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Abstract—Radar-based hand gesture recognition is an area
receiving a significant amount of interest in recent years due to
the rapid increase in the availability of low-cost low-footprint RF
sensors. The most common configuration is Frequency Modulated
Continuous Wave (FMCW), whereas Continuous Wave (CW)
radar is not receiving as much attention. In this paper we explore
the use of extremely low cost CW radar modules for gesture
recognition. In doing so a set of signal processing electronics
is developed, implemented, and used to supply the resulting
signal to PC audio input for recording. A dataset of gestures
was recorded and gesture recognition accuracy was compared to
FMCW recordings to show that CW systems can provide a high
accuracy for gesture recognition at a very low cost.

I. INTRODUCTION

Radar systems have origins in applications that focus on
the ability to detect large targets at long ranges. This typically
requires complex systems that, due to cost, are not widely
manufactured or accessible for low cost sensing activities.
With the advent of modern electronics and signal processing
it is now possible to create very compact RF sensor modules
that are able to sense subtle movements over short ranges,
resulting in exciting new application areas.

The current significant push for autonomous vehicles is
producing a need for compact radar sensors that provide part of
the vision solution of a self-driving car. Additional new areas
of radar sensing include both medical and human machine
interaction (HMI) tasks that can be performed with low cost
radar modules. Gesture recognition is part of these emerging
areas of radar research, an example project, Google’s Soli
radar, being one particularly high-profile case [1].

Micro-Doppler is the additional signatures imparted onto the
reflected signal back to the radar that a target generates. This
movement creates a signature which was coined as Micro-
Doppler by researcher V. Chen [2]. These signatures are in
addition to the bulk velocity and are created by vibration,
rotation and other subtle movements. For example a person
may walk forwards at 3 m/s but as they move at this speed their
arms and legs oscillate back and forth. Gait analysis has in fact
been researched extensively as a suitable application of Micro-
Doppler [3], [4]. In addition there has been a recent growth of
research evaluating the use of Doppler data to monitor human

vital signs without the need for continuous contact between
the sensor and the subject [5].

Micro-Doppler has recently been considered as a means of
recognising hand gestures. [6] evaluated the ability of a Deep
Convolutional Neural Network to recognise hand gestures with
a 24 GHz Frequency Modulated Continuous Wave (FMCW)
radar module with accuracies of 99% shown. Other researchers
looked to apply a interferometric radar sensor in order to
distinguish hand gestures [7]. The information found from the
interferometric configuration were found to be useful as part
of the discrimination process although further work is needed
to fully quantify their effectiveness.

Continuous Wave (CW) radars are used for some niche
applications that require the ability to sense the movement
but not the range of the target. They operate by sending only
a single tone and measuring any shift in the returned signal
that is caused by the Doppler effect of a moving target. For
example police speed cameras can apply this technology to
simple extract the velocity of a car that is in the main focus
of the sensor. Hand gesture recognition may be a task well
suited to CW radar sensing, as it is often true that the hand
gesture is the dominant target within the antenna beam and
the actual range to the hand may not be necessary, depending
on the movements selected. As part of this work a compact
CW radar module was selected and integrated into a USB or
battery powered device that output signals that can be sampled
by a audio card in a PC. The module selected was a CDM324
which is a 24 GHz motion sensor device that only has one
transmit and one receive channels.

Previous work has explored the classification of hand ges-
tures using a 24 GHz FMCW radar with 2 GHz of bandwidth
[8]. Following on from this analysis evaluated the effect of
removing and spatial information once the gesture had been
identified in range [9]. This showed high success rates for
classification even when no range information was utilized as
part of the classification process.

This work is part of a wider push to generate a shared
repository of micro-Doppler signature that can be utilized
by the radar research community to improve classification
techniques. A recently launched website Dop-Net.com has



been setup to allow the exchange of radar datasets and the
data shown within this publication will be made available there
[10].

This paper aims to introduce a simple extremely low cost
integrated CW radar module that has been applied to the role
of recognizing various human hand gestures. These results are
then compared to FMCW radar measurements of the same
hand gestures to contrast the success rates for the two different
type of radar architectures. Section II introduces the hardware
used and how it was developed into a standalone module.
Section III shows the data captured and the results of the
classification process. Finally Section IV concludes from the
findings shown and discusses future work.

II. HARDWARE
A. CW Modules

Recently there has been an explosion in the availability
of extremely low cost CW radar sensors. Frequently the
end use case is presence or motion sensing; performing the
same role as the older Passive Infrared (PIR) sensors often
used in intruder prevention systems. Radar hardware, however,
produces far more data than comparable IR sensors.

One such CW radar sensor is the CDM324, see Fig 1.
Available from many suppliers and frequently cloned, the
CMD324 operates at around 24GHz and provides a single
in-phase output channel. The sensor operates on a supply
voltage of 5V, making it simple to integrate with many other
systems. By far the most outstanding feature of the sensor is
the price; the CMD324 can frequently be found for as little as
$6. The sensor is fundamentally similar to that presented in
[11], although given the lack of documentation available it is
not possible to draw a link between that work and this specific
module.

Frequently one of the most costly components in a radar
system is the Analogue to Digital Converter (ADC) used
to digitize the signal for further processing. However, as
the CDM324 outputs the raw beat frequency, the range of
frequencies of interest top out at around 1kHz. At these
frequencies we can consider the use of standard consumer
hardware used for audio recording, such as the line-in available
on almost all PCs. Thus the need for a dedicated ADC for
our system can be completely avoided, further simplifying the
system and reducing cost. However, for this approach to be
viable, the very low voltage level signals the CDM324 outputs
contain high frequency and near-DC noise, and so some signal
processing electronics has been implemented to perform this
function.

B. FMCW Radar

The comparative FMCW radar system that has been used
for this work is the Ancortek SDR-KIT 2400AD2. This is a 24
GHz devices that has up to 2 GHz bandwidth (although this
was set to 750 MHz for the data used within this publication)
and was set to a 1 ms chirp period. It has +13 dBm power
and used 14 dBi horn antennas. The sensor has a standalone
GUI to control and capture data or can be commanded within

Fig. 1: CDM324 CW Radar Module within 3D printed housing

a Matlab interface to capture signals. The radar has one
transmit antenna and two receive antennas, but only the co-
polarised (H-pol) channel was used for the purposes of this
dataset. For data gathering repeated hand gestures were made
approximately 30-40 cm away from the radar over a long
continuous period. The single data file generated was then
cut into individual gesture actions for feature extraction and
classification processing.

C. Signal processing electronics

In order to achieve the goal of recording the raw in-
phase beat frequency signal with commercial audio recording
equipment the signal must be filtered of high frequency and
near-DC noise and amplified 30 dB.

The upper cut-off required for the filter can be determined
by considering the Doppler equation, see Equation 1. Given
the 24 GHz transmission and an angle of incidence relative to
motion of 0, we find that the upper frequency limit is around
100 Hz. This limit was experimentally confirmed by observing
the unprocessed signal of several gestures and noting that the
signal over interest never exceeded around 80 Hz.

fp=2fo-— cosa (1)

v
Co

where:
fa = resultant Doppler frequency
fo = incident wave frequency

v = velocity of observed object
co = speed of light

a = angle between incident wave and observed object’s motion

The lower frequency cut off was simply set to be as close
to DC as practically possible in order to capture very slow
motions, while still eliminating the majority of near-DC noise.
In order to both amplify the signal, and provide the necessary
filtering, two identical cascaded active band pass filters are
used. With upper and lower cutoff frequencies set to 4.7
Hz and 102 Hz respectively, both with a gain of 15 dB.
Cascading the filters provides a higher Q-factor, lowers the
gain requirement of each individual filter and compensates for
the 180 degree phase offset generated in each filter.

Thus the overall effect is a band-pass filter with a passband
of 4.7 Hz to 102 Hz with a gain of 30 dB. Finally, this results



in a signal that is of the correct magnitude and frequncy to be
digitise by commercial audio recording equipment, see Figure
4.

D. Recording units

To aid data gathering the sensor and signal processing elec-
tronics was housed in a 3D printed case with power provided
either by a USB socket or battery, see Fig 1. The processed
signal was provided via a 3.5 mm audio out connection into
a PC audio line-in.

E. Extending to full complex capture

Fundamentally, a major drawback of the CDM324 is that it
provides only a single in-phase output. Thus while the speed
of motion in the view of the sensor may be determined, the
direction of motion cannot be determined. To change this we
would need both the in-phase and quadrature-phase outputs
for a full complex IQ signal capture.

The RSM2650 sensor provides this in an almost identical
form factor to the CDM324. Again running at 5V, and costing
in the region of $25, the RSM2650 provides two outputs for
in-phase and quadrature-phase signals. The signal processing
electronics for the RSM2650 are simply a duplication of that
used for the CDM324 to cover both output channels, see Fig
2.

Fig. 2: RSM2650 CW Radar Module within signal processing
electronics

III. DATA AND RESULTS
A. CW recorded hand gestures

In order to evaluate how effective this radar is in recog-
nising gestures, a new database of 5 individuals completing
4 separate gestures with over 400 repetitions was recorded.
The 4 gestures were chosen to match an existing database
of gestures captured using the Ancortek FMCW radar. A
comparison of traditional FMCW type of Radar ( which is
capable of providing both range and Doppler information of
targets) and the proposed newly integrated CW module radar
are the main focus of this papers outputs. A key consideration
is that the CW module used is much less complex and costly
than the FMCW equivalent.

For the CW dataset cach gesture was made directly in front
of the radar at a distances of approximately 30 cm - 40 cm,
which is the same as the FMCW geometry used. The system
was then initiated to capture 3 seconds of 1 gesture from
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Fig. 3: Gestures 1. Wave; 2. Pinch; 3. Click; 4. Swipe

a participant who was sitting in front of the device. The 4
gestures that were recorded, which matched those used in
the FMCW dataset, were a Wave (3 waves of the arm and
hand), Click (a single action between thumb and 2nd finger),
Swipe (between thumb and index finger) and Pinch (using
the whole arm and hand); seen in Fig. 3. A few key features
about the gestures are the following. The waving gesture has
an oscillatory shape and longer duration. The click gesture
happens over the shortest time frame (as a click is only a short
sharp action). Then the pinch and swipe actions do show some
level of similarity which could make them challenging for a
classifier.

B. Classification of signals

The database generated initially included 4 x 80 separate
files from all the participants and all the repetitions. These
participants are be labelled as A to D from now on. Each file
was processed to produce a raw beat frequency signal, see Fig.
4.

This beat frequency signal was then processed in order to
extract the required features in order to successfully classify
the different actions. Five features were extracted from cach
gesture examples. The features are: Standard Deviation, En-
tropy, Median, Maximum and Mean of the Summed Singular
Values. The summed signal values were obtain via Singular
Value Decomposition (SVD), of the input signal. This method
has been proven to be effective on micro-Doppler signal
classification and is defined in detail within [8], [9].

The classification processing applied to the obtained fea-
tures was to use four separate classifiers. The classifiers
selected for this paper were Linear and Quadrature Discrim-
inate Analysis (DA) methods, Bagged-Tree mechanism and
a Quadratic Support Vector Machine (SVM). These were
selected as from a quick look classification check using the
MATLAB Classification Learner utility. They are also fairly
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Fig. 4: Raw Beat Frequency Signal

simple classifiers that do not require extensive training or
computational load.

Each classifier was trained using a 90% random subset of
the features provided and then tested on the remaining 10%
of data excluding this training set. The classification process
was repeated 100 times to produce an average result. The best
classification result of 84.1% from the single range bin data
was generated by the co-pol data with the Quadratic SVM

classifier.
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Fig. 5: Results from CW radar gesture classification using 4
different classifiers

C. Comparison of previously generated FMCW data

Prior research used an FMCW Radar to capture hand
gestures, see II-B for details. Each gesture was made in the
same way as with the CW radar. The raw data capture was
processed into individual time windows for feature extraction
as completed for the CW dataset. These individual gesture
actions have varying matrices sizes hence a cell data format
was used to create a ragged data cube. The data that has been
shared as part of this challenge was created by the following
flow of pre-processing:

« Divide vector of raw samples into a 2D matrix of chirp

vs. time.

o FFT samples to convert to the range domain. Resulting
in a Range vs. Time matrix (RTI)

o Apply a Moving Target Indicator (MTI) Filter signal to
suppress static targets

o Extract range bins within the MTI data that contain the
gesture movement and coherently sum these.

e Generate a Doppler vs. Time 2D matrix by using a
Short Time Fourier Transform on the vector of selected
samples.

e Store the complex samples of the Doppler vs. Time
matrix within a larger cell array which is a data cube
of the N repeats of the 4 gestures from each person.

The FMCW dataset of was analysed using a series of

different classifiers, the results are shown within Fig. 6. The
best result that was obtained using the FMCW radar was
81.4% from the single range bin data was generated by the
co-pol data with a Bagged Trees classifier [8].
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Fig. 6: Results from FMCW radar gesture classification using
4 different classifiers

It is very clear that the classification using a CW radar was
slightly more accurate in the best case by approximately 3%.
Additional benefits include the simple hardware and signal
processing flow compared to the FMCW methods.

We believe the fundamental advantages of CW systems over
FMCW systems in this application are threefold: decreased
cost, decreased processing overhcad, and a large capture
envelope not limited to a particular set of range bins.

IV. CONCLUSIONS AND FUTURE WORK

This paper has shown the integration of a low cost COTS
CW radar module into a gesture recognition sensor. It was
hypothesised that if the gesture was the dominant signal
measured by the sensor that comparable performance could be
achieved between CW and FMCW sensors. The initial results
here show this is valid for a selection of 4 key gestures. This
is significant as one of the key advantages of CW modules is
their simplicity and extremely low cost.

Future work will look to expand this into a real-time clas-
sifier that aims to constantly evaluate the raw beat frequency
signal in front of the radar and then take simple features from
the signal to continually update the predicted gestures that are



occurring directly above the RF sensor. This will be achieved
by using a Raspberry Pi module with external sound card to
sample the signals.

In addition a complex (I/Q) CW module that provides
direction and speed will be use for comparison to the non-
complex module used to gather the data shown here. It
is hoped that this additional degree of freedom within the
data will provide more information about the Doppler signal,
which we hypothesise will improve the classification accuracy,
especially in the case of blind classification of new signals.
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