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Abstract

This paper investigates the optimization of
Reservation-based Autonomous Car Sharing
(RACS) systems, aiming at minimizing the total
vehicle travel time and customer waiting time.
Thus, the RACS system and its routing are
formulated with a consideration for system effi-
ciency and passengers’ concerns. A meta—heuristic
Tabu search method is investigated as a solution
approach, in combination with K-Means (KMN-
Tabu) or K-Medoids (KMD-Tabu) -clustering
algorithms.  The proposed solution algorithms
are tested in two different networks of varying
complexity, and the performance of the algorithms
are evaluated. The evaluation results show that
the TS method is more suitable for small scale
problems, while KMD-Tabu is suitable for large
scale problems. However, KMN-Tabu has the least
computation time, although the solution quality is
lower.
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1 Introduction

The emergence of Autonomous Vehicles (AVs) is
expected to overcome challenges of current shared
mobility services and revamp the system with
advanced self—driving relocation and re—balancing

technologies, using which mobility service providers
could gain more potential benefits through reduc-
tion of operation costs and enhancement of the ef-
ficiency of service [7]. Although skepticism exists,
Shared Autonomous Vehicles (SAVs) are widely be-
ing discussed in the literature [0, 27]. Existing stud-
ies in the pertinent literature usually focus on real-
time/dynamic services [I1}, 5], 17]. However, the
benefits of an SAV service can be increased by em-
ploying a reservation option [20]. Such a system is
called Reservation—based Autonomous Car Sharing
(RACS) system, wherein the demand requests of
customers who have planned their trips in advance
are fulfilled [16]. By employing a fleet of SAVs to
serve the fixed pre-planned trips, reservation based
systems usually can result in higher routing quality
and better assignment solution, due to the possi-
bility to have relatively larger searching space and
longer computation time [16] 23].

RACS systems can provide mobility services
based on the pickup and drop off points of the
passengers. This is a typical problem in the lit-
erature of vehicle routing optimization, commonly
known as the Dial-A-Ride-Problem (DARP) with
time windows [T}, [5]. Since reservation—based ser-
vice assumes to obtain all the relevant informa-
tion (demand and predicted travel-cost between
the nodes) in advance, RACS optimization prob-
lem is static and deterministic. Static DARPs
are typically viewed as combinatorial optimiza-
tion problems, which possess NP hard properties,
and use discrete variables [22]. Reservation—based



car sharing systems (both autonomous and non—
autonomous) are usually modelled based on Lin-
ear and Mixed-Integer programming [5,[9]. For ex-
ample, Cordeau [3] proposes a mixed—-integer pro-
gram to model a non—autonomous system, and uses
Branch and Cut (BC) algorithm to find a set of
minimum—cost vehicle routes. His algorithm can
only be applied to relatively small-scale problems.
For autonomous systems, Ma et al. [16] apply a lin-
ear programming approach with a trip—chain con-
cept to minimize the operation cost of the system.

However, in this paper, instead of just operat-
ing cost, we minimize a combination of two perfor-
mance metrics, operation cost (total system travel
time) and service discomfort (customer waiting
time). We follow a mixed integer programming ap-
proach for the same.

In real life conditions, thousands of requests may
be served by a RACS system per day. For higher
numbers of requests, efficient algorithms are usu-
ally investigated, aiming to obtain a better quality
solution within a reasonable computation time [18§].
Although a wide range of optimization algorithms
are seen in the literature, such as Genetic Algo-
rithms [12] and Particle Swarm Algorithms [28] [10],
the meta—heuristic Tabu-Search (TS) method re-
mains as one of the most widely used algorithms.
This method has been proved to be a powerful and
efficient algorithm for DARPs, which can handle
large scale problems to obtain high quality solu-
tions. However,the computation time of TS algo-
rithms can still be high [4] 13, 2T]. Clustering meth-
ods, such as K-Means [24] and K-Medoids [18], can
be used along with the TS method to obtain so-
lutions for large scale DARPs, wherein the intent
is to decompose the original problem into several
independent smaller sub—problems. With the de-
composition of the original problem into several
smaller sub—problems, computation time can be
dramatically reduced by utilising parallel compu-
tation techniques. Hence, in this research work,
we explore the meta—heuristic TS method based
on Cordeau [4], in combination with different clus-
tering methods, aiming at extending the literature
on efficiently solving the large scale RACS routing
problem.

The contributions of this work include: (i) For-
mulation of the RACS problem with consideration
for both operation cost (total system travel time)
and service discomfort (customer waiting time) and

(ii) Exploration of efficient handling of the formu-
lated RACS problem, through the use of the TS
method in combination with the K-Means and K—
Medoids clustering methods. The exploration of
the K-Means and K-Medoids clustering methods
will help one to better understand the effect of clus-
tered optimization on the computation time reduc-
tion, and also make the handling of larger prob-
lems feasible. This paper is structured as follows:
the problem formulation is presented in the next
section (Section , followed by the description of
the solution approach (Section|2.2). Then the case
studies are presented (Section [3]). Finally conclu-
sions are drawn, along with a discussion on future
research directions (Section [4).

2 RACS problem & solution

Consider a fleet of SAVs that has to serve a set
of known requests, where several requests can be
chained to form a route and assigned to an SAV.
We study the problem of finding routes of a fleet
of SAVs, which are formed by reserved requests,
that achieve the objective of minimum operation
cost and service discomfort. In this research work,
RACS problem is formulated for a single horizon,
and without ride sharing.

2.1 Problem formulation

For the formulation of the RACS problem, we
adapt the mixed integer program of Cordeau [5],
to optimally plan K routes with a fleet of SAVs.
The objective is to minimize total travel time and
customer waiting time, as shown in Equation

min <Z SN i+ Y ZTWuc> (1)
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where x;;, is a binary decision variable, which
takes the value 1 if an SAV k traverses arc (v;,v;).
V = wvg,v1, - ,V2sn denotes the set of all nodes
in the network G = (V, A4), with A = {(vi,v;) :
v;,v; € V,i # j} representing the arc set. Ver-
tice vo is the depot, P = {v1,va,...v,} is the set
of pick—up vertices and D = {vp41, Unt2, ...V24n | 18
the set of drop—off vertices. Each vertex pair (v;
Un+i) Tepresent a customer request from origin v;
to destination v,4;. Each vertex in P has a cor-
responding ride duration L; (with maximum ride



duration L), a time window of (e;,!;), where e; and
l; denote the earliest and latest pick—up time of re-
quest i. Pick—up and drop—off vertices and earliest
and latest pick—up times together constitute a re-
quest matrix R. Homogeneous SAVs with a fixed
load capacity and a fleet size of K serves the given
demand, with k referring to a random SAV. While
¢;j is the travel time for using an arc (v;,v;), TW;
is the waiting time corresponding to each customer
request. The set of travel times between all the
nodes in the network constitute the travel cost ma-
trix C.

The aforementioned original problem (Equation
1)), upon clustering, gets decomposed into the fol-
lowing sub—problems:

min Z Z Z Czljxiljk + Z ZTWzlk )
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(2)
min Z Z Z cijxffk + Z Z TWlI\]g[
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where M represents the number of clusters. The
original problem and the sub—problems should con-
form to the following: (1) For each request i, both
the pick—up and drop-off nodes (v;,v,+;) should
belong to the same route, thus visited by the same
vehicle, (2) Pickup node v; should be visited before
drop off node v,1;, (3) Request—serving at node
v; needs to start its pickup activity within a time
window (e;,1;), (4) Each vehicle starts and ends its
route at the depot, (5) Ride time L; is the differ-
ence between the pickup time and drop off time and
it should not exceed the maximum trip duration L,
and (6) Each vehicle entering a node, leaves it in a
feasible sequence. Although these can be expressed
mathematically, we refrain from doing so because of
space constraints and our focus on meta—heuristics.

2.2 Solution methodology

The RACS model consists of K vehicle routes with
corresponding requests on network G. By assign-
ing SAV trips to the network, a set of SAV chains
is obtained as output, with minimum total travel
time and customer waiting time. Three different al-
gorithms are investigated in this research, namely

Tabu-Search (TS), K-Means Tabu-Search (KMN-
Tabu) and K-Medoids Tabu—Search (KMD-Tabu)
methods. TS is an efficient meta—heuristic method
to escape the local optimal solutions, which usually
occurs when solving DARPs. In this research, we
apply TS algorithm according to Cordeau et al. [4],
with soft time—window constraints. The type of TS
implemented is the reactive TS, which is a robust
search technique that enhances classical TS, by au-
tomatically adjusting the search parameters based
on the state and quality of the search. Reactive TS
enables obtaining near optimal solutions with rela-
tively small computational effort [I9]. The method
includes the following: a relaxation mechanism,
neighbourhood structure, diversification strategy,
initial solution construction, TS iteration, neigh-
borhood evaluation and neighborhood reduction.
The TS algorithm uses simple insertion, i.e., re-
move a vertex pair (vi; vi_m) from its current route
and reinsert it in a different route. Each simple
insertion, is added to a Tabu list and will be re-
moved from it after few iterations (tabumqz). A
Tabu check is used, wherein the existence of the re-
quest node selected in a route is checked in previ-
ous solutions, stored in the Tabu list. If the selected
move results in a route already existing in the Tabu
list, then the move is skipped. If not, the route cost
of this move is evaluated and if it reduced, the move
is realised. For a detailed description of the TS al-
gorithm, the reader is referred to Cordeau et al. [4].
In addition, «, is introduced as a self adjustment
parameter, allowing the violation of the time win-
dow constraints. This parameter is multiplied with
the total waiting time in the objective function, i.e.,
a > > TW;y. After each TS iteration, the value of
« is modified by a factor of 1 + o, where o > 0.
If the current solution is feasible with respect to
time window constraint, the value of « is divided
by 1+ o; otherwise, it is multiplied by 1 + o.

The TS solution procedure used is shown in Al-
gorithm [1l First few iterations (iters set to 30 it-
erations, upon results of a sensitivity analysis) are
considered to be a warm-up phase to move across
the solution space and hence, Tabu check is carried
out after that. Adding solutions in the tabu list
takes place after some iterations (itery set to 25).
The number of iterations after which the insertions
are removed from the list (tabuq,) is determined
upon a sensitivity analysis to ensure better solution
quality (values between 1-10). The value used for



the parameter ¢ is 0.0005 and the initial value of
« is set to 1. The algorithm runs for a maximum
number of iterations (iterq,) determined upon a
sensitivity analysis as with tabu,,q;.

Algorithm 1 TS method
1: Input: G(V,A), R, K, C, «, o, iters, itery

tabmaz, 1termas

2: Construct a random initial solution Sj.

3: while iteration < iter,,,, do

4: for all K do

5: for all requests served by k do

6: Select insertion move m

7 if iteration > itery; then

8: Perform Tabu check

9: if Tabu check != True then

10: Calculate route cost with the move
(Cost?)

11: if Route cost is lower than previous
(Costyr < Costy,) then

12: Make the move, adjust costs

13: end if

14: end if

15: end if

16: end for

17:  end for

18:  Calculate the new objective value and com-
pare it with the previous best. If the new
value is better, update it as the previous best.

19:  if iteration > itery then

20: Add the move to tabu list and remove the
same from the list after tabu,,q, iterations

21:  end if

22:  Adjust «

23: end while

Concerning clustering approaches, K—Means is
an unsupervised clustering approach, which finds
clusters based on observations’ similarity. The ap-
proach is an iterative process, consisting of the fol-
lowing steps: (a) Selecting cluster centroid, (b)
(Re)assigning points to the closest centroid and
(c) Estimating cluster variation using a distance
measure between the cluster points and the cen-
troid. The iteration occurs until there is no sig-
nificant change in the cluster variations. For
detailed information on K—Means clustering, the
reader is referred to the work of Forgy [§]. Sim-

ilar to K—Means, K—Medoids is also an unsuper-
vised clustering approach, which is based on the
Medoid shift algorithm [I8]. Compared to the K-
Means, K-Medoids is more robust to noise and
outliers, as it minimizes pairwise dissimilarity dis-
tance, rather than squared distances. We perform
K—Medoids clustering using Partitioning Around
Medoids (PAM) algorithm. PAM is an iterative
building and a swapping procedure, based on in-
cremental stepping heuristics. For details about
this algorithm, the reader is referred to Muelas et
al. [I8]. In this research work, we cluster the origi-
nal demand (customer requests) based on the earli-
est pick—up and drop-off time of the requests (each
request is represented as a node based on these
two). Clustered TS optimization solution proce-
dure is shown in Algorithm

Algorithm 2 Tabu-KMN/Tabu-KMD method

1: Input: G(V,A), R, K, C, a,0, Tabulistqaz,
iterman

2: Create clusters (sub—problems) from the orig-
inal request matrix using the K-Means [§] /
K-Medoids [I8] algorithm

3: Distribute each cluster to a computing node
and carry out parallel execution of the TS al-
gorithm (Algorithm

4: Receive the routes from all the computing
nodes and join them together to obtain the final
solution.

3 Case studies & results

In order to explore the efficiency of the proposed
solution algorithms (TS, KMN-Tabu and KMD-
Tabu), we utilise two different networks of increas-
ing size and complexity. We use an Intel Core i5—
7400CPU 3.00 GHZ computer, which can execute
parallel computation with a maximum of 4 cores.
For each algorithm, three runs are performed to
ascertain the mean and standard deviation of the
objective value. The results from the case studies
(objective function, total travel cost and waiting
time) are shown in Figure



3.1 Sioux—Falls

The small scale problem of Sioux—Falls [26] com-
prises of 24 network nodes. 100 trips requests are
randomly generated using a 15min time window,
and are assumed to be served by 40 vehicles in the
service horizon of 300 minutes (5 hours). Travel
time matrix is constructed based on the data from
[26]. For KMN-Tabu and KMD-Tabu, the requests
are clustered into four groups.

Objective function, total travel cost and wait-
ing time values based on the evaluation results
of the three algorithms are shown in Figure [Th.
Based on the evaluation results, it is found that
the mean of the objective function is 4113.7, 5068
and 4970 for TS, KMNTabu and KMDTabu re-
spectively. From the results, it is obvious that the
TS method produces the highest solution quality
among the three. By applying the KMN-Tabu and
KMD-Tabu algorithm, the initial problem is de-
composed into four sub—problems. Thus, the so-
lution quality of KMN-Tabu and KMD-Tabu are
lower than the T'S method, which is because of the
limited searching space. However, the computation
time for T'S method is found to be five times higher
than that of the other two methods (For 1000 iter-
ations: 545, 77 and 86 seconds for T'S, KMN-Tabu
and KMD-Tabu respectively). From the above, TS
method appears to be more appropriate for small
scale RACS problems, as it results in a better so-
lution.

3.2 New York City

For the New York city case study, we use a sam-
ple of 3 hour demand from the Green Taxi dataset,
published by the Taxi and Limousine Commission
(TLC) [25]. This sample contains 3,968 requests.
The TLC zoning system is used, with centroids rep-
resenting pick—up and drop—off points. The max-
imum waiting time for the customers is assumed
to be 15 minutes, and the travel time matrix is
estimated based on city block distance metric. At-
tempts to run the TS algorithm failed, with compu-
tation times exceeding 15 days. Hence, only KMN—
Tabu and KMD-Tabu algorithms are evaluated for
this case study. The requests are clustered in 100
groups, where the customer requests of each group
are assumed to be served by 8 SAVs.

Objective function, total travel time and wait-

ing time values based on the evaluation results
of the two algorithms are presented in Figure [Ip.
The results show that the objective value is 27,042
and 21,923 for KMN-Tabu and KMD-Tabu re-
spectively. Thus, KMD-Tabu outperforms KMN-
Tabu, by producing a better solution with lower
objective function value, within fewer iterations.
However, the computation time of KMD-Tabu is
much higher than that of KMN-Tabu (For 700 it-
erations: 2,643 and 301 seconds for KMD-Tabu
and KMN-Tabu respectively), although the com-
putation time is still reasonable. From the above,
for large scale RACS problems, KMD-Tabu ap-
pears to be suitable. If the computation time is of
prime importance, then KMN-Tabu is more suit-
able, though the solution quality will get compro-
mised.

4 Conclusions & future works

This research aims at contributing to the RACS
routing problem by formulating the problem as
a mixed—integer program. The meta—heuristic
method of Tabu search has been utilized as a
solution procedure. Furthermore, K-Means and
K-Medoids clustering methods are combined with
Tabu search to decompose the initial problem into
smaller sub problems, in order to ascertain the pos-
sibility of reducing computation time. Although
meta—heuristics do not guarantee a global optimal
solution, Tabu—search and its extensions are found
to be effective in producing good quality solutions
21, 14, [@9). Our findings suggest that the Tabu—
search method is suitable for small scale problems,
while it is not appropriate for large scale problems,
because of very high computation time. K—Means
Tabu (KMN-Tabu) and K-Medoids Tabu (KMD-
Tabu) algorithms are found to be better for large
scale problems. From a solution quality perspec-
tive, KMD-Tabu proves to be better than KMN-
Tabu. However, KMN-Tabu outperforms KMD-
Tabu, when computation time is considered.
Future research should focus on multi—planning
horizons with more complex problem settings.
Concerning complex problem settings, inclusion of
operation-related factors in the optimization for-
mulation, such as the cost of temporary vehicle
parking and electric vehicle charging [2], could be
explored. Additionally, since our model assumes
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Figure 1: Case study results

perfect traffic information, future work should also
focus on optimization with consideration for con-
gestion effects, which would better represent the
reality, and make the estimations more robust. Fi-

nally, our RACS system is operated without rejec-
tion of customer requests, which assumes an in-
crease in the system capacity according to the de-
mand. Thus, future research should also consider a
scenario wherein requests of some of the customers
are unserved.
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