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Abstract—This brief presents a 16-electrode electrical 

impedance tomography (EIT) system for hand gesture 
recognition. The hardware of the system is based on integrated 
circuits including a 12-bit high spectral purity current-steering 
DAC implemented in 0.18 µm CMOS technology, a current driver 
and an instrumentation amplifier in 0.35 µm CMOS technology. 
Both 2D and 3D EIT electrode arrangements were tested for hand 
gesture recognition. It is shown that using machine learning 
algorithms, eight hand gestures can be distinguished from the 
measured bio-impedance data with an accuracy of 97.9% when the 
electrodes are placed on a single wristband, and an accuracy of 
99.5% with the same number of electrodes distributed on two 
wristbands for 3D EIT measurement. In particular 3D EIT 
demonstrated significant superiority in its ability to discriminate 
between gestures with similar muscle contractions.  
 

Index terms—3D electrical impedance tomography (EIT), 
current-steering DAC, hand gesture recognition, machine 
learning. 

I. INTRODUCTION 
HE past two decades have seen extensive research efforts 
on acquiring and decoding physiological signals to drive 

bionic hands in order to restore lost upper limb functions for 
amputees and to control robotic arms for human-like hand 
movement. To achieve close-to-natural bionic hand movements 
(which include both manipulation of objects and using gestures 
for supporting communication), reliable signal acquisition 
methods from which fine details of intention of hand movement 
can be interpreted are crucial. The most commonly used method 
to date is surface electromyography (sEMG), where electrical 
activity produced by skeletal muscles is recorded from 
electrodes attached to the skin [1] [2]. Despite the advantage of 
non-invasiveness and being relatively simple to implement, 
sEMG is limited by its poor spatial resolution, unstable skin-
electrode condition and small signal amplitudes from the 
muscles. Furthermore, sEMG can only detect signals from a 
depth under the skin of up to 1 cm and provides no access to 
deep muscles. Implantable electrodes for intramuscular [3], 
epimysial [4] and intraneural recording [5] can achieve in-depth 
signal acquisition at higher resolution, but their implementation 
is limited due to their invasiveness. 

Electrical impedance tomography (EIT) has emerged in the 
past 4-5 years as a potential alternative approach for signal 
acquisition. EIT detects the inner impedance distribution and 
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variation of an object by injecting excitation current or voltage 
in sequence from a group of electrodes around the object, and 
measures the electrical impedance response from all the 
electrodes in the group. Because of its advantages including 
high temporal resolution, non-invasiveness and low-cost 
implementation, it has been used in clinical applications such 
as respiratory monitoring [6], [7], [8]. Zhang et al. first reported 
using EIT for hand gesture recognition using an 8-electrode 
system [9] that was later upgraded to 16 and 32 electrodes [10]. 
We have also investigated using application-specific integrated 
circuits (ASIC) based on a high performance EIT system for 
recognising hand gestures to control a robotic hand [11], [12]. 
More recently, further research efforts on EIT-based human 
machine interfaces for hand gesture recognition have been 
reported including optimising the drive pattern of impedance 
measurement [13], and using EIT images to interpret grasp 
force [14]. All the existing research, however, used two-
dimensional (2D) EIT systems that map three-dimensional (3D) 
muscle contraction onto a cross-sectional plane with low spatial 
resolution, and are prone to detection error. In our earlier study 
[11], [12], we observed that the detection accuracy was less than 
60% when gestures with similar muscle contraction were 
grouped together for classification but were increased to > 90% 
after separating these gestures into two groups with a third 
group as the identifier of the separation. 

In this brief we report our investigation on using 3D EIT 
for hand gesture recognition and its ability to discriminate 
between gestures with similar muscular contractions. As shown 
in Fig. 1, 16 electrodes were divided equally into two bands 
with one near the wrist and the other further up the forearm. We 
selected eight hand gestures into one group for classification. 
For comparison, we also tested 2D EIT with the 16 electrodes 
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Fig. 1. Conceptual illustration of the proposed 3D EIT approach for hand 
gesture recognition. 
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in one band on the forearm detecting the same eight gestures. 
The results show that 3D EIT indeed improves the accuracy of 
recognition, especially for gestures with similar muscle 
contraction. For these measurements, we have developed a high 
performance prototype EIT hardware system, featuring an 
integrated 12-bit current-steering digital-to-analog converter 
(DAC) with high spectral purity and dynamic gain control for 
the readout amplifiers, to increase the signal-to-noise ratio in 
the impedance measurement. 
 The rest of this brief is organised as follows. Section II 
describes the hardware implementation. Section III shows the 
measured results for both the system performance and hand 
gesture recognition, and conclusions are drawn in Section IV. 

II. SYSTEM IMPLEMENTATION 

A. System Architecture  
The prototype system hardware shown in Fig.2, comprises 

an analog front-end for excitation current generation, voltage 
readout and electrode multiplexing, a digital control unit for 
system operation control, impedance calculation and 
communication, and a personal computer (PC) for system 
configuration and gesture recognition. In this prototype, the 
analog front-end is based on two ASICs consisting of a 
wideband fully differential current driver and an 
instrumentation amplifier, a 12-bit current-steering DAC, and 
commercial off-the-shelf components. The digital control unit 
is implemented on a Xilinx Artix-7 FPGA, while MATLAB is 
used for impedance signal processing and gesture classification. 

B. Analog Front-end 
In operation, as illustrated in Fig. 2, the 12-bit DAC receives 

the bitstream of a sinusoidal waveform from the digital control 
with a sampling rate of 8 MS/s to generate fully differential 
sinusoidal currents. In the tests the excitation frequency was set 
to 125 kHz. The differential sinusoidal currents are then 
converted into differential voltage signals by a transimpedance 
amplifier (TIA) implemented with AD8056. The voltage 
signals, 𝑉"#$  and 𝑉"#% , drive an integrated wideband fully 
differential current driver to generate the differential excitation 
currents, 𝐼$  and 𝐼% , with a peak-to-peak amplitude '𝐼$() −

𝐼%()+ of 4 mA. The current driver is built with two differential 
difference transconductance amplifiers (DDTAs) in a source-
sink structure [7], where the current amplitude is set by the 
feedback resistor, 𝑅- , as 𝐼 = (𝑉"#$ − 𝑉"#%) 𝑅-.⁄  This source-
sink combination provides over 97.5% common-mode 
reduction that minimizes the common-mode error caused by 
mismatch between the differential currents. 

Voltage readout is implemented with three stages of 
amplification, consisting of an integrated current-feedback 
instrumentation amplifier IA1, a second stage amplifier IA2 
implemented with AD8253 with a programmable gain of 1, 10, 
100 and 1000, and IA3 with AD8250 with a programmable gain 
of 1, 2, 5 and 10. IA1 has a fixed gain of 10, a bandwidth of  up 
to 1 MHz and a common-mode rejection ratio of 74 dB at 1 
MHz [7]. The bandpass filter in the readout path has a 
bandwidth between 65 kHz and 3 MHz to remove interference 
from the mains, dc offset, and digital operating clocks. The 
amplified signal is then digitized with a 12-bit analog-to-digital 
converter (ADC), AD9237, also at a sampling rate of 8 MS/s. 

Current and voltage scanning is implemented with an analog 
switch matrix consisting of 16 ADG1211 chips providing a total 
of 64 switches, so that each of the two current outputs and two 
voltage inputs has independent access to the 16 electrodes. This 
arrangement provides full flexibility when implementing 
variable impedance measurement sequences [15]. The 
ADG1211 provides 80 dB of isolation and 90 dB inter-channel 
isolation that effectively avoids interference due to channel 
leakage. 

C. Current-Steering DAC 
To reduce the impedance measurement error caused by the 

harmonic components in the excitation signal, a random-
rotation binary-weighted current steering DAC is implemented. 
In this way harmonic components in the DAC output caused by 
the mismatch between the current branches are minimized by 
randomly selecting current branches, so that distortions due to 
mismatch are randomized among the sampling cycles [16]. 

The implementation of the DAC is shown in Fig. 3(a). 
There are three tiers of current units corresponding to three 
segments of the 12-bit input; D[11:8], D[7:4] and D[3:0]. Each 
tier has 15 current units of equal weight. The current unit is 

 

Fig. 2. Architecture of the 16-electrode EIT system. 
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implemented with a current source transistor MI, a cascode 
transistor MC, and two complimentary switches MS and MS_b 
for generating differential current outputs. The weight of 
transistors of the tier for D[11:8] is 256 times the weight of the 
tier for D[3:0], while the weight of D[7:3] is 16 times. The 
differential outputs of the three tiers are summed together to 
generate the output current with 12-bit resolution. The peak 
single-end output current value is 2 mA. Fig. 3(b) shows the 
control of the current units for each tier. At the input, the 4-bit 
segment in the DAC input is directly expanded to 15 bits, as 
illustrated, to four 15-bit barrel shifters, which are cascaded 
together with a rotation step size of 8 bits, 4 bits, 2 bits and 1 
bit, respectively, towards the output. Rotation of each register 
is activated by an enable input. The four enable inputs are 
generated by a 16-bit linear feedback shift register (LFSR) with 
an initial value of 16’hACE1, as shown in Fig. 3(c). The LFSR 
shifts at each sampling clock, generating four pseudorandom 
enable signals so that the output of the cascaded barrel shifters 
is randomized among the sampling clocks. Therefore, the 

selection of the equally weighted current units in each tier is 
also randomized.  

D. Digital Control 
The control logic operates at two clocks; 128 MHz for the 

serial input to the DAC to achieve an 8 MS/s sampling rate, and 
16 MHz for the system operation. The finite-state machine 
synchronizes for a full impedance scan the output to the DAC, 
the electrode multiplexing, the sampling of the ADC, and the 
calculation of the real and imaginary parts of the measured 
impedance using two parallel multiplier-accumulator units. The 
calculated values are sent to a PC via 100 MB/s Ethernet using 
the User Datagram Protocol. The operation of one full scan 
cycle, including the data transfer, takes 10 ms, when 256 
voltage measurements in total are conducted on all the electrode 
pairs, allowing 32 µs on each electrode pair for voltage 
sampling and impedance calculation.  

For 3D EIT measurements, since the electrodes are 
separated into two bands the voltage amplitude distribution on 
the electrode pair has a large variation. Therefore, dynamic gain 
control is preferable. Fig. 4 shows an example of the impedance 
measurement sequence. In voltage scan cycle 1, electrodes E1 
and E2 are used for current injection, the voltage scan also starts 
from E1 and E2, and shifts towards E16 by one electrode at a 
time. In voltage scan cycle 2, the current injection electrodes 
shift by one to E2 and E3, the voltage scan at this time starts 
also from E2 and E3, and shifts clockwise towards E1. With this 
arrangement, in a voltage scan cycle, the distance between the 
voltage scan and current injection electrode pairs always 
changes in a fixed pattern, regardless of the location of the 
current injection. Therefore, the control logic only needs to set 
16 different amplifier gains in a voltage scan cycle, and repeat 
these gain settings for every cycle, instead of storing 256 gain 
settings for all the 256 measurements.  

III. MEASURED RESULTS 

A. ASIC Implementation 
The current-steering DAC was implemented in XFAB 0.18 

µm CMOS technology operating at 1.8 V. Fig. 5 shows the chip 
micrograph. The DAC occupies an area of 0.26 mm2. The fully 
differential current driver and the current feedback 
instrumentation amplifier were implemented in XFAB 0.35 µm 
HV CMOS technology as described in [7]. The entire system is 
supplied at ±6 V, with an average current consumption of 91 
mA in full operation.  

 
(a) 

 
(b) 

 
(c) 

Fig. 3. Implementation of the current-steering DAC: (a) the three-tier 
architecture of the DAC; (b) cascaded barrel shifters for current unit control in 
each tier; and (c) 16-bit linear feedback shift register for randomizing the 
rotation of the barrel shifters. 
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Fig. 4. Illustration of the current injection and voltage scan sequence. 
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B. DAC Measurements 

The current-steering DAC was tested standalone with its 
outputs connected to 500 Ω resistor loads. Operating at 128 
MHz, the sampling rate was 8 MS/s. A digitized sinusoidal 
waveform with 12-bit resolution and 32,768 samples per cycle 
was streamed into the DAC, and the voltage on either load 
resistors was measured with a Keysight DSO-X 2024A 
oscilloscope, which also displayed the spectrum of the voltage. 
Fig. 6 shows a screenshot of the measured voltage and its 
spectrum with a frequency span of 5 kHz. The output voltage is 
a sinusoidal waveform with a peak value of 1 V and a frequency 
of 244 Hz. The measured spurious-free dynamic range (SFDR) 
in the displayed spectrum is 62.16 dB. This performance is 
comparable to the commercially available DACs, such as 
AD5445, which has a wideband SFDR of 62 dB using a 25 
MHz clock. 

C. Resistive Phantom Measurement 
The performance of the 16-electrode EIT system was 

evaluated with a resistive phantom [17] where inhomogeneity 
is created by two or four diagonally located switches. Fig. 7 
shows the measured EIT images of the 16-electrode system in 
comparison with images of the 8-electrode system used in our 
previous study and images from simulation data. The 
superiority of the 16-electrode system over the 8-electrode 
system is clearly demonstrated in the figure, where images from 
the 16-electrode system show a much better match to the 
simulated images, especially when inhomogeneity was created 
by all four switches.  

D. Hand Gesture Recognition 
Eight hand gestures were selected for the recognition tests, 

namely: Relax, Fist, Thumb-Up, Left Twist, Right Twist, Finger 
Gun, Point and Scissors, as illustrated in Fig. 8(a). These eight 
gestures were tested with two electrode arrangements, one with 

the 16 electrodes on a single wristband for 2D EIT 
measurement, and the other with the same number of electrodes 
divided equally between the two bands and worn as illustrated 
in Fig. 1, for 3D EIT measurement. Sixteen nickel-plated steel 
plates, 25 mm × 5 mm each, attached on elastic bands, were 
used as electrodes in the tests, while Spectra 360 electrode gel 
(Parker Laboratories, Inc) was applied to improve contact 
conductivity. Two volunteers were recruited. Sixty five rounds 
of tests, each consisting of all the eight gestures, were 
performed. 5,750 full scan cycles, namely frames, were 
recorded consisting of in total 1,472,000 voltage measurements, 
184,000 for each gesture. The acquisition speed was 33 
frames/s. In 3D EIT measurements, the two electrode bands 
were placed with a separation of either 5 cm or 10 cm. For all 
measurements, the excitation signal was a 125 kHz single 
frequency sinusoidal current. In addition, five rounds of 3D EIT 
measurements at 10 cm band separation with added distortion 
of 40 dB total harmonic distortion (THD) introduced in the 
DAC input. 

The MATLAB R2019b Classification Learner APP was 
used for data analysis. The Fine-Tree classification method was 
employed and five-fold cross-validation was performed. For 
either electrode arrangement, datasets from each gesture were 
equally divided into five groups, where four groups were used 
for training and the remaining group for validation, and the 
accuracy was calculated after five rounds of iterations of 
changing groups for training and validation. 

Fig. 8(b) shows the confusion matrix of the single band 2D 
EIT recognition. As shown, the eight gestures are classified 
with an average of 97% accuracy. While other gestures are 
generally well classified, most of the confusion, as shown in 

 

Fig. 5. ASIC micrograph of the current-steering DAC. 
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Fig. 6. Measured output spectrum of the current steering DAC with a 
sinusoidal output at 244 Hz, a sampling rate of 8 MS/s and 32768 samples 
per cycle.  
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TABLE I. RECOGNITION ACCURACY OF CLASSIFICATION METHODS 

Classification 
Methods 

Accuracy (%) 

Single 
Band 

Double Band 

5 cm band 
separation 

10 cm band 
separation 

10 cm band 
separation 
with 40 dB 

THD 

Decision Tree:     
Fine Tree 97.9 99.5 96.6 80.1 

Medium Tree 95.4 99.5 93 65.2 

SVM:     
Quadratic  97.5 99.4 97.4 82.9 

Cubic  95.1 99 96.7 82.5 
Medium Gaussian  88.2 95.9 93 73.2 

ANN 95.4 99.5 97.7 87.4 
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pink pixels, is observed between the Finger Gun and Point, 
which reflects the similarity in the muscle contraction for these 
gestures. Fig. 8(c) shows the confusion matrix of the double 
band 3D EIT recognition. With the same classifier and settings, 
improvement is clearly observed with the average accuracy 
increased to 98.25%. The confusion between the Finger Gun 
and Point is significantly reduced. Fig. 8(d) compares the 
clustering between the Finger Gun and Point in a feature space 
with 2D and 3D EIT recognition.  Clearly 3D EIT demonstrates 
better clustering discrimination. 

In addition to the Fine Tree method, datasets from the eight 
gestures were also tested with other decision trees and support 
vector machine (SVM) algorithms available in the 
Classification Learner APP, as well as the artificial neural 
network (ANN) algorithm with 10 hidden neurons. The 
classification accuracy from each algorithm is listed in Table I. 
In general, 3D EIT demonstrates better recognition accuracy 
than 2D EIT, while closer placement of the electrode bands 
yields higher accuracy from all classification methods, possibly 
because of higher signal-to-noise ratio when the excitation and 
acquisition are on separated bands. The measured effect of 
harmonic distortion on accuracy emphasizes the importance of 
a high-performance excitation signal source. 

IV. CONCLUSION 
In this brief we have presented a prototype 16-electrode EIT 

system with an integrated current-steering DAC that provides 
high spectral purity of the excitation signal for impedance 
measurements. We have also reported our investigation of hand 
gesture recognition using this system with both 2D and 3D EIT 
electrode arrangements. The results show improved overall 
recognition accuracy of 99.5% when all the gestures under test 
were classified as one group, compared to the < 60% accuracy 
in our previous study [11], thanks to the advanced EIT hardware 
and higher resolution provided by more electrodes. Moreover, 
our investigation has demonstrated the advantage of using 3D 
EIT for hand gesture recognition, especially in discriminating 
gestures with similar muscle contraction. 
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Fig. 8. Hand gesture recognition results: (a) hand gestures used in tests; (b) confusion matrix of recognition using 2D EIT single wristband electrode arrangement; 
(c) confusion matrix using 3D EIT with double wristband electrode arrangement; and (d) comparison between 2D and 3D EIT of the clustering feature space of 
two gestures. 
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