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Acute lymphoblastic leukemia (ALL) is a malignant
disorder of lymphoid progenitor cells. Although the
overall survival rate is currently more than 90% it
still represents one of the main causes of childhood

cancer deaths. The chromosomal translocation t(12;21)(p13;
q22), associated with more than 25% pediatric ALL cases,
involves genes encoding two transcription factors involved in
normal hematopoiesis, ETV6 and RUNX1.1 Although the ETV6-
RUNX1 fusion protein is weakly oncogenic, requiring secondary
events to induce overt leukemia, its expression is nevertheless
required for maintenance and propagation of disease.2,3 The
oncogenic activity of ETV6-RUNX1 appears to be dependent on
deregulation of transcriptional target genes,4 although the
detailed disease mechanisms remain to be elucidated. We
previously found that ARHGEF4 expression is specifically
associated with ETV6-RUNX1+ ALL.5 ARHGEF4 (also known
as ASEF) is a member of the diffuse B-cell lymphoma (DBL)
family of guanine nucleotide exchange factors (GEFs). Although
originally described as a RAC1-specific GEF, more recent data
suggest that its substrate is CDC42.6 Small guanine nucleotide
binding proteins (GTPases) activation is tightly modulated by
GEFs and aberrant GEF regulation can contribute to their
activation in cancer.7 In this study, we investigated the function of
ARHGEF4 in ETV6-RUNX1+ ALL cells.
To confirm the association of ARHGEF4 expression with

ETV6-RUNX1+ ALL, we analyzed its expression in B-precursor

ALL cell lines (Supplementary Fig. 1A, http://links.lww.com/HS/
A97) and pediatric patient-derived xenograft (PDX)B lineageALL
samples (Supplementary Table 1 and Supplementary Fig. 1B,
http://links.lww.com/HS/A97). The results showed a high correla-
tion between ETV6-RUNX1 status and elevated ARHGEF4
mRNA expression, confirming the previous published data.5,8 To
investigate this correlation further, we examined ARHGEF4
expression following shRNA-mediated ETV6-RUNX1 silencing
in REH cells.3 Fusion gene knock-down resulted in diminished
ARHGEF4 expression (Fig. 1A). Furthermore, increased ARH-
GEF4 expression was observed following overexpression of the
human ETV6-RUNX1 cDNA (Fig. 1B).3,9,10 These data demon-
strate a causal relationshipbetween theETV6-RUNX1 fusiongene
and elevatedARHGEF4 expression in human B-lineage ALL, and
confirm a previously reported demonstration of reduced ARH-
GEF4 expression following shRNA-mediated silencing of ETV6-
RUNX1 in ALL cells.4 This is likely specific to human cells, since
we found previously that the fusion did not affect mouse Arhgef4
expression.5

To determine the function of ARHGEF4 in ETV6-RUNX1+

leukemia, we examined the survival of human leukemia cell lines
following ARHGEF4 silencing (Supplementary Fig. 1C, http://
links.lww.com/HS/A97). This resulted in significant apoptosis
induction after 5 days in both REH and AT2 cells (Fig. 1C). Thus,
ARHGEF4 expression is necessary for survival of ETV6-
RUNX1+ leukemia cells. In contrast, ARHGEF4 silencing did
not affect the viability of ETV6-RUNX1- ALL cells lines
(Supplementary Fig. 1D, http://links.lww.com/HS/A97). We then
examined the effect of ARHGEF4 silencing on the ability of
human ETV6-RUNX1+ leukemic cells to form colonies in vitro
and to propagate disease in vivo. REH cells were harvested three
days after lentiviral shRNA transduction, at which point no
effects on viability were detectable, and plated into methylcellu-
lose cultures or transplanted into recipient mice. ARHGEF4
silencing compromised the colony forming activity of REH cells
(Fig. 1D), and significantly impaired their ability to engraft
leukemia (Fig. 1E).
To determine ARHGEF4 substrate specificity, the activity of

CDC42 and RAC1 were examined after ARHGEF4 silencing
in REH cells. Three independent ARHGEF4-specific shRNA
resulted in inhibition of CDC42 activity (Fig. 1F), whereas RAC1
activity was not affected (Supplementary Fig. 1E, http://links.
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lww.com/HS/A97). Furthermore, overexpression of ARHGEF4
increased CDC42 activity in REH cells (Fig. 1G). Thus, although
it has been reported that ARHGEF4 can function as a GEF for
both CDC42 and RAC1, our data are consistent with a study

demonstrating the specificity of purified ARHGEF4 for CDC42
in vitro.6 We then examined the impact of pharmacological
CDC42 inhibition in REH cells. The CDC42 inhibitors, ML141
and CASIN, both induced dose-dependent cell death (Fig. 1H).
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Figure 1. ARHGEF4 is downstream of ETV6-RUNX1 and is required for t(12;21) ALL survival and disease progression by activating CDC42. (A)
ARHGEF4 gene expression in REH cells 5 days after transduction with control scramble (SCR) or ETV6-specific (shER) shRNA, or (B) empty vector control (CON) or
the ETV6-RUNX1 cDNA.

∗
p<0.05,

∗∗∗
p<0.001, one sample t test. (C) REH apoptosis 5 days following transduction with SCR or ARHGEF4-specific (sh1 and sh2)

shRNA.
∗∗
p<0.01;

∗∗∗
p<0.001, unpaired Student’s t test. (D) REH colony formation 3 days after transduction with SCR or ARHGEF4-specific (sh1 and sh2)

shRNA.
∗∗∗

p<0.001, one sample t test. (E) Kaplan-Meier survival curve for NSGmice transplanted with 1 x 105 viable REH cells 3 days after transduction with SCR
or shARHGEF4 shRNA. p values for sh1 and sh2 versus shSCR controls are shown, Mantel-Haenszel log-rank test. (F) CDC42 activity in REH cells 3 days
after transduction with SCR or ARHGEF4-specific (sh1, sh2, sh3) shRNA, and (G) 7 days after transduction with empty vector control (CON) or the ARHGEF4
cDNA.

∗
p<0.05;

∗∗
p<0.01;

∗∗∗
p<0.001, one sample t test. (H) Cell death in REH cells 24hours after treatment with CDC42 inhibitors ML141 and CASIN.

∗
p<0.05,

∗∗
p<0.01;

∗∗∗
p<0.001, unpaired Student’s t test.
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These data indicate that ETV6-RUNX1 maintains CDC42
activity, and leukemia cell viability, through induction of
ARHGEF4 expression.

We next determined the effect of CDC42 inhibition on the
transcriptome of REH cells following treatment with ML141 or
DMSO for 24hours, by RNA sequencing (RNA-seq) (Fig. 2A).
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Genes associated with apoptosis were enriched in gene expression
changes induced by CDC42 inhibition (Supplementary Fig. 1F,
http://links.lww.com/HS/A97), consistent with the increase in cell
death observed following ML141 and CASIN treatment
(Fig. 1H). The gene expression data also showed significant
decreases in a number of hematopoietic STAT3 target genes
(Fig. 2A, B),11 suggesting a link between CDC42 activity and
STAT3 function. This was particularly interesting, since we
showed previously that ETV6-RUNX1+ ALL cells require
STAT3 activity for survival.3 Indeed, further analysis of the
gene expression data revealed negative enrichment of two STAT3
gene sets (Fig. 2C and Supplementary Fig. 1G, http://links.lww.
com/HS/A97).12,13 We next examined the impact of CDC42
inhibition on STAT3 activity directly. STAT3 (pY705) phos-
phorylation was found to decrease in REH cells treated with
either ML141 or CASIN (Fig. 2D, E). In order to determine
whether the link between CDC42 and STAT3 was also evident in
patient-derived leukemia cells, we examined the effect of CDC42
inhibition in the panel of ETV6-RUNX1+ pediatric PDX ALL
cells. Both ML141 and CASIN treatment of these PDX samples
resulted in induction of cell death (Fig. 2F) and inhibition of
STAT3 (pY705) phosphorylation (Fig. 2G).
In summary, here we demonstrate that ARHGEF4 expression

is induced downstream of the ETV6-RUNX1 fusion protein and
that it is necessary for ETV6-RUNX1+ ALL survival and disease
progression. Evidence from the literature suggests that ARH-
GEF4 gene expression may be regulated directly by the fusion.
RUNX1 was shown to bind to introns within the ARHGEF4
gene in both human primary hematopoietic progenitor/stem
cells14 and human megakaryocytes.15 This suggests that the
ETV6-RUNX1 fusion protein may bind directly to the
ARHGEF4 gene, since the only DNA binding domain retained
in the fusion is contained within the RUNX1 moiety. Further-
more, ETV6-RUNX1 binding to theARHGEF4 promoter region
can be detected in previously published chromatin immunopre-
cipitation data from human B-precursor ALL NALM6 cells,
expressing the fusion ectopically (Supplementary Fig. 2, http://
links.lww.com/HS/A97).16

The dependence of ETV6-RUNX1+ ALL cells on ARHGEF4
expression can be explained by the function of ARHGEF4 in
maintaining STAT3 activity, mediated by its substrate CDC42.
This study provides a mechanistic explanation for the depen-
dence of ETV6-RUNX1+ ALL cells on STAT3 signaling and their
association with elevatedARHGEF4 expression. The association
of aberrant CDC42 activity with numerous different cancers has
led to a large body of research aimed at their therapeutic
targeting.17 The data reported in the current study provide
critical insight into the specific regulation of CDC42 activity in t
(12;21)+ ALL cells by ARHGEF4, expanding the list of potential
candidates for novel therapeutic targeting in this leukemia.
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