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Abstract. We introduce a new technique for the study of the distribution of modular

symbols, which we apply to congruence subgroups of Bianchi groups. We prove that if
K is a quadratic imaginary number field of class number one and OK its ring of integers,

then for certain congruence subgroups of PSL2(OK), the periods of a cusp form of weight

two obey asymptotically a normal distribution. These results are specialisations from the
more general setting of quotient surfaces of cofinite Kleinian groups, where our methods

apply. We avoid the method of moments. Our new insight is to use the behaviour of

the smallest eigenvalue of the Laplacian for spaces twisted by modular symbols. Our
approach also recovers the first and the second moment of the distribution.

1. Introduction

Mazur and Rubin [13] proposed the study of arithmetic statistics of modular symbols in order
to gain information about the non-vanishing of the central value L(E,χ, 1), where E/Q is
an elliptic curve and χ a primitive character. By the conjectures of Birch–Swinnerton-Dyer,
this is related to studying when there is excess rank

rankE(L) > rankE(Q) ,

where L/Q is an abelian extension. Motivated by this, the study of the distribution of
modular symbols became a very active area; see the work of Petridis–Risager [16], [17], [18],
Diamantis–Hoffstein–Kıral–Lee [5], Lee–Sun [12], Bettin–Drappeau [1] and Nordentoft [14].
In this work, we investigate the distribution of modular symbols associated to an imaginary
quadratic field.

Let K be a quadratic number field of class number one, OK its ring of integers and n a
non-zero ideal of OK . In a series of papers [2], [3], [4], Cremona uses modular symbols
to study the arithmetic correspondence between isogeny classes of elliptic curves defined
over K of conductor n and Hecke cusp forms of weight 2 for the congruence subgroup
Γ0(n). More precisely, the Hasse–Weil L-function L(E, s) of an elliptic curve E and the
L-function L(F, s) attached to a cusp form F are conjectured to be the same as part of the
‘Langlands philosophy’. Modular symbols are given by central values L(F,ψ, 1), where ψ is
an additive twist, and they can be used to compute numerically the central value L(F, 1),
which agrees with the value L(E, 1) predicted by the Birch–Swinnerton-Dyer conjecture.
We prove that when n is a square-free ideal of OK and F a newform of weight 2 and level
n, modular symbols coming from F obey asymptotically the standard normal distribution
when ordered and normalised appropriately.

We develop a new method to obtain distribution results for modular symbols. While still
making use of the spectral theory of Eisenstein series as in the work of Petridis–Risager,
we apply the perturbation theory on character varieties to obtain significantly easier proofs.
Also, instead of using the method of moments for proving convergence in distribution, we
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make use of the moment generating function and the Berry–Esseen inequality to obtain
the limiting distribution with almost optimal error terms. Furthermore, our approach can
naturally recover the first and second moments of the distribution and has the advantage
that it can be naturally extended to modular symbols in H3.

To describe our results, we briefly review modular symbols for holomorphic cusp forms
on Γ0(q). Let f be a weight 2 holomorphic cusp form for Γ0(q) and α = Re(f(z)dz)
the associated real-valued, cuspidal one-form. Since the cusps are parametrised by Q, we
write

〈r〉 =

∫ r

i∞
α.

The path can be taken as the vertical line connecting r ∈ Q to ∞.

We begin by stating the conjectures of Mazur and Rubin. We define the usual mean and
variance for fixed level c

E(f, c) =
1

φ(c)

∑
a mod c
(a,c)=1

〈a/c〉, Var(f, c) =
1

φ(c)

∑
a mod c
(a,c)=1

(〈a/c〉 − E(f, c))2 .

Conjecture 1.1 (Mazur–Rubin). Fix f ∈ S2(Γ0(q)), where q is a positive integer. Then
there exists a constant Cf and, for each divisor d of q, constants Df,d, such that

lim
c→∞

(c,q)=d

(Var(f, c)− Cf log c) = Df,d .

The constant Cf is called the variance slope and the constant Df,d the variance shift.

Moreover, they conjectured that modular symbols obey a normal distribution:

Conjecture 1.2 (Mazur–Rubin). The limiting distribution of the data

〈a/c〉
(Cf log c+Df,d)1/2

, with (c, q) = d, a ∈ (Z/cZ)∗

is the standard normal distribution.

We now describe the set-up for the general case of cofinite groups Γ of PSL2(R), as in the
work of Petridis–Risager. Let a and b be two cusps (not necessarily equivalent) with scaling
matrices σa and σb. We define general modular symbols as

〈r〉ab =

∫ σar

b

α,

where α is a harmonic 1-form and

r ∈ Tab(X) =

{
a

c
mod 1 ,

(
a b
c d

)
∈ Γ∞\σ−1

a Γσb/Γ∞ , 0 < c < X

}
.

Petridis–Risager obtain the following average results of Conjectures 1.1 and 1.2.

Theorem 1.3 (Petridis–Risager [18]). There exist explicit constants Cf , Df,ab such that
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(a) (Normal distribution) The values of

Tab(X)→ R,
a

c
7→ 〈a/c〉√

Cf log c

have asymptotically a standard normal distribution as X →∞.

(b) (Second moment) As X →∞,∑
r∈Tab(X)〈r〉2ab
#Tab(X)

= Cf logX +Df,ab + o(1).

Petridis–Risager worked with the spectral theory of automorphic forms. In particular, they
make use of Eisenstein series twisted by modular symbols, introduced by Goldfeld [7] [8].
They obtain results for Γ a general cofinite Fuchsian group and f a cusp form of weight
2. Using dynamical properties of the Gauss map, Lee–Sun [12] obtain normal distribution
for the case where f ∈ S2(Γ0(N)), while Bettin–Drappeau [1] get results for general weight
k, but with Γ = Γ0(1). Using the spectral theoretical methods introduced by Petridis–
Risager, Nordentoft [14] obtains normal distribution for central values of additively twisted
L-functions associated to cusp forms of general weight k and level N . Our method uses
only the twisted Eisenstein series and perturbation theory on character varieties. This we
apply to H3, but can also be worked out for H2 and give an easier proof of Theorem 1.3
with explicit and good error terms.

Here is a statement for our results. There is a natural action of PSL2(C) on H3 via isometries.
Let Γ ≤ PSL2(C) be a cofinite discrete subgroup. For each cusp a, we denote by Γ′a the set
of parabolic elements in Γ that fix a. Then there exists a lattice Λa ≤ C such that

σ−1
a Γ′aσa =

{(
1 λ
0 1

)
: λ ∈ Λa

}
.

We note that we require this extra notation since, unlike the two dimensional case, we only
know that Γ′a is a subgroup of finite index of the stabilizer subgroup Γa and that for two
cusps a and b, the period lattices Λa and Λb may be different.

Now, for a, b two cusps for Γ (not necessarily distinct), we define

Rab(X) =

{
r =

a

c
mod Λa ,

(
a b
c d

)
∈ σ−1

a Γ′aσa\σ−1
a Γσb/σ

−1
b Γ′bσb , 0 < |c| < X

}
.

We prove the following theorem.

Theorem 1.4. Let α be a real-valued, Γ-invariant, cuspidal one-form.

(a) (Normal distribution) For every a, b ∈ [−∞,∞] with a ≤ b, and any ε > 0, for X
large enough,

#
{
r ∈ Rab(X) , 〈r〉ab√

Cα logX
∈ [a, b]

}
#Rab(X)

=
1√
2π

∫ b

a

exp

(
− t

2

2

)
dt+Oε

(
(logX)−1/2+ε

)
,

where

(1.1) Cα =
4‖α‖22

vol(Γ\H3)
.
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(b) (First moment) There exists a constant δ > 0 such that∑
r∈Rab(X)〈r〉ab
#Rab(X)

=

∫ a

b

α+O
(
X−δ

)
.

(c) (Second moment) There exists an explicit constant Dα,ab, called the variance shift,
and a constant δ > 0 such that∑

r∈Rab(X)〈r〉2ab
#Rab(X)

= Cα logX +Dα,ab +O
(
X−δ

)
, as X →∞ .

Remark 1.5. The error term in Theorem 1.4(a) is expected to be optimal up to ε, see [1].
It seems to be difficult to obtain a good error term using the method of moments approach.

Remark 1.6. Theorem 1.4(b) is a generalisation of [18, Cor. 7.3] with x = 1, where Petridis–
Risager obtain stronger results about first moment with additional restrictions on the set
Rab(X).

Remark 1.7. We do not obtain an explicit value for Dα,ab, but we can write it in terms of
the coefficients of a certain Taylor expansion, see (5.11) for more details. For the case of
H2, the variance shift was explicitly calculated in [18].

We obtain the following corollary for imaginary quadratic number fields. Let K be a qua-
dratic imaginary field of class number one and n a square-free ideal. Let F ∈ S2(Γ(n)) be a
cuspidal newform of weight 2 and level n, which is a vector-valued function F : H3 → C3.
For r ∈ K, we define the modular symbol

〈r〉 =

∫ r

i∞
F · β ∈ R ,

where β is a specific fixed basis for the invariant 1-forms. We rigorously introduce these
objects in Section 7.

Corollary 1.8. Let K be a quadratic number field of class number one. Let n C OK a
square-free ideal with generator 〈n〉 = n and F ∈ S2(Γ0(n)). For d|n, set

Qd(X) = {a/c | a ∈ (OK/〈c〉)× , 〈c, n〉 = d , 0 < |c| < X}.

(a) There exists a constant CF such that the data

K ∩Qd(X)→ R,
a

c
7→ 〈a/c〉√

CF logX

has asymptotically a standard normal distribution.

(b) There exists a constant DF,d such that

1

|Qd(X)|
∑

a/c∈Qd(X)

〈a
c

〉2

= CF logX +DF,d + o(1) .

Remark 1.9. We provide explicit value for CF in terms of the Petersson norm of F and our
base quadratic imaginary field K, see (7.5).
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The structure of the paper is as follows. In Section 2 we introduce the basic properties of
the space Γ\H3. We highlight the elementary properties of modular symbols associated to
cuspidal one-forms.

In Section 3 we study the Eisenstein series and Poincaré series twisted by modular symbols.
We introduce the generating series Lab(s, ε) and obtain some of their essential analytic
properties. We also provide upper bounds for modular symbols.

In Section 4 we study the perturbation theory of the space L2(Γ\H3, χε), where χε is a
unitary character given by modular symbols. We obtain Taylor expansions for the smallest
eigenvalue of the Laplacian λ0(ε) and for s0(ε), the first pole of Lab(s, ε). Moreover, we
study the behaviour of the residue of Lab(s, ε) at s0(ε).

In Section 5 we relate the moment generating function for the distribution of modular sym-
bols to our generating series Lab(s, ε). We recover the first two moments of the distribution.
In addition, we show that Rab is equidistributed in the period lattice Λa.

In Section 6 we prove that modular symbols are normally distributed. We use the Berry–
Esseen inequality and the perturbation theory results developed earlier.

In Section 7 we obtain results for congruence subgroups of PSL2(OK), whereK is a quadratic
imaginary number field of class number one. We relate modular symbols to special values
of L-functions coming from newforms of weight 2 and level n, where n is a square-free ideal
of OK . We develop some properties of these L-functions.

2. The geometry of the quotient space Γ\H3

2.1. Notation. We refer to [6, Chapters 1-2] for a valuable exposition of the geometry of
the hyperbolic 3-space and of the groups acting on it. We define the three-dimensional
hyperbolic space H3 as

H3 := C× (0,∞) = {(z, y) | z ∈ C, y > 0} = {(x1, x2, y) | x1, x2 ∈ R, y > 0} .

We denote the points in H3 by

P = (z, y) = z + yj, where z = x1 + ix2, j = (0, 0, 1) .

We equip H3 with the hyperbolic metric coming from the line element:

ds2 =
dx2

1 + dx2
2 + dy2

y2
.(2.1)

The volume element is given by

dv =
dx1dx2dy

y3
.

The hyperbolic Laplace–Beltrami operator is given by

(2.2) ∆ = y2

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂y2

)
− y ∂

∂y
.
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The group PSL2(C) acts on H3 via isometries. The action of γ =

(
a b
c d

)
∈ PSL2(C) is

given by

(2.3) (z, y) 7→

(
(az + b)(cz + d) + acy2

|cz + d|2 + |c|2y2
,

y

|cz + d|2 + |c|2y2

)
.

Let Γ ≤ PSL2(C) be any cofinite Kleinian group with cusps. The theory of such objects is
thoroughly developed in [6, Chapter 2]. Let a ∈ P1(C) be a cusp for Γ with scaling matrix
σa ∈ PSL2(C) such that σa∞ = a. We let Γa = {γ ∈ Γ : γa = a} be the stabilizer of a in
Γ. We define

Γ′a = Γa ∩ σa
{(

1 b
0 1

)
: b ∈ C

}
σ−1
a .

We note that Γ′a consists of the parabolic elements in Γa together with I.

There exists a lattice Λa ≤ C such that

σ−1
a Γ′aσa =

{(
1 λ
0 1

)
: λ ∈ Λa

}
.

We let Pa be a period parallelogram for Λa with Euclidean area |Pa|.

We define Λ◦a the dual lattice of Λa:

(2.4) Λ◦a = {µ ∈ C : 〈µ, λ〉 ∈ Z for all λ ∈ Λa} ,

where 〈·, ·〉 is the usual scalar product on R2 = C.

Since Γ is a Kleinian group, there exists a constant cab > 0 defined by

(2.5) cab := min

{
|c| :

(
a b
c d

)
∈ σ−1

a Γσb, c 6= 0

}
.

Say a1, · · · , ah ∈ P1(C) are representatives for the Γ-classes of cusps. For Y > 0, we define
the cuspidal sectors

Fai(Y ) = σai{z + yj : z ∈Pai , y ≥ Y } .

Then for Y0 large enough, there exists a fundamental domain F which we can write as a
disjoint union

(2.6) F = F0 ∪Fa1(Y0) ∪ · · · ∪Fah(Y0) ,

where F0 is a compact set.

We denote by Tab a system of representatives

(
∗ ∗
c ∗

)
of the double cosets in

σ−1
a Γ′aσa\σ−1

a Γσb/σ
−1
b Γ′bσb

with c 6= 0 and

Tab(X) =

{(
∗ ∗
c ∗

)
∈ Tab : 0 < |c| ≤ X

}
.

Also, we define

Rab :=

{
a

c
mod Pa :

(
a b
c b

)
∈ Tab

}
.
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Lemma 2.1. The map

Tab → Rab

γ 7→ γ∞ mod Pa

is [Γb : Γ′b]-to-one.

Proof. We follow the lines of [18, Proposition 2.2] or [9, p. 50], where it is shown that the
map is one-to-one in the two-dimensional case. Let γ, γ′ ∈ Tab with

γ =

(
a b
c d

)
and γ′ =

(
a′ b′

c′ d′

)
and r = γ∞, r′ = γ′∞. We may assume r, r′ ∈Pa. Then the matrix γ′′ = γ′−1γ ∈ σ−1

b Γσb
has lower left entry c′′ = −ac′ + a′c.

If c′′ 6= 0, then

| − r + r′| =
∣∣∣∣ c′′cc′

∣∣∣∣ > 0 .

Therefore r 6= r′, hence r 6≡ r′ mod Pa.

If c′′ = 0, then r = r′ and γ′′ ∈ (σ−1
b Γσb)∞ = σ−1

b Γbσb. Since we assume γ, γ′ ∈ Tab, there

are [σ−1
b Γbσb : σ−1

b Γ′bσb] = [Γb : Γ′b] possible choices for γ′′. �

2.2. Construction of modular symbols. We denote by H∗ := H3∪C∪{∞} the extended
upper half-space and consider the compactified quotient space XΓ = Γ\H∗. If A,B ∈ H∗ are
Γ-equivalent, i.e. there exists some γ ∈ Γ such that B = γ(A), then the family of smooth
paths from A to B in H∗ determines a unique homology class in H1(XΓ,Z). In fact, the
class depends only on γ and we have the surjective map

Φ : Γ→ H1(XΓ,Z), γ 7→ {∞, γ∞}

which induces the canonical isomorphism

H1(XΓ,Z) ∼= Γ/[Γ,Γ] .

We consider the de Rham cohomology group H1(XΓ,C) and inside of it we have H1
c (XΓ,C)

consisting of cohomology classes represented by forms of compact support. Every member
of H1

c (XΓ,C) has a harmonic representative. We provide a sketch argument showing that
H1(XΓ,C) and H1

c (XΓ,C) are dual to each other.

Note that in general XΓ may not be a manifold, since Γ may contain elements of finite order
(XΓ is called an orbifold). However, it is a result of Selberg [23, p. 482] that if Γ < GLn(C)
is a finitely generated subgroup, then Γ has a torsion free subgroup Γ′ of finite index. Then
XΓ′ is a manifold and the finite quotient group Γ̄ := Γ/Γ′ acts on it. We have the exact
Poincaré pairing between homology and cohomology for XΓ′

H1(XΓ′ ,C)×H1
c (XΓ′ ,C)→ C, (C,α) 7→

∫
C

α .

In this duality, if we restrict to forms invariant under Γ̄, we recover H1
c (XΓ,C) and can show

that there is also an exact duality between H1(XΓ,C) and H1
c (XΓ,C). For more details, see

[2, p. 43].
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Definition 2.2. A harmonic 1-form α = f1dx1+f2dx2+f3dy on Γ\H3 is a cuspidal 1-form
if

(1) α is rapidly decreasing at all cusps;

(2) for each cusp a and y ≥ 0,∫
Pa

fa,idx1dx2 = 0 , i = 1, 2, 3 ,

where σ∗aα = fa,1dx1 + fa,2dx2 + fa,3dy.

As in [22], we denote the space of cuspidal 1-forms by H1
cusp(XΓ,C). We note that any

cuspidal form is cohomologous to a form of compact support, i.e. if α is a cusp form, there
exists α̃ ∈ H1

c (XΓ,C) such that∫
Φ(γ)

α =

∫
Φ(γ)

α̃, for all γ ∈ Γ ,

and we have the isomorphism

H1
cusp(XΓ,C) ' H1

c (XΓ,C) .

A detailed construction of the above isomorphism can be found in [16, Proposition 2.1].
With this in mind, for γ ∈ Γ and α ∈ H1

cusp(XΓ,C), we define the modular symbol 〈γ, α〉
as

(2.7) 〈γ, α〉 :=

∫
Φ(γ)

α =

∫ γP0

P0

α

for any P0 ∈ H∗. From this definition, we can easily see that, for γ1, γ2 ∈ Γ,

〈γ1γ2, α〉 =

∫ γ1γ2P

P

α =

∫ γ2P

P

α+

∫ γ1γ2P

γ2P

α = 〈γ1, α〉+ 〈γ2, α〉 .

We note that if α is a cuspidal form, then for any parabolic γ ∈ Γ,

〈γ, α〉 =

∫ γP0

P0

α = 0 .

In particular, 〈γ, α〉 = 0, for all γ ∈ Γ′a, for all cusps a.

We remark that our definition for the modular symbol 〈γ, α〉 agrees with the previous
definition 〈r〉ab. Indeed, if γ ∈ σ−1

a Γσb with r = γ∞, then

(2.8) 〈r〉ab =

∫ σaγ∞

b

α =

∫ σaγσ
−1
b b

b

α =
〈
σaγσ

−1
b , α

〉
.

If α ∈ H1
cusp(XΓ,C) is real-valued, we have a family of unitary characters χε : Γ → S1

defined by

(2.9) χε(γ) := exp (2πiε 〈γ, α〉) .

If α, β ∈ H1
cusp(XΓ,C) with α = f1dx1 + f2dx2 + f3dy and β = g1dx1 + g2dx2 + g3dy, we

define the pointwise inner-product

(2.10) [α, β] := y2(f1g1 + f2g2 + f3g3) .
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Since α and β are Γ-invariant 1-forms, one can see that [α, β] is a Γ-invariant function from
H3 to C. In particular, since α is rapid decreasing in the cusps, we conclude that [α, α] is
bounded on H3, which in turn implies that

(2.11) |fi(P )| � 1

y
, for all P ∈ H3, i = 1, 2, 3.

Now, for α, β ∈ H1
cusp(XΓ,C), we define the Petersson inner product

(2.12) 〈α, β〉 :=

∫
Γ\H3

[α, β]dv ,

and the L2-norm

(2.13) ‖α‖22 := 〈α, α〉 .

3. Generating series for modular symbols

In this section we define a generating series for modular symbols Lab(s, ε). This we relate
to the twisted Eisenstein series and Poincaré series by characters and derive some of their
essential analytic properties.

3.1. Twisted Eisenstein series by modular symbols. We define the twisted Eisenstein
series

(3.1) Ea(P, s, ε) =
∑

γ∈Γ′a\Γ

χε(γ)y(σ−1
a γP )s ,

where χε is defined as in (2.9).

The theory of such series is developed in [6, Chapter 3]. They are absolutely convergent for
Re(s) > 2. In the area of absolute convergence they satisfy

Ea(γP, s, ε) = χε(γ)Ea(P, s, ε) ,

−∆Ea(P, s, ε) = s(2− s)Ea(P, s, ε) .

We note that the function P 7→ Ea(σbP, s, ε) is invariant under the action of the lattice Λb

corresponding to σ−1
b Γ′bσb = (σ−1

b Γσb)′∞. We would like to write a Fourier expansion with
respect to the dual lattice Λ◦b. With this in mind, for µ1 ∈ Λ◦a, µ2 ∈ Λ◦b, we define the
twisted generating series by

(3.2) Lab(s, µ1, µ2, ε) :=
∑
γ∈Tab

χε(σaγσ
−1
b )e

(〈
µ1,

a
c

〉
+
〈
µ2,

d
c

〉)
|c|2s

,

where the sum is over γ =

(
a b
c d

)
∈ Tab. If µ1 = µ2 = 0, we just denote Lab(s, 0, 0, ε) =:

Lab(s, ε).

We quote [6, Theorem 3.4.1] to obtain Fourier expansion of Ea(σbP, s, ε):

Ea(σbP, s, ε) = δab[Γa : Γ′a]ys + φab(s, ε)y2−s +
∑

06=µ∈Λ◦b

|µ|s−1φab(s, µ, ε) y Ks−1(2π|µ|y) e(〈µ, z〉) ,
(3.3)
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where

(3.4) φab(s, ε) :=
π

|Pb|(s− 1)
Lab(s, ε), φab(s, µ, ε) :=

2πs

|Pb|Γ(s)
Lab(s, 0, µ, ε)

and K denotes the K-Bessel function.

We now quote the theory from [6, chapter 6.1]. We have to modify it slightly since we
consider twisted Eisenstein series, so we follow the steps in Selberg’s Göttingen lecture notes
[23, p. 638-654]. If a1, · · · , ah ∈ P1(C) are the inequivalent cusps for Γ\H3, we define

Ei(P, s, ε) :=
1

[Γai : Γ′ai ]
Eai(P, s, ε) and φij(s, ε) =

1

[Γai : Γ′ai ]
φaiaj (s, ε) .

We let

E (P, s, ε) :=

E1(P, s, ε)
...

Eh(P, s, ε)

 and Φ(s, ε) := (φij(s, ε)) .

We call Φ the scattering matrix. Then both E (P, s, ε) and Φ(s, ε) have meromorphic con-
tinuation to all of C. The following functional equation is satisfied:

E (P, 2− s, ε) = Φ(2− s, ε)E (P, s, ε) .

Also, poles of E (P, s, ε) occur only where Φ(s, ε) has poles and vice versa. In the region
Re s > 1, there are only finitely many simple poles, and they are on the interval 1 < s ≤ 2
of the real line. If 1 < σ ≤ 2 is a pole of Ea(P, s, ε), we define

(3.5) ua,σ(P, ε) = Ress=σ Ea(P, s, ε) .

We denote by L2(Γ\H3, χε) the space of all square-integrable functions f over Γ\H3 that sat-
isfy f(γP ) = χε(γ)f(P ), for all γ ∈ Γ. Then ua,σ(P, ε) ∈ L2(Γ\H3, χε) and moreover

(3.6) (∆ + σ(2− σ))ua,σ(·, ε) = 0 .

We study the spectral theory of L2(Γ\H3, χε) in Section 4.1. The spectrum of −∆ on
L2(Γ\H3, χε) contains a finite number of discrete eigenvalues in [0, 1), call them 0 ≤ λ0(ε) ≤
λ1(ε) ≤ · · · ≤ λk(ε) < 1. Then Ea(P, s, ε) is meromorphic for Re(s) > 1 and has possible
poles at sj(ε) corresponding to λj(ε), so that sj(ε)(2− sj(ε)) = λj(ε).

3.2. Twisted Poincaré series by modular symbols. We now introduce the twisted
Poincaré series, extending the definition of Sarnak in [21]. We will use them to obtain an
integral representation for the series Lab(s, 0, µ, ε) and to find the residue of Lab(s, 0, µ, 0)
at s = 2.

For µ ∈ Λ◦a, we define

(3.7) Ea,µ(P, s, ε) :=
∑

γ∈Γ′a\Γ

χε(γ)y(σ−1
a γP )se−2π|µ|y(σ−1

a γP )e(〈z(σ−1
a γP ), µ〉) .

We observe that for Re(s) > 2, the series converges absolutely, since it is certainly dominated

by the Eisenstein series. Also, since the function y(σ−1
a P )se−2π|µ|y(σ−1

a P )e(〈z(σ−1
a P ), µ〉) is

Γ′a-invariant, it follows that Ea,µ(P, s, ε) satisfies

Ea,µ(γP, s, ε) = χε(γ)Ea,µ(P, s, ε)
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and that Ea,µ(σbP, s, ε) is Λb-invariant. Additionally, it is easy to check that for Re(s) > 2
and µ 6= 0,

(3.8) Ea,µ(P, s, ε) ∈ L2(Γ\H, χε).

An easy computation shows that

(3.9) (∆ + s(2− s))Ea,µ(P, s, ε) = 2π|µ|(1− 2s)Ea,µ(P, s+ 1, ε),

which can be rewritten as

(3.10) Ea,µ(P, s, ε) = 2π|µ|(1− 2s)R(s(2− s), ε)(Ea,µ(P, s+ 1, ε)),

where R(λ, ε) is the resolvent of ∆ on L2(Γ\H3, χε) at λ. We have that R(s(2 − s), ε) is
meromorphic for Re(s) > 1 and has possible poles at sj(ε). Hence, from (3.8) and (3.10), it
follows that Ea,µ(P, s, ε) may be analytically continued to Re(s) > 1, with possible poles at
sj(ε).

Next, we want to use the Poincaré series to obtain an integral representation for the gener-
ating series Lab(s, 0, µ, ε).

Lemma 3.1. Let µ ∈ Λ◦b \ {0} and Re(s),Re(w) > 2. Then we have the integral represen-
tation

Lab(s, 0, µ, ε) =
|P|(4π|µ|)w−1

2πs+1/2|µ|s−1

Γ(s)Γ(w − 1/2)

Γ(w + s− 2)Γ(w − s)

∫
Γ\H3

Ea(P, s, ε)Eb,µ(P,w, ε)dv .

Proof. We use a standard unfolding technique together with (3.3) and (3.7) to obtain∫
Γ\H3

Ea(P, s, ε)Eb,µ(P,w, ε)dv =

∫ ∞
0

∫
Pb

Ea(σbP, s, ε)y
we−2π|µ|ye(−〈z, µ〉)dx1dx2dy

y3

=

∫ ∞
0

ywe−2π|µ|y|Pb||µ|s−1φab(s, µ, ε) y Ks−1(2π|µ|y)
dy

y3

=Lab(s, 0, µ, ε)
2πs

Γ(s)
|µ|s−1

√
π

(4π|µ|)w−1

Γ(w + s− 2)Γ(w − s)
Γ(w − 1/2)

,

where we have used [9, p. 205] for the integral of the Bessel function. �

Remark 3.2. Similar to the above calculation, it follows that, for µ ∈ Λ◦b \ {0},∫
Γ\H3

Eb,µ(P, s, 0)dv = 0 .

Next we want to use Lemma 3.1 to find the analytic properties of Lab(s, 0, µ, 0) at s =
2.

Lemma 3.3. For µ ∈ Λ◦b, the series Lab(s, 0, µ, ε) admits meromorphic continuation to
s ∈ C. At s = 2, Lab(s, 0) has a pole with residue

Ress=2 Lab(s, 0) =
|Pa||Pb|[Γa : Γ′a]

πvol(Γ\H3)

while for µ 6= 0, Lab(s, 0, µ, 0) is holomorphic at s = 2.
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Proof. Since the Eisenstein series Ea(P, s, ε) admits meromorphic continuation to s ∈ C, its
Fourier coefficients admit meromorphic continuation as well. Hence from (3.3) and (3.4),
we obtain meromorphic continuation for Lab(s, 0, µ, ε).

We know that Ea(P, s, 0) has a simple pole at s = 2 and it follows from the Maaß–Selberg
relations in H3 [6, p. 110] that

(3.11) Ress=2Ea(σbP, s, 0) =
|Pa|[Γa : Γ′a]

vol(Γ\H3)
.

The conclusion follows from relating Lab(s, 0) to the 0-th Fourier coefficient of Ea(P, s, 0),
as it can be seen from (3.3) and (3.4).

Now, when µ 6= 0, then we know that Lab(s, 0, µ, 0) has at most one simple pole at s = 2.
Using the integral representation from Lemma 3.1, this residue would have 〈1, Eb,µ(P,w, 0)〉
as a factor, and by the remark above, this vanishes. �

3.3. Bounds for modular symbols. In this section we prove upper bounds for modular
symbols, in similar fashion to [10, Proposition 3.3] or [16, Proposition 2.6].

Theorem 3.4. If γ =

(
∗ ∗
c ∗

)
∈ Tab, then

〈
σaγσ

−1
b , α

〉
� | log |c||+ 1.

Proof. We define the antiderivative of α:

(3.12) Fa(P ) =

∫ P

a

α .

Since α is cuspidal, it follows that it is rapidly decreasing at cusps, and hence F is well-
defined on H3 ∪ {cusps}. We note that

Fa(P ) =

∫ P

a

α =

∫ σ−1
a P

j∞
σ∗aα.

We note that F ′a := Fa ◦ σa is invariant under the translations in Λa. Since α is rapidly
decreasing at the cusp a, it follows that Fa(P ) is bounded for y(σ−1

a P ) > Y0 with Y0 chosen
as in (2.6).

Writing σ∗aα = fa,1dx1 + fa,2dx2 + fa,3dy, we conclude that

Fa(P ) =

∫ σ−1
a P

j∞
fa,1dx1 + fa,2dx2 + fa,3dy

=

∫ y(σ−1
a P )

∞
fa,3(z, y)dy (for some z ∈Pa)

=

∫ Y0

∞
fa,3(z, y)dy +

∫ y(σ−1
a P )

Y0

fa,3(z, y)dy

� 1 + | log y(σ−1
a P )|.

We have used the fact that by integrating along a vertical path, we can ignore the contribu-
tions from dx1 and dx2, and the last inequality follows from the fact that fa,3(z, y)� 1/y,
see (2.11).
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We deduce that for γ ∈ Γ,

〈γ, α〉 = Fa(γP )− Fa(P )

� | log
(
y(σ−1

a γP )
)
|+ | log

(
y(σ−1

a P )
)
|+ 1 .

Pick γ =

(
a b
c d

)
∈ σ−1

a Γσb and P = σb(0, 0, 1). Then the equation above implies that〈
σaγσ

−1
b , α

〉
� | log

(
|c|2 + |d|2

)
|+ 1 .

The lower left element c is constant in a double coset in σ−1
a Γ′aσa\σ−1

a Γσb/σ
−1
b Γ′bσb and

clearly |c| ≥ cab. Hence we can choose a representative

(
a b
c d

)
in this double coset such

that |d| � |c| and we conclude that〈
σaγσ

−1
b , α

〉
� | log |c||+ 1 .

�

4. Perturbation theory of objects twisted by modular symbols

In this section we study the dependency on ε of the space L2(Γ\H3, χε). If we denote by
λ0(ε) the first eigenvalue of −∆ on L2(Γ\H3, χε), we will see that, for ε small enough, λ0(ε) is
analytic in ε and we obtain the first few terms in the Taylor expansion around ε = 0. We also
study the behaviour of the residue of Lab(s, ε) at s0(ε), where s0(ε)(2−s0(ε)) = λ0(ε).

4.1. Spectral theory of the space L2(Γ\H3, χε). Denote by L2(Γ\H3, χε) the space of
square integrable functions on Γ\H3 with respect to the hyperbolic metric, satisfying

f(γP ) = χε(γ)f(P ) .

For f, g ∈ L2(Γ\H3, χε), we note that fg is Γ-invariant. Hence we define the inner prod-
uct

〈f, g〉 :=

∫
Γ\H3

fg dv .

We let D(ε) ⊂ L2(Γ\H3, χε) be the subspace consisting of all C2-functions such that ∆f ∈
L2(Γ\H3, χε). For f, g ∈ C1(H), as in [6, p. 136], we define

(4.1) Gr(f, g) := y2(fx1gx1 + fx2gx2 + fygy) = [df, dg] ,

where we have used the notation introduced in (2.10). Then for all f, g ∈ D(ε), Gr(f, g) is
Γ-invariant. Moreover, the following theorem holds, see [6, Theorem 4.1.7].

Theorem 4.1. For all f, g ∈ D(ε),∫
Γ\H3

(−∆f)gdv =

∫
Γ\H3

Gr(f, g)dv .

In particular, −∆ : D(ε) → L2(Γ\H, χε) is a symmetric and positive operator. We denote

by L̃(ε) the closure of ∆ acting on D(ε).

The theory developed in [6, Chapter 5] for L2(Γ\H3) can be straightforwardly generalised

to L2(Γ\H3, χε). The operator L̃(ε) is nonnegative, its spectrum consists of a discrete part
and a continuous part. Let
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0 ≤ λ0(ε) ≤ λ1(ε) ≤ · · ·λn(ε) < 1

be the eigenvalues in the interval [0, 1) counted with their multiplicities.

The first eigenvalue is zero if and only if ε = 0, in which case it is simple and the eigenspace
is generated by the constant function. We write λn(ε) = sn(ε)(2− sn(ε)), where we choose
1 ≤ sn(ε) ≤ 2 for 0 ≤ λn(ε) ≤ 1.

Recall that since α is cuspidal, there exists some compactly supported 1-form α̃ such
that

〈γ, α̃〉 = 〈γ, α〉 for all γ ∈ Γ .

With this in mind, we define

(4.2) Ua(P, ε) := exp

(
2πiε

∫ P

a

α̃

)
and consider the unitary operators

Ua(ε) : L2(Γ\H3)→ L2(Γ\H3, χε),

f 7→ Ua(·, ε)f .

We also define

(4.3) L(ε) := Ua(ε)−1L̃(ε)Ua(ε) .

This implies that L(ε) = ∆ outside the support of α̃. This will be crucial later in the paper,
particularly in the proof of Lemma 4.7.

This construction ensures that the operator L(ε) acts on the fixed space L2(Γ\H3) and that

L(ε) and L̃(ε) are unitary equivalent. This implies that Spec(L(ε)) = Spec(L̃(ε)).

Write α̃ = f1dx1 + f2dx2 + f3dy. Using the fact that

∂Ua(P, ε)

∂x1
= 2πiεf1(P )Ua(P, ε)

and the other two similar corresponding derivatives with respect to x2 and y, we observe
that

L(ε)h =Ua(P, ε)−1

(
y2

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂y2

)
− y ∂

∂y

)
(Ua(P, ε)h)

=∆h+ 4πiεy2

(
f1
∂h

∂x1
+ f2

∂h

∂x2
+ f3

∂h

∂y

)
+ 2πiεy2

(
∂f1

∂x1
+
∂f2

∂x2
+
∂f3

∂y

)
h

− 4π2ε2y2(f2
1 + f2

2 + f2
3 )h− 2πiεyf3h.

We conclude that

(4.4) L(e)h = ∆h+ εL(1)h+ ε2L(2)h,

where

L(1)h = 2πi

(
y2

(
∂f1

∂x1
+
∂f2

∂x2
+
∂f3

∂y

)
− yf3

)
+ 4πi[dh, α] ,

L(2)h = −4π2ε2[α, α]h .
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In particular we note that L(ε) is independent of the choice of the cusp a and as a function
of ε is a polynomial of degree two.

From now on, we fix Y0 in (2.6) large enough such that α̃ vanishes on cuspidal sectors
Fa(Y0), for all cusps a. Fix Y > Y0. We choose h ∈ C∞(R+) such that h(y) = 0 for y ≤ Y
and h(y) = 1 for y ≥ Y + 1. Then for s ∈ C and P ∈ F we define

ha(P, s) :=

{
h(y(σ−1

a P ))y(σ−1
a P )s if P ∈ Fa(Y0),

0 if P ∈ F \Fa(Y0).

We extend ha(·, s) to a Γ-invariant C∞-function defined for s ∈ C and P ∈ H3.

We also define

(4.5) Ωε = {s ∈ C | Re(s) > 1, s(2− s) 6∈ Spec(−L(ε))} .

We have the following Lemma, similar to [6, Lemma 6.1.4], [15, Lemma 2.1] or [18, Lemma
3.1]:

Lemma 4.2. For s ∈ Ωε, there exists a unique Da(P, s, ε) such that

(4.6) (L(ε) + s(2− s))Da(P, s, ε) = 0, Da(P, s, ε)− ha(P, s) ∈ L2(Γ\H3) .

Moreover, Da(P, s, ε) is holomorphic in s ∈ Ωε and real analytic in ε.

Proof. If such a solution exists, we write

ga(P, s, ε) = Da(P, s, ε)− ha(P, s) ∈ L2(Γ\H3) .

We apply (L(ε) + s(2− s)) to deduce

(4.7) (L(ε) + s(2− s))ga(P, s, ε) = Ha(P, s, ε) ,

where

(4.8) Ha(P, s, ε) = −(L(ε) + s(2− s))ha(P, s) .

We note that Ha is a Γ-invariant C∞-function in the variable P , which is moreover of com-
pact support when restricted to F . It also depends holomorphically on s ∈ Ωε. Moreover,
since L(ε) is equal to ∆ outside the support of α̃, we observe that Ha is independent from
ε, so that we can write it as Ha(P, s).

We can now use (4.8) as a definition for Ha(P, s), and for s ∈ Ωε, we can apply the resolvent
operator defined as

R(s, ε) = (L(ε) + s(2− s))−1

to obtain a unique function

ga(P, s, ε) = R(s, ε)Ha(P, s) ∈ L2(Γ\H3) .

Since there exist only finitely many values of s ∈ C with Re(s) > 1 for which s(2− s) is an
eigenvalue of −∆ = −L(0) and we know that L(ε) is a polynomial in ε given by (4.4), we
can use the arguments in [11, p. 66–67] to conclude that the resolvent R(s, ε) is holomorphic
for s ∈ Ωε and depends real analytically on ε. �
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Remark 4.3. For Re(s) > 2, the equation (4.6) agrees with

Da(P, s, ε) = Ua(ε)−1Ea(P, s, ε) .

Therefore, the conclusions of Lemma 4.2 hold for the Eisenstein series in the region s ∈ Ωε.

4.2. Behavior of λ0(ε) and the residue of Lab(s, ε) at s0(ε). We know that λ0(0) = 0
is a simple eigenvalue for L(0) = ∆. It is possible to apply Kato’s perturbation theory for
finite dimensional spaces [11, p. 68–70] for our operator L(ε) of the form (4.4), as explained
in [20, Section 4]. We conclude that for ε in a small interval around 0, λ0(ε) is real analytic
in ε and also λ0(ε) is a simple eigenvalue.

We let u0(P, ε) ∈ L2(Γ\H3, χε) be the normalised corresponding eigenfunction of −L̃(ε),
i.e.

(4.9) −L̃(ε)u0(P, ε) = λ0(ε)u0(P, ε) and

∫
Γ\H3

|u0(P, ε)|2dv = 1 .

We want to study the behaviour of λ0(ε) around ε = 0. We adapt the proof of [19, Lemma
2.1].

Lemma 4.4. We have that λ′0(0) = 0 and

λ′′0(0) =
8π2

vol(Γ\H3)
‖α‖22 .

Proof. We apply Theorem 4.1 with f(P ) = g(P ) = u0(P, ε) to obtain
(4.10)

λ0(ε) =

∫
Γ\H3

Gr(u0(·, ε), u0(·, ε))dv =

∫
Γ\H3

y2

(∣∣∣∣∂u0

∂x1

∣∣∣∣2 +

∣∣∣∣∂u0

∂x2

∣∣∣∣2 +

∣∣∣∣∂u0

∂y

∣∣∣∣2
)
dx1dx2dy

y3
.

In particular, we note that λ0(ε) ≥ 0 and λ0(ε) = 0 if and only if the u0(P, ε) is constant iff
ε = 0.

We differentiate (4.10) with respect to ε, yielding

(4.11) λ′0(ε) = 2

∫
Γ\H3

Gr

(
∂u0

∂ε
, u0(·, ε)

)
dv .

Setting ε = 0 we deduce that λ′0(0) = 0 since u0(P, 0) is a constant function. Differentiating
once again,

(4.12) λ′′0(ε) = 2

∫
Γ\H3

(
Gr

(
∂2u0

∂ε2
, u0(·, ε)

)
+ Gr

(
∂u0

∂ε
,
∂u0

∂ε

))
dv .

We define

w(P ) :=
∂u0

∂ε

∣∣∣∣
ε=0

.

Hence (4.12) and (2.12) give us

(4.13) λ′′0(0) = 2

∫
Γ\H3

Gr(w,w)dv = 2‖dw‖22.

since the mixed term vanished because u0(·, 0) is constant.
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Since u0(P, ε) ∈ L2(Γ\H3, χε), we know that u0(γP, ε) = χε(γ)u0(P, ε). Differentiating this
equation with respect to ε and then setting ε = 0, we obtain that for all γ ∈ Γ,

(4.14) w(γP ) = w(P ) +
2πi 〈γ, α〉√
vol(Γ\H3)

,

where we have used the fact that u0(P, 0) = 1/
√

vol(Γ\H3). Moreover, since we know that
λ0(0) = λ′0(0) = 0, we know from (4.9) that

(4.15) ∆w = 0 .

If we define β = dw − 2πivol(Γ\H3)−1/2α, then β is a harmonic, Γ-invariant 1-form such
that for all P ∈ H3 and γ ∈ Γ

(4.16)

∫ γP

P

β = 0 .

In other words, this means that 〈γ, β〉 = 0, for all γ ∈ Γ, and since we have a perfect pairing,
this implies that dw and 2πivol(Γ\H3)−1/2α are in the same cohomology class. The result
then follows from (4.13). �

Remark 4.5. From the proof above, we can deduce that w is of the form

w(P ) =
2πi√

vol(Γ\H3)

∫ P

Q

α+ CQ for some Q ∈ H∗,

where CQ is a constant.

Corollary 4.6. Let

Cα =
4‖α‖22

vol(Γ\H3)
.

Then
s0(ε) = 2− π2Cαε

2 +O(ε3) .

Proof. It follows immediately from Lemma 4.4 and the fact that λ0(ε) = s0(ε)(2− s0(ε)).
�

Lemma 4.7. We have that

Ress=s0(ε) Lab(s, ε) =
|Pa||Pb|[Γa : Γ′a]

πvol(Γ\H3)
+ ε

2i|Pa||Pb|[Γa : Γ′a]

vol(Γ\H3)

∫ b

a

α+O(ε2) .

Proof. From the Fourier expansion (3.3) of the Eisenstein series, we deduce∫
Pb

Ea(σbP, s, ε)dx1dx2 = δab|Pb|[Γa : Γ′a]ys +
π

s− 1
Lab(s, ε)y2−s.

We look at the residue at s = s0(ε) on both sides of the equality to obtain

πy2−s0(ε)

s0(ε)− 1
Ress=s0(ε) Lab(s, ε) = Ress=s0(ε)

∫
Pb

Ea(σbP, s, ε)dx1dx2

=

∫
Pb

ua(σbP, ε)dx1dx2 ,
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where
ua(P, ε) := Ress=s0(ε)Ea(P, s, ε) .

Since s0(ε) = 2 +O(ε2), it follows that

∂
(
Ress=s0(ε) Lab(s, ε)

)
∂ε

∣∣∣∣∣
ε=0

=
1

π

∫
Pb

va(σbP )dx1dx2 ,

where

va(P ) :=
∂ua(P, ε)

∂ε

∣∣∣∣
ε=0

.

We define

(4.17) wa(P, ε) = Ua(P, ε)−1ua(P, ε).

Then wa(P, ε) ∈ L2(Γ\H3) and it is an eigenfunction of L(ε) with eigenvalue λ0(ε). Differ-
entiating (4.17) with respect to ε and then setting ε = 0, we get

va(P ) = 2πi wa(P, 0)

∫ P

a

α̃+
∂wa(P, ε)

∂ε

∣∣∣∣
ε=0

.

We note that when P is in the cuspidal sector Fa(Y0), the right-hand side of the equality
above is zero, since α̃ is compactly supported, and L(ε) = ∆ in this region, hence wa(·, ε) is
constant in this region.

Now, as in (3.11), we know that ua(P, 0) =
|Pa|[Γa:Γ′a]
vol(Γ\H3) , so by using the results in Lemma

4.4 and Remark 4.5, we deduce that

va(P ) =
2πi|Pa|[Γa : Γ′a]

vol(Γ\H3)

∫ P

a

α .

Since α is a cuspidal one-form, from definition we know that∫
Pb

(∫ σbP

b

α

)
dx1dx2 =

∫
Pb

(∫ P

j∞
σ∗bα

)
dx1dx2 = 0 ,

hence

∂
(
Ress=s0(ε) Lab(s, ε)

)
∂ε

∣∣∣∣∣
ε=0

=
2i|Pa|[Γa : Γ′a]

vol(Γ\H3)

∫
Pb

∫ σbP

a

α =
2i|Pa||Pb|[Γa : Γ′a]

vol(Γ\H3)

∫ b

a

α .

�

5. Moment generating function

In this section we study the exponential sum∑
γ∈Tab(X)

χε(σaγσ
−1
b ) =

∑
γ∈Tab(X)

exp
(
2πiε

〈
σaγσ

−1
b , α

〉)
= [Γb : Γ′b]

∑
r∈Rab(X)

exp(2πiε〈r〉ab)
(5.1)

which is the moment generating function for the distribution of modular symbols. We
relate this sum to the generating series Lab(s, ε). We write the first few terms in the Taylor
expansion around ε = 0, thus obtaining expressions for the first and second moments of the
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distribution of modular symbols. Additionally, we show that the values in the set Rab(X)
become equidistributed modulo the lattice Λa as X →∞.

Firstly, we need the following lemma about bounds on vertical lines for Lab(s, 0, µ, ε).

Lemma 5.1. Fix some δ > 0. If 1 + δ < Re(s) < 2 + δ and s(2 − s) bounded away from
spectrum of L(ε), then, uniformly in ε,

(5.2) Lab(s, 0, µ, ε)�δ (1 + |µ|)2−Re(s)+δ|s| .

Proof. For µ = 0, we use a similar argument of that in [23, p. 655] (which follows from the
Maaß–Selberg relations in H3 [6, p. 110]). We have that |φab(s, ε)| = O(1) in the region
Re(s) > 1 + η and away from the spectrum of L(ε). Now, the result follows from (3.4).

When µ 6= 0 and Re(s) > 1, we use Lemma 3.1. Choose w = 2 + 2δ + it, where s = σ + it.
Then Stirling’s formula gives us that the contribution from the Gamma factors is O(|s|).

Next, we want to study the contribution from the integral. We use Lemma 4.2 to deduce
that for Re(s) > 1 and s(2− s) bounded away from the spectrum of L(ε),∫

F

|Ea(P, s, ε)Eb,µ(P,w, ε)|dv =

∫
F

|Da(P, s, ε)Eb,µ(P,w, ε)|dv

≤
∫

F

|ha(P, s)Eb,µ(P,w, ε)|dv +

∫
F

|(Da(P, s, ε)− ha(P, s))Eb,µ(P,w, ε)|dv .

The second integral is bounded by

‖g(σ−1
a P, s, ε)‖L2‖Eb,µ(P,w, ε)‖L2 � 1 .

It remains to study the first integral. It suffices to concentrate on the cuspidal sector Fa(Y )
since ha(P, s) vanishes everywhere else. We get∫

Fa(Y )

|ha(P, s)Eb,µ(P,w, ε)|dv =

∫ ∞
Y

∫
Pa

|ysEb,µ(σaP,w, ε)| dv .

Now, with our choice of w = 2 + 2δ+ it, we see that Eb,µ(σaP,w, ε) decays exponentially in
the cusp, so the integral above is indeed bounded. This in turn implies that∫

F

|Ea(P, s, ε)Eb,µ(P,w, ε)|dv � 1 ,

and hence we obtain the desired upper bound for Lab(0, µ, s, ε). �

We obtain the following expression for the moment generating function by using a similar
method to [16, Section 4].

Lemma 5.2. There exists an absolute constant ν > 0 depending on the spectral gap of ∆
such that, uniformly for ε small enough,∑

γ∈Tab(X)

χε(σaγσ
−1
b ) =

X2s0(ε)

s0(ε)
Ress=s0(ε) Lab(s, ε)

(
1 +O(X−ν)

)
.
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Proof. Let φU : R→ R be a family of smooth nonincreasing functions with

(5.3) φU (t) =

{
1 if t ≤ 1− 1/U,

0 if t ≥ 1 + 1/U,

and φ
(j)
U (t) = O(U j) as U →∞. For Re(s) > 0, we consider the Mellin transform

(5.4) RU (s) =

∫ ∞
0

φU (t)ts
dt

t
.

We can easily see that

(5.5) RU (s) =
1

s
+O

(
1

U

)
as U →∞

and for any c > 0

(5.6) RU (s) = O

(
1

|s|

(
U

1 + |s|

)c)
as |s| → ∞ ,

where the last estimate follows from repeated partial integration. Now we use the Mellin
inversion to obtain∑

γ∈Tab

χε(σaγσ
−1
b ) φU

(
|c|2

X2

)
=
∑
γ∈Tab

χε(σaγσ
−1
b )

1

2πi

∫
Re(s)=3

X2s

|c|2s
RU (s)ds

=
1

2πi

∫
Re(s)=3

Lab(s, ε)X2sRU (s)ds .

Next, we recall Lemma 5.1 and equation (5.6) to deduce that the last integral is absolutely
convergent. We want to move the line of integration to Re(s) = h, where

h =
2 max(s1(0), 1) + 2

3
.

Then for ε small enough, s1(ε) < h < s0(ε). We integrate along a box of height T and let
T →∞. Indeed, the polynomial growth on vertical lines of Lab(s, ε) guaranteed by Lemma
5.1, together with equation (5.6), give us

lim
T→∞

∫
Re(s)=3
|t|≥T

Lab(s, ε)X2sRU (s)ds = lim
T→∞

∫
Re(s)=h
|t|≥T

Lab(s, ε)X2sRU (s)ds = 0 ,

and

lim
T→∞

∫
h≤Re(s)<2

Im(s)=T

Lab(s, ε)X2sRU (s)ds = lim
T→∞

∫
h≤Re(s)<2
Im(s)=−T

Lab(s, ε)X2sRU (s)ds = 0 .

We conclude that

1

2πi

∫
Re(s)=3

Lab(s, ε)X2sRU (s)ds =
1

2πi

∫
Re(s)=h

Lab(s, ε)X2sRU (s)ds

+ Ress=s0(ε)

(
Lab(s, ε)X2sRU (s)

)
.

Setting c = 3 in (5.6), we observe that∫
Re(s)=h

Lab(s, ε)X2sRU (s)ds� X2hU3 .
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Now, (5.5) gives us

(5.7) Ress=s0(ε)

(
Lab(s, ε)X2sRU (s)

)
=
X2s0(ε)

s0(ε)

(
Ress=s0(ε) Lab(s, ε) +O

(
1

U

))
.

Since we want this to be the main contribution, we choose U = Xa, where

a =
2−max(s1(0), 1)

4
.

With this choice, for ε small enough, we get

(5.8)
∑
γ∈Tab

χε(σaγσ
−1
b ) φU

(
|c|2

X2

)
=
X2s0(ε)

s0(ε)

(
Ress=s0(ε) Lab(s, ε) +O(X−a)

)
.

Setting ε = 0, using Lemma 3.3, we obtain∑
γ∈Tab

φU

(
|c|2

X2

)
= X4

(
|Pa||Pb|[Γa : Γ′a]

2πvol(Γ\H3)
+O(X−a)

)
.

We now choose φ1
U and φ2

U as in (5.3) with the further requirements that φ1
U (t) = 0 for

t ≥ 1 and φ2
U (t) = 1 for 0 ≤ t ≤ 1. Then∑

γ∈Tab

φ1
U

(
|c|2

X2

)
≤

∑
γ∈Tab(X)

1 ≤
∑
γ∈Tab

φ2
U

(
|c|2

X2

)
,

so the previous two equations give us

(5.9) #Tab(X) = X4

(
|Pa||Pb|[Γa : Γ′a]

2πvol(Γ\H3)
+O(X−a)

)
.

Also, from the definition of φU ,

∑
γ∈Tab

χε(σaγσ
−1
b ) φU

(
|c|2

X2

)
=

∑
γ∈Tab(X)

χε(σaγσ
−1
b ) +O

(
#

{
γ ∈ Tab : 1− 1

U
≤ |c|

2

X2
≤ 1 +

1

U

})
.

(5.10)

But now we use (5.9) to bound the size of the error term

#

{
γ ∈ Tab : 1− 1

U
≤ |c|

2

X2
≤ 1 +

1

U

}
= Tab

(
X

√
1 +

1

U

)
− Tab

(
X

√
1− 1

U

)
= O

(
X4−a/2

)
.

The conclusion follows from (5.8) and (5.10). �

Let

F (ε) = Ress=s0(ε) Lab(s, ε)

and we write its Taylor expansion around ε = 0 as F (ε) =
∑
k≥0 Ckε

k. So far we have shown
that

C0 =
|Pa||Pb|[Γa : Γ′a]

πvol(Γ\H3)
and C1 =

2i|Pa||Pb|[Γa : Γ′a]

vol(Γ\H3)

∫ b

a

α .

We note that the coefficients Ck were essentially computed by Petridis–Risager in [18],
allowing them to obtain all moments for modular symbols.
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Corollary 5.3. If ε ≥ X−ν/4, for some ν > 0 depending on the spectral gap, then

1

#Tab(X)

∑
γ∈Tab(X)

χε(σaγσ
−1
b ) = 1+ε

(
2πi

∫ a

b

α

)
+ε2

(
−2π2 logXCα +Dα,ab

)
+O(X−ν) ,

where

(5.11) Dα,ab = 2π2Cα +
C2

C0
.

Remark 5.4. From the formula above we observe that computing the variance shift Dα,ab is

equivalent to finding the second term in Laurent series expansion of ∂2

∂ε2Lab(s, ε)
∣∣∣
ε=0

, or in

other words finding the first two terms in the Laurent expansion of the Goldfeld Eisenstein
series E2

a(P, s). For the case of H2 this is done in [18] and their methods could be extended
to work in H3 as well.

As a consequence of our work so far, we can show that Rab(X) is equidistributed in the
fundamental domain Pa as X →∞.

Proposition 5.5. There exists ν > 0 depending on the spectral gap for ∆, such that for all
µ ∈ Λ◦a, ∑

r∈Rab(X)

e(〈µ, r〉) = δ0(µ)
|Pa||Pb|[Γa : Γ′a]

2πvol(Γ\H3)[Γb : Γ′b]
X4 +O

(
(1 + |µ|)X4−ν) .

In particular, for any continuous function h : C/Λa → C,∑
r∈Rab(X) h(r)

#Rab(X)
→
∫
C/Λa

h(z)dz as X →∞ .

Proof. From Lemma 2.1, the generating series for the exponential sum is∑
r∈Rab(X)

e(〈µ, r〉)
|c|2s

=
1

[Γb : Γ′b]

∑
γ∈Tab

e (〈µ, γ∞〉)
|c|2s

=
1

[Γb : Γ′b]
Lab(s, µ, 0, 0) .

By inverting γ in the series above, we note that Lab(s, µ, 0, , 0) = Lba(s, 0,−µ, 0). We use a
contour integration argument similar to the one in the proof of Lemma 5.2. The polynomial
growth of Lba(s, 0,−µ, 0) on vertical lines is guaranteed by Lemma 5.1, whilst by Lemma
3.3 we know that Lba(s, 0, µ, 0) has a pole at s = 2 if and only if µ = 0. Finally, from (5.9)
we know that

#Rab(X) = X4

(
|Pa||Pb|[Γa : Γ′a]

2πvol(Γ\H3)[Γb : Γ′b]
+O(X−ν)

)
.

The second claim follows from the generalised Weyl equidistribution criterion. �

6. Normal distribution of modular symbols

We now have all the ingredients to prove that modular symbols have asymptotically a
normal distribution. We make use of the Berry–Esseen inequality and of our results about
the behaviour of s0(ε) and Lab(s, ε).

We recall the Berry–Esseen inequality, see [24, Theorem II.7.16].
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Theorem 6.1. If X is a real valued random variable and T > 0, then

(6.1) sup
z∈R

∣∣∣∣∫ z

−∞
e−t

2/2dt− P(X < z)

∣∣∣∣� 1

T
+

∫ T

−T

∣∣∣∣∣e−t
2/2 − E(exp(itX))

t

∣∣∣∣∣ dt .
For γ ∈ Tab(X), we define the random variable

(6.2) Aγ =

√
1

Cα logX

〈
σaγσ

−1
b , α

〉
where γ is chosen uniformly at random from Tab(X).

We fix t := 2πε
√
Cα logX. Then, by definition,

E(exp(itAγ)) =
1

#Tab(X)

∑
γ∈Tab(X)

χε(σaγσ
−1
b ) .

Fix some δ > 0. We choose T = (logX)1/2−δ and apply Theorem 6.1 for the random vari-
ables Aγ . We split the integral on the right-hand side of (6.1) into three ranges, depending
on the size of t. All the implied constants are uniform in ε (and hence in t).

(1) Small |t|. Suppose |t| ≤ X−δ, for some small δ. Using exp(iθ) = 1 + O(θ) and the
bounds for

〈
σaγσ

−1
b , α

〉
provided by Theorem 3.4, we obtain

E(exp(itAγ)) = 1 +O

 t

#Tab(X)
√

logX

∑
γ∈Tab(X)

|
〈
σaγσ

−1
b , α

〉
|


= 1 +O

(
t
√

logX
)
.

Also, when |t| ≤ X−δ, we see that

e−t
2/2 = 1− t2

2
+O(t4) = 1 +O

(
tX−δ

)
.

Therefore∫
|t|≤X−δ

∣∣∣∣∣e−t
2/2 − E(exp(itAγ))

t

∣∣∣∣∣ dt�
∫
|t|≤X−δ

√
logX dt� X−δ/2 .

(2) Medium |t|. Suppose X−δ ≤ |t| ≤ (logX)δ, where δ > 0. Using that s0(ε) =
2− π2Cαε

2 +O(ε3), we see that

E(exp(itAγ)) =
2X2s0(ε)−4

s0(ε)
(1 +O(ε))

= exp
(
logX(−2π2Cαε

2 +O(ε3)
)

(1 +O(ε))

= e−t
2/2(1 +O(ε3 logX) +O(ε))

= e−t
2/2 +O

(
e−t

2/2|t|3√
logX

+
e−t

2/2

(logX)1/2−δ

)
.
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Hence the contribution from such t is∫
X−δ<|t|<(logX)δ

∣∣∣∣∣e−t
2/2 − E(exp(itAγ))

t

∣∣∣∣∣ dt�
∫
X−δ<|t|<(logX)δ

(
e−t

2/2t2

(logX)1/2
+

e−t
2/2

|t|(logX)1/2−δ

)
dt

� (logX)−1/2+δ .

(3) Large |t|. Suppose (logX)δ ≤ |t| ≤ (logX)1/2−δ. Similarly as in the previous case,

E(exp(itAγ))� e−t
2/2+O(|t|3(logX)−1/2) � e−t

2/4 � e−(logX)δ/2 .

Therefore, the contribution from large |t| is bounded by∫
(logX)δ≤|t|≤(logX)1/2−δ

e−(logX)δ/2

|t|
dt� (logX)−1/2 .

Putting everything together, we conclude the result in Theorem 1.4(a). Parts (b) and (c) of
Theorem 1.4, where the results about the first and second moments are stated, follow easily
from Corollary 5.3.

7. Results for quadratic imaginary fields

So far, we have described our results for the general case of a Kleinian group Γ. In this section
we apply our results to Bianchi groups and their congruence subgroups. Let K a quadratic
number field with discriminant dK . The arithmetic properties the groups PSL2(OK) and
their congruence subgroups, as well as the geometry of the corresponding quotient spaces,
are thoroughly described in [6, Chapter 7], while the theory of Eisenstein series for Γ =
PSL2(OK) is developed in [6, Chapter 8].

The ring of integers OK has the Z-basis consisting of 1 and ω, where

ω =
dK +

√
dK

2
.

We denote by PK a fundamental domain for this lattice.

The zeta function ζK(s) of K is for Re(s) > 1 defined by

ζK(s) =
∑
a

1

N(a)s
,

where the sum is over the non-zero ideals of OK and the norm of a is N(a) = |OK/a|.

As mentioned in the introduction, Cremona has several results about modular symbols
associated to quadratic imaginary number fields. He uses them to compute spaces of modular
forms and to establish an arithmetic correspondence between elliptic curves and cusp forms,
see [2], [3], [4]. For consistency reasons, we will use the notation used in his work.

For technical reasons, we assume the K has class number one. This is not a vital restriction,
but it allows us to obtain nice arithmetic descriptions of the cusps and easier formulae
relating modular symbols to L-functions. Let n be a nonzero ideal in the ring of integers
OK . We work with the congruence subgroup

Γ0(n) :=

{(
a b
c d

)
∈ PSL2(OK) : c ∈ n

}
.
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A basis for the left-invariant differential 1-forms on H3 is chosen to be

(7.1) β =

(
−dz
y
,
dy

y
,
dz

y

)
.

Let F : H3 → C3 be a vector-valued function which we can write as F = (F0, F1, F2), then
we define the differential 1-form

(7.2) F · β :=
1

y
(−F0dz + F1dy + F2dz) .

Definition 7.1. Let F : H3 → C3 be a vector-valued function and γ ∈ GL2(C). Then we
define a new function (F |γ) : H3 → C3 by

(F |γ)(P ) := F (γP )j(γ;P ) ,

where

j(γ;P ) =
1

|r|2 + |s|2

r2 −2rs s2

rs |r|2 − |s|2 −rs
s2 2rs r2


with r = cz + d and s = cy.

This definition ensures that the differential F · β is invariant under γ if and only if F |γ =
F .

Definition 7.2. A cusp form of weight 2 for Γ0(n) is a vector-valued function F : H3 → C3

such that

(1) F · β is a harmonic 1-form;

(2) F |γ = F , for all γ ∈ Γ0(n);

(3) For all γ ∈ PSL2(OK) and y ≥ 0,∫
PK

(F |γ)(z, y)dz = 0 .

We denote the space of cusp forms of weight 2 for Γ0(n) by S(n). We note that F ∈ S(n) if
and only if F ·β is a cuspidal 1-form for X0(n) := Γ0(n)\H∗, where H∗ = H3 ∪K ∪{∞}. In
fact, the map

S(n)→ H1
cusp(X0(n),C)

F 7→ F · β
is an isomorphism.

For F ∈ S(n), we have the Fourier expansion

(7.3) F = (F0, F1, F2) =
∑

0 6=α∈OK

c(α)y2K

(
4π|α|y√
|dK |

)
ψ

(
αz√
dK

)
where ψ(z) = e(z + z) and

K(y) =

(
− i

2
K1(y),K0(y),

i

2
K1(y)

)
for y > 0 and K0, K1 the K-Bessel functions.
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The theory of cusp forms and associated L-functions, Hecke operators, newforms etc. is
similar to the classical Atkin–Lehner theory over Q. We briefly recall the elements we need
for our exposition.

For primes π in OK which do not divide the level n, the Hecke operator Tπ sends the cusp
form with Fourier coefficients c(α) to one with coefficients c′(α), where c′(α) = N(π)(απ) +
c(α/π), where c(α) = 0 if α 6∈ OK . As in the classical case, a newform in S(n) is an
eigenform for all Hecke operators Tπ, for π not dividing n, which is not induced by a form
in S(m), for any level m properly dividing n.

Secondly, let e a divisor of n and e is a generator for e. Then the Atkin–Lehner operator

We on S(n) is given by the action of any matrix of the form

(
ae b
cN de

)
which has determi-

nant e. Then this operator is an involution and it commutes with the action of all Hecke
operators.

Let ε be a unit in O∗K and Iε denote the matrix

(
ε 0
0 1

)
. The action of Iε on H3 sends (z, y)

to (εz, y) and if F ∈ S(n) has Fourier coefficients c(α), then F |Iε has Fourier coefficients

c(εα). Since

(
ε2 0
0 1

)
and

(
ε 0
0 ε−1

)
give birth to the same action, but the latter belongs

to Γ0(n), we must have that c(α) = c(ε2α), for all units ε ∈ O∗K . Hence if ε is a generator for
the unit group O∗K , then Iε induces an involution of S(n) which commutes with the Hecke
operators, hence we can split S(n) into two eigenspaces

S(n) = S+(n)⊕ S−(n) .

Newfroms in S+(n) are called plusforms, and their Fourier coefficients satisfy c(α) = c(εα),
for all α ∈ O∗K . Hence they depend only on the ideal (α). So if F ∈ S+(n), we attach to F
the L-function

L(F, s) =
∑
a

c(a)

N(a)s
.

Since the Fourier coefficients c(a) are multiplicative, we obtain the Euler product

L(F, s) =
∏
p

(1− c(p)N(p)−s + χ(p)N(p)1−2s)−1, where χ(p) =

{
0 if p | n ,
1 if p - n .

Similar to classical case, one can deduce the Ramanujan bound |c(p)| ≤ 2N(p)1/2, from
which it follows that L(F, s) converges for Re(s) > 3/2.

We now consider additive twists of this L-function. Fix r = a/c ∈ K. If F is a plusform,
then we define L(F, s, r) as

L(F, s, r) :=
∑

06=α∈OK

c(α)

N(α)s
ψ

(
αr√
dK

)
=
∑
(α)

c((α))

N((α))s
ψ̃

(
αr√
dK

)
where the second sum is over all ideals (α) and

ψ̃(z) :=
1

|O∗K |
∑
ε∈O∗K

ψ(εz)

is invariant over generators of an ideal.
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We form the Mellin transform of F by multiplying by y2s−2 and integrating along a vertical
imaginary axis. For s ∈ C and r ∈ K, we define

Λ(F, s, r) :=

∫ j∞

r

y2s−2F · β =

∫ ∞
0

y2s−2F1(r, y)
dy

y
.

The rapid decay of F (z, y) in the cusps ensures that Λ(F, s, r) is an entire function of
s ∈ C.

We note that if F is a plusform, then we can write modular symbols as central values of
twisted L-function:

(7.4) 〈r〉 = Λ(F, 1, r) =

∫ ∞
r

F · β .

We obtain analytic continuation and functional equation for L(F, s, r).

Lemma 7.3. Let F be a plusform in S(n). Then

(a) For Re(s) > 3/2, we have

Λ(F, s, r) =
1

4

(
|c|
√
|dK |

2π

)2s

Γ(s)2 L(F, s, r) .

(b) Write n = ef, where f = n + (c). Let e = (e). Denote by we the eigenvalue of the
Fricke involution We acting on F . Then we have the following functional equation:

Λ(F, s, a/c) = −weN(e)1−sΛ

(
F, 2− s,−ea

c

)
,

where ea is the inverse of ea in (OK/(c))∗.

(c) With the same notation, we have 〈a/c〉 = −wε〈−ea/c〉.

We now quote [4, p. 415] and note that if F is a plusform in S2(n), then the image of the
map

IF : Γ0(n)→ C , IF (γ) =

∫ γA

A

F · β

is a discrete, nontrivial subgroup of R, hence of the form Ω(F )Z, for some real Ω(F ).
In [4], Cremona provides an algorithm for computing Ω(F ). We show that for a fixed
newform F , the values in the image of the map IF are normally distributed with the required
normalisation and ordering.

We have the following description of equivalent Γ0(n)-equivalent points in K, as in [2,
Proposition 4.2.2] or [3, Lemma 2.2.7]:

Proposition 7.4. Let p1
q1
, p2q2 ∈ K be written in their lowest terms. The following are

equivalent:

(1) There exists γ ∈ Γ0(n) such that γ
(
p1
q1

)
= p2

q2
;

(2) There exists u ∈ O∗K such that s1q2 ≡ u2s2q1(mod (q1q2) + n), where pksk ≡
1(mod (qk)), for k = 1, 2.
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Hence we can provide the following description for the inequivalent cusps for Γ0(n), where
n is square-free. For each ideal d|n, we fix some d ∈ OK such that (d) = d. Then a complete
set of inequivalent cusps are given by ad = 1/d with d|n. If d = n, then 1/d is equivalent to
the cusp at infinity. Moreover,

R∞d =
{a
c

mod PK : a ∈ (OK/(c))
∗, (c) + n = d

}
.

and

〈r〉∞d =

∫ r

1/d

F · β =

∫ j∞

1/d

F · β + 〈r〉.

Also, for all cusps d, we have that [Γd : Γ′d] = |O∗K |/2. In particular, |O∗Q(i)| = 4, |O∗Q(
√
−3)
| =

6 and |O∗K | = 2 for all other quadratic imaginary number fields.

We note that we now have all the ingredients to derive Corollary 1.8 from Theorem 1.4.
Indeed, from [6, Theorem 6.1.1] we see that the covolume of PSL2(OK) is

vol(PSL2(OK)) =
|dK |2

4π2
ζK(2)

and similarly as in the 2-dimensional case, we can deduce

[PSL2(OK) : Γ0(n)] =
∏
p|n

(1 + |p|) .

Finally, the Petersson norm of F is given by

‖F‖2 = 〈F · β, F · β〉 =

∫
Γ\H3

(2|F1|2 + |F2|2 + 2|F3|2)dv .

Putting all together, we deduce that the constant CF in Corollary 1.8 is given by

(7.5) CF =
4π2‖F‖2

|dK |2ζK(2)
∏

p|n(1 + |p|)
.
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