
Exploring The Use of Genetic Algorithm
Clustering for Mobile App Categorisation

Afnan A. Al-Subaihin1 and Federica Sarro2

1 CCIS, King Saud University, Riyadh, Saudi Arabia
2 University College London, London, United Kingdom

aalsubaihin@ksu.edu.sa, f.sarro@ucl.ac.uk

Abstract. Search-based approaches have been successfully used as clustering
algorithms in several domains. However, little research has looked into
their effectiveness for clustering tasks commonly faced in Software Engineering
(SE). This short replication paper presents a preliminary investigation on
the use of Genetic Algorithm (GA) to the problem of mobile application
categorisation. Our results show the feasibility of GA-based clustering
for this task, which we hope will foster new avenues for Search-Based
Software Engineering (SBSE) research in this area.

Keywords: Software clustering · Mobile applications · Replication study.

1 Introduction
Automatic software categorisation is an ongoing research problem which aims to
find similarity among software artefacts [4]. Such similarity can aid, for example,
in detecting malicious software [8], requirements discovery [3][19] and mining
similar software behaviour and analytics [2][14][18]. Mobile applications (apps)
present a particularly interesting domain since the app store categorisation has
been deemed unsuitable and alternative automated categorisations are advocated
[2][8]. Furthermore, app stores boast various metadata that can be leveraged for
this task [9,12].

Al-Subaihin et al. [1][2] have shown that categorising mobile apps according
to their functionalities can provide a better categorisation than the current
app store ones. However, their work focuses on comparing the effectiveness of
various feature extraction techniques from textual corpora, and thus only uses
one clustering algorithm: hierarchical clustering.

In this paper, we carry out a partial replication of the original study [1] to
investigate whether the results can be improved using a Genetic Algorithm-based
clustering algorithm, as evolutionary approaches were shown to be successful as
clustering techniques in other application domains [10]. Specifically, we investigate
four of the five research questions posed in the original study, but we shift the
focus on the clustering approach rather than the feature extraction method.
Firstly, as a sanity check, we measure the degree of difference between the two
clustering solutions. Then we report the degree of improvement on the original
app store clustering. We also report partial results of investigating the best value
of K for the GA-clustering algorithm (GAC) and, finally, we report the efficiency
of using the GA-clustering technique compared to hierarchical clustering. Our
results reveal that using a GAC produces significantly better clustering of mobile
applications than those observed in the app store categorisation, and those



2 A. A. Al-Subaihin and F. Sarro

produced by hierarchical clustering. However, GAC fails to surpass the quality
of the hierarchical clustering solution at higher K values. To the best of our
knowledge, our study is the first to explore the viability of GA-based clustering
solutions for mobile app categorisation, and, more in general, few studies have
investigated search-based clustering in SE research (e.g., [5,6,11,15]). This study
shows the viability of search-based clustering solutions for SE tasks, and we hope
can open further avenues for SBSE research.

2 Replication Study Design
The original study extracted features from mobile apps descriptions using four
different techniques and compared their effectiveness for clustering apps by
using these features and only one clustering approach, i.e. hierarchical clustering
[1]. The study found that extracting features using Latent Dirichlet Allocation
(LDA) consistently performs well among the investigated feature extraction
techniques. Therefore, this replication uses LDA as a feature extraction technique,
investigates the effectiveness of GA as a clustering technique, and compares it to
the LDA-based hierarchical clustering results as reported in the original study.
In the following, we report further details on the empirical study design.

2.1 Research Questions

We investigate four of the five research questions from the original study.
RQ 0. How similar is the GA-based clustering solution to its hierarchical

counterpart? Investigating how similar GAC results are to the hierarchical
clustering solution is a sanity check before proceeding further in this study. If
the results are identical or very similar, there is no value in investigating GAC
further. As in the original study, the similarity is measured by using the Jaccard
index, which is a commonly used measure for the agreement of two partitions.
Jaccard index ranges from 0 (complete dissimilarity) to 1 (identical).

RQ 1. Can GAC improve on current app store categorisation and
hierarchical clustering? This research question compares the quality of the
GAC results to the original app store, which has 24 categories (K = 24). The
answer will confirm whether the use of GAC can actually improve the status
quo (app store categorisation) and the state-of-the-art (original study). As done
in the original study, we measure the quality of the clustering solutions using
the Silhouette score [17]. A Silhouette score is assigned to each data point (i.e.
app) in the dataset based on its similarity to the apps in the same cluster and its
dissimilarity to apps in other clusters. The Silhouette score of an entire clustering
solution is the mean scores of all data points in the dataset, and it ranges from
-1 (complete mis-assignments) to 1 (perfect assignments).

RQ 2. How does the choice of K affect the clustering quality of
GAC? Selecting a suitable K (i.e. number of clusters) is an ongoing problem in
cluster analysis. This RQ explores how much the choice of K affect the quality
of the resulting clusters. Due to the large cost of running GAC, we initially test
the quality of the randomly generated populations at the possible values of K.
This is then further explored by running GAC over three different values of K
(23, 98 and 397), and by comparing it to the Hierarchical clustering solution. As
in RQ1, we use the Silhouette score to measure the clustering solution quality.



Exploring The Use of GA Clustering for Mobile App Categorisation 3

RQ 3. How efficient is GAC compared to Hierarchical clustering?
It is well known that a GA can be costly to fine-tune and evolve. Therefore, it is
important to report its efficiency in terms of run-time in order to properly weigh
benefits over its costs.

2.2 Dataset
In order to answer these RQs, we used the same dataset as the original study
[1]3. This dataset contains 12,664 Android mobile applications belonging to 24
categories, which have been randomly sampled from the Google Play app store.
A detailed description of how this data was collected can be found elsewhere [1].

2.3 GA Approach

Fig. 1. RQ 2: Max (solid line) and
mean (dashed line) silhouette scores
(y-axis) of 500 random solutions at
different values of K (x-axis) starting
from k = 2 to k = dataset size / 2 and
a step of 250.

In this study, we opted to use the GA
clustering approach proposed by Maulik and
Bandyopadhyay [13]. This algorithm was
shown to be able to find a global optimum,
and its variations are widely available as
code libraries. In our experiment we used the
GAMA R package (v. 1.0.3) [16], and modified
it to enhance the initial population generation
and the penalty function (see section 2.3 for
the problem at hand4).

Solution Representation and Evaluation
The dataset of mobile apps is represented
such that each mobile application is coded in
terms of its LDA topics. The original study
used 273 topics, thus, the dataset is a 12,664
by 273 matrix with each cell containing the
relatedness of the app to the topic. Each
individual is a clustering solution, which is
encoded as a vector of real values, each
representing a cluster centre 5 (with K known a priori). As the original study used
the Silhouette score to measure the quality of a clustering solution, we have used
this measure as fitness function for GAC. Upon generating the initial population
of cluster centres randomly, they are evolved using linear rank selection, blend
crossover and non-uniform mutation [13][21].

Empty Clusters Problem Upon generating the initial random population
(i.e. random cluster centres), GAC looks at each gene and generates a uniformly
random number between the upper and lower bounds found in the dataset.
However, as our dataset represents topic relatedness (i.e. each gene in the individual
is the relatedness of that individual to one specific topic), the dataset is a very
sparse matrix, and the initial population of random centres can be very far from
the actual data points in the dataset. As a result, many of the initial random
solutions have mainly empty clusters as finding viable random cluster centres

3 http://clapp.afnan.ws/data/
4 Modified GAMA code can be found here: https://github.com/afnan-s/gama
5 The cluster centre is the arithmetic mean of all the points belonging to the cluster.

https://github.com/afnan-s/gama


4 A. A. Al-Subaihin and F. Sarro

that are sufficiently close to the data points is unlikely. In order to address
this limitation, we have modified the random population generation such that it
uniformly samples from the set of pre-observed values for each gene. In addition,
we have adopted a penalty function that deducts the fitness of an individual
proportionally to the number of empty clusters it contains.

Table 1. RQ 1: Silhouette width scores of
existing app store categorisation, hierarchical
clustering and GAC (k = 24, which is the
number of categories in the app store).

Min. Max. Mean Median
Existing -0.54 0.59 0.003 -0.01
categorisation
Hierarchical -0.64 0.99 0.02 -0.01
Clustering
GAC -0.49 1.00 0.52 0.55

Parameter Tuning and Setting We
have explored running the GA with
population sizes as low as 5, 10, 25,
and 100. However, the cost significantly
increases as the population size increases,
since each individual consists of 273
(number of topics/genes) values multiplied
by K (number of cluster centres). We have
found that a good compromise is using

population = 500 and generations = 1000, crossover rate = 0.9, mutation rate
= 0.1. We also investigated decreasing crossover rate and increasing mutation
rate, however, this did not produce better results.

3 Results and Discussion
This section presents the results for each of the investigated RQs, in addition to
a discussion of the comparison to the original study and possible implications.

RQ 0. Similarity of Clustering Solutions When comparing the GAC clustering
solution to the hierarchical clustering solution at K = 24 (with GAC having
1 empty cluster), the Jaccard similarity score is 0.37. This suggests that the
solutions bear some similarity, however, as will be reported in following RQs,
the GAC solutions are of significantly higher quality. This shows that GAC’s
solution does not stray much from the hierarchical clustering one, but indeed
improves upon it.

Table 2. RQ 2: Mean Silhouette scores
at three different levels of K using random
cluster centres, hierarchical clustering, and
GAC.

Categorisation Solution K = 23 K = 98 K = 397
Random - Mean -0.12 -0.05 0.13
Random - Best 0.13 0.05 0.19
Hierarchical Cluster. 0.03 0.13 0.3
GAC Cluster. 0.46 0.13 0.17

RQ 1. Evaluation of Clustering
Quality at Low K Table 1 shows
summary statistics of the silhouette scores
of each of the three clustering solutions.
We observe that the GAC algorithm
is able to produce significantly higher
quality segmentation of the dataset at the
same granularity of the app store. While

in the original study, the hierarchical clustering solution improved upon the
existing app store classification by 1.7%, the GAC solution improved it by 51.5%
(note that 100% improvement means reaching a Silhouette score of 1). Indeed,
the quality of the GAC-based solution exceeds that of the hierarchical-based one
at its best selected K. We conclude that, upon requiring a coarser granularity
clustering technique, GAC is a more suitable solution than a hierarchical
technique, for this dataset.

RQ 2. Best Overall K Upon studying the resulting clustering solutions of
GAC for higher cluster numbers (i.e., higher K), the algorithm fails to produce



Exploring The Use of GA Clustering for Mobile App Categorisation 5

solutions with high mean silhouette scores at the given parameters, as shown
in Table 2. This could provide evidence that, for the studied dataset, GAC
may not be suitable for finer clustering granularity, though very competent at
coarser ones. In order to gain further insight regarding the silhouette trend as
K increases, we have investigated the mean silhouette score for random initial
populations at different levels of K. The results (see Figure 1) suggest that
silhouette scores are higher at lower K values and remain stagnant as K increases.
Table 3. RQ 3: Running time of the
two clustering algorithms (measured on a
standard laptop with an Intel Core i7 3.1
GHz and 16 GB RAM; d=days, h=hours,
m= minutes, s=seconds).

No. Steps Hierarchical GAC
1 Data 5.4 d 5.4 d

Preprocessing
2 DTM 3.0 h 3.0 h

Construction
3 Distance 21.0 s 1.3 m

Matrix
4 Clustering 6.0 s 1.7 d

RQ 3. Efficiency Using LDA to represent
the dataset of mobile app descriptions
requires an upfront cost to search for
the best LDA parameters that represent
the data (further details can be found in
[1]). Therefore, both GAC and Hierarchical
clustering cost exactly the same for the first
two steps (see Table 3). As GAC uses squared
euclidean distance, as opposed to cosine
distance used by the Hierarchical algorithm,

it requires slightly longer to calculate the distance matrix. The major difference,
however, can be observed in the time taken to produce the clustering solution.
While Hierarchical clustering can produce a dendrogram in 6 seconds, from which
a solution can be produced at any desired K (by cutting the denrogram), GAC
can require several days on the same machine to produce a solution at any given
K6. This shows that GAC might be too costly an option especially for larger
K values, especially when considering the time taken to tune the parameters.
However, due to the large improvement of the cluster quality over low K (from
0.02 produced by Hierarchical to 0.52 produced by GAC), this trade-off might be
worthwhile. Moreover, the use of parallelisation when running GA can mitigate
these costs [7] [20].

4 Conclusion and Future Work
This paper reports the initial results of our replication in which we investigate the
efficacy of adopting a GA-based clustering approach to find a latent segmentation
of mobile apps in the app store. We have found that GAC can be costly to run
over a dataset comprising of a sparse matrix as typical of text analysis datasets.
However, given a low enough K, GAC can exceed the results of hierarchical
clustering with low enough cost given the improvement. On the other hand
GAC did not produce clustering solutions over larger values of K that have
higher quality than random search, possibly rendering it an unsuitable choice
for finer granularity clustering. We plan to continue the line of investigation
to fully replicate the original study and extend it. This includes investigating
other similarity measurement techniques: vector space model, collocation- and
dependency-based feature extraction methods as they might produce different
results when combined with GAC. Also, we aim to further tune the GAC parameters
to increase the confidence of the findings. Additionally, applying other search-
based approaches may yield interesting results, including solving the empty

6 Running time for GAC with k = 24, population = 500, generations = 1000.



6 A. A. Al-Subaihin and F. Sarro

cluster problem when generating random cluster centres by using a multi-objective
GA that aims to maximise both the cluster quality and achieving different desired
granularities (K). Our study sheds light on the feasibility of GA-based clustering
for the SE task of mobile app categorisation. We hope this will foster further
avenues for SBSE research in this area, as well as for many other clustering and
classification tasks in SE [4].

References

1. Al-Subaihin, A., Sarro, F., Black, S., Capra, L.: Empirical comparison of text-based
mobile apps similarity measurement techniques. EMSE 24(6), 3290–3315

2. Al-Subaihin, A.A., Sarro, F., Black, S., Capra, L., Harman, M., Jia, Y., Zhang, Y.:
Clustering mobile apps based on mined textual features. In: ESEM’16

3. AlSubaihin, A., Sarro, F., Black, S., Capra, L., Harman, M.: App store effects on
software engineering practices. IEEE TSE (2019)

4. Auch, M., Weber, M., Mandl, P., Wolff, C.: Similarity-based analyses on software
applications: A systematic literature review. JSS 168

5. Ceccato, M., Falcarin, P., Cabutto, A., Frezghi, Y.W., Staicu, C.A.: Search Based
Clustering for Protecting Software with Diversified Updates. In: SSBSE’16

6. Doval, D., Mancoridis, S., Mitchell, B.: Automatic clustering of software systems
using a genetic algorithm. In: Procs. STEP ’99. IEEE Comput. Soc

7. Ferrucci, F., Salza, P., Sarro, F.: Using Hadoop MapReduce for Parallel Genetic
Algorithms: A Comparison of the Global, Grid and Island Models. ECJ 26(4)

8. Gorla, A., Tavecchia, I., Gross, F., Zeller, A.: Checking app behavior against app
descriptions. In: ICSE’14

9. Harman, M., Al-Subaihin, A., Jia, Y., Martin, W., Sarro, F., Zhang, Y.: Mobile
app and app store analysis, testing and optimisation. In: MOBILESoft’16

10. Hruschka, E., Campello, R., Freitas, A., de Carvalho, A.: A Survey of Evolutionary
Algorithms for Clustering. IEEE TCMCC 39(2), 133–155 (2009)

11. Huang, J., Liu, J., Yao, X.: A multi-agent evolutionary algorithm for software
module clustering problems. Soft Computing 21(12) (2017)

12. Martin, W., Sarro, F., Jia, Y., Zhang, Y., Harman, M.: A survey of app store
analysis for software engineering. IEEE TSE 43(9), 817–847 (2017)

13. Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique.
Pattern Recognition 33(9), 1455–1465 (2000)

14. Nayebi, M., Farrahi, H., Lee, A., Cho, H., Ruhe, G.: More insight from being more
focused: analysis of clustered market apps. In: WAMA’16

15. Praditwong, K., Harman, M., Yao, X.: Software Module Clustering as a Multi-
Objective Search Problem. IEEE TSE 37(2) (2011)

16. Rodrigues, J., Vasconcelos, G., Tin’os, R.: GAMA: Genetic Approach to Maximize
Clustering Criterion (2019), https://github.com/jairsonrodrigues/gama

17. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. JCAM 20, 53–65 (1987)

18. Sarro, F., Harman, M., Jia, Y., Zhang, Y.: Customer rating reactions can be
predicted purely using app features. RE’18 (2018)

19. Sarro, F., Al-Subaihin, A.A., Harman, M., Jia, Y., Martin, W., Zhang, Y.: Feature
lifecycles as they spread, migrate, remain, and die in app stores. In: RE’15

20. Sarro, F., Petrozziello, A., He, D.Q., Yoo, S.: A New Approach to Distribute MOEA
Pareto Front Computation. In: GECCO’20

21. Scrucca, L.: GA: A package for genetic algorithms in R. Journal of Statistical
Software 53(4), 1–37 (2013)

https://github.com/jairsonrodrigues/gama

	Exploring The Use of Genetic Algorithm Clustering for Mobile App Categorisation

