
Does code review really remove coding convention
violations?

DongGyun Han§

Amazon
Germany

Chaiyong Ragkhitwetsagul
SERU, Faculty of ICT

Mahidol University
Thailand

Jens Krinke
University College London

UK

Matheus Paixao
University of Fortaleza

Brazil

Giovanni Rosa
University of Molise

Italy

Abstract—Many software developers perceive technical debt
as the biggest problems in their projects. They also perceive
code reviews as the most important process to increase code
quality. As inconsistent coding style is one source of technical
debt, it is no surprise that coding convention violations can lead
to patch rejection during code review. However, as most research
has focused on developer’s perception, it is not clear whether code
reviews actually prevent the introduction of coding convention
violations and the corresponding technical debt.

Therefore, we investigated how coding convention violations
are introduced, addressed, and removed during code review
by developers. To do this, we analysed 16,442 code review
requests from four projects of the Eclipse community for the
introduction of convention violations. Our result shows that
convention violations accumulate as code size increases despite
changes being reviewed. We also manually investigated 1,268 code
review requests in which convention violations disappear and
observed that only a minority of them have been removed because
a convention violation has been flagged in a review comment. The
investigation results also highlight that one can speed up the code
review process by adopting tools for code convention violation
detection.

Index Terms—code review, coding conventions, coding style

I. INTRODUCTION

The adoption of coding conventions, or programming style
guidelines, is one of the most widely accepted best practices in
software development. It is assumed that adherence to coding
conventions increases not only readability [1], [2], [3] but
also maintainability of software. Moreover, inconsistent coding
style is one source of technical debt, specifically code debt.
A survey of 682 developers [4] showed that technical debt is
the biggest concern of developers and they spend 17% of their
time addressing technical debt.

Code review, a popular method for maintaining high-quality
software, is the process of conducting reviews of source code
changes by developers other than the change author. During
code review, a change in the form of a patch may undergo
multiple revisions until it is finally accepted (or abandoned).
Diverse empirical studies report benefits of code review, such
as detecting defects [5], improving code quality [6], and
sharing knowledge among team members [7]. Code review
has widely spread in both open source projects and industrial
projects [8], [9], [10], and has several supporting code re-
view platforms such as Gerrit [11], CodeFlow and Fabricator.

§DongGyun Han participated in this work prior to joining Amazon.

Moreover, the same suvery of 682 developers also showed that
the adoption of code review had the biggest impact to code
quality [4].

Tao et al. [12] reported that developers believe coding
conventions are important criteria to apply in evaluating a
patch, i.e., a code change, during code review. If a patch
does not follow coding conventions, the patch will be rejected
during the review. Furthermore, Tao et al. [12] observed that
21.7% of patches in Eclipse and Mozilla projects are rejected if
they violate coding conventions (e.g., poor naming) or contain
missing documentation). Their results show that developers are
still struggling with checking coding conventions manually,
although automated tools for checking coding conventions are
available such as Checkstyle [13] and PMD [14]. Previous
studies have reported that developers ignore about 90% of
warnings generated by automated tools [15], [16].

Panichella et al. [16] investigated how coding convention
violations flagged by automated tools disappear during code
review. They mainly focused on how a patch under review
affects the density of convention violations at the beginning
and end of a code review. They found that the number of
convention violations usually drops. However, they also found
that the density of violations (i.e., number of violations per
line) does not significantly decrease in each code review.
Although Panichella et al. perform a manual investigation of
10% of code reviews for which a violation disappeared, their
paper does not investigate whether the violations disappear
because of the reviewers’ comments. Instead, all disappear-
ing violations are assumed to be resolved. Moreover, their
approach compared the number and the density of violations
in the files affected by the patch under review in the version
after the initial and after the final patch. However, due to the
effect of rebasing, the number and density of violations can
be different also in the parts of the files that have not been
changed by the patch. Rebasing a patch is necessary if the
branch it is relative to has progressed in the development, so
that the patch is relative to the current state of the branch.
Paixao et al. [17] demonstrate that empirical studies which
do not account for rebasing may report skewed, biased and
inaccurate observations, as on average 34% of all reviews are
affected by modifications in the reviewed files due to rebasing.
Since Panichella et al. do not take rebasing into account, their
observations and conclusions may be affected.

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
To be published in the Proceedings 20th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM) in Adelaide, Australia.

The purpose of this paper is to complement Panichella’s
results by (a) taking the effects of rebasing into account and
(b) distinguishing violations that are resolved in response to
reviewers’ comments from violations that disappear coinci-
dentally. We used the code review open platform (CROP)
data [18], a data set created from project repositories and
their corresponding Gerrit code review repositories [11]. The
CROP data contains code review data, the changes that were
reviewed, and the entire source code for every patch revision
which is usually not recorded in a Git repository. In total,
we analysed 16,442 code review requests from four Java sub-
projects of Eclipse with a further detailed investigation of
1,268 review requests and 2,172 reported convention viola-
tions. It is important to note that every change to the Eclipse
projects undergoes code review, i.e., only approved changes in
their final version are present in the project’s Git repositories.

The contribution of this paper is an in-depth investigation of
coding convention violations during code review. We investi-
gate what kind of coding convention violations are introduced,
removed, and addressed during code review. Furthermore, we
investigate whether manual coding convention checks done
by reviewers delay the code review process. We also discuss
possible explanations for our observations, based on our exam-
ination of coding conventions in the four open source projects
and how automatic tools are used. The discussion highlights
how developers adopt coding conventions and what difficulties
they face.

II. EXPERIMENTAL DESIGN

A. Research Questions

The goal of this paper is to investigate in detail how
developers deal with coding convention violations in real-
world software projects during code review. To this end, we
want to answer the following research questions (the first two
research questions correspond to the research questions of
Panichella et al. [16]):

RQ1. How many coding convention violations are intro-
duced despite code review? As a preliminary research ques-
tion, we investigate how many convention violations are intro-
duced in the initial (i.e., first) patch of a code review request
and how many convention violations are introduced in the final
(i.e., last) patch. If manual code review is effective, the final
patch should have fewer introduced convention violations than
the initial patch.

Note that we focus on mandatory code review, i.e., every
change undergoes code review. Therefore, the convention
violations that are still present in the final (approved) patch
end up in the code base.

RQ2. What kinds of convention violations are addressed
during code review? While RQ1 investigates how many con-
vention violations are introduced in the initial and in the
final patch, RQ2 investigates convention violations that are
introduced in the initial patch but are no longer presented in
the final patch – that is, introduced convention violations that
have disappeared. We want to know how many convention
violations disappeared because they are fixed according to a

code review comment that points out a convention violation.
A code snippet which contains a convention violation can
disappear during code review for several reasons. For example,
it may be deleted to fix a defect, not because of a coding
convention issue. Thus, it is important to perform a detailed
investigation and pin point the convention violations that are
removed only because of code review comments. This research
question identifies convention violations that are important to
developers and flagged during code review. Then, they are
fixed in the subsequent patches under review. In other words,
we also want to identify the violation types that were never
flagged by a reviewer.

To answer this research question, we need to extract the set
of coding conventions that are perceived as being important
to developers during code review and study such convention
violations in more detail. Previous studies have reported that
developers ignore about 90% of warnings generated from
automated tools [15], [16], and the answer to this research
question can help to identify important violations so that
unimportant violations can be filtered out, preventing ‘Static
Analysis Fatigue’ [19].

RQ3. Do convention violations delay the code review pro-
cess? As can be seen in Section IV and as also reported
by others [15], [16], Checkstyle and other automated coding
convention checking tools are not widely adopted in practice.
However, if such tools were used only to check for violations
that are important to developers, giving the tools a low false
positive rate, their use could eliminate the need for human
developers to check and fix violations and speed up the code
review process. We investigate the delay caused by manual
checking for convention violations that might be mitigated by
adopting automated tools.

B. The CROP Data Set

To answer the research questions, we need not only to
analyse source code for coding convention violations, but also
to analyse every patch submitted for code review and inves-
tigate the review comments related to those patches. Instead
of mining code review data ourselves, we used CROP [18], a
data set that links code review data to software changes. All
projects in CROP are open source and use Gerrit for their code
review process. The data set contains code review data (e.g.,
description, changed files, and comments) and the complete
code base before and after a change revision. Please note
that the Git repositories of the projects contain only accepted
revisions (i.e., the changes in the final patches in a code review
request), whereas CROP stores all revisions.

We selected all projects that had Java as their primary
language. The statistics of the four projects are displayed
in Table I. The table shows the date of the first review
(‘Start Date’) in the data set and the number of code review
requests (‘Reviews’) for each project in the original data set.
The last review dates in November 2017 are the same for
all four projects. The table also shows the number of code
review requests that were finally merged (‘Merged Reviews’)
and how many of those code review requests consisted of

more than a single revision (‘Multiple Patches’). Only merged
reviews with multiple patches are of interest to us because
the initially submitted patch was revised based on reviewers’
comments, and the patch was finally accepted and merged into
the codebase. The last two rows show how many reviews a
rebasing occured, i.e., a new revision of the patch under review
is relative to a different commit than the previous revision
of the patch, and how many reviews tampering occurs, i.e.,
when external commits due to rebasing modify the same files
involved in the code review [17].

TABLE I
CODE REVIEW DATA SETS STATISTICS

Item Platform UI EGit JGit Linux Tools

Start Date Feb’13 Sep’09 Oct’09 Jun’12
Reviews 4,756 5,336 5,382 5,105

Merged Reviews 3,802 4,502 4,463 4,559
Multiple Patches 2,985 2,899 2,533 4,301
Rebased Patches 2,798 2,464 1,941 3,141
Tampered Patches 593 1,060 845 533

C. Extracting Introduced Violations

Diverse automated tools have been introduced to support
developers in adhering to coding conventions. To identify
coding convention violations, we used a well-known tool,
Checkstyle [13] version 8.8. Checkstyle is flexible and exten-
sible, making it adjustable to any deviation from a Java coding
convention. Checkstyle validates all Java source code against
a set of rules (encoded conventions) and reports all cases in
which the code is not compliant with the coding conventions,
i.e., coding convention violations. Checkstyle can check for
153 different types of coding convention violations, grouped
into 14 categories. However, only 62 conventions in 11 cat-
egories are enabled for Sun’s Java coding conventions [20].
Based on the coding conventions of the four projects in
our study, we set up our own Checkstyle configuration that
complies with the conventions used by the projects. As the
four systems have adopted coding conventions that have only
minor deviations from Sun’s Java coding conventions [20],
only minor changes to the default configuration were necessary
(e.g., tab width and maximal line length) [21]1.

First of all, we needed to understand what kinds of conven-
tion violations are introduced at the beginning of a code review
request. Since analysis tools such as Checkstyle require the
entire source code, we extracted violations from two different
versions of source code: before and after applying the initial
patch of a code review request. Figure 1 shows the process
we used to extract violations that appeared or disappeared
during code review. By comparing the lists of violations,
we could extract those violations that were newly introduced
by the initial patch of a code review request (Diffinitial). In
matching the lists of violations, we ignored line numbers, file
names, etc. because those elements may be changed by the

1Full info can be found on our study website: https://disclosed.after.review

Initial Patch
Before After

Checkstyle

Checkstyle

issues

before

Checkstyle

issues

after

Diffinitial

Final Patch
Before After

Checkstyle

Checkstyle

issues

before

Checkstyle

issues

after

Difffinal

Diffreview

Fig. 1. Extracting introduced violations during code review by comparing
violations before and after a patch

patch. Moreover, only the added—that is, newly introduced—
violations were considered, because code review should pre-
vent the introduction of convention violations. It is important
to note that the system may have changed while the patch
was being revised and the patch has been rebased. Therefore,
the state before the final revision may be different from the
state before the initial revision. Table I shows that not only
rebasing is common, but also often affects the same files that
are involved in the reviewed change. Changes in violations
between the state before the initial revision and the state before
the final revision need to be ignored. Therefore, we repeated
the same steps as above on the final patch of a code review
request to extract the list of introduced violations at the end
of the code review (Difffinal).

The next step (RQ2) was to determine whether the newly
introduced violations disappeared during the code review.
A violation was considered to have disappeared if it was
introduced in the initial patch but it was no longer present
in the final patch. We determined what kinds of violations
had been introduced in the initial patch (Diffinitial), and then
disappeared in the final patch (Difffinal) by comparing the
difference between Diffinitial and Difffinal . The comparison
result (Diffreview) contains the violations that were introduced
(appeared) and deleted (disappeared) during the code review.
For RQ2, only the disappearing violations are needed.

Table II shows the overall statistics for our violation extrac-
tion from code review data. The ‘Unchanged’ row presents
the number of code review requests that have no violation
changes between the initial and final patch (i.e., Diffinitial =
Difffinal). The ‘Changed’ row shows the number of code
review requests that contain violation changes (violations
either appeared or disappeared) between the initial and final
patch (i.e., Diffinitial 6= Difffinal). The ‘(Improved)’ row states
the number of code review requests containing violations that
disappeared at the end of the code review.

TABLE II
OVERALL CONVENTION VIOLATION VARIATIONS FOUND BETWEEN

INITIAL AND FINAL PATCHES OF A CODE REVIEW REQUEST.

Item Platform UI EGit JGit Linux Tools

Unchanged 2,636 2,138 1,799 2,886

Changed 349 761 734 552
(Improved) (199) (375) (397) (314)

TABLE III
THE NUMBER OF MANUALLY INVESTIGATED CONVENTION VIOLATIONS

AND THE NUMBER OF CONFLICTS BETWEEN HUMAN INVESTIGATORS.
ALL CONFLICTS WERE RESOLVED BASED ON DISCUSSION.

Platform UI EGit JGit Linux Tools

Violations 313 622 640 597
Conflicts 16 (5.11%) 55 (8.84%) 80 (12.50%) 73 (12.23%)

From the 4,502 merged EGit reviews, we extracted
Diffinitial and Difffinal for 2,899 code review requests that
have multiple patches. Among the 2,899 reviews, 2,138 have
no changes in violations, while only 761 reviews have differ-
ences in violations between the initial and final patch. A total
of 375 reviews out of these 761 contain violation changes in
which a violation was introduced in the initial patch but is
no longer present in the final patch (i.e., the code review has
improved the change).

Although we have the list of convention violations that
appeared and disappeared during code review, we do not know
whether a coding convention violation disappeared because
it had been flagged by a reviewer during the code review
and addressed by the patch author. For example, EGit has
375 improved code review requests based on the definition
above. The 375 code review requests contain 622 violations
that were introduced in the initial patch and disappeared in
the final patch. Among these 622 violations, however, we
do not know how many were addressed during code review
(i.e., they did not coincidentally disappear because of other
addressed issues). To determine whether reviewers detected
and flagged the convention violations during code review,
we manually investigated the review comments from the four
projects for all patches of such reviews. We focused primarily
on finding whether a reviewer’s comment (e.g., ‘please remove
the trailing whitespace’) flagged the convention violation that
appeared in Diffinitial , but is no longer present in Difffinal .
If we could locate a comment flagging the convention vio-
lation, we labelled the violation as ‘Confirmed’; otherwise,
we labelled it as ‘No Evidence’. To mitigate subject bias of
the manual investigation, two of the authors (investigators)
inspected the comments independently. They read the review
comments and looked for mentions of the reported convention
violations. Sometimes they also checked the patch to see how a
violation disappeared. After finishing the independent rounds
of investigation, the two investigators resolved all conflicts.
They discussed a conflict until both agreed on the same label.

As shown in Table III, from 313 (Platform UI) to 640 (JGit)

convention violations were introduced in the initial patch and
resolved in the final patch of code review requests. Please note
that we did not investigate code review requests that had only
one patch or that had no convention violations introduced and
removed (i.e., we investigated only those code review requests
that introduced and removed at least one coding convention
violation). As shown in the table, the investigators initially had
conflicting results in 5.11%–12.50% of the cases and resolved
the conflicts by discussing until both of them agreed.

III. RESULTS

The results from the above described experiment are used
to investigate and answer the three research questions.

RQ1. How many convention violations are introduced during
code review?

Figure 2 shows the accumulated numbers of violations
appearing in the initial and final patch of a code review
request for the four projects. The figure shows the number of
violations for each violation category. There are 11 categories
for 62 convention violation types overall. For example, a
violation of type RegexpSingleline belongs to the Regexp
category. The grey bar shows the number of violations in
the initial patch, while the black bar shows the number of
violations in the final patch. As shown in Figure 1, we ran
Checkstyle before and after applying the initial patch and
the final patch, respectively. By computing the differences
between before and after applying a patch, we derived the
list of introduced violations in the patch (i.e., Diffinitial and
Difffinal for the violations introduced in the initial and the
final patch, respectively).

Although the number of introduced convention violations
in the final patch is larger than the number in the initial
patch for all convention categories except for the Regexp
convention category (as shown in Figure 2), a Mann-Whitney
U test showed no statistically meaningful difference between
the numbers of convention violations introduced between the
two versions of the patch (p-value > 0.05) in each violation
type.

One cannot conclude that code review introduces more
violations than it prevents, because the number of violations
naturally increases as the code base grows larger. Figure 3
shows the distribution of the numbers of added and deleted
lines in the initial and final revisions of a code review re-
quest. We conducted a Mann-Whitney U test to determine the
statistical difference between the initial and the final patches
in terms of the numbers of added and deleted lines (i.e., the
difference between the number of added lines in the initial and
the final patches and also the difference between the number
of deleted lines in the initial the and final patches). All four
projects show a statistically meaningful difference between the
initial and the final patches for both added and deleted lines
(p-value < 0.05). As shown in Figure 3, the final patch usually
has more added lines than the initial patch. This gradually
increasing pattern is similar to the pattern shown in Figure 2.
It shows that many violations appear in the initial patch of

P
latform

 U
I

E
G

it
JG

it
Linux Tools

Block
C

oding
D

esign
Im

ports
Javadoc
M

isc

M
odifier

N
am

ing
R

egexp
Size

W
hitespace

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

T
he

 n
um

be
r

of
 v

io
la

tio
ns

First

Last

Fig. 2. The accumulated numbers of convention violations detected in the
initial (grey) and final (black) patches

a code review request, the violations do not disappear, and
more violations appear until the final patch, which is also
usually larger than the initial patch. Therefore, the number
of violations increases as the number of added lines increases.

Figure 4 shows how the number of appearing violations
increases in the number of added lines during code review.
For each code review request, we extracted the number of
appearing violations in the initial and the final patches. The y-
axis shows the difference (increase) from the initial to the final
patches, and the x-axis shows the difference (increase) in the
number of added lines between the initial and the final patches.
We consider only the number of added lines, since deleted
lines usually cannot introduce convention violations2. Please
note the number of added lines can be negative, since the
initial patch can add more lines than the final patch. Moreover,
the initial patch can have more appearing violations than the
final patch. Although there is a variance, this confirms that
the number of violations generally increases according to the
number of added lines.

Considering the different violation categories in Figure 2,
the Javadoc category shows the largest number of violations
in all four projects. This observation is in line with a previ-

2It might be possible that deleting an existing Javadoc introduced a
violation. During our manual investigation, however, we could not find any
such case.

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●●

●●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●●

●
●●●

●

●

●

●

●

●

●
●●●●●●●●
●●●●

●●

●●●●●

●

●

●●
●●
●●●●●

●●

●

●●●
●

●
●

●

●
●

●

●
●
●●

●●

●

●●

●●

●●

●●
●

●●
●●●●

●
●

●

●●

●
●

●
●
●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●●●●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●
●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●●●

●

●
●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●●
●

●●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●
●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●

●

●
●●●●
●●
●●

●

●

●

●●●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●●
●
●●

●

●

●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●●●

●

●

●

●

●●●

●

●●
●
●●

●

●

●

●

●

●●●●●●

●

●●●●

●

●
●

●

●

●

●

●
●●●

●

●●

●●
●●●

●

●

●
●
●●●
●●●

●

●

●●

●

●

●●

●

●●
●
●●

●

●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●●●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●
●●●●

●

●●

●

●

●

●

●

●●

●●●●●●●

●

●●
●

●●●

●●

●

●
●

●
●
●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●●

●

●

●
●●●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●●

●

●
●●●●
●
●●
●
●●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●
●●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●
●●

●

●
●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●●
●

●

●

●

●

●●●

●

●

●●
●
●●

●

●

●

●

●

●●●●●●●●

●

●●

●

●●

●

●

●

●

●
●●
●
●

●

●●

●●
●●●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●●

●

●●●

●

●●

●●●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●●

●
●

●

●

●

●●●

●

●

●
●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●

●
●

●

●●●

●

●

●●
●
●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●●

●●●●●●●●●
●

●●●
●

●●

●

●
●

●
●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●
●

●●

●

●

●

●

●
●

●

●●●

●

●
●

●●

●

●

●●
●
●
●

●●

●
●
●

●●

●
●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●●
●●
●

●

●

●
●

●
●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●●
●

●●

●

●

●

●

●
●●

●

●●
●

●

●
●

●●

●

●

●●

●

●

●
●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●
●
●

●

●

●●

●●

●●

●

●●
●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

0

50

100

150

Platform UI EGit JGit Linux Tools

A
dd

ed
/D

el
et

ed
 li

ne
s

FirstInsertion FirstDeletion LastInsertion LastDeletion

Fig. 3. Number of lines added or deleted in the initial and final patches

●●●●●●●●●●
●
●●●● ●●●● ●●

●
●●●●●● ●●●●●●●● ●●●●●●●●●● ●●●●●
●
●●

●
●●●●● ●●●●●●●●●●●●●●

●

●● ●●●●●●● ●●●
●

●●●●●●
●

●

●●●● ●●●● ●●

●

●

●

●●●● ●●●●●●●●●●●●● ●
●
●●●●●●●●● ●●●

●
●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●
●

●●●●
●

●●●● ●●●●●●●●●●●●●●●●● ● ●●●●●●●

●

●● ●●●

●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●

●

●● ●●●●●●●●●●●●●

●

●● ●●●●●

●

● ●●●●●

●

●●●●●●● ●●●●●●●●
●

●●●●●●●●●●●●●●

●

●●●●●●●●
●
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●
● ●

●
● ●●● ●●●

●
●● ●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●

●

●●●●● ●●●●●●● ●●●●
●

●●●●●●●●
●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●● ●●●

●

●●●●●

●

●●

●

●●●●●●● ●●●● ●

●

●●●●●●●●●●● ●●● ●●●●●●●●●
●

●● ●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●● ●●●●●●●
●

●●●●

●

●●● ●●●●● ●● ●
●
●●● ●

●

●●●●●●●●

●

●●●●●●● ●●●● ●●●●●●
●
●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●
●●●●
●
●

●
●●
●
●●●●

●
●●●●●● ●●●●
●

●●●●●●●●●
●
●●●●●
●
●●●●● ●●● ●●●●●●

●
●●●●●●●●●●●●●●

●

●●●●●●●●●●● ●●● ●●●
●

●●●●●●●●●●●● ●●●●●●●● ●● ●● ●●● ●● ●●● ●●●

●

●●●●●
●
●●●●●●●●●●●●●● ●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●
●

●●●●● ●●●●
●

● ●●●●●●●●●●●●●●● ●● ●●●●
●
●●●●●●●● ●●●
●
●●

●

●●●●●●●●●●●●●
●

●●●●● ●●● ●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●●● ●●●●● ●●●●●●●●●●
●

●●●●●●●●●● ●●

●

●

●

●●●●●●●●●●●●
●

●● ●●●●

●

●●●●●●●●●●●●●●●●●●
●

●● ●●●● ●●●●●●● ●●● ●●●●●●●●●
●
●●●●●●●

●
●
●
●● ●●●●●●●●●
●

●
●
●●●●●●● ●●

●
●●●● ●●●
●
●●●●●●●●●●●●● ●●●●●

●
●●●● ●●●●●

●
● ●●
●
●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●● ●●●

●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●
●

●●● ●●●●●●●●●●●
●

●
● ●●●●●
●
●●●● ● ●●●●●●●
●
● ●●

●

●●●●●●●●

●

●●●●

●

●●●●
●
●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●

●
●●●●
●

●●●●●●●●●●●●●●

●

●●●●●● ●●● ● ●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●
●

●●●
●

●●●● ●●●●●
●

●●●●●●●

●

●

●

●●●●● ●●●●
●

●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●
●

●●
●

●●●●

●

●● ●
●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●

●

●●●●

●

●●●●
●
●● ●●

●
●

●
●●● ●●●

●
●●●● ●

●

●
● ●● ●●●●● ●● ●●●●●●● ●● ●●●●●●● ●●●●

●
●●●●●● ●●●●●● ●●●● ●●●●

●
●●●●

●

●●●●
●

●●● ●●●●●●●●●●
●

●●●●●
●

●● ●●●● ● ●●●
●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●
●

●●●●●●●●●●●● ●●
●
●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●●●●●

●
●●●●

●
●●●

●

●

●

●● ●●●●●●●●●●●
●

●● ●●●●●●●●

●

●●●●● ●
●

● ●●●● ●●
●

● ●●
●

● ●●●●●●
●

●●●●●

●

●●● ●●●●
●

●

●●●●●●●●●● ●●●●●●●●●●
●

●●● ●●●●
●

●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●
●

●●●●●

●

●● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●● ●●●●●●●●●●●●●●●●●●● ●●●
●

●
●●●● ●●●●

●
●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●● ●●●●●●●●●●● ●●●●●●

●

● ●●●●●●●●●●●●●
●
●●●●●●● ●

●

●●●●●●
●

●●● ●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●
●

● ● ●

●

●●● ●●●●●●●●●●●●● ●● ●●
●
●●●●●●●●●●●

●

●
●●●●●●●●●●● ●

●

●
●●●●●●●●●● ● ●●●●
●

●●●
●

●●● ●●●●●●●●
●
●● ●●●●●●●●●● ●●●●
●
●●●●●●●●●●●●

●

● ●●●●●●●●●●●●●●●●●●
●

●

●●●●

●

● ●
●
●●●●●●●●

●

●●●●●●●●●●●●●●
●

●●●

●

●●●●●

●

●●●●●
●

●● ●●●●●●●

●

●●●

●

●●●●●●●●

●

●●●●●
●
●● ●●

●
● ●●●●●●● ●●●●●●

●

●

●
●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●● ●●●

●
●●

●
●●●● ●●●●●●●

●
●●●●●
●

●● ●●
●

●● ●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●●●●●●

●

●

●

●●●●●● ● ●●● ●●●● ●●●●●●
●
●●●

●
●●● ●

●

●●●●●●

●

●●●●●●●●●●●●
●

●●●●●●● ●●●●●●●
●
●●

●
●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●
●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●
●

● ● ●●●●●●●●● ●●● ●●●●●●

●

●●●●●●●●●●● ●●●●●● ●●●●●

●

●● ●●●●
●
●●●●●●●●●●
●

●

●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●

●
● ●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●● ●●● ●● ●●

●

●● ●● ●●●

●

●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●● ●●

●

●●●●●●●●●

●

●●●●●●●●●●●
●

●

●●
●

●●●●●●●●●●●●●●● ●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●

●

●●●●●● ●●●●●●
●

●●●●●●
●
●●●●● ●●●●●●● ●●

●

●● ●●● ●●●●●●●●●
●

● ●●●●●●●●●●●●●

●

●●●●●●
●
●●●●

●
●●●●●●●

●
●●●●● ●●●●●● ●●●●

●

● ●●●● ●●●● ●● ●

●

●●●●●●●● ●●●●●●●●
●
●●●● ● ●● ●●●●●●● ● ●●●● ●●●●●●●●●●●●●●●●
●
●●●●●●● ●●●●● ●●● ●●●●

●
●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●

●●
●

●

●

●●●●
●

●

●

●

●●●● ●●●● ●●●
●
●● ●●●● ●●●●●

●●
●●●● ●● ●●●

●

●●●●
●

●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●● ●●
●

●
●

●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●● ●● ●●●●●●●●●●● ●● ●●●●●
●
●

●

●●●●●●
●

●●●●

●

●●●●●●●● ●● ●●●● ●●●●●● ●●●●●
●
●●● ●●●● ●

●
●● ●●
●
●●●
●
●●●●●●● ●●●●●●●●●●●●●●

●

●●●●
●

●● ●●●●

●

●●●●●● ●●
●

● ●●
●

●●●●●●●●●● ●●● ●●●●●●●●
●
●●●●●●●●● ●● ●●●●●●●●●●●

●

● ●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●

●

●●●●●
●

●●● ●●●●●●●●●●● ●●●●●●●●● ● ●
●

●●●●●●
●
●●● ●●●● ●●●●●●●●●●●●●●● ●●

●

●●●

●

●●●●● ●●●●●●● ●●●●●●●●●●
●

●●
●

●●●

●

●●●●●●

−20

−10

0

10

−200 −100 0 100 200

The number of lines inserted

T
he

 n
um

be
r

of
 v

io
la

tio
ns

 a
dd

ed

● Platform UI

EGit

JGit

Linux Tools

Fig. 4. The number of violations varies over the number of added lines
between the initial and the final patches

ous study that showed that developers tend to treat missing
documentation as a relatively less important issue than other
conventions [12].

The Regexp category shows the lowest number of vi-
olations in both initial and final patches. In addition, the
number of introduced Regexp violations in the final patch
is smaller than the number of violations in the initial patch
(i.e., |Diffinitial | > |Difffinal |). This shows that the violations
in this category may have been addressed during code review
(i.e., spotted by reviewers, flagged, and fixed). The Regexp
convention violation category contains the RegexpSingleline
convention violation, a configurable check that is usually set
for checking trailing whitespace (although most whitespace-
related conventions belong to the Whitespace category). No
other violation of the Regexp category has been reported.
Thus, in this paper, the Regexp solely represents the trailing
whitespace violations. We discuss the trailing whitespace issue
in detail in Section IV-C.

Please note that the conventions in the Whitespace
category provide finer-granularity checks for whitespace
(e.g., GenericWhitespace checks the whitespace around the
Generic tokens ‘<’ and ‘>’). On the other hand, the conven-
tion violations might simply have disappeared when issues

other than convention violations were addressed (e.g., bug
fixes or removal of redundant code). We therefore investigate
in RQ2 whether a convention violation disappeared because it
had been addressed during the code review.

To answer RQ1, we found that for 10 out of 11 coding
convention violation categories, the number of introduced
violations in the final patch (after review) is larger than the
number of introduced violations in the initial patch submitted
for code review. The Javadoc category contributes the highest
number of convention violations and the Regexp category,
which represents trailing whitespace, has the lowest number
of violations overall and has fewer violations in the final patch.

Furthermore, a key observation in this research question
is that the number of newly introduced convention violations
usually increases during code review as the size of the patches
increases. While this key observation is not a surprising result,
it suggests a correlation between the number of introduced
violations and the size of a patch. This indicates that manual
code review is not effective in preventing the introduction of
convention violations, except for trailing whitespace.

RQ2. What kinds of convention violations are addressed during
code review?

Figure 5 shows the number of code review requests in which
the violations of a specific category disappeared during the
code review between the initial and final patches. The reported
numbers are the result of the manual investigation of all 2,172
disappearing convention violations, which affect 1,268 review
requests. For 55 out of the 62 violation types, we found at
least one disappearing violation.

The x-axis presents different categories of coding conven-
tions, while the y-axis shows the number of violations for each
category. The ‘Confirmed’ bars (grey) show the numbers of
reviews in which a convention violation of a specific category
appeared in the initial patch, the convention violation was
flagged by a reviewer in a code review comment, and the final
patch no longer contains the violation that appeared in the ini-
tial patch. The ‘No Evidence’ bars (black) show the numbers
of reviews in which a convention violation of the specific cate-
gory appeared in the initial patch, and the final patch no longer
contains the violation, but in which the reviewers did not flag
concerns about the violation (i.e., the investigators could not
locate any code review comments regarding the violation).
Mann-Whitney U tests for all four projects show statistically
significant differences (p-value < 0.05) between the numbers
of investigated violations and confirmed violations in each
project. The statistical tests indicate that the numbers of
violations confirmed in our manual investigation were not
affected by the total number of investigated violations.

In 55 out of 62 convention violation types, at least one
violation disappeared in the final patch. We could manually
confirm that there was at least one violation flagged during
the code review for 38 out of the 55 removed violation types.
In other words, for 24 out of 62 violation types, not a single
violation was flagged by a reviewer. It seems that developers
did not care about such coding convention violations.

P
latform

 U
I

E
G

it
JG

it
Linux Tools

Block
C

oding
D

esign
Im

ports
Javadoc
M

isc

M
odifier

N
am

ing
R

egexp
Size

W
hitespace

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

T
he

 n
um

be
r

of
 c

od
e

re
vi

ew
 r

eq
ue

st
s

Confirmed

No Evidence

Fig. 5. The numbers of code review requests in which violations were
addressed during code review (‘Confirmed’ – grey) and violations disappeared
without evidence (‘No Evidence’ – black)

It is interesting to see that the majority of cases in which
violations of a specific category were introduced in the initial
patch but disappeared in the final patch were not due to
reviewers flagging the issue (‘No Evidence’ in the figure). We
found two scenarios illustrating why a violation disappeared
even though no review comment had mentioned the violation.
In the first scenario, a patch author changed a patch to
address a reviewer’s comment, and although the comment
was not about the convention violation, the changed patch
no longer contained the violation. For example, a reviewer
points out a bug in a patch which also contains a convention
violation. While fixing the bug, the patch author coincidentally
removes the violation. Please note that if the reviewer had
pointed out the convention violation in the comment, we would
have labelled this occurrence as ‘Confirmed’. In the second
scenario, the change was not in response to a reviewer’s
comment, but the new patch no longer includes the convention
violation. In this scenario, it is unclear why the patch has been
changed. Most often this was due to self-review (i.e., the patch
was created and reviewed by the same developer without a
review comment).

For the ‘Confirmed’ category in Figure 5, it becomes clear
that the problems of trailing whitespaces (i.e., Regexp) were
pointed out the most by the reviewers. Trailing whitespace

violations also disappeared during code review without being
pointed out by reviewers (’No Evidence’ category) the most
for all the projects except Linux Tools.

For JGit and EGit, the second largest number of flagged
and fixed convention violations was the Block category. This
comes from the requirement that blocks always be enclosed
in braces (i.e., the NeedBraces rule). As will be discussed
in Section IV-D, since 27 January 2015, EGit and JGit force
braces around single-line blocks, and not enclosing a block in
braces became a violation. Before this update of the coding
convention, among the 31 and 29 disappearing NeedBraces
violations in EGit and JGit respectively, none were confirmed.
After the new convention was adopted, 6 out of 7 disappearing
NeedBraces violations were confirmed in EGit and 13 out
of 27 were confirmed in JGit. For Linux Tools and Platform
UI, the second largest number of flagged and fixed convention
violations was the Whitespace category. It is also the third
largest category for JGit and EGit.

For the violations that reviewers care about, one would
expect that not only the violations introduced in the initial
revision were removed in the final revision, but also no
violation should further be introduced. However, for most of
the violation types (33), this was not the case. There were
only five violation types, in the four projects, that had fewer
violations in the final revision compared to the initial revision.
The RegexpSingleline violation (trailing whitespace) is the
violation that the reviewers cared about most since it was the
most often flagged and fixed in the four projects. Nonetheless,
a significant number of this violation type still appeared in the
final revision of a patch as can be seen in Figure 2. It seems
that although reviewers cared somewhat about the 33 violation
types, they did not take actions to ensure that no new violations
occur during code review. They also did not apply consistent
and rigorous checking.

One possible reason that coding convention violations are
ignored is that flagging a coding convention violation requires
the patch author to fix the violation and resubmit the patch for
review. This delays the integration of the change and consumes
more developer and reviewer time.

To answer RQ2, we found that the trailing whitespace
(Regexp) is the convention violation that is most often flagged
and fixed during code review, followed by surrounding a code
block with braces (Block), and other convention violations
regarding whitespace (Whitespace). We observed that many
coding convention violations are ignored by developers and
reviewers as we could only find 38 violation types in which a
violation has been flagged and fixed during code review, i.e.,
only 38 out of 62 violation types were addressed.

RQ3. Do convention violations delay the code review process?

Although automated convention checking tools support de-
velopers by detecting convention violations instantly, they are
often not adopted in practice. As a result, many convention
violations are still detected through manual inspection by
a reviewer. We investigate the delay caused by manually
detecting a convention violation during code review.

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●●●

●●

●
●
●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●

●●

●
●

0

300

600

900

Platform UI EGit JGit Linux Tools

D
el

ay
 in

 h
ou

rs

TimeToReview

TimeToAddress

Fig. 6. Delay in detecting (‘TimeToReview’) a convention violation during
code review and delay in addressing (‘TimeToAddress’) a convention violation

During the manual investigation for RQ2, we recorded the
timestamps of review comments that flag convention violations
and the timestamps of the subsequent patches. Figure 6 shows
the time in hours, not all outliers are shown, from the introduc-
tion of a convention violation in the initial patch to a review
comment that points out the violation (i.e., ‘TimeToReview’)
and the time from the review comment to the next patch that
removes the violation (i.e., ‘TimeToAddress’). It takes more
than 24 hours (the median is 24.21 hours) to receive a review
comment that points out a convention violation. We found that
it then takes more than 6 hours (the median is 6.90 hours)
until the violation is addressed and fixed in the next patch. If
developers used an automated convention checking tool such
as Checkstyle, they could immediately detect violations and
address them even before submitting a patch for review.

Discussion

The results for the three research question suggest some key
observations about coding conventions during code review.

1) Convention violations accumulate as code size increases:
As we presented in Section III, convention violations not only
accumulate as code size increases, but the number of violations
that a change introduces also increases during code review.
The only exception over the four analysed projects was the
Regexp category (i.e., trailing whitespace). The accumulated
convention violations decrease code readability and main-
tainability, i.e., they become technical debt. Therefore, our
results call for further studies on how to prevent accumulating
convention violations as code size increases.

2) Developers manually check convention violations during
code review: Although diverse convention checking tools
are available, developers still manually check for conven-
tion violations during code review. Since code review is the
gatekeeping process to assure code quality, the check for
convention violations seems natural. Our results in Section III
show that many convention violations are detected manually
by developers, including very simple trailing whitespace vio-
lations. The results also show that humans are neither effective
nor consistent in preventing the introduction of convention
violations. For almost all violations that we confirmed of
being flagged by a reviewer, we observed that the number

of violations introduced by a change was higher at the end of
the code review than in the initial version of the change. The
notable exception was again trailing whitespace.

3) Convention violation checking delays code review: The
answer to RQ3 highlights that the manual convention violation
checking can cause delays during code review. Surprisingly,
a patch author faces a median wait of more than 24 hours to
receive a reviewer’s comment flagging a convention violation.
More importantly, even if the change is otherwise ready to be
accepted, the presence of a convention violation flagged by a
reviewer will not only require time to fix the violation but will
also require another round of code review, including a CI run.
We believe this delay can be reduced if developers can employ
a trustworthy automated convention violation checking tool.

4) Comparison with Panichella et a. [16]: Our results differ
significantly from the results of Panichella et al. [16]. They
report a drop in violations while we report an increase in the
results for RQ1. We are unable to find a convincing explana-
tion for the difference. However, we speculate that it may be
connected to the different approaches to measure the number
of violations. While we extract the number of introduced
violations in the initial and the final patch, Panichella et al.
compare the absolute number of violations presented in the
files affected by the initial and the final patch. They are likely
affected by rebasing [17].

In the detailed analysis of violations that are disappearing
between the initial and final patch, our results for RQ2 show
that the majority of disappearing violations are not inten-
tionally removed because of a reviewer’s comment. Although
mentioned in their discussion of threats to validity, Panichella
et al. do not take this observation into account as they consider
all disappearing violations as being ‘resolved’.

However, there are some shared observations, e.g., we also
observe that trailing whitespace was in general removed more
than others. In Section IV-C we will discuss the case of
trailing whitespace in more detail. Moreover, we share the
suggestion that the adoption of automatic checking (and fixing)
of convention violations can reduce the burden of reviewers
and speed up the code review time.

IV. CODING CONVENTIONS IN PRACTICE

In this section, we discuss some examples of using coding
conventions in practice from our observations of the four stud-
ied open source software projects and other related projects.

A. Adoption of Coding Convention Checking Tool

Our experiment uses Checkstyle, which is often used for
convention violation checking. However, none of the four
projects we investigated showed evidence that Checkstyle had
been used. In May 2011, there was a discussion among Eclipse
developers about adopting Checkstyle in their projects3, but
the tool does not seem to have been widely adopted. Instead,
one advice is to use the Eclipse Formatter. A reason why
Checkstyle is not introduced into existing codebases is that

3https://bugs.eclipse.org/bugs/show bug.cgi?id=347666

the source code does not adhere to coding conventions. As
one Eclipse developer expressed it, ‘I would never impose
Checkstyle on an existing code base. Even in well behaved
code one would get thousands (more likely tens of thousand)
warnings/errors.’.

According to JGit’s and EGit’s coding conventions, both
projects integrate FindBugs [22], [23] and PMD’s copy-paste-
detector [14] as part of their build process. However, JGit
developers currently do not use these tools.

The Eclipse Platform UI project has adopted Sonar-
Qube [24] to conduct code quality analysis. However, it does
not seem to be used regularly, because, as of 9 January 2019,
32,796 issues had been reported4. 757 of them are categorised
as critical. SonarQube was mentioned only once5 during code
review. This suggests that the SonarQube quality analysis may
not be important enough to Eclipse Platform UI developers.

Although Checkstyle is not used in the Eclipse projects that
we investigated, the Spymemcached project contained in the
CROP dataset uses it. Spymemcached is a lightweight Java
implementation of a memory caching system. The project
was terminated and became the groundwork for the Java
client for the Couchbase NoSQL database [25]. While the
project is no longer maintained, we found an interesting case
regarding coding conventions. At the beginning of the project,
spymemcached developers did not employ any automated cod-
ing convention checking tools in their development process.
Therefore, developers spent considerable time during code re-
view discussing and fixing convention issues. In August 2011,
the project integrated Checkstyle into its development process.
As an integration step, a developer executed Checkstyle for the
complete project code and fixed all the convention violations
that were reported in a single commit.6 Because of this ‘big-
bang’ style change, most of the files in the code base were
changed by a single developer in a single commit, and the
change history was tainted. Developers can no longer track
when the last change was introduced and who made the change
in a file farther back than the ‘big-bang’ commit. To avoid
this problem, the projects that we investigated have decided
against fixing present convention violations. Moreover, we
have seen during our investigation that code reviewers often
reject changes that fix only convention violations. Instead,
changes should not introduce new coding violations.

B. Adoption of Coding Convention Fixing Tool

Assuming that Eclipse developers themselves use Eclipse, it
was surprising to see a large number of convention violations
that could have been prevented by Eclipse’s automatic format-
ting system. For example, the Eclipse Platform UI project has
documented coding conventions together with instructions on
how to adhere to them. It has adopted the Eclipse Coding
Conventions [21], and it provides IDE configurations for

4https://sonar.eclipse.org/dashboard/index/eclipse.platform.ui:eclipse.
platform.ui

5https://git.eclipse.org/r/#/c/65695
6http://review.couchbase.org/#/c/8644/

code formatting that a contributor needs to import. Clear
instructions are given on code formatting:

Avoid formatting whole files – as this can generate
pseudo-changes (whitespace related) when committing
changes to existing source files. The easiest way, for
Java files, is to have ‘Format edited lines’ activated
Given these explicit instructions on how to use automatic

code formatting, one would assume that violations to the corre-
sponding documented conventions do not occur. As presented
in the previous sections, however, there was an abundance
of code reviews in which violations were discussed by de-
velopers. Some discussions even mentioned that the Eclipse
automatic formatting system was not working correctly at
some point.7

C. Trailing Whitespace

The introduction of trailing whitespace was the only con-
vention violation that decreased in number during code review.
One might conclude that trailing whitespace is a convention
violation that developers are specifically interested in. A devel-
oper contributing to the Eclipse Platform UI even mentioned
trailing whitespace during code review:

The general rationale behind coding style, namely im-
proving readability, is very important to code reviews,
because the main task of code reviews is to read code.
In Eclipse Platform, my experience is that coding style
is handled quite strictly. Even a trailing space at the end
of the line can lead to a rejection of the change set and
needs to be fixed in order to be included.

However, the explanation for the role of trailing whitespace
may be much simpler because Gerrit’s visualisation of changes
highlights trailing whitespace in red. Figure 7 shows an
example from the Eclipse Gerrit repository that illustrates how
a reviewer8 pointed out trailing whitespace in a change. The
patch author introduced two meaningless trailing whitespaces
(highlighted in red) while making a change. The reviewer
pointed out the issue. The patch author revised the change
and the trailing space disappeared in the later revision. Given
the striking visualisation of trailing whitespace in Gerrit, it is
no wonder that reviewers often flag the violation explicitly.

D. Enclosing Blocks in Braces in JGit and EGit

For JGit and EGit, the second largest number of flagged
and fixed convention violations related to the requirement
to always enclose blocks in braces (i.e., the NeedBraces
violation in the Block category). Both JGit and EGit deviated
from Eclipse coding conventions [26]. Their coding conven-
tions flag two particular cases. First, they highlight that trail-
ing whitespace should be automatically removed (similar to
Eclipse Platform UI). Second, they discuss the need for braces
around one-line statements. The second element conflicted
with the Eclipse coding convention. Before 27 January 2015,

7https://bugs.eclipse.org/bugs/show bug.cgi?id=477476
8The reviewer’s photo and name are blinded for privacy.

Fig. 7. A reviewer pointed out trailing whitespace during code review. Gerrit
highlights trailing whitespace in red.

EGit and JGit did not allow braces around single-line blocks,
and many reviewers requested the removal of braces in cases
where single-line blocks were enclosed in them. For example,
in code review request #11558, the reviewer pointed out that
the patch author should remove the braces around a single
line. A proposal to change this deviating coding convention
was flagged in Bugzilla (Bug #457592) by one of the main
JGit/EGit developers.

I found this rule pretty annoying for many reasons: the
rule itself is not only an exception from the general
rule to have braces around any blocks but also contains
another 2 exceptions that you *have to* use braces
in some special cases. The code containing multiple
if/else block with and without braces looks inconsistent,
refactoring often leads to left-over braces.

Based on this discussion, the developers updated the contrib-
utor guide [26]. The guide currently says:

Starting with 3.7.0 braces are mandatory independently
of the number of lines, without exceptions. The old code
will remain as is, but the new changes should use the
style below:

if (condition) {
%doSomething();

}

The main reason for the change was to simplify the
review process, coding guidelines and to make them
more consistent with Eclipse code formatter.
The developers updated their coding conventions to reduce

confusion. However, we found that updating the coding con-
ventions failed to reduce confusion because our investigation
showed that the developers were still confused and spent man-
ual effort detecting and fixing the violations of this convention.

Deviations from generally accepted coding conventions may
lead to confusion and unnecessary discussions during code
review and should be avoided. Removal of such deviations
can also cause confusion and unnecessary discussions.

V. THREATS TO VALIDITY

We selected four projects (i.e., Platform UI, EGit, JGit,
and Linux Tools) from the Eclipse Foundation. Although
the projects have large amounts of code review data, the
results may not be generalisable to other commercial or open
source projects. Moreover, all four projects use Gerrit as the
code review platform, and this has only limited support for

including automatic checking tools. We focused only on the
initial and the final patch of a code review request. However,
it is possible that we may have missed convention violations
in intermediate patches. For example, a developer violated a
coding convention in the second patch, a reviewer spotted it,
and the violation was addressed in the third patch. However,
we assume there will be no significant difference between
the initial patch and the following patches in a code review
request, since Eclipse and other open source and proprietary
projects limit the size of patches [27]. The study is only based
on the patches that Checkstyle reported coding convention
violations. We did not investigate the reviews where there
might be a discussion about convention violations but were
not detected by the tool.

Since our investigation for RQ2 was a manual process,
it risked of being subjective. To mitigate this, two authors
investigated the data independently. If the two investigators
found a conflict between their results, they discussed the
conflict until they agreed on the same decision. The delay
reported in this paper might not be representative, since a code
review comment and the patch may address multiple issues at
once. Therefore, the time we measured between them may
not be solely spent on the checking and fixing of convention
violations.

VI. RELATED WORK

Panichella et al. [16] investigated how developers handle
static analysis results such as coding convention violations
during code review. While their approach to the analysis
is very similar to the approach we use in this paper, their
evaluation was limited and mainly focussed on quantitative
analysis. While they manually investigated only a small sample
of candidate reviews, we manually investigated all reviews.
They concluded that static analysis tools can be used to
support developers during code reviews. Our analysis similarly
demonstrated that developers were not effective—and more
importantly, not consistent—in detecting violations, suggesting
that automated checking (and fixing) should be used to reduce
the burden on reviewers and make the code review more rig-
orous in terms of catching violations that developers actually
care about. In addition, we focused in detail on what violations
are introduced and removed during the review, improving on
the diversity of those already present.

Balachandran et al. [28] suggested the Review Bot, which is
an extension of the Review Board and can recommend appro-
priate reviewers for a submitted review issue. The Review Bot
uses line-level change history to determine the proper reviewer.
The author evaluated his approach by using proprietary data
from VMware. When the Review Bot recommended only
one reviewer, its accuracy was 59.92%-61.17%. When it
recommended five reviewers, it showed an 80.85%-92.31%
accuracy rate. Similar to Balachandran’s work, Henley et
al. [29] integrated a CI tool, CloudBuild [30], that covers
builds, test, and code analysis within a code review tool,
CodeFlow. The authors showed that integrating static analysis
tools within the code review leads to more communication

between developers. The process increased coding convention
discussions by about 50%.

Singh et al. [31] found that PMD can reduce the workload
of code reviewers. Beller et al. [32] empirically found that
static analysis tools are adopted in projects, but their use is
not strictly enforced. Czerwonka et al. [33] reported benefits
and costs of reviewing practices at Microsoft. They pointed
out the high cost of code reviews and the fact that reviews are
not always used efficiently. Vassallo et al. [34] investigated
developers in both industry and open source projects who use
static analysis tools. They observed that developers configure
static analysers at least once, and the configuration is rarely
changed during a project. They also stated that developers
assign different priorities to warnings from static analysers
based on different contexts. Later, Vassallo et al. [35] reported
that the perceived relevance of static analysis tools varies
between different projects and domains, showing that using
static analysis tools is still not a common practice.

Zampetti et al. [36] empirically investigated the integration
of static analysis tools and CIs. They found that a failure
caused by a convention checker is one of the main reasons for
build failure. Sarkar et al. [37] argued that human efforts imply
mental fatigue, which causes an increase in coding convention
violations. Smit et al. [38] examined whether convention
adherence is a proxy measurement for maintainability. They
observed that adopting coding convention checking tools does
not lead to a reduction in the number of violations. Elish et
al. [39] also show that Java programmers find it difficult to
comply with coding conventions.

VII. CONCLUSION

In this paper, we described how developers handle coding
convention violations during code review. First, we investi-
gated how many convention violations were introduced in the
initial patch of a code review request and disappeared in the
final patch. Then, we investigated whether violations disap-
peared because of a fix in response to reviewer comments.
We found that many coding convention violations are ignored
by developers and reviewers. 24 out of 62 violation types did
not have any violation flagged and fixed. Moreover, there were
only five violation types for which there are fewer violations in
the final revision compared to the initial revision. Our results
indicate that humans are neither effective nor consistent in
preventing the introduction of convention violations. Finally,
the results show that it can take around 24 hours for a human
reviewer to pick up coding convention violations, which can
be detected instantly by an automated tool.

Our study calls for future work on coding conventions.
For example, the majority of coding convention violations
can easily be detected by automated tools, rather than by a
reviewer’s manual inspection. It is also important to improve
tools to provide fewer false-positives (i.e., violation warnings
that are unimportant or unnecessary) to developers. It is also
necessary for the tools to analyse changed code only. Based
on the results presented in this paper, automated tool support
can save developers’ time and boost development speed.

REFERENCES

[1] T. Lee, J. B. Lee, and H. P. In, “A study of different coding styles af-
fecting code readability,” International Journal of Software Engineering
and Its Applications, vol. 7, no. 5, pp. 413–422, Sep 2013.

[2] L. Tysell Sundkvist and E. Persson, “Code styling and its effects on code
readability and interpretation,” Ph.D. dissertation, KTH Royal Institute
of Technology, 2017.

[3] R. M. dos Santos and M. A. Gerosa, “Impacts of coding practices
on readability,” in Proceedings of the 26th Conference on Program
Comprehension (ICPC ’18), 2018, pp. 277–285.

[4] The ultimate guide to code reviews, 2016. [Online]. Available:
https://www.codacy.com/ebooks/guide-to-code-reviews

[5] M. Mäntylä and C. Lassenius, “What types of defects are really dis-
covered in code reviews?” IEEE Transactions on Software Engineering,
2009.

[6] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the Qt, VTK, and ITK projects,” in Proceedings of the
11th Working Conference on Mining Software Repositories (MSR ’14),
2014, pp. 191–201.

[7] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 35th International
Conference on Software Engineering (ICSE ’13). San Francisco, CA,
USA: IEEE, 2013, pp. 712–721.

[8] J. Shimagaki, Y. Kamei, S. Mcintosh, A. E. Hassan, and N. Ubayashi,
“A study of the quality-impacting practices of modern code review
at Sony Mobile,” in Proceedings of the IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C ’16), 2016,
pp. 212–221.

[9] C. Sadowski, J. v. Gogh, C. Jaspan, E. Soderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in Proceedings of
the 37th International Conference on Software Engineering (ICSE ’15),
2015, pp. 598–608.

[10] D. G. Feitelson, E. Frachtenberg, and K. L. Beck, “Development and
deployment at Facebook,” IEEE Internet Computing, 2013.

[11] M. Mukadam, C. Bird, and P. C. Rigby, “Gerrit software code review
data from Android,” in Proceedings of the 10th Working Conference on
Mining Software Repositories (MSR ’13), 2013, pp. 45–48.

[12] Y. Tao, D. Han, and S. Kim, “Writing acceptable patches: An empirical
study of open source project patches,” in Proceedings of the 30th Inter-
national Conference on Software Maintenance and Evolution (ICSME
’14), 2014.

[13] Checkstyle, “Checkstyle.” [Online]. Available: http://checkstyle.
sourceforge.net

[14] PMD, “PMD – an extensible cross-language static code analyzer.”
[Online]. Available: https://pmd.github.io

[15] S. Kim and M. D. Ernst, “Which warnings should I fix first?” in Pro-
ceedings of the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering (ESEC/FSE ’07), 2007, p. 45–54.

[16] S. Panichella, V. Arnaoudova, M. D. Penta, and G. Antoniol, “Would
static analysis tools help developers with code reviews?” in Proceedings
of the IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER ’15), 2015, pp. 161–170.

[17] M. Paixao and P. H. Maia, “Rebasing in code review considered
harmful: A large-scale empirical investigation,” in Proceedings of the
19th International Working Conference on Source Code Analysis and
Manipulation (SCAM ’19), 2019, pp. 45–55.

[18] M. Paixao, J. Krinke, D. Han, and M. Harman, “CROP: Linking code
reviews to source code changes,” in International Conference on Mining
Software Repositories (MSR ’18), 2018.

[19] J. Regehr, “Static Analysis Fatigue,” 2010. [Online]. Available:
https://blog.regehr.org/archives/259

[20] Sun Microsystems, “Code conventions for the Java programming
language,” 1999. [Online]. Available: http://www.oracle.com/
technetwork/java/codeconvtoc-136057.html

[21] Eclipse, “Eclipse coding conventions.” [Online]. Available: http:
//wiki.eclipse.org/Coding Conventions

[22] D. Hovemeyer and W. Pugh, “Finding more null pointer bugs, but not too
many,” in Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering (PASTE ’07),
2007, pp. 9–14.

[23] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,
“Evaluating static analysis defect warnings on production software,” in
Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE ’07), 2007, pp. 1–
8.

[24] SonarQube, “Sonarqube.” [Online]. Available: https://wiki.eclipse.org/
SonarQube

[25] Couchbase, “Couchbase NoSQL database.” [Online]. Available: https:
//www.couchbase.com/

[26] EGit, “Contributors’ guide for Egit.” [Online]. Avail-
able: https://help.eclipse.org/mars/topic/org.eclipse.egit.doc/help/EGit/
Contributor Guide/Contributing-Patches.html

[27] P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!” in
Proceedings of the 2008 International Workshop on Mining Software
Repositories (MSR ’08), 2008, pp. 67–76.

[28] V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in Proceedings of the 35th International Conference on Software
Engineering (ICSE ’13), 2013, pp. 931–940.

[29] A. Z. Henley, K. Muçlu, M. Christakis, S. D. Fleming, and C. Bird,
“CFar: A tool to increase communication, productivity, and review
quality in collaborative code reviews,” in Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI ’18), 2018,
pp. 1–13.

[30] H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan, E. Mavrinac,
W. Schulte, N. Sanches, and S. Kandula, “CloudBuild: Microsoft’s
distributed and caching build service,” in Proceedings of the 38th
International Conference on Software Engineering Companion (ICSE-C
’16), 2016, pp. 11–20.

[31] D. Singh, V. R. Sekar, K. T. Stolee, and B. Johnson, “Evaluating how
static analysis tools can reduce code review effort,” in Proceedings of
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC ’17), 2017, pp. 101–105.

[32] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the
state of static analysis: A large-scale evaluation in open source software,”
in Proceedings of the IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER ’16), 2016, pp. 470–
481.

[33] J. Czerwonka, M. Greiler, and J. Tilford, “Code reviews do not find
bugs: How the current code review best practice slows us down,” in Pro-
ceedings of the 37th International Conference on Software Engineering
(ICSE ’15), 2015, pp. 27–28.

[34] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, A. Zaidman, and
H. C. Gall, “Context is king: The developer perspective on the usage of
static analysis tools,” in 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2018.

[35] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and
A. Zaidman, “How developers engage with static analysis tools in
different contexts,” Empirical Software Engineering, pp. 1419–1457,
Nov 2019.

[36] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. D. Penta,
“How open source projects use static code analysis tools in continuous
integration pipelines,” in Proceedings of the IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories (MSR ’17), 2017,
pp. 334–344.

[37] S. Sarkar and C. Parnin, “Characterizing and predicting mental fatigue
during programming tasks,” in Proceedings of the IEEE/ACM 2nd
International Workshop on Emotion Awareness in Software Engineering
(SEmotion ’17), 2017, pp. 32–37.

[38] M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia, “Code convention ad-
herence in evolving software,” in International Conference on Software
Maintenance (ICSM ’11), 2011, pp. 504–507.

[39] M. O. Elish and J. Offutt, “The adherence of open source Java program-
mers to standard coding practices,” in Proceedings of the 6th IASTED
International Conference on Software Engineering and Applications
(SEA ’02), 2002.

