

3 )+m wMg

g2r2
φ3

J [φ]γ+1

(
DN+1H − 2D̄N

(
H

r

))(
∂τ H + m

τ
H
)

.

(5.98)

We take special notice of the additional power of w available in this case. Since∣∣∣ Mg

g2r2

∣∣∣ � τ 1− 2
n p1,− 2

n

(
rn

τ

)
q1
(

rn

τ

)
we can estimate the ‖ ·‖α+N -norm of the above

expression by

ετ
1
2 (γ− 2

3 )+m+1− 2
n ‖q γ+3

2

(
rn

τ

)
φ3

J [φ]γ+1

(
∂τ H + m

τ
H
)

‖∞‖w α+N+2
2 q− γ+1

2

(
rn

τ

)(
DN+1H − 2D̄i

(
H

r

))
‖L2

�
√

ετ
1
2 (γ− 2

3 )+m−2γ+1− 2
n + 1

2 ( 83−γ )+ 1
2 (γ+1)(E N )

1
2 (DN )

1
2

= √
ετ

1
2 (4−3γ )+ 1

2− 2
n +m(E N )

1
2 (DN )

1
2 �

√
ετm+ 3

4 δ∗+ 1
2 (E N )

1
2 (DN )

1
2 , (5.99)

where we have used (4.79), (C.430), the bound τ
1
2 (γ− 5

3 )‖D j Hτ‖α+ j + τ
1
2 (γ− 11

3 )‖
D j H‖α+ j � (E N )

1
2 , j ∈ {0, 1, . . . , N }, and (A.403).Theproof follows from (5.97)

and (5.99). �

The third, fourth, and fifth lines on the right-hand side of (5.79) are easily

bounded by the same ideas as above, where we systematically use the product
rule (A.405), Lemmas 4.14 and 4.10.

We only highlight the potential difficulties and how they can be overcome. In the
3rd term on the right-hand side of (5.79) there is nothing dangerous; we may write

it as εγ τmw
φ2

J [φ]γ+1
1
g1

�(3φapp + �φapp)H H
r and then estimate its Di derivative

using the case-by-case analysis analogous to the above, the product rule (A.405),
Lemma 4.14, and the bounds (4.46), (4.51). Note that the last two estimates afford
the presence of a power of rn

τ
in our bounds, which in turn has the regularising effect

of diminishing any potential singularities due to negative powers of r at r = 0.
The 4-th term on the right-hand side of (5.79) looks potentially dangerous due

to the presence of the negative powers of r in H2

r2
and H3

r3
. However, by (4.53) the

bounds on V �J [φapp], V ∈ P̄i , will afford a presence of a power of of rn

τ
, thus

averting all difficulties with potential singularities at r = 0.
Finally, the 5th term on the right-hand side of (5.79) contains w′ explicitly,

and since |∂�
r w′| � rn−�−1 in the vicinity of r = 0 we have the above mentioned
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regularising effect. The estimates are then routinely performed using the the product
rule (A.405) and Lemma 4.14. The outcome is

ετ
1
2 (γ− 2

3 )‖Di ( j-th line of (5.79)) ‖α+i � ετm+ 5
4 δ∗

(E N )
1
2 (DN )

1
2 , j = 3, 4, 5.

(5.100)

To estimate the last line of (5.79) the crucial insight is that

K−γ−1[τm H

r
] + (γ + 1)J [φapp]−γ−2K1[τm H

r
]

= (γ + 1)(γ + 2)J [φapp]−γ−3
(∫ 1

0
(1 − s)(1 + s

K1[θ ]
J [φapp] )

−γ−3 ds

)

(K1[θ ])2,
which follows from (5.43) with a = −γ − 1. Therefore the left-hand side above
is in fact quadratic in K1[θ ]. We now estimate the high-order derivatives of the
above left-hand side using the product rule (A.405), Lemma 5.6, and Remark 5.7.
By analogy to the proof of Lemma 5.9, we obtain

ετ
1
2 (γ− 2

3 )‖Di

(
τ−mw

φ2

g2r
(K−γ−1[τm H

r
] + (γ + 1)J [φapp]−γ−2K1[τm H

r
])
)

‖α+i

� ετm+ 5
4 δ∗

(E N )
1
2 (DN )

1
2 , i ≤ N − 1. (5.101)

On the other hand, when i = N , DN K1[θ ] contains a top-order term DN+1H in
which case we have to use (C.430) with loss of

√
ε:

ετ
1
2 (γ− 2

3 )‖Di

(
τ−mw

φ2

g2r
(K−γ−1[τm H

r
] + (γ + 1)J [φapp]−γ−2K1[τm H

r
])

�J [φapp]
) ‖α+i

�
√

ετm+ 3
4 δ∗− 1

2 (E N )
1
2 (DN )

1
2 . (5.102)

We next discuss the rest of terms in (5.78). Using the product rule (A.405)
and (5.74) we have

Di

(
1

φ2φ2
app

τm H2

r

)

= τm
∑

B1∈P̄�1
,B2∈P�2

�1+�2=i, �2≤i−1

cB1B2
i B1

(
1

φ2φ2
app

)
B2

(
H2

r

)
+ τm 1

φ2φ2
app

Di

(
H2

r

)

= τm
∑

B1∈P̄�1
,B2∈P�2

�1+�2=i, �2≤i−1

cB1B2
i B1

(
1

φ2φ2
app

) ∑
B2,1∈P̄�2,1

,B2,2∈P�2,2
�2,1+�2,2=�2

c
B2,1B2,2
�2
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B2,1

(
H

r

)
B2,2H

+ τm 1

φ2φ2
app

∑
A1,2∈P�1,�2

�1+�2=i+1, �1,�2≤i

a A1 A2
i A1H A2H. (5.103)

With this decomposition, Lemma 4.14 (applied with b = 0), Lemma 4.8, and the
case-by-case analysis analogous to the proof of Lemma 5.13 we obtain the bound

τ
1
2 (γ− 2

3 )+m‖Di

(
1

φ2φ2
app

H2

r

)
‖α+i

� τ
1
2 (γ− 2

3 )+m− 8
3− i+2

n + 1
2 ( 53−γ )+ 1

2 ( 83−γ )(E N )
1
2 (DN )

1
2

� τ− 1
2 γ− 5

6− i+2
n +m(E N )

1
2 (DN )

1
2

� τm+ 1
4 δ∗− 3

2− 3
4

N+2
n (E N )

1
2 (DN )

1
2

= τm+δ∗− 3
2− 3

2 ( 43−γ )(E N )
1
2 (DN )

1
2 , (5.104)

where we have used N+2
n = 2( 43 − γ ) − δ∗ at the last step. Similarly,

τ
1
2 (γ− 2

3 )+2m‖Di

(
1

φ2φ3
app

H3

r2

)
‖α+i

� τ
1
2 (γ− 2

3 )+2m− 10
3 − i+2

n +2× 1
2 ( 53−γ )+ 1

2 ( 83−γ )E N (DN )
1
2

� τ−γ− 2
3− i+2

n +2m E N (DN )
1
2

� τ 2m+ 1
2 δ∗−2− 1

2
N+2

n E N (DN )
1
2 . (5.105)

In order to estimate ετm P[φapp]H2

φ2
appr

(the last term on the right-hand side of (5.78))

Using the product rule (A.405)

Di

(
P[φapp]H2

φ2
appr

)
=

∑
A1,2∈P̄�1,�2

,A3∈P�3
�1+···+�3=i

cA1 A2 A3
i A1(

1

φapp
)A2(

P[φapp]
φapp

)A3

(
H2

r

)
.

(5.106)

For A3

(
H2

r

)
, we may use (5.74) to further decompose it into a linear combination

of A31H A32H where A31, A32 ∈ Pi1 ,Pi2 , i1 + i2 = �3 + 1, i1, i2 ≤ �3. We next
recall (4.59). Applying (4.58) and the case-by-case analysis analogous to the proof
of Lemma 5.13 we obtain the bound

ετ
1
2 (γ− 2

3 )+m‖Di

(
P[φapp]H2

φ2
appr

)
‖α+i

� ετ
1
2 (γ− 2

3 )+m−2γ− i+2
n + 1

2 ( 53−γ )+ 1
2 ( 83−γ )(E N )

1
2 (DN )

1
2
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� ετm+ 5
4 δ∗− 3

2 (E N )
1
2 (DN )

1
2 . (5.107)

Proof of Proposition 5.11. Bound (5.76) follows from (5.79), Lemmas 5.12–5.13,
bounds (5.100)–(5.102), (5.104)–(5.105), and (5.107). �


5.5. Source Term Estimates

Recall the definition (2.2) and formula (2.21).

Lemma 5.14. (Source term estimates). For any i ∈ {0, 1, . . . N } the following
bounds hold:

‖Di

(
rφ−2

0 Rε
M,2[

φ1

φ0
, . . . ,

φM

φ0
]
)

‖α+i � τ− 4
3+(M+1)δ− i

n , (5.108)

‖Di
(
r Rε

P

) ‖α+i � τ− 4
3+(M+1)δ− i−1

n , (5.109)

‖DiS (φapp)‖α+i � εM+1τ−mτ− 4
3+(M+1)δ− i

n . (5.110)

Proof. Proof of (5.108). Recall that Rε
M,2 is defined through (2.7). A detailed look

at the Taylor expansion of the function Rε
M,ν reveals that for any D ∈ N there exist

constants c j
α1,...αM , j ∈ {1, . . . , D} and a smooth function r D,ε

M,ν such that

Rε
M,ν(x1, . . . xm) =

D∑
j=1

ε j−1
∑

(α1,...,αM )∈ZM≥0∑M
i=1 iαi =M+ j

c j
α1,...,αM

xα1
1 . . . xαM

M + r D,ε
M,ν(x1, . . . xm),

(5.111)

where the remainder term r D,ε
M,ν(x1, . . . xm) has the property that all mixed deriva-

tives ∂α1
x1 . . . ∂

αm
xM r D,ε

M,ν vanish at0 if
∑M

i=1 iαi ≤ M+D.Using the chain rule, (5.111),
and the bound

r�∂�
r

(
φi

φ0

)
� τ iδ,

the bound (5.108) follows immediately. �

Proof of (5.109). Recall that Rε

P is defined through (2.17). To estimate the first
term on the right-hand side of (2.17) we use the following crude bound:

i∑
k=0

∣∣∣∣Di

(
φkφi−k

wαr
�

(
w1+αJ [φ0]−γ hm

m!
))∣∣∣∣

� r−i
i∑

�=0

∣∣∣∣(r∂r )
�

(
φkφi−k

wαr
�

(
w1+αJ [φ0]−γ hm

m!
))∣∣∣∣
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� r−i
∑

�1+�2+�3≤i

∣∣∣∣(r∂r )
�1

(
1

r

)∣∣∣∣
∣∣∣(r∂r )

�2 (φkφi−k)

∣∣∣
∣∣∣∣(r∂r )

�3

(
w−α�

(
w1+αJ [φ0]−γ hm

m!
))∣∣∣∣ .

By (2.61), Proposition 2.8 we can bound the last line above by

r−i−1τ
2
3+kδ+ 2

3+(i−k)δ−2γ+mδ p1,0

(
rn

τ

)

= τ
4
3+(i+m)δ−2γ− i+1

n p1,− i+1
n

(
rn

τ

)
� τ

4
3−2γ− i+1

n +Mδ. (5.112)

To estimate the second term on the right-hand side of (2.17) we first note that

Rε

g2(r)wαr
�
(
w1+αJ [φapp]−γ

)

= −γ
Rεw

g2(r)r
J [φapp]−γ−1�J [φapp] + (1 + α)

Rε

g2(r)
w′J [φapp]−γ .

(5.113)

Whenwe applyDi to the first termon the right-hand side of (5.113)we use the prod-
uct rule (A.405) to break down the resulting expression into a linear combination
of terms of the form

A1

(
Rε

wg2(r)r

)
A2

(
J [φapp]−γ−1

)
A3�J [φapp] (5.114)

with A1 ∈ P�1 and A2,3 ∈ P̄�2,�3 with �1 + �2 + �3 = i . By Proposition 2.8 we
have ∣∣∣∣A1

(
Rεw

g2(r)r2

)∣∣∣∣ � τ
4
3+Mδ− �1+1

n p
λ,− �1+3

n

(
rn

τ

)
.

Combining the previous line with (4.53) and (4.54) we can bound the absolute
value of (5.114) by

τ
4
3+Mδ− �1+1

n p
λ,− �1+3

n

(
rn

τ

)
τ−2γ−2− �2

n q−γ−1

(
rn

τ

)(
rn

τ

)− �2
n

τ 2−
�3
n

(
rn

τ

)− �3
n

q2

(
rn

τ

)(
p1,0

(
rn

τ

)
+ pλ,− 2

n

(
rn

τ

))

� τ
4
3−2γ+Mδ− i+1

n p
λ,− �1+4

n

(
rn

τ

)
q−γ+1

(
rn

τ

)
(

p
1,− �2+�3

n

(
rn

τ

)
+ p

λ,− �2+�3+2
n

(
rn

τ

))

� τ
4
3−2γ+Mδ− i+1

n . (5.115)
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To bound the last term on the right-hand side of (2.17) we can use the refined
expansion (5.111) to obtain the bound∣∣∣(r∂r )

� Rε
M,γ

∣∣∣ � τ (M+1)δ,

where we have used (2.41), (2.39), (2.8), and (2.13), and the bound |RJ | � τ Mδ .

By an analogous argument we have the bound
∣∣(r∂r )

�hM
∣∣ � τ (M+1)δ . Using the

last two bounds, the product rule, Proposition 2.8, and by analogy to the above, we
obtain∣∣∣∣∣Di

(∑M−1
j=0 ε j ∑ j

k=0 φkφi−k

g2(r)wαr2
�

(
w1+αJ [φ0]−γ

(
hM

M ! + εRε
M,γ

)))∣∣∣∣∣
� τ

4
3−2γ+(M+1)δ− i+1

n . (5.116)

Since τ
4
3−2γ+(M+1)δ− i+1

n = τ− 4
3+(M+1)δ− i−1

n , the claim follows from (5.112),
(5.115), and (5.116). �

Proof of (5.109). SinceS (φapp) = rτ−m S(φapp), from (2.6) and (5.108)–(5.109)
we obtain

‖DiS (φapp)‖α+i � εM+1τ−mτ− 4
3+(M+1)δ− i

n ,

where we have used the bound τ− i−1
n ≤ τ− i

n , for τ ∈ (0, 1]. �

As a corollary, we obtain the following bound for the source terms:

Proposition 5.15. (Source term estimates). Let H be a solution of (3.21). Then for
any i ∈ {0, . . . , N } the following bound holds:

τγ− 5
3

∣∣∣(DiS (φapp), Di Hτ

)
α+i

∣∣∣ � εDN + ε2M+1τ 2(1−
2
n )+(2M−2)δ+2δ∗−3γ−2m .

(5.117)

Proof. By the previous lemma and the Cauchy–Schwarz inequality we obtain

τγ− 5
3

∣∣∣(DiS (φapp), Di Hτ

)
α+i

∣∣∣ � τ
1
2 (γ− 2

3 )‖DiS (φapp)‖α+iτ
1
2 (γ− 8

3 )‖Di Hτ‖α+i

� εM+1τ
1
2 (γ− 2

3 )−m− 4
3+(M+1)δ− i

n (DN )
1
2

= εM+1τ 1+Mδ− i+2
n − 3

2 γ−m(DN )
1
2 . (5.118)

Since i ≤ N and δ∗ = δ − N
n , we can estimate the above expression by a multiple

of

εDN + ε2M+1τ 2(1−
2
n )+(2M−2)δ+2δ∗−3γ−2m .

�

Remark 5.16. In order for the τ -power to be integrable on [0, T ]we need to impose
2(1− 2

n )+(2M−2)δ+2δ∗−3γ −2m > −1which is equivalent to (M−1)δ+δ∗ >
3
2 (γ −1)+m+ 2

n . Since δ∗ > 2
n by (2.27) and 0 < γ −1 < 1

3 , a sufficient condition
for the previous estimate is for M to be sufficiently large so that

(M − 1)δ >
1

2
+ m. (5.119)
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5.6. Proof of Theorem 1.13

We are ready to estimate
∫ τ

κ
Ri dτ ′ where Ri is given in (4.12). The only

missing estimate is the last term of (4.12). By (4.23), (4.24), and (4.37), we have

|
(

c[φ]
c[φ0]g00

)
τ
| � ετ δ−1 and hence we obtain the following estimate of the last term

of Ri in (4.12):
∣∣∣∣12εγ τγ− 5

3

∫ 1

0
c[φ0]

(
c[φ]

c[φ0]g00

)
τ

w1+α
∣∣D j+1H

∣∣2 w j r2 dr

∣∣∣∣ � ετ δ−1E N

(5.120)
CombiningPropositions 5.1, 5.4,Lemma5.9, Propositions 5.11, 5.15, and (5.120),

we obtain the bound

N∑
i=0

|Ri | �
(

ε + √
ετ δ∗ + ετ

m− 1
2+ 5

2

(
4
3−γ

)
+ τm+δ∗− 3

2− 3
2 ( 43−γ )

√
E N

)
DN

+
(√

ετmin{δ∗, δ
2 }− 1

2 + √
ετm+ 3

4 δ∗√
E N + √

ετ
δ
2− 1

2

+√
ετmin{δ∗, δ

2 }− 1
2

)√
E N
√

DN

+ ετ δ−1E N

+ ε2M+1τ 2(1−
2
n )+(2M−2)δ+2δ∗−3γ−2m . (5.121)

We note that the last line of (5.121) Let δ̄ := min{δ∗, δ
2 } > 0. With the choices

m = 5

2
, M = �1 + 2m + 1

2δ
� + 1 = �1 + 3

δ
� + 1, (5.122)

we have m − 1
2 + 5

2

( 4
3 − γ

) ≥ 0, m + δ∗ − 3
2 − 3

2 (
4
3 − γ ) ≥ 0, 2(1− 2

n ) + (2M −
2)δ +2δ∗ −3γ −2m ≥ 0 (for the last bound we use (2.27) which implies δ∗ > 2

n ).
Consequently, bound (5.121) together with the a priori assumption E N ≤ 1 implies

N∑
i=0

|Ri | �
√

εDN +
√

E N DN + √
ετ δ̄− 1

2

√
E N
√

DN + √
ετ

5
2 E N

√
DN

+ ετ δ−1E N + ε2M+1

�
√

εDN +
√

E N DN + √
ετ 2δ̄−1E N + √

ετ 5(E N )

+ ετ δ−1E N + ε2M+1, (5.123)

where we have used the bound 2|ab| ≤ a2 + b2 to go from the first to the second
estimate and the a priori bound E N � 1.

We now integrate the energy identity (4.11) over the time interval [κ, τ ], τ ≤ 1,
and obtain by virtue of Proposition 4.7 conclude that there exists a universal constant
C0 > 2 such that

SN
κ (τ ) ≤C0

2
SN
κ (τ )

∣∣∣
τ=κ

+ ε2M+1(τ − κ)
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+ C

(
√

ε + sup
κ≤τ ′≤τ

√
E N (τ ′)

)∫ τ

κ

DN (τ ′) dτ ′

+ C
√

ε sup
κ≤τ ′≤τ

E N (τ ′)
∫ τ

κ

(
(τ ′)2δ̄−1 + (τ ′)δ−1 + (τ ′)5

)
dτ ′. (5.124)

The positivity of δ and δ̄ = min{δ∗, δ
2 } guarantees that the last time integral on

the right-most side of (5.124) is finite and bounded independently of the constant
κ . As a consequence of (5.124) and Proposition 4.7 we conclude

SN
κ (τ ) ≤C0

2
SN
κ (τ )

∣∣∣
τ=κ

+ ε2M+1 + C
√

εSN
κ (τ ) +

(
SN
κ (τ )

) 3
2
, τ ∈ [κ, 1].

(5.125)

Since by the local well-posedness theorem Proposition D.1, the map τ 	→
SN
κ (τ ) is continuous, a standard continuity argument applied to (5.125) implies

that there exist 0 < σ∗, ε∗ < 1 such that for any 0 < σ < σ∗ the following is true:
for any choice of initial data (H, Hτ )

∣∣
τ=κ

satisfying

SN
κ (Hκ

0 , Hκ
1 )(τ = κ) ≤ σ 2,

and any 0 < ε < ε∗ the solution exists on the interval [κ, 1] and satisfies the
uniform-in-κ bound

SN
κ (τ ) ≤ C0

(
σ 2 + ε2M+1

)
, τ ∈ [κ, 1]. (5.126)

Justification of the a priori assumptions (4.13) and (5.1). The size restrictions
0 < ε < ε∗, 0 < σ < σ∗ for ε∗, σ∗ sufficiently small are necessary to ensure that
the a priori assumptions (4.13) and (5.1) can be consistently recovered from the
standard continuity argument. First let (�1, �2) �= (0, 2). The embedding inequality
(C.432) immediately gives∥∥∥∥(r∂r )

�1(τ∂τ )
�2

(
H

r

)∥∥∥∥∞
� τ

1
2 ( 113 −γ )(E N )

1
2 � ε + σ (5.127)

for 0 � �1 + �2 � 2, (�1, �2) �= (0, 2). Now for (�1, �2) = (0, 2), it suffices to
derive the bound for ‖τ 2∂2τ ( H

r )‖∞. Since (H, ∂τ H) is a classical solution to (3.26),
we may use the equation directly:

τ 2∂2τ (
H

r
) = −2

τg01

rg00 τ∂r∂τ H − 2m

g00 τ∂τ (
H

r
) − d2

g00

H

r

+ εγ
τ 2c[φ]

g00

1

wαr
∂r

(
w1+α 1

r2
∂r [r2H ]

)

− ε
τ 2N0[H ]

rg00 + τ 2

rg00

(
S (φapp) − εLlowH + N [H ]) .

Using (5.127), (4.35), (4.38) it is easy to see that thefirst three termsof the right-hand

side are bounded by τ
1
2 ( 113 −γ )(E N )

1
2 . For the fourth term, by (4.30), |τ 2c[φ]| �
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τ δ+ 2
n q−γ−1(

rn

τ
) andmoreover by (C.426),we have ‖wD2H

r ‖∞ � τ
1
2 ( 113 −γ )(E N )

1
2 .

Hence, the fourth term is also bounded by τ
1
2 ( 113 −γ )(E N )

1
2 . Similarly, by using the

source estimates and estimating L∞ norm of N0[H ]
r , LlowH

r and N [H ]
r , we deduce

that the second line is also bounded by τ
1
2 ( 113 −γ )(E N )

1
2 and εM+1. Therefore, we

obtain ∥∥∥∥(τ∂τ )
2
(

H

r

)∥∥∥∥∞
� ε + σ.

It is now clear that there exists a universalC so that if we chooseσ ′ = C(ε∗+σ∗) the
bound (4.13) is consistent and can be justified by a classical continuity argument.
The same comment applies to (5.1).

6. Compactness as κ → 0 and Proof of the Theorem 1.6

Let Bk be the Hilbert space generated by the norm

‖ f ‖Bk :=
k∑

j=0

‖D j f ‖α+ j ,

namely Bk = Cc(0, 1)
‖·‖Bk . From the theory of weighted Sobolev spaces [27,28],

we deduce that Bk is compactly embedded into Bk−1 for k ≥ 1.
Let a family of given initial data (Hκ

0 , Hκ
1 ) satisfy the uniform bound

SN
κ (Hκ

0 , Hκ
1 )(τ = κ) < σ 2 for each κ ∈ (0,

1

2
]. (6.1)

In particular, this gives theuniformboundof‖(κ 1
2 (γ− 11

3 )Hκ
0 , κ

1
2 (γ− 5

3 )Hκ
1 )‖B N ×B N <√

2σ . By compact embedding of B N into B N−1, there exists a sequence of {κ j }∞j=1

such that κ j → 0 and (κ j
1
2 (γ− 11

3 )H
κ j
0 , κ j

1
2 (γ− 5

3 ) H
κ j
1 ) converge in B N−1 × B N−1.

Fix such a sequence κ j and initial data H
κ j
0 and H

κ j
1 .

Now let (Hκ j , ∂τ Hκ j ) be the solution to the initial value problem (3.21) with
initial data H

κ j
0 and H

κ j
1 given by Theorem 1.13. Consider its well-defined trace

at time τ = 1 (that is t = 0 in the original coordinates). Since SN
κ j

(τ = 1) <

C0
(
σ 2 + ε2M+1

)
for all κ j , in particular we have the uniform bound

N∑
j=0

‖D j∂τ Hκ j
∣∣
τ=1‖α+ j +

N∑
j=0

‖D j Hκ j
∣∣
τ=1‖α+ j <

√
2C0 (σ + ε) ,

where we have used the crude bound ε2M+1 ≤ ε2. Therefore, there exists a subse-
quence of κ j , denoted by κ j again and (H0, H1) ∈ B N × B N so that

lim
j→∞ ‖(Hκ j

∣∣
τ=1, ∂τ Hκ j

∣∣
τ=1) − (H0, H1)‖B N−1×B N−1 = 0.
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We now consider the solution of (3.21) with the final value (H0, H1) at time
τ = 1. By the local well-posedness theory obtained similarly as in Proposition D.1,
there exists a unique solution (H, ∂τ H) to (3.21) on a maximal interval of existence
(T, 1] for some T < 1.

We claim that T = 0. To see this, assume the opposite, that is 0 < T < 1. Then
for each κ j ∈ (0, T

2 ], consider the sequence of solutions (Hκ j , ∂τ Hκ j ) to (3.21)

with given initial condition H
κ j
0 and H

κ j
1 . Then, on the interval [ T

2 , 1] the se-
quence (Hκ j , ∂τ Hκ j ) satisfies the uniform-in- j bound (5.126). In particular, as
j → ∞, possibly along a subsequence, (Hκ j , ∂τ Hκ j ) converges to some (H̄ , ∂τ H̄)

in C0
([ T

2 , 1], B N−1 × B N−1
)
and the resulting limit (H̄ , ∂τ H̄) is a classical so-

lution of (3.21) on [ T
2 , 1]. Since the final condition at τ = 1 has to coincide for

(H̄ , ∂τ H̄) and (H, ∂τ H), by the uniqueness part of the local well-posedness theo-
rem, H̄ and H coincide on [ T

2 , 1] which contradicts the assumption that (T, 1] is
the maximal interval of existence for H .

Therefore we have established the existence of a classical solution

φ(τ, r) = φapp(τ, r) + τm H(τ, r)

r
= τ

2
3 +

M∑
j=1

ε jφ j (τ, r) + τm H(τ, r)

r

to (1.46) on the space-time domain (τ, r) ∈ (0, 1]×[0, 1]. In particular, the leading
order behavior of φ is driven by the dust solution φ0 = τ

2
3 and we have

1 �
∣∣∣∣ φ

φ0

∣∣∣∣ � 1, 1 �
∣∣∣∣J [φ]
J [φ0]

∣∣∣∣ � 1, (τ, r) ∈ (0, 1] × [0, 1];

lim
τ→0+

φ

φ0
= lim

τ→0+
J [φ]
J [φ0] = 1.

Claims (1.37)–(1.38) follow easily by going back to the (s, r)-coordinate system,
which in turn give (1.39)–(1.41). This completes the proof of Theorem 1.6.

Data at s = 0. Note that the initial conditions (1.25) that correspond to the
obtained collapsing solution are now given by

χ0(r) = φ(1, r) = 1 +
M∑

j=1

ε jφ j (1, r) + H(1, r)

r
,

χ1(r) = − 1

g(r)
φτ (1, r) = − 2

3g(r)
+

M∑
j=1

ε j∂τφ j (1, r) + m H(1, r) + ∂τ H(1, r)

r
.

In particular, by the smallness of weighted norms of H and Hardy–Sobolev
embeddings, we conclude

‖χ0 − 1‖C2([0,1]) + ‖χ1 + 2

3g(r)
‖C2([0,1]) = O(σ + ε). (6.2)

We may now express the initial density ρ̃0 and the initial velocity vector field ũ0
(at time s = 0) in Eulerian variables. Let Y = χ0(r)y = φ(1, r)y, χ̄0(R) = χ0(r),
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R = |Y | = rχ0(r). By (1.11)

ũ0(Y ) = χ1(r)

χ0(r)
Y = − 1

g(r)

∂τφ(1, r)

φ(1, r)
Y = − 2

3g(r)
Y − ∂τ (φ − φ0)(1, r)

g(r)φ(1, r)
Y

=
(

− 2

3g(r)
+ O(σ + ε)

)
Y

=
(

− 2

3g( R
χ̄0(R)

)
+ O(σ + ε)

)
Y, Y ∈ Bχ0(1)(0).

By (1.24) we have

ρ̃0(Y ) = wα(
R

χ̄0(R)
)

(
J [χ0] ◦ R

χ̄0(R)

)−1

. (6.3)

From (1.6) we then conclude

u0(x) = ε
− 3

2(4−3γ )
1

gε(|x |)
(

−2

3
+ O(ε + σ)

)
x, gε(R) = g(

R

ε
1

4−3γ

),

ρ0(x) = ε
− 3

4−3γ ρ̃0(
x

ε
1

4−3γ

),

�(t)
∣∣∣
t=0

= B
ε

1
4−3γ χ0(1)

(0).

Since by (1.59) wα(r) = 1− crn + or→0(rn) for some c > 0 in the vicinity of
r = 0, we conclude that we have the expansion

ρ̃0(Y ) =
(
1 − c̃

Rn

χ̄0(R)n
+ oR→0(Rn)

)(
J [χ0] ◦ R

χ̄0(R)

)−1

. (6.4)

This formula in view of (6.2) gives a quantified sense in which the initial density
is flat about the origin.

The Eulerian description of collapsing solutions. Let 0 < τ � 1 be fixed.
Note that J [φ] > 0 and the Eulerian density is given by

�̃(τ, φ(τ, r)r) = wα(r)

J [φ](τ, r)

where we have written �̃(τ, φ(τ, r)r) = ρ̃( 1−τ
g(r)

, φ(τ, r)r) = ρ̃(s, χ(s, r)r). Let

R̃ := φ(τ, r)r . Then sinceJ [φ] > 0, there exists the inversemapping r = r̃(τ, R̃)

such that r̃(τ, φ(τ, r)r) = r for all r ∈ [0, 1]. We may rewrite the Eulerian density

�̃(τ, R̃) = wα(r̃(τ, R̃))

J [φ](τ, r̃(τ, R̃))
=

wα( R̃
φ(τ,R̃)

)

J [φ](τ, R̃
φ(τ,R̃)

)
for 0 � R̃ � φ(τ, 1),
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where we have written φ(τ, R̃) = φ(τ, r) for R̃ = φ(τ, r)r . By our construction,

limτ→0+ φ
φ0

= 1 and limτ→0+ J [φ]
J [φ0] = 1 for all R̃ ∈ [0, φ(τ, 1)]. Therefore, we

deduce that

�̃(τ, R̃) = ρ̃(
1 − τ

g(r)
, R̃) ≈τ→0+

wα( R̃

τ
2
3
)

τ (τ + 2
3 |Mg(

R̃

τ
2
3
)|)

.

The right-hand side is nothing but the density driven by the dust profile (1.34)
written in τ coordinate. Switching back to the (s, r)-coordinate system, this is
precisely in agreement with (1.39) and highlights the role of the dust profile in our
collapse.

A Vector Field Classes P and P̄

In what follows, we present key lemmas that highlight the importance of Pi

and P̄i .
The first key is that the originalDi ’s control those admissible vector fields in L2

sense so that the members of Pi and P̄i can be freely used in the energy estimates.
A clue is in the divergence structure of Dr that grants an extra control of 1

r . More
precisely, we have

Lemma A.1. Let i ∈ N be given. Then we have the following identity:

Di X = r∂r D̄i−1

(
X

r

)
+ (i + 2)D̄i−1

(
X

r

)
. (A.401)

Moreover, we have the following estimate:

∫ 3
4

0

(∣∣∣∣r∂r D̄i−1

(
X

r

)∣∣∣∣
2

+
∣∣∣∣D̄i−1

(
X

r

)∣∣∣∣
2
)

r2χ2 dr �
∫ 3

4

0
|Di X |2r2χ2 dr,

(A.402)

where χ � 0 is a smooth cutoff function satisfying χ = 1 on [0, 1
2 ], χ = 0 on

[ 34 , 1], and χ ′ � 0.

Proof. We first establish (A.401). The proof is based on the induction on i . First
observe

D1X = Dr X = ∂r X + 2
X

r
= r∂r

(
X

r

)
+ 3

X

r
,

and hence (A.401) holds for i = 1. Suppose (A.401) is valid for all i � �. If �

is even, D�+1 = DrD�, D̄� = Dr D̄�−1, and r∂r D̄�−1
( X

r

) + (� + 2)D̄�−1
( X

r

) =
rD̄�

( X
r

)+ �D̄�−1
( X

r

)
. Then by the induction hypothesis, we deduce

D�+1X = (∂r + 2

r
)

(
r∂r D̄�−1

(
X

r

)
+ (� + 2)D̄�−1

(
X

r

))
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= (∂r + 2

r
)

(
rD̄�

(
X

r

)
+ �D̄�−1

(
X

r

))

= r∂r D̄�

(
X

r

)
+ (� + 3)D̄�

(
X

r

)
,

which verifies (A.401) for i = �+ 1. If � is odd,D�+1 = ∂rD�, D̄� = ∂r D̄�−1, and
r∂r D̄�−1

( X
r

)+ (� + 2)D̄�−1
( X

r

) = rD̄�

( X
r

)+ (� + 2)D̄�−1
( X

r

)
. Then

D�+1X = ∂r

(
r∂r D̄�−1

(
X

r

)
+ (� + 2)D̄�−1

(
X

r

))

= ∂r

(
rD̄�

(
X

r

)
+ (� + 2)D̄�−1

(
X

r

))

= r∂r D̄�

(
X

r

)
+ (� + 3)D̄�

(
X

r

)
,

which also verifies (A.401) for i = � + 1. This finishes the proof of (A.401).
We will prove (A.402) only since the other can be shown similarly. To this end,

we compute the square integral of Di X by using (A.401). Then

∫ 3
4

0
|Di X |2r2χ2 dr

=
∫ 3

4

0

(
r∂r D̄i−1

(
X

r

)
+ (i + 2)D̄i−1

(
X

r

))2

r2χ2 dr

=
∫ 3

4

0

[(
r∂r D̄i−1

(
X

r

))2

+ (i + 2)2
(
D̄i−1

(
X

r

))2
]

r2χ2 dr

+ 2(i + 2)
∫ 3

4

0
∂r D̄i−1

(
X

r

)
D̄i−1

(
X

r

)
r3χ2 dr

=
∫ 3

4

0

[(
r∂r D̄i−1

(
X

r

))2

+ (i + 2)(i − 1)

(
D̄i−1

(
X

r

))2
]

r2χ2 dr

− 2(i + 2)
∫ 3

4

0

(
D̄i−1

(
X

r

))2

r3χχ ′ dr.

Since χ ′ � 0, the result follows for i > 1. For i = 1, we need to show that X
r is

bounded by D1X . Observe that

∫ 3
4

0
|D1X |2r2χ2 dr =

∫ 3
4

0

(
∂r X + 2

X

r

)2

r2χ2 dr

=
∫ 3

4

0

[
(∂r X)2 + 4

X2

r2

]
r2χ2 dr + 4

∫ 3
4

0
∂r X Xrχ2 dr

=
∫ 3

4

0

[
(∂r X)2 + 2

X2

r2

]
r2χ2 dr − 4

∫ 3
4

0
X2rχχ ′ dr,

from which (A.402) follows also for i = 1. �
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Remark A.2. We note that the cut-off χ in the above proof can be replaced by
any nonnegative C1-function supported on [0, 1] such that χ ′ ≤ 0. In particular,

choosing χ(r) = q−γ−1

(
rn

τ

)
wα+i+1 as a corollary we obtain

∫ 1

0
wα+i+1q−γ−1

(
rn

τ

) ∣∣∣∣D̄i

(
X

r

)∣∣∣∣
2

r2 dr

�
∫ 1

0
wα+i+1q−γ−1

(
rn

τ

)
|Di+1X |2 r2 dr. (A.403)

An important consequence of Lemma A.1 is the following:

Lemma A.3. Suppose Di X is bounded in L2([0, 3
4 ], r2dr). Then we have the esti-

mate

∑
Di ∈Pi

∫ 3
4

0
|Di X |2r2χ2 dr �

∫ 3
4

0
|Di X |2r2χ2 dr, (A.404)

where χ is the same cutoff function in Lemma A.1.

Proof. If there is no 1
r in a given Di , we are done since it is the same as Di .

Suppose 1
r appears in Di . Then we may write Di X = D̄i− j−1

1
r Y j X for some

Y j ∈ P j . Apply Lemma A.1 to get the L2 bound forDi X byDi− j Y j X . If Y j does
not have 1

r , we are done. If it does, then we repeat the same argument by writing
Di− j Y j = D̄i− j−k−1

1
r Z for some Z ∈ Pk and applying Lemma A.1 etc. The

repetition ends in at most � i+1
2 � steps. �


Another appealing feature of Pi and P̄i is that they give rise to an algebraic
structure via the following Leibniz rule:

Lemma A.4. (Product rule) Let i ∈ N be given.

(a) For any A ∈ Pi the following identity holds:

A ( f g) =
i∑

k=0

∑
B∈Pk

C∈P̄i−k

cABC
k B f Cg, (A.405)

for some real-valued constants cABC
k .

(b) For any A ∈ P̄i the following identity holds:

A ( f g) =
i∑

k=0

∑
B∈P̄k

C∈P̄i−k

c̄ABC
k B f Cg, (A.406)

for some real-valued constants c̄ABC
k .
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Proof. The proof is based on the induction on i . We start with (A.405). Let i = 1.
Then P1 = {Dr ,

1
r }. Since we have

D1( f g) = Dr ( f g) = (Dr f )g + g∂r g = (D1 f )g + f D̄1g

and
1

r
( f g) = (

1

r
f )g

(A.405) holds for i = 1. Suppose (A.405) is true for all i � �. We will show that
it is true for i = � + 1.

First let � be even. Then A ∈ P�+1 is either A = Dr A′ or A = 1
r A′ for

some A′ ∈ P�. By induction hypothesis, it suffices to show that Dr (B ′ f C ′g) and
1
r (B ′ f C ′g) for B ′ ∈ Pk′ and C ′ ∈ P̄�−k′ can be written as a linear combination of
(B f )(Cg) for some B ∈ Pk andC ∈ P̄�+1−k . If k′ is even,wewrite Dr (B ′ f C ′g) =
(Dr B ′ f )(C ′g) + (B ′ f )(∂r C ′g) and 1

r (B ′ f C ′g) = ( 1r B ′ f )C ′g. Since Dr B ′ ∈
Pk′+1,

1
r B ′ ∈ Pk′+1 and ∂r C ′ ∈ P̄�+1−(k′+1), both expressions are in the desirable

form. If k′ is odd, we may write Dr (B ′ f C ′g) = (∂r B ′ f )(C ′g) + (B ′ f )(Dr C ′g)

and 1
r (B ′ f C ′g) = (B ′ f )( 1r C ′g) so that they are in the desirable form.
Now let �beodd.Then A = ∂r A′ where A′ ∈ P�.Wewill show that ∂r (B ′ f C ′g)

for B ′ ∈ Pk′ and C ′ ∈ P̄�−k′ can be written into a desirable form. As before, we
consider k′ even, odd separately. If k′ is even, we write

∂r (B ′ f C ′g) = (Dr B ′ f )(C ′g) + (B ′ f )(Dr C ′g) − 4(B ′ f )(
1

r
C ′g).

Note that Dr B ′ ∈ Pk′+1 and Dr C ′, 1
r C ′ ∈ P̄�+1−k′ , and hence it has the desirable

form. If k′ is odd, ∂r (B ′ f C ′g) = (∂r B ′ f )C ′g + B ′ f (∂r C ′g). The result follows
since ∂r B ′ ∈ Pk′+1 and ∂r C ′ ∈ P̄�+1−k′ .

(A.406) is an easy consequence of (A.405), because any A ∈ P̄i can be written
as A = A′∂r for some A′ ∈ Pi−1. Write A( f g) = A′((∂r f )g) + A′((∂r g) f ) and
apply (A.405) with A′ to obtain the desired result. �

Lemma A.5. (Chain rule). Let a ∈ R, i ∈ N be given and fix a vectorfield W ∈ P̄i .
Then for any sufficiently smooth f the following identity holds:

W ( f a) =
i∑

k=1

f a−k
∑

i1+···ik=i

W j ∈P̄i j

ck,i1,...,ik

k∏
j=1

W j f, (A.407)

for some real constants ck,i1,...,ik .

Proof. The proof relies on an induction argument. Let i = 1. Then W = ∂r and
∂r ( f a) = a f a−1∂r f which verifies (A.407). Suppose (A.407) is true for all i � �.
Then we will show that it is true for i = � + 1. First let � be even. Then W ∈ P̄�+1
can be written as W = ∂r W ′ for some W ′ ∈ P̄�. By induction hypothesis,

W ( f a) =∂r W ′( f a) =
�∑

k=1

(a − k) f a−k−1∂r f
∑

i1+···ik=�

W ′
j ∈P̄i j

ck,i1,...,ik

k∏
j=1

W ′
j f
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+
�∑

k=1

f a−k
∑

i1+···ik=�

W ′
j ∈P̄i j

ck,i1,...,ik ∂r

( k∏
j=1

W ′
j f
)
.

The first sum of the right-hand side is a linear combination of f a−k′ ∏k′
j=1 W ′

j f

where 2 � k′ � � + 1, W j = W ′
j for j � k′ − 1, Wk′ = ∂r and W j ∈ P̄i j with

i1+· · · ik′ = �+1. Hence it is in the desirable form. For the second sum, no increase
in the number of the product occurs, but the number of derivatives increases by one.

Note that ∂r

(∏k
j=1 W ′

j f
)

=∑k
m=1

∏k
j=1 W m

j f where W m
j = W ′

j for j �= m and

W m
j = ∂r W ′

j for j = m. Now if the corresponding im is even, ∂r W ′
m ∈ P̄im+1. If

im is odd, we write ∂r W ′
m = Dr W ′

m − 2
r W ′

m such that each operation belongs to
P̄im+1. In both cases, we have i1 + · · · ik = � + 1 and hence (A.407) is valid for
i = � + 1. Next let � be odd. Then W ∈ P̄�+1 can be written as either W = Dr W ′
or W = 1

r w′ for some W ′ ∈ P̄�. We consider W = 1
r w′ only since the other case

follows similarly by combining the previous cases. Write

W ( f a) = 1

r
w′( f a) =

�∑
k=1

f a−k
∑

i1+···ik=�

W ′
j ∈P̄i j

ck,i1,...,ik

1

r

k∏
j=1

W ′
j f

Now we claim that 1
r

∏k
j=1 W ′

j f = ∏k
j=1 W j f for some W j ∈ P̄i j with i1 +

· · · ik = � + 1. To this end, we first observe because � is odd, there exists at least
one index m, 1 � m � k whose corresponding im is odd. Now let W j = W ′

j for

j �= m and Wm = 1
r w′

m . Then it is easy to see that all properties are satisfied so
that the expression has its desirable form required by (A.407) for i = � + 1. �


The next lemma implies that ∂ i
r X can be expressed as a linear combination of

admissible operations belonging toPi . Note that the other way around is not true in
general: for instance, Dr can’t be expressed in terms of ∂r only. Hence, our energy
built upon Di ’s controls ∂ i

r ’s as well as Pi ’s.

Lemma A.6. Let i ∈ N be given. Then we have

∂ i
r X =

∑
A∈Pi

cA
i AX, (A.408)

where cA
i ’s are constants.

Proof. The proof is based on the induction on i . Let i = 1. Then we have

∂r X = Dr X − 2
1

r
X.

Since Dr and 1
r belong to P1, (A.408) holds. Suppose (A.408) is true for all i � �.

We will show that (A.408) holds for i = � + 1. By induction hypothesis,

∂�+1
r X =

∑
A∈P�

cA
� ∂r AX
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Now if � is odd, ∂r A is an admissible vector field belonging to P�+1, and hence we
are done. If � is even, then we write

∂r A = Dr A − 2
1

r
A.

Then Dr A and 1
r A are both admissible vector fields belonging to P�+1 and thus

(A.408) holds for i = � + 1. �

The same conclusion holds in Lemma A.6 when we replace A ∈ Pi by A ∈ P̄i .
We also write a few useful identities relating high-order D, r∂r , and ∂r deriva-

tives.

Lemma A.7. (i) For any j ∈ Z≥0 there exist constants ck , k ∈ {0, . . . , j} such
that

(r∂r )
j =

j∑
k=0

ckrk∂k
r . (A.409)

(ii) For any j ∈ Z≥0 there exist constants c̄k , k ∈ {0, . . . , j} such that

∂
j

r = r− j
j∑

k=0

c̄k(r∂r )
k . (A.410)

(iii) For any j ∈ Z≥0 there exist constants c̃k , k ∈ {0, . . . , j} such that

D j = r− j
j∑

k=0

c̃k(r∂r )
k . (A.411)

The same conclusion holds when we replace D j by A ∈ P j .
(iv) For any j ∈ Z>0 there exist constants ĉk , k ∈ {0, . . . , j} such that

D̄ j = r− j
j∑

k=1

ĉk(r∂r )
k . (A.412)

The same conclusion holds when we replace D̄ j by A ∈ P̄ j .

Proof. The above statements follow easily by induction. �


B High-Order Commutators

From definitions (4.1)–(4.2) and the product rule

Dr ( f g) = Dr f g + f ∂r g,

it is easy to check that the following commutation rules hold:

Dr Lk f = L∗
1+k Dr f − (1 + k)(w′′ + 2

r
w′)Dr f (B.413)

∂r L∗
k h = L1+k∂r h − (1 + k)(w′′ − 2

r
w′)∂r h. (B.414)

More generally, we have the following commutation rules for Di Lα:
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Lemma B.1. For any i ∈ Z>0 there exist constants ci jk , j ∈ Z≥0, k ∈ Z>0 such
that

Di Lα X = Li+αDi X +
i−1∑
j=0

ζi jDi− j , X (B.415)

where

ζi j =
2+ j∑
k=1

ci jk
∂k

r w

r2+ j−k
. (B.416)

Proof. The proof is based on the induction on i . First let i = 1. From (B.413), we
have

D1Lα X = Dr Lα X = L∗
1+α Dr X − (1 + α)(w′′ + 2

r
w′)Dr X

= L1+αD1X − (1 + α)(w′′ + 2

r
w′)D1X,

and hence (B.415) holds with p10 = −(1+α)∂2r w−2(1+α)∂r w
r . Suppose (B.415)

is valid for all i � �. It suffices to show that (B.415) holds for i = � + 1. If � is
even, by (B.415) and (B.413), we have

D�+1Lα X = DrD�Lα X = Dr

⎛
⎝L�+αDi X +

�−1∑
j=0

ζ�jD�− j X

⎞
⎠

= L∗
1+�+α DrD� X − (1 + � + α)(w′′ + 2

r
w′)DrD� X +

�−1∑
j=0

Dr (ζ�jD�− j X)

= L1+�+αD1+� X − (1 + � + α)(w′′ + 2

r
w′)D1+� X

+
∑

0� j<�−1
j : even

(ζ�jD1+�− j X + ∂r (ζ�j )D�− j X)

+
∑

0< j��−1
j : odd

(ζ�jD1+�− j X + (∂r (ζ�j ) + 2

r
ζ�j )D�− j X).

The last three terms can be rearranged as
∑�

j=0 ζ1+�jD1+�− j X where

ζ1+�0 = −(1 + � + α)(w′′ + 2

r
w′) + ζ�0, j = 0

ζ1+�j = ζ�j + ∂r (ζ�j−1), j � 1 and odd

ζ1+�j = ζ�j + ∂r (ζ�j−1) + 2

r
ζ�j−1, j � 2 and even.

Note that ζ1+�j takes the formgiven in (B.416) because of the induction assumption.
Therefore, (B.415) holds for i = �+1. If � is odd,we use (B.414) in place of (B.413)
to derive the same conclusion. This finishes the proof. �
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Next we present the commutator identities useful for derivation of high order
equations as well as for high order estimates.

Lemma B.2. Let i ∈ Z>0 be given and let e, X be sufficiently smooth functions.
For given differential operators A and B, let

[A , eB] X := A(eB X) − eAB X (B.417)

denote the usual commutator. Then for any 1 ≤ k ≤ i and any A ∈ P̄k , B ∈ Pi−k

there exists a constantci AB
k ∈ R, and similarly for any A ∈ P̄k , B ∈ ¯Pi−k there

exists a constant c̄i AB
k such that following identities hold:

[Di , e∂r ]X = i∂r eDi X +
∑
1�k�i

A∈P̄k ,B∈Pi−k

ci AB
k A(

e

r
)(B X)

+
∑

1�k�i−1
A∈P̄k+1,B∈P̄i−k−1

c̄i AB
k r A(

e

r
)(B Dr X) (B.418)

[Di , e]X =
∑
1�k�i

A∈P̄k ,B∈Pi−k

ci AB
k (Ae)(B X) (B.419)

[D̄i , e]X = i∂r eD̄i−1X +
∑
2�k�i

A∈P̄k ,B∈P̄i−k

c̄i AB
k (Ae)(B X). (B.420)

Proof. Proof of (B.418). The proof is based on the induction on i . Let i = 1. Then
by using the identity Dr∂r X = ∂r Dr X + 2

r2
X ,

D1 (e∂r X) = Dr (e∂r X) = eDr∂r X + ∂r e∂r X = e∂r Dr X + ∂r eDr X − 2∂r (
e

r
)X.

which yields (B.418) for i = 1. Suppose (B.418) is valid for all i � �. It suffices
to show (B.418) for i = � + 1. We will verify it when � is odd. The other case (�
is even) will follow similarly. By using the induction assumption,

D�+1 (e∂r X) = ∂r

(
e∂r (D� X) + �∂r eD� X +

∑
1�k��

A∈P̄k ,B∈P�−k

c�AB
k A(

e

r
)(B X)

+
∑

1�k��−1
A∈P̄k+1,B∈P̄�−k−1

c̄�AB
k r A(

e

r
)(B Dr X)

)

= e∂rD�+1X + (� + 1)∂r eD�+1X

+
∑

1�k��,k:odd
A∈P̄k ,B∈P�−k

c�AB
k

{
(Dr − 2

r
)A(

e

r
)(B X) + A(

e

r
)((Dr − 2

r
)B X)

}

+
∑

1�k��,k:even
A∈P̄k ,B∈P�−k

c�AB
k

{
∂r A(

e

r
)(B X) + A(

e

r
)(∂r B X)

}
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+
∑

1�k��−1,k:odd
A∈P̄k+1,B∈P̄�−k−1

c̄�AB
k

{
(A(

e

r
) + r∂r A(

e

r
))(B Dr X) + r A(

e

r
)((Dr − 2

r
)B Dr X)

}

+
∑

1�k��−1,k:even
A∈P̄k+1,B∈P̄�−k−1

c̄�AB
k

{
r(Dr − 1

r
)A(

e

r
)(B Dr X) + r A′( e

r
)(∂r B Dr X)

}
.

We note that each expression in the above summations belongs to either summation
in (B.418) for i = � + 1. Proof of (B.419) and (B.420) follows analogously. �


C Hardy–Sobolev Embedding

Let χ, ψ � 0 be smooth cutoff functions satisfying χ = 1 on [0, 1
2 ], χ = 0

on [ 34 , 1] and ψ = 1 on [ 12 , 1], ψ = 0 on [0, 1
4 ], satisfying, in addition, that

χ ′(r) ≤ 0, ψ ′(r) ≥ 0, r ∈ [0, 1].

Lemma C.1. (Localized Hardy inequalities). Let χ,ψ be the above defined cut-off
functions and let u : B1(0) → R be a given smooth radially symmetric function,
where B1(0) = {x,

∣∣|x | ≤ 1} is the unit ball in R
3. Then

1. ∫ 3
4

0
|u|2χ2 dr �

∫ 3
4

1
2

|u|2r2 dr +
∫ 3

4

0
|Au|2r2χ2 dr, (C.421)

where A = D1 = ∂r + 2
r or A = D̄1 = ∂r .

2. Let a > 1 be given. Then

∫ 1

1
4

wa−2|u|2ψ2 dr �
∫ 1

2

1
4

wa |u|2 dr +
∫ 1

1
4

wa |Au|2ψ2 dr, (C.422)

where A = D1 = ∂r or A = D̄1 = ∂r + 2
r .

Proof. The proof is based on the standard Hardy inequality and the cutoff function
argument. For A = D̄1, see [34]. The case A = D1 = ∂r follows from

∫ 3
4

0
|∂r u|2r2χ2 dr =

∫ 3
4

0
|Dr u − 2

r
u|2r2χ2 dr

=
∫ 3

4

0
|Dr u|2r2χ2 dr + 4

∫ 3
4

0
u2χ2 dr − 4

∫ 3
4

0
Dr uurχ2 dr

=
∫ 3

4

0
|Dr u|2r2χ2 dr − 2

∫ 3
4

0
u2χ2 dr + 4

∫ 3
4

0
u2rχχ ′ dr.

(C.423)
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The very same bound implies that

2
∫ 3

4

0
u2χ2 drλ ≤ 4

∫ 3
4

0
u2rχχ ′ dr +

∫ 3
4

0
|Dr u|2χ2 r2 dr,

which immediately yields (C.421) with A = Dr . The localized Hardy inequality
near the boundary follows similarly. We note that w ∼ 1 − r in the vicinity of the
boundary r = 1. �


As a consequence of the above lemma,we have that for any smooth u : B1(0) →
R and any m ∈ Z>0,

‖u‖2L1 �
∫ 3

4

0
|Au|2r2χ2 dr +

m∑
i=0

∫ 1

1
4

wα−�α�+2m |Ai u|2 dr, (C.424)

where either A = Dr and Ai = Di for all i = 0, 1, . . . , m, or A = ∂r and Ai = D̄i

for all i = 0, 1, . . . , m. and the same estimate holds with Dr replaced by ∂r andDi

by D̄i . See Lemma 3.3 of [35] for the proof. Note the term
∫ 3

4
1
2

|u|2r2 dr in (C.421)

has been absorbed into the second summation in (C.424).We remark that away from
the origin, both

∑m
i=0

∫ 1
1
4

wα−�α�+2m |Di u|2 dr and
∑m

i=0

∫ 1
1
4

wα−�α�+2m |D̄i u|2 dr

are equivalent to
∑m

i=0

∫ 1
1
4

wα−�α�+2m |∂ i
r u|2 dr for any m ∈ Z>0.

The next result concerns the L∞ bound.

Lemma C.2. Under the same assumptions as in Lemma C.1 and any m ∈ Z>0, we
have

‖u‖2∞ �
2∑

i=1

∫ 3
4

0
|Bi u|2r2 dr +

m+1∑
i=0

∫ 1

1
4

wα−�α�+2m |Bi u|2 dr, (C.425)

where either Bi = Di or Bi = D̄i , i = 0, 1, . . . , m + 1. Moreover,

∥∥∥u

r

∥∥∥2∞ �
3∑

i=2

∫ 3
4

0
|Di u|2r2 dr +

m+1∑
i=0

∫ 1

1
4

wα−�α�+2m |Di u|2 dr. (C.426)

Proof. The proof follows from the Sobolev embedding inequality

‖u‖∞ � ‖u‖L1 + ‖∂r u‖L1 .

While the summed norms generated byDi or D̄i or ∂ i
r are all equivalent away from

the origin, the ordered derivatives near the origin require some attention. We start
with (C.425). First, wewill verify (C.425) in the case Bi = D̄i , i = 0, 1, . . . , m+1.
By the above Sobolev embedding and (C.424),

‖u‖∞ �
∫ 3

4

0
|∂r u|2r2χ2 dr +

m∑
i=0

∫ 1

1
4

wα−�α�+2m |D̄i u|2 dr
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+
∫ 3

4

0
|Dr∂r u|2r2χ2 dr +

m∑
i=0

∫ 1

1
4

wα−�α�+2m |Di∂r u|2 dr

�
∫ 3

4

0

(
|∂r u|2 + |Dr∂r u|2

)
r2χ2 dr +

m+1∑
i=0

∫ 1

1
4

wα−�α�+2m |D̄i u|2 dr,

where we have applied (C.424) to ‖u‖L1 with the choice A = ∂r and Ai = D̄i

for i = 0, . . . , m and then to ‖∂r u‖L1 with the choice A = Dr and Ai = Di for
i = 0, . . . , m. For the last line, we simply remark that away from the origin, both∑m

i=0

∫ 1
1
4

wα−�α�+2m |Di u|2 dr and
∑m

i=0

∫ 1
1
4

wα−�α�+2m |D̄i u|2 dr are equivalent to∑m
i=0

∫ 1
1
4

wα−�α�+2m |∂ i
r u|2 dr for anym ∈ Z>0. This proves (C.425)when Bi = D̄i

for i = 0, . . . , m + 1.
In the case Bi = Di for i = 0, . . . , m + 1, we apply (C.424) to ‖u‖L1 with

A = Dr and Ai = Di for i = 0, . . . , m and to ‖∂r u‖L1 with A = ∂r and Ai = D̄i

for i = 0, . . . , m, to obtain

‖u‖∞ �
∫ 3

4

0
|Dr u|2r2χ2 dr +

∫ 3
4

0
|∂2r u|2r2χ2dr +

m+1∑
i=0

∫ 1

1
4

wα−�α�+2m |Di u|2 dr

Nowit suffices to show that
∫ 3

4
0 |∂2r u|2r2χ2 dr is boundedby

∑2
i=1

∫ 3
4
0 |Di u|2r2χ2 dr

+∑m+1
i=0

∫ 1
1
4

wα−�α�+2m |Di u|2 dr . To this end, we first note that

∂2r u = ∂r Dr u − 2∂r (
u

r
), ∂r Dr u = r∂2r (

u

r
) + 4∂r (

u

r
). (C.427)

Therefore,
∫ 3

4

0
|∂2r u|2r2χ2 dr

=
∫ 3

4

0
|∂r Dr u − 2∂r (

u

r
)|2r2χ2 dr

=
∫ 3

4

0
|∂r Dr u|2r2χ2 dr − 12

∫ 3
4

0
|∂r (

u

r
)|2r2χ2 dr − 4

∫ 3
4

0
∂2r (

u

r
)∂r (

u

r
)r3χ2 dr

=
∫ 3

4

0
|D2u|2r2χ2 dr − 6

∫ 3
4

0
|∂r (

u

r
)|2r2χ2 dr + 4

∫ 3
4

0
|∂r (

u

r
)|2r3χχ ′ dr

≤
∫ 3

4

0
|D2u|2r2χ2 dr,

where we have used χ ′ ≤ 0 in the last estimate. This yields (C.425) for B = Dr

and Bi = Di for i = 0, 1, . . . , m + 1.
Next we will prove (C.426). First we have

∥∥∥u

r

∥∥∥2∞ �
∫ 3

4

0
|u

r
|2χ2 dr +

∫ 3
4

0
|∂r (

u

r
)|2χ2 dr +

m+1∑
i=0

∫ 1

1
4

wα−�α�+2m |Di u|2 dr,
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where we have used the bound
∑m+1

i=0

∫ 1
1
4

wα−�α�+2m |Di (
u
r )|2 dr �

∑m+1
i=0

∫ 1
1
4

wα−�α�+2m |Di u|2 dr since 1
4 ≤ r ≤ 1. By applying (C.421), we see that

∫ 3
4

0
|u

r
|2χ2 dr +

∫ 3
4

0
|∂r (

u

r
)|2χ2 dr

�
∫ 3

4

1
2

(|u|2 + |∂r u|2) dr +
∫ 3

4

0
|∂r (

u

r
)|2r2χ2 dr

︸ ︷︷ ︸
(a)

+
∫ 3

4

0
|∂2r (

u

r
)|2r2χ2 dr

︸ ︷︷ ︸
(b)

For (a), we apply (C.421) to obtain

(a) �
∫ 3

4

1
2

(|u|2 + |∂r u|2) dr +
∫ 3

4

0
|∂r (r∂r (

u

r
))|2r2χ2 dr.

Note that by using (C.427)

∫ 3
4

0
|∂r (r∂r (

u

r
))|2r2χ2 dr =

∫ 3
4

0
|∂r Dr u − 3∂r (

u

r
)|2r2χ2dr

=
∫ 3

4

0
|∂r Dr u|2r2χ2 dr − 15

∫ 3
4

0
|∂r (

u

r
)|2r2χ2 dr − 6

∫ 3
4

0
∂2r (

u

r
)∂r (

u

r
)r3χ2 dr

=
∫ 3

4

0
|∂r Dr u|2r2χ2 dr − 6

∫ 3
4

0
|∂r (

u

r
)|2r2χ2 dr + 6

∫ 3
4

0
|∂r (

u

r
)|2r3χχ ′ dr,

which yields

(a) �
∫ 3

4

1
2

(|u|2 + |∂r u|2) dr +
∫ 3

4

0
|D2u|2r2χ2 dr.

For (b), we apply (C.421) again to obtain

(b) �
∫ 3

4

1
2

(|u|2 + |∂r u|2 + |∂2r u|2) dr +
∫ 3

4

0
|∂r (r∂2r (

u

r
))|2r2χ2 dr.

By (C.427) and also using ∂2r Dr u = r∂3r ( u
r ) + 5∂2r ( u

r ),

∫ 3
4

0
|∂r (r∂2r (

u

r
))|2r2χ2 dr =

∫ 3
4

0
|∂2r Dr u − 4∂2r (

u

r
)|2r2χ2 dr

=
∫ 3

4

0
|∂2r Dr u|2r2χ2 dr + 16

∫ 3
4

0
|∂2r (

u

r
)|2r2χ2 dr − 8

∫ 3
4

0
∂2r Dr u∂2r (

u

r
)r2χ2 dr

=
∫ 3

4

0
|∂2r Dr u|2r2χ2 dr − 24

∫ 3
4

0
|∂2r (

u

r
)|2r2χ2 dr − 8

∫ 3
4

0
∂3r (

u

r
)∂2r (

u

r
)r3χ2 dr

=
∫ 3

4

0
|∂2r Dr u|2r2χ2 dr − 12

∫ 3
4

0
|∂2r (

u

r
)|2r2χ2 dr + 8

∫ 3
4

0
|∂2r (

u

r
)|2r3χχ ′ dr
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=
∫ 3

4

0
|Dr∂r Dr u|2r2χ2 dr − 2

∫ 3
4

0
|∂r Dr u|2χ2 dr − 12

∫ 3
4

0
|∂2r (

u

r
)|2r2χ2 dr

+ 8
∫ 3

4

0
|∂2r (

u

r
)|2r3χχ ′ dr + 4

∫ 3
4

0
|∂r Dr u|2rχχ ′ dr,

where we have used (C.423) at the last equality. This in turn yields that

(b) �
∫ 3

4

1
2

(|u|2 + |∂r u|2 + |∂2r u|2) dr +
∫ 3

4

0
|D3u|2r2χ2dr.

This finishes the proof of (C.426). �

The same argument gives the following bound for ‖ru‖∞:

‖ru‖2∞ �
1∑

i=0

∫ 3
4

0
|Bi u|2r2 dr +

m+1∑
i=0

∫ 1

1
4

wα−�α�+2m |Bi u|2 dr. (C.428)

where we apply (C.421) just once near the origin, since ‖ru‖∞ � ‖ru‖L1 +
‖∂r (ru)‖L1 , to derive the first sum.

We now recall the Hilbert space B N with the norm

‖ f ‖B N :=
N∑

j=0

‖D j f ‖α+ j .

In what follows, we will derive the weighted L2 and L∞ embedding inequalities
for functions in B N based on Lemma C.1, Lemma C.2.

Lemma C.3. (L2 weighted embeddings). Let (H, ∂τ H) ∈ B N × B N be given.
Then we have

(i) For any N−α
2 � k � N

τγ− 5
3

∫
wα+2k−N |Dk∂τ H |2r2 dr + τγ− 11

3

∫
wα+2k−N |Dk H |2r2 dr � E N

τγ− 8
3

∫
wα+2k−N |Dk∂τ H |2r2 dr + τγ− 14

3

∫
wα+2k−N |Dk H |2r2 dr � DN ;

(C.429)

(ii) We further assume that
∑N

j=0

∫
wα+ j+1

(τ+ 2
3 Mg)1+γ

|D j+1H |2r2dr < ∞. Then for

any N−α−1
2 � k � N

ε

∫
wα+2k+1−N

(τ + 2
3 Mg)1+γ

|Dk+1H |2r2 dr � E N . (C.430)
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Proof. We start with (C.429). Divide each integral appearing in the left-hand sides

into two
∫ = ∫ 1

2
0 + ∫ 11

2
. Then w is strictly positive for r ∈ [0, 1

2 ] and hence

wα+2k−N � wα+k for r ∈ [0, 1
2 ], the first pieces are trivially bounded by the

right-hand sides. Now for the second pieces, we apply (C.422) repeatedly (N − k)

times starting with a − 2 = α + 2k − N � 0 to deduce the result.
Likewise, for (C.430), we divide the integral into two pieces. Then the integral

restricted to [0, 1
2 ] is bounded by E N because wα+2k+1−N � wα+k+1 for r ∈

[0, 1
2 ]. For the integral from 1

2 to 1, we first observe that (τ + 2
3 Mg) for r ∈ [ 12 , 1]

is bounded from below and above by positive constants and hence by applying
(C.422) repeatedly (N − k) times, we deduce the desired bound. �


Lemma C.4. (L∞ embedding). Let (H, ∂τ H) ∈ B N × B N be given. Then we have

(i) For any k ∈ Z�0 such that k � N−�α�−2
2 ,

τ
1
2 (γ− 5

3 )‖Dk∂τ H‖∞ + τ
1
2 (γ− 11

3 )‖Dk H‖∞ � (E N )
1
2

τ
1
2 (γ− 8

3 )‖Dk∂τ H‖∞ + τ
1
2 (γ− 14

3 )‖Dk H‖∞ � (DN )
1
2 ; (C.431)

(ii) Similarily, for any k ∈ Z�0 such that k � N−�α�−2
2 ,

τ
1
2 (γ− 5

3 )‖D̄k∂τ (
H

r
)‖∞ + τ

1
2 (γ− 11

3 )‖D̄k(
H

r
)‖∞ � (E N )

1
2

τ
1
2 (γ− 8

3 )‖D̄k∂τ (
H

r
)‖∞ + τ

1
2 (γ− 14

3 )‖D̄k(
H

r
)‖∞ � (DN )

1
2 . (C.432)

Proof. We start with (C.431). We present the detail for ‖Dk∂ H‖∞ and other cases
follow in the same way. By using (C.425) with u = Dk H and m = �α� + k + 1,
we see that

‖Dk H‖2∞ �
2∑

i=1

∫ 3
4

0
|BiDk H |2r2 dr

+
�α�+k+2∑

i=0

∫ 1

1
4

wα−�α�+2(�α�+k+1)|BiDk H |2 dr,

where we take Bi = Di for k even and Bi = D̄i for k odd. The first sum is trivially

bounded by τ−(γ− 11
3 )(E N ) or τ−(γ− 14

3 )(DN ) since 1 � wα+i+k for r ∈ [0, 3
4 ]. For

the second sum, since wα−�α�+2(�α�+k+1) � wα+i+k for 0 � i � �α� + k + 2 and
also the total number of derivatives appearing in the sum �α� + k + 2 + k � N , it

is bounded by τ−(γ− 11
3 )(E N ) or τ−(γ− 14

3 )(DN ).
For (C.432), we apply (C.425) with m = �α� + k + 1 with u = D̄k(

H
r ) and

m = �α� + k + 1,
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‖D̄k(
H

r
)‖2∞ �

2∑
i=1

∫ 3
4

0
|Bi (D̄k(

H

r
))|2r2 dr

+
�α�+k+2∑

i=0

∫ 1

1
4

wα−�α�+2(�α�+k+1)|Bi (D̄k(
H

r
))|2 dr,

where we take Bi = D̄i for k even and Bi = Di for k odd. Now for the first
sum, note that Bi D̄k

1
r ∈ Pi+k+1. Therefore, by Lemma A.3, it is bounded by∑k+3

j=0

∫ 3
4
0 |D j H |2r2 dr and thus by τ−(γ− 11

3 )(E N ) or τ−(γ− 14
3 )(DN ) since k +3 �

N . Now for the second sum, note that when r ∈ [ 14 , 1], in contrast to the first
sum, 1

r does not act as a derivative, in other words, |Bi (D̄k(
H
r ))|2 is bounded by∑i+k

j=0 |D j H |2. Therefore, by the same reasoning as in the previous case, we obtain
the result. �

Lemma C.5. (L∞ w−weighted embedding). Let (H, ∂τ H) ∈ B N × B N be given.
Then we have

(i) For any k ∈ Z�0 such that k + 4 � N,

τ
1
2 (γ− 5

3 )‖wkDk+2∂τ H‖∞ + τ
1
2 (γ− 11

3 )‖wkDk+2H‖∞ � (E N )
1
2

τ
1
2 (γ− 8

3 )‖wkDp+2∂τ H‖∞ + τ
1
2 (γ− 14

3 )‖wkDk+2H‖∞ � (DN )
1
2 (C.433)

for k = N − 3,

τ
1
2 (γ− 5

3 )‖r wN−3DN−1∂τ H‖∞ + τ
1
2 (γ− 11

3 )‖r wN−3DN−1H‖∞ � (E N )
1
2

τ
1
2 (γ− 8

3 )‖r wN−3DN−1∂τ H‖∞ + τ
1
2 (γ− 14

3 )‖r wN−3DN−1H‖∞ � (DN )
1
2 ;

(C.434)

(ii) Similarly, for any k ∈ Z�0 such that k + 5 � N,

τ
1
2 (γ− 5

3 )‖wkD̄k+2∂τ (
H

r
)‖∞ + τ

1
2 (γ− 11

3 )‖wkD̄k+2(
H

r
)‖∞ � (E N )

1
2

τ
1
2 (γ− 8

3 )‖wkD̄p+2∂τ (
H

r
)‖∞ + τ

1
2 (γ− 14

3 )‖wkD̄k+2(
H

r
)‖∞ � (DN )

1
2

(C.435)

for k = N − 4,

τ
1
2 (γ− 5

3 )‖r wN−4D̄N−2∂τ (
H

r
)‖∞ + τ

1
2 (γ− 11

3 )‖r wN−4D̄N−2(
H

r
)‖∞ � (E N )

1
2

τ
1
2 (γ− 8

3 )‖r wN−4D̄N−2∂τ (
H

r
)‖∞ + τ

1
2 (γ− 14

3 )‖r wN−4D̄N−2(
H

r
)‖∞ � (DN )

1
2 .

(C.436)
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Proof. Theproof follows in the same spirit as in the previous lemma. ForwkDk+2H
in (C.433), we first apply (C.425) with u = wkDk+2H and m = 3 + �α� − k to
get

‖wkDk+2H‖2∞ �
2∑

i=1

∫ 3
4

0
|Bi (w

kDk+2H)|2r2 dr

+
4+�α�−k∑

i=0

∫ 1

1
4

wα−�α�+2(3+�α�−k)|Bi (w
kDk+2H)|2 dr,

where we take Bi = Di for k even and Bi = D̄i for k odd. Then it is easy
to see that the first sum is bounded by our energy since k + 4 � N . For the
second sum, by using the product rule and smoothness of w, we first note that
|BiDk(w

kDk+2H)|2 �
∑i

j=0 w2k−2 j |W j H |2 where W j ∈ Pk+2+i− j . Therefore,
by further using Lemma A.3, the second sum is bounded by

4+�α�−k∑
i=0

i∑
j=0

∫ 1

1
4

wα+�α�+6−2 j |Dk+2+i− j H |2 dr.

Note, however, that wα+�α�+6−2 j = wα+k+2+i− j+(4+�α�−k− j) � wα+k+2+i− j

because j � i � 4 + �α� − k. Furthermore, the total number of derivatives
appearing is k + 2+ i � 6+ �α� = N . Hence we obtain the desired bound. Other
cases in (C.433) and (C.435) follow in the same way. (C.434) and (C.436) can be
obtained similarly by applying (C.428) instead of (C.425). �


D Local-in-Time Well-Posedness

Let κ > 0 be a sufficient small fixed number. In this section, we discuss the
existence of H solving (3.21) in [κ, T ] with SN

κ (τ ) < ∞ for all τ ∈ [κ, T ] for
some time κ < T � 1.

Proposition D.1. Let 1 < γ < 4
3 , assume that the physical vacuum condition (1.5)

is satisfied, and let N = �α� + 6. If (Hκ
0 , Hκ

1 ) satisfy SN
κ (Hκ

0 , Hκ
1 ) ≤ σ 2, there

exists a time T = T (σ ) > κ and a unique solution τ → (H(τ, ·)) of the initial
value problem (3.21) such that the map [κ, T ] 
 τ 	→ SN

κ (τ ) is continuous and the
solution satisfies the bound

SN
κ (τ ) ≤ C̃,

where the constant C̃ depends only on ε and σ .

Sketch of the Proof of Proposition D.1. The proof of Proposition D.1 follows by
the well-posedness proof for the compressible Euler system of Jang and Mas-
moudi [36,37]. The argument of [36,37] will render the existence theory based
on an appropriate approximate scheme and a priori bounds. To apply the result of
[36,37], we will design the approximate scheme for H := Dr H and H from H.
We construct j th approximations (H j , ∂τH j ) and (Hj , ∂τ Hj ) as follows. The first
approximation for j = 1, we use the initial data: let (H1, ∂τH1) = (Dr Hκ

0 , Dr Hκ
1 )

and (H1, ∂τ H1) = (Hκ
0 , Hκ

1 ) where SN
κ (Hκ

0 , Hκ
1 ) ≤ σ 2. Inductively we obtain
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the approximate solutions ( j + 1)th approximations as follows: For j � 1, let
(H j+1, ∂τH j+1) be the solution to the initial value problem for the following linear
PDE:

∂2τH j+1 + 2
g01

j

g00
j

∂r∂τH j+1 + 2m

g00
j

∂τH j+1

τ
+ d2

g00
j

H j+1

τ 2
+ εγ

c[φ j ]
g00

j

L1+αH j+1

= D1

(
1

g00
j

(
S (φapp) − εLlowHj + N [Hj ]

))+ C1[Hj ] + M [Hj ],

(H j+1, ∂τH j+1)|τ=κ = (Dr Hκ
0 , Dr Hκ

1 ). (D.437)

Note that the schemes mimic the Equation (4.6) for i = 1. The subscript j implies
that the coefficients appearing in the expression are evaluated by using Hj , ∂τ Hj .
With the bounds SN

κ (Hj , ∂τ Hj ) < ∞ depending only on ε and σ , the existence of
(H j+1, ∂τH j+1) follows from the duality argument in [36,37]. By defining Hj+1
by

Hj+1 = 1

r2

∫ r

0
H j+1(r

′)2 dr ′,

and based on a priori estimates, we also deduce SN
κ (Hj+1, ∂τ Hj+1) < ∞, whose

bound depends only on ε and σ . As j → ∞, after extracting a subsequence,
we obtain the limit (H, ∂τ H) of (Hj , ∂τ Hj ) that solves (3.21) in [κ, T ] for some
T = T (σ ) > κ with SN

κ (H, ∂τ H) < ∞. �
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