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Abstract 

A challenge for the brain is to flexibly deal with the vast variety of potential situations 

encountered in a lifetime. One way to deal with this challenge is to distribute multiple 

representations across the same neurons, another is to allocate distinct subpopulations for 

different contexts. Posterior parietal cortex (PPC) has been implicated in motor planning, 

decision making and navigation. Are the same PPC neurons involved in these diverse functions, 

and if so, how are these processes shared across the population? I recorded from neurons in PPC 

using two-photon calcium imaging and compared their activity in mice trained to perform two 

different visual detection tasks. In one task, the mouse turned a steering wheel to report whether 

a visual grating was on the left or right side. In the other, the mouse navigated through a virtual 

T-maze using a spherical treadmill and turned at the end to report whether a grating appeared 

on the left or right wall. Both tasks involved visual detection, choice, and motor execution, but 

many neurons were selectively active only in either task. Running could not fully account for task 

selectivity. Instead, selectivity was related to context more generally: activity during the task was 

well-predicted by activity during passive conditions on the same apparatus. Finally, I related each 

neuron’s task event-related activity to ask whether neurons active in both tasks shared choice 

and stimulus preferences. Neurons did not share choice preferences across tasks, suggesting that 

choice selectivity is not represented abstractly in single neurons, however, there was some 

evidence that stimulus representations were shared across tasks. These results indicate that PPC 

allocates distinct neuronal populations for different purposes, determined by the context in 

which a task is performed. Within each task, event-evoked activity of individual neurons may be 

governed by multi-dimensional characteristics specific to each context. 

  



6 
 

 

  



7 
 

 

Impact statement  

The impact of the following work can be viewed with regards to two domains, one for the 

neuroscience of decision-making, and the other for the design of intelligent artificial systems.  

While all animals encounter a multitude of potential tasks in our lives and easily switch between 

them, most studies of decision-making study only one task at a time. The choice of task design can 

complicate interpretation of the neural signals associated with each task. Instead, here I train the 

same mice to perform two variants of decision-making tasks and employ large-scale neural 

recordings at single neuron resolution to directly compare the activity of the same neurons 

during behavioral performance of these tasks. In doing so, I am able to explicitly test to what 

extent hypothesized roles attributed in the past hold up when comparing two tasks which 

supposedly require the same cognitive processes. In doing so, these experiments can test key 

assumptions of how I assume a given brain region is involved in a particular process, and reveal 

which aspects of previous findings were reducible to the specific task design and related 

confounds. Further implications are addressed in the General Discussion. 

With regards to machine learning and artificial intelligence research, research in these areas take 

inspiration from findings from neuroscience as an inspiration of how a biological system — 

namely, the brain — has “solved” a given problem. A key aim of recent work in this field has been 

along themes known as “task flexibility/switching”, “continual/lifelong learning” and “transfer 

learning”. The key proposition is that in order to design truly “intelligent” artificial systems, 

neural networks need to be able to wield a key element of “higher” animal cognition, that of 

flexibility and generalization over tasks. Deep/recurrent neural networks have shown 

remarkable performance in various benchmarks, but are often specialized to perform one task at 

a time, and fail dramatically when tested on another task that would be expected to be very 

similar. When trained to learn the second task, the phenomenon of “catastrophic forgetting” 

occurs such that the ability to learn the first task is forgotten. Humans and other mammals are 

capable of juggling multiple tasks and switching between them much faster than neural networks 

can, so it is instructive to examine the activity of the same population of neurons across tasks to 

see how in a biological system, individual neurons change their activity as a function of task, in 

order to instruct how to design better neural networks to acquire the same capacities.  

Finally, work here has been shared with the scientific community at various conferences 

including Cosyne, Federation of European Neuroscience Societies, Society for Neuroscience and 

Champalimaud Research Symposium.  
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General Introduction 

Perceptual decision-making requires a series of processes from sensation to decision to action. 

Sensory inputs can be infinitely variable from moment to moment, but organisms are still able to 

extract meaningful commonalities from sensory inputs in order to generate a stable percept. In 

decision-making tasks, subjects are able to employ knowledge of the structure of the task to make 

a decision on the basis of this percept, and report this decision in the form of an action. These 

steps involve different layers of generalization and discrimination, and through experience and 

training, subjects can extract meaningful regularities and discard irrelevant details.  

The posterior parietal cortex (PPC) has been argued over the years to be a key locus in 

sensorimotor processing, in part due to its anatomical location neighbored by visual and 

somatomotor cortices, and its reciprocal connectivity to those regions. On the basis of this 

historical characterization, diversity of reported signals therein, and some evidence for its 

capacity for remapping based on task demands, PPC could thus be a region which converts 

arbitrary sensory input into an abstract representation of choice, one that is divorced from both 

the minutiae of the sensory input and the particulars of the motor output.  

Historical overview of PPC 

The role of posterior parietal cortex (PPC) in decision-making has been attributed to a wide range 

of proposed functions. Early reports supported the view of as a sensorimotor “association” area, 

finding that humans with parietal lobe damage did not have primary sensory or motor deficits, 

but issues specifically connecting the two (Bálint, 1909). This impairment was called “optic 

ataxia”, characterized by deficits in making visually-guided reaches to targets that were not 

reducible to visual deficits per se, as patients were still able to judge the spatial location of visual 

objects in the impaired hemifield (reviewed in Kerhkoff, 2001). The proposed function of the 

parietal cortex in making visually-guided movements was corroborated by later work in 

recording from neurons in the macaque parietal cortex. Neurons in this area responded during 

eye movements to visual targets, but importantly these responses were not engaged by passive 

visual stimulation or spontaneous eye movements (Mountcastle et al., 1975). Later work found 

that this activity was not just reflective of ongoing motor activity but also preceded it, after finding 

that neurons maintained activity during the delay period of a delayed saccade task when no visual 

stimulus was present (Andersen et al., 1987). This activity was interpreted to be reflective of an 

intended motor plan to act (Gnadt & Andersen, 1988). Further studies have found this 
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“intentional” activity to be effector-specific, with different neurons showing activity preceding 

reaches vs saccades; specifically, saccade plans were located in the lateral intraparietal area (LIP) 

and reach plans in an adjacent area named “parietal reach region” (Snyder et al. 1997).   

Pioneering work that followed found that in a sensory evidence accumulation task, LIP did not 

just reflect the intended plan to move, but seemed to integrate noisy sensory evidence in support 

of the subject’s eventual choice with the slope of the “ramping” activity increasing with the 

strength of evidence (Shadlen & Newsome, 1996; 2001). From these works, decision-related 

activity was interpreted in an intentional framework, by which decision-related activity employs 

the very neurons involved in the eventual motor action (reviewed in Shadlen et al. 2008). This 

view would argue that decision-related activity in PPC can differ depending on which form the 

action takes. Although thus less flexible to different types of actions, particularly those that have 

not yet been mapped to a specific motor form, this setting would be efficient for action, as abstract 

choices do not need to be “held in mind” to map to different actions depending on task. This 

interpretation predicts PPC might show different activity depending on task requirements, i.e. 

whether the relevant action is known beforehand.  

Another line of work has attempted to discern whether decision-related activity in LIP is 

modulated by (visuo)spatial sensory information per se. Soon after initial studies finding neural 

correlates of motor plans, a different study reached the opposite conclusion, finding parietal 

neurons that had sensory responses in the absence of movement (Robinson et al. 1978). In the 

evidence accumulation work above, the saccadic targets are visual stimuli, and the spatial location 

of one of the saccadic choice targets was chosen as the location in which the recorded neuron 

showed the most persistent activity during the delay period of their task. Activity built up for 

choices into the neuron's receptive field and did not for choices to the other target out of its 

receptive field (Shadlen & Newsome, 2001). However, in this study, the choice targets were visual 

stimuli, and thus neurons may have shown activity due to classic retinotopic preferences. Further 

studies have shown that by placing the sensory stimulus to be integrated in the neuron’s receptive 

field, LIP neurons also show modulation by this stimulus (reviewed in Freedman & Assad, 2016). 

In particular, a clever design that dissociated perceptual decision and motor plan related 

processes revealed that neurons were modulated by direction of the stimulus motion and not 

direction of the saccade (Bennur and Gold 2011). Lastly, more recent work has reported “mixed 

selectivity” in PPC: that decision-relevant activity is superimposed with decision-irrelevant 

activity responsive to visual stimuli (Meister et al. 2013; Park et al. 2014). 
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In any case, initial studies of evidence accumulation in LIP have been hugely influential in 

inspiring a wave of studies into decision-making in rodents. The similarity of primate and rodent 

PPC is unclear given the large evolutionary gap between these two species (Belmonte et al., 2015, 

Sereno et al., 2014). Nevertheless, even if these regions should not be inferred to be anatomically 

homologous, studies in macaque LIP have been instructive in shaping the direction of research in 

rodent PPC, to investigate whether the same functions can be found there. As in other species, 

posterior parietal cortex in rodents is defined according to its proximity with respect to visual 

and somatosensory cortices and its connectivity to other regions, particularly the lateral 

posterior nucleus of the thalamus (Hovde et al. 2019; Olsen and Witter 2016). Here I briefly 

review the existing literature on the function of PPC. 

The role of PPC in decision-making 

Inspired by neural correlates of evidence accumulation in parietal cortex in macaques, a wealth 

of studies have recorded in rodent PPC during decision-making tasks to look for neural correlates 

of decisions there as well. These tasks used a range of sensory modalities, including visual (e.g. 

Goard et al. 2016; Raposo et al. 2014; Pho et al. 2018; Pinto et al., 2019; Scott et al., 2015), auditory 

(e.g. Song et al. 2017; Zhong et al. 2019; Raposo et al. 2014; Runyan et al. 2017; Hanks et al. 2015; 

Akrami et al. 2018), tactile (e.g. Nikbakht et al. 2018; Mohan et al. 2018), and combinations of the 

above. Recently, many studies have also employed virtual reality techniques to study navigation-

based decision tasks, the most common being some variant of a visually guided two-alternative 

forced-choice (2AFC) decision task embedded in a virtual “T-maze”. Across studies using different 

task designs, authors have indeed reported choice signals in PPC, with some finding choice-

selective “sequences” in VR (Harvey et al. 2012) or ramping accumulation of evidence (Hanks et 

al. 2015; Pinto et al. 2019; Koay et al. 2019). However, reminiscent of macaque LIP studies, many 

studies have also observed decision-relevant visual sensory activity (Itokazu et al. 2018; Goard 

et al. 2016; Pho et al. 2018), although some sensory responses persist in passive conditions 

(Steinmetz et al. 2019; Pho et al. 2018). The occurrence of visual-related activity may not be a 

surprise given that PPC in rodents overlaps with higher visual areas A, RL and AM (Wang and 

Burkhalter 2007; Wang et al. 2011), which have been shown to have retinotopic visual responses 

(e.g. de Vries et al. 2020; Andermann et al. 2011). In any case, within decision-making tasks, visual 

sensory activity is often present in tandem with motor choice related activity (Goard et al. 2016; 

Steinmetz et al. 2019; Itokazu et al. 2018). These results suggest in rodents, like in macaque LIP 

above, there is also reason to believe that in perceptual decision-making, PPC is involved in 

neither sensation nor action alone, but sensorimotor interactions.  
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The role of PPC in navigation 

In parallel, several studies have probed the role of PPC in freely-moving rodents in navigation. In 

these studies, primarily conducted in freely-moving rats, activity of single PPC neurons was found 

to reflect self-motion signals such as egocentric heading and movement motifs, such as turns and 

forward running (Wilber et al. 2014; McNaughton et al. 1994; Whitlock et al. 2012; Chen et al. 

1994) or movement sequences (Nitz, 2006). These signals are usually interpreted to aid in route 

planning.  

In light of apparent choice signals in PPC, the relationship between choice signals and self-motion 

signals in navigation experiments is initially unclear. There may be common ground; Calton and 

Taube (2009) dissociated navigation as consisting of three processes, (1) orientation in space; (2) 

manipulation of spatial representations to enable route planning and (3) execution of the plan. 

This process has many parallels to how many would break down the decision process: sensation, 

choice and action, i.e. motor execution (reviewed in Schall, 2001). In both cases, the animal must 

sense the world, including relevant visual cues, and act based on this information. Navigation can 

indeed be interpreted as a sequence of decisions; even in the open-field, rodents are goal-

oriented, guided by randomly scattered rewards in the environment. Further, when faced with a 

bifurcation point in a maze, rats show characteristics of deliberative decision-making, in 

behaviors called “vicarious trial-and-error” whereby the rat will look one down one possible path 

then the other, before committing to a choice (reviewed in Redish, 2016). Thus, perhaps self-

motion signals can also be viewed as a decision-related motor plan for where to move next, and 

indeed some reports have found that self-motion activity precedes the movement by several 

hundred milliseconds (Whitlock et al. 2012).  

In support of mixed sensorimotor processing in PPC, the self-motion signals reported above are 

modulated by sensory factors as well. Movement-related activity sometimes persists during 

navigation in the dark (Nitz 2006; Nitz et al., 2012; Chen et al. 1994), but many found an 

interaction between these signals and visual stimulation (Wilber et al. 2014) or the spatial 

location of the animal within the environment (McNaughton et al. 1994), which changes the 

relative positions of visual cues. In support of the role of PPC in using visual cues for navigation, 

rats were unable to navigate to a submerged platform in a Morris water maze using proximal 

landmarks after parietal lesions — although their use of distal landmarks was spared (Save and 

Poucet, 2000). However, in terms of self-motion vs. visually-modulated signals in these 

navigation studies, it is generally difficult to pinpoint whether differences in movements at 
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different spatial locations (such as different locations within a maze eliciting different body 

movements) accounts for apparent (visuo)spatial-selective activity, or vice versa. 

The use of virtual reality environments 

Virtual reality (VR) techniques can help make sense of these results by being able to more 

precisely measure, and thus relate, details of the visual scene and motor behaviors. Compared to 

real reality (RR) experiments, one evident difference with VR is the absence of vestibular signals; 

some have observed degraded hippocampal place fields in VR (Aghajan et al. 2015) but, generally, 

place cell responses are still present (Aghajan et al. 2015 and others e.g. Harvey et al., 2009; 

Dombeck et al. 2010). The extent of the mismatch likely depends on the setup, such as the 

immersiveness of the VR and ability to move the body and/or the head (reviewed in Aronov and 

Tank 2014). In VR, studies have found decision-related correlates (e.g. Harvey et al. 2012; Pinto 

et al. 2019) but also selectivity for the virtual spatial location in virtual reality that is not reducible 

to visual differences (Diamanti et al. bioRxiv; Krumin et al. 2018) 

The prime advantage of VR over RR is the ability to manipulate the visual scene. In particular, in 

VR, it is possible to break the natural congruence of visual and motor information, through “open 

loop” experiments. One caveat of these manipulations is that the very act of severing this 

congruence might break a circuit that otherwise expects the visual scene to move with self-

motion, and produce degraded responses simply as a result of the unethological nature of the 

manipulation. With this disclaimer in mind, the findings from these studies are still instructive. 

Task-relevant responses are usually reduced in “open loop” conditions (Harvey et al. 2012; 

Diamanti et al. bioRxiv; Krumin et al. 2018; Minderer et al. 2019) and degrade further when the 

mouse is stationary rather than running (Diamanti et al., bioRxiv). These results can be 

interpreted to confirm that PPC is not a “pure” sensory region given that sensory signals are not 

sensitive to congruent locomotion and/or engagement. When preference for virtual (visual) 

speed vs actual speed is directly compared in incongruent “open loop” segments, medial areas of 

parietal cortex better decode running speed than virtual speed (Diamanti et al., bioRxiv; Minderer 

et al., 2019). However, “open loop” periods, as discussed, are intentionally unnatural 

manipulations; perhaps PPC may still favor integrative sensorimotor information, with primacy 

for self-motion information if this congruence breaks — that is, when visual flow becomes an 

unreliable source of information to guide movements. Still, the precise nature of the interplay 

between potential sensory, motor, decision and navigation processes in PPC is confusing; instead, 

causal manipulations have been instructive in narrowing down the space of potential 

explanations for the function of PPC.  
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The causal role of PPC 

On the whole, findings from perturbation studies are largely consistent with the hypothesis that 

PPC has a visual sensory or visual sensorimotor role. First, the effect of causal perturbations of 

PPC in rodents seems to be specific to the sensory modality, with studies finding behavioral 

deficits of perturbations in most visual decision tasks (Harvey et al. 2012; Driscoll et al. 2017; 

Zatka-Haas et al. 2020; Goard et al. 2016; Licata et al. 2017; Minderer et al. 2019; Pinto et al. 2019; 

Coen et al., SfN Abstract 2019; Odoemene et al., 2018), but not deficits in unisensory auditory 

(Erlich et al. 2015; Akrami et al., 2018; Coen et al., SfN Abstract, 2019) or tactile (Guo et al. 2014) 

tasks. In some of these studies, subjects performed the same motor choice for uni- or 

multisensory audio/visual stimuli, yet the effects of perturbation were restricted to a visual 

impairment (Licata et al. (2017); Raposo et al., 2014; Coen et al., SfN Abstract, 2018). In general, 

the modality specificity of PPC suggests that the region cares more about sensory or sensorimotor 

information, rather than motor information per se, given that despite the same motor actions, 

these studies observed different effects of inactivation with different sensory modalities. 

Indeed, studies which inactivate PPC at distinct epochs within a trial implicate the involvement 

of PPC in early stages of the decision process where sensory information is more likely to be used 

(Driscoll et al. 2017; Goard et al. 2016; Zatka-Haas, Steinmetz et al. bioRxiv). In a visual Go/No-

Go task with a delay, Goard and colleagues (2016) found an effect of bilateral inactivation in the 

stimulus period, but not delay or choice period. In the virtual T-maze decision task with a memory 

delay, bilateral PPC inactivation across the whole trial or first half of the trial resulted in 

behavioral impairments, but not inactivation of the second half of the trial. Pinto et al (2019) 

recapitulated this first-half effect with results showing very slight but significant impairments in 

a visual evidence accumulation virtual T-maze task (Pinto et al. 2019). Differences in the effect 

size between these studies are likely a consequence of the relative requirement for continued 

visual monitoring. In the visual evidence accumulation task, correct choices depend on 

integration of visual evidence across the whole trial, including after the halfway mark. Conversely, 

in the visually-guided memory task, the correct choice is known as soon as the mouse perceives 

the stimulus, occurring within hundreds of milliseconds at most — the time to visual perception 

in mice has been suggested to be even as fast as 40-80ms for large, high contrast gratings Resulaj 

et al. (2018). Therefore, the behavioral deficit likely depends on the time window needed to 

maintain a stimulus representation in PPC before sending that information to downstream 

regions. Finally, in a two-alternative unforced choice contrast discrimination task, Zatka-Haas, 

Steinmetz and colleagues (bioRxiv) used unilateral optogenetic inactivation of different cortical 
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areas and were able to infer a relationship between the amount of stimulus information in a 

cortical region and the behavioral effect of inactivating the same region. They found that the 

resulting bias away from contralateral choices as a result of inactivation was directly proportional 

to the extent to which they could decode contralateral visual stimulus information in wide-field 

activity in the same area. On the whole these results are consistent with PPC engaging in the 

sensory component of the decision-making process in a manner useful for the eventual choice.  

However, not all results from inactivation studies are clear cut. Erlich et al. (2015) did not observe 

behavioral impairments in freely moving rats following unilateral or bilateral muscimol 

inactivation in either a two-alternative visual detection task (go to the side with a light) or in an 

auditory evidence accumulation task (judge which side has more auditory clicks). The latter lack 

of effect is likely attributed to the modality specificity mentioned earlier, but the lack of an effect 

in a visual detection task is puzzling given the otherwise consistent conclusions from other 

studies mentioned above. Perhaps relevantly, the same authors observed that inactivation of 

downstream secondary motor area (M2 or FOF) did have an effect, and bilateral inactivation of 

this region with unilateral inactivation of PPC then produced an impairment on both auditory 

evidence accumulation and visual detection tasks. Notably this result was not attributable to the 

bilateral FOF inactivation alone as the effects of bilateral inactivation were symmetric, yet the 

combined unilateral inactivation of PPC produced asymmetric biases for trial types depending on 

whether the stimulus was in the contralateral hemifield. Together these results suggest that PPC 

is responsible for directing sensory activity to downstream secondary motor regions (M2) to 

carry out relevant motor plans, a hypothesis corroborated explicitly by Itokazu et al. (2018) who 

found that while PPC neurons as a whole contained both sensory and motor information, M2-

projecting PPC neurons preferentially contained sensory information. This view was also 

confirmed by inactivation studies and modelling in Zatka-Haas, Steinmetz et al., (bioRxiv).  

Task-dependent functions of PPC  

There may be differential involvement of PPC depending on task demands. Using unilateral PPC 

inactivation only, Erlich and colleagues (2015) did find a selective effect on interleaved free 

choice trials, in which the rat could choose either side with a light to get a sure reward. 

Interestingly, the selective deficit mirrored findings in humans and macaques (Wilke et al., 2012; 

Katz et al., 2016; and others). Thus, there may be a specific effect of unilateral parietal inactivation 

affecting internally-guided engagement with contralateral stimuli but that does not affect the 

ability to report the side of a visual stimulus. This possibility is reminiscent of contralateral 

neglect arising from parietal lesions in humans, which has been reported in macaques and 
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rodents as well (reviewed in Kerkhoff, 2001); however, it should be noted that these studies may 

have mistargeted the PPC and contralateral neglect may have been an outcome of lesions of 

nearby regions instead. In any case, the selective deficit in internally-guided decisions but not 

visually-guided decisions observed in Erlich et al. (2015) might link back to self-motion signals in 

the open field navigation even in the dark (reviewed above). That is, rodents primarily navigate 

through whisker feedback (reviewed in Diamond et al. 2008), so perhaps when they do not need 

to make use of visual information, PPC may be influenced more by motor plans. Interestingly, this 

strategy seems to exist behaviorally in rats; that is, when visual cues are present, rats are guided 

by them, when they are not, they prefer odor and self-motion cues (Maaswinkel and Whishaw 

1999). Indeed, this hypothesis — that PPC privileges sensory- vs choice/motor-related 

information based on relative reliability or necessity of visual cues — may contextualize the 

aforementioned “open loop” VR results where PPC was found to favor motor information over 

visual information when the two are independent (Minderer et al. 2019; Diamanti et al. bioRxiv). 

In any case, understanding parietal activity as a function of different goals, contexts and internal 

states are all likely key to understanding PPC as a whole.  

Indeed, inactivation results support that the role of PPC, and its relative involvement compared 

to other regions, is likely dependent on task. In VR, studies have reported differential effects of 

PPC inactivation depending on the nature of the task (Pinto et al., 2019; Harvey et al., 2012; 

Driscoll et al., 2017). Specifically, in these studies, bilateral inactivation impaired performance on 

a memory-guided detection task but not a visually guided detection task without a delay. In Pinto 

et al. (2019), the influence of inactivation across distributed cortical areas depended on whether 

mice performed a visual evidence accumulation task, a visually-guided task with a memory delay, 

or a visually-guided task without a memory delay, with more distributed engagement of cortical 

regions with more complex tasks. The lack of effect in visually-guided decision tasks in VR is 

difficult to interpret in light of the clear behavioral deficit in visually-guided tasks outside of VR, 

as discussed above albeit in unilateral inactivation studies (e.g. Zatka-Haas et al. 2020; Licata et 

al. 2017). In the VR tasks, the visual cue was presented as a landmark at the end of the corridor 

and might be interpreted as a distal cue, processing of which was observed to not be impaired in 

lesioned rats as discussed above (Save and Poucet 2000). A recent study suggests higher visual 

area rostrolateral (“RL”), which overlaps with parietal areas in mice, encodes near binocular 

disparities, potentially suggesting a role in selective processing of proximal visual cues (La 

Chioma et al. 2019). However, this area is different from the anteromedial (“AM”) area used in 

the VR studies. One speculative interpretation is that despite PPC inactivation, the mouse could 

be aware of the distal cue and execute their choice before the distal cue becomes proximal. 
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However, thus far there is only tangential evidence to this possibility. It may be instead that visual 

detection in VR is qualitatively distinct from visual detection outside of VR. 

Few studies have explicitly examined PPC activity within the same population of neurons as a 

function of task, but existing literature is supportive in suggesting some element of flexibility. In 

two studies, neurons in PPC were found to have shared selectivity for choice across two 

modalities — in one case, visual vs auditory (Raposo et al., 2014); in another case, visual vs tactile 

(Nikbakht et al., 2018). However, given that inactivation studies privilege the causal influence of 

the visual sensory information, including in the same visual/auditory study (Raposo et al., 2014), 

this choice selectivity could have reflected feedback activity from downstream areas. 

Additionally, in a visual Go/No-Go task in which the mouse had to report its choice with a lick, 

more PPC neurons were found to switch selectivity to the new target stimulus when 

contingencies were changed (Pho et al. 2018). However, in their case, different stimuli were 

presented as visual gratings at horizontal or vertical orientations, which might not be as selective 

as in stimuli in different hemifields. The diversity of task designs and the different functions 

interpreted as a result is already a hint that PPC may be sensitive to task. Many of these studies 

find that activity respects the motor action in studies where the motor report is kept the same, 

but no studies have looked for shared task variables in different contexts with different motor 

actions within PPC.  
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Outline 

Here I wanted to test whether I could find abstract representations of task information in two 

tasks which are similar in abstract structure, but vary along dimensions which have been shown 

to modulate PPC activity and involvement differently. Namely, one task involves visually-guided 

decisions in VR, and the other involves visually-guided detections by motor reports in a steering 

wheel. Differential effects in visually-guided detection tasks above provide an interesting 

prediction that despite both tasks apparently involving the same sorts of processes of perceptual 

decision-making, PPC might be engaged differently across these tasks. An analogy might be made 

here to the intentional framework, in which decisions are subserved by separate motor circuits 

involved in separate actions. Here the means of motor report might matter for task-specific 

responses in PPC. Studies using different motor reports all apparently find choice selectivity in 

PPC; in the studies reviewed above, decisions can be reported by lever-pressing, licking, nose-

poking, turning a steering wheel, running on a spherical treadmill running and even making 

lateral eye movements. The question of interest here is whether these choice signals are abstract, 

in that the internal representations of “left” and “right” choices can be found in the same neurons 

despite different literal motor actions of “wheel” vs “run” to report the same choice.  

Both tasks involve visual information, so inactivation studies would suggest that PPC should be 

invariant to differences of motor report across tasks; however, other studies suggest a mixed 

picture with potentially interactive processing of stimulus and motor information. How 

specifically might PPC be involved across two tasks with similar abstract task requirements? 

There are two potential hypotheses. First, neurons could be entirely task-general, such that the 

means of motor report is independent of apparent selectivity to task features. Note that this 

option would not be incompatible with single neurons showing overlapping “mixed selective” 

activity for multiple task features if neurons are selective for the same mixtures e.g. stimulus and 

choice, across tasks. Alternatively, neurons could be task-specific, such that different neurons 

encode the same task features across tasks, but in a manner that is predictable and repeatable, 

that would suggest PPC is sensitive to the different task contexts and adjusts its activity 

accordingly.  

The extent to which representations overlap across tasks will elucidate how general (and thus, 

perhaps how truly attributable to PPC’s true function) apparent task related activity is within PPC 

across two implementations of the same abstract task. If task-related activity exists in the same 
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neurons, apparent abstract representations of task-relevant features can be supposed to be really 

that which is abstracted from the sensorimotor details of how different choices are instantiated. 

To compare neural activity across tasks, it was essential to record the same neurons across tasks, 

so I first needed to train the same mice to perform both tasks. Then, I employed two-photon 

calcium imaging to record from hundreds of neurons simultaneously. Following this, I then 

compared the activity of the neurons I recorded in these tasks, to determine to what extent 

activity in PPC is task-specific or task-general.  
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General methods 

All experiments were conducted according to the UK Animals Scientific Procedures Act (1986). 

Behavioral methods 

Head-fixed, water-deprived mice were trained on two variants of a two-alternative forced-choice 

(2AFC) visual detection task for water reward (schematized in Figure 1). One involved virtual 

navigation by running on a spherical treadmill, and the other involved turning a steering wheel 

to move a visual grating.  

 

Figure 1. Two visual decision tasks. (a) Schematic of the T-maze and (b) steering wheel task. In both 
cases, the mouse is required to detect a visual grating of one of several visual contrasts (0, 6, 12 or 50%) 
on the left or right side. (a) In the T-maze, the mouse runs on an air-suspended Styrofoam ball through 
a virtual reality T-maze and turns left or right according to whether the grating is present on the left or 
right side. (b) In the steering wheel task, the mouse moves a visual grating by turning a steering wheel 
according to whether the grating is on the left or right of the center. The dotted circle is for visualization 
only and indicates the location the mouse must move the grating to register a choice.  

Terminology: Session refers to a given set of all experimental conditions within a given day. 

These conditions were consecutive but could constitute separate head-fixations. Condition refers 

to one unique type of condition within a session, of which types include the behavioral tasks or 

passive experiments.  

Shared task structure 

Both tasks had a vertical Gabor grating on either the left (-30 degrees azimuth) or right (+30 

degrees azimuth) side of the visual field, at approximately central elevation. On each trial, a 

grating was uniformly randomly chosen among 0%, 6%, 12%, 25% and 50% contrasts.  

These tasks were designed to have the same kinds of trial events, namely, to follow the following 

structure: appearance of a visual grating, prompting an immediate motor response, with constant 

visibility of the stimulus until the response and no delay period. Mice received a reward (2μl of 
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water) for correct choices and a short auditory noise burst for incorrect choices. There were no 

other punishments. Extraneous task cues such as the onset tone, reward tone, and an initial freeze 

period for at least 200ms of the stimulus on the screen — where the mouse could move but 

physical movement did not move the stimulus — were present in both tasks. Between trials, there 

was an inter-trial interval (ITI) where a gray screen was presented. The ITI duration varied across 

sessions (0.5-3s), with later sessions increasing the ITI to better separate calcium activity across 

trials.  

Importantly, the direction of movement for the same choice was maintained across tasks. In both 

cases, mice had to orient in the same direction to bring the stimulus (centered at approximately 

30 degrees azimuth) to the center of their visual field to make a correct response. Orienting in the 

opposite direction, pushing the stimulus away from the center, was an incorrect response (see 

Figure 2). The direction of movement was meant to be "ecologically likely". Specifically, a counter-

clockwise rotation of the apparatus always oriented the visual scene counter-clockwise and vice 

versa for clockwise rotations, as if the (head-fixed) mouse turned to orient towards the stimulus. 

 

Figure 2. Illustration of choice movements used in the (a) T-maze and (b) steering-wheel task. In both 
cases, “clockwise” movements are used to select stimuli on the left (contralateral hemifield), as if 
orienting towards the stimulus to bring it to the center.  

Both tasks were performed in the same rig; for neural recordings, every condition was in the same 

two-photon rig across all sessions and mice. The mouse was surrounded by three computer 

screens at right angles, with the central monitor located ~20cm in front. The three screens 

spanned the mouse’s visual field approximately 270 degrees horizontally and 70-75 degrees 

vertically. Further experimental details are described in Appendix D. 

Other than the visual scene displayed on the monitors, the only difference across the two tasks 

was the apparatus underneath the mouse. All other environmental cues, such as peripheral visual 

objects in the environment (i.e. outside of the screens), olfactory sensations, environmental 

sounds, etc., should in principle be identical across the two tasks, which were consecutive and at 

maximum had a gap of a few minutes within a given day’s session.    
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Timeouts were introduced in some sessions but, in practice, fully trained mice in the current 

dataset rarely timed out until satiation near the end of the task. The length of the timeout ranged 

between 10 seconds and no limit, typically 60-120 seconds.  

Steering-wheel task specifics 

In the steering-wheel task, mice use a set-up described in Burgess et al. (2017). Specifically, the 

mice sit on a raised platform within a "half-pipe"-shaped well (Figure 3). Their forepaws rest on 

a Lego steering wheel which they are able to freely turn in one dimension (rotating in a clockwise 

or counter-clockwise direction). 

 

Figure 3. Picture of a mouse in the steering-wheel setup, showing the position of the mouse with respect 
to the steering wheel. Picture taken by Christopher P Burgess.  

At the beginning of a trial, a visual grating appears on the left or right side of the screen at +/- 30 

degrees azimuth. The mouse is able to move the wheel to move the grating along the horizontal 

direction, either an additional 30 degrees to the periphery (+60 or -60 degrees azimuth) or 30 

degrees to the center (0 degrees azimuth). Wheel positions are recorded using a rotary encoder 

attached to the axle of a Lego wheel. The mouse is able to move immediately, but at the start of 

the trial there was a “freeze period” or “interactive delay” of 200 or 500ms (differing across 

sessions) where the stimulus was frozen in place and would not move even if the mouse moved 

the wheel in that time period. In the 500ms interactive delay, by design, the mouse usually started 

to move the wheel before the stimulus would move concurrently. Median RT within a session 

ranged from 200-350ms, although the distribution could be skewed if the mouse became 

disengaged and depended on the length of the timeout. If the session included timeouts, at the 

end of allowed time, the trial would end with an incorrect white noise burst. If the session did not 

include timeouts, the stimulus remained on the screen until the mouse eventually made a choice 

to either end point. During the trial, the stimulus was always visible. 

In later sessions, I adjusted some experimental parameters to facilitate better task similarity and 

help with temporally separating different task events. The grating initially spanned 9 visual 

degrees sigma, but in later experiments the stimulus was made larger (20 visual degree sigma), 
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though centered at the same azimuth and elevation. The change was made to cover a larger 

portion of the visual field in this task, to make the visuospatial extent of visual stimulation more 

similar to the other task.  The inter-trial interval (ITI) was typically 0.5-3 seconds. In later 

experiments, I increased the ITI (to 3s) after observations that the mouse sometimes over-eagerly 

started the next trial with an identical wheel turn. A longer ITI was also chosen to dissociate 

neural activity between adjacent trials given the slow decay of the calcium indicator. This increase 

in ITI did not affect analyses as no analyses were performed in the ITI. Further, a pre-trial 

"quiescent period" was introduced in later sessions where the mice had to maintain a certain 

degree of stillness in the wheel before the trial began. This duration was randomized across trials, 

meaning the effective ITI on each trial was variable, but with a maximum of 3 seconds.  

Due to a bug, 0% contrast trials in the steering-wheel task were rewarded only for timeouts in 

the majority of sessions. On average, the median proportion of trials that were zero contrast was 

17% +/- 4% median absolute deviation (m.a.d) of the total number of trials (including time-outs 

if any). Mice on average still responded fairly equally in either direction at a median proportion 

of leftward vs. rightward choices at exactly 50% +/- 17% m.a.d., across sessions. Mice rarely 

timed out; median proportion of zero contrast trials that resulted in timeouts was 1.5% +/- 8.9% 

m.a.d. across sessions. The response window was variable across sessions but was designed to be 

long enough to only end if mice were extremely inattentive (usually 60 seconds, with a minimum 

30 seconds to a maximum of infinite length i.e. no timeout). In comparison, median RT within a 

session was usually 0.4-0.8s. In two sessions, 0% contrasts were changed to be rewarded 

randomly as was intended. 

T-maze task specifics 

In the T-maze task, mice use the same setup as described in Krumin et al. (2017), similar to that 

first described in Dombeck et al. (2007). Physically, the mice sit on a spherical treadmill consisting 

of a styrofoam ball (20cm in diameter) which is lightly suspended in pressurized air. Movements 

of the spherical treadmill were measured using two optical computer mice to control a virtual 

reality scene. Mice are able to control the ball by running on it and turning with their forelimbs 

and hindlimbs. The rotation of the ball “forward”, i.e. around the axis perpendicular to the animal, 

was responsible for forward movement in virtual reality, and the rotation of the ball around the 

vertical axis was responsible for turning in virtual reality (at 20% gain). The lateral displacement 

of the ball (rotation around the axis parallel to the animal’s orientation) was ignored.  

At the start of each trial, mice are shown a virtual reality T-maze consisting of a long corridor, and 

two directions to turn at the end perpendicular to the initial corridor. In the T-maze, the visual 

https://paperpile.com/c/3l7rtp/sDLR
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stimulus is now a feature of the entire left or right wall of the initial corridor but is still centered 

at approximately 30 degrees azimuth. The “freeze period” or interactive delay was 200ms in the 

T-maze. To make their choice, mice needed to run down the central corridor and turn left or right 

down the arms of the T, at which point the trial would end and they would receive a reward for a 

correct choice, or auditory white noise burst for an incorrect choice. Like the steering-wheel task, 

a clockwise rotation was needed for left choices in order to turn "left" in virtual reality, and vice-

versa for right choices. There was a 3s ITl. 0% contrast trials were rewarded randomly.  

The virtual scene was controlled using a custom virtual reality engine implemented in MATLAB 

utilizing OpenGL through the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). The initial 

corridor was 110cm long including the juncture of the T, and 20cm wide, with the two arms of 

the T spanning 60cm in width, i.e. an additional 20cm to the left and right. The grating was 

superimposed on a noise texture of 20% visual contrast and there were noise textures at 40% 

visual contrast on the floor to provide a more immersive environment. 

Training and testing protocols 

Details about training and habituation are in Appendix D.  

During training, for practical purposes, mice were usually trained to asymptotic performance on 

one task before they were introduced to the other. Some mice started with the T-maze and others 

started with the steering-wheel task. This training protocol was to ensure mice were capable of 

performing either task before taking time to start training the other task, given the time-

consuming nature of training. This "blocked" training could have implications for differing neural 

representations, which is addressed in the General Discussion. 

Testing within a session 

As it was necessary to switch the apparatus across tasks, mice were tested serially in two blocks, 

with full performance of one task before performance on the other. The gap in between tasks was 

usually no more than a few minutes. 

To maintain equal numbers of trials in each task, mice were switched to the other task when they 

reached approximately half of their daily water weight, typically 100-300 trials depending on 

performance. The second task was stopped when mice reached their water minimum, or stopped 

performing trials or made many consecutive errors, whichever came first. Mice typically 

performed 100-300 trials/task/session with a total duration per task of 20-60 minutes. 
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During testing, mice usually performed the T-maze first, but to check for order effects, 

occasionally the order was switched so that they performed the steering-wheel task first. 

Behavioral quality control: Inclusion and exclusion criteria 

I included n = 6 mice in all analyses, as these were the same mice to be later included which had 

good neural data. Mice which had learnt but developed physical degradation of the cranial 

window, increasingly poor performance in either task or extreme biases in behavior were 

dropped from the experimental pool. Sessions were included in the dataset when mice had good 

psychometric performance on both tasks, with at least 100-200 trials on each task. All mice 

included in the dataset had fully learnt and reached asymptotic performance in both tasks. 

However, day-to-day, mice could show more lapses or changes in sensitivity. 

To plot behavioral performance, psychometric curves were fitted using maximum likelihood 

estimation (Busse et al. 2011). Mice were able to learn both tasks to proficiency and showed good 

performance in both tasks within a session as evidenced by their psychometric curves (Figure 4, 

psychometric curves over all included sessions in this dataset in Figure 5). At 50% contrast, mice 

performed at nearly 100% correct.  

Training time for acquisition of the second task was mouse-dependent but mice were typically 

quicker to learn the second task. It is tempting to interpret the rapid acquisition of a second task 

as a result of "scaffolding" based on learning a similar task structure; however, it is equally likely 

that pre-existing factors contributed to this observation. Namely, mice proficient in one task 

already may be already a "smarter" subset of mice. Alternatively, factors extraneous to the task 

per se such as comfort being handled and head-fixed may be the dominant contributing factors to 

this effect. 

In practice, mice seemed to prefer performing the T-maze first over the steering wheel task first 

perhaps as the former was more physically demanding and thus resulted in more disengagement. 

Therefore, to optimize behavior, in practice most sessions involved presenting the T-maze first. 

However, two sessions were included where the steering-wheel task was performed first, and 

later analyses which potentially depended on this ordering were examined to ensure that these 

two sessions fell within the expected distribution of observed effects compared to the more 

common ordering.  
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Figure 4. Mice are able to perform both tasks in a single day. Example sessions from one mouse showing 
psychometric performance on the (a) T-maze and (b) steering wheel task. Smooth curves indicate the 
fitted psychometric function. (c,d) Average psychometric curves for each mouse, and the summary over 
all mice (thick line) for n = 6 mice. 
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Figure 5. Psychometric fits for each task within each session across all six mice. Each column is a 
different day (not aligned across mice), whereby the pair of tasks is performed consecutively, but not 
necessarily in the presented order. 
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Neural data methods 

Given that mice were able to perform both tasks within a single day with good behavior on both, 

I was then able to record the same neurons within days to provide a within-session comparison. 

I recorded from hundreds of neurons simultaneously using two-photon calcium imaging while 

mice performed the aforementioned tasks.  

Calcium imaging 

Genetically-encoded calcium indicators (GECIs) are commonly used to record activity of neurons 

using calcium release as a proxy for neural activity. In these datasets, calcium imaging was 

performed using variants of the GCaMP6 family, fast (GCaMP6f) and slow (GCaMP6s) described 

in Chen et al. (2013), which have high sensitivity to single action potentials, fast kinetics and little 

saturation. 

Transgenic mice were used which ensured uniform expression of GCaMP across excitatory 

neurons and stability of expression across time. One mouse in the current dataset was a GCaMP6f 

mouse (double transgenic Ai95(RCL-GCaMP6f)-D x Slc17a7-IRES2-Cre-D) with GCaMP in 

glutamatergic neurons. All others (n = 5) were GCaMP6s mice (double transgenic tetO-6GCaMP6s 

x Camk2a-tTA; Wekselblatt et al., 2016) with GCaMP in Camk2a-positive (excitatory) neurons. 

Neither of the two transgenic mouse lines used were found to have interictal spikes in a survey 

of transgenic mouse lines that initially highlighted aberrant epileptiform activity in a triple-

transgenic mouse line (Steinmetz et al. 2017). 

Although I used two different strains, the greater difference that is relevant for this study is likely 

the speed of the calcium indicator (GCaMP6f vs GCaMP6s). However, the GCaMP6f mouse was 

also imaged more superficially. To my knowledge the results at large here are not affected by 

these differences. 

Retinotopy for determining the field of view for imaging 

Stereotaxic coordinates can be misleading for identification of brain regions, as the location of 

bregma on the mouse cortex can vary from animal to animal, as a function of age, and according 

to laboratory convention. In particular, areas such as PPC are closely bordered by neighboring 

areas primary visual and somatosensory cortices, which are expected to have different response 

properties. Further, PPC spans only ~500um in anterior-posterior breadth, so accuracy is 

essential when the imaging field of view for two-photon imaging is only 500x500um. Therefore, 
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I mapped known retinotopic areas under wide-field imaging in order to more precisely target my 

two-photon imaging field of view.  

Wide-field imaging 

Protocol for wide-field imaging followed standard procedure from the lab and elsewhere (Garrett 

et al., 2014; Zhuang et al, 2017). I imaged the entire 4mm cranial window under a "wide-field" 

macroscope with dual illumination. A sCMOS camera (PCO Edge 5.5) was used to image the brain. 

Illumination was generated using an LED (Cairn OptoLED) using alternating frames of violet 

(405nm, excitation filter ET405/20x) and blue (470nm, excitation filter ET470/40x) light (at 

35fps each) to capture calcium-dependent fluorescence and calcium-independent hemodynamic 

activity respectively.  

Retinotopic mapping using wide-field imaging (Zhuang et al. 2017; Garrett et al. 2014) is now 

fairly routine and involves presenting retinotopically-specific visual stimuli at different visual 

azimuth and elevation. In my case, I presented "sparse noise" to map retinotopy. In this stimulus 

protocol, black and white squares appear and disappear asynchronously on a gray background. 

Since these squares appear and disappear independently, this visual stimulus is reliable even 

with relatively short recordings (5-20 minutes here) for inferring visual retinotopy. 

Movies were averaged at 2x2pixel or 4x4 pixel resolution in order to better estimate retinotopic 

maps. Following imaging, movies were compressed using singular value decomposition to 

decrease the file size. The movies were then processed to filter out hemodynamic artefacts: both 

purple- and blue- wavelength signals were band-pass filtered at the “heartbeat” frequency 7-

13Hz, and the purple wavelength signal was regressed out. For estimating retinotopic maps, 

stimulus-triggered averages were computed to find the wide-field calcium response 

corresponding to different retinotopically-located stimuli. Then, according to standard procedure 

(Garrett et al. 2014), I computed a "visual field sign map" (Sereno et al. 1994) by taking the 

difference (sine of the angle) between the gradients of the azimuth and elevation maps for every 

pixel. Sign reversals in the gradient maps correspond to traversals across visual areas, and so the 

visual field sign map is useful in locating visual areas across species (Sereno et al. 1994). 

Defining PPC from the retinotopic map 

The area described in all experiments as PPC was chosen to be an area anterior of primary visual 

cortex and posterior of primary somatosensory cortex potentially overlapping with areas A and 

RL (Figure 6). This area was chosen according to definitions by the Allen Mouse Brain Common 

https://paperpile.com/c/2GWvEY/5Pdp+3FM9
https://paperpile.com/c/2GWvEY/3FM9
https://paperpile.com/c/2GWvEY/y0hY
https://paperpile.com/c/2GWvEY/y0hY
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Coordinate Framework (Wang et al. 2020) which calls this area one of a set of "parietal" regions. 

I chose this location as it seemed to minimally overlap with potential somatosensory regions to 

the anterior side of parietal areas.  

 

Figure 6. Processing pipeline for imaging in PPC. (a) Schematic of visual and higher visual areas in 
posterior cortex, adapted from the Allen Common Coordinate Framework. (b) Schematic depiction of 
the sparse noise retinotopy protocol. Asynchronous black and white squares appear on a gray 
background and are independent across time. (c) Example retinotopic “visual field sign” map from one 
example mouse, showing it is possible to identify areas V1, AM, A/RL and some other secondary visual 
areas. Inset, example field of view for two-photon imaging in this example mouse.  

The precise location of PPC can be a matter of debate, with some recording more anterior-

medially, in area AM. However, recent work from other labs have argued that posterior cortex is 

fairly uniform in representation at the gross scale, in terms of activity and effects of inactivations, 

in the sorts of tasks employed here (elaborated in the General Discussion). To discuss one 

example, Minderer and colleagues (2019) recorded throughout posterior cortex using two-

photon calcium imaging during a visually-guided locomotion task and were not able to find 

unique clustering of feature encoding among parietal subregions; instead, AM was functionally 

indistinct from areas such as the one I image here. Therefore, I do not expect differences, if any, 

in the results here to other work in parietal cortex simply as a result of recording region. I address 

this topic further in the General Discussion.  

Two-photon imaging acquisition methods 

I performed neural recordings using multi-plane two-photon (2p) calcium imaging in layer 2/3 

excitatory neurons. The sessions in this work were typically 2-3 hours in duration. 

Mice were imaged under the 2p microscope after they had habituated to head-fixation. For testing 

sessions, mice in this dataset were imaged after they reached asymptotic performance in both 

tasks in training. There was a further acclimatization period to ensure habituation to 2p 

procedures and re-acquisition of good psychometric performance. 

Two-photon calcium imaging was performed over PPC as defined above. Imaging was performed 

using a ThorLabs B-Scope with a Nikon 16x 0.8 numerical aperture (NA) water immersion 

objective. A Ti:Sapphire (Coherent Chameleon) laser provided excitation at 920nm, with depth-

https://paperpile.com/c/2GWvEY/cGpb
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adjusted power level controlled by an electro-optic modulator, i.e. pockels cell (M350-80LA, 

Conoptics Inc.). Light isolation was mitigated using a custom metal cylinder, cone and black cloth 

to prevent light contamination from the illuminated screens. 

Acquisition was controlled using ScanImage (Pologruto et al., 2003), and frames were acquired 

continuously at 30Hz over an imaging window of 500x500um, at a resolution of 512x512 pixels. 

Multi-plane imaging was performed using a piezo motor over two planes in layer 2/3, starting at 

90-130um below the surface, separated by 60-70 um, spanning a total of 180-210um. The piezo 

motor takes a fraction of time proportional to 30fps * 1/number of planes to "fly back" to its initial 

position and therefore for two planes, the effective imaging rate is 10fps per plane. 

I only imaged excitatory neurons as GCaMP is only expressed in excitatory neurons in the 

transgenic mouse lines used. All recordings were made in the right hemisphere as the cranial 

window was only over this location. 

Two-photon imaging processing methods 

The resulting raw movies were processed in Suite2p (Pachitariu et al., bioRxiv) to provide 

registration to correct for motion artefacts, cell detection, signal extraction and further analyses 

including neuropil correction and spike inference, also known as "deconvolution". 

Registration 

There are two forms of drift that could artefactually affect neural responses in two-photon, "slow 

drift" and "fast drift" (Pachitariu et al., Cosyne Abstract, 2018). The former is non-rigid but can be 

corrected for by subtracting a running baseline. The latter is rigid, so while fast, can be corrected 

using rigid frame-by-frame registration techniques as is default in Suite2p. 

Motion artefacts are well known to present an issue for neural recording techniques including 

two-photon calcium imaging (Stringer, PhD Thesis) and electrophysiology recordings (Pachitariu 

et al., 2018, Cosyne). It is known that running and active behaviors drives brain-wide activity (e.g. 

Stringer et al. 2019; Musall et al. 2019; Niell and Stryker 2010; Ayaz et al. 2013; Saleem et al. 

2013), but these behaviors can also cause cells to move quickly in and out of the imaging plane, 

causing artefactual apparent evoked activity. Artefacts from fast motion are particularly evident 

during high-effort active behaviors such as running, but can even occur during subtle behaviors 

like licking (Chen et al. 2013). In most tasks in rodents, choices are made by an overt motor action, 

so motion artefacts can also lead to spurious "task-evoked" activity. Slow drift can also be an issue 

in long recordings, whereby the plane may slowly move out of focus such as due to slight 

https://paperpile.com/c/3l7rtp/oFdf+Bo6k+JoI6+phfG+wgKO
https://paperpile.com/c/3l7rtp/oFdf+Bo6k+JoI6+phfG+wgKO
https://paperpile.com/c/3l7rtp/oFdf+Bo6k+JoI6+phfG+wgKO
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thermally-induced brain expansion, to the extent that there may be entirely independent groups 

of cells imaged at the beginning and end of the imaging session. Therefore, it is essential to correct 

for this movement, both computationally using registration algorithms and by careful manual 

inspection to discard sessions in which the problem is too severe. 

Raw movies are aligned in Suite2p by default using 2-D "rigid registration" which parsimoniously 

assumes the entire plane shifts in unison. The implementation in Suite2p uses phase correlation 

with subpixel registration for greater accuracy (1/10 of a pixel) by interpolating the resulting 

phase correlation map. Following registration, cells are detected in Suite2p by clustering 

temporally correlated pixels; this method classifies cells by "functional" measures of temporal 

activity, rather than morphological measures of ROIs that have a "cell-like" shape.   

Neuropil correction 

Then, neuropil correction is performed which corrects for "contamination" by signal other than 

generated by the cell itself. So-called “neuropil” signals consist of out-of-focus fluorescence from 

other processes such as dendrites and passing axons, since standard calcium indicators are not 

soma-localized. The point-spread function of two-photon calcium imaging — while less sensitive 

than one-photon imaging to fluorescence that originates beyond the intended source — means 

that the focal point can still contain some signal from nearby locations in anatomical space. 

It is important to correct for neuropil as the contribution from neuropil can be stimulus-locked, 

adding to apparent evoked activity that in fact disappears upon correction (Rossi, PhD Thesis). 

Neuropil correction is also necessary particularly when the mouse is likely to move and thus 

introduce potential movement artefacts  as discussed above (Stringer, PhD Thesis). It now routine 

to subtract an estimated neuropil surround, commonly inferred by taking a fixed ratio of pixels 

forming a "donut" surrounding each cell, and subtracting the temporal activity of these pixels 

according to a fixed multiplicative factor. I used a neuropil ratio which estimates the neuropil as 

a radius of size 5x the number of pixels defined for the cell, as is the default in Suite2p. As well, as 

per convention, I used a neuropil multiplicative coefficient < 1, which is estimated per cell by 

default, and ends up being ~0.6-0.8. 

Spike deconvolution 

Finally, spike inference (i.e. deconvolution) was performed using the OASIS algorithm (Friedrich 

et al. 2017). Although efforts are constantly made to improve the temporal resolution of calcium 

sensors, the long tail of decay of calcium signal means that signal can be "blurred" depending on 

https://paperpile.com/c/2GWvEY/6f1c
https://paperpile.com/c/2GWvEY/6f1c
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the spike rate. Rather than using the calcium itself, deconvolved calcium activity is often 

estimated, using spike inference algorithms. These algorithms assume or learn a spike-to-

fluorescence transfer function or "kernel", and invert (deconvolve) the fluorescence signal given 

this kernel to obtain the spikes that likely generated the observed calcium signal. Deconvolution 

does not give spikes per se, but rather spike probabilities.  

Each deconvolution algorithm incorporates its own design choices, but in practice performance 

across popular existing deconvolution algorithms was not shown to differ dramatically (Berens 

et al. 2018). In the SPIKEFINDER challenge, deconvolution in Suite2p was benchmarked against 

ground-truth electrophysiology data along with other popular algorithms of the time (Berens et 

al. 2018). Performance was similar across different algorithms despite some taking a biophysical 

modelling approach and others using more parsimonious methods such as constrained non-

negative matrix factorization. Furthermore, in their own work, Pachitariu et al. (2018) found that 

in practice, accuracy of deconvolution in Suite2p is robust to different choices of the kernel 

compared to ground truth electrophysiology. In particular, accuracy was not significantly 

improved when using the “ground-truth kernel”. 

Deconvolution in Suite2p accounts for fluctuations in baseline — such as resulting from fast or 

slow drift, neuropil contamination, or bleaching — by using a running minimum over a long 

interval, here 60 seconds. Figure 7 shows the outcome of deconvolution and running baseline 

subtraction in correctly correcting for spurious slow drifts in the signal. 

 

Figure 7. Illustration of the effects of deconvolution for two example ROIs. (a) ROI 1 suffers from large 
fluctuations in the baseline, evidenced by comparison to the co-fluctuating neuropil. This fluctuation is 
removed after subtracting a running baseline during the deconvolution step. (b) ROI 2 also has 
fluctuations in the baseline which affect the raw calcium intensity, again as evidenced by neuropil that 
closely tracks the underlying change in baseline. In this case, true calcium activity is superimposed on 
this fluctuating baseline, so subtraction of the baseline recovers true activity. 

Manual curation 

ROIs detected by Suite2p were manually curated using the Suite2p GUI. I classified ROIs as cells 

according to spatial and temporal criteria. For the former, this procedure meant that the extracted 

ROI reasonably resembled a disc-like soma at the size expected at the imaging zoom I used 

https://paperpile.com/c/2GWvEY/j0G9
https://paperpile.com/c/2GWvEY/j0G9
https://paperpile.com/c/2GWvEY/j0G9
https://paperpile.com/c/2GWvEY/j0G9
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(approximately 15 pixels). For the latter, the activity trace was examined to evaluate the signal-

to-noise of the ROI, particularly relative to the respective neuropil (as also illustrated in Figure 7 

above). Manual curation was performed blind to the time at which the task transition occurred.  

Alignment across tasks 

The apparatus needed to be switched across tasks, necessitating two distinct head-fixation 

sessions (albeit with a gap of no more than a few minutes). Evidently, this procedure could 

introduce errors in alignment. Therefore, I was extremely careful to align recordings across tasks 

both at the rig and after processing the two-photon movies. At the rig during acquisition, the mean 

image over several frames of the previous task's recording plane was used as a reference plane, 

and I manually aligned the "live" movie of the current imaging plane in z, x, and y, to match the 

previous task’s mean image until the difference was indistinguishable to the eye. Although the 

microscope allows for rotation, this axis was not adjusted, as the angle of the headplate was fixed 

within a session and often across days. Following acquisition, the raw movies were then examined 

by eye, with particular attention before and after the switch in task, to ensure that the same 

population of cells was visible. 

During data processing, the raw two-photon movies comprising all the conditions in that day's 

session were temporally concatenated before processing in Suite2p. In doing so, I took advantage 

of the registration algorithm inherent in Suite2p to adjust for small errors in 2-D. This procedure 

is therefore biased to assume that the same neurons are present in both tasks. Given prior careful 

manual inspection of raw movies and exclusion of sessions which seemed to have clear 

misalignment, this procedure is valid and indeed preferred in order to be more conservative 

given later findings. 

However, similar results were achieved (not shown) when instead processing separate head-

fixations separately in Suite2p, and then post-hoc classifying overlapping ROIs to be the same cell 

based on the union of their pixels across the two head-fixations within a session. This procedure 

was the same as described below for across-day alignment, where alignment is less certain due 

to more likely morphing of the brain and misalignment in the axes of x, y, z and roll/rotation. 

Finally, I visually examined the activity traces in Suite2p for differences in signal across head-

fixations which could be due to an error in alignment in z. Specifically, an error in z would bisect 

the soma at a different depth — or miss it entirely — and result in an apparent difference in the 

acquired signal. It is hard to dissociate the contribution of this artefact vs. real changes in signal 

in the cell. Therefore, I based my judgement on the activity of the neuropil surround (Figure 8). 



40 
 

 

While a broad increase in neural activity, including in the neuropil, can be triggered by a change 

of behavioral state, a stepwise change in an otherwise low-mean, high-variance signal likely 

means the imaging plane in fact was recorded at a different depth across head fixations. In 

particular, when jumps in neuropil signal occur across many ROIs, including ROIs that are 

evidently not cells, this temporal signature motivates discarding the respective session. 

 

Figure 8. Example of visual inspection of calcium traces of the cell and neuropil for determination of 
alignment quality. (a) A neuron with good alignment from an example session vs (b) a neuron with poor 
alignment from a session that is not used. The asterisk illustrates the timing of the task switch. The 
neuropil signal goes up sharply at the moment of the task switch, but this is likely erroneous due to 
misalignment. 

Imaging sessions were discarded if a large proportion of neurons were no longer visible by the 

end of each task, and/or if a large proportion of neurons were not visible across both tasks. There 

were 26 sessions that remained after these strict criteria. 

Analysis procedures 

Neurons in these sessions are often deliberately dependent across days as I often attempted to 

record the same neurons over several days. Therefore, I only carried out analyses on a session-

by-session basis, and aggregated summary statistics across sessions. I did not want to “double 

count” neurons that appeared often, as these could be neurons which are systematically biased 

to be feature selective (or non-selective) in some way.  

Aligning behavioral data 

Behavioral data was aligned to neural data using timing software developed in the lab. Punctate 

variables such as timing of events and continuous variables such as steering wheel rotation 

velocity were down-sampled to match the calcium imaging frame rate (10fps). A photodiode 

measured screen refresh rates which were used to confirm stimulus onset times. For the steering 

wheel task, wheel movements were detected using the “findWheelMoves3” function described in 

other work (Steinmetz et al. 2018) and available on GitHub.  
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Chapter 2: Comparing activity across tasks 

This chapter examines coarse-level "participation" of single neurons across the two tasks. As a 

minimum standard for determining whether the same set of neurons carry the same abstract 

representations across tasks, I test whether the same set of neurons is active during both tasks, 

which is a necessary precondition for sharing task feature event-evoked activity. I describe 

measures for summarizing the activity of a neuron within a task, independent of task-evoked 

activity. I then validate results by taking advantage of the ability to return to the same imaging 

plane to compare activity within- vs across-tasks.  

Methods  

Isolation distance 

Cells which fire rarely, e.g. no more than a handful of times over a 20-60 minute task session, are 

conventionally considered inactive. Certainly a cell which does not fire consistently to a repeated 

experimentally-defined task event cannot be considered to be "behaviorally relevant" for at least 

those experimentally-defined task events that occur at much more frequent rate. 

To summarize average neural activity in the whole session, I used a measure called “isolation 

distance” (Figure 9), previously described in Stringer & Pachitariu (2019). Isolation distance is 

inspired by a metric of the same name and motivation that is commonly used for spike sorting in 

principal components analysis (PCA) space. This measure is similar to any other common scalar 

summary of an activity trace (such as mean firing rate) in the information it conveys about the 

cell's activity over a time period. 

As described in the previous chapter, in non-soma-localized GCaMP indicators, GCaMP is present 

not just in the cell bodies but also other cell processes such as dendrites and passing axons. Out-

of-focus fluorescence from this “neuropil” can erroneously contribute to the signal averaged 

within the pixels that define a cell. A standard procedure is to “correct” for this neuropil by 

subtracting a scalar multiple of the average activity in a radius around each cell. Here the 

"neuropil coefficient" was estimated per cell but is usually <1, around ~0.6-0.8. Meanwhile, 

standard cell extraction procedures for two-photon data involve estimating pixels which are 

correlated within themselves but not with respect to the surrounding pixels in the background, 

i.e. the neuropil. Given these are well-established assumptions in the literature about what 

constitutes a cell and what constitutes extraneous noise to be subtracted out, it is reasonable to 



42 
 

 

assume the neuropil can be treated as an estimate of baseline “noise”. Isolation distance uses this 

assumption to compute single-neuron “activity” as the difference between activity within the ROI 

and activity in the neuropil surround — in effect a measure of signal-to-noise ratio (SNR). There 

is some precedent for this approach as applied to calcium imaging, in a study (in which this 

procedure was not the focus) that classified neurons as inactive if their activity did not differ from 

the neuropil signal (Chen et al., 2015). 

I computed isolation distance for each neuron as follows. For every cell, I identified the pixels 

defining its ROI, and the pixels defining its donut-shaped neuropil surround (both estimated in 

Suite2p), and then extracted a matrix of pixel intensities x time from the registered raw two-

photon movies. On each matrix I performed a mean-subtracted singular value decomposition 

(SVD), i.e. principal components analysis (PCA) and extracted the first left singular vector (similar 

to the first principal component (PC)), to get a vector of loadings per pixel, which summarizes its 

activity over the entirety of the analyzed time period (here during the entire task). Importantly, I 

repeated the procedure for the pixels defining the neuropil surround for that cell, generating two 

distributions of pixel activity (one for ROI, one for neuropil) that could then be compared (as 

illustrated in Figure 9 below).  The isolation distance is then how "isolated" these two 

distributions are from each other, according to the Bhattacharyya distance metric. Intuitively, if 

these two distributions are overlapping, the ROI is very similar to the neuropil and so has low 

SNR. If the distributions are more distant, the cell is instead distinct from the neuropil, which is 

likely because the cell has fluorescence peaks that deviate from the shared baseline. The 

procedure is shown for two principal components for illustration, but here I only use the first PC 

as it is sufficient for distinguishing activity, as evident in these examples. 
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Figure 9. Procedure for computing isolation distance as a measure of activity for a cell throughout an 
imaging condition. (a,b) Two example ROIs detected in Suite2p and the activity of their neuropil 
surround. (c) Singular value decomposition (SVD) is performed on the matrix of pixels x time, to 
compress time from the number of frames to a lower number of dimensions. Each dot is a pixel of either 
the ROI (blue) or neuropil (gray). ROIs which are “well isolated” from the neuropil are likely cells, as 
they show high variance over the session beyond the noise range of the neuropil. ROI 1 is likely a cell 
due to this property. Conversely, ROI 2 is likely not a cell as the distributions overlap. (d) A schematic 
of the logic of comparing the ROI and neuropil distributions for a hypothetical ROI. The distance metric, 
the Bhattarcharya distance, measures the similarity between two distributions (one- or multi-
dimensional). Only the first PC is used as it is sufficient to distinguish the quantity of interest. 

Isolation distance produced results qualitatively similar or better than common measures such 

as average firing rate (see Appendix B for comparisons in a GCaMP6f and GCaMP6s mouse). 

Importantly, of all tested measures (mean, standard deviation, skewness, coefficient of variation) 

isolation distance produced estimates of “activity” that were closest to intuitions in manual 

inspection of traces and most robust to noise. This last requirement was especially important as 

a high noise floor is observed in the strain of GCamP6s transgenic mice that contributed to the 

majority (5/6 mice) of the present dataset (as observed in Huang et al. 2019). 

Notably, isolation distance is used on pixel intensities of the raw movies, so is not sensitive to 

subtleties of different deconvolution algorithms or other choices for normalization. 

Across day comparison  

I used RegisterS2p to detect cells across days, which uses the mean fields-of-view image and 

processed ROIs from Suite2p (Pachitariu et al. 2018) between pairs of sessions (Figure 10). After 

manually defining control points on each image, affine registration is performed to spatially align 
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two imaging fields, and any ROI whose pixels substantially overlap (at least 60%) between the 

two fields is classified as the same cell. Importantly, this process only uses the spatial location of 

ROI pixels in the imaging field to link cells between sessions, and does not utilize cell activity as a 

marker of similarity. Therefore, although cross-day registration is another manual step, it cannot 

introduce any biases toward including cells that are or are not task selective as it is completely 

agnostic to the actual activity (i.e. isolation distance) of each cell being aligned. 
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Figure 10. Pipeline of “Register S2P”. (a) GUI used to match imaging planes and ROIs across days. (b) 
Workflow of the registration steps (c) Manual selection of control points using the normalized mean 
image to select likely pairwise matches across days. (d) Illustration of the affine transformation used to 
warp the two sessions. (e) Following affine transformation, the ROIs are well-matched between the two 
days (bright white vs gray). (f) Illustration of the overlap heuristic used to classify ROIs as belonging to 
the same cell. (g) Validation of the usefulness of affine registration over rigid registration in recovering 
the same cells, as measured by pixel correlation. Figure created by Henry Dalgleish, published in the 
Suite2p preprint (Pachitariu et al., bioRxiv). 

Results 

The majority of neurons recorded in the two tasks were not active throughout performance of 

both tasks, but rather were selectively active during either task. Figure 11 shows example 

neurons which show activity in one task but not the other. Using isolation distance to compute a 

single value for each neuron’s overall activity level in each task, I found that most neurons tended 

to be active in either task only. Within each task, neurons show apparent activity or inactivity, as 

shown by the marginal histograms in Figure 11-c. When comparing the activity of a population of 

neurons across the two tasks, most neurons are active in one task but not the other, with 

relatively few that are active in both, as evidenced by the observation that most points lie near 

the ordinate axes and relatively few on the diagonal.  This observation was highly consistent 

across sessions and mice.  

 

Figure 11. Many neurons are selectively active during either task. (a,b) Two example cells showing 
activity in one task but not the other. (c) Example session which shows the distribution of isolation 
distance across the T-maze (TM) and steering-wheel (SW) tasks. (d) More example neurons, including 
a neuron active in both tasks. 
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Validation across days 

Although tempting, it is not valid to make statistical inferences on the proportion of task selective 

neurons without access to all neurons in PPC. The ideal test asks whether there are greater 

numbers of task selective neurons —  neurons that are active in one task, but inactive in the other 

— than expected based on the number of neurons active or inactive in each task separately. For 

example, given that there are 50 active and 10 inactive neurons in the T-maze, of those 50 active 

neurons, how many are then inactive in the steering-wheel task, and is it more than expected? 

However, this test is not valid here, as the sample of neurons under analysis is already biased by 

this stage, influenced by which neurons express GCaMP, which neurons are picked up by two-

photon calcium imaging, which neurons are extracted by Suite2p, and which neurons the 

experimenter eventually selects during manual curation. These factors could all influence the set 

of active neurons and relative activity and inactivity across tasks in unpredictable ways; this 

possibility undermines the ability to extrapolate the results broadly to PPC.  

Even more concretely though, tests of the statistical significance of observed frequencies, such as 

the Chi-squared test, also depend on there being a representative number of neurons inactive in 

both tasks. The “true” number though is not known, and likely smaller in practice than in PPC 

generally, as neurons inactive in both tasks (i.e. the whole session) could be missed by Suite2p, 

and then further not chosen for inclusion at the manual curation stage — either confused for 

noise, or purposely omitted.  

Therefore, instead of asking “given the number of active neurons in one task, do we expect the 

observed number of inactive neurons in the other task?” (i.e. the number of task selective 

neurons), I instead ask “given the similarity of activity across days within tasks, do we expect the 

observed dissimilarity of activity across days across tasks?”.  

Specifically, I used the ability to return to the same imaging plane across days and calculated the 

isolation distance in each task for the same population of neurons on pairs of nearby days, then 

calculated the Spearman rank correlation of the distributions of isolation distance for each task 

across days, either within tasks or across tasks. This comparison also compensates for differences 

in activity that might be expected by changing head fixation. I required that both sessions (days) 

in each comparison passed the strict criteria of behavioral performance and imaging quality 

described above, resulting in n = 4 pairs of days for cross-day analysis. 

Using this analysis, I confirmed the presence of task selectivity. There was a lower correlation of 

isolation distances across task across days, than expected given the correlation within task across 
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days (Figure 12). In each pair of days under comparison, within-task consistency between days 

was very high, while the same population of neurons had either no significant correlation, or a 

significant negative correlation, when compared across tasks between the same days. 

 

Figure 12. Comparison of activity across days. (a,b) Example neuron showing a crop of its ROI (inset) 
and its activity over two neighboring days. (c) On day n, this neuron is active during performance of the 
T-maze, but relatively inactive in the steering-wheel task (T-maze (TM) in orange; steering-wheel task 
(SW) in blue). (d) The selective activity during the T-maze is consistent on the next day. (e-f) Example 
pair of sessions comparing isolation distance of the same population of neurons either (c,f) within task 
or (d,e) across tasks. (g) Summary over four pairs of days. For summaries across tasks, there is no a 
priori reason to distinguish the two combinations across tasks, so the combinations TM to SW and SW 
to TM (e.g. d, e) were combined (middle column). According to a Spearman rank correlation of each 
combination as in (c-f), activity across task is significantly negatively correlated or not significantly 
correlated across days, while activity within task is highly positively correlated. Filled circles indicate 
significant correlations at p < 0.05.  
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Discussion 

By using each cell’s isolation distance as a measure of overall activity, I found that the majority of 

neurons in PPC participated in only one of the two tasks, even though these tasks were designed 

to be similar in structure. The number of neurons selected for analysis is a subset of the overall 

number of neurons in PPC; that is, there is a further set of neurons in PPC that are not functionally 

engaged to any extent across all task conditions. Suite2p can detect some of these, but there are 

still even more potential neurons that do not fire at all that remain undetected by Suite2p 

altogether, as Suite2p estimates ROIs based on temporal activity not morphology. Therefore, the 

proportion of neurons in all of PPC that are active in both tasks or either task is likely much less 

than reported here.  

Notably, this measure is a coarse criterion of whether a cell is active at any point during 

performance of each task. Whether these cells demonstrate behaviorally relevant activity can be 

assessed by examining whether event-evoked task-feature selectivity is shared between both 

tasks (addressed in Chapter 4).  The proportion of neurons that share task-feature selectivity 

across tasks cannot be larger than the proportion that show calcium transients in both tasks to 

any extent; given this fact, I speculate that the proportion is much smaller.  

Explanations by other factors 

Besides the effect of task, there could be other potential explanations for differences in neural 

activity across tasks, either due to artefacts or true preference for confounded factors. I address 

these concerns below. 

Drift and misalignment. Differences in activity across tasks are not due to artefacts of 

misalignment or drift, as I excluded any sessions that showed evidence of drift or misalignment 

from the dataset. The raw movies are concatenated across tasks and registered before extracting 

ROIs in Suite2p, so the same pixels are tracked across tasks. Therefore, if activity were to be found 

across tasks, this method would pick it up.  

Running. It is well known that running drives brain-wide activity modulation of neural activity 

(Niell & Stryker, 2010, and many others since). As such an important question is whether 

differences in running activity account for the difference in activity across tasks, given that one 

task involves running and one does not. However, I observe that differences in running 

modulation do not seem to account for these results (discussed next in Chapter 3.2).  



49 
 

 

Visual dissimilarity. It is known that neurons in PPC are visually responsive (as discussed in the 

General Introduction). As such, it is possible that different neural activity observed across tasks 

is due to the different amount of visual stimulation in each task. If mouse PPC is highly retinotopic, 

one prediction is that neurons active in the steering-wheel task are a subset of neurons active in 

the T-maze task, given that task stimuli in the T-maze task are accompanied by a richer peripheral 

visual environment than those in the steering-wheel task at the same visual location. However, I 

did not observe this sort of clustering. Rather, there seem to be many neurons which are active in 

the steering-wheel task only, a prediction that would not be made by this hypothesis. Further, the 

next chapter addresses this concern with additional experiments which tests for similarity within 

conditions of equivalent visual stimulation. These results are thus unlikely to be a consequence 

of differences in visual stimulation across the two tasks.  

Time and satiation. In practice, mice often performed the T-maze first, so task identity is often 

confounded with elapsed time and overall satiation. Irrespective of which task was performed 

first, the accumulating effects of time or water would not be expected to produce a stark change 

in neural activity at the exact point of the task switch. Moreover, since the effect of task-specific 

neurons is robust on different days despite different trial counts, elapsed time in each task, or 

even times of day, it is highly unlikely that these results are due to these environmental factors.  

Limitations 

It is possible that two-photon calcium imaging is inherently limited in missing rare, below-

threshold neural activity, and thus I observe "inactive" neurons due to technical limitations of the 

calcium sensor or imaging parameters. Although the GCaMP sensor itself is sensitive to detecting 

single action potentials (APs) at high zoom (Chen et al., 2012), Huang et al. (2019) found that 

measured calcium activity at low zoom is driven primarily by activity consisting of > 2 APs within 

100-500ms. In effect, if a cell fired only a handful of APs within a short time window, that activity 

would not be visible in two-photon imaging. However, if some cells have very few spikes at a very 

low firing rate throughout the task period of 20-60 minutes, it is probably fair to assume they 

cannot contribute “meaningfully” to behavior. In any case, later results that depend more on 

precise timing (Chapter 4) were qualitatively similar to recordings in overlapping higher visual 

areas performed using Neuropixels probes (Steinmetz et al., 2018), so this limitation is unlikely 

to nullify findings of inactive neurons as an artefact of the spatiotemporal resolution of the  

recording technique. 

  



50 
 

 

Chapter 3: The role of motor context 

I wanted to determine what elements specific to each task could drive selective “participation” of 

different populations of neurons. Tasks were designed to be similar in abstract structure but 

varied in the sensorimotor details within, most evidently in terms of means of motor report (the 

apparatus: a spherical treadmill or steering wheel) and visual scene (virtual T-maze vs Gabor). 

Thus, to establish whether activity was aligned to the dimension of the means of motor report, I 

recorded the same neurons in the absence of a task in both apparatuses. In Section 3.1, I discuss 

results from these experiments. I also discuss results from some conditions in which I present the 

same visual context as either task but on the opposing apparatus.  

Further, as discussed in the previous chapter, a major difference across tasks is the presence or 

absence of running. Therefore, in Section 3.2, I check that differences in running modulation do 

not explain why I observe “task selective” neurons.  

Here, “context” is used intentionally broadly to refer to the conjunctive association of all 

sensorimotor features and abstract associations present in either task. “Motor context” is defined 

to be specific to the motor-related aspects of each task context; conversely, "visual context" here 

would refer to the visual scenes of each task, which could involve differences between virtual 

navigation and the absence of a spatially-embedded scene.  

3.1: Activity during passive conditions 

Methods 

Following each task, I continued to record the same neurons while mice viewed a "blank screen" 

for 5-60 minutes, resulting in two additional conditions: “blank screen treadmill” for when the 

mouse was on the T-maze motor apparatus, and “blank screen wheel” when the mouse was on 

the steering wheel apparatus. In these conditions, mice could move (i.e. run or turn) or stay still 

according to their desires. In practice, mice often ran in the “blank screen treadmill” condition; 

thus this condition was used later as a "task-agnostic" condition to test for running modulation in 

the neural population (in Section 3.2). In contrast, mice only infrequently turned the wheel during 

the "blank screen wheel" condition, and occasionally in concert with grooming behaviors.  

In three sessions, I also played elements of the task performed back to the mouse to assess the 

role of visual context. Each of these were unique, and so are used for illustration. In one session, 

I replayed a full playback of the T-maze that had just been performed on both apparatuses. In 
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another session, I replayed a “scrambled” T-maze which contained sequences of disjointed 

segments from the T-maze (a few seconds each) that was just performed. The objective of this 

condition was to determine the effects of the visual scene independent of continuous optic flow. 

I replayed this condition on both the T-maze and the steering-wheel task. Finally, in a third 

session, of which I only had one example, I replayed the opposite task on both apparatuses. The 

steering-wheel stimuli was shown to the mouse on the ball (“open loop”), and the T-maze was 

played back to the mouse on the wheel.  

Like in the previous chapter, I measure a neuron’s activity throughout each experimental 

condition using a scalar measure of “isolation distance”. I extract the isolation distance four times: 

during the two tasks and the two “blank screen” conditions. I then correlate the same population’s 

isolation distance across conditions that share the same apparatus vs across conditions that do 

not, resulting in 2x2 combinations.  

Results 

The activity of neurons was highly similar within the same motor context (T-maze vs blank screen 

treadmill; Steering-wheel task vs blank screen wheel), and uncorrelated across motor context 

(vice versa), mimicking cross-day observations from Chapter 3.2. I conclude on this basis that 

neurons which participate in either the T-maze or steering wheel task are largely the same as 

those that participate in passive conditions in the respective motor context in the absence of a 

task (Figure 13). These results should not be interpreted to suggest that PPC activity is limited to 

binary participation in a “motor context”, only that motor context seems to be a dominant 

dimension that is highly predictive of the participation of different subsets of neurons across 

tasks. There are numerous possible differences across the two blank conditions beyond simply 

the apparatus — such as arousal state, amount of movement, etc. — so results should be 

interpreted with caution and only considered in light of aforementioned results from task 

conditions.  
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Figure 13. Comparisons of task and blank screen activity. (a) Example session in a “raster” format where 
pixel intensity reflects amplitude of deconvolved activity (which can take positive real values). Each 
neuron is a row; neurons are sorted by T-maze vs steering-wheel task selectivity, with the same sorting 
across conditions (each column). (b-d) Scatter plot summaries of isolation distance for the same 
population of neurons across different combinations of the four conditions. (b,e) Within the same motor 
context, activity is highly correlated, but (c,d) across different motor contexts, activity is not significantly 
correlated. (f) Summary of all sessions with blank screen conditions, compared within session. Filled 
circles indicate significant Spearman rank correlations. From left to right: within treadmill context, 
within wheel context; T-maze vs blank wheel; steering-wheel task vs. blank treadmill. 

To establish whether motor context was the prime driver of activity similarity or dissimilarity, I 

also compared a few sessions in which I had “replayed” the task visual scene on the same or the 

other apparatus. In two cases, the mouse viewed a playback of the T-maze visual scene on the 

steering wheel apparatus, and in one case, the mouse viewed a playback of the steering wheel 

task visual stimuli on the spherical treadmill. Again, in all three sessions, activity was shared 

within the same motor context but not shared across motor contexts, regardless of the visual 

scene present on the screen (Figure 14).  
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Figure 14. Replay of the task visual scene still shows that task activity preference follows the motor 
context. (a-d) One session where the “opposite task” was replayed on each apparatus. Within the same 
apparatus (a,d), neurons were highly correlated in their activity, while across apparatus, neurons were 
(b) less correlated or (c) not significantly correlated even with the same “visual context”. (e) Summary 
of three sessions with replay, the other two where replay occurred on the usual apparatus. In all three 
sessions, neurons were still more correlated in activity within the same motor context than across 
motor contexts. From left to right, TM vs treadmill-based replay; SW vs wheel-based replay; SW vs 
treadmill-based replay; TM vs wheel-based replay. 
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3.2: The influence of running in explaining selectivity 

Having observed that “task selective” cells are also selective within passive conditions in the same 

motor context, in this section, I perform control analyses to check whether differences in running 

explains why many neurons are active in only either task.  

Introduction 

Differences in participation across tasks may be explained by known brain-wide modulation of 

neural activity by running (e.g. Niell and Stryker 2010; Saleem et al. 2013; Stringer et al., 2019; 

Clancy et al. 2019 and many others, reviewed most recently in Parker et al., 2020). The hypothesis 

implied is that the neurons that are selectively active in either the T-maze or steering-wheel task 

may be exactly those neurons enhanced or suppressed by running, respectively. Studies finding 

a modulatory effect of locomotion warrant careful analyses, as such effects may be artifactually 

overestimated in both electrophysiology and two-photon calcium imaging data due to drift and 

neuropil contamination (Stringer, PhD Thesis) and wide-field imaging due to arterial dilation 

causing hemodynamic contamination prior to correction (Huo et al. 2015; Shimaoka et al. 2018). 

Nonetheless, it is now fairly accepted that there is some real contribution of locomotion on neural 

activity in non-motor areas.  

Running modulation has been observed specifically in parietal areas and overlapping higher 

visual areas as well (Diamanti et al bioRxiv; Minderer et al 2019; Christensen & Pillow, bioRxiv). 

To test specifically whether virtual or visual speed better explained responses in PPC, Diamanti 

et al. (bioRxiv) and Minderer et al. (2019) used “open loop” replay in virtual reality, and found 

that the influence of running speed was greater than the influence of visual speed, particularly in 

more medial parts of PPC (areas A and AM). In “closed loop” virtual navigation though, Krumin et 

al. (2018) found that virtual spatial position fields explained PPC responses better than “real” 

variables of forward and rotational velocity on a spherical treadmill.  

In any case, perturbations to test the causal influence of running-related activity are few. A recent 

study in mice performing visually-guided virtual T-maze tasks found that inactivation of several 

regions including parietal areas slowed down running (Pinto et al., 2019), an outcome also 

observed in a task where mice were required to monitor visual flow to maintain a straight 

trajectory (Minderer et al. 2019). However, in both cases, slowing down was likely a behavioral 

strategy due to increased uncertainty about visual evidence upon inactivation, which would be 

consistent with the broader interpretations of PPC perturbations as causing visual or visuo-motor 

impairments (as discussed in the Introduction). In both studies, effects were observed in parietal 
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areas, but also visual areas beyond PPC, corroborating the proposition that the causal effect was 

mediated by visual, not motor, impairments. 

Given aforementioned findings of brain-wide modulation by locomotion, it would be unsurprising 

to find neurons apparently modulated by running in PPC. The question here is rather whether the 

existence of running-modulated neurons fully explains the delineation in participation of neurons 

across the two tasks.  

There are varying hypotheses regarding the specific profile of the effects of running on neural 

activity (reviewed in Busse, 2018), with some suggesting there is a continuous relationship 

between running speed and neural activity in V1 (e.g. Saleem et al., 2013; Ayaz et al., 2013) and 

others arguing that there is a qualitative difference between stationarity and running (e.g. Niell & 

Stryker, 2011). Therefore, I also ask whether specifically activity in stationary periods is most 

similar to activity in the steering-wheel task.  

Methods 

In the task, running is behaviorally relevant" because mice cannot complete trials without 

running and they are motivated to collect water reward as they are water-deprived. As well, 

running traverses the mouse actively through portions of the T-maze which are known to invoke 

"firing fields" of virtual heading angle and position (Krumin et al 2018) and/or neurons that tile 

the corridor in choice-specific sequences (Harvey et al. 2012; Koay et al. 2019). Therefore to 

check for “pure” running modulation, I used the blank screen condition in the treadmill context 

as a task-agnostic method for assessing running modulation.  

I compared each neuron's "running modulation" (rRun) in the blank screen treadmill condition 

to its “task selectivity index” (task SI) compared between the two tasks, as illustrated in Figure 

15. rRun was computed using the correlation between forward running speed on the spherical 

treadmill and its deconvolved calcium trace. Task SI was the difference between isolation 

distance in the T-maze vs. the steering-wheel task, divided by the sum to normalize the value to 

lie between -1 and 1:  

 

Task SI reflects the relative participation by the neuron in the T-maze vs the steering-wheel, 

where positive values reflect T-maze preference and negative values reflect steering-wheel task 

preference (see Figure 15b-c for an example). To compare running speed and neural activity, I 
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downsampled the running speed to match the imaging frame rate, then smoothed both the neural 

activity and running speed by convolving the traces with a 1-second s.d. Gaussian filter. 

Smoothing allowed more opportunity to discover running-related effects that were not 

instantaneously apparent in calcium activity, such as due to slower GCaMP dynamics, or that may 

precede rather than directly follow an increase in running speed.  

 

Figure 15. Schematic showing the procedure for comparing running modulation and task selectivity. (a) 
Example “raster” representation of neural activity across the blank screen treadmill condition. Each row 
is a neuron and pixel intensity reflects the amplitude of deconvolved calcium. The running speed of the 
mouse is shown below. Running modulation is the correlation between each neuron’s activity and the 
mouse’s running speed. (b,c) Explanation of task selectivity for an example session. (b) Task selectivity 
takes the normalized difference between activity in the T-maze vs steering-wheel task (where T-maze 
selectivity was chosen to have a positive sign and steering-wheel task selectivity to have a negative 
sign). (c) The distribution of task selectivity as taken from the data in (b). 

For each neuron, I assessed significance of running modulation by circularly shifting the running 

speed relative to the neural activity 1000 times by a randomly-selected number of frames. 

Significance tests are crucial given that spurious apparent running modulation is very likely even 

with best attempts to correct for artefacts, given that running causes fast z-drift (Stringer, PhD 

Thesis; Pachitariu et al., Cosyne Abstract, 2018). Circular shifting is preferable to randomly 

shuffling frames, as circular shifts provide a more stringent null hypothesis that accounts for 

autocorrelation such as due to slow GCaMP decay. 

Stationary analyses 

If running and stationarity are qualitatively distinct states, it may be unfair to check for running 

modulation using a measure that tests for a monotonic relationship of running speed as in the 

rRun correlation measure. So, I further tested how activity (isolation distance) was related across 

two “stationary” (with respect to running) periods: the steering-wheel task and stationary 

periods in the T-maze.  
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Blank screen recordings were often fairly short (usually 10-20 minutes), and mice often ran 

during these, so I did not have enough time points when the mouse was stationary to use this 

condition. Instead, I used stationary periods in the T-maze. As mentioned, interpretation of neural 

activity during running in the task (i.e. the T-maze) is problematic. Further, the cessation of 

running during a task context likely reflects disengagement or satiation (if it occurs near the end 

of a session). So, these results should be interpreted with caution. 

To calculate “activity” during stationary periods, I re-computed isolation distance using the same 

ROIs as previously but only including the frames when the mouse had a running speed <1.2cm/s 

and was stationary for at least 3s — the latter to avoid contamination by preceding running 

periods due to slow decay of GCaMP, and also to ensure the stationarity was not a brief pause 

during, for example, a change in angular velocity. Now, instead of one calculation of isolation 

distance to summarize activity during the whole task epoch, there is another calculation of 

isolation distance within stationary periods only.  

As before, I wanted to compare across days as a baseline. Since mice usually performed the task 

and rarely stopped for very long, in the end I only had one pair of days in which both sessions had 

a sufficient duration to compare task selectivity across stationary periods. Comparing within 

session is not valid here as stationary epochs are likely to be contaminated by nearby signals from 

non-stationary periods and therefore stationary and T-maze epochs might be spuriously similar, 

and therefore both dissimilar to the steering-wheel task in the same session. 

Results  

Many neurons were significantly modulated by running, and many neurons were not. Neurons 

with significant running modulation were modulated both positively and negatively by running, 

consistent with previous reports from primary visual cortex and throughout the brain (Stringer 

et al., 2019; Musall et al., 2019). To check if task selectivity could be explained by running, I 

compared each neuron's running modulation and task selectivity. If running modulation purely 

explained the presence of selective neurons, there should be a high positive correlation: all T-

maze neurons would have  positive running modulation, and all steering-wheel neurons would 

have negative running modulation (purple off-diagonal quadrants in Figure 16). However, I did 

not find this relationship; the correlation between these two measures was not significant in the 

example session in Figure 16, nor across any of the 10 sessions in which there was a blank running 

condition, median r = 0.09 +/- 0.09; p > 0.05 for all 10 sessions.  
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Figure 16. Testing for the relationship of task selectivity and running 
modulation. (a) Example session showing running modulation as a 
function of T-maze vs steering-wheel task preference (where positive 
values mean T-maze preference). Filled circles show significant 
running-modulated neurons according to the permutation test. The 
purple overlay shows hypothetical distributions of cells, if T-maze 
neurons were solely those modulated by running, and steering-wheel 
task neurons were solely those suppressed by running. In this example 
session, the Spearman rank correlation was not significant, using all 
neurons, r = 0.04, p = 0.67, or just significantly running-modulated 
neurons (filled circles), r = 0.06, p = 0.65. 

 

To check if a neuron’s activity during stationarity was shared during the steering-wheel task, in 

which the mouse is also stationary, I then looked at activity during stationary periods. Within the 

T-maze, activity went down during stationary periods; this decrease in activity was expected due 

to the task-relevant nature of running in the T-maze and previous findings in the literature 

regarding decreased activity during stationary periods and disengagement in general (although 

slightly debated). However, there was still not a significant correlation between activity measured 

only in the stationary period in the T-maze, and activity in the steering-wheel task (Figure 17). 

This result indicates that differences in participation across motor contexts are not likely a direct 

byproduct of neurons which are active only during either a running or stationary state. 

 

Figure 17. An example session comparing steering-wheel task activity to T-maze activity or stationary 
activity in the T-maze across days. (a) Baseline comparison of consistency of steering-wheel task 
activity across days, r = 0.52, p < 1e-3 (b) Comparison of activity across tasks; activity is not significantly 
correlated, r = 0.13, p = 0.39 (c) Comparison of steering-wheel activity to only stationary periods in the 
T-maze; activity is not significantly correlated, r = 0.12, p = 0.41 

Discussion 

In this chapter, I observed that the same neurons that are selectively active during performance 

of either the T-maze or steering-wheel task are also selectively active during passive conditions 
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on the same motor apparatus. Since I also had conditions showing the visual scene of each task, I 

was able to conclude that it is likely the motor context but not the visual context that mostly drives 

the occurrence of “selective participation”. Despite observations of shared activity within motor 

contexts that share running vs stationary states, I found that modulation by running did not 

account for task selectivity of neurons. This lack of effect was not obscured by stationarity having 

a qualitatively different effect on neural activity, as I observed activity was still dissimilar 

between the steering-wheel task and stationary periods in the T-maze. 

While I find similarity in participation of single neurons across passive and active conditions in 

the same motor context, an important point to emphasize is that differences in event-evoked 

responses across active and passive states are completely consistent with the results here. There 

is reason to think differences in event-evoked activity across passive and active states are likely, 

although this topic is not a subject of this thesis (Diamanti et al. bioRxiv; Krumin et al. 2018; 

Steinmetz et al. 2019; Harvey et al. 2012; Pho et al. 2018). 

Unless PPC is highly sensitive to miniscule visual aberrations, which is fairly unlikely, the 

observation that different sets of PPC neurons are engaged across the two blank conditions across 

apparatuses is fairly convincing that the neurons' selective participation is based on this "motor 

context" division. Notably, motor context here is used generally and can mean any conjunction of 

features unique to each motor context, including non-motor features such as olfactory or visual 

cues specific to each apparatus. The primacy of motor context over visual context is upheld even 

further given the observation that in one available session, the “opposite” visual scene was played, 

and neurons were still more selective in their activity within the same motor context. The results 

from this session also suggest that observations of different sets of neurons participating in the 

T-maze or steering-wheel task (from the previous chapter) are not due to differences in 

retinotopic preference. 

Interpretation of context selective subgroups 

Selective engagement of different sub-groups in PPC across motor contexts is reminiscent of 

works from Snyder and colleagues, who found effector-specific neurons selective to reaches vs 

saccades to a target (Snyder et al., 1997). This effector-specific recruitment of neurons may be 

analogous to the context-specific recruitment seen here across the steering-wheel and treadmill 

motor contexts. In their case, they mapped these effector-specific neurons into two subregions, 

lateral intraparietal area (LIP) where neurons largely encoded saccades, and an adjacent area, 

parietal reach region (PRR) where neurons largely encoded reaches. Interestingly, 32% of 

responsive neurons in their dataset were significant for both types of movements, a figure that 
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bears close resemblance to the proportion of neurons active in both tasks in this dataset. 

However, in their case, effector-specific neurons were largely anatomically separable, whereas 

here I observe that they are anatomically intermingled (see Appendix A).  

Stationarity vs disengagement 

It may not be possible to interpret neural responses during stationary states as stationarity is 

often associated with disengagement. There is evidence that neural activity in the brain becomes 

more correlated during disengaged periods, although locomotion is sometimes taken as a 

synonym for arousal (see literature on synchronized states, reviewed in Harris & Thiele, 2011). 

During stationary periods, an increase in correlation between neurons — in other words, neural 

activity becoming more low-dimensional — could potentially lead to spurious similarity in 

activity during stationary periods across apparatuses due to disengagement, not the absence of 

running. This topic is flagged as a possible caveat of analyzing stationary periods, but a 

comprehensive treatment of the nuances of whether attention, arousal state, and movement 

increase or decrease correlations is heavily debated and is beyond the scope of this thesis. To test 

for the effect of stationarity specifically, in the future it would be ideal to record for longer 

sessions in the “running treadmill” condition to encourage more stationary periods. In practice, I 

generally chose shorter durations (10-20 minutes) of blank screen conditions to not demotivate 

the mouse before performance of the next task. However, it would be useful to examine stationary 

periods in a task-absent condition as interpretation of stationarity in the T-maze is, as discussed, 

complicated by the task relevance of running in the T-maze. 

Limitations 

It is unclear given different methods of correcting for motor artefacts how much doing so removes 

"true" running contribution, vs. artefactual contributions; Stringer (PhD Thesis) observed that 

neuropil correction sometimes “aggressively” removes running correlations. Whether 

correlations are spurious or real is a question that perhaps is not possible to tell with existing 

recording techniques, given that motion artefacts affect both calcium imaging and 

electrophysiology (Pachitariu et al., Cosyne Abstract, 2018). However, since I could still find 

significantly running-correlated neurons, the ability to detect running modulation was not 

completely hampered in these analyses.  
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Chapter 4: Shared selectivity in active neurons 

One of my initial aims was to discover whether single neurons shared selectivity for task-relevant 

features. If a given region is to reliably extract features of interest from specific sensorimotor 

details of a given experience, this property should be shared across different contexts in which 

the feature is encountered.  

I already observed that many of PPC neurons do not “participate” in both tasks. But what about 

those neurons that do participate in both tasks? It may be that these neurons are the subset most 

relevant for behavior, and thus in this chapter I seek to first establish that there is task-related 

event-evoked activity within either task in general, and second, establish whether task-evoked 

activity is correlated across tasks. 

Introduction 

Decision-making can be summarized as consisting of several processes which may be distinct or 

overlapping. Given a sensory percept and a task, the subject needs to make a choice. Classic work 

suggests that neurons which are selective for evidence for choices of different directions are 

pooled for comparison to make a choice (Shadlen et al., 1996). This choice process can unfold as 

an ongoing monitoring of the sensory stimulus, as in the case of evidence accumulation tasks, or 

can be a unidirectional flow of information if the stimulus is immediate and perception is certain. 

The choice itself can either be "abstract", or specific to the eventual action needed to make the 

choice. In many task designs, these possibilities are confounded, but can be dissociated in designs 

where the “abstract choice” is made prior to the choice of specific motor action, with the selection 

of the side or effector possibly deferred until a later cue. The view that the choice is inherent to 

the means of action is known as the intentional framework, which argues that choices are 

“embodied” by virtue of recruiting existing motor circuits such as saccadic or reach regions 

(Shadlen et al. 2008; Andersen and Buneo 2002). After cueing to make a choice, or upon collecting 

sufficient evidence to be confident of a decision, a motor command must be sent on the basis of 

this selected motor choice in order for it to be literally carried out. While there can be choices that 

are not reported through any action, such as those relating to value comparisons, here I only 

discuss choices based on sensory evidence which result in an eventual motor report, such as those 

made in the tasks under study. 

Early stage choice/action selection processes must precede the choice execution itself, and in a 

causally relevant and behaviorally plausible time window to drive a consequent action. When I 
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discuss choice, I mean that which could be predictive of upcoming movement direction, or 

reflective of ongoing movement direction — causally relevant, or a corollary discharge of either. 

In the case of the latter, the representation could be specific to the manipulandum or effector e.g. 

“turning the wheel left”, “saccading left”, or there may still be an ongoing representation of choice 

that is divorced from the specific manipulandum, perhaps for credit assignment, e.g. "I am making 

a left choice now" rather than "I am turning this wheel clockwise". 

The involvement of different brain regions in different stages of this decision process predict 

different outcomes of inactivation. Inactivation studies reviewed in the General Introduction 

suggest that the causal involvement of PPC is likely early, and inactivation of PPC in rodents rarely 

causes motor errors directly. 

Here, by changing the means of motor report that applies to the same abstract choice, I predict 

different outcomes according to different hypotheses of the function of PPC. Specifically, 

comparisons of choice selectivity across these tasks are able to address whether PPC contains an 

abstracted or embodied representation of choice. If choice selectivity is present in both tasks, and 

this selectivity is correlated, it can be concluded that choice representations are abstract with 

respect to the means of motor report. If choice selectivity is present in both tasks, but this 

selectivity is uncorrelated, choice representations may be embodied in the means of motor 

report. Finally, if choice selectivity cannot be decoded at all, it may be that PPC is not involved in 

decision-making in general.  

Methods  

Receiver operating characteristic analyses 

The primary measure used to determine feature selectivity was receiver operating characteristic 

(ROC) analyses (described in Figure 18). This measure is motivated by signal detection theory 

(Green & Swets, 1966) which describes a theoretical framework for relating neural activity and 

behavior, specifically here the process of making categorical decisions based on noisy sensory 

evidence. In general, the ROC measures the difference between two distributions. In the case of 

the neural basis of decision-making, a neuron is considered able to discriminate between two task 

conditions (e.g. left-side vs. right-side choices) if the distribution of its activity during one 

condition is sufficiently non-overlapping with the distribution of its activity during the other 

condition (Britten, 1992). The "area under the ROC curve" (auROC) captures the ability for an 

“ideal observer” to correctly classify activity coming from different distributions (e.g. relating to 
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different choices), based on different criterion levels (c in Figure 18-a). If the distributions are 

completely non-overlapping, discrimination is perfect; if distributions are completely 

overlapping, discrimination is at chance level.  

 

Figure 18. Schematic showing the logic of ROC analysis. Adapted from Smith et al. (2012). (a) 
Hypothetical example distributions of spike counts from one neuron over two behavioral conditions, X 
and Y, e.g. left and right choices. (b) The area under the ROC curve (auROC) for different threshold values 
of spike counts. (c) Relationship of the distance between distributions to the auROC value. If spike count 
distributions for both choices are completely overlapping (auROC=0.5), one cannot decode X and Y. 

The auROC is equivalent to a Mann-Whitney U-statistic according to the following relationship:  

 

where n1 and n2 are the numbers of trials for each comparison for the condition under 

consideration (e.g. number of left-side choices and number of right-side choices at 12% visual 

contrast stimulus on the left). AuROC is therefore equivalent to a non-parametric two-sample test 

of the distributions of neural activity for the conditions tested. 

Whole trial analyses 

Trial temporal dynamics could differ across the two tasks, i.e., the timings at which various task 

events occur, such as the interval between stimulus onset and choice, and the timecourses of 

execution of movements such as turning and licking. Therefore, I started by not making any 

assumptions about the timing of activity within a trial, and instead take the mean deconvolved 

calcium activity from stimulus onset to the end of response, which could include reward delivery 

if the choice were correct. 
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Significance tests  

As two-sample tests can be sensitive to different sample sizes within each distribution of interest, 

it is important to perform a statistical test of these values that respects possible imbalances in 

sample size. This consideration is necessary in e.g. comparisons of choice selectivity for high 

visual contrast in a detection task, where there may be few errors compared to correct choices. 

That is, for a 50% left contrast stimulus, there may be many more left-side than right-side choices 

in a well-performing mouse.  

To address imbalanced trial counts, I used a permutation test to assess significance of assessed 

feature selectivity. Namely, for every neuron I shuffled trial labels 1000 times, and recomputed 

the statistic, such as choice selectivity, for each new batch of "left"-labelled and "right"-labelled 

trials. As I kept the same number of effective "left" and "right" trials, the permutation test respects 

imbalanced samples of each condition and will recapitulate biases due to this imbalance in the 

permutations as well. The neuron was deemed feature selective if the actual statistic exceeded 

the 2.5% and 97.5% tails (i.e. alpha level 0.05, p < 0.05 in a two-tailed test) of the distribution 

resulting from the 1000 permutations. 

Session inclusion criteria  

I only included sessions if at least 10 trials of each comparison (e.g. 10 left-side choices and 10 

right-side choices) remained after excluding invalid trials.  
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4.1: Shared choice selectivity  

I first focused on analyses of choice selectivity, within and across tasks, given that choice signals 

have been an important subject of study in decision tasks in PPC.  

Methods  

Trial quality control: inclusion criteria 

I always include both correct and error trials to dissociate between stimulus and choice. In some 

sessions, the same stimulus condition was repeated if the mouse did not respond correctly, to 

encourage engagement. These "repeated" trials were excluded from analyses here, as mice could 

know with certainty the correct choice even prior to the trial, and thus may engage in a different 

strategy for choices that is not guided by sensory evidence.  

For wheel tasks, I excluded “early moves” where the mouse first started to turn the wheel <125ms 

after the onset of the stimulus presentation time. Movements earlier than this period were 

assumed to be too early to be reactive to the stimulus and may have been coincidental 

movements. In a subset of mice for which I did not enforce a “pre-trial” quiescent period, many 

trials also had movements prior to trial onset; I excluded these as well.  

Stimulus-independent choice selectivity 

To evaluate choice selectivity per se, it is essential to compute choice selectivity independent of 

stimulus side. In sessions with good psychometric performance, as was selected for in the 

sessions here, stimulus side is highly correlated with choice side. Therefore I first used a variant 

of choice probability that is independent of the stimulus side called “combined conditions” choice 

probability (ccCP) which was introduced in Steinmetz et al. (2019) and Zatka-Haas, Steinmetz et 

al. (bioRxiv). 

As mentioned above, choice selectivity is estimated using ROC, which is related to the Mann-

Whitney U in the following way:  

 

In traditional measurements of choice probability (Britten et al., 1996), for a given stimulus 

contrast, e.g. 50% contrast on the right side, a neuron's activity in one trial type (e.g. left-side 

choices) is compared to its activity in another trial type (e.g. right-side choices). Intuitively, the 
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U-statistic for each neuron counts the number of trials for which right choices had greater activity 

than left choices, and the denominator (n1*n2) reflects the number of trials for each condition, 

left and right choices.  

In ccCP, choices are still compared within a given stimulus contrast, but instead of computing the 

fraction per stimulus contrast, which then only uses few trials, the measure combines choices 

across stimulus conditions, without conflating stimulus at the same time. Namely, as before, the 

U-statistic is calculated for each stimulus condition. However, now the U-statistics are summed 

over all stimulus conditions. The sum is the new numerator, and the denominator is now the sum 

of the n1*n2 trial counts for each of the nine conditions. Inherent to the method, contrast 

conditions are excluded if the mouse only makes choices to one side. In my dataset, I had nine 

stimulus conditions  (0% and 6, 12, 25 and 50% contrast on the left and right) and thus nine U-

statistics, but the method is illustrated in Figure 19 for an example where there are only two 

stimulus conditions (e.g. left and right stimulus at 50% contrast). 

 

Figure 19. Illustration of the combined conditions choice probability computation for a case of two 
stimulus conditions. Rather than dividing U/(n1*n2) to get the auROC, the U and trial counts are 
individually summed. If n1 or n2 for either stimulus condition is 0, the trials do not appear in the 
denominator (the U-statistic is also 0 due to how the U statistic is computed algebraically).  

The details are not essential, but important to the method is that the method still only makes 

comparisons within stimulus conditions when calculating each U-statistic, so is always 

independent of the stimulus side.  

Finally, I normalize the value of the ccCP (which otherwise, as in the auROC, lies between 0 and 

1) to lie between -1 and 1, where -1 means strong left choice preference, and 1 means strong right 

choice preference, using the following relationship: 
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Specific trial epochs  

In addition to performing “whole trial” estimates of choice selectivity, I also looked at specific 

epochs within the trial. I therefore also checked for choice selectivity averaged only within the 

first 200ms (or 500ms in some cases) "freeze" period where the stimulus does not move, the 

"post-movement onset" period (see Figure 20), and the "pre-movement onset" period for the 

steering-wheel task only. In all cases I used the ccCP measure described above, but only averaged 

over activity within a specific window, rather than averaging over the whole trial from stimulus 

onset to response. 

The "freeze" period was chosen to be comparable across the tasks, as I did not want to assume a 

"pre-move" period in the T-maze, given that trajectories therein can be fairly continuous and 

there is therefore not often a clear inflection point to define as the choice "movement" on every 

trial. This initial period could be thought to be a proxy for a period when the mouse might be 

gathering evidence for their choice. Note that in this case I perform "stimulus-side-independent" 

analyses, so although this period in general is likely reflecting perception of the stimulus, this 

measure is specific to sensory evidence for the (upcoming) choice as I compute it separately for 

each stimulus side, as per the whole trial ccCP analyses above. 

For the steering-wheel task, the "move" time was the first detected wheel movement after 125ms 

from stimulus onset, detected using an algorithm used in other published analyses from the lab 

(e.g. Steinmetz et al. 2019) and used by the International Brain Laboratory. The pre-move window 

used here was 200ms before this time period, and the post-move was 200ms after this time 

period. 

For the T-maze task, the freeze period was also the first 200ms. Again, there is no clear inflection 

point for "the choice movement" in the T-maze, so I used the time at which the mouse passed the 

90cm mark in virtual reality, which is the junction where the main corridor meets the 

perpendicular turn segments  (see Figure 20-c for an illustration). In many trials, the mouse 

would veer towards the wall corresponding to their eventual choice long before the juncture 

(potentially indicating their confidence or decision commitment) which was also observed in 

another study using this task (Krumin et al., 2018). Therefore the T-maze “post-movement” 

period is reflective of the turn in virtual reality, but may occur much later than the actual turn of 

the spherical treadmill that the mouse makes to select their choice.  
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Figure 20. Illustration of choice directions and move epochs in the two tasks. (a,b) Schematic of how 
choices are carried out in both tasks. Both tasks involve a clockwise movement to “choose left”. (c) 
Illustration of the relevant window used for the “post-move” in the T-maze (d) Illustration of the “pre-
move” and “post-move” windows for the steering-wheel task. (e) Schematic of the logic of the “freeze 
period” in both tasks.  

Event-triggered average 

For visualization of task-evoked activity, some example neurons are plotted averaged to relevant 

task events. When calculating event-triggered averages, all relevant signals were aligned and 

resampled to a “common timeline” of the imaging frame rate, i.e. 10fps. For visualization purposes 

only, all signals were upsampled 150% before averaging, which allows for more precise 

visualization of event-evoked activity. 
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Across-task methods 

It is not valid to compare all neurons across tasks, as a neuron’s task responses are necessarily 

going to be absent if the neuron is silent. Therefore, I only look at the subset of neurons active — 

according to the measure of isolation distance — in both. To compare the distribution of choice 

selectivity across the same neurons, I required at least 10 neurons to be active in both tasks. This 

procedure excluded some sessions from analysis, depending on the isolation distance threshold 

used for classifying neurons as active. 

I compared the choice selectivity (ccCP) value of the same neuron across tasks, in order to account 

for the choice side preference, which should be of the same sign (+/-, and ideally similar 

magnitude) if single neurons shared choice preference across tasks. Within-session, I correlated 

the ccCP values of the population of neurons (n >10 as above) across the two tasks using a 

Spearman-rank correlation to determine on a session-by-session basis whether in that session, 

the neurons active in both tasks shared choice preference.  

Thresholding for activity  

When analyzing activity concurrent with movement, such as “post-move” epochs that reflect 

ongoing choice, it is essential to employ the isolation distance to discard potentially inactive cells.  

Figure 21 shows an example neuron that might be assumed to be truly choice selective on the 

basis of average activity across left and right choices, and in fact is deemed “significantly” choice-

selective according to a permutation test. However, this cell has very low isolation distance during 

this task as judged using its entire trace throughout the task (isolation distance = 0.02, with 

typical thresholds being at least 0.05-0.8). Inspection of the neuropil surround of the cell reveals 

that even the neuropil shows separability by choices aligned to movement onset. As a 

consequence, supposed choice selectivity is likely a movement artefact, probably driven by minor 

but reliable differences in movement vigor across left vs right choices. It is possible that broad-

scale activity at the spatial scale of neuropil could be used for representations of choice, but here 

I assume that the relevant unit of neural activity is at the level of somatic activity.  While it is 

possible that nearby neuropil can be correlated and the cell can still have valid choice selectivity, 

it is not possible to distinguish this hypothesis from motor artefacts, so to be conservative I do 

not consider cells that are too similar to the neuropil (i.e. have a low isolation distance), in keeping 

with the assumptions made in the rest of the thesis.  
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Figure 21. Apparent choice-specific event-aligned 
activity may be spurious in cells with low activity. 
(a) An example cell with very low isolation 
distance, aligned to movement onset and split 
across left and right choices, and averaged across 
trials (mean ± s.e.m.). (b) The respective neuropil 
surround of the cell in (a), averaged over the same 
events.  

 

As before, I established baseline expectations of choice selectivity across tasks by comparing 

choice selectivity across days, either within the same task or across different tasks. Comparing 

selectivity within-task across days accounts for session-to-session variability in choice biases, 

motor errors and arousal that may differ artifactually across choices within a session. Although 

such biases could also be consistent within a mouse across sessions, or even across mice, it is at 

least a more robust measure than only comparing within session. As well, comparing baseline 

within-task selectivity across days accounts for any “representational drift” in what the cells may 

encode (Driscoll et al 2017) although I do not expect that anyway at this timescale (i.e. sessions 

separated by one or two days at most). 

Results  

Validation of stimulus-independent choice selectivity  

As mentioned, in the steering-wheel, task 0% contrast trials were accidentally not rewarded. 

Therefore, interpretation of activity in these trials could be problematic. However, in the T-maze, 

0% contrast trials were correctly rewarded at random, p(reward) = 0.5. I use these sessions to 

validate the combined conditions choice probability (ccCP) measure, which is designed to be 

stimulus-independent. Indeed I find very good agreement between the choice selectivity auROC 

estimated on 0% contrast trials "0% auROC" and the ccCP in the T-maze. Fifteen sessions were 

eligible to compare 0% auROC and ccCP with at least 10 trials of each response type. 

Correspondence between these measures in the same neurons was extremely good with median 

r = 0.96 +/- 0.04 m.a.d. across sessions. In some cases, this close agreement was because the 

mouse performed so well that most trials bar the 0% contrast trials were performed perfectly, 

such that most high contrast conditions were not included due to only having one type of 

response (left only or right only choices) in the ccCP analyses (see Methods for why). The high 

correlation between 0% auROC and ccCP is reassuring that ccCP can be used as an accurate proxy 
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choice in the absence of a sided stimulus, in sessions without enough 0% contrast trials, which 

helps include many more sessions. 

Evaluation of stimulus-independent choice selectivity within tasks 

In each task, there were neurons with movement-aligned activity selective for left vs right choice. 

Figure 22 shows two example neurons which were significantly choice-selective in a stimulus-

independent manner (ccCP). An example of the same kind is shown in Figure 23 for the steering-

wheel task.  

 

Figure 22. Neurons in the T-maze are selective for choice independent of stimulus. (a) Schematic of the 
T-maze. (b) Histogram of ccCP values estimated using the whole trial (-1 means left preferring and 1 
means right preferring). Filled bars indicate statistically significant neurons according to the 
permutation test. For illustration, I include all recorded neurons, including potentially inactive ones. (c) 
Schematic showing the “post-move” period in the T-maze. (d) Histogram of ccCP averaged across the 
post-move period only. (e) Two example neurons of those that passed the significance test for ccCP in 
the post-move period, aligned to the start of the post-move period (the dotted line in (c)). The time 
corresponds to the time at which the mouse first passed the z=90cm mark down the corridor. 
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Figure 23. Neurons in the steering-wheel task are selective for choice independent of stimulus. (a) 
Schematic of the steering-wheel task. (b) Histogram of ccCP values for ccCP averaged across the whole 
trial. Filled bars indicate statistically significant neurons according to the permutation test. For 
illustration, I include all recorded neurons, including potentially inactive ones. (c) Schematic showing 
average wheel velocity for movements to the left and right, aligned to detected movement onset times, 
highlighting the “post-move” period used for the steering-wheel task. (d) Histogram of ccCP averaged 
across the post-move period only. (d) Two example neurons of those that passed the significance test 
for ccCP in the post-move period, aligned to detected movement onset times. 

I then used the periods defined above and counted the percentage of neurons that were choice 

selective (based on ccCP) for every session. I used a low threshold to be liberal for including 

neurons which might not have high variance but may have been reliably active for certain choices, 

isolation distance > 0.05, so this procedure included many neurons that may have been inactive 

(as illustrated in  

Figure 21). The percentage is thus the proportion out of the total number of neurons > 0.05 

isolation distance. Results are shown in  

Figure 24.  
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Figure 24. Percentage of neurons that are 
significantly choice selective over all included 
sessions. Median % significant were, from left 
to right, 45.5, 22.4, 6.2, 9.4, 9.2, 4.8 and 6%. A 
one-way ANOVA corrected for multiple 
comparisons found that the whole trial T-maze 
% significant and post-move T-maze % 
significant were higher than other types, and 
no other types were significant between each 
other.  

 

 

In summary, I found that averaged across the trial or just after a choice movement, there was 

significant choice selectivity in the T-maze task but only a minimal amount of choice selectivity 

in the steering-wheel task. On average, about half of active neurons were significantly choice-

selective, independent of stimulus side in the T-maze when averaged over the whole trial and 

about a quarter were choice-selective during the post-move period. In all other conditions, 

including for all epochs in the steering-wheel task, about a tenth of active neurons were choice-

selective. The relative prevalence of choice selective neurons when considering the whole trial 

vs. just the post-movement period may reflect a preference for encoding of ongoing movement 

over just the onset. Consideration of the whole trial also better captures variation in the speed of 

the movement across trials that may then exceed the 200ms post-movement epoch due to the 

speed of the GCaMP indicator.  

Since “freeze” and “pre-move” periods did not have as many selective neurons in the population, 

I do not analyze these periods further. Note that the set of active neurons in each task could 

include neurons that are or are not engaged in the other task. The greater percentage of neurons 

choice selective in the T-maze was not due to there being different numbers of neurons active in 

either task (i.e. the denominator for the percentage); a two-tailed rank-sum test found there was 

no significant difference between the distributions of the number of active neurons between 

tasks, p = 0.3. T-maze trials are longer than steering-wheel task trials, which could influence the 

whole trial analyses, however the epoch-based analyses use the same window duration, and still 

there are more T-maze choice-selective neurons in the post-movement period than steering-

wheel choice-selective neurons in a post-movement period of the same duration.  
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Across-task comparisons of choice selectivity 

After establishing which windows are most informative for choice in each task, I then ask the key 

question of interest, whether choice selectivity is shared in the same neurons across tasks.  

Choice selectivity within the steering-wheel task was only mildly consistent on the next day 

within single neurons, while T-maze consistency was very good (Figure 25a-d for an example 

session). In 4/4 pairs T-maze choice probability was significantly correlated, in 2/4 pairs 

steering-wheel task choice probability was significantly-correlated, consistently across threshold 

values (Figure 25-e, left and right columns). The moderate correlation of steering-wheel choice 

selectivity in the same neurons across days is consistent with the low proportion of significantly 

choice selective neurons estimated within task and within session, from  

Figure 24).  

Across different threshold values (0, 0.05, 0.1, 0.2, 0.3, 0.5 or 0.8), either TM/SW or SW/TM 

combinations were significantly correlated in 0 or 1 of 4 pairs, with only one threshold value 

finding that both combinations were significant. In all cases the median across-task correlation 

was lower than either within-task correlation. Therefore, choice selectivity is not consistent 

across tasks.  

 

Figure 25. Choice selectivity is not correlated across tasks. (a-d) Example pair of days showing whole-
trial choice selectivity values (where negative values means left choice preferring) for combinations of 
the T-maze and steering-wheel task on one day or the next. All neurons are shown for illustration, with 
no thresholding for inactivity. Filled circles indicate those neurons that pass the significance test on both 
days for the given comparison. (e) Summary of all four pairs of days. Each point is a Spearman rank 
correlation for a scatter plot such as shown in (a-d), such that each pair of days appears four times (one 
for each combination). As the T-maze vs steering-wheel comparison appears twice (i.e. (b) and (c)) I 
combined them, so the middle comparison has twice as many pairs, i.e. eight datapoints. Filled circles 
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indicate a significant correlation according to the Spearman rank correlation. I only correlate neurons 
active in both tasks, according to a threshold of isolation distance > 0.3. Different threshold values did 
not change the overall results. (f) Same but for ccCP estimated in the post-move periods of each task. 
Again I only used neurons active in both tasks. 

As I only had four pairs of days, I expanded these analyses to across tasks, within a session, to 

provide a better estimate of whether any sessions had correlated choice selectivity. The 

procedure is identical to that computed for the middle columns of Figure 25e,f, but now is within-

day, so I only have one comparison. Since this procedure no longer gives us a baseline for 

comparing within-task reliability (which I observed was low across days), interpretations of 

correlation values should be made with caution. I also varied the isolation distance threshold to 

see whether even thresholds which were very inclusive of potentially inactive neurons would 

result in any relationship, although the caveat holds from  

Figure 21 that some of these choice selective neurons may be spurious. There was a tendency 

towards positive correlations of choice selectivity across tasks in the whole-trial analyses, but 

only a maximum of 3 of 20 sessions reached significance in the Spearman rank correlation of ccCP 

across tasks (Figure 26). Different isolation distance threshold values for defining active neurons 

did not change the overall conclusion, with at most three sessions showing a significant 

correlation of choice preference within-session for low threshold values, and no sessions were 

significant for “post-move” epochs. At the threshold used above in the cross-day analyses (activity 

> 0.3), only one session was significant. 

 

Figure 26. Correlation of choice selectivity across tasks, compared within days. (a) Spearman rank 
correlation of choice selectivity across tasks, as estimated over the whole trial (b) Correlation of choice 
selectivity across tasks, as estimated in the post-movement period only.  
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4.2 Stimulus selectivity  

Given I could not find shared representations of choice, and that baseline levels of choice 

selectivity were low within the steering-wheel task, I wondered whether other task features 

played a larger role. Specifically, I wondered whether stimulus information was more likely to be 

shared across tasks.  

According to some studies, lateral intraparietal area (LIP) in macaques is retinotopic with 

neurons having visuospatial receptive fields (Robinson et al. 1978), and is sensitive to decision-

irrelevant visual cues such as flashes (Park et al. 2014; Meister et al. 2013) and visual evidence 

independent of choice (Bennur and Gold 2011). It is also known from rodents that PPC is sensitive 

to individual bouts of visual evidence such as flashes (Licata et al. 2017; Scott et al. 2017) and 

towers (Pinto et al. 2019), but also that this effect may be task-specific (Pinto et al. 2019). Visual 

information seems more prolific than movement- or choice-related information (Zatka-Haas et 

al. 2020; Steinmetz et al. 2019), and there seems to be a bias towards contralateral visual 

information (Koay et al. 2019; Steinmetz et al. 2019) for lateralized stimuli. Steinmetz et al. 

(2019) reported in their study that they found stimulus-triggered average responses in A, RL and 

AM as early as ~80ms from stimulus onset, which is before the onset of deliberate wheel 

movements; the observation that stimulus information is present even before the movement may 

suggest its role in sensory evidence for an upcoming movement plan.  

Further, as discussed in the General Discussion, inactivation studies at large suggest a stimulus-

related causal role, most relevant here from work in a two-alternative unforced-choice (2AUFC) 

contrast discrimination variant of the steering-wheel task (Steinmetz et al. 2019, Zatka-Haas, 

Steinmetz et al. bioRxiv), that was confirmed in a 2AFC variant (Coen et al., SfN Abstract 2019). 

Inactivation of regions overlapping with PPC decreased contralateral choices as if the 

contralateral hemifield had been blinded, and the extent of the effect depended on the stimulus 

decoding accuracy based on bulk wide-field calcium activity (Zatka-Haas, Steinmetz et al., 

bioRxiv). Note that both studies performed scanning inactivation across multiple sites across 

cortex, and did not target PPC precisely; the spatial extent of the inactivation thus likely exceeds 

PPC and affects visual areas as well. So, results should be interpreted with caution. Even so, 

Neuropixels recordings which are more precisely localized to higher visual areas A, RL and AM 

— that overlap with what is called parietal cortex — confirms that there are stimulus responses 

(Steinmetz et al. 2019). Therefore, I wondered if I would also see relative prevalence of stimulus 

information, and whether stimulus information would be shared across the two tasks. 

https://paperpile.com/c/rDDkuM/V5WC
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Methods 

In brief, I used the same logic described above for choice selectivity analyses. To probe stimulus 

selectivity, I used the converse comparison, now measuring choice-independent stimulus 

selectivity. Specifically I compared mean activity for left and right stimulus sides, within choices 

in the same direction, and pooled across left and right choice conditions. To increase the trial 

count, I now included all trials even if the mouse started to move before the trial, as “pure” 

stimulus responses should be invariant to these movements. I analyzed several different variants, 

comparing all contrasts, only high contrasts (25 or 50%), left vs right stimulus conditions, left vs 

zero stimulus conditions, and either over the whole trial or just within the first “freeze” period as 

described before. I still excluded sessions if they had fewer than 10 trials of each comparison. 

Many fewer sessions were available for comparison when only using high contrasts, so 

interpretation should be made with caution. 

Results 

First, I validated the measure of choice-independent stimulus selectivity. Figure 27 shows two 

example neurons from different sessions that were deemed to be significantly stimulus selective. 

Note that the rise time is extremely quick, with the peak occurring at 200ms, by the end of the 

freeze period, so the temporal profile is not due to stimulus movement. As well, it occurs 

independent of movement, in one session, I presented static gratings (for three seconds) to a 

mouse while it was running on a ball, and also had measurements of stimulus selectivity during 

the steering-wheel task. Even though the mouse did not move in compensation and could not 

move the grating (it was fixed at -30 or 30 degrees azimuth), this neuron showed a clear stimulus-

evoked response, and was deemed in the task to be significantly choice-independent stimulus 

selective. However, it is the case that many neurons do show concurrent movement-related 

stimulus-evoked responses as well, which was observed in Steinmetz et al. (2019) in their wheel-

based task. 
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Figure 27. Stimulus selectivity in the steering-wheel task. (a) Schematic of left and right stimuli in the 
task, which correspond to contralateral and ipsilateral stimuli respectively (b) Schematic showing the 
logic of the “freeze” period, in which movements can occur in the interim, but will not have an effect on 
stimulus movement. (c) Example neuron with significant choice-independent stimulus selectivity in the 
steering-wheel task. (d) A different example neuron from a different session with stimulus-triggered 
activity during passive stimuli presentation, with choice-independent stimulus selectivity in the 
steering-wheel task.  

Within-task assessment of choice-independent stimulus selectivity  

I then calculated the within-task proportions of choice-independent stimulus selective neurons 

in each task (Figure 28). Up to 20% of neurons were significantly modulated by stimulus side in 

the steering-wheel task. A sizable percentage of the T-maze neurons were also significantly 

stimulus selective, up to 38%.  

 

Figure 28. Within-task quantification of % significantly stimulus selective out of all neurons with an 
isolation distance of at least 0.05. LR = comparing left and right high-contrast stimuli; LZ = comparing 
left high contrast and 0% contrast; all = all contrast values. (a) Median % stimulus selective 21.8, 31.5, 
25.9, 37.6 for the T-maze; 6.1, 4.0, 14.7 and 19.5% for the steering-wheel task from left to right (b) 
Median % 3.0, 7.4, 2.9, 11.9 for the T-maze; 7.9, 2.0, 9.4, and 13.3% for the steering-wheel task from left 
to right. 
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Comparing within-task proportions of stimulus selectivity and choice selectivity 

Next, for each task, I tested whether there was a statistically significant difference between the 

proportion of significantly (choice-independent) stimulus selective neurons and proportions of 

significantly (stimulus-independent) choice selective neurons, measured from the previous 

sections ( 

Figure 24, Figure 28). I used the whole trial epoch so that both stimulus and choice selectivity 

were estimated using the same time period.  

For choice selectivity, I used the ccCP ( 

Figure 24). For stimulus selectivity, I used the four variants described previously (Figure 28), 

“allLR”, comparing left vs right stimuli of all contrasts; “LR”, comparing left vs right stimuli of high 

contrasts 25% and 50%; “allLZ”, left stimuli vs zero contrast trials using all left stimuli contrasts; 

and “LZ”, left stimuli vs zero contrast trials using just high contrast left stimuli. Since the 

proportions were not normally distributed, I used a non-parametric variant of a one-way ANOVA, 

the Kruskal-Wallis test. P-values were corrected for multiple comparisons. 

In the steering wheel task, only one of four measures of stimulus selectivity had a proportion of 

stimulus selective neurons that was significantly different from the proportion of choice selective 

neurons: the “LZ” stimulus selectivity using only the high contrast left stimuli and zero contrast 

trials. Specifically, there were more “LZ” stimulus selective neurons (median proportion: 19.5%) 

than choice selective neurons (median: 9.4%), p = 0.002. However, the proportions of stimulus 

selective neurons using the three other stimulus selectivity measures (allLR, allLZ, and LR) were 

not significantly different from the proportion of choice selective neurons.  

In the T-maze task, in three of the four stimulus selectivity measures, there was a difference 

between the proportion of stimulus selective and choice selective neurons, in all three cases with 

more choice selective neurons (median: 45.5%) than stimulus selective neurons (median allLR: 

21.8%, p = 0.005; LR: 31.5%, p = 0.026; allLZ: 25.9%, p = 0.001). Of the four stimulus selectivity 

measures, the “LZ” comparison had the highest proportion of stimulus selective neurons (median 

proportion LZ: 37.6%); since both “LZ” stimulus selective and choice selective neurons were 

prevalent in the T-maze, there was no significant difference between these proportions.  

Across-task comparisons of stimulus selectivity 

I had much fewer sessions available for analysis after exclusion of invalid sessions, including 

reducing some of the sessions with the across-day comparison. As I did not have many pairs to 
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begin with (only 4), I did not feel confident in drawing conclusions from <4 examples. Further, 

there remained only 11 sessions available for within-session comparison where both the T-maze 

and steering-wheel task had sufficient trial counts. Out of these 11, one or two sessions had a 

significant correlation. However, it is unclear whether on the whole there is more similarity in 

choice-independent stimulus selectivity than stimulus-independent choice selectivity, given the 

difference in overall number of sessions available for comparison.  

Across-task comparisons of dependent choice and stimulus selectivity 

In order to incorporate more sessions, I performed a preliminary analysis in which stimulus and 

choice could now be dependent. This analysis allows more sessions to be included that previously 

had too few trials, but specific conclusions about choice vs stimulus selectivity are more limited 

as choice and stimulus selectivity are no longer independent of the other. Unless described 

otherwise, I used “whole trial” epochs so that stimulus and choice selectivity could be estimated 

using the same time period.  

Dependent choice selectivity 

For calculating “dependent” choice selectivity, I first used trials of all contrasts, comparing all 

trials of left choices and all trials of right choices. However, choices at high contrasts are 

particularly confounded with stimulus selectivity, since mice have generally good, if not perfect, 

performance at high contrasts. Additionally, errors in spite of “easy” high contrasts may result 

from unusual processes such as disengagement or motor errors, rather than deliberate 

perceptual decisions.  

So, I calculated two more measures of choice selectivity using only low contrast stimuli, where 

the mouse may be more uncertain and then “think” a stimulus has appeared on the wrong side. 

These trials also have more balanced numbers of correct choices and errors, and thus are less 

sensitive to issues arising from unequal sample sizes. For low contrast analyses, I used either 6% 

contrasts only (the lowest non-zero contrast) or both 6 and 12% contrasts. As I still required at 

least 10 trials of each choice for comparison, sometimes there were too few low contrast trials in 

a session, so this analysis was still limited to relatively few sessions compared to the first analysis 

with all contrast types.  

Consistent with stimulus-independent choice selectivity (i.e. ccCP), I found that dependent choice 

selectivity was not correlated across tasks, whether I used trials of all contrasts, just low 

contrasts, the whole trial period or just the post-movement period (Figure 29-a). For low contrast 

trials, there were fewer sessions available that had enough trials for comparison, but no more 
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than 2/14 of sessions had a significant correlation. A Kruskal-Wallis test, corrected for multiple 

comparisons, did not find significant differences between these different measures of choice 

selectivity, suggesting that regardless of precise measure, choice preferences are not shared 

across tasks. The similarity of results between dependent choice selectivity using low contrast 

trials and choice selectivity measures using all trials also suggests that the inclusion or exclusion 

of zero contrast trials does not affect overall conclusions. Therefore, different zero contrast 

parameters across tasks (the accidental omission of rewards from zero contrast trials in the 

steering wheel task) does not explain why choice preferences are not correlated, since I reached 

the same conclusions in analyses that do not use zero contrast trials.  Again, given the relatively 

few available sessions, these results should be treated with caution. To take advantage of low 

contrast trials, future experiments could present lower contrast trials with higher probability to 

produce more trials that can be included for estimates of choice selectivity.  

Dependent stimulus selectivity 

For calculating “dependent” stimulus selectivity, I used the four variants described previously 

(Figure 28), using high contrast stimuli only (25% and 50%), or all contrasts, and comparing left 

vs right side stimuli, or left side vs zero contrast trials.  

There did seem to be a positive correlation between stimulus selectivity across tasks in some 

sessions, depending on the measure (Figure 29-b). The median correlation of stimulus selectivity 

across sessions was not sensitive to the activity threshold, if anything going up with higher 

thresholds (Figure 29-c). Note that all thresholds for isolation distance used in this thesis are well 

beyond the “behaviourally plausible” range for activity. Trials of the same choice or stimulus side 

usually happen at a rate of once every few seconds, whereas isolation distance thresholds exclude 

inactive cells which may fire a few times in 20 minutes, if at all. Therefore, exclusion of cells with 

low activity is unlikely to affect estimates of choice or stimulus selectivity.   

In summary, there are hints that stimulus selectivity may be more likely to be shared between 

tasks in the same neurons. However, given the conflatory nature of this analysis with choice, it is 

difficult to conclude whether shared stimulus selectivity is about stimulus per se, or specifically 

the interaction of stimulus and choice. Further work is certainly needed to distinguish these 

possibilities. 
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Figure 29. Preliminary analyses for comparing different measures of “dependent” choice selectivity and 
stimulus selectivity across tasks. Each datapoint reflects the Spearman rank correlation of selectivity 
across tasks over the neurons within a session. Sessions were excluded if fewer than 10 trials remained. 
(a) Correlation of choice selectivity across tasks, for dependent choice selectivity and ccCP for 
comparison. From left to right, p < 0.05 in 3/20, 2/21, 0/10, 2/14 and 1/21 sessions. Neurons were 
included if they had an isolation distance > 0.05 across tasks. (b) Correlation of dependent stimulus 
selectivity for four measures of stimulus selectivity as described previously. From left to right, p < 0.05 
in 7/21, 2/20, 8/20, and 3/20 sessions. Neurons were included if they had an isolation distance > 0.05 
across tasks. (c) Examining the effects of isolation distance threshold on the correlation between 
dependent stimulus selectivity for the L/R comparison across tasks.   

a c 
L/R stimulus selectivity 

b 



83 
 

 

Discussion 

In summary, there is a minority of neurons that seem to be choice selective in either task, however 

these neurons do not seem to share choice preference across tasks. In the steering-wheel task, 

there are relatively few neurons that are stimulus-independent choice selective (~9%), and 

choice selectivity is only moderately correlated in the population between neighboring days in 

2/4 of available pairs. In comparison, there is a larger proportion of choice selective neurons in 

the T-maze (~45%) and choice selectivity in the T-maze is also more consistent across days 

(correlated in 4/4 pairs). Therefore, these findings suggest that in these tasks, neurons in PPC do 

not share abstract representations of choice. I find there is some evidence for choice-dependent 

stimulus-related activity that is shared across tasks, supporting a role of PPC early in the decision-

making process. However, further work is necessary to pinpoint the contribution of stimulus vs 

choice information, ideally with enough trials to compute measures in which choice and stimulus 

are independent of the other.  

Within-task assessment of choice selectivity  

In the steering-wheel task, in those neurons that were choice selective, there seemed to be more 

neurons representing ongoing choice, and few representing upcoming choice. Although precise 

comparisons of choice windows are limited due to the temporal resolution of calcium imaging, 

observations of a low proportion of choice-selective neurons and relative prevalence of ongoing 

vs upcoming choice representations are consistent with findings using Neuropixels probes in a 

2AUFC contrast discrimination variant of the steering-wheel task (Steinmetz et al., 2019).  

I see more neurons that are choice selective in the T-maze than the steering-wheel task; 

differences between tasks could be due to the subtlety of the motor report of the choice. Perhaps 

more complex or vigorous choice movements, such as that seen in the T-maze task, are 

responsible for driving stronger choice representations. In particular, running is thought to 

increase the "gain" of neural responses throughout the brain (V1: Niell & Stryker, 2010; but see 

alternative conclusion in Saleem et al. (2012) and Christensen & Pillow for an opposing result in 

mouse higher visual areas; brain-wide: Stringer et al., 2019; Musall et al., 2019), and that might 

explain why here choice representations are stronger. Note that the turn to make a choice in the 

steering wheel tasks is still quite overt: the mouse is required to turn the wheel 90 degrees (out 

of 360) to complete the choice. If effort does play a role, this hypothesis could be tested by 

additionally including a two-alternative task using licks as a motor report, which is even less 

effortful than a steering wheel turn.  
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After comparing proportions of choice selective and stimulus selective neurons, I found that in 

the T-maze there was generally a higher proportion of choice selective than stimulus selective 

neurons; however, in the steering-wheel task there was generally no difference between the two 

proportions, with some tendency towards a higher proportion of stimulus selective neurons. 

Differences in proportions of choice vs stimulus selective neurons in the steering-wheel task were 

sensitive to the exact measure of stimulus selectivity used, so further work is needed. There is 

some evidence from other work that in overlapping higher visual areas, stimulus selectivity 

better describes PPC activity than choice selectivity, when jointly fitting stimulus and choice 

predictors to Neuropixels data using regression models (Steinmetz et al., 2019). This analysis 

could be applied here as well in future work, perhaps focusing on sessions that only include one 

task to maximize trial count for better estimation of feature selectivity.  

Across-task comparisons of choice selectivity  

Despite observing choice representations in each task, these choice preferences do not seem to 

be shared across tasks. These results across two tasks with different motor reports complement 

results of consistency in choice encoding in rodent PPC across different tasks that employ the 

same actions,but differ in modality of the sensory stimulus (tactile vs visual: Nikbakht et al. 2018; 

visual vs auditory: Raposo et al. 2014). In these studies, 40-50% of neurons were found to share 

significant choice selectivity across tasks of different modalities (despite apparent modality-

specific effects of perturbations). A relevant difference between these studies and the current 

results is that the former employ the same means of motor report, whereas here the difference is 

likely due to “motor-context-specific” choice representations that are particular to choices in the 

T-maze vs steering wheel context. 

These findings are perhaps consistent within the “intentional framework” (Shadlen et al. 2008). 

Namely, that choices could be unrelated across apparatus because they are literally encoded with 

respect to the action undertaken, i.e. “left treadmill turns”, “right treadmill turns”, “left wheel 

turns”, and “right wheel turns”. Given the small number of possible actions available across the 

tasks, i.e. four, it is conceivable that these are sufficient to cache separately, particularly when it 

is more efficient to do so for action. Indeed if it is behaviorally useful to represent two task 

contexts distinctly, such as the need to perform different actions (wheel turn vs treadmill 

running) within each context, it is computationally more advantageous to use distinct subsets, or 

populations with minimal overlap, to minimize “interference” and aid with efficient retrieval.  

In general, the extent to which an embodied representation is provoked is likely species-

dependent, perhaps modulated by ecological need — embodied representations are more 
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efficient and may be more useful for animals which are “prey”, such as rodents — or ecological 

niche — rodents have relatively low spatial acuity so must move to sense and act, whereas 

primates can sample and decide at long-range.  

The involvement of PPC in movements 

I observed activity related to ongoing choices left and right, which is not wholly indistinguishable 

from the physical act of turning a wheel or spinning a spherical treadmill. Indeed both tasks 

involve rotation of the apparatus, but it is unlikely that motor correlates better account for 

activity in PPC as in a control analysis, I confirmed that neurons do not share modulation for 

rotational velocity across task contexts (addressed in Appendix C).  

Further, linking back to the inactivation literature, perturbation studies do not show that PPC has 

a motor-specific role. First, optogenetic inactivation throughout the cortex, including a region that 

overlaps with parietal areas, suggests that unilateral inactivation of PPC in steering-wheel task 

variants blinds the contralateral hemisphere (Zatka-Haas, Steinmetz et al., bioRxiv; Coen et al., 

SfN 2019). Additionally, in one of these studies, as the task was a 2AUFC contrast discrimination 

task, the authors also observed boosting of ipsilateral choices relative to No-Go trials (Zatka-Haas, 

Steinmetz et al., bioRxiv). One might expect that if PPC “drove” the motor execution of choices, 

body rotations or orienting in general, the ability to make choices to either side would be 

impaired by inactivation. Instead, inactivation of PPC and other visual areas in 2AUFC contrast 

discrimination and 2AFC visual detection steering wheel tasks do not overtly affect reaction time 

or wheel velocity trajectory (Zatka-Haas, personal communication; Coen et al., personal 

communication). So, it does not seem that PPC has a role in movement initiation or execution, at 

least in the steering-wheel task. In a spherical treadmill-based task, as discussed in the General 

Introduction, inactivation of PPC does not result in overt motor errors, and impairments can be 

attributed to disruption of task-relevant sensory evidence in the respective task (Minderer et al., 

2019; Pinto et al., 2019). 

Finally, other works that require the same movements for tasks of different demands or 

modalities find differential effects of inactivation across tasks, which would not be predicted by a 

uniform effect on motor execution (Pinto et al., 2019; Licata et al., 2017). As mentioned in the 

General Introduction, Licata et al (2017) found that perturbation of PPC affected visual but not 

auditory decisions, but did not affect reaction times and movement durations for either modality. 

In both cases the rat has to make the same left vs right orienting movement, so this modality-
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specificity would suggest that it is not the ability to make a movement that is affected when 

perturbing PPC.  

Dependent stimulus and choice selectivity  

Preliminary analyses showed that there may indeed be some level of shared representation for 

stimulus information across tasks, which is consistent with the proposed causal role of PPC. The 

measure of stimulus selectivity used to compare across tasks is not independent of choice 

selectivity, as I used a “choice-dependent” stimulus selectivity measure due to low trial counts for 

estimating choice-independent stimulus selectivity. Therefore, further work is certainly needed 

to determine whether stimulus representations are truly independent of choice, or whether it is 

the combination of stimulus and choice information that is privileged in PPC and shared across 

tasks. I have a handful of sessions in which I also recorded during passive presentation of visual 

stimuli, either playback of the T-maze, or static presentation of gratings. Some of these sessions 

were not adequate for alignment across tasks, so they did not pass initial inclusion criteria. 

Further experiments should aim to elucidate whether hints of shared stimulus selectivity across 

tasks would extend to stimulus selectivity outside of a task, and establish to what extent shared 

stimulus representations are due to "pure" stimulus selectivity vs a stimulus-choice interaction, 

using experiments or analyses that allow one to dissociate specific stimulus vs choice 

contributions. Findings from the literature suggest that the sensorimotor interaction may be the 

most important characteristic driving PPC neurons.  

Limitations 

The role of inactive neurons 

It may be that even neurons which are apparently non-responsive show some modulation by 

either choice. Hence, I was careful to check results over a range of thresholds; however, by 

widening the net to potentially inactive neurons, it is unclear how much observed choice 

selectivity could be spurious due to potential motor confounds as discussed above.  

In any case, there may be yet other neurons that may show task-relevant activity, but perhaps 

sub-threshold to the number of spikes necessary to invoke a calcium transient. Huang et al. 

(2019) found that calcium activity at the zoom (500x500um) used here primarily reflects neural 

activity consisting of more than two APs within a 100-500ms window. If firing rate is lower than 

this, it might not be possible to detect activity at typical two-photon imaging resolution. These 

cells might be inactive throughout, or not active for task events, even if they fire extremely rarely 
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but reliably. This possibility cannot be evaluated in the current dataset, but work from Steinmetz 

et al. (2019) using Neuropixels probes suggest that the difference between the sensitivity of 

electrophysiology and two-photon calcium imaging at least does not account for the paucity of 

“truly choice selective” responses seen here, as I find roughly the same proportion of neurons 

which have significant choice modulation during ongoing choice (~10%).  

Temporal resolution 

In the steering-wheel task, the lack of quiescent period in some mice and slow decay of calcium 

made it difficult to disentangle the temporally overlapping stimulus and choice epochs, 

particularly as mice tend to respond to the stimulus within 200-500ms. Enforcing a post-stimulus 

quiescence period, a variant which exists in the lab, may avoid the limitations of the slow decay 

of the calcium sensor. Alternatively, now that expectations for PPC responses across tasks are 

established, future work could use chronic Neuropixels probes to record activity across tasks.  

Choosing the right window 

Finally, for both types of analyses, it is possible I did not examine the right time window within 

the trial, and some other window would have shown more similarity in feature selectivity across 

tasks. Further research is needed to address this possibility, ideally using a recording technique 

with better temporal resolution.   
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Summary 

In this thesis, I asked how populations of single neurons in PPC change their activity as a function 

of task. I recorded from the same population of neurons as mice performed two variants of a 

visual detection task: the T-maze and steering-wheel task. These tasks were designed to have 

similarities in abstract structure, but differed in the visual scene, means of motor report and 

requirements for navigation. I found that activity in PPC supported a “task-specific” view of its 

role in decision-making. Many neurons in PPC did not participate in both tasks, but rather were 

selectively active during performance of one task and were inactive in the other; this was 

repeatable on the next day. Task selective engagement was upheld even in the absence of a task, 

following the respective "motor context" of each task, as observed by correlated activity within 

contexts but uncorrelated activity across contexts. Despite the two contexts differing in the 

presence or absence of running, task selectivity was not explained by modulation by running.  

Although many neurons were not active in both tasks, I wondered whether the subset of neurons 

active in both tasks shared preference for task features that were present in both tasks. I was able 

to decode choice from neurons in both tasks, but choice selectivity was uncorrelated between the 

two tasks. Choice selectivity was consistent on neighboring days within tasks, so the lack of 

shared choice selectivity across tasks is not due to a random re-organization of task properties 

across time. However, even within the steering-wheel task alone, choice representations were 

rare. Instead, within PPC, stimulus representations were generally more prolific, and a 

representation of stimulus intermixed with choice seemed to be somewhat related across tasks.  

In conclusion, at least in these tasks, PPC does not seem to have "abstract" choice representations 

invariant to task at the level of single neurons. Instead, the activity of PPC seems to be “task-

specific”: sensitive to the context in which each task is performed, whereby different 

subpopulations of neurons are selectively engaged in each context and task-related event-evoked 

activity is specific not general across task. Next, I discuss potential interpretations of my results.  
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General discussion  

The extent of abstraction may be task dependent 

It is very likely that here, PPC was not found to carry "abstract" choice information precisely 

because there is no need to represent it so abstractly in PPC in these tasks. In both tasks, the 

choice is deterministic, and the fully-trained mice included in the dataset were likely well aware 

of the fixed stimulus-response contingencies. Thus, the mouse is able to make its mind up as soon 

as it sees the stimulus, and the "task" is therefore in perceiving the stimulus, which may occur 

even within 100ms (Resulaj et al., 2018); this may explain the relative prevalence of stimulus 

information, observed here and in a similar variant contrast discrimination variant (Steinmetz et 

al. 2019, Zatka-Haas, Steinmetz et al., bioRxiv). There is then no reason to not immediately pass 

on sensory information to downstream circuits such as secondary motor area (also known as 

FOF, M2, ALM) which has been implicated for action in these sorts of tasks (e.g. Erlich et al. 2011; 

Hanks et al. 2015; Erlich et al. 2015; Zatka-Haas, Steinmetz, et al. bioRxiv; Coen et al., in 

preparation; and many others).  

Choice information may be more necessary to “hold in mind” in task variants which involve 

ongoing evidence accumulation or a delay period. Indeed studies have found greater effects of 

inactivation of PPC when directly comparing tasks of these sort to visually-guided tasks with no 

delay (Pinto et al., 2019; Harvey et al., 2012). However, in visual detection tasks with a delay 

period, since the stimulus-response contingencies are still fixed, it is still possible that if PPC is a 

sensory-driven region, that PPC passes this information immediately and memory is deferred to 

downstream secondary motor regions. Even so, in memory-based stimulus detection and 

evidence accumulation tasks, it is unclear whether the mouse would "hold in mind" their 

perception of the sensory stimulus, to later execute an action, or "hold in mind" the choice. 

Whether parietal activity reflects (accumulation of) sensory evidence or premotor “buildup” of a 

movement intention is also a strong matter of debate in the macaque LIP literature. A recent study 

found that accumulation of sensory evidence and premotor “intentional” activity co-exist (e.g. 

Yates et al., 2017). Note that error trials do not help resolve this matter given that the mouse still 

acts on their subjective "perception" of the stimulus, which may be incorrect. Different timing of 

stimulus and choice events help distinguish the two, but it is still unclear whether observed 

sensory activity is related to perception or the intended choice. In PPC, it is likely the former, 

given there is more prevalent stimulus than choice information observed here and in other 
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studies, and the literature on the effects of inactivation at large (reviewed in the General 

Introduction).  

To disentangle these possibilities, a task design is needed that involves deference of the correct 

motor response until a secondary cue, which would enforce that mice need to “keep in mind” 

sensory evidence, but cannot plan their movement yet as the correct direction is unknown. Tasks 

of these types have been developed in rats and mice (Akrami et al. 2018; Condylis et al. 2020; Wu 

et al. 2020), although not using visual sensory evidence, so further work should expand on these 

to test for the role of PPC in processing visual sensory evidence vs a motor plan. 

Comparison to primate studies  

To fully understand a complex neural process such as decision-making, one should operate in a 

loop, learning from large-scale recordings in rodent studies to shape targeted hypotheses to then 

re-explore in primate species. As mentioned in the Introduction, the homology between rodent 

and primate cortex is unclear given the wide evolutionary gap (Belmonte et al., 2015, Sereno et 

al., 2014). However, rodent studies have been useful in informing work in primate species, given 

the ease of sampling broadly in an unbiased manner, and therefore the ability to perform within-

subject, within-session comparisons.  

The ability to sample broadly in rodent neural recordings means that researchers are no longer 

limited to searching for the “best” neurons on the basis of their response properties, which are 

biased to finding the sorts of neurons that are expected to be found (discussed further in 

Implications). Here we have learnt that neurons do not just have different response properties 

across tasks, but participate in separate ensembles corresponding to each task. Thanks to the 

unbiased sampling, I know that the neurons I recorded are indeed largely representative of PPC 

as a whole.  

Additionally, in conventional electrophysiology in primates, neurons are often pooled across 

days, given the low numbers of recorded neurons. This procedure may result in accidental re-

sampling of the same neurons across time, and therefore over-estimating the prevalence of the 

response properties of those neurons found again and again. Alternatively, neurons could change 

their response properties over days. Here, by having the ability to sample widely within a single 

session, I am able to restrict my analyses only within-session, which ensures the statistical 

independence of the reported results.  
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Further, while work is ongoing in developing calcium imaging in primates, all work in macaque 

parietal cortex described in this thesis was performed using electrophysiology. One of the 

motivations for using calcium imaging in this thesis was that imaging techniques afford more 

confidence in matching the same neurons across tasks and days, which was a key element of the 

research question under investigation. A direct result is that I was able to discover neurons which 

were inactive in either task, whereas in electrophysiology, particularly if it is limited to searching 

for the “best” neurons, neural silence could be more likely confused with drift or cell death. Lastly, 

I was able to confirm the validity of my findings by matching the re-appearance of neurons across 

tasks and days, which would be possible but less reassuring if I had not used an imaging method. 

Together, the large-scale neural recordings using two-photon calcium imaging has allowed us to 

find task selective neurons and confirm the validity of these findings. This result will hopefully 

then shape future work in primates that is better informed regarding what to expect when 

recording the same neurons across tasks.  

Context-dependent sensorimotor processing  

The relative prevalence of stimulus information may seem contradictory to the stark differences 

in activity across motor contexts (the T-maze vs steering-wheel apparatuses). Stimulus 

information is more prevalent in the population in terms of task-evoked activity (Chapter 4). Also, 

PPC inactivation primarily affects visual sensory information (as discussed in the General 

Introduction). This prioritization of stimulus information is perhaps strange given that here I 

observe that the dominant axis of activity vs inactivity in fact lies along the dimension of motor 

context (Chapters 2 and 3). How might these two observations be reconciled? 

A speculative interpretation is that PPC has found a way to jointly encode the stimulus 

information with the action that is relevant to the respective task (turning the steering wheel vs 

running on the spherical treadmill), by multiplexing temporally-aligned stimulus information 

with a “binary-like” representation of the motor context. Motor context selectivity can thus be 

hypothesized to serve as a “context gate”, diverting sensory information in the population to the 

relevant subpopulation in downstream neurons, such as in secondary motor cortex, depending 

on which task is being performed.  

Indeed, the joint encoding of sensory and motor information in the service of “sensation for (the 

relevant) action” is reminiscent of historical characterizations of PPC as a site for neither primary 

sensory nor primary motor representations alone, but their intersection. An interpretation of PPC 

as a “hub” has been an attractive metaphor, based on its anatomical location and connectivity  
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between sensory and motor areas. However, there seems to be truth in this characterization; that 

is, it is efficient to bind the actual stimulus seen with the information of the relevant repertoire of 

behaviors (which motor context). This account may then explain why in the literature, despite 

there being a strong causal role of sensory information in PPC, many studies see prevalent and/or 

dominant motor-related activity (Diamanti et al., bioRxiv; Minderer et al., 2019; McNaughton et 

al., 1994; Whitlock et al., 2012; Mimica et al., 2018, and others) and motor-choice information is 

shared across modalities (Raposo et al., 2014; Nikbakht et al., 2018) despite inactivation having 

a modality-specific effect. 

There are perhaps some relevant findings that there are context-specific representations in PPC. 

Harvey et al. (2012) found spatially-specific responses in PPC in a virtual T-maze decision task, 

interpreted as choice sequences, but not in a virtual linear track. Krumin et al. (2018) found in 

the virtual T-maze that in PPC neurons, decoding of virtual spatial position explained a large 

proportion of variance, and that virtual spatial position was more informative than correlated 

motor variables. The ability to decode virtual spatial position was corroborated in another study 

(Koay et al., bioRxiv) although in their task was not exclusive of decision-related activity. In these 

tasks, different “contexts” are characterized by different visual scenes as well, but there is even 

evidence that PPC may be sensitive to context even in visually-identical contexts. Diamanti et al. 

(bioRxiv) found that PPC and other higher visual areas are  sensitive to subjective spatial position 

in a virtual linear track with two pixel-identical segments; however, this effect was also observed 

in primary visual cortex (V1), so does not suggest that PPC is “special” in this regard. Finally, a 

seemingly distant finding from a fear conditioning study suggests PPC could be useful for 

awareness of context, finding that inactivation of PPC reduced freezing to a conditioned stimulus 

(CS) in a novel context, suggesting mice did not generalize to the association of the CS with the US 

(foot shock) in the novel context (Joo et al., 2020). The aforementioned studies differed greatly in 

their task design and aims, so further work is certainly needed to more precisely characterize the 

involvement of PPC in context selectivity.  

Silent cells in cortex 

Some works suggest that there are cases where apparent lack of task-related activity may be 

slight but may still contribute to population decoding, by increasing the dimensionality and 

therefore facilitating a simpler linear decoding scheme. This possibility has been discussed in the 

context of apparently "non-task-responsive" cells. There is indeed evidence from modelling 

studies that “untuned” neurons can still contribute meaningfully to coding of task-relevant 

variables (e.g. Leavitt et al 2017; Zylberberg, 2017). Also, a recent study found that even in "non-
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classically responsive" neurons (i.e. those without a clear evoked response in the peri-stimulus 

time histogram) can still carry useful information about task-relevant variables in their inter-

spike intervals (Insanally et al., 2019). An ultimate experiment to test whether “silent” cells are 

behaviorally useful would be an “all-optical” approach (Packer et al., 2017) to inhibit the so-called 

inactive neurons alone and see whether that has any discernible effects on behavior.  

Implications 

The importance of unbiased sampling 

These results underscore the importance of sampling broadly, both with respect to behavior (i.e., 

testing multiple tasks) and neural activity (i.e., recording hundreds of neurons simultaneously).  

Sampling of neurons  

First, these results highlight the importance of unbiased techniques such as two-photon calcium 

imaging to record hundreds of neurons simultaneously. The effect of biased sampling in limiting 

our understanding of a given brain region was raised by Oldshausen and Field (2006), who 

estimate that given sampling biases that favor neurons with large cell bodies, “visually-

responsive” activity, and high firing rates, only 10-20% of V1 neurons are typically accounted for 

in the general literature. This undersampling likely explains why in recent years many studies 

have found surprising diversity in V1 responses for encoding "non-classical" features (e.g. 

Stringer et al. 2019; Schuler & Bear, 2006; Saleem et al, 2018; Poort et al, 2015).  

In PPC, experiments were historically only able to record from a handful of neurons at a time, and 

therefore for practical reasons selected candidate neurons for recording based on prior 

expectations of what neural activity should look like. For example, in classic studies of evidence 

accumulation in LIP, Shadlen and Newsome (2001) chose neurons for inclusion specifically on 

the basis of whether they showed persistent activity during the delay period. Indeed, a rough 

calculation revealed that only a quarter of neurons of LIP passed this criterion (Katz, PhD Thesis). 

Meister et al. (2013) suggested that the bias to recording from these neurons perhaps  

mischaracterized the relevant neurons for decision-making, finding that a neuron's persistent 

activity was only weakly correlated to its choice-related activity.  

A recent survey of sampling effects on response properties illustrates the dangers of sampling 

bias: depending solely on the number of cells included in analysis, Mesa et al. (2020) reached 

different conclusions about the temporal frequency, orientation and direction tuning of neurons 
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in visual areas. This result speaks to the importance of selecting neurons independent from the 

basis of response properties, especially given the modern capacity for large-scale recordings on 

the order of hundreds or thousands of neurons simultaneously. “Widening the net” is essential to 

fully understand a region’s role. 

Sampling of tasks 

Similarly, studies that assess neural activity during a single task are likely underestimating the 

kinds of neural responses to be found in PPC. A given dataset evaluated using a single task often 

results in a minority of neurons that are judged as “task responsive” and thus included for 

analysis. In a virtual navigation task, Harvey et al. (2012) found that 47% of putative cells had >2 

transients/min, but the majority (53%) of identified ROIs were inactive. In a 2AUFC contrast 

discrimination task, Steinmetz et al. (2018) found that in parietal areas A, RL and AM, 20-70% of 

recorded neurons within the three areas were not responsive to any task events of stimulus, 

choice, or reward. In a study in rats, only 21% of morphologically-identified neurons were shown 

to be task-responsive in an auditory evidence accumulation task, meaning the other 79% were 

not engaged by task events (Scott et al. 2017). If a neural population is examined using only a 

single task, it is easy to conclude that only certain task-specific properties exist in that population. 

Therefore, future work should sample broadly across a range of tasks, as studies are starting to 

do (Pinto et al., 2019).  

Spontaneous behaviors are context-dependent 

Numerous studies have recorded neural activity during spontaneous behaviors while mice can 

run freely, and their findings have been extremely productive in challenging the domain-

specificity of primary sensory areas (e.g. Stringer et al., 2019). However, results of “motor context 

selectivity” in task-absent conditions (Chapter 3) make a curious implication; namely, that there 

is no "spontaneous" state. At least, there is no environment that can adequately capture the range 

of functions within a given region. Placing a mouse on a spherical treadmill engages a certain set 

of neurons, and placing the mouse on a steering-wheel apparatus engages a certain set of neurons, 

and this pattern likely holds for other apparatuses as well. Therefore, in choosing a particular 

apparatus to study encoding of a given region, as described above, one already is restricting 

analyses to a defined set of neurons that show activity in that context, because this misses a large 

proportion of neurons that are not engaged in each context. 
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Non-independent sampling of neurons across sessions 

Although I always performed analyses within the same session, for analyses of anatomical 

organization of task selective clusters, I attempted to align across imaging planes from sessions 

in which I did not purposely try to return to the same neurons (described in Appendix A). 

Surprisingly, I was able to match these different sessions very well, probably due to the narrow 

anatomical extent of PPC on the cortical surface and the narrow span of layers 2/3 in depth. 

Together with issues of accidental or intentional sampling bias for certain response properties 

this finding cautions against blind pooling of neurons across sessions without accounting for the 

dependence of accidentally resampling the same neurons.  

Limitations 

Differences in definitions of PPC 

The region I defined as PPC (overlapping with higher visual areas A/RL) differs from some other 

definitions of PPC (overlapping with AM), but this difference is unlikely to account for differences 

here compared to other studies of PPC in the literature.  

At first glance, it is important to precisely target PPC, as the spatial extent of PPC is fairly narrow 

along the anterior-posterior axis essentially no more than the height of a typical imaging field-of-

view (500x500um). Mistargeting the area ends up in primary visual or somatosensory cortices, 

which traditionally are expected to have different, more primary sensory, response properties. 

There are also certainly differences in connectivity between overlapping secondary visual areas 

A, RL and AM as revealed by anterograde and retrograde tracing studies (most recently carried 

out in mice in Hovde et al. 2019; and Glissen et al., 2020). 

However, recent evidence — using the kinds of tasks found here — have typically found that 

encoding of task features and effects of inactivation are highly similar across posterior cortex, 

particularly across higher visual areas A, RL and AM that typically define PPC (Koay et al., bioRxiv; 

Pinto et al., 2019; Minderer et al., 2019; Zatka-Haas, Steinmetz et al., bioRxiv; Coen et al., SfN 

Abstract, 2019; Diamanti et al., bioRxiv). At two-photon calcium imaging resolution, Minderer et 

al. (2019) was able to cluster a region consisting of A, RL and AM based on their encoding 

properties —  suggesting at least there is internal similarity in encoding properties within regions 

broadly considered parietal cortex. Interestingly they were not, in the same analysis, able to 

cluster AM uniquely. Regarding similarity in encoding and causal role across posterior cortex, 

Pinto et al. (2019) also make the point that different tasks may differential recruitment 
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distributed cortical areas. At least in the tasks here, the differences do not seem so stark between 

neighboring regions of cortex. 

Projection-specific differences across layers  

Some studies have found functional differences across layers within mouse PPC with regards to 

choice-related activity in decision making tasks (Koay et al., bioRxiv; Hwang et al., 2019). Hwang 

et al (2019) reported that projection targets of PPC neurons differ both along the dorsal-ventral 

axis and anterior-posterior/medial-lateral axes. Specifically, PPC neurons that project to 

posterior secondary motor cortex tend to be located more superficially, up to 500um in depth, 

which is the typical range accessible by two-photon imaging. In contrast, PPC neurons that project 

to striatum are in deeper layers. It is possible that I could be biased still to only sampling a certain 

functional class of neurons given that I only image in layer 2/3. 

Wide-field calcium imaging, two-photon calcium imaging, and electrophysiology likely sample 

from different cortical layers, making generalization across these recording techniques 

potentially challenging. However, here, I broadly replicate results from another study using a 

variant of the steering-wheel task which used Neuropixels probes (Steinmetz et al., 2018), which 

was also shown to broadly match wide-field activity in their same task (Zatka-Haas, Steinmetz et 

al., bioRxiv). 

Activity does not imply causality  

Finally, it is important to be wary of the oft-repeated phrase that correlation does not entail 

causation. As observed in rat (Erlich et al., 2015), mouse (Goard et al., 2015; Zatka-Haas, 

Steinmetz et al., bioRxiv) and macaque LIP (Katz), the existence of apparent event-evoked activity 

does not predict whether inactivation will have a behavioral impact. Therefore, inferences of 

causal relevance of the activity seen here should be made with caution. Steinmetz et al., (2019) 

found in their 2AUFC contrast discrimination task that many areas showed both visual and motor 

related activity, but  in another study was able to pinpoint that visual information directly 

correlated with deficits under inactivation, while motor information did not (Zatka-Haas, 

Steinmetz et al., bioRxiv).  

Preliminary findings from the lab suggest that there is a slight unilateral effect of inactivation in 

both the T-maze (Krumin et al., SfN Abstract, 2018), and a similar 2AFC steering-wheel task (Coen 

et al., SfN Abstract, 2019), which imply an effect of inactivation in blinding the contralateral 

hemifield, consistent with existing studies in the literature.  
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To directly test for the causal influence of task-specific populations, it is enticing to consider the 

use of technologies such as "all-optical" techniques that could be used to selectively inhibit sub-

groups of neurons determined to be task-selective under two-photon calcium imaging (Packer et 

al., 2015) or employing the c-Fos/tTA-tagging system to optogenetically inhibit just those 

neurons active during performance of either task (Chen et al., 2019). 
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Future directions 

Population decoding  

I do not find that choice selectivity is shared within single neurons across tasks, perhaps given 

low numbers of neurons that are “truly” choice selective, as observed in Steinmetz et al. (2019). 

This number should be near 100% if all choice representations are abstracted from the 

sensorimotor particulars. Within-task analyses suggest that there is a minority of neurons that 

seem to be choice selective (~9% in the steering-wheel task, ~45% in the T-maze), just that the 

preference is not consistent across tasks. Therefore it is possible that PPC manages to represent 

choice abstractly in the population by re-aligning its choice “readout” axis to differently weigh 

different neurons across tasks, as some studies have suggested (e.g. Mante et al. 2013; Raposo et 

al. 2014). Further work should explore this question, and also uncover the dimensionality of this 

“shared subspace” as has been applied to other work (Stringer et al., 2019; Semedo et al., 2019).  

The influence of learning on task selectivity  

A question of interest is whether these selective groups are fixed, prior to learning — suggesting 

there is some role of the physical sensorimotor features of each apparatus — or emerge 

throughout learning. I did not wish to image during learning as I was not certain that differences 

across learning could not be confused with differences due to relative anxiety or arousal. 

However, assuming I could eliminate such confounds, it would be interesting to know whether 

representations stay abstract and become more specifically embodied in either task once mice 

learn the task contingencies are deterministic. Najafi et al. (2020) imaged PPC neurons during 

learning of an auditory-visual rate categorization task, and found that choice representations 

became stronger during learning.  

The manner in which tasks are trained may also be important, with modelling studies using 

neural networks finding that blocked vs interleaved training can have different implications for 

the dependence or orthogonality of neural representations when switching between tasks (Yang 

et al., 2019; Flesch et al., 2018). By assigning different groups of mice to be trained in a blockwise 

or interleaved fashion, it will be possible to direct test this hypothesis and see whether different 

training protocols really influence the orthogonality of neural representations.   
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Outlook 

It was not too long ago when it was doubted whether rodents possessed the cognitive abilities to 

perform complex decision-making tasks, yet now, studies of decision making are prolific. Thanks 

to the advent of large-scale neural recordings, many studies have shown that diversity in the 

content of neural representations is more common than not. The next frontier is bridging the gap 

between cutting-edge technologies for recording and manipulating neural populations, with 

equally complex behavioral paradigms. Only in concert can we start to understand the true nature 

of complex cognitive processes and their manifestations in neural activity throughout the brain, 

and make sense of how we make sense of the world.  
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Appendix A 

Anatomical organization of task-selective neurons 

Having observed neurons active in either task, I wondered whether these neurons were restricted 

to different sub-regions in anatomical space.  

Alignment of imaging fields of view across days 

In some sessions, I purposely returned to the same population of neurons, and was able to align 

these sessions using Register S2P. However, in other cases, I did not intend to return to the same 

imaging plane or could not confidently align due to different angles of the microscope and non-

linear warping of the brain. Nevertheless, to estimate anatomical localization of task selective 

neurons, I attempted to roughly align even disparate planes across days based on control point 

registration using large landmarks such as blood vessels. I was surprisingly able to align imaging 

sessions in X-Y anatomical space even across sessions in which there initially seemed to be 

completely different sets of neurons. On this basis, I employed further sub-pixel registration 

techniques to more closely align sessions based on the pixel shapes of their ROIs. Figure 30-b 

shows the outcome of this process.  

Results 

Task-selective neurons were interspersed, suggesting first that the imaging field-of-view did not 

cross into another defined area of posterior cortex, such as somatosensory cortex or primary 

visual cortex. I did not find there were functional “subregions” of PPC. Figure 30 shows an 

example session and merge over sessions from one mouse. Indeed, in mouse parietal cortex, 

studies typically do not find anatomical separability of neurons encoding specific task features 

(Harvey et al., 2012; Pho et al., 2018; Tombaz et al., 2020). The only known exception is a study 

in rats that found an anterior-posterior gradient of head vs back posture encoding (Mimica et al., 

2018), however the same authors did not find anatomical separability in mice of motor behaviors 

(Tombaz et al., 2020), or turning vs running in rats (Whitlock et al., 2012), so the generality of 

these results is unclear. Overall, at least in mice, there does not seem to be motor-specific 

anatomical separability. 
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Figure 30. Task selective neurons are anatomically interspersed. (a) Example FOV from one session 
showing centroid locations of all recorded neurons within this session, colored by whether they were 
classified as T-maze selective neurons (orange), steering-wheel task selective neurons (blue) or other 
neurons which were not selective to either task alone (gray). (b) Merge of all seven sessions from one 
mouse, where the hue is averaged with equal weighting to each session. The dotted box shows the field 
of view in (a). Over the span of PPC covered in this mouse, there does not seem to be a clear functional 
border between the two classes of task-selective neurons. The gap in recorded cells to the lateral side 
was the location of a large blood vessel, so few cells were sampled there. 
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Appendix B 

Comparison of isolation distance to other measures  

As mentioned in Chapter 2, isolation distance was found to be the most robust in capturing 

activity across tasks in different strains of mice with different baseline noise levels. Two example 

sessions are plotted from different mice, showing activity across tasks using these different 

measures, showing that isolation distance provides the best measure of activity that is robust 

across transgenic mice with different speeds of calcium sensor, GCaMP6f and GCaMP6s. While in 

the GCaMP6f mouse, skewness can be used to reveal different task selective groups, in the 

GCaMP6s mouse, this measure is very uninformative due to a noisier baseline.  

 

 

Figure 31. Example sessions comparing task activity measures. (a) Example session from a GCaMP6s 
mouse. (b) Example session from a GCaMP6f mouse. 
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Appendix C 

Influence of rotational modulation 

A behavioral feature which is common across tasks is the rotational movement required to report 

a choice in both motor apparatuses. In the T-maze, the mouse needs to spin the spherical 

treadmill to navigate sideways in virtual reality; in the steering wheel task, the mouse needs to 

spin the steering wheel to move the visual grating. Recent work in rats has suggested that PPC 

neurons encode three-dimensional posture (Mimica et al., 2018), and other work has found 

encoding of angular velocity in a potentially overlapping region (near higher visual area A) in a 

visually-guided locomotion task (Minderer et al. 2019).  

In terms of the causal effects of such motor correlates, again few studies have found direct 

evidence. Minderer et al. (2019) found widespread effects of inactivation in causing decreased 

angular velocity on a spherical treadmill; however, this deficit was specific to the contralateral 

side in a task where the mouse had to monitor ongoing visual flow to correct its virtual course, 

consistent with contralateral blinding, as the authors conclude as well. Another study using a 

navigation task on a spherical treadmill did not find an increase in overt motor errors during 

bilateral inactivation of PPC during a visually-guided task (Pinto et al., 2019). In general, a review 

of perturbation results in rodent parietal areas (as surveyed in the General Introduction) strongly 

argues against a causal role in late-stage decision-making; there is little or no evidence that 

inactivation causes impairments at the motor execution stage, nor that perturbations outside 

tasks cause motor errors or movements per se.  

However, given the results from neural recordings, it was still of interest whether shared 

representations of rotational movements could explain why some neurons are active in both 

motor contexts.  

Again I used the "blank screen" conditions only, seeing as in the T-maze the rotation is highly 

correlated with the execution of the choice at the juncture of the T. As well, in the tasks, 

manipulating the apparatus is designed to move the visual scene (except during the ITI), making 

it hard to disentangle the effects of visual flow vs motion, the interaction of which was pointed 

out may be important to drive responses in parietal and nearby areas (Minderer et al. 2019). 

As with tests for running modulation in section 3.2, I checked for modulation by rotational 

velocity using correlations on smoothed traces. Here, rather than comparing modulation to task 
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selectivity (as neurons active in both tasks have a task selectivity ~0 by definition), I compared 

each neuron’s modulation by rotational velocity in each condition.  

 I only compared neurons active during both tasks. Across different threshold values, I observed 

a maximum of one session (of 9 to 11 total) that showed a significant relationship between 

modulation by velocity on the steering-wheel and angular velocity on the spherical treadmill in 

the “blank” conditions. The median correlation was low, r = 0.05-0.14 across threshold values. 

Therefore, I can conclude there is not an effect.  
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Appendix D  

Extended methods 

Surgery 

Surgical procedures were performed according to Home Office Guidelines under aseptic 

conditions and under isofluorane anaesthesia. For a given mouse, only one surgery was 

performed, prior to any handling or training, to minimize the number of operations. Rarely a short 

secondary surgical procedure was performed to add or remove cement around the headplate. 

Mice were anesthetized with isoflurane (Merial) at 3–5% for induction, and 0.75–1.5% 

subsequently. Body temperature was maintained at 37 degrees using a heating pad. 

Carprofen (5 mg/kg weight, Rimadyl, Pfizer) was administered subcutaneously for systemic 

analgesia, and dexamethasone (0.5 mg/kg weight, Colvasone, Norbrook) was administered to 

prevent brain swelling. The scalp was shaved and disinfected, and a local analgesic (Lidocaine, 

5% ointment, TEVA UK; or intradermal injection, 6 mg/kg, Hameln Pharmaceuticals Ltd) was 

applied prior to the incision. The eyes were covered with eye-protective gel (Viscotears, Alcon; 

or Chloramphenicol, Martindale Pharmaceuticals Ltd). The animal was positioned in a stereotaxic 

frame (Lidocaine ointment was applied to the ear bars), the skin covering and surrounding the 

area of interest was removed, and the skull was cleaned of connective tissue. A custom headplate 

was positioned above the area of interest and attached to the bone with Superbond C and B (Sun 

Medical). Then, a round craniotomy (3–4 mm diameter) was made with a fine-tipped diamond 

drill and/or a biopsy punch (Kai Medical). 

To provide optical access to the brain, a circular craniotomy of 4mm radius was made over right 

posterior cortex using a biopsy punch. The craniotomy was approximately centered at stereotaxic 

coordinates -2mm Anterior-Posterior and 2mm Medial-Lateral with respect to bregma. Given 

these coordinates and the radius of the craniotomy, 2/3 of V1 and other higher visual areas were 

usually also visible in the craniotomy, which enabled identification of retinotopic areas for more 

precise targeting of imaging location (described in the next section). 

The craniotomy was covered with glass coverslip (a 5-mm diameter outer coverlip glued to a 4-

mm inner coverslip). A circular metal headplate of 7mm radius was attached with dental cement. 

All recordings were thus made in the right posterior cortex only. 
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Following surgery, mice were placed in a heated container to recover until they regained 

consciousness and were ambulatory. Mice were then given carprieve in water as an analgesic and 

were given at least three days to recover before beginning any handling. 

Behavioral details 

Experimental apparatus 

The mouse was surrounded by three computer screens (Iiyama ProLite E1980SD) at right angles, 

with the central monitor located ~20cm in front. The three screens spanned the mouse’s visual 

field approximately 270 degrees horizontally and 70-75 degrees vertically. The screens were at a 

60Hz refresh rate and Fresnel lenses were mounted in front of the monitors to correct for 

aberrations in luminance and contrast at steeper viewing angles, and further covered with a 

scattering window film to prevent specular reflections. A nearby speaker played auditory stimuli 

associated with task events, i.e. onset tones, reward tones, and incorrect noise bursts. A water 

spout was positioned near the mouth of the mouse. A piezoelectric film was affixed to the spout 

such that deflections of the spout would be registered as an analog electrical signal. Water 

delivery was controlled by a valve which was muffled in a block of foam, but retained an audible 

click on reward delivery. 

Handling, habituation, and water restriction 

Training and habituation protocols were tailored to each mouse to help learning and well-being. 

Mice were habituated slowly to the apparatuses following recovery from surgery. First, mice were 

handled in their home cage, then slowly introduced to longer periods of head fixation. Once mice 

were comfortable on the rig, two-photon imaging and wide-field retinotopy were acquired and 

examined to ensure adequate imaging quality. 

If these criteria were passed, mice were water restricted so that water could be used as a reward. 

Body weight was monitored to ensure no lower than 80% of their initial body weight i.e. 

restricted to 40mL/kg weight per day as per the Project License and Home Office Guidelines. 

After at least two days of water restriction to ensure a stable weight and no adverse effects, mice 

were slowly introduced to elements of the task. Initial training was occasionally assisted by Miles 

Wells, Laura Funnell and Hamish Forrest. 



107 
 

 

To help with shaping, contrasts were initially restricted to including only high contrast subsets 

and 100% contrast, and larger rewards were given (3-4μl). A shorter ITI was also employed to 

prevent disengagement by waiting too long in between trials. 

Occasionally, the same trial was repeated if mice did not perform them correctly. In testing 

sessions, this parameter differed across sessions depending on individual mice’s biases; however, 

repeated trials were never included in analyses of choice. 

Reward 

In some mice, the remaining water requirement was topped up using hydrogel, and in later mice 

it was topped up using water. Later mice also sometimes received sucrose water in training to 

make the reward more appealing. However, sucrose at training did not seem to affect 

performance at the test phase, and they still readily performed for water reward alone once 

switched to the testing rig. 
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