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Abstract

The classical model of an isolated selfgravitating gaseous star is given by the
Euler—Poisson system with a polytropic pressure law P(p) = p?, y > 1. For any
l<y< %‘, we construct an infinite-dimensional family of collapsing solutions to
the Euler—Poisson system whose density is in general space inhomogeneous and
undergoes gravitational blowup along a prescribed space-time surface, with contin-
uous mass absorption at the origin. The leading order singular behavior is described
by an explicit collapsing solution of the pressureless Euler—Poisson system.

1. Introduction

The basic model of a Newtonian star is given by the 3-dimensional compressible
Euler—Poisson system [1,11,62]

drp + div (pu) =0, (1.1a)
p O+ (u-Viu)+ VP(p) +pVP =0, (1.1b)
AP =47 p, lim P(r,x) =0. (1.1¢c)

|x]—00

Here p, u, P(p), ® denote the gas density, the gas velocity vector, the gas pressure,
and the gravitational potential respectively. To close the system we impose the so-
called polytropic equation of state:

P(p)=p", y>1 (1.2)
The power y is called the adiabatic exponent.

Here a star is modelled as a compactly supported compressible gas surrounded
by vacuum, which interacts with a self-induced gravitational field. To describe
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the motion of the boundary of the star we must consider the corresponding free-
boundary formulation of (1.1). In this case, a further unknown in the problem is the
support of p(¢, -) denoted by €2 (). We prescribe the natural boundary conditions

p=0, on AQ(1), (1.3a)
VOQU)) =u-n on 3Q(1), (1.3b)

and the initial conditions

(00, ), u(0, ) = (po, up) , 2(0) = Q. (1.4)

Here V(02(¢)) is the normal velocity of the moving boundary 92 (¢) and condi-
tion (1.3b) simply states that the movement of the boundary in normal direction is
determined by the normal component of the velocity vector field. We refer to the
system (1.1)—(1.3) as the EP),-system. We point the reader to the classical text [11]
where the existence of static solutions of EP,, is studied under the natural boundary
condition (1.3a).

We next impose the physical vacuum condition on the initial data:

dpP
—o00<V <$(,0)> ‘n|,, <0. (1.5)

Condition (1.5) implies that the normal derivative of the squared speed of sound
cf(,o) = g—g(p) is discontinuous at the vacuum boundary. This condition is fa-
mously satisfied by the well-known class of steady states of the EP,,-system known
as the Lane—Emden stars. At the same time, condition (1.5) is the key assump-
tion that guarantees the well-posedness of the Euler—Poisson system with vacuum
regions.

Forany & > 0 consider the mass preserving rescaling applied to the EP,, -system:

p=E3p@s,y), u=:8"a(s,y), ®=5"d(,y), (1.6)

where

——3/2

S =& !

t, y=¢& «Xx.

Itis easy to see that the above rescaling is mass-critical, thatis M[p] = M[p]. A
simple calculation reveals that if (o, u, ®) solve the EP,, -system, then the rescaled

quantities (o, u, ®) solve

35 p + div (pit) = 0, (1.7a)
p (st + (it - V)it) + eV () + VD =0, (1.7b)
AD = 4x p, lxl‘iinoo &(t,x) =0, (1.7¢)
where
—4—3)/.

&=¢&
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Observe that for ¢ < 1 the factor ¢ in front of the pressure in (1.7b) is small
precisely in the supercritical range 1 < y < ‘—3‘. The system obtained by dropping
the e-term in (1.7b) is known as the pressureless- or dust-Euler system. This gives
a vague heuristics that, if one for a moment thinks of ¢ as a sufficiently small
length scale of density concentration, the effects of the pressure term may become
negligible and the leading order singular behavior will be driven by the pressure-
less dynamics. On the other hand, at this stage, this scaling heuristics is at best
doubtful, as the pressure term enters the equation at the top order from the point of
view of the derivative count.

Parameter ¢ serves the purpose of a ““small” parameter in our analysis. Defining

~ 1
Q(s) = 271Q @) = ¢ 7 Q(r), a homothetic image of (¢), boundary condi-
tions (1.3) take the form

=0, on 9(s), (1.8a)
V(OQ(s)) =1 -n on 9Q(s), (1.8b)
and the initial conditions read

(5(0,),6(0, -)) = (B, ip) , Q(0) = Q. (1.9)

1.1. Lagrangian Coordinates

To address the problem of collapse we express (1.8) in the Lagrangian coordi-
nates. Firstly, if we wish to follow the collapse process in its entirety until all of the
stellar mass is absorbed, it is clear that the Eulerian description becomes inadequate
at and after the first collapse time. In order to describe particle trajectories after the
first collapse time, it is advantageous to work in a coordinate system that avoids this
issue. Secondly, the free boundary is automatically fixed in Lagrangian description
and thus more amenable to rigorous analysis.

For the remainder of the paper we make the assumption of radial symmetry and
assume that the reference domain €2 is the unit ball {y e R3 | |y| < 1}. Let the flow

map 7 : Q— Q(s) be a solution of

asn(s, y) =ua(s, n(s, y)), (1.10)
10, y) = no(y)- (1.11)

Here the boundary 92 is mapped to the moving boundary d$2(s). The choice of
no corresponds to the initial particle labelling and represents a gauge freedom in
the problem. Equation (1.10) automatically incorporates the dynamic boundary
condition (1.8b) when we pull-back the problem on 2

Since the flow is spherically symmetric, n is parallel to the vectorfield y. We
introduce the ansatz

n(s,y) = x(s,r)y, r=|yl, rel0,1], (1.12)

and denote x (0, r) by xo(r). The Jacobian determinant of D7 expressed in terms
of x takes the form

Fx1 = x> +rdx). (1.13)
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Since d; ¢ = _# (divar) o 1, as a consequence of the continuity equation the
Eulerian density p evaluated along the particle world-lines satisfies

d
g(ﬁ(s,x(s,r)y)/[x](s,r)) =0. (1.14)

Let .
o= —. (1.15)
y—1

The fluid enthalpy is a function r — w(r) defined through the relationship
w(r)® = po(xo(r)r) F [xol(r), (1.16)

and this is a fundamental object in our work. Instead of specifying oo and xo,
throughout the paper we fix the choice of the fluid enthalpy w satisfying properties
(wl)—(w3) below.

(wl) We assume that w : Q — R4 is a non-negative radial function such that
0,D)3r— wir)*isC*®, w>0o0n]0,1)and w(l) =0.

Assuming further that xo(r) is uniformly bounded from below and C2, from
0(xo(1)) =0 and the physical vacuum condition (1.5), we conclude Vw - n<o
at the boundary 92 of the reference domain.

(w2) This leads us to the second basic assumption on w:

_=w'(1) <0.

Vuw - ﬁ’
(w3) Finally we denote the mean density of the gas by

1 r
G(r) = —3f Arw®s® ds, (1.17)
r 0

g(r) :=3y/ @ r €0, 1]. (1.18)

Clearly g > 0. Observe that G(0) = 4T”w(O)"‘. We shall require that g :
[0,1] — R is a smooth function such that there exist positive constants
c1,cy > 0andn € Z- g so that

and let

cir" < —rd, (logg(r)) < cor", r €[0,1]. (1.19)

The purpose of the next lemma is to show that there exist choices of the enthalpy
w consistent with the above assumptions.

Lemma 1.1. For any n € N there exists a choice of the enthalpy w satisfying
properties (W1)—(w3). In particular, the resulting map g defined by (1.18) satis-
fies (1.19).
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Proof. Let w(r) = a(l — r"); We observe that for any r € (0,1] G(r)
‘r‘—jfor 4 (1 — s™)%s%ds = # — Loyt 4o, o), with 1 S cpe S 1
Note that

1
ror(logg(r)) = Erar(log G(r)),
which implies (1.19). m|

Remark 1.2. Tt is evident from the proof that one can easily modify the enthalpy w
in the regions away from » = 0 so that (1.19) is still satisfied. In fact, the family of
enthalpies w which satisfy the assumptions (wl)—(w3) is infinite-dimensional.

As a simple, but important corollary of (w3), specifically (1.19), we have

Corollary 1.3. Let g be given by (1.18). Then the following properties hold:

(i) the map r +— g(r) is monotonically decreasing on [0, 1];
(ii) in the vicinity of the origin the following Taylor expansion for g holds:

g(r) = g(0) — gr" + 0r0(r™) (1.20)

for some constant ¢ > 0
(iii) for any k € N there exists a positive constant cy such that

(ro)*g(r)

< cpr'. (1.21)

As shown in [34], the momentum Equation (1.7b) expressed in the Lagrangian
variables (s, r) reduces to a nonlinear second order degenerate hyperbolic equation
for x:

G(r)
Xss'f‘?‘i‘ﬁ‘P[X]:O, (1.22)

where r — G (r) is given above in (1.17) and the nonlinear pressure operator P is
given by
x>

PIxl= s

ro,) (w1+0‘j[x]_y>. (1.23)

We may explicitly relate the Eulerian density, the fluid enthalpy and the Jacobian
determinant; as long as _#[x] > 0 by (1.14) and (1.16) we have the fundamental
formula

B(s, x(s,m)y) = w*(r) Zx17". (1.24)

Remark 1.4. Without being precise about the definition of the gravitational collapse
for the moment, our goal is to prove that there exists a choice of initial conditions

x(0) = x0, 95x(0) = x1, (1.25)
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with a particular choice of the enthalpy w so that _#[x] becomes zero in finite
time. We shall then show that there indeed exists a density pg satisfying the physical
vacuum condition

VLT <0 on 9(0),

as both the profile w* and the initial labelling of the particles g are necessary to
recover the Eulerian density pg, see (1.16).

Remark 1.5. In the special case when xo = 1, w* and pg coincide. We refrain from
imposing the initial condition xo = 1, but we shall prove a posteriori that the initial
conditions that we use for the construction of the collapsing stars indeed satisfy
xo = 1 4+ O(e) in a suitable norm.

Finally, from (1.17) we have rd,G + 3G = 4rw® and therefore

3 9w

ro,logg + 5= 2 (1.26)
Since 9,¢g <0, w¥|,—; = 0 and 9’;1§’a > 0 forr € [0, 1) it follows that
3 3
Irolog )l < 2. r €10.1), rd.(ogg)],_ = 3. (1.27)

Bounds (1.26)—(1.27) are crucial in proving sharp coercivity properties of our high-
order energies later in the article.

1.2. Pressureless Collapse

The first step in our analysis is to describe the solutions of (1.22) when & = 0.
We are led to the ordinary differential equation (ODE)

G(r)
Xss +—5 = 0, (1.28)
X
with initial conditions
x(0,7) = x0>0, x(0,r)=x1. (1.29)

We now give a detailed description of the dust collapse from both the Lagrangian
and Eulerian perspective, as this will serve as the leading order description of the
collapsing stars for the EP,, system.

Notice that for any fixed r € [0, 1] the coefficient G(r) merely serves as a
parameter in the above ODE. The total energy

1, GO
E(s) = 3%

(1.30)

is clearly a conserved quantity. We are interested in the collapsing solutions,
that is solutions of (1.28)—(1.29) such that there exists a 0 < 7 < o0 so that
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limg_, - x(s,7) = 0 for some r € [0, 1]. We consider the inward moving initial
velocities with 1 < 0. From the conservation of (1.30) we obtain the formula

2 1 1
Xs = =4/ X1 +2G{———). (1.31)
X X0

Integrating (1.31) one sees that for every r there exists a0 < *(r) < oo such that
x(t*(r), r) = 0. A simple calculation reveals that for any r € [0, 1] we have the
universal blow-up exponent 2/3

x(s,1r) ~c(r)(t* @) — s)%, s — t*(r). (1.32)

We may further define the first blow-up time

Ko i ok
t* = rg[léfll] t*(r).
Observe that the Eulerian description of the solution ceases to make sense at and
after time s > *. On the other hand, for different values of r the Lagrangian
solution may make sense even after #*. In particular, when ¢*(r) is a non-constant
function, we can speak of a “fragmented” or “continued” collapse, wherein particles
with a different Lagrangian label r collapse at different times. This is the hallmark
behavior of inhomogeneous collapse (Fig. 1).

For simplicity, we shall consider a special subclass of solutions of (1.28)—(1.29)
with zero energy. Up to multiplication by a constant such profiles have the form

Xaust(s.7) = (1 — g(r)s)3, (1.33)

where g is given by (1.18). It follows that x4y becomes zero along the space-time
curve

I':={@,r)|1—g@)s =0} (1.34)
The solution is only well-defined in the region
E:={(s,r) | 1 —g(@)s > 0}.
After a simple calculation we have

2 srg'(r)

st (s, r) = (1= g(r)s)? (1 310

), (s,r) € B.

In particular, xdust and _# [ xdust] vanish along I" and therefore, since the Eulerian
density satisfies

Paust (5, Xaust (5, 1)y) = w* (1) 7 [xaustd(s, ™', r =1yl sg(r) <1, (1.35)

the value of pgyst(s, 0) diverges to infinity at the first blow-up time t* := ﬁ. In
the region ygust > 0, the Eulerian density Y +— pqus (s, ¥) is always well-defined
away from the origin ¥ = 0. Moreover for any r € [0, 1]

liml Odust (5, Xdust (s, 7)y) = oo.

S—)W



Y. GUO ET AL.

0 r 1

Fig. 1. Dust collapse in Lagrangian coordinates

Since r + g(r) is monotonically decreasing, particles that start out closer to the
boundary of the star take longer to vanish into the singularity.
Remaining mass. For any time s € ( ﬁ, ﬁ) the remaining star mass is given by

1
M(s) = 4x / w® ()72 dz = / 477 paust (s, Z)Z>dZ,  (1.36)
g to() (0, Xdust (s, 1))

where we have changed variables: z — Z = x(s,z)z and used w%(z) =
o(s, X(s 2)2) # [ xdust] and 47 7| [xdust]z> dz = 4 Z*>dZ. Since for any ﬁ <
s < (1) H xaustl(s,r) > Oforallr € (g~ Lo (%), 1], this change of variables is
Justlff

Finally, the support of the collapsing dust star shrinks to zero as s — ﬁ. This
is clear, as the free boundary in the Eulerian description is at distance xgust (s, 1) =
(1 — g(l)s)% from the origin. As s — ﬁ the star concentrates with its mass
completely absorbed at the origin:

11m Xdust(s, 1) =0 and 11m M(s) = 0.

RNad g(l) Rad g(l)

Therefore the time s = has a natural interpretation as the end-point of star
collapse for the dust exampfe considered here.

1.3. Main Theorem and Related Works

Stellar collapse is one of the most important phenomena of both Newtonian and
relativistic astrophysics. Even though extensively studied in the physics literature,
very little is rigorously known about the compactly supported solutions to EP,, -
system that lead to the gravitational collapse.
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1. When P(p) = 0 and therefore the star content is the pressureless dust, there
exists an infinite-dimensional family of collapsing dust solutions, as described
in Section 1.2.

2. Ify = % in (1.2), due to the special symmetries of the problem, “homologous”
self-similar collapsing solutions exist and were discovered by GOLDREICH
and WEBER [25] in 1980. Further rigorous mathematical works about such
solutions are given in [22,24,43]. Here all the gas contracts to a point at the
same time and the dynamics is described by a reduction to a finite-dimensional
system of ODEs.

3. When y > % it is shown in [21] that the collapse by density concentration
cannot occur.

We refer to the values 1 < y < %, y = ‘3—1', andy > % of the adiabatic exponent
as the mass supercritical, mass-critical, and mass subcritical cases respectively.
This terminology is motivated by the invariant scaling analysis of the EP), -system,
see for example [29].

It has been an outstanding open problem to prove or disprove the existence of

. . . .. 4
collapsing solutions in the supercritical range 1 < y < 3.

Theorem 1.6. (Main theorem). For any y € (1, %) there exist classical solutions
x(s,r) of (1.22) defined in E = {(s,r) ‘ 1 — g(r)s > 0}. The solution behaves
qualitatively like the collapsing dust solution xqust and in particular

15‘)( <1, 1< <y ges (1.37)
Xdust f[Xdust]
Further, for any r € [0, 1],
im 2 = pm 2 (1.38)
seﬁ Xdust s_’ﬁ f[Xdust]
Finally, the following three properties hold:
1. (Density blows up) For any r € [0, 1]
lim1 o(s, x(s,r)r) = lirn1 w(r)‘)‘/ﬁ[)(]_1 = 00. (1.39)
S*)W S*)m
2. (Support shrinks to a point)
limI x(s, 1) =0. (1.40)

S—)m

3. (Mass is continuously absorbed into the singularity)

1
lim M(s) = lim 471/ w(z)%z2dz = 0. (1.41)
8

—1.1
0] 0] oy

Remark 1.7. One distinctive feature of our proof is that the singularity occurs along
the prescribed space-like surface I" (1.34) which coincides with the blow-up surface
of the underlying dust solution xqyst.
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Remark 1.8. Our result shows a finite time density blow up and a loss of total mass
during the collapse. This phenomenon is very different from the shock formation
where the singularity occurs in the form of density discontinuity.

Remark 1.9. We have used the vacuum free boundary framework to deal with the
dynamics of compactly supported isolated star configurations in space that are phys-
ically important. Gravitational collapse, however, is not dependent on the presence
of the vacuum boundary. In fact, dust solutions describe pressureless collapse for
non-compact densities and our methodology would lead to analogous results for
for example densities with infinite support having sufficient decay at infinity.

Theorem 1.6 identifies an infinite-dimensional family of monotonically de-
creasing initial densities that lead to the gravitational collapse. This is a global
characterization of the dynamics, as the region E corresponds to the maximal for-
ward development of the data at s = 0.

The best known class of global solutions to the EP,, system are the famous
static Lane—Emden stars [1,11,62]. In the range g < y < 2 one finds compactly
supported radially symmetric time-independent solutions of finite mass, whose
stability still remains an outstanding open problem. In the subcritical range y >
%‘ the question of nonlinear stability is open despite the promising conditional
nonlinear stability result proven by REIN [48] (see [41] for rotating stars). If the
solution exists globally in time when y > % and the energy is strictly positive, then
the support of the star must grow at least linearly in ¢, as shown in [44]. A similar
conditional result holds when y = % [21]. In the supercritical range g <y < %
it has been shown by JANG [33,34] that the Lane—Emden stars are dynamically
nonlinearly unstable. Besides the stationary states and the homologous collapsing
stars in the mass-critical case y = ‘—3‘, the only other global solutions of EP,, were
constructed by HADZC and JaNG [29,31].

Since the works of SIDERIS [52,53] it has been well-known that solutions of
the compressible Euler equation (without gravity) develop singularities even with
small and smooth initial perturbations of the steady state (p,u) = (1,0). This
type of blow up is generally attributed to the loss of regularity in the fluid un-
knowns which typically results in a shock. Under the assumption of irrotationality,
CHRISTODOULOU [15] gave a very precise information on the dynamic process of
shock formation for the relativistic Euler equation. In the context of nonrelativis-
tic fluids, a related result was given by CHRISTODOULOU and Miao [16], while a
wider range of quasilinear wave equations is treated extensively by SPECK [56],
HoLzEGEL et al. [32]. Most recently, shock formation results have been obtained
even in the presence of vorticity by Luk and SpEck [40], for an overview we refer
the reader to [57]. A very different type of singular behavior which results in a wild
nonuniqueness for the weak solutions of compressible Euler flows was obtained by
CHIODAROLI et al. [13], inspired by the methods of convex integration, see [20] for
an overview.

The above mentioned mechanisms of singularity formation are different from
the singularity exhibited in Theorem 1.6, where the density and the velocity remain
smooth in the vicinity of the origin and no shocks are formed before the gravitational
collapse occurs.
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In the absence of gravity, a finite dimensional class of special affine expanding
solutions to the vacuum free boundary compressible Euler flows was constructed by
SIDERIS [54,55]. Their support takes on the shape of an expanding ellipsoid. Related
finite-dimensional reductions of compressible flows with the affine ansatz on the
Lagrangian flow map go back to the works of OVSIANNIKOV [46] and Dyson [23],
with different variants of the equation of state. Nonlinear stability of the Sideris

motions was shown by HApz¢ and JANG [30] for the range of adiabatic exponents

1l <y < % and it was later extended to the range y > % by SHKOLLER and

SIDERIS [50].

In the setting of compressible non-isentropic gaseous stars (where the equation
of state (1.2) is replaced by the requirement p = P(p, T'), T being the internal
temperature) it is possible to impose an affine ansatz (separation of variables) for
the Lagrangian flow map and thus reduce the infinite-dimensional PDE dynam-
ics to a finite-dimensional system of ODEs. The resulting solutions have space-
homogeneous gas densities and the system is therefore closed—the star takes on
the shape of a moving ellipsoid. For an overview we refer to [3,4]. A number of
finite-dimensional reductions in the absence of vacuum regions relying on self-
similarity and scaling arguments can be found in the physics literature for exam-
ple [2,5,6,39,47,49,51,59,61].

Without the free boundary, in the context of finite-time break up of C!-solutions
for the gravitational Euler—Poisson system with a fixed background we refer to [12]
and references therein. There are various models in the literature where the stabi-
lizing effects of the pressure are contrasted to the attractive effects of a nonlocal
interaction; we refer the reader to [7-9] for a review and many references for dif-
ferent choices of repulsive/attractive potentials.

The analogues of the collapsing dust solutions in the general relativistic con-
text were discovered in 1934 by ToLMAN [60]. In their seminal work from 1939,
OPPENHEIMER and SNYDER [45] studied in detail the causal structure of a subclass
of asymptotically flat Tolman solutions with space-homogeneous density distribu-
tions, thus providing basic intuition for the concept of gravitational collapse. Never-
theless, in 1984 CHrISTODOULOU [14] showed that the causal structure of solutions
described in [45] is in a certain sense non-generic in the wider family of Tolman
collapsing solutions, proving thereby that for densities given as small inhomoge-
neous perturbations of the Oppenheimer—Snyder density, one generically obtains
naked singularities. This, in particular, highlights the importance of the rigorous
study of the gravitational collapse of gaseous stars with more realistic equations
of state, that is with nontrivial pressure. In the absence of any matter, existence of
singular solutions containing black holes has been known since 1915. This is the
1-parameter family of Schwarzschild solutions, which is embedded in the larger
family of Kerr solutions. The nonlinear stability of the Kerr solution has been an
important open problem in the field. Substantial progress has been made over the
recent years by DAFERMOS, RODNIANSKI, HOLZEGEL, SHLAPENTOKH-ROTHMAN,
TAYLOR, see [18,19,58] and references therein.
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1—g(r)s =0
T=0
(s,7) = (7,7)
1 — g(z)s = const. /\
T = const
1 — g(r)s—="const. - = G
0 1 0 1

Fig. 2. Foliation by the level sets of xqust

1.4. Foliation by the Level Sets of Xdust

We would like to build a solution of (1.22) “around” the fundamental collapsing
profile (1.33). To that end it is natural to consider the change of variables

T=1-—g(r)s, (1.42)
and introduce the unknown

¢(t,r) = x(s,r).

Note that 0 < 7 < 1 and t = 0 corresponds to the space-time curve I', while 7 = 1
represents the initial time. It is clear that the change of variables (s, r) — (z,r) is
nonsingular since g(r) > 0 on [0, 1] (Fig. 2).

The operator 79, expressed in the new variables is denoted by A and it reads

_ rdi-o

dr + 719, = (t — 1)ro,(log g)d; + ro,. (1.43)
g(r)
We also use the abbreviation
Mg(t,r) ;= (t — Dro,-(log g), (1.44)
so that
A= Mg +ro,. (1.45)
From (1.22) we immediately see that the unknown ¢ solves
2
brr + o7 +¢eP[p] =0, (1.46)

where

2 _
Ploli=—2 A (w1+°‘ [¢2 (& + A¢)] y) (1.47)

g rwer?
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is the pressure term in new variables (7, r). In (7, r)-coordinates the dust collapse
solution (1.33) is denoted by ¢y, it solves

2
deco + 59q 2=0, (1.48)
and is given explicitly by

do(r,r) =75, (1.49)
After a simple calculation we obtain

Ilgol(z,r) =1? (1 + §%> ) (1.50)

T

In particular, ¢ [¢o](z, r) > O forall (z,r) € (0, 1] x [0, 1], and
lim 7lgol =0, flgol|  =1.

The connection between the above formulas and mass conservation for the dust
solution is detailed in Section 1.2. From the formula (1.50), (1.44), and (1.19) we
conclude that for0 < 7 <« 1

Ilgol(z,r) ~ 2 (1 + %) (1.51)

from which the scale " /t emerges naturally and will play an important role in our
work.

We will prove Theorem 1.6 in the (t, r)-coordinate system, using (1.46) as a
starting point. This is natural, as the collapse surface in the new coordinates takes
on a simpler description I' = {t = 0}.

1.5. Methodology and Outline of the Proofs

The continuity equation in Lagrangian coordinates reduces to (1.24), which
implies that the blow-up points of the density coincide with the zero set of the
Jacobian determinant

J191 =@+ Ap). A= My +rd,.

Therefore, the key goal of this work is to identify a class of initial data that in a
suitable sense mimic the bahavior of the dust solution and we do that by showing

1<M<1,
~ Zldol ~

A natural idea is to consider the dynamic splitting

¢ =¢o+edoR, (1.52)
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where the relative remainder R is expected to be small in an appropriate sense.
A straightforward calculation gives a partial differential equation satisfied by R,
which at the leading order takes the schematic form,

4 2 1 wlte
g9  R+2°9,0,R+ —3,R— —R — —39 o, [r2R] ) =
8 Tt 8 0 R+ T 3 EVC[¢0] 2 or B - [r“R]
w r

3t 3¢p
(1.53)
where one can show that
5
~00 ;01 o & s
~ 1, - ~
g g > cl¢o] ~ e
The source term F contains, as a leading order contribution the expression
—ePlgoly
which in the region 0 < 7 < 1,0 < r <« 1 has the asymptotic form
n 1
(7)
& %—2)/—2 - Y ~ ST%_Z)/_7 = T_2+8
(1+ (%)
in the zone {’ ~ 1}, where 0 < § = 8(y,n) < § is a quantity defined later

in (1.60) with the property hmyﬁ 4 8(y, n) = 0. The simplest way of interpreting

the relative “strength” of each of the terms in (1.53) is to compute the associated
energies by taking the inner product with d; R. Assuming that we can obtain a
coercive energy contribution on the left-hand side which roughly controls

T
|0 R ||iz + / t Y9, R|I>dt + (w-weighted 1st order spatial derivatives),
0

(1.54)
we then have to control a source term of the form

T
2R dx dr gsf fr—%+5 ‘r—%R,’ dx d, (1.55)
0

which is clearly too singular to be controlled by the quadratic form (1.54), since
0<éd < % ‘We must therefore refine our approximate solution ¢ so to obtain a
less singular source term.

We note that we have already implicitly used the assumption y < % via the
scaling transformation (1.6), which resulted in the occurrence of the small parameter
e1in (1.46). We want to furtheruse y < %, but with a more refined dynamic splitting
ansatz. Namely, our main idea is to seek a more special solution ¢ of the form

m

¢ = Qapp + TTH, (1.56)

where ¢, will be chosen as a more accurate approximate solution of the Euler—
Poisson system (1.46) in hope of mitigating the issue explained above. The exponent
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m > 0 is a sufficiently large positive number, so that H is a weighted remainder,

3
small relative to ™" = ¢0§m & ¢ for small values of 7.
Step 1. Hierarchy and the construction of the approximate solution ¢app (Sec-
tion 2).
We shall find the approximate profile ¢app as a finite order expansion into the
powers of ¢ around the background dust profile ¢y, that is

bapp = b0 + 1 + 7o+ + My, M > 1. (1.57)

With the solution ansatz (1.57) we can formally Taylor expand the pressure term
eP[gpo + €p1 + - - -] into the powers of ¢, thus giving us a hierarchy of ODEs
satisfied by the ¢;:

4 .
OrrPjt1 — @%H = fi+ildo, ¢1,....¢;1, j=0,1,..., M. (1.58)

Functions fj4+1, j =0, 1, ..., M are explicit and generally depend nonlinearly on
¢k, 0 < k < j, and their spatial derivatives (up to the second order).

The system of ODEs (1.58) can be solved iteratively as the right-hand side f 11
is always known as a function of the first j iterates.! To show that finite sums of
the form (1.57) are good approximate solutions of (1.46), we must prove that the
iterates ¢;, j > 1, are effectively “small” with respect to ¢p. The mechanism by
which this is indeed true is one of the key ingredients of the paper, in both the
conceptual and the technical sense. In particular we shall have to choose special
solutions of (1.58), as they are in general not unique (the two general solutions
of the homogeneous problem are 7#/3 and t=!/3), which will allow us to see the
above mentioned gain. We now proceed to explain these ideas in more detail. To
provide a quantitative statement, we assume that the enthalpy profile w satisfies

w*@) =1—cr" + 0,-00"™") (1.59)

in a neighbourhood of the center of symmetry r = 0. The exponent n € N is our
effective measure of flatness of the star close to the center. For a given y € (1, %‘)
we consider densities (1.59) with n so large that

4 1
§:=2(-—-y——-]>0. (1.60)
n
With this assumption in place we prove that the iterates {¢;} jen “gain” small-
ness and this conclusion is summarized in the following theorem:

Theorem 1.10. Let M, K € Z~ be given. There exists a sequence {¢} jcfo,... M}

of solutions to (1.58) with ¢o(t,r) = r%, constants C jiy, depending on K and M,
anda ) > %suchthatforj ef{l,...,.M}and ¢,m € {0, 1, ..., K} we have

r’ A=
as:n(rar)equ‘ =< Cjkm7§+j8m%. (1.61)
(14 (=)

1 We note that a related idea of finding an approximate solution has been used recently in
the semilinear and energy subcritical wave equation [10].
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Therefore the iterates ¢; exhibit a crucial gain of 7/ with respect to the dust

profilegy =t 51 This is one manifestation of the supercriticality (thatis 1 < y < %‘)
of the problem and it can be viewed as the gain of smallness in the singular regime
0<txl

To motivate (1.61), we explain informally how the gain happens for ¢;. To find
¢1 we solve the ODE

o5

4
el — ﬁd)] = —Plgo] = T 22

A (w20l 7)) (162)
For 0 < r <« 1 we have w &~ g(r) ~ 1. Approximating A ~ r"9; + ro,, and
by (1.51) Zl¢ol =~ t(r +r"), r < 1, we obtain

2
(rn)l_H

2 2 T
Plgol ~tics 2 2

, 1.
aroyr TS

We expect ¢ to “gain” 2 powers of T with respect to the right-hand side of (1.62),

and thus
2 2
(5) " (5)
2 8 2 2
3 NT/ st NT/

PR T3T

1+ 5y 1+ 2y

with § defined in (1.60). Of course § can be positive if and only if y < % and the
exponent n from (1.59) is sufficiently large!

Most important consequence of Theorem 1.10 is that it leads to a source term
S (papp) generated by ¢,pp (see Lemma 5.14) which satisfies a natural improved
bound

| (hagp)| < 2M+1 —+(M+1)s—1
Therefore, if M > 1, it is reasonable to expect that the remainder ansatz t’"%

(with m > M) is consistent with our strategy of treating H as an error term, in
the regime 7 < 1.

2
n

Another crucial input in (1.61) is the factor %
+( =

T

< 1. The gain is visible
only in the asymptotic regime r" /t < 1, which suggests that the scale
'/t

plays a critical role in our problem. Indeed, this gain is important in the closure of
the energy estimate for H—it is used to absorb various negative powers of r which
inevitably appear in our high order energy scheme intimately tied to the assumed
spherical symmetry.

The proof of Theorem 1.10 is complex and delicate. It is based on the intro-
duction of special solution operators S and S (2.28)—(2.29) for the ODE (1.58).
In addition to a careful and precise tracking of the powers of T and %, to see the
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gain of 7/ one has to use different solution operators S; and > for j < L%J and

for j > [%], respectively. The precise estimate (1.61) and the emergence of % as
a critical quantity is intimately tied to the algebraic structure of f;, j =1,..., M,
which in turn possesses a rich geometric information related to the Taylor expansion
of the negative powers of the Jacobian determinant _Z [¢].

Step 2. Equation for the remainder H (Section 3).

Thanks to the crucial gain of /% and in the presence of ™ factor, now H
satisfies the following quasilinear wave-like equation:

m(m — 1) 4 }H

2
99, H +2¢%0,0. H + 9, H + [
T

2 T 9g3
T 9%:0p
1 wlte 5
—eyclo]l— 9, ( 5—0r[r H]) =F, (1.63)
w r
where at the leading order
3y
00 _ ,00 01 01 € T
= I l’ = ~ —, = ~ .
g g [¢] 8 g ] - clo] ~ clgappl ——

The precise formulas for the right-hand side F, goo’ gm, and c[¢] are given
in (3.26)—(3.28), (3.19) respectively. In comparison to (1.53), the remarkable new
feature of (1.63) is the presence of the coefficient W so that

m(m — 1) 4 1

> A
2 3 2
T Yip T

for m sufficiently large. This leads to a coercive positive definite control of the
solution at the singular surface {r = 0}.

Step 3. The physical vacuum and weighted energy spaces (Section 4)

Much of the difficulty in producing energy estimates for (1.63) comes from an
antagonism between two different singularities present in the equation.

o at T = 0 the coefficient c[¢,pp] and various others formally blow up to infinity.
This is the singularity associated with the collapse at the singular surface t = 0
and already explained above;

e at r = 1 we have w = 0 and therefore the elliptic part of the quasilinear
operator on the left-hand side of (1.63) does not scale like the Laplacian as
r — 1. This is a well-known degeneracy associated with the presence of the
vacuum boundary.

The assumption of physical vacuum can be recast as the requirement that the
enthalpy w > 0 behaves like a distance function when r ~ 1, that is

%(1 —r=<wr)<Cl-r), rel01]. (1.64)

Requirement (1.64) is important in establishing the well-posedness of (1.63). The
local well-posedness theory for the physical vacuum problem was first developed
in the Euler case [17,37], while the well-posedness statements for the gravitational
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Euler—Poisson system can be found in [26,29,31,34,42]. Nevertheless, the well-
posedness theory cannot be directly applied to our setting, as (1.63) differs from
the above mentioned works in two important aspects: the problem has explicit
singularities at T = 0 and the space time domain (7, r) € (0, 1] x [0, 1] is strictly
larger than the domain (s, ) € [0, g%o)) x [0, 1] which only covers the star dynamics

up to the first stipulated collapse time * = Lo’ see Section 1.4.

Step 4. Energy estimates and the conclusion (Sections 5, 6).

Since ¢app ~ o = 12/3, T-derivatives of @qpp create severe singularities
in T as T — 0, which leads to difficulties in our energy estimates. We must in
particular abandon the use vector field d; to form the natural high-order energy
and instead rely on purely spatial derivatives. Due to very precise and delicate
features of the approximate solution ¢,p, near the center r = 0 (as described in
Theorem 1.10), we are forced to use polar coordinates throughout [0, 1], which
results in the introduction of many novel analytic tools to control the singularity at
r=0.

To motivate the definition of high-order energy spaces we isolate the leading
order spatial derivatives contribution from the left-hand side of (1.63):

I
LoH = ——3, [w1+°‘DrH], (1.65)

where

is the radial expression for the three-dimensional divergence operator. This par-
ticular form of L, suggests that we have to carefully apply high-order derivatives
to (1.63) in order to avoid singularities at r = 0. We therefore introduce a class of
operators defined as concatenations of d, and D, :

b {(arDr)% if j is even (1:66)

"\ by, pHE it jisodd

and set Dy = 1. The operators D; are then commuted with the Equation (1.63).
For some N sufficiently large, the idea is to form the energy spaces by evaluating
the inner product of the commuted equation with D; H;, j = 1, ..., N. However,
following the ideas developed in [29,30,37], we need to perform our energy esti-
mates in a cascade of weighted Sobolev-like spaces. For any given j € {1, ..., N}
the correct choice is the inner product associated with the weights w**/.

Definition 1.11. (Weighted spaces). For any i € Zx( we define weighted spaces

Li 4 as a completion of the space C°(0, 1) with respect to the norm || - ||g+i

generated by the inner product

1
(X1 X2 ati :2/ Xl)(zw“+‘r2 dr (1.67)
0

and denote the associated norm by || - ||g+i-
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Definition 1.12. (Weighted space-time norm). For any 0 < « < 1, N € Z-o,
k <t <1 we define the weighted space-time norm

SN(H, Hy) () = SY (7)

N
. Ny—2 2 ny—4 2
=Y sup {(0)TIID He |2, + () TS D HIZ,
jzo/cgr’gr
n

o, r
+8(T/) v 1||q,VT+1 <7> Dj+1H||§+j+1}

N T
_8 _14
+ 30 [ S im sy + =¥k,
=0

n

o r
+e(?) 7 2 lg_rs (;) Dj+1H||§a+j+1} dr’
where ¢, (x) = (1 +x)",v e R.

We see that the powers of the w-weights increase with the number of derivatives.
Such spaces are carefully designed to control the motion of the free boundary at
r = 1 and the key technical tool in our estimates is the Hardy inequality. This is
natural since w ~ 1 —r nearr = 1. Similarly, the presence of T-weights allows us to
precisely capture the degeneration of our wave operator at the singular space-time
curve {t = 0}.

The positive function x — ¢, (x) serves as a weight for the top order spatial
y+1

derivative contributions in the above definition, with powers v = —*=— and v =
- VTH respectively. Such weights appear in the dust Jacobian _# [¢o] and by means

of expanding the true solution around ¢g, functions g, appear naturally in our
energies. The presence of g, highlights again the importance of the characteristic
scale r"* /7 in our problem. We shall prove the following key theorem.

Theorem 1.13. (The «-problem). Let y € (1, %) and m > % be given. Set N =
N(y) = Lﬁj +6. For a sufficiently largen = n(y) € Z~, there exist oy, €, > 0,
M = M(m,y,n) > 1 and Cy > O, such that for any 0 < o < o, and any
0 < & < & the following is true: for any k € (0, 1) and any initial data (Hy , H{]
satisfying

SY(HS H) (@ = 1) < 07,
there exists a unique solution solution T — H"(t, ) to (1.63) on [k, 1] satisfying

SN(H®, H)(1) < Co (02 + sZM“) . relkll.

Theorem 1.13 gives uniform-in-« bounds for the sequence H* with initial data
specified at time T = k. One may for example choose trivial data at 7 = «, that is
set o = 0 in the above theorem to generate a family of solutions {H,}.e(0,1].- As
k — 0 we conclude the existence of a solution H on (0, 1]. By (1.56), this gives
a solution ¢ = ¢upp + ‘L’mg of the original problem (1.46), thus allowing us to
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prove Theorem 1.6 (after going back to the (s, r) coordinate system). The proof of
Theorem 1.13 is given in Section 5.6, while the proof of Theorem 1.6 is given in
Section 6.

Remark 1.14. Note that the small parameter ¢ used for the construction of the
approximate solution @,pp enters explicitly in (1.63).

Remark 1.15. As part of the proof of Theorem 1.13, we also obtain a lower bound
on the parameter M—the expansion order of the approximate solution ¢upp =

> "ol ¢;. A precise formula is given in (5.122).

Many of our energy estimates depend crucially on both the gain of a 7°-power
and a power of % in Theorem 1.10. The former allows us to obtain a crucial gain
of integrability-in-t close to the singular surface T = 0, while the latter is needed
to absorb negative powers of r arising from the application of the operators D,
on ¢pp. This delicate interplay works out, but requires a certain “numerological”
constraint, namely the coefficient n has to be large enough relative to the total
number of derivatives N used in our energy scheme.

Despite the delicate tools and analysis, one term stands out and seemingly causes
a major obstruction to our method. After commuting the equation with high-order
operators D; and evaluating the (-, -)o4 j-inner product with D; H, an error term
A H] defined in (4.8) emerges. A simple counting argument suggests that the
number of powers of w in .Z[H] is insufficient to close the estimates near the
vacuum boundary, but we carefully exploit a remarkable algebraic structure within
the term and obtain the necessary cancellation, see Lemma 5.8.

The last claim of Theorem 1.6 shows that the infinitesimal volume of the shrink-
ing domain of our collapsing solution behaves like the infinitesimal volume of the
collapsing dust profile. More importantly, using (1.24), one can conclude that the
qualitative behavior on approach to the singular surface t = 0 of the Eulerian
density p is the same as that of the dust density, see Section 6.

Plan of the Paper Section 2 is devoted to the derivation of the hierarchy of
ODEs (1.58) and the proof of Theorem 1.10. In Section 3 we derive the equation
for the remainder term H. In Section 4 we introduce the high-order differentiated
version of the H-equation derived in Section 3. We also define high-order energies
that arise naturally from integration-by-parts and show (Section 4.2) that they are
equivalent to norm S, from Definition 1.12. The remainder of the section is devoted
to various a priori estimates and preparatory bounds. In Section 5 we prove the key
energy estimates, culminating in the proof of Theorem 1.13 in Section 5.6. Finally,
Theorem 1.6 is shown in Section 6. In Appendices A—C many important properties
and analytic tools used in our estimates are shown. We present details of the product
and chain rule within vector field classes P and P (“Appendix A”), commutator
identities (“Appendix B”), and the Hardy—Sobolev embeddings (“Appendix C”).
Finally, for the sake of completeness, we sketch the local well-posedness argument
in “Appendix D”.
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1.6. Notation

e By Z>0, Z~ we denote the sets of non-negative and strictly positive integers
respectively.

e C%la, bl, [c, d]) denotes the space of continuous functions (z,r) — f(z,r)
on the set [a, b] x [c, d].

o Weuse ||| ;2 to denote ||| 1210, 1):r24r) @d || - [loo to denote ||-[[ Loo((0,17)-

e Writing A < B means that there exists a universal constant C > 0 such that
A < CB. A Z B simply means B < A. If we write A &~ B we mean A < B
and A 2 B.

e For a given a > 0 we denote the closed three-dimensional ball of radius a
centered at 0 by B, (0).

2. The Hierarchy

Formally we would like to build a solution of (1.46) as a sum of the approximate
profile ¢pp (given as a finite series expansion in the powers of ¢) and the remainder
term 6 which we hope to show to be suitably small. In other words, we are looking
to write

M
¢ = Pup+0 = el +6. @1
j=0

Plugging (2.1) into (1.46), we will now derive a formal hierarchy of ODEs
satisfied by the functions ¢;, j € {1, ..., M}. We define the source term S(@app):

S(app) 1= —2app — — e P[¢app]. (2.2)

9%pp

We first recall the formula of Faa Di Bruno (see for example [38]) which will be
repeatedly used in this section. Given two functions f, g with formal power series
expansions,

F) = Zf” x g =Y S, (23)
n=1 "

we can compute the formal Taylor series expansion of the composition 7 = f o g
via

o]

h(x) = Z %x",

n=0

where f;,, g, and h,, are constants with respect to x. Faa Di Bruno’s formula gives

,,_ZZA, (B e=n e

k=1 m(n,k)
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where
n n
T k) = {1, d) 1 hi € Zz0, D hi =k, Y iki =n}. (2.5)

An element of m(n, k) encodes the partitions of the first n numbers into A;
classes of cardinality i fori € {1, ..., k}. Observe that by necessity A ; = O for any
n—k+2<j<n.

Lemma 2.1. (Detailed structure of the source term S(¢app)). The source term
S(app) given by (2.2) satisfies

M
. 4 B _
Son) = = Dol (00 = 50T = 1) =401 (R 405 7RS).
j=0
(2.6)
where R}, = Ry [0, @1, ..., ¢m] and Ri,l’z = Rix[,z[d’O’ b1, ..., Oy are explic-
itly given by (2.17), (2.9) below, fy := 0, and

0 i— _yhm .
fi==02 = ¥ Z(p;f,z"/\(w”“/[m] Vﬁ), j=loM—1,

m+i=j—1, k=0
0<m,i=sM

with éj and hyy, given explicitly below by (2.10) and (2.15).

Proof. For any m € N, v € R, there exists a smooth function an,u R™ - R
such that

F;
(texi+ein+-"x) " =1+ e/ 4" R (1, xm), 27)

where by the formula of Faa Di Bruno

J it
! Ao
ZZ( v)k—w lkl...xj’, j=1,...,m,

k=17(j.k)
and Ry, , is smooth in a neighbourhood of 0,
Ry, ,(0) =0, 0,R; ,(0)=0, (2.8)
and for any ¢ € (0, 1),
IR vllce = Ce,

for some constant Cy > 0 which grows as £ gets larger.
Recalling (2.1),

-2

—2 _ 42 P,
Papp = Do 1+Z 1 J
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M
= ;> 1+Zsj& M+1RM2(¢1 ¢M)

J! 0 0
— -2 J ] M+l -2 8 ﬂ ¢_M 2.9
= ¢, +;e¢ A B0 Rig2(yeon 5o (2.9)
where
J! o1 ‘Pj)xj
O; = — (=2 N
I n%)xl!... i )"(m) <¢0
=> k, PRI NCH RN AL
(j.k) a

[Z Z] ( TR N (TD (¢.)f\.f

7r(/ k) 7T(J k)

= Y et e -2
_71(2/'1;) g kb @O @) — 2
)
~ ¢]
=02 2.10
) (2.10)

Note that from (2.5), for k = 1, A; = 1, and A; = 0 fori < j, so that the
summation for k = 1 is given by —2(:;—3. From (2.5) again, for k =2 2, 1; = 0,
and therefore in the definition of O j» the expression depends only on ¢1, ... ¢;—1,
justifying the notation 0]- = Oj [¢0, ..., ¢;j—1]. Note that 51 =0.

Our next goal is to expand the function _# [¢app]™" in the powers of €. To that
end we first observe that

/[¢app] = / |:Z 5k¢k:|
k=0

M—1
= Zlpol Y & Ji+e"R s1d0.¢1. ... du). 2.11)

k=0

where
Fk i (9j + Ag))
= = , kel{0,1,...,M—1} (2.12
S= = T < be
0<m,i,j<M-1

where we note that jo = lsince ¢y = _Z[¢o]. The remainder R g 1s given by
the formula

mti +A
R 7190, b1, ... dm] = Z gMtiti- -u® ¢;’[¢0] ¢). (2.13)

0<m,i,j<M
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We have

M—1 v
(Z1bapp)) " = (7 1g0])” (1+Ze Ji+ MR 4 (90,41, ¢M])

k=1

/[¢0] (Z 31 +€M+1Ri4vy(//_l ,,,,, jM_l,R/f )) s
(2.14)

where we use (2.7). Here g = 1 and the formula of Faa Di Bruno gives

J
WEL L (A ()
J
=Z Z T O  AY ()Y =M,
k=17 (j,
(2.15)
and
M
M! _ 2
h = _ (— k 1
Y kgj( k)w...xM!( Ve S g0l (A1)
(In=)"" Ry (P o1, R )M
Similarly
J
¢app 28/Z¢k¢] k+€MR8[¢]a”'7¢ ]7
j=0
where

RE[B1, .. o)=Y T Mg,

k+m>=M
0<k,m<M
so we finally have
Plapp]
Cih' e Sttt e R 5 :
=T R W't Tl Z e R
J=
M-1 ) i
SDICANDY ,f)alz ('”wwm +eMR;[¢o 9. oul. (2.16)
=0 Locmigiia ©=
where
_ +i-M ¢k¢z 1+ — hm
R Y (T
m+i>M,

0<m,i=M
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R* 1+« -
+ gm0 10

M-1_j~N~J .
N 2]=0 e Zk:0¢k¢l < l+a/[¢] 4 <_+5R )) 2.17)

g2 (rwer?

From the definition of the source term (2.2) it therefore follows that

M 4 M M—1 1

, - .

S@up) = =D elres+ 5 ) eye = ) Mg (J—JH)i
=0 j=0 j=0

= P h
- _208”1 > Z wa’z (w”"‘/ [¢o]‘y—m"§)
j=

m+i=j, =
0<m, z<M

Mt <R§a[¢0, P RN e AN LA "’M1>
o) [0
M

. 4 _ -~
=-> ¢ <3rr¢j — g%t - fj) — Mt (R? +¢02Ri4,z) :
j=0

(2.18)

with fy := 0 and

0 i— _y .
fi= —¢0—2 - > ZW kA(w”"/wm] Vﬁ), j=1...,M—1,

m+i=j—1, k=0 warz
0<m,i=M
(2.19)
as claimed. |
Motivated by the previous lemma, we define the hierarchy of ODEs as
411 .

deedj1 = g = fiv1 J €101 M~ 1), (2.20)
where ¢3 = % f; is given by (2.19) and O; and h; given by

(2.10) and (2.15) respectively.
With {¢;}=1,..,m satisfying (2.20), Lemma 2.1 in particular implies that

S(¢app) = —M*! <R§> + ¢0_2R18v1,2> ; (221

with RS, = R5[go. 1.....¢u] and Ry, = Ry [o. u..... du] given by
(2.17), (2.9). Therefore, by solving the hierarchy up to order M we force the source
term to be of order eM+1,
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2.1. Solution Operators and Definition of ¢, j € Z=¢

For any y € (1, ‘—3‘) we define

1
N=N(y) = {ﬁj +6=|a]+6. (2.22)
The number N will later correspond to the total number of derivatives used in our
energy estimates.

Definition 2.2. (The “gain” § and §*). Let y € (1, %) be given and let y = % —y.

For any natural number n > 1\&_;;2 we define

4 |
§=238(n) =2 <— - —) (2.23)
3 n
8* =8%(n) :=5(n)—ﬁz§—2y—N+2. (2.24)
n 3 n

Lemma 2.3. Let y € (1, %) be given and fix an arbitrary natural number a € Z-y.
Then there exists an n* = n*(y, a) such that

2 s 22 2 1)s e 225

EiREA
=|—1, n=n".
35(n) 37

Proof. For the simplicity of notation let j := L%WJ Then it is easy to check
that (2.25) is equivalent to

1 1 1 a

|+ — mt e <jtl-—. 2.26
T =1 T3 Ty 207 — 1) (2.26)
Since 1 < 3% it is clear that the above inequality will be true if n is chosen
sufficiently large. O

Remark 2.4. Lemma 2.3 implies in particular & ¢ Z-q since by (2.25) | & | < &.

Definition 2.5. (Regularity parameter 1). Let y € (1, %) be given. Choose an n >
n*(y, 2N (y)) (where n*(y, a) is given by Lemma 2.3) sufficiently large so that
2N

Ai=— < 1.
n

Remark 2.6. A simple consequence of Lemma 2.3 and Definition 2.5 is the bound

2N +2 N+2
5 > + , thatis §* > ;
n n

(2.27)
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Motivated by (2.20), consider for a moment a general inhomogeneous ODE of
the form

4
Orcp — Pd) =f
A simple calculation shows that the previous ODE is formally equivalent to
4 8 4
T 30 (t?ar (r_?qb)) = f.

This motivates the following definition of the solution operators:
1 0
Silf, g, hl(z,r) = f(z, r)/ g(t/, r)/ h(z”,r)dz"d7’, T €[0,1], (2.28)
T T/

Sl f, g, hl(z,r) = f(7, r)/ g/, r)/ h(z”,rydt"dr’, © €[0,1]. (2.29)
0 0

4
3

By direct inspection, one can check that fora given f functions S,-[r%, r’g, T3 f],
i = 1,2 are solutions of d;;¢ — #(f) = f. We define
Sie3,t7 3,73 f5] if j <4
1 R Oy L ] J = 3_‘ 5
¢j = 4 s 4 o !/ (2.30)
Salr3, t73, 73 f;] if j> &7

The above definition of the solution is designed to enforce the gain of ° with
respect to the previous iterate for all j € {1, ..., M}. Since M > L#J, the above

choice of the formula at the index values j > L%J is crucial; see Proposition 2.8
and Lemma 2.14.

2.2. Bounds on ¢; and Proof of Theorem 1.10

The main goal of this section is the proof of Theorem 1.10. To that end, we
need a number of preparatory steps. We first introduce the notation

@) =1 +x" veR, x>0, 2.31)
xhtv
P (x) = T w,veR, x>0. (2.32)

For the remainder of the section, constants M, K € Z~( are arbitrarily large
fixed constants.

Lemma 2.7. (Basis of the induction). Let ¢ be given by (2.30). Then

n
a;"(rar)%l‘ Sitem, <r?> L Lmefo,1,... K} (2.33)

’on

The main result of this section is the quantitative estimate on the space-time
derivatives of the iterates ¢;.
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Proposition 2.8. (Inductive step). Let ¢ be given by (2.30). Let 1 < I < M be
given and assume that for any j € {1,..., I} and any £,m € {0,1,..., K} we
have

n
" (ra,)%,-‘ < -L-%Jrjﬁfmp)wi; (%) , (Inductive Assumptions). (2.34)

Then, for any £,m € {0, 1, ..., K}, the following bound holds:

r

2 _ n
D0 pra| S TIHIE, (7) : (2.35)

2N s . . ..
where ). = == is given in Definition 2.5.

Remark 2.9. The constants in the above statement depend on K, M € Z-. o and they
generally grow as K and M get larger.

Proofs of Lemma 2.7, Proposition 2.8, and finally Theorem 1.10 are contained
in Section 2.2.2. Before that we need a number of auxiliary bounds.

2.2.1. Auxiliary Lemmas Since
[(t — Drd,(log 8)dr, rd,] = —(rd,)*(log g)(r — 1),

itis easy to see that for any £ € N there exist some universal constants kpc,..c, > 0,
a,b,ci=1,...,¢,j=1,...a,such that

A" = ((t — Drd, (log £)d; +rd,)"
a
= D kaberc [ [9)T (ogg) (r = D) (r9,)". (2.36)
a+b+cy+-cqg=t j=1
]50.[7,01-5(
Lemma 2.10. (Auxiliary estimates). Let £,m € {0, 1, ..., K} be given nonnega-

tive integers. Under the inductive assumptions (2.34) the following estimates hold:

" i £ igol| < i::‘mzm?g) i iz 2.37)
oo’ (eg")| ST ke 2o (2.38)

o (190l )| s 7% (%) ke lzo (2.39)
ot (190l ™ )| S T H g <g) g k€ Z=g, £>0; (2.40)

K (rBr)l/k‘ < g2Hkémmg (%) Py _2 ( ) ke{l,..., I3}, (2.41)
r

.
T
n n
Q+ha—m,y (’?) Py 2 (7) Cke{l,... I}, a>0,

n\ a
Grivam, (L) Cke(l.Ila>0 (243
-2 (=

" rdn) (7)) S

o (o) <
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Proof. Proof of (2.37). By the Leibniz rule for any k1, k2 € N and any smooth
function ¢ we have

[0k 0 g

ka
B g+ 3 o dog )| (oo ] + 1 = Dok )
m=0

k>
B a4 3 (o o) +
0

m=

‘31;,+1(rar)k2—m

p ) , (2.44)

Wi

where we have used (1.20) and t < 1 in the last estimate. Letting ¢ = ¢p9 = 7
above we obtain

‘afl (rar)kZAqbo‘ < premich (2.45)

Now forany £, m € {0, 1, ..., K}, we have

00" (7 160))|

SO 8o P god (ra) P o (0 (rd) P o + 0 ()P Ago) |

aytaptaz=m

B1+Br+B3=t
(2.46)
where we recall _#[¢o] = ¢§ (9o + A¢o). Therefore, if £ = 0, we have
n
i (Ftgu)| 5 i (e g i) < g (1),
T
and if £ > 0, since (ra,)%o = 0 for B # 0, we have
l Z—otl g—az n —l—a3 2—m r'
2o (Flgol)| S TS iTp i g2,
which leads to (2.37). |
Proof of (2.38). The bound is obvious. O

Proof of (2.39). We use the formula of Faa Di Bruno. We may write
Il (t,r) = f(h(r)) where f(x) = x % and h(r) = _#[¢o]. Derivatives

of x — f(x) are easily computed:
fP0)=(kjo 7, keN.
Formula of Faa Di Bruno then gives

o (ool ™) =D 0y Lol Y m ] (07 190D (2.47)

TG0
Jj=1 7 (m, j) i=1 AitEh™
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where we refer to (2.5) for the definition of 7 (m, j). Since

2(r—1
lpol =2 (1 +3 i )rar(logg>) (2.48)
and
r" 2 —rd,(logg) = r", rel0,1], (2.49)
it follows that
2, (%) > Zlgol 2 t2qn (%) T e, 1]. (2.50)

Therefore, since > A; = j and ) iX; = m, we have

’ </[¢O]fk)’ gz.{72k72]q (k+)< ) Z HTQ i g (%”)
j=1

Jj= w(m,j)i=1
rn rn
< -[_Zk_m _ . _ L —
S q(k_H)(‘[)q](r)
N
< gkemy (?> . (2.51)

O

Proof of (2.40). Using the formula of Faa Di Bruno like above, replacing formally
o by (rd,)t we obtain

/4 ' ¢ 3, i A
o) (1ol ™) =" (=0 Lo ™ Y e ] %,
j=1 n.j) i=l A
(2.52)

where we refer to (2.5) for the definition of 7 (¢, k). Therefore, for £ € Z>1, by
using the Leibniz rule, we get

0" (7 1g017)
" i o (1 (37 7 1gol)"
Z=< )Z( K 0 (A lgol ™) Y e (]_[ (Ca) £igo)” Ai!(“wo) )

= (L)) i=1
(2.53)
Notice that for any d, £ € Z>g,i € Z>1,

14

” (((ra,y' /WO])‘Z)‘S > T ea sien))

di+-+di=d j=1

< Z H<T2dr)

di+--+di=d j=1

o~
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T

n L
< 2d <’_> (2.54)

where we have made use of (2.37). From this bound, the product rule, and (2.53),
we conclude that

0o (7 1g01 )|

n

< i Xg:t—z(k+j)7m+m’q_(k+j) (’7) Z Z lilr“i*m,' <g>ki
m'=0 j=1

(L, j) my+-tme=m’ i=1

ke : =2 230 ki P [\ E
SR YRSy eueg (T)(5)

m'=0 j=1nw(,j)m+-+me=m’

r

<o domg (—) ~ (2.55)

T T

where we have used (2.37), (2.54), (2.31), the identity Zle A; = j which follows
from the definition of the index set 7 (¢, j), and the trivial estimate x < g1(x). O

Proof of (2.41). By letting ¢ = ¢, j € {1,..., I}, in (2.44) we obtain

b
0o g+ 3 (
m=0

r" 2, r
2 ( ) + rn.[5-0—](3-((1-#1)17)L . <7)
n T T T

< htitag, (f) b (f) , (2.56)
T i\ T

where we have used the inductive assumption (2.34). If j = 0, from (2.45) we have

af(ra,)”w_,-‘ <

99, "] +

2 3" ")

2 .
3+jé—a
ST, L

a b 24 r 24 r
02(r9)" Ad| S T S i (). 2.57)

Recalling _# from (2.12), applying the Leibniz rule and using (2.34) and (2.56)—
(2.57), we obtain
B (ra,-)‘/k‘ SOy D )P gad (ro) P g

d+n+j=k aj+eytaz=m
dn,j=0  Bi+py+p3=t

(02 o)) + 07 (ro)™ M) |

< Z Z t%+d6—a1,[%+n6—oz2

d4n+j=k aj+ayt+az=m
dn,j=0  B1+pr+p3=L

Z o g o rn rn
(T3+15 ” +T3+.18 a3q1 (7)) p)h — (7)
T T\ T

3x 3 +(d+n+)8— (e +or+es) r "
< 2 o pPatdnEDitate)g () p o (=
T ' T

d+n+j=k o)taytaz=m
d,n,j=0  Br+pr+p3=t

P (%) P (%) _ (2.58)
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Proof of (2.42). We use the Faa Di Bruno formula again. Analogously to (2.53),
we obtain

m 4 4
m a m m—m’ a—j m' (rd,)’ /k
BT (VB,)Z (/k ) = Z (m’) Z(a)j 31 ( Tk ]) Z 5!31 (1_[ )» y(l[)k ) ’
m'=0 j=1 w(l,j) i=1
where (a)j =a(a—1)...(a — j + 1). Notice that for any d, £ € Z>¢,i € Z>1,

e a))s T 11600 )

di4-+d=d j=1

) ()

dy+-+dy=d j=

_ r’ AN
5 t(2+k8)€ dCIZ <_) pA o (_) ,
T T\ T

where we have made use of (2.41). Using this bound just like in (2.55), we ob-
tain (2.42). O

Proof of (2.43). Using the formula of Faa Di Bruno, for any k € {1,..., I} we
m
o >0 T

have
i
j=1 w(m,j)i=1

(2+k8)(a—)) T (2o )"
T3 a=J 2| — 73T 2 | —
1 rer (7)) T I n (5

w(m,j)i=

NE

07" (o¢)] <

A
'ME
|

J

2 ks)am "\

S .L.(3+k5)a mpA L <_> i
>on T

where we have used the inductive assumption (2.34), identities Y /. A; = J,
Y, (ix;) = m from (2.5), and the additive property of p,, ,.
By analogy to (2.55) we have

m 4 l
SYYfrrer| Y T

m'=0 j=1 (€, j) my+-+mg=m’ i=1

O (rop)*

. A
7 (((Far)’dik) )‘
m 4 2 ) , P a—j 2 e o Ai
S § : § :.[(g-%— Ya—j)—m+m P)h,% (?> § § (3 kA —m; PA,,% <?)

m'=0 j=1 T, j)my+-+me=m’

2 r"\¢
S r(§+k5)afmp)“7% <7) , kefl, ..., I},

where we have used the inductive assumption (2.34), identities Y /L, A; = J,
Y ' (ir;) = m and the additive property of g,. O
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Lemma 2.11. Recall hj and Oj from (2.15) and (2.10). Under the inductive as-
sumptions (2.34) the following estimates hold:

n

8‘I[n(r8r)€hj‘ S Tja_mp1+)u,—% (r?) s J (S {17 P I}, (259)

. n
900 01| S Ty s (r;) el (2.60)

0" (w™ A (w7190l 7hy ) )
r2rHibemg (—) Pris 2 (7) jell,.... 0
TG4 (%) P10 (%) Jj=0.

Proof. Proof of (2.59). Recall (2.15). For any j € {1, ..., I} by the Leibniz rule

< 2.61)

0 o) |

J
SDIDIENDY
k=17 (jk) @otay+-ta;=m
Bot+B1+-+Bj=t

o o (7))
J

%A +is)Ni— iy r' r'
I D S Y L P (a4

k=1 T!(j,k) u0+u1+---+aj:m
Bo+B1+-+Bj=t

ol P Al o o Aj
i <7> Pr-d (7) o (7) Pr=d (7)
j n n
jé—m r Jjo—m r
St ZPHM,—% (T> St Pria,-2 (T )
k=1

where we have used (2.40), (2.41), the additive property of p,, , and the exponent
of t is simplified from (2.5):

003" (7 ool ™))

%1 (r3,)P ((/1)“)’ o

J
—2%k+ Y Q@+ id)hi — (o + o) = —2k +2j +2j8 —m £ j& —m.

i=1

Proof of (2.60). Recall (2.10). By the Leibniz rule

00 041

j+l1

S DD

aptayt+otejyy=m k=2 7 (j+1,k)
Bo+B1+-+Bj=t

920 (r9,)f0 (¢0—’<) 3 ()P (M) 87" ()P ((¢j+1)”“)\
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Jj+1 , ax
2 +1 j+1 i=1 "™
< 3 DI “3T L Grivn-Si e, <r_)
~ A’_E T

aotapttej g =m k=2 7 (j+1,k)
Bo+Br+-+Bj41=t

. r’
< r(1+])3*'”p2}h7% <?> , je{l, ..., 1},

where we have used (2.38), (2.43), additive property of p, ., thebound p, _» <1

and the bound Z{:l Ai = k > 2. Note that for any k > 2 and (A1, ..., Aj41) €
m(j, k), wehave A ;1 = 0. |

Proof of (2.61). Assume first j € {1, ..., I}. Note that
w A (w1+“/[¢0]—yhj) = (I 4+ a)rdw Zlgol " hj +wA (Zlgol " hj).

Using the bound |(rd,)?w| < r" for a > 1, by the previous identity and (2.44)

T (rar)e (w*aA (wl+aj[¢0]*)’hj)>‘
S o) (7 [o] 7 hy)
4
+r" Z (
d=0
< D 0 aan® (F gl ) 922 (o) k|

oy tap=m
Br+pPr=t+1

0 ! (7 190l 7 hy)| +

2o (716017 hj)|)

4
+r3 ST 8o (L Igel ) 822 (rd) 2y |
d=0 aj+ar=m+1
B1+Br=d

+r"2 0o (1ol V) 922 (ra) 2|

d=0 aj+ay=m
B1+pr=d

—2y+jé—a;—a r' r r
S Z L V( )Plo( >P1+A—<?>

a)+oary=m
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' 7 r r’
+ Z PR ity < ) P10 ( ) P -3 (?)

a1+ar=m+1

2y+j8 " r

< ¢ rtidemg _ _
~ —-y+1 p _2 )

Y A

where we have used (2.59), (2.40), and the additive property of g,, p,.». If on the
other hand j = 0, then the above proof and sy = 1 give

2" (w A (7 L9l 7 ho))| = 070" (™A (w7140l )|

Lemma 2.12. Under the inductive assumptions (2.34), forany £, m € {0, 1, ..., K}
the following estimate holds:

n
i (rar)lf]‘ S T_%J’_]S_mp)h,% (%) s ] S {1, ey I+ ]} (262)

Proof. Using the Leibniz rule and the formula (2.19), we have

T (rar)zf./"

— oot | - ¢0‘20. > oyt A (e s ).

d+i=j—1, k=0

d,j=0
oy tap=m

8%1 (r9,)P1 (¢0—2) 8% (9, )2 6,)
B1+Br=t

i
2 X
d+i=j—1, k=0 ay++ag=m
d,i=0 Bi+t+By=t

01 (rd) P D (rd) 2 i i0 () (r =20 ()P

h
(esfor )|

The worst case is j — 1 = 0 where we have d = i = k = 0, as in (2.61), since
P2+3,—2/n < P1,0 by our choices of A in Definition 2.5. We now choose p1,0 in
(2.61) to obtain:

n
4, - r
5 Z .L.—g~&~/8-(0¢1+oz2)pz)L 4 (_)
> on T

o) toy=m

+ p1, 0< > Z Z Z r%+k5_“1f%+(i—k)5—az

d+i=j—1, k=0 a1+-+ag=m
d,i=0 Br++Bg=t

N
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q—y+1

w\&

+ P10 (g) Z

2y +(d+i)5— r
—2y+(d+i m
4 r Q—y—H <_)
. T
d+i=j—1,

d,i=0

< —%4js—m r 2 2y4(j—1)s—m -2 r r
ST 3 P-4\ 7 +73 R 2 G RN ey

2

4. P 7 7 -2
— .L.*§+j(sfm _ + _ — p—
(sz,—;‘ ( T ) 4=y T T

s r'

+jé—m

St REAT pk2< ),
—a\ T

where we have used (2.34), (2.60), (2.61), and from the definition of § (2.23), the
exponent

4 , 4 . 8
——2y+(]—1)5—m=—§+]8—m+§—2)/—6

3

4 2

=-—xtjd-—m+-—,

3 n

1—2 ali xF

and the estimates Py ¢ < P 2 and g_— y(x)x "= Oy S Ut T
2 (x). (We remind the reader of definitions (2.32) and (2.31) of x > py, v (x)
and x — gy (x) respectively.) O

Remark 2.13. When j = 1 we have O; = 0, and thus from (2.19)

2
fi= =20 A (' g0l ) = ~Plgol.

w

In particular f7 depends only on ¢ and the inductive assumption (2.34) is not used
in the proof of (2.62).

Lemma 2.14. [. Let 0 < X < 1 be given and let B satisfy
2
p—A+—>—-1
n
Then the following bound holds:

‘ "B r' l
[, s

n
<Sthtip, (r—) , (2.63)
2=

where x +— py, ., (x) is defined in (2.32).
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2. Let b satisfy

2
b+ - < —1.
n

b+1 r
+
< (T)

Then the following bound holds:

1 i
/ ’p, 2 (—/> dr’
T o\ T

(2.64)

Proof. Proof of part (i). Applying the change of variables x = 7’/r" we have

’ r" o
/ @p, 2 <—> dr’' = r"(ﬁ"’l)/ —— dx.
0 T\ o (I+x)*

Case 1: r" > 1. We have

& oxPrE e
rn(ﬁ+1)/’ X dx < rn(ﬂ+1)f’ B dx
o (I+x)r 7 0

~

142 —2 (" i 1
§ Tﬂ+ +Er_ — Tﬁ+ _ < -Lr/s"r p
T

(2.65)

rn
, (=
w2 \7 )

where the very last inequality follows from 1 < p; o (%) which in turn relies on

r" > t.
Case 2: r" < 7. We have from g —k—i—% > —1

o B+ o
PUICES)) /r xr - dx < r"(ﬂ“)f P dx
o (I+x) 0

A—2
rn n
< o <?) S Tﬁ“m,*% (

1
P

(1+Z)-

where the very last inequality follows from 1 <

" <.

which in turn relies on

O

Proof of part (ii). By the same change of variables as in (2.65) we have

1 b s G+D) ri,, xb+%
7’ — ) dt' =/" / —dx.
‘/; ( ) pk‘f% (T’) Ln (1 +X))L

We distinguish two cases again.
Case 1: r" > 1. We have from b + % < —1,

ot o 2
rn(b+l)/ — dx Srn(bJrl)/ P+ dx
T X

~

rhn

ny\ —b—1-2
< pn+D) r
~ T

(2.66)
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2
n B n
r n r
_ bl ( ) <oty ( ) ’
T TR\ T

where the last inequality follows from 1 < pj o (%) whichinturnreliesonr” > 7,
just like in Case 1 in part (i).
Case 2: r" < 7. We have

00 h+% 00
rn<b+1)/ (1x+—)xdx - rn(b+1)/ b2 gy
T X T

rn

2
n\ A% n
r n r
<_Cb+1 i <_L_b+lp I
~ T - Ma\ T

where the very last inequality follows from 1 < m which in turn relies on

r" < 7. The two previous estimates together with (2.66) give (2.64). O

2.2.2. Proofs of Proposition 2.8, Lemma 2.7, and Theorem 1.10

Proof of Proposition 2.8. We first assume that m = 0. Let k € Nand | f| < ©%/3,
gl < 83 |h(z, 1) < tk‘spk s (’Tl) Ifk < L%J we then have

1 T n
s se [ [T, o (5) e

1 n n
4 _3 r 2 r
St | @)y, (—T,> dr' S5tp, o <—T )
n ’ n

since k6 — A+ % > —1, where we have first used (2.63) and then (2.64). Note that we

have used the assumption k < L#J and Lemma 2.3 to ensure that —% + kS + % <

—1 and therefore (2.64) is applicable in the last line of (2.67). If k > L%J we then

have
T 7 n
S20f, 8. k1t )] < o f @y f () p, s (’"—) de"dr’
0 0 T \T

T n n
_3 r 2 r
/ (f/) 3+k5px _2 ( /> dt/§r3+k5pk _2 < )a
0 *on T on T

(2.68)

Wl

<t

where we have used (2.63) twice. We note that for any k > {%J we have by

Lemma 2.3 —% + k6 — A+ % > —1 where we set a = 2N — 2 and we recall
Definition 2.5 of L. Therefore (2.63) is applicable in the second line.
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By (2.20) and (2.30), and the facts ¢S = 14/3, 45(;4 =178/3,

|0 1|
S X [siHeant (63). ¢a gt ¢S @D o fis)

L+ +03+E4=L

’

where i = 1 or i = 2 according to (2.30). Since |(r8,)"1 (¢3)| < r%,

n

(a0 (657)] < v by @40y and |3 fraa| £ T ORI, o (2)

~

by (2.62), we may apply (2.67)—(2.68) to conclude

2 rh
‘(rar)%m‘ Sty (—) . (2.69)

n T

When m = 1 we observe by taking 7 derivative of (2.28) and (2.29) and by Lemma

2.12,2.14
v N (I+1)8 r "
A () P2\ )dr
rn

2
TH(HDS_IPA,_% (?> .

Similarly, using the Leibniz rule like above,

4
3

4
0cdral = 3 v + 7

A

2 - r
0:(r0) prt| S ST, <7> :

For m > 2 we simply use the equation

4 _
decret = o1t 2= fin (2.70)

Applying 8;"_2(1’8,)Z to (2.70) we obtain

-2

m
00 b S Y

!

0 (@) [0 g | +

020" fi|

3
LL

3

2 r’
5 Z ,[—Z—m/.’:§+(I—H)6—m—i-2+m/p)L B (_)
—a\r
'—0)

A —(m—2) "
+7 3 P, 7% ?

F+U+1)s—m r
5 T3 p)“’7% ? )

3

where we have used the inductive assumption (that has been verified for allm’ < m)
and Lemma 2.12. This completes the proof of Proposition 2.8. O
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Proof of Lemma 2.7. It remains to show the basis of induction, that is Lemma 2.7.
By Lemma 2.12 for any £, m € {0, 1, ..., K} we have the bound

n
a;"(ra,)‘fl} < r—%”—mpkﬁ_% (%) . 2.71)

By Remark 2.13, bound (2.71) does not rely on the inductive assumptions (2.34).
Using an argument identical to the proof of Proposition 2.8, we conclude Lemma2.7.
O

Proof of Theorem 1.10. The proof follows by induction on the index j € {1, ...,
M}. The claim is shown for j = 1 in Lemma 2.7, while the inductive step follows
from Proposition 2.8. O

3. Remainder Equations and the Main Results

We look for a solution of (1.46) in the form

M
$(r.r) =Y g (r.r) +0(x.1) = papp + 6. (3.1)

k=0

where M is to be specified later.

3.1. Derivation of the Remainder Equations
Lemma 3.1. (PDE satisfied by 0). Let ¢, ¢app, and 0 be related by (3.1). Then the

equation satisfied by 0 reads

M? M 1 1
(1 —eywe 2g> 839 — 2£ywc—2{’78,8,(r0) —eyc——0r <w1+°‘—28r[r39])
r rw® r

r

+ eR3[0]
46 Plapp] 2(1 1 20
- 42 0+efil0]+= = ——— +
9¢§pp ’ Papp . 9 <¢2 ‘pe%pp ‘pgpp)
P¢app]60?
1 POwpl07 4 01601 = S(upp) (3:2)
¢app

where the source term S(¢app) and the expressions K;[0), j = 1,2, 3 are given by
(2.2), (3.15), (3.16), (3.17) below respectively and c is given by (3.19).

Proof. We recall the formulas (1.44), (1.45), (1.47) of My, the operator A, and the
nonlinear pressure term P[¢] respectively. Finally, recall the fundamental formula

Jd] = ¢* (¢ + Ad)

Let
Kul0] := j[(ﬁ]m - /[¢app]m~ (3.3)
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Then
K1[9] = (2¢app9 + 92)(¢app + A¢app) + ¢2(9 + AQ)
= ¢* A0 + (B3, + 20app Aapp)0 + Gbupp + Apapp)0* + 67

We want to find alternative expression for

¢’ « _ _
PI#) = Pldup] = 5z (™ (ST~ S Tapp) 7))
¢’ - ¢§pp I4a _
gz(r)w“rZA (w /[(bapp] V) (3.4)
Note that
1

A (W (T~ S Ll 7))

w
— 1 1+o
= A (w'rK-,161)

= wMyd:K_[0]1+ wrd, K_,[0] + (1 + a)rw' K_, [0] (3.5)

Since
#K_y[01=—y 216170 (9] — 7 [app)

—y(IIP1 7 — _Z(Bappl 7 D0r 7 [Papp]
= —y ZIp17 0. K1[0] — y K-, —11010; 7 [Gapp]

and
3 K1[0] = p>(My026 + 3,8, (r0)) (3.6)
+ [#20: Mg + 2008 My + 207 + 20 Adupp ] 916 (3.7)
+ 200:9r9,0 + | 0 (3 2op + 20upp Aupp) + I Gbupp + Apupp)6 | 6
(3.8)
=1 $>(M,320 + 3,8, (r0)) + K1, (3.9)

where we have used the identity 3¢§pp + 6¢appt + 3602 = 3¢%. We may rewrite

wMyd:K_[0] = — yw_7[§] 77 ' ¢*(M020 + M,0.0,(r0))

—ywM, Z1¢177 K
- VWMgK—y—l[Q]ar/[¢app] (3.10)

Similarly,
0, K_y[0] = _Vj[¢]_y_larK1[9] —yK_) 11010, 7 [Papp]
and

3, K1[0] = ¢*(M;9,3:60 + rd?6)
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+ [ + 200,67 + 307 + 2uppAdupp + 2D 0| 3,0
+ (970, Mg + 200, M) 0.0
[ 30%p + 20400 Aupp) + - Bhupp + Abupp)0 ] 6.

We may write

wrd, K_,[0]
= —yw 719177 0 M09, (r0) — ywr #9176 (ro76 + 40,6)
—ywr Z1917 Ky — ywrK_y 11013, 7 [fupp). (3.11)
where

ICh = [2¢8r¢r + 2¢appA¢app + 2A¢3PP9] 9,0
+ (620, My + 200, 6My — 1~ §*My)d,0

+ [0 30%p + 20up Adupp) + 0, Bupp + Adpp)0] 6. (3.12)

Plugging (3.10) and (3.11) into (3.5), we deduce that

A (0 (1T — S el )

wa
= —yw Z[¢]7" 7 (M076 + 2M,0.9, (r6))
—yr ZIp17 o w0, <w‘+°‘i28r[r3e])
r
—ywM, Z1¢)7 K1 — ywr 219177 Ky — ywK_y 1[01A 7 [happ]
+ (1 +ayrw (K_,,[Q] +y 71617 ro, 0 + 39]) . (3.13)

Note that

—ywMg 7oK —ywr 2o K
= —yw Z[¢]7" [(A@*My) + ¢* My + 20 Aupp M) -0 + (A($%)
+ 2¢ Apapp)r 0 + A(3¢§pp + 2¢app APapp) |
—yw Z[¢177 " ABapp + Adpapp)6”.

By writing
K-y 01 =~y 7 $uppl "~ K1[6)+ (K- [0+ ¥ 7 [gupp) " T K [6])
and

y Z1o17 ¢ [ro 0 4 36]
=y 7 appl 707 [r0,0 + 301+ y K, _147[rd,60 + 30],
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the last line of (3.13) can be rewritten as
K_y101+y 7o) " ' ¢[ro 0 + 36]
= _V/[d)app]_y_l [¢2Mg819 + 2¢appA¢app9]
- V/[¢app]_y_l[(A¢app - 3¢app)92 — 293]
+ K_y[01+ v 7 [app] 7 ' K1[01 + v Ky _1[014%[0,6 + 361.

Observe that
K_y[014+y Zbappl 7 K1[6]

! K40
=y + 1) F[uppl 72 (/0 (1 — 5)(1 + 51101

f [¢app]

which asserts that the expression is a nonlinear term. Therefore by splitting

)2 ds) (K1[61)%,

K_y_ 1[0l = —(v + 1)_Z [¢app] ¥ 2K 1[6]
+ (Koyit01+ 7 + 121017 2K 10))

we obtain

P A (0" (A1 = 7 1guppl "))
gz(r)w"‘rz app
¢4
4
_ V—gZ/[d)(t;erlrwa 0y <w1+a’%3r[r39])
+ R1[0] + Ral0] + R3061, (3.14)

(M020 + 2M 09, (r6))

where
2

w2

g2 71+
+ 4 Aappr -0 + A(Bayy + 2happ Adapp)0 |

¢2

g2/[¢app]y+2rz
+ 2¢app APapp)0 | A 7 [app]

¢2
W[¢2Mgat9 + 2¢3PPA¢app9] (3.15)

3 3

2 ¢
g2 ZlplrT1r2 r6:9) _zngzf [p]7+1r2
¢2

W Fgrrris At Adup)d”

Ri[0] == —y [(A(@*My) + ¢* My + 2 Apapp M) -6

+y(y+DHw [¢2A9 + (3¢§pp

—yd+a)yrw
R[0] :=—2yw Mg9:0(rd,0)

-V
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¢2
o7
¢2
g2/[¢app]y+l”2
2
- ngfT(Kfyfl[g] + @+ 1)/[¢app]_y_2K1 [9])A/[¢app]
(3.16)

+y(y + Dw [Bapp + Aapp)0? + O |A_7 [app]

—y(l+a)rw [(Adpapp — 3app)0” — 26°]

and
¢2
0] =1 ~|—oz)rw’ﬁ
g°r
(K- 161+ 7 7 [9upp) 7~ K101+ v K 1[0161r0,6 + 301) .
(3.17)
Note that £,[0] contains both linear and nonlinear terms in terms of 6 and we
view them as linear terms with nonlinear coefficients. £,[6] and K3[6] consist of
quadratic and higher terms. We have distinguished them because £3[6] needs to be
estimated together with the main linear elliptic operator in higher order estimates

due to the presence of nonlinear factor c.
The ¢ Equation (1.46) can be written as

;‘12 M
1 —¢ 8 ) 4929 _ -1
ywe— 070 —2eywe 5 070 (r0)
r r

1 1
—syc—0, (w1+“—2a,[r39]) + e8300]
rw? r

40 P 2 (1 1 20
+2¢ [‘pa""]e + efR4[0] + = ( + )

e Papp I\ By iy
4 s%‘;‘j@z +£R10] = S(upp). (3.18)
where the source term S(¢,pp) is given by (2.2) and
o
c:=cl¢] = W (3.19)
O

Lemma 3.2. (The H equation). Let
H:=1t"r0. (3.20)
Then H solves

M7\ M, 2m
1 —zsywc[d)]—2 0 H —2eywcl[¢p]—>0,0: H + —0: H
r r T
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+|:m(m—1)_ 4 :|H
e 9%3bp

1 1
- 8VC[¢]F3r (wH“r—zar[rZH]) + eM[H] + e LowH

= y(‘f’app) + JV[H], (3.21)

where

™ H
r

SH] = Timﬁg[ ] (3.22)

M? [2m m(m — 1)
LowH = —ywc[d)]r—zg [TarH + TH:I

- 2mywc[¢]1:4—f8,H 4o PPl Tlmﬁl[rn;H] (3.23)
app

y((ﬁapp) = _L_LmS((Papp) (3.24)

mp 2(1 1 2

JV[H] = —Tme[f - 1, m[Q] = R[]+ 6 (ﬁ — ¢T =+ F)
app app
2
4 o D1 Papl0” [ngp]g , (3.25)
app

where the source term S(¢app) and the expressions K;[0), j = 1,2, 3 are given by
(2.2), (3.15), (3.16), (3.17).

Proof. The proof follows by a direct verification after plugging in 6 = t"r~'H
in (3.18). |

We rewrite (3.21) in the form
2m H
¢%2H + 29,0, H + —0cH +d(, r)zﬁ —eycl]

1 1
—9, <w1+“—23r[r2H]) + e M[H]
o r

w
= S (Papp) — LowH + N [H], (3.26)
where
M2
¢Wi=1- sywc[¢]r—2g, (3.27)
M
"= —eywelg]—*, (3.28)
472

d*(t,r) :=m@m — 1) (3.29)

9¢gpp .
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The leading order operator
0042 01 1 1te 1 2
O:=g"0; +2¢ 0,0, — 8yc[¢]ﬁar w r—za,[r -] (3.30)

will be shown to be hyperbolic due to the bound 1 < g% < 1 shown later in
Lemma 4.6. We shall see that the former estimate is crucially tied to the supercrit-
icality (y < %) and the flatness assumption on the enthalpy w near r = 0 (that is
n sufficiently large in (1.19), that is Lemma 1.1). Moreover, O is also manifestly
quasilinear as c[¢] depends on the space-time derivatives of H. The twofold singu-
lar nature of O coming from the gravitational singularity at T = 0 and the vacuum
singularity at »r = 1 is discussed at length in Section 1.5.

The basic equation for our energy estimates is obtained by dividing (3.26) by

gOO‘

5 g% 2m 3. H d* H
8TH+2émar8rH+ng+gmt—2

clo] 1 e 1 5 [ H]
SV N —8,[°H
VG0 (w Ol H] ) +e g0

1
= gﬁ (y((bapp) —eLowH + «/V[H]) . (3.31)

We denote the first summation without sup in Definition 1.12 of S¥ by EV and
the second summation without the time integral by D", that is for any 7 € (0, 1]
we let

N
_3 _u
EN(7) ;=Z{TV D H N2, + 7S D HIL,,
j=0
1 r 2
et gy <7> DH]HuaHH} (332)
N 8
OED UGS
j=0
y— 2 —y=2 r 2
+17 3 DjHllGy; + et lg_rs - Djv1Hlloqqj1 -

(3.33)

Then the space-time norm can be written as

SN(r) = sup EN(I’)—i-/ DN (z")dr'.

K<t'<t K
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4. High-Order Energies and Preparatory Bounds

4.1. High-Order Equations and Energies

In order to derive high-order equations, we first introduce the elliptic operators

1
Lif ==, [w™* D, £], @.1)
w
1
Lih = ——D, [w1+k8rh] . 4.2)
Then for any f, h we have
(f, Lyh)k = (D, f, Dyh) 14 and  (f, Lih)i = (0 f, 8rh) 144 4.3)

where we recall the inner product (-, -); given in (1.67).
We recall here the definition of the fundamental high-order differential operators
D; givenin (1.66). We then define

LoD ifii
LjyoDy 1= | ted VIS EVER (4.4)
L1+aDj if j is odd
Important role is played by the operator D; defined as
- D for i=0
D, =10 ot (4.5)
Di_10, for i 21

Let 1 <i < N. After applying D; to (3.31) we use Lemmas B.1-B.2 to derive
the equation for D; H:

gV 2m D;d,H d*> DiH cl¢]

8DH+2 5 Dide H + — T ey —
g0 ¢ g0 2 g00

LiteDiH
=D; (F (y(¢app) — e LowH + «/V[H])> +CilH] + '151‘_1///[1‘1]. (4.6)
Here C; contains all the commutators
01 2
) g 1 |0:H d | H
CI[H] :—Z[Dl,gmar] 3,H—2m |:D“Fi| . —[Dl,@ '[_2

_gy;[g;] Z%Dt H—¢y [15,-_1, g[m]D Lo H, (4.7)

Jj=0

where the functions ¢;; are given by (B.416) and the commutators [-, -] are defined
in (B.417). Furthermore,

MH] = —eyd, (j‘”) LoH — D, (“VO[H]) (4.8)

gOO
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Note that we have written fori > 1,

clg] o[H]

Di(ey —s Lo H + ¢ )
g gOO
cl¢] clp]
gy g;/:zwp H+e gg; E CijDi-jH

J=0

+ey |:@i1, g[d)]:|D LoH +Di_1.#[H]

Definition 4.1. (Weighted high-order energies). Forany 0 < x < 1and N € Nwe
define the high-order energies

N N
Ny =) &0 N =) 7). (4.9)
where forany 0 £ j < N we have

1 2
‘D@j(t) = %/(; {Tyg |DjHr|2 + %Tyl; |DjH|2

-{-8]/1')/75 clé]
g

oW |D,~+1H|2} “Hip2qr (4.10)

and

01 i 9
Y[2m 15 O (Emwtir
gj(f):/(; [gm-l-—(——y)] 73 —TV_%M

2°3 wetir?

D H, |> w2 dr
1 ! -3 cl¢ I+a+j,.2
=3 J, (e, g Dyt whera

1 [/ d?
5 [ (G ®) ol weirtar
2 0 8 T

Remark 4.2. 1t will be shown in Section 4.2, Lemma 4.6, that every summand
appearing in the definition of Z; above is positive in our bootstrap regime.

Proposition 4.3. Assume that H is a sufficiently smooth solution to (3.26). The the
following energy identity holds:

N
3. EN (1) + 9V (r) = ZR,, 4.11)

where for any i € {1, ..., N}, the error terms R; are explicitly given by

Ri :Ty_% (D (M — ﬁOWH + [H]> s DiH-[>
g oa+i

gOO
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+ 0773 (GLH) + Dio1 A H), DiHy),,,

1 s (! cl¢] « 2
Jert” 3/0 cl¢o] (W>rwl+ Dy H|” wirtdr,  (4.12)

where Ci[H]is given by (4.7) and ///[H] by (4.8). Wheni = 0, we replace C;[H]+
D;_1.#[H] in the above formula by — E[H].

Proof. We evaluate the (-, -)4;-inner product of (4.6) with rV_%D,- H;, and use
Definition 4.1. O

4.2. A Priori Bounds and the Energy-Norm Equivalence

Assume that H is a solution to (3.26) on a time interval [«, T ] for some T < 1.
For a sufficiently small o’ < 1, to be fixed later, we stipulate the following a priori
bounds.

rd)" 1 (ra,)" (5)
.

Lemma 4.4. Assume that H is a solution to (3.26) on a time interval [k, T] for
some T < 1 and assume that the a priori assumptions (4.13) hold. Then for any
(r,r) € [k, T1x [0, 1]

CO([k,T]1x[0,1])

(4.13)

1< ‘ﬂ‘ <1, (4.14)
on)
AL
< | L <, 4.15
~ | 1l ¥ (.15)
10:] <773, (4.16)
[(rd,)0:0| S (e +0') ™ (4.17)
Pl ST -3, (4.18)
)(ra,) ¢‘ (e+0')Tit, =12, (4.19)
APl S 73611 (%) (4.20)
[0: APl ST *ql( n) 4.21)
[royAg| < t?ql (g) (4.22)
‘(g)f <(e+0) 4.23)
/191 -1 4.24
‘(/kﬁ] S(e+o) (4.24)




Y. GUO ET AL.

Proof. Proof of (4.14). Let h .= % By (3.1) and (3.20) we have

S Zsf ¢ r”"é—. (4.25)

r

By Proposition 2.8 and the a priori assumption (4.13) for any (t, r) € [k, T]x [0, 1]
we have

M
- 2
h—1] < Zafrf‘s +o't"3 <

1
o 10

for ¢, 0’ > 0 sufficiently small. O

Proof of (4.15). Note that

S0 _ |9 6+Ad _ o o+ A 426)
ol ~|do| b0+ Ado do+ Ao’ '
Therefore, in view of (4.14) it suffices to prove
$o+ Ado S ¢+ Ad S do + Ado. 4.27)
Recall that
2 2 _1 2 2(r—1)
b+ Ado =13+ IMyT 3 =13 1+§ roy(logg) |-
By (1.20)—(1.21) we have
2 r’ 2 r"
341 (?> S g0+ Adol S T3q <?> (4.28)
Moreover,
¢+ AP = h(gpo + Ago) + poAh. (4.29)

From (4.25), and Proposition 2.8 with the crude bound p; > (g) < 1 and the

bound
n n
= <r_) r " <r g (r_)
T T
we have
M
s | H H
| Ah <611( >Ze o8 g3 —' R B R L P <—>‘
= r r
H H H
et () v (5) 73 ([ 7)o o ()
r r r
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TH; H
—_ + J—

o G) - 2)
s (5)6+o).

Now the bound (4.15) follows from (4.29), (4.28), (4.14), and (4.13). O

Proof of (4.16). By (3.1), (3.20), and Proposition 2.8 we have

M "
_1 Pl r _ H-
[pc] S T3+ E elt 3+JSP)L,_Z’ <?>+1’m ! —
j=1

1 r

n
_1 _1 _ _1
Sti4eriPp <—>+o’r’" P<3,
-2\ 7

E +Tm
r

where we have used the a priori bounds (4.13), the crude bound et? P, _2 (%) <1

and the assumption m > % m]

Proof of (4.17). This is similar to the proof of (4.16). With rd,¢9 = 0, applying

70, we obtain
H H
ro, <—)‘ + 7™ |ro, (—r>
r r

where we have used (4.13) in the last line and the crude bound Py _2 (%) <l1.O

1 r -
|rar¢r| 581’ 3+Sp)L _2 <_>+Tm !
S T

1
S(e+o)r st

Proof of (4.18). By (3.1), (3.20), and Proposition 2.8 we have

M

Z i, <£> + o2 |2
T\ T

r

H‘E‘L’
r

Wl

H
r

el ST + ! "

(SR
w\#

<t~ -I-U/‘L' 2< s,

where we have used the a priori bounds (4.13), ¢’ < 1, py._2 (%) < 1, and the

assumption m > % O

Proof of (4.19). By (3.1), (3.20), and Proposition 2.8, for any £ = 0, 1, 2, we have

|(rd,) 9] <Zsm+ﬂs+r

(I"a)z( >'<8T3+5+0'/Tm§(8+0/)‘[§+5

where we have used the a priori bounds (4.13) and the assumption m

NIU\
O
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Proof of (4.20). By (4.16) and (4.19) we have

Proof of (4.21). From the definition of A we have

4 1
[0: Ag| < |rdy(log g)de| + |ror(log &)pee| + [rdrdpe| Sr"T73 + (e +0'/)f_§+6

_1 r’t
S T 3‘]1 I )
T
r)l

where we have used the crude bound srapA 2 <7> <I. O

Proof of (4.22). From the definition of A we have

|0, Ad| E/

(i) (log ) o)

< e (e +0) e A (e +0) £3+8

2 r’t
STiq (—) ,
T

where we have used (4.16), (4.17), and (4.18). |

+ |ro,(log g)ro,¢.| +

Proof of (4.23) and (4.24). By (4.25) and (4.13), we have (4.23). To show (4.24)
we first observe that |Ah| + |73, Ah| < ©8, which is a simple consequence of the
bounds shown above. We recall here & = q% Now the bound follows from (4.26),
(4.29), (4.13). O

Lemma 4.5. Assume that H is a solution to (3.26) on a time interval [k, T] for
some T < 1 and assume that the a priori assumptions (4.13) hold. Then for any
(t,r) €k, T]1x[0,1]

g, (%) Selpl S0 Higo, (%) (4.30)
9: 71¢]| S o (’7) : (4.31)

rd, 7191] < v (%) : (4.32)

|0:c[¢]] < clplr ™, (4.33)

< §—242 r
rorelgll S gy | — ) (4.34)
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Proof. Proof of (4.30). Recall the definition of c[¢] (3.19). By (4.15) we have
Fldl =~ Zldol ~ 2q, (’Ti), where we have used (4.28) to infer the last equiv-

alence. By (4.15) ¢* ~ ©3. Therefore

2_ rn _ 2 ’,J'l
clgl ~ T3 gy (_) =7 (‘)

T

O

Proof of (4.31). Sinced, 7 [¢] = 2¢¢ (p+Ad)+d>(¢r+3; Ag),bounds (4.16),
(4.20), and (4.21) imply

A _l _l rn rn
413 (173t 3q [ — Stq|— ).
T T

Proof of (4.32). Sincerd, 7 [¢] = 207 0,¢ (p+Ad)+¢*(rd, ¢+rd, Ap), bounds
(4.19), (4.20), and (4.22) imply

n
[ro, 7191 < o3 (8+O'/)'L'%+6 ('C% +r%q1 <r?>> tol

n n
((8 + o) T3t 4 rig (r—>> < g (r—> )
T T

O

O
Proof of (4.33). From the definition of c[¢] it is easy to check the identity d; c[¢] =
Or _
clo] (4%r -+ jg[q[ﬁ]) Therefore
Lor(5) .
0ccl@ll Sclpl |77 + 57—~ | Sclolr,
a1 (%)

where we have used (4.16), (4.31), and (4.15). |

Proof of (4.34). Like in the proof of (4.33) we have

rar/[(p]‘)
8, cldll <
[roycl@ll < Icloll <‘ 719l

n n
<o (D) (o) e ) e (D)

where we have used bounds (4.19), (4.30), and (4.32). |

rar(p‘
¢ +
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Lemma 4.6. Assume that H is a solution to (3.26) on a time interval [k, T] for
some T < 1 and assume that the a priori assumptions (4.13) hold. Then for any
(r,r) €[k, T] x [0, 1] the following bounds hold:

1<g"<1 (4.35)
00 s—1 r r >
itz (2) G
T T
(4.36)
3:8%| < er®! (4.37)
r’ r’ -
¢ e (2) (2)
T T
(4.38)
ﬂ o 2)
o ()| erd! 439)
war2 ~ :
2
o < (d(’;)g) r?"]al> Sos (4.40)
g .
Wz + M) V2 < — (ry—%c[%])r Sw(T 4 M) 72 (4.41)

Proof. Proof of (4.35). By definition (3.27) of g% it suffices to check that
lcle1(3-2)? | COterIx0.1) S 1+ By (4.30) and the bound 3,8 < =1 for all
r € [0, 1] (by (1.21)) we have
n 2-2
" n
( T ) S ,[5

242 rt -
cl8)3r 9] £ T gy (—) N
T ay+1 (%)
_2
aﬁcﬁ is clearly bounded for all

x > 0and any y > 1. This proves (4.35). O
Proof of (4.36). From (3.27) we have

where we recall § = %—Zy—% > 0and x —

0:8%| < el wllcldllr™ 2 + 2 [8,c[p1| 2 + e[| 3

23
n n n
— 2 r _ 1 r r n
e (T ) = (T) (7))
T T T

where we have used (4.34), (4.30). ]

Proof of (4.37). Like above, we need to show |9;c[¢]| p2n—2 < 781, Apply-
ing (4.33), it then follows

_2
2n-2 s—1 (1" > r' 5—1
[0z c[@]l r St — q—y—1 7 St

T
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Proof of (4.38). From (3.28) we have
0,6"1] S elorwliclgllr ™" +e10,clll "~ + e lelg]| "2

1-2
2 P B B Pl P n
5 8‘[8 2+"Q—y—1 ) 2 _ 8‘1,'8 161—)/—1 T - i
T T T

where we have used (4.34), (4.30). The bound for ‘grﬂ‘ follows analogously. O
Proof of (4.39). It is clear that

01
o (G

warZ

gOI 3rg00
(goo)z

< lelo1r" 2| + 18,8 + %] 8,8

2 2
B n NI B o NI
se e (T)(5) Trerenn (5) (%)
)( ">2‘3

where we have used (4.35), (4.38), (4.36) and g”'w~! = —gyc[qs]#, M, defined
in (1.44). Note that a negative power of w is fortunately cancelled away as one
positive power of w is contained in the definition of g°!. O

—1

~

gOI ‘ I argol
g()()w g()()

Sl
S

1
+ Taigq—y—l (

Proof of (4.40). It clearly suffices to show 9; (‘”;53)2) < er%~1. Observe that

_4 . . .
9z (dz) = ‘—3‘ (%) 9z (¢(;gp>. Since 9, (¢£5P) = Z?’IZI &l o, (g-{)), it follows
that ‘8, (%) < et®~ ! Therefore |9, (d(t, r)?)| < et®~!. Together with (4.37)
the claim follows. d

Proof of (4.41). Observe the identity rV_.%c[d)o] =g (v + %Mg)_y_l. Taking
a t-derivative we obtain

2\ 2
—(y+1g™? (f + §Mg> I+ §r3r logr)

( 4 1) -2 + 2M r=2 Srw¥

= — T — s

v 38 3G

where we have used (1.26). Since 1 < g, G < 1, the claim follows. O

A corollary of Lemma 4.6 is the proof of equivalence between the norms and
energies given respectively by Definitions 1.12 and 4.1.

Proposition 4.7. Let H be a solution to (3.26) on a time interval [k, T] for some
T < 1. We assume that the a priori bound (4.13) are valid on [k, T] for some
sufficiently small o’. Then there exists a k-independent constant C > 0 such that

lSN(r)g sup g‘”(r/)+/ gN@ydt < CSN(r), Ttelk, T]. (4.42)

I's
Cc K<t'<t



Y. GUO ET AL.

4.2.1. Vector Field Classes P and P We now introduce a set of auxiliary, ad-
missible vector fields associated with differential operators D; and 75,- that allow
us to circumvent coordinate singularities near the origin and to obtain high order
estimates effectively. They are obtained by allowing % in addition to D, whenever
D, appears in the chains of D; and D;. In other words,

Jj+1
1
Priyn = Vi :VyeID,, — , Poi
2j+2 ]!j[lrk k { r r} 2j+1
/ 1
=V 0, Vi : Vi ey Dy, — 4.43
/+ll—[rk k { r r} ( )

k=1
for j 2 0 and set Py = {1}. Likewise, we define
Prjrr = {Wd : W e Prjs1}, Pojg1 = {Wd : W e P} (4.44)

for j > 0 and set Py = {1}. The properties of P and P are presented in detail in
“Appendix A”.

In what follows, we derive the bounds of P of various quantities involving ¢app,
¢, ® + A¢ and so on that will be useful for the high-order energy estimates.

4.3. Pointwise Bounds on ¢app
Recall ¢ypp in (1.57).

Lemma 4.8. The following bounds hold true:

X rl‘l
>V ggrtf%wpl_; <7) i=1,...,N, (4.45)
/ Ta\ T
VeP;
S .2 rh
Z |VA¢app| <r'"teTs +£r7’r§+‘sph_% (7>
V€75,‘
Soir'qi\ — )\ pol — ) +p, _2{—)), i=0,1,...,N..
T T T\ T

(4.46)

Proof. Let V € P; be given. By Lemma A.7 we have

i M i
Vol <77 3 |08 Gupp| S 77 D2 D! [ ‘e
=1

=1 =1
. M P24 s r ;2.5 7
<pThN ety o — ) Serirst e 4.47
~ Zl p)\ﬁ; )~ p)”,; . ( )
]:

where we have used Proposition 2.8 in the second line.
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Recall that Agapp = Mg0;Papp + 7 0rapp. By Lemma A.7, definition (1.44) of
M, and the property (1.21) we obtain

M i+1
|V Adpagp| S 7"~ ’ZZ 0.0 )|+ 0D el ||
j=0¢=0 j=1¢=2
o1 .2 r"
Sr"TeT3 +8r_’r§+ap;h,; <?>, (4.48)

where we have used the same argument as in the proof of (4.45) to obtain the second
summand in the last bound above. O

A simple consequence of Lemma 4.8 is the following corollary:
Corollary 4.9. The following bounds hold true:
25 " e
D V| Set5™p, _nna (=) Serit, i=1.....N. (449
/ T T
VeP;

n
3|V AGw| S T3 (%) i=0,1,...,N, (4.50)

vVeP;

where we recall that §* is given by (2.24).

Lemma 4.10. Forany 1 <i < N we have
‘VA bapp| <

v€7: 3 q2<r7 < (%) P2 (g)) (4.51)
2 ‘VA(3¢§pp+2¢appD¢app)‘Sr%r' (’? < (%> ho2 <§>> (452)

V€75,'
> Wa sl < i () (mo (5) 40,2 (5)) @53)

VE'ﬁ,‘
Yo V(I app))| S 72 (’7) (4.54)
Ve75
A 7 [app] 2y i r r’ rt
Vgp_ (/[¢app]y+2) ST ey <?) (p],o <7> P2 (7))
(4.55)
Papp APapp “2y-2 r r "
vgz'« (j[%pp]yﬂ) <ty qﬂ,(f)(mo( )+p,\ 2 (7»
(4.56)
Aapp 2 i " " "
Vg} </[¢app y+1> <773y q—y< ><P1.0 <7> +p, 2 (*))
(4.57)
5 (e
app

V
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er ’.Vl rﬂ
() () e (4)

i+2

< 3R (4.58)

Proof. Proof of (4.51). By a simple calculation A? = M; Ore + 2rMg0,c +
Mgd:Mgd, +ro, Mgd, + (r 8,)2. By the product rule V (Mg2 07 @app) can be written
as a linear combination of expression of the form

A(M}) Bdgr¢app. A€Pr, BePig, 0<k=<i.

n 2

.. 2 2 _ ..
Any such expression is bounded by 72" 7372 = 13 ( ’7) r~'. A similar argument

T

2 n n -
shows that |V (r My« gupp)| S 67372 p, s (’—) P |V (Mg Mg happ) | <
2 .2n . 2 ..n . 2 n .
T3V (0, Mydebapp)| S T35 V0 app)| S £7 30, o () .

Summing the above bounds we obtain (4.51). ]

Proof of (4.52). Note that A (3¢§pp + 2¢appD¢app) = 6app Adapp+2(Aapp)>+

2¢appA2¢app. Using the product rule, bounds (4.45), (4.46), and (4.51) we ob-
tain (4.52). |

Proof of (4.53). The proof is similar to (4.52). From (1.13) we have A _# [¢qpp] =
3¢§ppA¢app + 2¢app (Adapp)? + ¢§ppA2¢app. Now the statement follows from the
product rule and bounds (4.45), (4.46), and (4.51). O

Proof of (4.54). We must use the chain rule. We note that V (_# [¢pp]®) can be
expressed as a linear combination of expressions of the form

u jl)l W [¢a ]
sy (17755

J=l Wi€P; s ivbeeti gy, =i

We may use (4.45) and (4.50) to conclude that |W/[¢app]| < ‘L'qu (%) r—J for
any W € 75j. Since 72¢ (%) S I bappl S 2q, (%), we can bound the above

expression by t2%¢,, <ﬂ) ri O

Proof of (4.55)—(4.57). The proof follows by the product rule (A.405) and (4.53),
(4.54), (4.45), (4.46). O

Proof of (4.58). Recalling (1.47) it is easy to check that
P[¢app] w’ _ w o
appl _ (1+a) ) ¢appj[¢app] y— V= 2¢appf[¢app] 4 1A/[¢app]-
Dapp 8°r 8°r
(4.59)
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We now apply the product rule (A.405) and bounds (4.54), (4.53), (4.45) and the
estimate |w’| < #"~! to conclude

Pl¢app] - _
‘V( Papp )‘ 2yt i+2_ < >+T3 2y

T )2 ()

2
< I,

( )(,pw ﬂ;Jr ( >+m—<g))
o) 1)

since T < 1. Replacing r~0+?) by ¢~ ( ) above, we obtain the claim,
where in particular we use y > 1. O
4.4. Preparatory Bounds
Recall ¢ = ¢app + 7™ g

Lemma 4.11. Forany 1 < i < N, we have

- — - (H
Dig| < |Di papp| + Tm|Di <7) | (4.60)

Di (¢ + A
S |bz (Cbapp + A¢app)|

M o H - (H
‘—gDiafH + ) |9 (M)B (t—)‘+|Di+1H|+‘Di (—)'
r 1<k<i d g
B€75,-,k

M H

‘ —SD;H|+ Z o (Mg)B (-)‘ ) (4.61)
15k<i r

Beﬁi,k

Proof. Bound (4.60) follows directly follows from
- _ H _ - (H
Di¢ = Di(papp + TmT) = Di¢app + " D; <7) .
Further more

_ _ _ H
Di(¢ + AP) = D; (fapp + Adupp) + Dy (1 + Mgde +rd,) (’m7>
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= m A af}I m—1 1y
= Di (¢app + A¢app) +7 Di (Mg T) +mt Di Mg

S|
SN——

—— [
(%) (k%)
m(p. g _p (H
4" (D H — 2D, , (4.62)
r

where we have used the identities rd, (%) = 0,H — g and D;8,H = D;
(D,H — 2H) = D; 1 H — 2D; (2). For (x), we first note that

- (0:H ; o H
(%) :MgDi( ‘ >+ > MPAM)B(—). (4.63)
r 15k<i r
AE75k,BE7_7i,k

For the first term, we use (A.401) to rewrite

o H Yo (DioeH = (i = DDy (B2)) ifi iseven
M,D; ( > =1\ M, ) _ o H o (4.64)
-t (D,-aTH — @+ 1Dy ( = )) if i is odd.
Therefore we deduce that
Mg k o-H
1(%)] < ’TD,-BTH’—I— > a,(Mg)B< ; )‘ (4.65)
1<kSi
BE75[_k
It is easy to see that
M H
(o) < ‘—gDiH‘ + > Sf(Mg)B(—)‘ : (4.66)
r 1<5k<i r
3675,‘,]{
Putting together the above bounds we obtain (4.61). O

The same conclusions hold in Lemma 4.11 when we replace D; by any V € P;.

Lemma 4.12. (High-order ¢-bounds). The following L°°-bounds hold:

b H% Ser” 4 IREENL for 1S <2 (467)

Ve75j o
> 212 Ser? 4 G EN for 2 j SN -3
VePp; ¢ 0
J
(4.68)
. \% %

b rw"27¢ Ser” 4o IHEENL for j=N -2 (469

o0
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The following L>-bounds hold:

< 81’8* + Tm—%-‘r%(%l—y)(EN)% for N_T g J § N—1 (4.70)

<eig® 4 mmI(EN): “.71)

a+N+1

Proof. Note that from (4.60) and (4.49),

‘% <erd +r’"—%|vj(—)|. (4.72)
r

Therefore from (C.432), (C.435) and (C.436) we deduce (4.67)—(4.69). Bounds
(4.70)—(4.71) follow from (C.429) and (C.430), where we use the bound

a+2k+1-N
s/w“+2k+‘*N|Dk+1H|2r2 dr < sf | D41 HI*r*dr S EN.

(t + M)ty

Lemma 4.13. (High-order ¢ + A¢-bounds). The following L°°-bounds hold:

W(p + Ag) —i m=241G )41, N\ L .
Z ‘ sihg | ST (1reTInETE 1) gor j=1
4.73)
Z H 1W;¢++A1(\b¢) § 57_£ (1 +rm—%+%(%—y)+l(EN)%)
WeP;
f0r2< i <N-3 (4.74)
W(g +Ag) m—
2 H sy ” (14 e iraGTiEN)l)
for j =N —2. 4.75)

The following L*-bounds hold:

Z ‘W(¢+A¢) <ok (1+rm—%+%(§‘”“(EN)%>
P+ AP gi2jio-n "
N-a-2
for T“gjgN—l (4.76)
W(g+ A
e Z ' @+ A9) <elrTw 4 "TI(EN)I. 4.77)
d+AD lgins
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Proof. From (4.61) and (4.46), we note that

W+ Ag)
T ot+Ae

_j r’ r" 2 r’ H H
Sr (PI,O (?> + Py,-2 (?>> +17 3g <?) w <7 + A(7)> .
(4.78)

Therefore, bounds (4.73)—(4.75) follow from (C.432)—(C.436). Bounds (4.76)—
(4.77) follow from (C.429) and (C.430), respectively. O

Finally, the key collection of a priori bounds is provided by the following lemma,
and will be used repeatedly in our energy estimates in Section 5.

Lemma 4.14. Leta,b,c € R, b < 0, ¢ < —b, be given. Foranyi € {0, 1} we have

DoV (¢ sl S eie nqb(’:) (4.79)

V€75,'

If2 <i <N —1then
> |ae (%) v (e 7101
V€75i
If2 <i <N —3then
> ”wl’qc <%) V(s s191)
V€75,‘
Finally, ifi = N we have
( ) (¢ 7101")

Proof. By definition of #[¢] we have

¢* 7191’ = 6“2 (p + Ag)”. (4.83)

Applying the product and the chain rule, forany V € P;,i = 1,V (¢¢_7[$]°) can
be written as a linear combination of

< 39251 4 (EMYY). (4.80)

~

a—N+2i+2

< oI 4 (EM)2). (481

‘ o0

< £39+2-5 (1 4 (EN)D). (4.82)

~

a+N+2

jm
Vip
¢a+2b(¢+A¢)b J7
S
J= Vjepij,i1+'--+ijm:i—P
l
% l_[ (P + Ag) (4.84)
¢+ A 5
(=1 We€Pa, a1++ag,,=p
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where 0 §_ p < i.Inorder to estimate V¢ and W; (¢ + A¢), it suffices to estimate
Di¢ and D; (¢ + Ag).

Let ky, = max{i;, a¢} in (4.84). Without loss of generality, we may assume that
indices appearing in (4.84) are non-decreasing: i < --- < i, anda; < --- < a,,.

Then k. = max{i;,, ae,,}- |
Proof of (4.79). Bound (4.79) is obvious from (4.83) if i = 0. If i = 1 then the
claim follows from (4.67) and (4.73). |

Proof of (4.80). If k, = 1, by using (4.67) and (4.73), the expression in (4.84) is
bounded by

g, () (ex o B )
T
(r*% + Tm*%%(%fwﬂf%(EN)%)”
and therefore, the worst bound occurs at p = k and the last line is bounded by
piatb—itng, ( ) (1 + (EV)2), (4.85)

where we note that that ||[w® VN2 +2| ;0 < Isincei > 2and N = |a] + 6.
Suppose that2 < k, < N — 1.

We first consider ki = ag, = ij,. Let j,, + 1 be the first index for which
ljug+1 = 2 sothatij = 1 for j < ju,. In this case, we rearrange the w-weight
in (4.84) as follows:

in
@+ A" | ] %

j=1 Vi€Pij ittt jy =i—p
bn
< (T Mo £ 29)
¢+ Ap

|
(=1

a— N+21+2

|w

) We 6750@ .ar+--+ag, =p

Jmg . Jm
=‘¢a+2b(¢+A¢)hn<m l_[

Jj=1 ¢ j=jn10+1

Lin—1
(w,'j_z Vj¢> 1—[ (waj_l We(op + A¢)>
o )11 ¢+ A
wi_alm _Z'//:":ljmo+l(ij _2)_2?1:11_1 (ai_l)ww ng (¢ + A¢) |

¢+ Ao

2 2N Wy, (p+A)
d+A¢

(4.86)

The goal is to estimate the last term w in L?-norm and all the

remaining ones in L°°. Note that

lml

Z (i —2>+Z<az—1>

Jj= ]m0+1
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=i—p—2m _jmo} +p—a, — {ln-1)
=i- al, — 2{jm — jmo} — L1
<i—a,.

Therefore, the exponent of the first w in the second line is non-negative and there-
fore, that factor is bounded. Now all i;’s and a,’s except ay,, cannot be bigger
than N — 3, otherwise, it would contradict the definition of k.. Thus we can apply
(4.68) and (4.74) to the first line above. Moreover, since 2 < ay,, < N — 1, we can
apply the weighted L?-embedding (4.76) to the Wy,, term in the second line of the
right-hand side of (4.86). By (4.79) |Iq. (’7) (P + AP) |1~ < T $a+b Gince
b + ¢ < 0 by our assumptions. This gives the bound
. n .
lw* =g (r—) V(¢ A1) 2 S TR+ (BN, Ve P
T
(4.87)

The case k, =i, > ay can be treated in the same fashion where we use (4.70)
instead of (4.76). ad

Proof of (4.81). In this case, since k., < N — 3 and as above we first consider the
case ky = ay,,. We then have

Jn .
w9+ (§ + Ag)” l—[%

j=1 Vj€75,'j,i1+--~+ijm=i—p

l
S We(op + Ag)
(H Wel6 + A9) |

¢+ Ao ) )
(=1 WeePayar-+-+agy=p

. jm() jm
i_N~m sy Nm _ V
— |wl Z!=jm0-%-l(l.l 2) Z(:l(a( 1)¢a+2b(¢+A¢)bl_[< (./bd) l_[
Jj=1 J=Jmy+1
(wij—2 V]¢)
¢

E"‘l
l_[ (wae—l W€(¢ + A¢)) ‘ (4.88)
=1 ¢+ A¢

Note that j:’": o LG =2+ Zﬁ’; ((ag — 1) = i and therefore, the exponent of
the first w in the next-to-last line above is non-negative as before. Using (4.67)—
(4.68), (4.73)~(4.74), and the bound ||q. (?) 2§+ AP |1 < T39, we
can bound all the remaining factors to finally obtain (4.81). |

Proof of (4.82). Wheni = N andk, < N—1we may use the already proven (4.80)
to infer that the | - ||g4+n42-norm of (4.84) is bounded by the right-hand side
of (4.82). It now remains to discuss the case k., = N in which case either 1) j,, = 1
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andi;, = N (ag, =0)or2) ¢, =1landay, = N (ij, =0). When ay,, = N, the

expression (4.84) reads as

We, (¢ + Ap)
o+ A

and therefore, by (4.77) and (4.79), we deduce

ell¢ (¢+A¢)CI0(T> 61 Ao
1 2
3

1 N 2 1
g203 2 (g20w 4 "3 (EN)2)

T (d + Ag)’ , (4.89)

llotrn+2

AN N

3 (1 4 (EV)D),

as claimed. When i, = N, the corresponding estimate reads as

n V *
el (¢ + Ap) g, (r—> {T'j‘/’naﬂm < e1g3eHb(ed 8 4 mm3(EN)D)
T

< I (L4 (EM)Y),
where we have used (4.71). O

We conclude the section with several a priori estimates that will be important
for the energy estimates in Section 5.

Lemma 4.15. Recall g defined in (3.27). The following bounds hold:

(5 i

V€75]

) < erda (4.90)

1
V(—
a—N+2i+2 + H (goo)

> (e

VeP;

) S e n (1l + (EV)D),
a—N+2i+2

2<i<N-1, “9]

, . 1 i
3 (Hw’VgOOH +'le(m ‘ )gsrsn(lﬂE’V)%),
veP; > & o°
2<i<N-3, (4.92)
1 i 1
Ve (HVgO"H + Vi ) et (14 (EV)).

(4.93)
Proof. It suffices to prove the bounds for Vgoo as the corresponding bound for
V(ﬁ) is a simple consequence of the chain rule (A.407) and the bound (4.35).
From (3.27) and (3.19) it follows that for any V € P; with i > 1 we have

0 _ _ Ady, WM 4 S
Vgl =—ey > Al A" S 117D, (4.94)

A12€Pp 1y
Ly +ly=i
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In particular, if £, <i — 1 we may estimate

u’M; 4 —y—1 2m—2—i 4 —y—1
Al(gzr2 YA2(9" 7117 )| S Ax (9™ 711777

Using Lemma 4.14 now with ¢ = 2 — %(< y + 1), estimates (4.90)—(4.92) follow
easily. If £ = i and additionally i < N — 1 we may still run the same argument.
If however £, = N, we lose /¢ in (4.93) due to (4.82). |

Since by (3.28) for any V € P; withi > 1 we have
M
V(™) = v(=£g",
r

and by an analogous argument we have the following lemma:

Lemma 4.16. Recall g°' defined in (3.28). The following bounds hold:

0! g0 .
> (‘V<—>‘ + ‘V(w> ) Ser’l7n (4.95)
< r rg
VeP
01 01 .

8 8 i 1
> (HV(—) +HV( ) >§er5 TR+ (EM)),
vep. r a—N+2i+2 rg a—N+2i+2

2<i<N-1, (496)
. g01 . g01 i 1
3 (lev(—)‘ + leV(W)‘ )SS‘L’S_]_"(I +(EM)2),
VeP; 7 o 8 o
2<i<N-3, 497)
g"! g"! s—1—1 Ny3
EY <HV(—) 4 HV(W) ) S et 1Th 1+ (BN
Ve T letNe2 T8 Narve

(4.98)

5. Energy Estimates

To facilitate our proof and carry out the energy estimates, for the remainder
of this section we assume that H be a solution to (3.26) on a time interval [k, T]
for some 7' < 1, the a priori assumptions (4.13) hold, and the following (rough)
bootstrap condition is true:

SNy <1, telkTl (5.1
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5.1. Estimates for Liow-terms
The goal of this section is the following proposition.

Proposition 5.1. Let H be a solution to (3.26) on a time interval [k, T] for some
T < 1 and assume that the a priori assumptions (4.13) and the bootstrap assump-
tion (5.1) hold. Then for any (t,r) € [k, T] x [0, 1] the following bound holds:

1,2 1
eV D; (@ﬁowff) llati
< Jert (DV)? 4 Jerminl -3 (gN)T i =0,1,..., N. (5.2)
5.1.1. Decomposition of Zj,wH We rewrite the linear operator %, in the form

LowH = L H+ L2 H, (5.3)
where
2

LiowH 322%?H - VWWAGMPP + 2¢app Aapp) H
¢ My A 7 [pappl
8% 7 [appl? +2r?

DA 7 [papp)

8% [Pappl? +2r?

¢ M,
8% 7 [appl? +1r?
;D% PappAdhapp
8% 7 [appl? H1r?

M3 [2m m(m — 1)
—ywelpl— | —dH+ —>—H
r T T

+y( + Dw [a,H+§H]

+y(y+Dw (B + 2happAdapp) H

—yd +a)rw [S,H—i—gH]

—2y(1+o)yrw

¢2
- ngZ/[¢]y+1r2
m

+ 2 Apapp M) [a,H n ?H] (5.4)

#> Aapp H M,
Wﬁir 7 —2mywc[¢>];8rH

A , H
f/;mﬂrar <—> . (5.5)
8 /M’app]y r r
Lemma 5.2. (Estimates for .i’j(l)w). Let H be a solution to (3.26) on a time interval

[k, T] for some T < 1 and assume that the a priori assumptions (4.13) and the
bootstrap assumption (5.1) hold. Then

[(A(¢p*My) + ¢* M,

2 p7.
LswH = —4yw

+yy +Dw

L 1 . 1
er2=3)|D; <@gkl)wH) lagi < Vet® (DV)2. (5.6)
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Proof. By the product rule (A.405)

P [(bapp] ) A1Ar P [¢app]
D; H) = 12 A ArH. 5.7
( 8 00¢app Z K 1 8 OOfiﬁapp YAz ©7)

Al 675[1 LA 577[2
£+ =i
We now use (4.58) and the Lz—embeddings (C.429)if £» > 3 and otherwise (C.431)

to conclude

et 0D (TPl g g S erd DS =52 oY)

app
<Ser? (DY), (5.8)

where we have used the bound w®+ < w@+2=N < e +26-N,
We now focus on the second term in the first line of (5.4).
w ¢2
g
g2r2g00 / [¢]y+1
w

=—y googzrzqs‘”(qs + A9 TTVAGhy, + 20uppAdupp) H. (5.9)

By the product rule (A.405)

AQGp + 20upp Adapp) H

w ¢>
P (regm g O + 2en )|

2

A123€P0; 0y .03-A4€Py
g =i

[ ———
g2r2g00

X ’AZ <A(3¢§pp + 2¢appA¢app)>‘

A

1 2
Stj(y—j)

2
A; (%)‘ |ALH|,  (5.10)

since ‘Al —2 )| < r~27% . Consider first Case I. £3 < i — 1. By (4.52) the
8°r
third line of (5.10) is bounded by

4,1 2 L1+l +2
pritio-h- it

n n n 2
<p1 _Utt2 (r_) + D, _uttr+s (r_)) q2 <r_) ’Ag <¢—l>‘ |[AsH| .
B n T ’ n T T j[(b]y—’_
(5.11)

We now distinguish two cases.
Case I-1. £3 > £4.1f £3 < 1 by Lemma 4.14 and (C.431) we then have

r’ ¢2 2 9, Byl 1
— ) A3 [ ——— )| 144H| < 7372w 2TV (D)2,
qz(r)’ 3</[¢]y+1>‘| 4H S (D™)



Continued Gravitational Collapse for Newtonian Stars

Therefore, since w**? < 1, by (2.23)-(2.24),

4410, _ 2yl r r r
ler3t2(r=3 n P, _uroe | — | +p, _aron q2 Az
s n T ) n T T

¢2
(—/[dﬂ”“ > AgH gy

L+ +03+2 N
< et~ ETT (DY) < ¥ (DY)2. (5.12)

~

If2 < /{43 <i—1,thenin case {4 > 3,

4,1 2, L +i+2
er3T2(r=3)——%—

n n n 2
AT SR r Slplr+!

o+i
4,1 2. L4042
= er3itrr—-"5
N+i—203-204+2 r rh rh
Hw 2 P, _a++2 | — +pk g+ | — Q@ | —
o n T v n T T
2
a—N+203+2 _
e el B WWOEE YR
/[d)]y-i-l 12
4,1, 2 0442 N+i-203-20442
S A A "R P
rh a—N+203+2 @*
—_— 04—2
||612<— w7 Az ———— | 2w T AL H || . (5.13)
T pA e

Recall that the total derivative number N is defined in (2.22). Since N +i — 243 —
N+i—203—-204+2
20442 > N+i—2i+2 = N—i+2 > 0the L°°-norm of w — is bounded.
o a—N+2t3+2 ¢2 < _2_21/_@73
Moreover, by Lemma 4.14 ||g2 (7) w 2 A3 (W) 2 St73 n
€42 Ld_yy Ny . .
and by (C.433) ||w™ “A4H L < 72'3 (D"™)z. Plugging this into (5.13)
we obtain the upper bound etd (DN )% just like in (5.12). If on the other hand
¢4 < 2, wereplace the L>-bound of w2 A4 H by an L>-bound on A4 H provided

by (C.431). This allows us to estimate the first line of (5.12) by

4 1,2y G2 Nti-263-2 r" a=N+203+2
eI w HMqu< )zuzA3

T
2
(;ﬁ%ﬁ;)hmAumm

1
Ser’ (DY)2,

where we haveused N +i — 203 —2 > N+i —2(i —1) —2 =0, Lemma 4.14,
and (C.431).

Case I-2. €3 < L4.If £4 < 2 then we are in the regime that has already been
discussed above. Assume ¢4 > 3. If £3 > 2 we use (4.81) and (C.429) to obtain

441, 2y _Uth+2 gt r’ r’
er3ta(r=%) w2 g <—) q (—
[ n T T
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¢2
A3 <W> |AgH| |2

41 2\ bH+2  i=2(3+H)+N r" ¢
Ser3Ta=9="5 w2 ||oo||qz<?)w3
A ¢)2 m+2{4—NA H

_ w 2
3 g7 llool aH| 2

1 2) Ly+lp+2

< et (DY) (5.14)

We have used the inequality i — 2(€3 + €4) + N > N —i > 0. The case {3 < 2 is
handled similarly, with (4.79) instead of (4.81).
Case II. ¢3 = i. In this case we need to bound

2
Yo-py Lt ¢
er2 73 22 2gW Vv F P
with V e P;. Ifi € {0, 1} we canuse (4.79) andif 2 < i < N —1 we may use (4.80)

2 a—N-+2i4+2 2 .
to bound ||V (W) l;2 and Jlw — 2V (W) l;2> respectively. The
remaining terms are estimated in L°° and we conclude that the expression in (5.15)

) ABrp + 20appAdapp) H llariva  (5.15)

is bounded by sr‘s*(DN)% just like above. If however i = N we must use (4.82).
It then follows that the expression in (5.15) is bounded by

1,2 r’ at+N+2 ¢2 i
\/512(7/ 3)x/E”CIz (?> w 2V (W> I 2llg—2 <?> A(3¢§pp
+ 2¢appA¢app)||L°° ||H||oo

1 2 2 N+2 4,114 1
< Jer2 T3y =55 (T ) (phy2

< Jer (DV)2. (5.16)

The 3rd-7th term in (5.4) are estimated analogously. Note that the terms 9. H
and g and similarly ‘)TTH and T—h; are on equal footing from the energy stand point
or more precisely

_s H

73 (uazHuf,ﬂ- + ||;||§+,») S EY
_8 H

V73 (uaan%,H + ||?||§+,-) < DV,

where we recall the definitions (3.32)—~(3.33) of EV and D" . In particular, the
estimates for the 3rd, 5th, and the 7th term in (5.4) are very similar and we sketch
the details for the 7th (next-to-last) term. By the product rule (A.405) we have

Mg H,
D; wc[¢]5>277
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—1 Méw ¢!
= Z T Al g2r2 A2 (W) A3H~L— (517)

A142575(1'42.A3e7>g3
L+l +e3=i

A case-by-case analysis analogous to the one above, Lemma4.14, and Lemmas C.3—
C.5 yield

M? |

1,2

2073)|D; ((wcw]z—gz—’)) lati
8°r T

r’ 1 2, 2 1,2 1
< 1P gy <?) 0= D3 25 G (phy

S O
-+ ()]
o0
s rt NyL 8, Ny &
Stp, 2| — (D)2 S %(D7)2. (5.18)
S ACVIN

The same bound, with % replaced by T—Ié follows analogously.

The 4-th and the 6-th term on the right-hand side of (5.4) are easier to bound.
In the 6-th term the factor w’ gives a regularising power of r near the center r = 0
due to the bound 3% w’| < "=~ (which in turn follows from (1.19)). Similarly,
the presence of A _¢# [¢.pp] in the 4-th term, by virtue of (4.53) affords a power of
( ’rl) in our estimates, which again counteracts any potential singularities coming

from the negative powers of r near r = 0. Routine application of Lemmas C.3-C.5
and Lemma 4.14 yields the desired bound.
To estimate the last line in (5.4) we first observe that

(A(@*My) + ¢ My + 2¢ Aapp M)
= > (AMg + My) + 2¢ 2 Adapp M, + AP My).

Therefore

¢2
T gy
¢4
=Y
¢3

We can therefore break up the last line of (5.4) into a sum of terms that are of similar
structure as the ones showing up above, and thus the estimate follows analogously
and thus obtain the same bound as in (5.16). |

[(A(¢*My) + ¢ My + 2 Apapp M)
(AMy + M,)

—2yw
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Lemma 5.3. (Estimates for ,Zlgw). Let H be a solution to (3.26) on a time interval
[k, T] for some T < 1 and assume that the a priori assumptions (4.13) and the
bootstrap assumption (5.1) hold. Then

1 P
er20 =3, (gm-iﬁ?,wH) i S VET™n0 3= (EN)2, (5.19)

Proof. We focus on the first and the most complicated term on the right-hand side
of (5.5). Recall that 79, (£) = D, H — 32 By analogy to (5.10) we have

D ——3 A¢paop(DyH — 3—
i (g2rg00 /[ﬁ]y—i—l app( r r ))
’S Z

423,4P 0y 03,84 A1
Ly +Aly=i

1 2
Srj()’—j)

3
Ly=2 w ¢ E
eT2V T A 22rg0 | A2 Aapp| |As Vit AL Ay(DrH —3-7)
(5.20)
Case I-1. £3 = i. In this case £; = {5 = £4 = 0 and we note that
_1
w no_1
g~ ) T | Apapp|
g rn rn rn
S|l =) {piol=)+p 22— ) (5.21)
T T T\ T
where we we have used (4.46). Therefore we bound the || - ||4+; norm of the last
line of (5.20) by
Ly—2)—ly2yli_y, r' r'
eT?2 30737203 piol| — +P;L,,2 —
T n\ T
r’ atit2 ¢>3 NoL
llg1 <?> w7 A3z (W) L2 (E™)2 (5.22)
Ifi = N by (4.82) we have
r' atN+2 ®° 0, N
_ - < Y=
ﬁllm(f)w 2 A3</[¢]y+1>|lL2NT :

Since $(y —3) — 1 4+ 2+ 1(& —y) -2y =8 + 1 — 1 (recall (2.24)), and
(p])() (?) +p, 2 (7)) < 1, it follows that (5.22) is bounded by
Vet 1 (EN)? (5.23)

asneeded. If 2 < i < N — 1 we use (4.80) instead and if i = 1 we use (4.79)
instead, to bound (5.22) by 8‘[8*_% (EN)%.
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Case I-2. 4 = i.In this case {1 = {p = {3 = Q0 and A4 = 751-. Using (5.21)
and (4.79) we can bound the last line of (5.20) by

ly—2y_142 r" atit? r' H
T2 py g (7) w27 g_yp (7> Aa(DH = 3—) 2

0 () )

n
< err=DR I L, (r_> “2 Ay(D H — 3—)||Lz (5.24)
2 T

If i = N we have Dy D, = Dy41. Therefore, by (C.430), w@tN+2 < yoatN+1
and q_rs1 (%) <1,

Velg_ mw Dy D H| 2 < 7T (EN)?.

On the other hand, using (A.403), we also have

r" atN+2 = [ H
Vellg_ vy <_> w2 D <—> 2
2 T r

r’ o N 2
< Vellg pm (-) W E Dy X < 2D ()2
2 T

Plugging the last bounds into the last line of (5.24) and recalling (2.23) we bound
it by
Jerd D=t B (ENy et (BN (5.25)

If2 <i < N — 1 weuse (C.429) instead of (C.430) above and obtain the upper
bound £7% ~2 (EN)%. Similarly, if i < 2 we may use (C.431) instead.
Case II. £3, 04 < i — 1. Recalling (4.46) and the bound |A (55755)| < 10

by (5.21) we have
¢’ )
A ——
’ (/ Cilak

1 2
8‘[7()/_3)

H
As(D, H — 3—)'
-

w
A 55— || |A2A
1(gzrgoo)‘| 2o
1 2y, 2 Lt r’ r’
Ser2mPTI-R (pl ) (—) +p, o (—))
n T T

o ®
q1 (?> Az (j ¢]y+l>’ ‘A4(D H— 3—)’ (5.26)

Case Il-1. 63 < €4 < i — 1.1If £4 < 1 and therefore {3 < 1, we can estimate the
I - l|o+i-norm of the last line of (5.26) using (4.79) and (C.432) by

3
l(y_2)+ £1+22+1 r" ¢ _ E
ET2 3 ||f]1 A3 /[¢]y+l ||OO||A4(DVH 3 , )”OO

+§+%(%‘—y)—2y(EN)%

1 2 L+l +E3+1
< 81'7(7/_3)_ n
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< er¥ 3 (EN)3. (5.27)

If2 <4 <i — 1, assume first that £3 > 2. We rely on (C.429) and (4.81) to
bound the || - ||¢+i-norm of the last line of (5.26) by

1 20,2 Uttt i+N=2(¢3+04+1]) r’ ¢3
s(y—3)+3— 43
eT2r 33 o lw ? oo llw™q1 <—>A3<— lloo
T PAU e

a+2(14+l) N

flw A4(DrH —3—)||L2

< gff(V_§)+§_2V+§(T_y)_[l+Z2n¢(EN)% < et 2 (EN)2, (5.28)

where we have used the bound i + N — 2(¢3 + €4 + 1) > 0, which is true if
i+N=2(3+L4+1)
{3+ €4 <i—1,tobound |w pa— lloo by a constant. If on the other hand

{3 4+ €4 = i, then £1 = 0 and therefore we have an additional power of w in our
estimate which by the same idea as above allows us to obtain the bound (5.28).

If ¢3 < 1 we then use (4.79) instead of (4.81) and deduce the same bound
analogously.
Case IlI-2. £4 < {3 < i — 1. This case is handled analogously to the case II-1 above
and relies on a similar case distinction (£4 > 2 and £4 < 1) as well as Lemma 4.14
and estimates (C.431), (C.429).

This completes the bound of the first term on the right-hand side of (5.5). The
estimates for the remaining 2 terms proceed analogously. Note that we use (4.55)
crucially to estimate the third term on the right-hand side of (5.5). O

5.2. High Order Commutator Estimates
The goal of this section is to establish the following proposition:

Proposition 5.4. Let H be a solution to (3.26) on a time interval [k, T] for some
T < 1 and assume that the a priori assumptions (4.13) holds. Then

DG H s S VEet (DY) + eri 2 (EN)?, i=1,... N,
(5.29)

Lemma 5.5. (The commutator estimates). Let H be a solution to (3.26) on a time
interval [k, T] for some T < 1 and assume that the a priori assumptions (4.13)
holds. Then

gOI
i + “ |:Di7 gmar} atH”otJri

8
21 H
+Il [Di, @} ) Ia+l> S Verd (DY) (5.30)
er20 9| | D; 1,C[¢]}D LoHllavi S VET3 2(EN)? + 7% (DY)}

(5.31)
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i—1
1_2y, cle] § f L
er20 55 2 DizjHllari S v (D)2, (5.32)
j=0
where we remind the reader that the coefficients §;j,i =1,...,N, j=0,...i =1

are defined in Lemma B.1.

Proof. Proof of (5.30). By (B.418) we have the formula

01 01
[D,-,zwar}a, —18r<g >DH+ 3 AIAZA( )A2H

A1€75£] 'AZEPlz
L1 +ly=i, ;=1

O
+ 0y ;‘lAerl( 5)A2D, Hs. (5.33)

Ay 675@1 JAp 575@2
Ly Ly =i, 122

~

definitions (2.23)—(2.24) of § and §*, we have

01 * . .
Since ‘8, (% ‘ < et%~! by Lemma 4.16, the bound w®+ < w*™2 =N and

ati

g01 §* 1 8 a+i
DT, (S ) DiHell e S er D D H, 0
8
* 1
<et® (DV)z. (5.34)

In order to bound the second term on the right-hand side of (5.33) we distinguish
several cases by analogy to Lemma 5.2.
Case I: 1 < £,.1If £ < 2 and therefore £; < 2, we can use (C.431) and (4.95) to
obtain

g0
Ll [V A1< A2 H [l S xR G (o g
< etd (DV)1. (5.35)
If 3 < ¢, < N we again distinguish 2 cases. If £1 > 2 we can use (C.429), (4.97),
and (2.23)—(2.24) to obtain

01
1
R A1< o) A2He 2

01
le,_2 M ¢ -

< ¥ (DV)2. (5.36)

If £ = 1 we then use (4.95) instead of (4.97) and obtain the same conclusion.
Case II: £1 > £;. In this case we proceed analogously and rely crucially on Lem-
mas 4.16 and estimates (C.431)—(C.433). The only nonstandard situation occurs
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when ¢1 = N. In that case £, = 0 and we must use the bound (4.98) together
with (C.431). We then obtain

01 01
Liy_2y, et g Ly_2y, efN g
203 Al(m)Hfungrz(V Vw2 AC g e el

< 2= DFIG-HI-1=T (DN Y3

< Vet (DY) (5.37)

To estimate the last term on the right-hand side of (5.33) we note that for any

Ay € Py,, we have Ay D, € Py,41 and since £, < i — 2 we are in the regime
01

treated above. This concludes the proof of the bound for || [Di, gTOa,] Or H || g+i -
The remaining 2 terms on the left-hand side of (5.30) are estimated analogously
and their proofs rely crucially on Lemmas 4.15 and 4.16. The second term is less
singular with respect to 7 and the presence of the g°! does not change the structure
of the estimates due to Lemma 4.16. The third term contains the factor rﬂZ which,
from the point of view of the energy, scales just like % and thus the structure of
the estimates is similar to the above. O

Proof of (5.31). From (4.1) we have
LyH = —wD)H — (1 +a)w'D,H. (5.38)
By the commutator formula (B.420) we have

= clo]

. clg]
} D,LoH =(i — 1), <W> Di_aD,LyH
_ c
- > e a, (%) AyD,LyH.
A1 2Py by 1+ =i—1 g
=2

(5.39)

The second sum on the right-hand side of (5.39) can be estimated analogously
to the estimates for (5.30) above, using (5.38). Thereby we observe that the total
number of derivatives in the operator A> D, L, is at most i, since £, < i — 3. We
next focus on the first term on the right-hand side of (5.39). Since @,-_2 D, =Dj_y,
using (5.38) we can write it as

—(@i — D)a, <%) Di— (wD2H + (1 + 0)w' D, H). (5.40)

By the product rule (A.405) we can isolate the top-order term

Di— (wD2H + (1 + 0)w'D, H)
=wDinH+ Y. AwADH+(1+a)D; (w'D,H)

APy ArePy,
0 +p=i—1,0>1
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We now use (4.79), (C.430) and conclude, in the case i = N
e 1o, (957 ) wDw
8

1., 2 clo] a+N+2
Set2 7P gy 0, (W) loollg_ys1w 2" DyyiHll 12
2 g 2

< Jerz— DI =430+ D (EN Y3

— Jer3 2 (EN)2, (5.41)

where the estimate (4.79) has been used in the third line. When using (4.79), we
first recall (3.19) and use the product rule to write

clo] ¢t 1 ot 1
o (W) = (f w“) 20 T g (g2g°°>’

We note that by Lemma 4.15 and (1.19) we have ‘@ + |0y (g2_;00>‘ < 1land

therefore (4.79) yields the third line above. The remaining below-top-order terms
can be estimated analogously to (5.30) to finally obtain (5.31). O

Proof of (5.32). Since|dfw| < r"*foranyk € {1, ..., n}itfollows from (B.416)
15i1 S r"~/=2_ Therefore by (4.79) for any j < i we have

2_ N i
STl 2J/C]—y—l (_)rn j=2
T
1—i+2

5 5, 2 r"\ (" "
s Fea (9)(5)

Therefore for any j > 3 we have

cl¢]

gOO t

c[¢]

o730 | =5 6 Dic i H i
gOO ijEi—j o+

1 _2 *_1 a+2(i—j)—N
SerzrmH ||wN—2<i2—.f)+i loollw™ 2 D;j—jHl| 2

< g2 = DH 143G (PN
S et (DY)?, (5.42)

where we have used (C.429) in the second line. If j < 2 we use (C.431) instead
of (C.429) and obtain the same bound. |
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5.3. High-Order Estimates for .#|H |
We first recall K,[0], a € R in (3.3):
Kq[0] = j[d’]a - /[¢app]a,

and also
Kal0] = a_f [pappl® ' K161 + ala — 1)_# [¢appl® >

01 ,_
1—s5)1 Ky a 2d> K1[0])2 5.43
</( 5)( +s/[¢app]) s | (Kq[0]) (5.43)

Lemma 5.6. We have the following bound:
n
|Kal0]] < 732G, (’—) (EV)3 (5.44)
T
i—1.1 m—2+33—y)..—j_2a r' Ny % .
lw/ ™ D K,[0]] S T3 T g, ( — ) (EY)2, 1S jSN-3
T
(5.45)
; "\ mad Sy N L .
' g1 — DiKi[0lllag2j42-n ST"T3T2B57V(EN)2, 2S5 SN -1
(5.46)
Remark 5.7. t3G=7)(EN)? canbereplaced by 723 =7 (D)7 in the above bounds.
Proof. First we recall that (3.3) implies
Ki[61 = Qappd + 6°) (Bapp + Adbapp) + ¢ (6 + A6), (5.47)

which together, with (C.432) and 6 = ™ g, yields

m-2+1G-p 2 (TN Nyl
KA [01] S 7" 73725 W etqn | — | (E)?, (5.48)
T

or equivalently,
K] | < o3 G gy, (5.49)
A [ @app]

The representation (5.43) then gives (5.44) or equivalently

_Kal0] | o m-3+3G-n gV}, (5.50)

I buppl

Next we evaluate D i Kq[0]. We start with a = 1. By applying the product rule
to (5.47) and using (C.432), (C.433) and (C.435), (4.45), (4.46), we deduce that

lwi =D Ky [0)) < T iTEG, i m( )(EN>2 1Sj<SN-3.
(5.51)
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For general a € R, let us write down the expression for D i Kql0]. For j =1,
using (3.11), we have

D1Ka[01 = a_Z[¢]* "D1K1[0] — aKa1[01D1 7 [happ)- (5.52)

For j 2 2, by applying the product rule and chain rule, we deduce that

Dikdol= Y &0 (S0 e kile)
C]E;]%i,§52€755

JB1B2
+ § : Chikot Bl
1S0S )15k Sk Sj-1
BIE'P/-_kz_K.BQE’PK

ky
Slgrh (H Vi S [¢appl) By (K1[6])
It =k 21

k'=1
Vk/E'ij/

. ki
+ Z C']i1 Kaflﬂ [6] (l_[ Vk//[¢app]> o) (5.53)
Jietik=ky gy 2

1Sk Sk Sj k=1
Vk/epjk/

which can be proved based on the induction argument on j. Therefore, we deduce

(5.45). Also, by (C.429) we have (5.46). |
Before we proceed with the estimates, we examine the structure of .Z[H].
4
Recall (4.8) and the formula (3.19) c[¢] = gz/‘f;w Then
clg] ol H]
= e () Lot o0, (<)

4
= g% [—V(l +a)w’%3r(f[¢]‘y“)DrH + a,(JVo[H])}
4 4
- eyw#&(/[@””)&&H + ey 0y <_g2¢g00> To1 7 'LyH

te (a, (g—ﬁ)o) + %) oLH, (5.54)

where we have used (4.1) and written LoH = —(1 + o)w’D,H — wd, D, H.
Our source of concern is rectangular bracket above, as it contains top-order terms
with two derivatives falling on H (either through 9, (_# (#1771 or 8, .4[H]) and
seemingly insufficient number of w-powers to allow us to bound them through
our w-weighted norms. This situation is a typical manifestation of the vacuum
singularity at the outer boundary. Our key insight is that, due to special algebraic
structure of the equation, the terms involving two spatial derivatives of H without
the corresponding multiple of w will be cancelled. In the following lemma, we
present the rearrangement of . [ H] that elucidates such an important cancelation.
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Lemma 5.8. (Cancellation lemma):

(i) A H] can be rewritten into the following form

4
MH] =y (y + D(1 + 0w’ f’m/w "2, 7 $app) Dy H

4
—sy(1+a)u/a,< foo) Jl1"'D,H

— eywd, (C[‘p )a,D H
g°
+e—tmgooﬁ4[—r 1+e|d P +W? MIH], (5.55)

where

2
0] =—y(1 + a)w/zj’—K,,,,l [01(3-K 1161 — $2[rd%60 + 49,91)

2
+ 1+ a)w’¢—{ —yK_y 11013 7 [Papp] + ¥r (7 [papp] 7 ~HK1[6]

— ¥y + DK_y 2010, 7 [pappld[rdr6 + 361 + 2y K_, 110163, ¢1rd,6 + 361}

2
+ (1 + )0, (w’i}) (K=y 1601+ 7 1gapp) 7~ K101+ K-y 110162 1106 +361)

(5.56)

and M[H] = o L-R3[F H] where R3 is defined by (3.17).

(ii) Each expression in the rlght hand side of (5.55) contains at most two spatial
derivatives. If two spatial derivatives of H appear in the expression, they
always contain a factor of w. In particular, the last bracket of the first line of
R4[0] in (5.56) can be rewritten without any second spatial derivatives of H :

3, K1[60] — ¢*[rd%6 + 49,0]
= ¢*M0,0:6 + 0, (¢° M) 0.6 + 26 (Adupp + r0,¢)0,6
+ [a,(3¢2pp + 2¢app Adapp) + 3 Gbapp + A¢app)9] ). (557

Proof. To verity (5. 55) we will first rewrite the rectangular bracket in (5.54).
By (3.22) M[H] = =0 L Rs[E H] where R3 is defined by (3.17). Then

9 (rR3[0])

2
= [(1 + a)w";’—z (K= 101+ v 7 Wapp) ™ ™' K116)+ y K1 101211016 + 39])}

2
= +a)d (w’i’z) (K_y[el +y F(bappl T KO+ v Ky _1[016210,0 + 39])

2
+1+ oz)w"‘g’—2 0r [ K-y 101+ 7 @upp) ™7~ K101+ y Ky 11016106 + 361

(%)
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By using &, K_, [0] = —y 7 [¢]77 '8, K1[6] — y K_, 11013, 7 [$app]. we have

() =—y Z1¢17" 0 Ki[0] — y K—y 11013, 7 [Bapp]

+ v 7 [Gapp] 710 K101 — v (v + D) I [bappl 7 20, 7 [app] K1 [6]
—{y(y + 1) 71177 28, K[6]
+y(r + DKy 20019, 7 [happl}¢’[r9,6 + 36]
+yK_py_1[019,(¢*[rd,0 + 361)

=—y(y +1) Z1¢] 7 20, K1[01¢°[rd,0 + 30]
— yK_y1101(3, 7 [$upp] — 0 (¢7[r 3,6 + 301)}
+{y I bappl 7 =y L9177 0, K1 (6]
—y(y + 1) (bapp) ¥ 20 7 [pappl K116]
—y(y + DK_y2[018, 7 [pappld* (13,0 + 30]

=—y(y +1) Z1¢]77 20, K1[01¢°[rd,0 + 30]
— yK_y 1 [01{3:K1[0] — ¢*[rd}0 + 43,01}
—yK_yy 11010, Z [$appl — Y (¥ + 1) _7 [app] ™7 20, 7 [dapp] K116]
—y(y + DK_y2[018, 7 [pappld* (18,0 + 30]
+2yK_,_1[01¢3,¢[rd,0 + 301,

which in turn implies

2
d MIH] = —(1 +a)y(y + l)w’%/[m*V*zarKl[e]qszrH + T Ry6],

(5.58)
where we have used 79, (g) + 3% =D,Hand 0 = T"'TH
For the first term in the rectangular bracket in (5.54), we note

(P17 H ==+ 1D L1720, K101 — (v + 1) 26177 728, 7 [happ)-

Together with (5.58), the rectangular bracket in (5.54) gives rise to the first line and
the first term of the third line of (5.55). The following line of (5.54) corresponds to
the second line of (5.55) where we have used Lo H = —(1+a)w’'D, H —wd, D, H.

Finally we will count the number of spatial derivatives and the weight w. First
of all, it is clear that all the terms appearing in (5.55) contain at most two spatial
derivatives of H. For instance, the first term in (5.55) does not contain the second
derivatives of H. In the second line, both terms contain the second derivatives of
H and they have a factor of w. Note that 3, g% has a term involving two derivatives
(see (3.27)) but that comes with w. The same counting applies to the rest. The only
expression that is not obvious at first sight is the first line of (5.56) because we do
see the two spatial derivatives of H without the weight w. It turns out that those
second derivatives disappear after cancelation. A direct computation using (5.47)
yields the identity (5.57). O
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Lemma 5.9. Let H be a solution to (3.26) on a time interval [k, T for some T < 1
and assume that the a priori assumptions (4.13) holds. Then

DDA H g S SET™ 033
x (EM)E 4 erm HHEGMEN (DY), (5.59)

Proof. We note that the terms in the ﬁrst two lines of (5.55) have the similar
structure as the terms resulting from D, (=i P lOWH ) in terms of the highest order
derivative count and the weight w count For instance, the first line of (5.55) is
comparable to the case when the derivative falls into w of the last term of (5.5).
The difference is whether the coefficients are set by @upp, 7 [dapp] o1 ¢, _Z[¢],
but the coefficients enjoy similar bounds due to Lemmas 4.8 4.10 for ¢,pp, Lemma
4.14 for ¢ and our a priori assumption (5.1). We therefore have

7103 |D;_ VD) i S Ver™nl 313 (EN)3 (5.60)

where .71, denotes the first two lines of (5.55).
We _focus on the last line of (5.55) and present the detail for the bound on
et " Dj—q (%ﬁ;[ z rH D |lo+i - We restrict our attention first to the following term

coming from the first line of (5.56):

2 om

(#) = erim g;bgoo K—y-1101 (0, K1[0] = 621020 + 43,01) where 6 =

As shown in the previous lemma, the identity (5.57) assures that 9, K1[6] —¢2[r 830—1—
40, 0] contains at most one spatial derivative of H and therefore no issues associated
with the w-weights near the boundary will occur.

We proceed with Di_1 (%) for 1 < i £ N. By the product rule, Di_1 (») can be
written as a linear combination of the following form:

1 2
e Al (“’ gfgm)Az(K_y 6D As ({0, K 1101 - ¢7(ro}6 + 40,01 )

T r
(5.61)
where A; € 7541, A € 7542, Az € 75@3, L1+ )+ €3 =1i— 1. As before, we divide
into several cases. If £; < 2 for all k = 1, 2, 3, all the indices are low and we just
use L bounds (4.67), (4.90), (4.92), (5.45). In the following, we assume that at
least one index is greater than 2.
Case I: £3 = max{€;, £»}. In this case, 3 < €3 < i — 1. Since €1, {» < NT_l <
N — 4, and we apply L™ bounds for A; and A, factors and L? bounds for A3
factor. In particular, by assuming £; = 1 (the case of £; = 0 follows similarly), we
arrange the w weights as follows:

1 ’ w ¢2 a+i=2(L1+4p)
e W LAy ( g% w2 Ay (K_y—1[0])w 2 Az

x (rlo K161 = 621ra20 +4,01))
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By the product rule and by using (4.67), (4.68), (4.90), (4.92), we deduce that

/ 2
‘whA] (ﬂ%ﬂ <SPl (1 er®), (5.62)
r g%

and, by further using (5.45), that
rn

2,1.8
w‘2A2<K-y_1[e])\ STIR G ey < -

) (DV)2. (5.63)

‘We have derived so far that
,

_ _5y L o n
IDi—1®)llati S e 2 (DM)2|r 07072, (7)

A3 (10, K101 = 9711976 + 40,61} llavi—2061 462

We claim that

=ty r'
I, <?) A3 (110, K1191 = 92179260 + 40,01} llarvi—21 422

< R (EN)D (5.64)
Note that from (5.57) we may rewrite r{d, K{[0] — ¢2[r8r29 + 40,01} as

r{8,K1[0] — ¢*[rd60 + 49,01
d. H
r

= r’"{q&zMg(D,arH —3

<8rH mH)
x +——
r Tr

+ 2¢ (Apapp + 10, 9) (D,H - 3?)

m H 5
+ ?(DrH - 37)) + 1o (¢p"M,)

H|H
+ I:rar (3¢pr + 2¢appA¢app) + Tmrar (3¢app + A¢app)7i| 7} (5.65)

Apply Az to the above. We focus on the first term which can be written as
o-H mH
+ R —

r Tr

A31(¢*Mg) A3 (D, H — 3

for A3 € 75(31 and A3 € 75532 where £31 + €33 = £3 < i — 1. As previously done,
depending on the size of £31, £33, we may use L> and L? bounds. We verify the
claim (5.64) when £3; = 0 and ¢3; = ¢3. Note that

rhn
T

lg—y—1 ( ) ¢*MgA5(D,0- H — 3

7 o H 1 H
S t3(|BoH| + |A3 p |+;|A3(7)|)
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forB € ’P&H Now we have wo i —2(61+62) — e t2(a+D) =Ny, N+i =21+ +6+]) <

w26+ =N gince €1 4+ €5+ €3+ 1 =i and i < N and hence by the definition
of EN and L? embedding, we obtain

IR 2y (%) ¢* My A3(Dy 9 H — o etizzeret
STetEN)?,
which gives (5.64). Other terms can be estimated similarly.
Therefore we deduce that
IDi—t®lasi S x5 TG (EN) 2 (DV)2 (5.66)

Case II: £, = max{¢1, £3}. Inthis case,3 < ¢» < i —1and ¢, 3 < ’ . We

apply L bounds for A and A3 factors and L? bounds for A, factor. We arrange
the w weights as follows:

1 / 2 a+i—2(¢1+03)
edrwt A (£ £ ) 0T Ak, 0D wt

x Az (r{9,K1[0] — ¢°[rd?0 + 40,01}) .

We have the same bound for A factor as in (5.62). For A3 factor, from (5.65), we
deduce that

n
(W' A3(r {3, K101 = *1r870 +43,01)| S 752G 700, (%) (DM)3.
It suffices to estimate

B B B rn _
=672, (?> Dy, (K—y—1101) lati—2(6,+¢3)

Using (5.53) for a = —y — 1, we have the expression
Dukpaltl= Y (A1 2)kile)  (567)
1050y
Cle’Plz_(.Cze’Pz
+ Z C]l;?]gleBz B

12009, 1k Shp Sy —1
BIE’P/Z 2—L BzE’Pe

ki
AU e (1_[ Vie /[cpapp]) By (Ki[6])  (5.68)
Bttt =k 21

k'=1 -
Vk/epjk/

) ki
+ Z cli] K_y—1-[0] 1_[ Vk/jw’app] . (5.69)
Jitetig=ka. gy 21

125k Sk <05 k'=1 _
- - = Vk/E'ij,
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Following the case-by-case analysis as before and using (5.44), (5.45), (5.46),
Lemma 4.14 and (4.54), we deduce that

|62, < >De2 (K—y—1001) lati—2e1+23)
< Tm—g+§(§—y),—2y—2(EN)%_
Therefore we obtain the same bound as Case I
IDi—1 () lati
< erm s 3G (ENYE (DN (5.70)

where we have used (4.91). _
Case III: £; = max{{», £3}. In this case, 3 < £ < i — 1 and £, 3 < %

We apply L™ bounds for A, and A3 factors and L? bounds for A; factor. For L?
bounds for Al(g—(l)(,), we use Lemma 4.15. The proof follows in the same fashion

and we get the same bound as in the previous cases.
All the other terms in (5.56) are estimated analogously and we have the follow-
ing bound:

| Dri ( OOM  asi S erm= 393G @EN DM (571)

The last term in (5.55) can be estimated similarly by using Lemma 4.15, (5.58),
and the previous estimates on £4[60]:

_ 1 1 2 5 4 1 1
elDi-1 ((ar <@> + gm;mw]) loti S e e PG (EN) 2 (DY)2,
(5.72)
This finishes the proof Lemma. O

5.4. Nonlinear Estimates

Before we formulate the main estimate in Proposition 5.11, we collect several
identities that can be regarded as a special form of the product rule that connects
the algebraic structure of the nonlinearity to the algebraic properties of the vector
field class P.

Lemma 5.10. Forany i € {0, ..., N} there hold the identities

D,~(1<ra< ))) Yo > fCwH)(CH) (5.73)
1SK<i BEPis

CePi—f42
H? A1A
D; (7> = Z a2 A HAH (5.74)
A1,2€P¢, 05

e +l=itl, £yl <i
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H3 A1 ArA
D (r_2) — Z MM A HAYHASH, (5.75)

A41,2,3€P¢y 05,05
ey +es=i+l, €y.0p.03=<i

A1Ar 1 A1A2A3 .
where a; 1z b; 14243 C;(B C are some universal real constants. Note that the oper-

ators Aj, j = 1,2, 3 are at most of order i.

Proof. Proof of (5.73). The proof is based on the induction on i. Note that

H H
roy, (—) =D,H —3—

r r

Leti = 1. Then
1 H
D, [—(D,H — 3—)2]
r r

2 H H 1 H,
= =(D;H —3—) (9D, H —33,(—) | + = (D, H —3—)
r r r r r

=2, <§> (a,D,H - 3&(?)) + (a, <§)>2
= (7)o (7))

Since both 0, (;) and 9, D, belong to P, the claim is true for i = 1. Now suppose
the claim is true for all i < £ and let

If £ is even,
De19
=D, Y > FSBHCH)+D, Y. > PCBH)(CH)
1SkSt BEPpy 1SkSe BEPpy
k:even Ce€Pyp_j4n k:iodd Ce€Py_jyn

= D & CUBH)D(CH)+3(BH)CH)]

1Skst BEPpy)
k:even Ce€Py_j42

+ > > fPCID.(BH)(CH) + (BH)3,(CH)].
1Sk<e BePpyg
k:odd Ce€Py_jin
Note that each term in the summation belongs to P; for some j. Therefore, the
claim is true for i = £ + 1. If £ is odd, we can rearrange terms as follows:

D9 =0y Y PSBHCH)+d Y Y cP“(BH)CH)

ISkt BePyy ISkt BEPpy
kreven Ce€Py_j4n krodd CePy_jyn
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=Y. > a’Cla(BH)CH)+ (BH)3(CH)]

1Skst BEPpq
kreven Ce€Py_jyn

2 2
+ Y Y gfc [(Dr—;)(BH)(CH)-F(BH)(Dr—;)(CH)]

ISkSe BEPyy
kiodd CePy_jio

which shows that the claim is true for i = £ 4 1. The proofs of (5.74)—(5.75) are
similar. O

Proposition 5.11. (Estimates for the nonlinear term). Let H be a solution of (3.21).
Then for any i € {0, 1, ..., N} the following bound holds:

D0 IDN [H] s § Ver"H 30BN 47 373G (N1 (DY),

(5.76)
Since ¢ = ¢app + 6, we have by simple algebra
1 1 20 3¢upp0?* + 263
St = —¢app2 - (5.77)
¢ Papp Papp P~ Pipp
From (3.25) we may write .4/ [H] in the form
H 2 H?
NN[H] = —ert " &[t"—] - Ttm—
r 30 dip r
4 H? Pl¢app] H?
m_ g MM. (5.78)

- — T
92y 1 Pipp”
Using (3.16), the first term on the right-hand side of (5.78) takes the form

H
—ert "Rt —]
,

P 3 1 o (H 2
TV Sy (r <7>>

¢3 M m H
meyy,__+* 78 - -
+2eyt"w 2/[ 2 (STH—i— TH)rar p

2

m ¢
+eyt wWA(wapp + Apapp) H?
” ¢2 H2 ” H3
—ey(y + Dt ww[(?’%pp + A¢app)r7 +7 ?]A/[({bapp]
+ 8)/(1 + a)f w W[(Ad)app — 3¢app)rT - 27 7]
2 H H
+ Syf7'1lwg¢Tr(K—y—l [TmT] +(+ 1)/[¢app]7y72Kl [TmT])A/[(ﬁapp]-
(5.79)

We denote the first and second terms of the right-hand side of (5.79) by A1[H]
and A5 H]. We first present the estimation of .A4{[H] and A5[H].
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Estimates for A [H] = 2y t"w———1 2/[¢ Tl (I’ar (7))2

Lemma 5.12. For each 1 < i < N — 1, we have the following:

T3y (MH) s < e 35 N (5.80)
Fori =N,
1 2 1 3 ox
et 2V Dy (MIHD oy S 27" T3 EN. (5.81)

Proof. Using the product rule (A.405) we have

e 2D, (MH))

3
1o, 2 w ¢
= 2yer2r=3+m cABC 4 (—) B (—) (C9),
D R
jtk+Ll=i AcP; BePy
CePy JiABC

where we recall the notation 4 = % (r or (%))2 from the proof of Lemma 5.10.
CaseI: £ = 0. First we have CY = 4 and 4 = Br(g)(D,H — 3%). By using
L bound (C.431), we have

9 S TS VENDH| S 8 T EY (5.82)

~

Casel-1: £=0and0 <k < 1. By (4.79) |A<E>B(/[‘+;y+l)|

T q_ y—1 ( ) Therefore, recalling (2.24) and the above definition of 7?48€
we obtain

1 2
81—7(7‘3)

IiABC‘ < 81%(y—%)+m—2y—£+%—yEN _ 8T%(4—3y)—;¥+mEN

< grm IV EN, (5.83)

Case[-2: £ =0,k 22.If j =0and k =i < N — 1 we use (4.80) to conclude

3
| 2 : [0)
5(y—35)+m yiABC Ly—2)+m
T2V T3 loti SeT2V73 I|A< )”L | B <—>
¢ g’ AT

N—i—1
la—ns2i42ll (CE) I Loe lw™ ™" oo
5 81%(y—%)—2y—%+%—y+mEN _ 8‘56(4 3y)— 7+mEN

< grm IV EN, (5.84)

If j =0and k =i = N we use (4.82) instead of (4.80) and thanks to an
additional power of w, this leads to

3
1,2 NABC 1,2 ¢
er2V=3)m g laan S eT2 3H""II o </[¢]y+l> lat+n 11 (CK) |l oo
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3
¢
Jp1r+!

ly=3H—2y-Nyll_yim N m+38* N
S VetV =yt s mvim ple < Jerm i ENY

e, 2
<er2r=3+m B ( ) la+N+111 (CD) |l Lo

If j>1wehavek <N —land |A(%)]| <rJ <‘L'l_£ j . Usin,
J g2 ~ ~ ql_ﬁ g
the bound analogous to (5.84) we conclude

era =S IABC)

3
S et %)+’”||A( )B ( /[Z]V“) lan+221 (€D [l ™ 1o
< Loy—H4mt1-1 r" ¢3
St 3 n ||C]1_% ? B W ||a7N+2k+2|| (Cg) ”LOo

1, 2 k+j 11
< grj(y—§)+m—2y+l—T’+7—yEN

5 i S g%
< ep 1 F2@=3)—f4m pN < erM TSI pN (5.85)

Case II: £ = 1. In this case, we will make use of the representation obtained in
(5.73): for C € Py, we write it as

Cyg= > > cOCH)(CH) (5.86)
1SS0 C1ePygy
C2€Pe_g42

Let ¢, = max{q + 1, £ — g + 2}. Without loss of generality, we may assume that
Ly =L —q+2sothat C; € Py, and Cy € Py, 3. Note that % S St+1
andl§q:€—€*+2§%.

CaseII-1: £ =
case, by (4.79) and thanks to an additional power of w,

% < ¢, < N.In this

1 2 .
erz(r=3)Fm ) [iABC)

3

10 1 1 N 20542

Zgﬁ—gwn”z‘f’—ﬂﬂ(y—?‘) N2 g1 g1, g3 =)
g” Il
a+2l*

w Y CaH |2

10_y_ 1,11 _ 1,11 at2t
Ser S0t O H e T2 T CoH

10 5.4 5
< et 3 T WAMEN — or3G-ntmpN < eI EN, (5.87)

where we note that since p + €, = £ + 2, W—q+l = w 20, and

thus [lw™ 2= =0+ || o0 < 1.
Furthermore, since £ — £, +1 =¢g—1 < % < N—4duetoN = |a]+6 =9,
PSR g a-10 H is bounde by (EN)Z via (C.433). Finally, we

used the L? embedding (C.429) to bound ||w

1 11
-Cj(y_?)w
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Now suppose £ = N + 1 (£ = N and g = 1). We then have

y+l1

3
a+N 1 3 tl r L, 11
‘EZ(V ;)er INABC _c312772 qyz (r> 2/ y+lt2(y 3)C1H

1 n o
g2t g (r—) w . (5.88)

2 T

We estimate the L?-norm of the above expression by estimating the first line in L™
norm and the second line in the L2-norm. Recalling (2.22), by (C.430),(4.79),(C.431)
we obtain

ET%(y—%)—&-m'lINABC”a_H < \/g_’:%(4—3y)+mEN < ﬁrm+%8*EN. (5.89)

The only remaining case is when £, < %, namely ¢, = 2 and £ = 1. In this
case, we can just use the L bound (C.433) to derive the same bound as in (5.87).

CaseIl-2: £ 21, j=0andk = 1. In thiscase,2 < £, S iandk < N — 1
sincel +k=1i < N.If ¢, >k we have

3
Ly—2)+m, yiABC < Yim 45—
et? 3 ”I ||a+l ~ €T ”5 T2 ”w B <j[¢]y+l)

N+i—2k—2q+4—20,

Il 2o |lw 2 2o
. " 1 11 a+2lx—N
2w IO H | pet2 YT w2 CoH |2 (5.90)
S ers@=3)+tmpN < et N, (591

where we have used (4.81) and the embeddings (C.429) and (C.435). Moreover,
N+i—2k— 2 2—28%

||w+ “ lpo S1since N+i—2k—2g+4—20,=N—i>0.

If ¢, < k, as in Case I-2, we estimate w = B <W) in the L?-norm

and the appropriately weighted terms C; H and C H in the L°°-norm and obtain
the same bound as in (5.91).

CaseIl-3: ¢ > 1 and j 2 1. In this case, we have 2 < ¢, < i+ 1—j, k <
i—j—landl+k=i— j.If k =0 we proceed as in Case II-1:

ST%(V—%)'HTL ”I[ABC ||0[+i

. 3 .
10_y J " N+i—20-2
Syttt S (= L lrellw™ 2 e
“w\1 ) ZloIrT

1 11 1 11 a+20x—
TE(V_T)”wl]—lCIHHLOC.[j(V_T)”w %

< ”g(4—3y)+m+1—¥EN < 8Tm+%8*+1EN7 (5.92)

where we have used N +i — 20, —2g +2 = N +i — 2¢ — 2 = 0 because
¢ =i—j<i—1.Ifk = 1. We proceed as in Case II-2. We distinguish the
two cases £, > k and £, < k. Proceeding analogously to Case II-2, relying on the
embeddings (C.429) and (C.435), and Lemma 4.14 we conclude

1,2 i 34— _N 3 g%
8720’ 3)+m”1lABC”a+i 5 8T6(4 3y)+m+1-4 EN S 8Tm+48 +1EN. (593)

O
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Estimates for c/VZ[PI] = 2)/1me 2 (BTH + H) ri)r (T)
Lemma 5.13. Foranyi € {0, 1, ..., N} the following bound holds:
1,2 _1
T DD [ H]ass S VET"HI3(EN) 2 (DY)3. (5.94)

Proof. By the product rule (A.405) and the identity 9, (%) = D,H — 3% we
have

3
Yo-dp (20 om ¢ My H
er2V=3)p; (Zyr ng/[(b]V'H 5 (BTH + — H) 70y "

Ly 2)tm wM ¢’
:28)/1'2(1/ 3+ Z A1<g2r§>A2</[¢]V“)

A123€Py; 1, 05-A4€Py,
L)+ Ay =i

H m
X Aj (D,H _ 2-) (A4afH + —A4H) . (5.95)
r T

Case I. £3 <i — 1. Each factor in the last line of (5.95) can be estimated by

¢* H m
A2 (W) A3 <DrH - 27) (A431H + ?A4H)‘

TP, _u+
’ n

N ¢,3 H m
0 (77) e (g ) 0 (Prtt =37F) (wstert + F aam)| . 59

We now distinguish several cases.
Case I-1. {3 = max{l;, {3, £4}. Assume first £, < £4 < {3 and ¢, > 2. In this case
the || - ||¢4i norm of (5.96) is bounded by

. 3
L, 2 042 N+i—2(E+3+0g) r’ 0]
Fo=H4mr1-=2,  IHZAOATL &
etT?2 3 w 2 w
I lloollw™q1 ( T ) (f[¢]y+l) lloo

H
DH—3— )2
r

e (r=mn—t,-2

C4—2 m a+203—N
lw™"*(Aa Hy — — A4 H) oo™

< erd = DAmt =R 2y 245G V)Jr%(%*”)E]%;Dz%/
S e TR ENI(DN)) S er I EN DY), (5.97)
where we have used (4.81) to bound [Jw®q; ( ) A (/[:p m) loos (C.433) to

243

bound [[w*2(A4H, — 2A4H)|ls and (C.429) to bound [w A3
(DrH — 3%) |lz2. Note that we have used the bounds r%(V%)HDJ-HTHaﬂ +

t%(”*%)IIDJ-HllaH < (EN)%,]' € {0,1,...,N}. The case €4 < €r < {3 is
handled analogously.
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If ¢ < 1 and ¢35 > 3 we then use (4.79) instead of (4.81) above and obtain
the same bound. If £, < 1 and ¢35 < 2 we then use (4.79) and (C.431) instead
of (C.433) in the aboive argument and obtain the same upper bound.

Case I-2. L4 = max{{y, €3, €4} or £, = max{{;, {3, £4}. These cases can be treated
similarly, with a similar case distinction, and with help of Lemma 4.14, (C.431)-
(C.433) and (C.429).

CaseIl. £3 = i.1f i < N — 1 we proceed as in Case I. Assume now ¢3 = N.

Since in this case Az = Dy the last line of (5.95) takes the form

wM ¢’ - (H m
28)/7;2()’ 3)+m 2 § / ¢]y+l (DN+1H — 2Dy <7>> <8tH + ?H> .
(5.98)

We take special notice of the additional power of w available in this case. Since
Mé’
o2r2
expression by

L, 2 2 r’ @’
j(]/*j)+m+17; - _r
eT ||61VT+3 ( " ) WaTilaa

m a+N+2 r’ - (H
(8 + ZH) oo™ v (= ) (DyvirHl =201 (=) ) iz

<\/Er%(yf%)+m72y+lf%+%(§f}/)+%(y+1)(EN)%(DN)%

2
< rl_ﬁpl L ( )ql ( )we can estimate the || - || 4y -norm of the above

= Vert @it g3 (D)) < Jerm i (EN) 1 (D)3, (5.99)

where we have used (4.79), (C.430), the bound 723 |D; Hy oy ; + 727~ %)

DiHllo+j S (EN)%,j €{0,1,..., N}, and (A.403). The proof follows from (5.97)
and (5.99). O

The third, fourth, and fifth lines on the right-hand side of (5.79) are easily
bounded by the same ideas as above, where we systematically use the product
rule (A.405), Lemmas 4.14 and 4.10.

We only highlight the potential difficulties and how they can be overcome. In the
3rd term on the right-hand side of (5.79) there is nothing dangerous; we may write

/[Z% #A(3¢app + Adapp) H % and then estimate its D; derivative
using the case-by-case analysis analogous to the above, the product rule (A.405),
Lemma 4.14, and the bounds (4.46), (4.51). Note that the last two estimates afford
the presence of a power of g in our bounds, which in turn has the regularising effect
of diminishing any potential singularities due to negative powers of r at r = 0.

The 4-th term on the right-hand side of (5. 79) looks potentially dangerous due

itaseyt”w

to the presence of the negative powers of r in = H and . However, by (4.53) the

bounds on VA _Z[¢pappl, V € P;, will afford a presence of a power of of ’?, thus
averting all difficulties with potential singularities at » = 0.

Finally, the 5th term on the right-hand side of (5.79) contains w’ explicitly,
and since |8fw’| < r"~t=1in the vicinity of » = 0 we have the above mentioned
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regularising effect. The estimates are then routinely performed using the the product
rule (A.405) and Lemma 4.14. The outcome is

er2=D|D; (j-th line of (5.79)) lass < et T35 (EN)2(DV)2, j =3,4,5.
(5.100)

To estimate the last line of (5.79) the crucial insight is that
H L H
Koyt =1+ (v + 1) 7 [papp] 7 2K [ ]

Y ! K0l _,_
= 1 2 ool 7 3(/ 1 —5)(1 45— - 3d>
(v + Dy +2) 2 [¢app] 0( s)( +s/[¢app]) s

(K1[61)%,

which follows from (5.43) with a = —y — 1. Therefore the left-hand side above
is in fact quadratic in K{[0]. We now estimate the high-order derivatives of the
above left-hand side using the product rule (A.405), Lemma 5.6, and Remark 5.7.
By analogy to the proof of Lemma 5.9, we obtain

1 2 2 H H
et =3|D; (r""w%myl[rmﬂ +(r + 1) [pappl ¥ 2K [rm71))
||a+i
< et (ENYI(DV)E, i< N — 1. (5.101)

On the other hand, when i = N, Dy K{[0] contains a top-order term Dy 41 H in
which case we have to use (C.430) with loss of /e:

2 H H
er? 9D, (rmw%m_y_l[rm?] + (0 + 1) ] 7 K[ )

Af[qbapp]) ”oc-H
< JermHiY -3 (V)R (DV)2, (5.102)

We next discuss the rest of terms in (5.78). Using the product rule (A.405)
and (5.74) we have

1 H?
Di| 5" —
Pbapp T

1 H? 1 H?
B B

=" c 172 By B (—) + " D; <—>
Z i <¢2¢§pp ) r ¢2¢§pp t r

B1ePy, .ByePy,
0 +ey=i, ty<i—1

1
— Z Cf' BzB1 <¢2¢2 ) Z 622,132,2

B E75g1 ,32677[2 By 1 675[2.1 .Bzyzepgz’z
0 +y=i. ty<i—1 € 1+, 2=t2
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H
By - By H

1

+1" 55—
292
¢ bapp

a ™A HAH. (5.103)
A1,2€P¢y ey
Ly +ly=i+1, £, tp<i

With this decomposition, Lemma 4.14 (applied with b = 0), Lemma 4.8, and the
case-by-case analysis analogous to the proof of Lemma 5.13 we obtain the bound

H2
3=+ p, ( 5 ) [
¢ ¢app
1

< 2= PIm=S -2 G-+ G-V (EN) 1 (DN)2
< TR EN) 3 (DY)
S eI ) Y (oY)

~

T =3-3G-n (ENY 1 (D)3, (5.104)

where we have used NT“ = 2(% — y) — 8™ at the last step. Similarly,

1o, 2 1 H3
2 3>+2m||Di< 5 >||a+,

< .E%(V—%)+2m—13—0—%+2x7(%—V)+%(§—V)EN(DN)%
< r—y—%—%HmEN(DN)%
< gty 2=y BE pN (pNy3 (5.105)
2
In order to estimate et % (the last term on the right-hand side of (5.78))
app
Using the product rule (A.405)
P H? P H?
D, (—[zi"p], ) - X dhaga el (),
app A12€Py, 1y A3ePy app app

Ly +-Al3=i

(5.106)

For A3 <H72> , we may use (5.74) to further decompose it into a linear combination
of A31 HA3 H where A31, A3y € P, Py, i1 +i2 = €3+ 1,11, i2 < £3. We next
recall (4.59). Applying (4.58) and the case-by-case analysis analogous to the proof
of Lemma 5.13 we obtain the bound

2
ector=domp, (lml )
$2op” "
app

< epdr=DHm=2y =23 G-n+3G-1) Ny 3 (D)3
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< erm I3 (EN)2 DY)z, (5.107)

Proof of Proposition 5.11. Bound (5.76) follows from (5.79), Lemmas 5.12-5.13,
bounds (5.100)—(5.102), (5.104)—(5.105), and (5.107). O

5.5. Source Term Estimates
Recall the definition (2.2) and formula (2.21).

Lemma 5.14. (Source term estimates). For any i € {0, 1,...N} the following
bounds hold:

_ _4 _ i
1D <r¢02Ri4,2[%, ZM]) lagi < T3 TMFDI= (5.108)
ID; (FRS) lloi < 73 HMHDI=5E (5.109)
1D (app) i < M H e Mg =3+ (5 110)

Proof. Proof of (5.108). Recall that Rj, M2 is defined through (2.7). A detailed look
at the Taylor expansion of the function R , reveals that for any D € N there exist

constants Ca. aysJ €{1,...,D}and a smooth function rﬁ’f) such that

D
& j—1 j o]
Ry, (X1, oo x) = E g’ E cél """" ay X1 xM —i—rMV(xl,...xm),

M igj=M+j

(5.111)

where the remainder term r ﬁ:i(xl , ... Xn) has the property that all mixed deriva-
tives dy, .. axMrﬁ ® vanish atOifZiAil ic; < M+D.Usingthe chainrule, (5.111),

and the bound
ot (9) <o
o

the bound (5.108) follows immediately. O

Proof of (5.109). Recall that RY, is defined through (2.17). To estimate the first
term on the right-hand side of (2.17) we use the following crude bound:

i DrPi—k " _
Z Di( ooy A(u)1+ ALY yﬁ))’

k=0
—i i ¢k¢l o _ hm
e (B (o))
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. 1
Srtt ) |eant (—)‘
L1+Er+E3<i r

him
(ro)B <w‘°‘A (w““f[(ﬁo]_y W))‘ )

By (2.61), Proposition 2.8 we can bound the last line above by

()" (x|

—i—1_ 3 4+ks+3+(i—k)6—2y+ms$ r
r 73 3 Y pio |l —
4 o, ikl r" 4 o, itl
— T3+(l+m)6 2y -4, pl,_% <?) SJ T3 2y -4, +M5. (5112)

To estimate the second term on the right-hand side of (2.17) we first note that

R? _
R¢ R¢
= _Vgﬂ(—rz;/[¢app]_y_lA/[¢app] +(+a) gz(r) w//[¢app]_y-

(5.113)

When we apply D; to the first term on the right-hand side of (5.113) we use the prod-
uct rule (A.405) to break down the resulting expression into a linear combination
of terms of the form

RS
Ay (—) A2 (F10ap) 7T ) A S byl (5.114)

wg?(r)r

with A1 € Py, and A3 € 75@2,@3 with €1 4+ £2 + £3 = i. By Proposition 2.8 we

have
Réw 4 g+l r’
rms— r
'Al <g2<r>r2>‘ ST Pr - (r )

Combining the previous line with (4.53) and (4.54) we can bound the absolute
value of (5.114) by

4 _ 4+l M\ ., s b r’ M\, PP\
'[3+M5 n p}L 43 <_> T 2y-2 n q-;/—l <—) (— -[2 n —
T\ T T T T
rn rl’l rl’l
T T T\ T
n n
4 i+l r r
4 2y ms—itL
<3t TP, <—) q—y+1 (—)
’ n T T
rn rn
Py _tath (—) + P, _ttiai2 <—))
[ n T [ n T

< p3T2rAMs-tl (5.115)
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To bound the last term on the right-hand side of (2.17) we can use the refined
expansion (5.111) to obtain the bound

(rar)zRil’y’ S .[(M+1)5’

where we have used (2.41), (2.39), (2.8), and (2.13), and the bound |R/| < M8

By an analogous argument we have the bound }(r&r)ehM‘ < ¢ M+D8 Using the
last two bounds, the product rule, Proposition 2.8, and by analogy to the above, we
obtain

M el S i h
D; (Z]_O 20 9% A (w1+a/[¢0]—y (VM' +8R181/1,V>>>|

2w
5 T%—Z)/JF(M-FI)(S—%. (5116)
Since I%JVHMH)‘S*% = r*%HMH)S*%, the claim follows from (5.112),
(5.115), and (5.116). O

Proof of (5.109). Since . (¢app) = 17" S(app), from (2.6) and (5.108)—(5.109)
we obtain

MA+1_—m_—24M+1)s—1
”Diy(‘f’app)”a-i-i < eMtlgmme=5+M+D ",

~

where we have used the bound r_% < r_%, fort € (0, 1]. a
As a corollary, we obtain the following bound for the source terms:

Proposition 5.15. (Source term estimates). Let H be a solution of (3.21). Then for
anyi € {0, ..., N} the following bound holds:

5 2 *
2773 | (D1 (upp). DiHy) < gDV 4 g2MHI L20- D+ QM =2)5425" =3y ~2m_

o+i

(5.117)

Proof. By the previous lemma and the Cauchy—Schwarz inequality we obtain

5 1,2 1,8
V75 |(Di (Papp), DiHz),. .| S 29D (Bapp) llati T2 ™3 Dy He llati

o+

< MHLL 3= —m=3+(M+Ds= L (pN S
i+2_ 3 1
— 8M+1T1+M8—%—jy—m(DN)7. (5118)
Sincei < N and §* =8 — %, we can estimate the above expression by a multiple
of

2 — * 39
SDN +82M+1.[2(1—n)+(2M 2)6+286* =3y 2m.

O

Remark 5.16. In order for the T-power to be integrable on [0, 7] we need to impose
2(1— %)+(2M—2)8 +28*—3y —2m > —1 whichis equivalentto (M —1)§+8* >
3(y—1)+m+2.Since §* > 2 by (2.27)and0 < y — 1 < 1, asufficient condition
for the previous estimate is for M to be sufficiently large so that

1
(M =13 > 2 +m. (5.119)
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5.6. Proof of Theorem 1.13

We are ready to estimate fKT R;dt’ where R; is given in (4.12). The only
missing estimate is the last term of (4.12). By (4.23), (4.24), and (4.37), we have

| (C[;E?;OO) | < et%~! and hence we obtain the following estimate of the last term
T
of R; in (4.12):

1 .

5—1EN

<ert

(5.120)
Combining Propositions 5.1, 5.4, Lemma 5.9, Propositions 5.11, 5.15, and (5.120),
we obtain the bound

N
YIRS (8 + /et e+ (i) + M+5*§2(3V),/EN> pN

i=0

e
—

+(\/5Tmin{s* —%+ﬁ1m+%5*m+ﬁt%_%
+/ermnE 3172 ) VEN YN
4 g2M+1 201-2)+@M—2)5+28* 3y —2m

(5.121)

We note that the last line of (5.121) Let § := min{§*, %} > (. With the choices

> M L1+2m J+1=11+ J+1 (5.122)
m:—, = = .
2 26
wehavem =343 (5 —y) 2 0m+8* =3 =35 =) 2 0.2 - H+ (M -

2)8 +28* — 3y —2m > 0 (for the last bound we use (2.27) which implies §* > %).
Consequently, bound (5.121) together with the a priori assumption EV < 1 implies

N —
" IRil SVEDN + VENDN + Jor 1V ENVDN 4 eed EVVDN
i=0

+81871EN+82M+1
N N nN 25—1 N 5, N
<JVeD" +VENDY + Jer 'EY + et (EV)
+ et TEN 4 2MHL (5.123)

where we have used the bound 2|ab| < a® + b? to go from the first to the second
estimate and the a priori bound EV < 1.
We now integrate the energy identity (4.11) over the time interval [, t], 7 < 1,

and obtain by virtue of Proposition 4.7 conclude that there exists a universal constant
Co > 2 such that

SN(r)< SN(r) +52M+‘(r—;c)
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+C<f+ sup EN(t/ )/ DN (¢"ydt’

Kk<t'<t

+CJe sup EN@T) ((r’)23—1+(r’)3—1+(z’)5) dr’. (5.124)

K<'[ <t

The positivity of 8 and § = min{8*, %} guarantees that the last time integral on
the right-most side of (5.124) is finite and bounded independently of the constant
k. As a consequence of (5.124) and Proposition 4.7 we conclude

3
SN(r)< oSt oSt @+ (V@) Tele .
(5.125)

Since by the local well-posedness theorem Proposition D.1, the map v +—
SN (7) is continuous, a standard continuity argument applied to (5.125) implies
that there exist 0 < oy, €+ < 1 such that for any 0 < ¢ < o, the following is true:
for any choice of initial data (H, H)| _,_satisfying

SNHE, Hf)(t = k) < o2,

and any 0 < & < &, the solution exists on the interval [«, 1] and satisfies the
uniform-in-« bound

sV () < Co (02 +82M+1), el (5.126)

Justification of the a priori assumptions (4.13) and (5.1). The size restrictions
0 < & < &, 0 < 0 < 0y for &, o, sufficiently small are necessary to ensure that
the a priori assumptions (4.13) and (5.1) can be consistently recovered from the
standard continuity argument. Firstlet (£1, £2) # (0, 2). The embedding inequality
(C.432) immediately gives

H
(9,11 (10,2 (_)” < HEDENY <oy o 5.127)
r o0

for0 < €1+ 4, <2, (£1,4£2) # (0,2). Now for (£1, £3) = (0, 2), it suffices to
derive the bound for || 1283(§) lloo- Since (H, 9; H) is a classical solution to (3.26),
we may use the equation directly:

H g0l 2m H d*H
292 _ s = el W
TO() = 2y GO H — T () —
2
toclgp] 1 lia 1 2
+8V goo warar <w ar_zar[r H]
2 2
T M[H] T
- SrgT + rgw (y((f)app) - SﬁowH +</V[H]) .

Using (5.127), (4.35), (4.38) it is easy to see that the first three terms of the right-hand
side are bounded by t 16 20 (EM) 3. For the fourth term, by (4.30), |t2c[¢]] <
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nq y—1(—= )andmoreoverby(C 426), wehave ||wD2H||Oo S 17 5=y )(EN)z

Hence, the fourth term is also bounded by © 25y (EM) > . Similarly, by using the
source estimates and estimating L norm of "/Vor[H ], ’%"W and ‘/V H] , we deduce

that the second line is also bounded by r%(%’” (EM) 5 and eM +1. Therefore, we

obtain
H
oo (2)] ren
r o0

Itis now clear that there exists a universal C so that if we choose 6’ = C(g4+0y) the
bound (4.13) is consistent and can be justified by a classical continuity argument.
The same comment applies to (5.1).

6. Compactness as k — 0 and Proof of the Theorem 1.6

Let B* be the Hilbert space generated by the norm

k
e =D 1Dj fllats

Jj=0

namely B¥ = C.(0, 1)” It . From the theory of weighted Sobolev spaces [27,28],
we deduce that BX is compactly embedded into B¥~! for k > 1.
Let a family of given initial data (Hj, H{) satisfy the uniform bound

1
SN(HE, Hf)(t = k) < o? foreach « € (0, 5k (6.1)

1 11 1 5
Inparticular, thisgivestheuniformboundofu(KT(V_T)H" K2V HO | gy gy <

V20 . By compact embedding of BY into BN~ there exists a sequence of { ; 7152 =1

such that k; — 0 and (Kj2(y 3 )HO ,/cjz()’ 3)H1’) converge in BN~ x BN~
Fix such a sequence «; and initial data Hg 7 and H{c /

Now let (H ki, 0¢ H K /) be the solution to the initial value problem (3.21) with
initial data Ho and H given by Theorem 1.13. Consider its well-defined trace
at time T = 1 (that is # = 0 in the original coordinates). Since SN =1 <

Co (a + g2M “) for all «j, in particular we have the uniform bound

N N
D Do H | _llass + Y D H | _ llatj < v/2Co (0 + &),

Jj=0

where we have used the crude bound e2M+! < ¢2, Therefore, there exists a subse-

quence of «;, denoted by «; again and (Hop, H1) € BN x BV so that

lim |[(H*I|__,, 0:H"I|__) — (Ho, H))| gn-1, gv-1 = 0.
J—>00
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We now consider the solution of (3.21) with the final value (Hy, H;) at time
7 = 1. By the local well-posedness theory obtained similarly as in Proposition D.1,
there exists a unique solution (H, d; H) to (3.21) on a maximal interval of existence
(T, 1] for some T < 1.

We claim that 7 = 0. To see this, assume the opposite, thatisO < 7" < 1. Then
for each «; € (0, %], consider the sequence of solutions (H*/, 9; H*/) to (3.21)
with given initial condition H(')(j and HK" Then, on the interval [T 1] the se-
quence (H"/, d; H*/) satisfies the umform in-j bound (5.126). In partlcular as
j — oo, p0551b1y along a subsequence, (H*/, d; H"/) converges to some (H,d.H)
in C° ([ 7 11, BN-1 x BN- 1) and the resulting limit (H, d;H) is a classical so-
lution of (3.21) on [T 1]. Since the final condition at T = 1 has to coincide for
(H, 8r H) and (H, 3. H), by the uniqueness part of the local well-posedness theo-
rem, H and H coincide on [2 , 1] which contradicts the assumption that (7', 1] is
the maximal interval of existence for H.

Therefore we have established the existence of a classical solution

H(z,r) H(t,r)
— —

M
=3 +Z£j¢j(r,r) + "

j=1

¢ (v, r) = Papp(t,7) + L

to (1.46) on the space-time domain (z, r) € (0, 1] x [0, 1]. In particular, the leading
order behavior of ¢ is driven by the dust solution ¢y = 73 and we have

1< |2 <

~

<1, (r,r) €(0,1] x [0, 1];

‘77 [¢o]
lim i lim S191 _
=0+ ¢o =0t /[(ﬁo]
Claims (1.37)—(1.38) follow easily by going back to the (s, r)-coordinate system,
which in turn give (1.39)—(1.41). This completes the proof of Theorem 1.6.
Data at s = 0. Note that the initial conditions (1.25) that correspond to the
obtained collapsing solution are now given by

M
x0) =¢(lr) =1+ el¢;(1,r)+

j=1

H(l,r)
r 9

mH,r)+0:H(l,r)

2
- — J
x1(r) = ()¢r( r)y=-— 3 ()+ E & 8‘[¢j(1 r)+

In particular, by the smallness of weighted norms of H and Hardy—Sobolev
embeddings, we conclude

I xo — Hic2qo,1p + Ixi +3 2o,y = O(o + ). (6.2)

2

3g(r)
We may now express the initial density pg and the initial velocity vector field ug
(attime s = 0) in Eulerian variables. Let Y = xo(r)y = ¢ (1, r)y, xo(R) = xo(r),
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=1|Y| =rxo(r). By (1.11)

ﬁO(Y): Xl(r)Y— 1 09:¢(1, r) _ 2 y — ar(¢—¢0)(1,r)y
xo(r) g(r) o1, r) 3g(r) g1, 1)
2
= <—3—() 4+ O(o + 8))

2

=|-———+0( +£)> Y, Y € Byy)(0).

R 0
( 38(%m)

By (1.24) we have

-1
po(Y) = w“(m) (/[XO] = (R)) . (6.3)

From (1.6) we then conclude

3
uO(x) = 8_2(4—3)/)

2 R
<—— +0(e + G)) x, 8e(R)=g(—),

ge(lx]) 3 Py =

po(x) = £ T fo(——),

eF

2w, =

1
£43 xo(1)

Since by (1.59) w*(r) = 1 — cr™ 4+ 0,0 (r") for some ¢ > 0 in the vicinity of
r = 0, we conclude that we have the expansion

n

R R \!
Go(Y) = (1-¢ _o(R" _ . 6.4
po(Y) ( i+ ool )(/[xo] (R)> (6.4)

This formula in view of (6.2) gives a quantified sense in which the initial density
is flat about the origin.

The Eulerian description of collapsing solutions. Let 0 < 7 < 1 be fixed.
Note that _¢[¢] > 0 and the Eulerian density is given by

w(r)

o(r,p(z,r)r) = m

where we have written o(t, ¢ (t,r)r) = ,o(g(r) ¢(t,r)r) = p(s, x(s,r)r). Let

R := ¢ (t, r)r.Thensince #[¢] > 0, there exists the inverse mapping r = 7(t, R)
such that7(z, ¢ (r, r)r) = r forall r € [0, 1]. We may rewrite the Eulerian density

~ ar R
w'F(t, R) w<¢<tle>)

R
SN AR figl s

for 0S R < ¢(x, 1),

o(t,R) =
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where we have written ¢ (t, ﬁ) = ¢(t,r) for R = ¢ (t, r)r. By our construction,

lim, o+ £ = 1 and lim_, o+ j[[(;”ol] = 1forall R € [0, ¢(t, 1)]. Therefore, we
deduce that

] w“(%)
Bt B) = ST Ry~
8(r) r<r+3|M< >|>

The right-hand side is nothing but the density driven by the dust profile (1.34)
written in T coordinate. Switching back to the (s, r)-coordinate system, this is
precisely in agreement with (1.39) and highlights the role of the dust profile in our
collapse.

A Vector Field Classes P and P

In what follows, we present key lemmas that highlight the importance of P;
and 751'.

The first key is that the original D;’s control those admissible vector fields in L2
sense so that the members of 7; and P; can be freely used in the energy estimates.
A clue is in the divergence structure of D, that grants an extra control of } More
precisely, we have

Lemma A.1. Let i € N be given. Then we have the following identity:
_ X . _ X
D;X =ro,Dj_; (—) + @G +2)Di (—) . (A.401)
r r

Moreover, we have the following estimate:
3 2
q _ X _ X
/ ( ro-Di—1 (—) + ‘Di—l (—)
0 r r

where x 2 0 is a smooth cutoff function satisfying x = 1 on [0, %], x = 0on
[3. 11 and x' £ 0.

2 3
by
)rz)(zdr §/ |D,~X|2r2)(2dr,
0

(A.402)

Proof. We first establish (A.401). The proof is based on the induction on i. First
observe

X X X
DiX=D,X=0X4+2—=ro|—)+3—,
r r r

and hence (A.401) holds for i = 1. Suppose (A.401) is valid for all i < eIl
iseven, Dyy1 = DDy, Dy = D 'D( 1, and rarD( 1 ( )—|— €+ Z)Dg 1 ( )
rDy ( - ) + Dy ( ) Then by the induction hypothesis, we deduce

2 _ X _ X
De1 X = (0r + ;) (rarpz—l <7) + (€ +2)Dy (7))
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2 - (X - X
=@ +-)|rDe| — ) +L€Dp—1 | —
r r r
- (X - (X
=roDy|— )+ U+3)De | — |,
r r

which verifies (A.401) fori = £+ 1.1f £ is odd, Dy = 8, Dy, Dy = 8, Dy_1, and
raD( 1( )+(£+2)'De 1( )—I’D(( )—‘,—(E—i—Z)'D( 1( )Then

X X
Des1X = 0 <rang 1 ( ) + (£ + Z)DZ 1 ( ))
X X
=9, (ng< >+(€+2)De 1( ))
_ (X _ (X
= rafDZ (—) + (6 + 3)DZ <_) s
r r

which also verifies (A.401) for i = ¢ 4 1. This finishes the proof of (A.401).
We will prove (A.402) only since the other can be shown similarly. To this end,
we compute the square integral of D; X by using (A.401). Then

3

[ |Dij(|2r2)(2dr

=/04< 0,Dr <r>+(z+2)a 1<f))2r2X2dr
S PR
+2(z+2)f07 5D, ()15 <§>r3xzdr

L ffan G v o () e
e f (o () o

Since x’ < 0, the result follows for i > 1. Fori = 1, we need to show that % is
bounded by D; X. Observe that

3 3 2
7 i X
/0 |D1X|2r2)(2dr = /0 <8rX + 27> rz)(zdr

i 2, X% 22 i 2
=/ 0, X)"+4—|r°x dr+4/ O XXrx~dr
0 r 0

3 3
1 X2 1
:/ |:(8rX)2+2—2i|r2)(2dr—4/ er)()(/dr,
0 r 0

from which (A.402) follows also fori = 1. |
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Remark A.2. We note that the cut-off x in the above proof can be replaced by
any nonnegative C!-function supported on [0, 1] such that x’ < 0. In particular,

choosing x (r) = g—y—1 (g) w*t*1 as a corollary we obtain

1 n
. - X
/ wa+[+1q7}/71 <I’ ) ‘ i ( )
0 T r

1 n
< / wrtitlg (%) IDi1 X2 2 dr. (A.403)
0

2
r2dr

An important consequence of Lemma A.1 is the following:

Lemma A.3. Suppose D; X is bounded in L2([0, %], r2dr). Then we have the esti-
mate

> / 1D; X >r? x% dr </ ID; X 2% 2 dr, (A.404)
D;eP; 0

where x is the same cutoff function in Lemma A. 1.

Proof. If there is no % in a given ©;, we are done since it is the same as D;.
Suppose % appears in ®;. Then we may write ;X = Z_D,-,j,l%YjX for some
Y; € P;. Apply Lemma A.1 to get the L? bound for ©; X by D;_,; Y, X. If Y; does
not have %, we are done. If it does, then we repeat the same argument by writing
D;_;Y; = ﬁi,j,k,1}2 for some Z € Py and applying Lemma A.1 etc. The
repetition ends in at most L%J steps. O

Another appealing feature of P; and P; is that they give rise to an algebraic
structure via the following Leibniz rule:

Lemma A.4. (Product rule) Let i € N be given.

(a) For any A € P; the following identity holds:

A(fg) = Z > ¢ Bf Cq. (A.405)

=0 BePy
CEP, k

for some real-valued constants CAB ¢

(b) For any A € P; the following identity holds:

i
A(fr=>)_ > B Bfcg. (A.406)
k=0 B€75k
C€75i—k

for some real-valued constants CAB ¢
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Proof. The proof is based on the induction on i. We start with (A.405). Leti = 1.
Then Py = {D,, %}. Since we have

Di(fg) = Dy (fg) = (D, f)g + 83,8 = (D1 f)g+ [Dig

and
1 1
-(fe) =(=fg
r r

(A.405) holds for i = 1. Suppose (A.405) is true for all i < ¢. We will show that
itis true fori = £ + 1.

First let £ be even. Then A € Pyy; is either A = D, A"’ or A = }A’ for
some A’ € Py. By induction hypothesis, it suffices to show that D, (B’ fC’g) and
%(B/ fC'g) for B’ € Py and C’ € Py_ can be written as a linear combination of
(Bf)(Cg) forsome B € Py and C € Pyy1_i.Ifk iseven, we write D, (B’ fC'g) =
(DyB'f)(C'g) + (B'f)(3C'g) and L(B'fC'g) = (LB'f)C'g. Since D, B &
Pr+1, %B’ € Ppy1and 9,C’ € 75g+1_(k/+1), both expressions are in the desirable
form. If k" is odd, we may write D, (B’ fC’'g) = (8, B’ f)(C'g) + (B’ f)(D,C’g)
and %(B’fC’g) = (B/f)(%C’g) so that they are in the desirable form.

Now let £ be odd. Then A = 3, A’ where A’ € P;. We will show that 3, (B’ f C’g)
for B' € Py and C’ € Py_i can be written into a desirable form. As before, we
consider k" even, odd separately. If k" is even, we write

1
3-(B'fC'g) = (D;B'f)(C'g) + (B' f)(D,C'g) — 4(B’f)(;C’g).

Note that D, B’ € Pyry1 and D, C’, lC " € Py41_x» and hence it has the desirable
form. If k" is odd, 9, (B’ fC'g) = (8 B f)C'g + B’ f(9,C’g). The result follows
since 8, B’ € Py41 and 8,C’ € Pyyy_-

(A.4006) is an easy consequence of (A.405), because any A € P; can be written
as A = A’9, for some A’ € P;_1. Write A(fg) = A’((3, f)g) + A'((8,¢) f) and
apply (A.405) with A’ to obtain the desired result. O

Lemma A.5. (Chainrule). Lera € R, i € N be given and fix a vectorfield W € P;.
Then for any sufficiently smooth f the following ldentlty holds:

W(f) = Zf” CN ki HW f (A.407)
i 4ip=i
wieP,
for some real constants cy ;... i;-

Proof. The proof relies on an induction argument. Let i = 1. Then W = 9, and
or(f = af“_larf which verifies (A.407). Suppose (A.407) is true for all i < £.
Then we will show that it is true for i = £ 4 1. First let £ be even. Then W € Py
can be written as W = 3, W’ for some W’ € P,. By induction hypothesis,

L k
W =W (= (a=kf o f > i [[Wif
k=1 i i =t J:l
WiePi;
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14 k
+Zfa_k Z Ck,il,.‘.,ikar(l—[W]/'f>'
k=1 j=1

it =t
W’GP

The first sum of the right-hand side is a linear combination of f a—k' ]_[]/‘/: 1 Wj/. f
where 2 S k' S €+ 1, Wy = Wi for j Sk’ —1, Wy = 9, and W; € P, with
i1+---ipy = £+1.Henceitis in the desirable form. For the second sum, no increase
in the number of the product occurs, but the number of derivatives increases by one.

Note that 8,(1—[’;-=1 WJ/. f) = Zﬁz:l Hl;'=1 Wi f where W' = WJ’. for j # m and
WJ’?’ = 0, WJ’. for j = m. Now if the corresponding i, is even, 3, W,, € 75,'m+1. If
im is odd, we write 3, W,, = D, W,, — 2W,, such that each operation belongs to
75,-m+1. In both cases, we have ij + ---ix = £ + 1 and hence (A.407) is valid for
i=4+ 1 Next let £ be odd. Then W € Py can be Written as either W = D, W'

or W = —w for some W’ € P,. We consider W = w only since the other case
follows 51m11ar1y by combining the previous cases. erte

W(f“)z% Zf” Y ki

ipteip=t
W’EP

\l»—-

[l

Now we claim that %]_[1;:1 Wif = ]_[];:1 W f for some W; € 73ij with i} +

--ip = £ + 1. To this end, we first observe because £ is odd, there exists at least
one index m, 1 < m < k whose corresponding i, is odd. Now let W; = W’ for

j #mand W, = w . Then it is easy to see that all properties are satlsﬁed SO
that the expression has its desirable form required by (A.407) fori = £ + 1. O

The next lemma implies that 3’ X can be expressed as a linear combination of
admissible operations belonging to P;. Note that the other way around is not true in
general: for instance, D, can’t be expressed in terms of 9, only. Hence, our energy
built upon D;’s controls Bﬁ’s as well as P;’s.

Lemma A.6. Let i € N be given. Then we have

X =) cfAX, (A.408)
AeP;

A

where ¢ ’s are constants.

Proof. The proof is based on the induction on i. Let i = 1. Then we have
1
X =D, X —2-X.
r

Since D, and % belong to Py, (A.408) holds. Suppose (A.408) is true for all i < £.
We will show that (A.408) holds for i = £ 4 1. By induction hypothesis,

X =" cfto,AX
APy
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Now if £ is odd, 9, A is an admissible vector field belonging to Py, and hence we
are done. If £ is even, then we write

1
0,A=D,A—2-A.
r
Then D, A and %A are both admissible vector fields belonging to Py and thus

(A.408) holds fori = ¢ + 1. O

The same conclusion holds in Lemma A.6 when we replace A € P; by A € P;.
We also write a few useful identities relating high-order D, rd,, and 9, deriva-
tives.

Lemma A.7. (i) For any j € Zx> there exist constants ci, k € {0, ..., j} such
that
_ j
(o)) = Z cxrkok., (A.409)
k=0
(ii) For any j € Zxq there exist constants cx, k € {0, ..., j} such that
. o
of =r 1) arat. (A.410)
k=0
(iii) For any j € Zsq there exist constants ¢k, k € {0, ..., j} such that
' J
Dj=r"/ Zék(rar)k. (A.411)
k=0
The same conclusion holds when we replace Dj by A € P;.
(iv) For any j € 7 there exist constants ¢y, k € {0, ..., j} such that
B . J
Dj=r" Zék(ra,)k. (A.412)
k=1

The same conclusion holds when we replace D by A € 75j.

Proof. The above statements follow easily by induction. O

B High-Order Commutators

From definitions (4.1)—(4.2) and the product rule
D (fg) =D, fg+ forg.

it is easy to check that the following commutation rules hold:
2
D/Lyf =L} Drf —(1+kw"+ ;w/)Drf (B.413)

2
O Lfh = Ly30:h — (1 + k)" — Zw)d h. (B.414)
r

More generally, we have the following commutation rules for D; L,:
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Lemma B.1. For any i € Z~ there exist constants Cjjk, j € Zx0, k € Z=q such
that

i—1

DiLaX = LitoaDiX + Y _&iDij. X (B.415)
j=0
where
24j 8kw
e — .. r
Gij = ;cukﬂﬂ._k. (B.416)

Proof. The proof is based on the induction on i. First let i = 1. From (B.413), we
have

2
DiLyX = D, Ly X = L’f+aDrX -1+ +=w)DX
r
2
=L14oD1X — (1 +a)(w" + —w)Di X,
r
and hence (B.415) holds with p1g = —(1+oz)8r2w—2(1~|—oz)3’7w. Suppose (B.415)

is valid for all i < £. It suffices to show that (B.415) holds fori = £ + 1. If £ is
even, by (B.415) and (B.413), we have

-1
Dyr1LoX = DyDeLo X = Dy | Lo4oDiX + ZC@jDijX
j=0
£—1
* 4 2 /
= Lisero DrDeX = (L4 L+ )"+ Zw)DDeX + ) | Dr(6;DeX)
j=0

2
=Lite4aDieX — 1+ L+ a)(w” + ;w/)DH—ZX

+ Z (¢ejDrye—j X + 8y (8ej)De—j X)

0<j<t—1
j:even

2
+ Z (ZejDige—j X + (0, (Lej) + ;Qj)DK—jX)~
0<j<e—1
j:odd

The last three terms can be rearranged as Zﬁzo ¢14¢jD1ye—j X where

2
Sive0 = —(L+ L+ )"+ —w) 4w, j=0
Civej = Cej + 0,(Sej—1), Jj = 1and odd
2
Siej = Coj + 0 (Lej—1) + ;ijly j = 2 and even.

Note that 11 ¢; takes the form given in (B.416) because of the induction assumption.
Therefore, (B.415) holds fori = £41.1f £isodd, we use (B.414) in place of (B.413)
to derive the same conclusion. This finishes the proof. O
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Next we present the commutator identities useful for derivation of high order

equations as well as for high order estimates.

Lemma B.2. Let i € Z-( be given and let e, X be sufficiently smooth functions.
For given differential operators A and B, let

[A, eB]X := A(eBX) — ¢eABX (B.417)

denote the usual commutator. Then for any 1 < k < i and any A € P, B e Pk
there exists a constantc’AB € R, and similarly for any A € Py, B € P;_y there
exists a constant c’AB such that following identities hold:

[Di.ed,]X = id,eD; X + ) ’ABA( -)(BX)

1<k<i
AePy ,BeP;_
+ Z "ABrA( Z)(BD,X) (B.418)
1<k<i—1
APy 1.BeP; j1
[DielX= >  c**(Ae)(BX) (B.419)
1<k<i
Aeﬁk,BePi_k
[D;,elX = ideDi_1 X + Z ciAB(Ae)(BX). (B.420)
2<kSi
A€Py.BEP; _y

Proof. Proof of (B.418). The proof is based on the induction oni. Leti = 1. Then
by using the identity D, 9, X = 3, D, X + %X,

Dy (¢8,X) = D, (¢d,X) = eD, 3, X + 8,¢0, X = ed, D, X + 8,¢D, X — 20, ($)X.
r

which yields (B.418) for i = 1. Suppose (B.418) is valid for all i < ¢. It suffices
to show (B.418) for i = £ + 1. We will verify it when £ is odd. The other case (£
is even) will follow similarly. By using the induction assumption,

e
Der1 (€0 X) = oy (8, (DeX) + treDeX + Y f*PAC)BX)
1<k<e
AePy,BePy_y
- e
+ 3 c,fABrA(;)(BD,X))
1<k<e-1
A€Ppi1.BEPp_g—1

=ed Dy X+ U+ 1)3re'Dg+1X

+ Y “B{w ,,)A( )(BX)+A( )((Dy ,,)BX)}
1<k<0,k:0dd
A€75k,B€7)g_k

e e
+ Y qMaac)Ex +AC) @ Bx))
1Sk<¢,kieven
A€Py.BEPy_y
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_ e e e 2
+ > cpAB {(A(;) +rorAC)(BDrX) +rAC(Dr — ;)BDrX)}
1<k<0—1,k:0dd
A€Pyy1.BEPp_k_y

_ 1 e e
+ > gA® {r(Dr ~ 2)JA(-)(BDyX) +rA/(f><arBDrX)}.
r r r
1Sk<e0—1,keven

A€Ppi1.BEPp—g—1

We note that each expression in the above summations belongs to either summation
in (B.418) fori = £ + 1. Proof of (B.419) and (B.420) follows analogously. |

C Hardy-Sobolev Embedding
Let x, ¥ = 0 be smooth cutoff functions satisfying x = 1 on [0, %], x =0
on [%, 1]and ¥ = 1 on [%, 1], ¥ = 0 on [0, zlL], satisfying, in addition, that

x'(r) <0, ¥'(r) =0, rel0,1].

Lemma C.1. (Localized Hardy inequalities). Let x, ¥ be the above defined cut-off
Sfunctions and let u : B1(0) — R be a given smooth radially symmetric function,
where B1(0) = {x, ||x| < 1} is the unit ball in R3. Then

1.

3 3 3
4 4 4
/ |u|2)(2dr§ﬁ |u|2r2dr+/ |Aul*r? x* dr, (C.421)
0 5 0

2

where A = Dy =3r+%orA=Z_)l = 0.
2. Let a > 1 be given. Then

1 i 1
/ w“_2|u|21ﬁ2dr§ﬁ w“|u|2dr+ﬁ w| Au|>y? dr, (C.422)
4 4

1
P

where A = D) =8r0rA:@1 :8r+%.
Proof. The proof is based on the standard Hardy inequality and the cutoff function

argument. For A = Dy, see [34]. The case A = D = 9, follows from

3

3
3 3 2
/ |8ru|2r2)(2dr=/ |Dru——u|2r2)(2dr
0 0 r
3 ; 3
# 222 P2 4 2
= |Dyul“r“x~dr + 4 u“x-dr—4 Dyuury*dr
0 0 0
3 3 3
N 222 t o2 Yo
= |Dyul“r=x=dr —2 u“x“dr+4 u“rxy dr.
0 0

0
(C.423)
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The very same bound implies that

3 3 3
i i 3
2/ u’x*dra 54/ uzrx)(/dr—}—/ |Dyul?x? r?dr,
0 0 0

which immediately yields (C.421) with A = D,. The localized Hardy inequality
near the boundary follows similarly. We note that w ~ 1 — r in the vicinity of the
boundary r = 1. O

As aconsequence of the above lemma, we have that for any smoothu : B;(0) —
R and any m € Z+y,

3 m 1
T
||u||il,§f |Au|2r2x2dr+zﬁ w e H2m 42 (C.424)
0 i=0"7

where either A = D, and A; = D; foralli =0,1,...,m,or A =09, and A; = D;
foralli =0, 1, ..., m. and the same estimate holds with D, replaced by 9, and D;

_ 3
by D;. See Lemma 3.3 of [35] for the proof. Note the term ff lu|2r2 dr in (C.421)

2
has been absorbed into the second summation in (C.424). We remark that away from
the origin, both 7 [ w®~LeJ+2m D2 dr and ) [ we et 2m|Diy |2 dr
7 7
are equivalent to 3" [1 w12 5iy |2 dr for any m € Zy.
1

The next result concerns the L bound.

Lemma C.2. Under the same assumptions as in Lemma C.1 and any m € Z~, we
have

2 .3 m+1 .
iy
lull2, < 2 :/ |Biu|>r? dr + § [ wele+2m By dr, (C.425)
. 0 . EY
i=l1 i=0 "4

where either B; = D; or B; = 15,', i=0,1,...,m+ 1. Moreover,
w2 3 % m+1 1
H—H < Zf 1D;ul?r? dr + Z/ w2 D2 (C.426)
Flee 570 im0 /1
Proof. The proof follows from the Sobolev embedding inequality
lulloo < Nullpr + N0pulipr.

While the summed norms generated by D; or D; or d! are all equivalent away from
the origin, the ordered derivatives near the origin require some attention. We start
with (C.425). First, we will verify (C.425) in the case B; = @i,i =0,1,...,m+1.
By the above Sobolev embedding and (C.424),

3 m 1
i —
||u||oosf |0yulr?x* dr 4+ ﬁw“*t“mmmmzdr
0 N 4
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3 m 1
I
—|—/ |D,8,u|2r2)(2dr+ E ﬁ w“_L“J+2m|Di8ru|2dr
0 . I

3 m+1 1

I _
S [ (il + 100R) o ar 3 [ w2 B
0 : 1
i=0 "4

where we have applied (C.424) to ||u||;1 with the choice A = 9, and A; = 15,-

fori = 0,...,m and then to ||d,u|[;1 with the choice A = D, and A; = D; for

i =0, ..., m. For the last line, we simply remark that away from the origin, both

Yo fll wo e +2m Dy 12 drand YT fll w42 Dl y 2 dr are equivalent to
I 7

> ff we L +2m 51312 dr forany m € Z.-. This proves (C.425) when B; = D;
P

fori =0,...,m+ 1.

In the case B; = D, fori = 0,...,m + 1, we apply (C.424) to [lul|,1 with
A=D,and A; =D; fori =0,...,mand to ||0,ul|; 1 with A =0, and A; =D;
fori =0, ..., m,to obtain

3 3 m+1 1

s s
lulloo < / |Dyul*r®x? dr + / 07 uPr?xdr + / w2 Dyl dr
0 0 ; z
i=0 "4

3 3
Now it suffices to show that | 132u|?r? x2 dr isbounded by Zl-zzl Jof 1Diulr2x2dr
+ YAl L wes e 2m D, 2 dr . To this end, we first note that
I

82U = 3, Dyut — 2ar(§), 8, Dyu = raf(g) + 48,(%). (C.427)
Therefore,
3
20202
/ [0-ul“r<x=dr
0

3

iy
=/ 19, Dy — 25, (PP 52 dr
0 r
i i i
u u u
=/ |8rDru|2r2X2dr—12/ |a,(—)|2r2X2dr—4/ 32(=)d, (=)’ x*dr
0 0 r 0 r r
i i u i u
=/ IDzu|2r2X2df”—6/ |ar(—)|2r2x2dr+4/ |0 () Prixx dr
0 0 r 0 r

3
I
< / DaulPr X dr,
0

where we have used x’ < 0 in the last estimate. This yields (C.425) for B = D,
and B; =D; fori =0,1,...,m+ 1.
Next we will prove (C.426). First we have

3 3 m—+1 1
4 u 4 u _
5/0 |;|2x2dr+/0 |ar<;)|2x2dr+zﬁ w2 D dr,
i=0 "7

Hi

rHoo
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where we have used the bound Z;"z"(')l / %1 woldT2m D ()12 dr < Z;"z'gl / %1
1

w2 Dy 2 dr since 7 < r =< 1. By applying (C.421), we see that

3 3
iy s u
f|—|2x2dr+f 9 ()P dr
0 r 0 r

3 3 3
7 I u s u
5[ (|u|2+|aru|2>dr+f |ar<;>|2r2x2dr+/ PR dr
1 0 0

(a) )

For (a), we apply (C.421) to obtain

3 3
@5 [ P+ malyar+ [ Tla0a )P ar
1 0 r
2

Note that by using (C.427)
7 i
u u
/ 19, (3, (=) *r? x> dr = / |8, Dyu — 39, (=) 1*r? x2dr
0 r 0 r
i i i
u u u
=f |8rDru|2r2)(2dr—15/ |8,(—)|2r2)(2dr—6/ 32(=)d, (=)’ x*dr
0 0 r 0 r r

3 3 3
s 4 u s u
=/ |arDru|2r2x2dr—6f |ar(;)|2r2x2dr+6/ |ar<;>|2r3xx/dr,
0 0 0

which yields
i i
@ < / (lu)* + [8,ul*) dr + fo 1Doul*r?x? dr.
2
For (b), we apply (C.421) again to obtain
i i
u
(b) sﬁ (lul® + 19,ul* + |83u|2>dr+/ |ar(ra,2<;)>|2r2x2dr.
E 0
2
By (C.427) and also using 97 D,u = rd;} (%) 4+ 597(4),
3 3
u u
/0 |8,(r8r2(;))|2r2)(2dr=/0 |8,2Dru—48,2(;)|2r2)(2dr
i i i
u u
=f |8,2D,u|2r2xzdr+16/ |a,2(—)|2r2X2dr—8/ 32D, ud>(—)r* x*dr
0 0 r 0 r
3 3 3
u u u
=/ |8r2D,u|2r2X2dr—24/ |8r2(—)|2r2)(2dr—8/ 33 (=)a?(—)r* x*dr
0 0 r 0 r r

3 3 3
s s u 3 u
:f 102D, ul?r?x%dr — 12f |8,2(;)|2r2)(2dr+8/ |83(;)|2r3xx/dr
0 0 0
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3 3 3
s s 4
=fo \D, 8, Dyul*r?x2 dr —2f0 18, Dyul?x % dr — 12f0 |8r2(%)|2r2)(2dr

3
4 P
+ 8/ 102523y 5 dr +4/ |9, Dyul®r x x' dr,
0 r 0

where we have used (C.423) at the last equality. This in turn yields that
i i
b) < ﬁ (lul* + 13yul® +182ul®) dr + / |Dsul*r?x2dr.
1 0
2

This finishes the proof of (C.426). |
The same argument gives the following bound for ||7u||o:
m+1

1 3 1
I
lrul?, < § ;/ |Biu|>r? dr + § :ﬁ we e +2m By 2 dr. (C.428)
. 0 N EY
i1=0 =04

where we apply (C.421) just once near the origin, since ||rullec S |lrullpr +
|0, (rue) |1, to derive the first sum.
We now recall the Hilbert space B" with the norm

N
1Ay ==Y D) fllat)-
j=0

In what follows, we will derive the weighted L2 and L™ embedding inequalities
for functions in BN based on Lemma C.1, Lemma C.2.

Lemma C.3. (L2 weighted embeddings). Let (H, d:H) € BY x BN pe given.
Then we have

(i) For any N;”‘ <k<N

5 11
L / w* PN D o Hr? dr 4+ 7775 / w P NiD H PP dr < EY

ty_% / wt*=N\Da, H 1?2 dr + ry_% / wt*=N\D H > dr < DV;
(C.429)

watj+l

(ii) We further assume that Z?’:O i o
5Mg

any%§k§N

|Dj+1H|2r2dr < 00. Then for

w(x+2k+17N
8/m|pk+1H|2r2 dr 5 EN. (C430)
37
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Proof. We start with (C.429). Divide each integral appearing in the left-hand sides
1
into two [ = [ + [1. Then w is strictly positive for 7 € [0, 1] and hence
2

wo k=N < @tk for 1 € [0, 3], the first pieces are trivially bounded by the

~

right-hand sides. Now for the second pieces, we apply (C.422) repeatedly (N — k)
times starting witha — 2 = o + 2k — N = 0 to deduce the result.

Likewise, for (C.430), we divide the integral into two pieces. Then the integral
restricted to [0, %] is bounded by EV because w2 +1=N < yathtl for p €

[0, %]. For the integral from % to 1, we first observe that (t + %Mg) forr e [%, 1]
is bounded from below and above by positive constants and hence by applying
(C.422) repeatedly (N — k) times, we deduce the desired bound. O

Lemma C.4. (L* embedding). Let (H, 3; H) € BN x B" be given. Then we have

(i) For any k € Z> such that k < %‘”_2,

2D Hlloo + 727 D | DeH oo < (EV)?
120D Dd, Hlloo + 130 9| Dy H oo S (DY) (C.431)

(ii) Similarily, for any k € Z> such that k < %‘YJ—Z,

~

1 5. = H 1 1y, - H 1
rW*ﬂnDkaf(T)noo + rW*?)nDk(;)noo < (EM)z
_ H - H
220D D (oo + T2 [ De(S)lloo < (DM)Z. (C432)
r r

Proof. We start with (C.431). We present the detail for || Dy d H || oo and other cases
follow in the same way. By using (C.425) withu = DyH and m = || + k + 1,
we see that

2 3
iy
IDeHNZ S / |B/ D H|*r* dr
. 0
i=1

la|+k+2
+ Z [ wd—LaJ+2(LaJ+k+1)IBkaH|2 dr,
i=0 Y3

where we take B; = D; for k even and B; = D; for k odd. The first sum is trivially
bounded by == (EN) or t==5) (DN since 1 < w*H K forr € [0, %]. For
the second sum, since w®~ Ll +2(lel+k+) < yatithk for 0 < j < || +k 42 and
also the total number of derivatives appearing in the sum |o| +k +2+k < N, it
is bounded by == (EN) or t==5) (DN,

For (C.432), we apply (C.425) withm = |a| + k + 1 with u = Dy(£) and
m=|a]+k+1,
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2 3

_ H 7 _ H

1D £ /0 |Bi (Di(—)) P2 dr
i=1

la]+k+2 1 _H
T S e LT TEOER
i—0 “1

where we take B; = D; for k even and B; = D; for k odd. Now for the first

sum, note that Bka% € Pitk+1. Therefore, by Lemma A.3, it is bounded by
3

ZIJH:'% o |D,~H|2r2 dr and thus by r_(y_lTl)(EN) or t_(y_%)(DN) sincek+3 <

N. Now for the second sum, note that when r € [%, 1], in contrast to the first

sum, % does not act as a derivative, in other words, |B; (@k(gmz is bounded by

Z’;’B |D;H |2. Therefore, by the same reasoning as in the previous case, we obtain
the result. O

Lemma C.5. (L™ w—weighted embedding). Let (H, 3; H) € BN x B be given.
Then we have

(i) For any k € Z> such thatk +4 < N,
1 5 1 11 1
120 | w D2 dr Hlloo + 72773 [w Dysa Hlloo S (EN)2
22D Wk D, 00, Hlloo + 720 5 [k Di s Hlloo < (DY)? (C433)
fork =N —3,

D wN Dy 43 Hlloo + 220D oV Dy Hle S (BN

22D wN 3Dy 0 Hlo + 720D wN 3Dy Ho < (D)7
(C.434)

(i) Similarly, for any k € Z;o such thatk +5 < N,

10,5 - H 1,11 - H 1
T2 3>||w’<Dk+zaf(7)||oo+rz<V 3>||w"Dk+2(7>||oos<EN>z

L,_8 = H Ly la = H 1
220w Dy 20 (oo + 7277 [ Dicga (oo S (D)2
(C.435)

fork =N —4,
1 5 _ H 1 11 _ H 1
207D wh Dy 20 (oo + 72T Irw T Dy 2(D)lleo S (V)2

1,8 4= H Lo, 14 4= H 1
207w Dy 28 (oo + 727w Dy a(S) oo < (DY),

(C.436)
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Proof. The proof follows in the same spirit as in the previous lemma. For w* Dy 1, H
in (C.433), we first apply (C.425) with u = w*Dy,oH and m = 3 + |a] —k to
get

2 3
iy
lw D HIZ <) / |B; (w Dy 2 H)|r? dr
X 0
i=1

dtla—k
b)) RO g kD )P
i=0 4

where we take B; = D; for k even and B; = D; for k odd. Then it is easy
to see that the first sum is bounded by our energy since k + 4 < N. For the
second sum, by using the product rule and smoothness of w, we first note that
|Bi D (w* D H)[* < 35— w2/ |W; H|* where W) € Priayi-j. Therefore,
by further using Lemma A.3, the second sum is bounded by

d4-la)—k i

1
Z Zﬁ w20 R
= =0Y4

Note, however, that wa+LaJ+6—2j — wa+k+2+i—j+(4+[ocj—k—j) < wa+k+2+i—j
because j < i < 4 + |a]| — k. Furthermore, the total number of derivatives
appearing isk +2 +i < 6 + |a| = N. Hence we obtain the desired bound. Other

cases in (C.433) and (C.435) follow in the same way. (C.434) and (C.436) can be
obtained similarly by applying (C.428) instead of (C.425). O

D Local-in-Time Well-Posedness

Let k > 0 be a sufficient small fixed number. In this section, we discuss the
existence of H solving (3.21) in [k, T] with S,ﬁv(t) < oo for all T € [«, T] for
some timek < T < 1.

Proposition D.1. Letr 1 < y < %, assume that the physical vacuum condition (1.5)

is satisfied, and let N = |a] + 6. If (HY, H') satisfy S,ﬂV(HK, Hf) < o2, there
exists a time T = T (o) > k and a unique solution T — (H(t, -)) of the initial
value problem (3.21) such that the map [k, T] > 7 +— S,ﬁv () is continuous and the
solution satisfies the bound

S¢'(1) < C,
where the constant C depends only on € and o.

Sketch of the Proof of Proposition D.1. The proof of Proposition D.1 follows by
the well-posedness proof for the compressible Euler system of JANG and Mas-
MouDI [36,37]. The argument of [36,37] will render the existence theory based
on an appropriate approximate scheme and a priori bounds. To apply the result of
[36,37], we will design the approximate scheme for $ := D, H and H from $).
We construct j th approximations (9, 98 ;) and (H;, d; H;) as follows. The first
approximation for j = 1, we use the initial data: let ()1, 3:$1) = (D, Hy, D, H{')
and (Hy, 9 Hy) = (Hy, H{) where S,ﬁV(HK, Hf) < o2. Inductively we obtain
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the approximate solutions (j + 1) approximations as follows: For j > 1, let
(5j+1, 0:9j41) be the solution to the initial value problem for the following linear
PDE:
g’ 2m 05,41 | d> 9
07941 +2250,0:941 + 55— —5 2
§j 8j

clo;l

T2 +8]/ gOO £l+aﬁj+l
J

T g?o
1

=D (@ («y((bapp) _SD%OWHj +e/V[Hj])) +Cl[Hj] +=///[Hj]s
J

D j+1, 0941 |e=c = (DrHy, Dy HY). (D.437)

Note that the schemes mimic the Equation (4.6) for i = 1. The subscript j implies
that the coefficients appearing in the expression are evaluated by using H;, d; H;.
With the bounds S,ﬁv (Hj, 0:Hj) < oo depending only on ¢ and o, the existence of
(9j+1, 0:9j41) follows from the duality argument in [36,37]. By defining H; 4
by

1 r
Hivi == [ 910720,

and based on a priori estimates, we also deduce S,ﬁv (Hjy1,0:Hj41) < 00, whose
bound depends only on ¢ and 0. As j — oo, after extracting a subsequence,
we obtain the limit (H, d; H) of (H}, d; H;) that solves (3.21) in [k, T'] for some
T =T(o) > k with S¥(H, 3, H) < oo. o
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