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Abstract

This thesis is about Arithmetic Geometry, a field of Mathematics in which tech-

niques from Algebraic Geometry are applied to study Diophantine equations. More

precisely, my research revolves around the theory of Shimura varieties, a special

class of varieties including modular curves and, more generally, moduli spaces

parametrising principally polarised abelian varieties of given dimension (possibly

with additional prescribed structures). Originally introduced by Shimura in the ‘60s

in his study of the theory of complex multiplication, Shimura varieties are com-

plex analytic varieties of great arithmetic interest. For example, to an algebraic

point of a Shimura variety there are naturally attached a Galois representation and

a Hodge structure, two objects that, according to Grothendieck’s philosophy of mo-

tives, should be intimately related. The work presented here is largely motivated by

the (recent progress towards the) Zilber–Pink conjecture, a far reaching conjecture

generalising the André–Oort and Mordell–Lang conjectures.

More precisely, we first prove a conjecture of Buium–Poonen which is an in-

stance of the Zilber-Pink conjecture (for a product of a modular curve and an elliptic

curve). We then present Galois-theoretical sufficient conditions for the existence of

rational points on certain Shimura varieties: the moduli space of K3 surfaces and

Hilbert modular varieties (the latter case is joint work with G. Grossi). The main

idea underlying such works comes from Langlands programme: to a compatible

system of Galois representations one can attach an analytic object (like a classi-

cal/Hilbert modular form or a Hodge structure), which in turn determines a motive

which eventually gives an algebraic point of a Shimura variety. We then prove a

geometrical version of Serre’s Galois open image theorem for arbitrary Shimura
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varieties. We finally discuss representation-theoretical conditions for a variation of

Hodge structures to admit an integral structure (joint work with E. Ullmo).



Impact Statement

I expect that the results of this thesis will have impact in various areas of Mathemat-

ics. Indeed, I have been using tools from Number Theory, Complex and Algebraic

Geometry, and Representation Theory. Thus, I believe my work will influence and

generate new research in these areas. To achieve this impact, I have already pub-

lished in peer-reviewed journals three papers, and have three more posted on the

arXiv. As evidence of interest in my work, I have been invited to present my re-

search in various occasions around Europe. For example at the XXI congress of

the Italian Mathematical Society (Pavia, IT), at the UMI-PTM-SIMAI conference

(Poland), at the Summer school on explicit and computational approaches to Galois

representations (Luxemburg), at the university of Amsterdam and at the Workshop

on K3 surfaces and Galois representation (Shepperton, UK). More recently I have

also been invited to give an online talk at the R.O.W. seminar.
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Chapter 1

Introduction and main results

Don’t get set into one form, adapt it

and build your own, and let it grow,

be like water. Empty your mind, be

formless, shapeless — like water.

Now you put water in a cup, it

becomes the cup; you put water into

a bottle it becomes the bottle; you

put it in a teapot it becomes the

teapot. Now water can flow or it can

crash. Be water, my friend.

Bruce Lee

We discuss some of the questions that motivated the study of modern Arith-

metic Geometry and present the main results of the thesis, explaining where they

place in such a broad subject. A more detailed and precise introduction to each of

our main results can be found at the beginning of the corresponding chapter.

1.1 What is a rational point?
A rational point of an algebraic variety is a point whose coordinates belong to a

given field. In this thesis, the given field will either be the field of rational numbers,

denoted by Q, or a number field K, that is a finite field extension of Q.

An example may be helpful in clarifying this abstract definition.
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Example 1.1.1. Let n be a natural number strictly bigger than three and consider

the Fermat curve

Cn := {xn + yn = 1}.

The description of the rational points of Cn strongly depends on the chosen field:

• Over Q the rational points are simply (x,y) = (1,0),(0,1) and, if n is even,

(−1,0) and (0,−1), as Wiles [179] proved in 1995;

• Over an arbitrary number field K, a rational point is, by definition, a pair

of elements (a,b) in K such that an + bn = 1. It is hard in general to say

something beyond the definition and, for example, to list them as in the case

K =Q.

Faltings [65], in 1983, managed to prove that, over any number field K, Cn

has only finitely many rational points. In the proof of both results the idea is that,

sometimes, we can attach linear algebraic data to a rational point, more precisely

Galois representations, and then use some representation theory to prove finiteness

and, in favourable situations, even count the number of rational points.

Of course one may expect that the description of the Q-points of Cn depends

on its nice and simple shape and can ask the following.

Question 1.1.2. What if one considers more complicated equations?

A more complicated equation, for us, is simply an equation that requires more

space to be written down. Two examples of equations that are more complicated

than Fermat are given below.

Example 1.1.3. Can the rational points of

y6 +(x+5)y5− (4x2 +2x−8)y4− (2x3 +16x2 +14x−4)y3+

+(6x4 +11x3−6x2−12x)y2 +2x2(x+1)(x2 +6x+6)y+

−x3(x+1)2(x+2)2 = 0

be described?
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Example 1.1.4. What about the rational points of

y4 +5x4−6x2y2 +6x3 +26x2y+10xy2+

−10y3−32x2−40xy+24y2 +32x−16y = 0?

The question can be very hard and, in full generality, almost hopeless. For

example the negative solution of Hilbert’s 10th Problem by Davies, Putnam, Robin-

son, Matijasevič, Čudnovskiǐ [115] asserts that there can be no algorithm deter-

mining whether a given Diophantine equation is soluble in integers Z or not (the

solution of Hilbert’s 10th Problem over Q is not known).

There are however special equations that have a geometrical meaning. The

basic idea of Arithmetic Geometry may be approximated as follows.

To study rational points, it may be useful to think them from a geometrical point of

view, so that one can apply powerful results from geometry.

Going back to the above examples, we can explain what it is meant with think-

ing rational points of such equation from a geometrical point of view.

Example 1.1.5 (X1(22)). Over any number field K, a rational point of the equation

appearing in Example 1.1.3 corresponds1 to an elliptic curve E defined over K

with 22-level structure. The projective curve defined, in some affine chart, by that

equation is called modular curve of level 22, for its interpretation as moduli space

of some algebro-geometric datum. A similar description holds also for the equation

of Example 1.1.4. Indeed it describes, in an affine chart, the modular curve Xs(13)

(here the subscript s denotes the split Cartan level structure).

Let Gal(Q/Q) be the absolute Galois group of Q and ` a prime number. A

concrete way of applying the basic idea of arithmetic geometry to study Q-rational

points of X1(22) could be as follows:

• Geometrical step. Think about complex elliptic curves as complex tori;

1After the equation is homogenised and up to a finite number of points, the cusps, corresponding
to degenerate elliptic curves.
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• Arithmetical step. Study continuous group homomorphisms

ρ : Gal(Q/Q)→ GL2(Z`). (1.1.1)

The link between the two steps is that complex tori coming from elliptic curves de-

fined over Q have a natural action on their `-torsion, of the form described above.

In principle, the representation ρ encodes the information needed to translate geo-

metric properties to arithmetic ones. Unfortunately Gal(Q/Q) is a very mysterious

group: it is an uncountable profinite group and we can not describe explicitly any

elements except for the identity and the complex conjugation.

At this point, two questions appear natural.

Question 1.1.6. Why should we care about complicated equations?

Question 1.1.7. Why should it be easier, for example, to construct elliptic curves,

than rational points?

We present a possible answer to Question 1.1.6 that motivated the first main

result of our thesis and then discuss how to construct elliptic curves (and generali-

sations thereof).

1.2 Rational points and elliptic curves
Let C be a smooth projective curve defined over Q. The genus of C is a topologi-

cal invariant that can be easily computed in most of the cases, for example by the

Riemann—Hurwitz formula. To be concrete, the homogenisation of the Fermat

curve Cn of Example 1.1.1 has genus (n−1)(n−2)/2, which is at least 2 for n≥ 4.

Even if the genus of C, denoted by g, depends only on the geometry of the curve C,

it can distinguish different behaviours of the arithmetic of C:

g = 0. Either C has no rational points, or C is isomorphic to P1
Q and so it has infinitely

many rational points (Hurwitz [92] 1890);

g = 1. Either C has no rational points, or C is an elliptic curve and its rational points

form a finitely generated abelian group. That is C(Q)∼= Zr⊕C(Q)torsion and
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C(Q)torsion is a finite abelian group (Mordell [126] 1922, answering a question

of Poincaré 1901);

g > 1. C(Q) is finite (Faltings [65] 1983, settling Mordell’s conjecture).

The above thricotomy remains true if Q is replaced by another number field K.

The proofs of the above results are not effective, unless g = 0, so that one does

not possess an algorithm for finding the rational points. The case of genus zero

curves was treated in detail by Hilbert and Hurwitz [92], but the genus one case

is more elusive. How to tell whether C has at least one rational point? If this is

the case, when does C have infinitely many rational points? Birch and Swinnerton-

Dyer proposed an answer to the latter question, which today stands as one of the

Millennium Problems [180].

Remark 1.2.1. In the recent years new methods for describing Q-rational points of

curves have emerged, notably the Chabauty–Coleman [40] and Chabauty–Kim [99]

method. This strategy was recently implemented by Balakrishnan, Dogra, Müller,

Tuitman and Vonk [9] to prove that the curve Xs(13), described in Example 1.1.4,

has seven Q-points (six corresponding to elliptic curves with complex multiplica-

tion and one cusp).

The application we want to discuss concerns the latter question. The work

of Wiles, Breuil, Conrad, Diamond and Taylor [179, 169, 23] implies that every

elliptic curve E/Q can be written, for some natural number N > 3, as

φ : X1(N)� E/Q; (1.2.1)

where X1(N) denotes the modular curve of level N. For example for N = 22, X1(N)

is the curve discussed in Example 1.1.3.

Remark 1.2.2. Interestingly and certainly surprisingly at first, the modularity result

of equation (1.2.1) was the missing ingredient to obtain the description of the Q-

points of Cn mentioned in Example 1.1.1. Fermat’s Last theorem was actually one

of the main motivations that led to the study of such problems.
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Gross–Zagier and Kolyvagin [87, 104], around the ‘90s, proved that special

points of X1(N) can produce non-torsion points of E(Q), accordingly with the pre-

dictions of Birch and Swinnerton-Dyer. Buium and Poonen [25, 26], in 2009, asked

whether using other special subsets Σ ⊂ X1(N)(Q), one can produce non-torsion

points of E. We proved that this is indeed the case. The first main theorem of the

thesis, that is discussed in Chapter 3, is the following.

Theorem (=Theorem 3.1.4). When Σ corresponds to an isogeny class, the points

φ(Σ) are “independent” in E(Q). For example only finitely many of them can be

torsion.

This is actually an instance of the Zilber–Pink conjecture (for mixed Shimura

varieties), a far reaching conjecture generalising simultaneously the André–Oort

conjecture and Faltings’ result mentioned above (Mordell conjecture). In its most

elementary form the André–Oort conjecture asserts the following (see André [2]).

Let V be an irreducible algebraic curve in the complex affine plane, which is neither

horizontal nor vertical. Then V is a modular curve Y0(N), for some N > 0, if and

only if it contains infinitely many points ( j′, j′′) ∈ C2 such that j′ and j′′ are j-

invariants of elliptic curves with complex multiplication.

The proof of the above Theorem is inspired by the strategy that Buium–Poonen

employed in [25], using an equidistribution result about Hecke points on modular

curves (after Clozel, Eskin, Oh and Ullmo [36, 63]) and Serre’s open image theorem

[154, 156]. As explained in the previous section the absolute Galois group of a

number field is a mysterious object, but its representations are manageable. For

example Serre’s open image theorem asserts that if

ρ : Gal(K/K)→ GL2(Z`)

is the Galois representation attached to an elliptic curve E/K without complex mul-

tiplication as in equation (1.1.1) and ` is a large enough prime (which depends on K

and E), then ρ is surjective. At this point it may also be interesting to point out that

studying the dependence of ` on E brings again to the study of rational points of
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modular curves. A famous question of Serre about the uniformity of ` was indeed

one of the main motivations for the study of the Q-points of Xs(13) discussed in

Remark 1.2.1.

1.3 Rational points of Shimura varieties
We now discuss Question 1.1.7 and present some contributions on the study of ra-

tional points of Shimura varieties. For the time being Shimura varieties could be

thought as (smooth quasi-projective) algebraic varieties having a moduli interpreta-

tion generalising modular curves (of a certain level) that can be defined over some

number field2. The following is the main result of Chapter 4. It is inspired by the

work of Patrikis, Voloch and Zarhin [139] who have proven a similar theorem for

abelian varieties of arbitrary dimension.

Theorem (=Theorem 4.1.3). Under some standard conjectures in Arithmetic Ge-

ometry, necessary and sufficient conditions for the existence of rational points on

the moduli space of (principally polarised) K3 surfaces (for any number field K)

can be given.

The following is the main result of Chapter 5 and generalises a result of Helm

and Voloch [91] about modular curves.

Theorem (= Theorem 5.1.1 and 5.1.2, joint with Grossi). Necessary and sufficient

conditions for the existence of Q-points on the moduli space of abelian varieties

with OF -multiplication, where F is a totally real number field, can be given. Under

the Absolute Hodge conjecture and a weak Serre’s modularity conjecture, the same

holds for points with coordinates in a totally real number field L.

Both results can roughly be thought as receipts to detect the existence of ratio-

nal points, for a given number field, of certain Shimura varieties. More precisely the

former theorem treats orthogonal Shimura varieties and the latter Hilbert modular

varieties.
2To be precise the curve X1(22) appearing in Example 1.1.3 is a compactification of a (one

dimensional) Shimura variety, rather than a Shimura variety itself.
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The main ideas involved in the proofs come from the work of Langlands and

the philosophy of motives envisioned by Grothendieck. The idea to find K-rational

points is to start with some linear algebra data, more precisely a compatible system

of representations of the absolute Galois group of K and then argue as follows:

1. Attach to it an analytic object (like a classical/Hilbert modular form or a

Hodge structure);

2. This analytic object in turn determines a motive;

3. The motive eventually gives an algebraic point of the Shimura variety.

For example, from Riemann, we know that a polarisable rational Hodge structure of

weight one and type (1,0),(0,1) corresponds, up to isogeny, to a complex abelian

variety. Starting from a system of Galois representations, satisfying some natural

conditions, we can hope to construct a weight one Hodge structure and to descend

over K the associated abelian variety. A diagram may be helpful to clarify the

picture. Here by varieties we mean smooth projective varieties:

K-Varieties C-Varieties

K-Motives

`-adic Galois representations Hodge structures

h

−×K C

`-adic realisation Betti realisation

descent

Fontaine-Mazur

Riemann

.

The meaning of the full arrows is explained in Chapter 2. The existence of the dotted

arrows requires ad hoc arguments and represents the main challenge in proving the

results of the section. The problem in the approach sketched above is that sometimes

we stumble in some very difficult arithmetic conjectures, like the Fontaine-Mazur

conjecture [71] appearing in the above diagram. For example it would be great to

have an explicit answer to the following.
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Question 1.3.1. When does a Galois representation come from geometry?

1.4 The geometry of Shimura varieties
We have so far described the arithmetic side of the theory of Shimura varieties.

Bearing in mind the basic idea of Arithmetic Geometry, such problems should have

a geometrical counterpart. For example can we “guess” which Hodge structures

come from geometry? For the time being, no one has proposed an answer to this

question. However something can be said when we vary Hodge structures in fami-

lies, as explored by Simpson [161]. In the two final chapters we study this situation.

In the geometric setting, the role of Galois representations is played by rep-

resentations of the fundamental group of a variety. Indeed the étale fundamental

group of Spec(Q) is the absolute Galois group of Q. Every subvariety of a Shimura

variety naturally supports a Z-Variation of Hodge structures (VHS from now on).

In the cases described until now, the VHS came indeed from geometry, since the

Shimura varieties were moduli spaces of abelian varieties and K3 surfaces (with

some extra structure). From a more general and geometric point of view, Shimura

varieties are Hermitian locally symmetric domains, that is they can be described

and studied using reductive algebraic groups. In a similar fashion as (1.1.1), we can

attach to every subvariety Y of a Shimura variety S a representation

ρY : π
et
1 (Y,y)→ G(Z`),

where G is a reductive Q-group that comes with S. The image of ρY is called the

`-adic monodromy of Y . The following is the main result of Chapter 6.

Theorem (= Theorem 6.1.3). Over the complex numbers, subvarieties of Shimura

varieties without isotrivial components have large `-adic monodromy.

The above theorem can be thought as a geometric version of Serre’s open im-

age theorem described in section 1.2. It may be interesting to notice that such geo-

metric statement is very general, whereas Serre’s open image is not known to hold

for higher dimensional abelian varieties (once it is suitably stated, see for example
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[31]).

The study of subvarieties of Shimura varieties leads to a simple question.

Which varieties can arise as subvarieties of Shimura varieties? For example a key

step that allowed Faltings to prove the Mordell conjecture is the following obser-

vation made by Parshin-Kodaira, see [113] and references therein. Every curve

C/K, of genus at least two, admits a finite étale cover Y → C such that Y admits

a morphism with finite fibres to a Shimura variety, which parametrises principally

polarised abelian varieties (of a given dimension, depending on the genus of C).

Another way of realising curves inside Shimura varieties can be obtained using a

famous theorem of Belyi, as established in [39, Theorem 1], relying on special prop-

erties of (non-arithmetic) triangle groups ∆(a,b,c) ⊂ SL2(R). Motivated by such

circle of ideas, in Chapter 7, we study complex hyperbolic lattices Γ ⊂ SU(1,n),

for some n > 1. Notice that the real algebraic group SU(1,n) is locally isomorphic

to the isometry group of the n (complex) dimensional complex hyperbolic space.

Associated to Γ there is a quasi-projective ball quotient SΓ, thanks to the work of

Baily–Borel [7] and Mok [54].

The following is the main result of Chapter 7.

Theorem (joint with E. Ullmo=Theorem 7.3.1). The standard complex variation of

Hodge structures V on SΓ admits an integral structure. Moreover SΓ can naturally

be embedded in a domain for polarised Z-VHS.

A very concrete corollary of the above Theorem, which is of independent in-

terest, is that Γ is always contained in the OK-points of a K-form of SU(1,n), for

some totally real number field K. If Γ is arithmetic, V corresponds again to a fam-

ily of abelian varieties and the existence of an integral structure is obvious. In

the non-arithmetic case, Simpson conjectured that V comes from geometry, but we

were not able to prove his conjecture. Nevertheless this was the starting point to

interpret totally geodesic subvarieties of SΓ as unlikely intersections. We refer to

the preprint [14], where such point of view is carried out to obtain, among other

things, new instances of a generalised Zilber–Pink conjecture recently proposed by

Klingler [102]. See also the discussion in Chapter 8.



Chapter 2

Preliminaries

We recall some notions of the theory of Shimura varieties, discussing both their

geometry and arithmetic properties. We describe in more details the main examples

of Shimura varieties that appear in the sequel. Galois representations and motives

are then discussed. Finally we present some well known conjectures in Arithmetic

Geometry relating the three protagonists of the thesis.

2.1 Notations
We collect here some standard notations we often use. In case we need more nota-

tions just for a chapter, we will introduce it when needed.

• Given an algebraic group G/Q, Gder ⊂ G denotes its derived subgroup, Z(G)

its center, G→Gab := G/Gder its abelianization and G→Gad := G/Z(G) its

adjoint quotient. Moreover by reductive group we always mean connected

reductive;

• We denote by A f the (topological) group of finite Q-adeles, i.e. A f = Ẑ⊗Q,

endowed with the adelic topology. Given a subgroup K⊂G(A f )⊂∏`G(Q`),

we write K` ⊂ G(Q`) for the projection of K along G(A f )→ G(Q`). If a

compact open subgroup of G(A f ) may be confused with a number field K,

we denote the former by K̃;

• As in [50, Notation 0.2] we write (−)0 to denote an algebraic connected

component and (−)+ for a topological connected component, e.g. G(R)+
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is the topological connected component of the identity of the group of the

real points of G. We write G(R)+ for the subgroup of G(R) of elements that

are mapped into the connected component Gad(R)+ ⊂ Gad(R), where Gad

denotes the adjoint group of G. Finally we set G(Q)+ := G(Q)∩G(R)+ and

G(Q)+ := G(Q)∩G(R)+.

Given a complex algebraic variety S, we denote by San the complex points S(C)

with its natural structure of a complex analytic variety. We denote by π1(S) the

topological fundamental group of San and by π ét
1 (S) the étale one. Unless it is

necessary, we omit the base point in the notation. Given an algebraic variety S

defined over a field K, S/K form now on, we write SK for the base change of S to

Spec(K).

2.2 Shimura varieties
Special instances of Shimura varieties were originally introduced by Shimura in the

60’s. Deligne outlined the theory of Shimura varieties in [50, 46]. For introductory

notes on this vast subject we also mention [121, 62]. This short chapter cannot and

it is not intended to be a complete summary of the theory of Shimura varieties. The

aim is to introduce and describe the pieces of theory we use later in the text, in order

to keep the thesis as self contained as possible.

Let S denote the real torus ResC/R(Gm), which is usually called the Deligne

torus.

Definition 2.2.1. A Shimura datum is pair (G,X) where G is a reductive Q-

algebraic group and X a G(R)-orbit in the set of morphisms of R-algebraic groups

Hom(S,GR), such that for some (equivalently all) h ∈ X the following axioms are

satisfied:

SD1. Lie(G)R is of type {(−1,1),(0,0),(1,−1)};

SD2. The action of the inner automorphism associated to h(i) is a Cartan involution

of Gad
R . That is, the set

{g ∈ Gad(C) : h(i)gh(i)−1 = g}
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is compact;

SD3. For every simple Q-factor H of Gad, the composition of h : S→ GR with

GR→ HR is non trivial.

Let (G,X) be a Shimura datum and K̃ a compact open subgroup of G(A f ).

Notice that G(Q) acts on the left on X×G(A f ) by left multiplication on both factors

and K̃ acts on the right just by right multiplication on the second factor. We set

ShK̃(G,X) := G(Q)\
(

X×G(A f )/K̃
)
.

Let X+ be a connected component of X and G(Q)+ be the stabiliser of X+ in G(Q).

The above double coset set is a disjoint union of quotients of X+ by the arithmetic

groups Γg := G(Q)+∩gK̃g−1 where g runs through a set of representatives for the

finite double coset set G(Q)+\G(A f )/K̃. Baily and Borel [7] proved that ShK̃(G,X)

has a unique structure of a quasi-projective complex algebraic variety. Moreover if

K̃ is neat, then ShK̃(G,X) is smooth.

Remark 2.2.2. Arithmetic subgroups of G are in particular lattices in G(R) (see

section 7.2 for precise definitions). That is discrete subgroups of finite covolume.

One may ask to what extent the theory of Shimura varieties can be generalised to

treat arbitrary lattices in G(R), where (G,X) is a Shimura datum. This point of view

is carried on in [14, Section 3]. More about this is discussed in Chapter 7.

For every inclusion K1 ⊂ K2 we have a map ShK1(G,X)→ ShK2(G,X), which

is an algebraic map again by a result of Borel. If K1 is normal in K2 then it is the

quotient for the action by the finite group K2/K1 and therefore these morphisms are

finite (as morphisms of schemes). That means that we can take the limit (projec-

tive limit) of the system of these, in the category of schemes, which we denote by

Sh(G,X). We have

Sh(G,X)(C) = G(Q)\X×G(A f ).
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Denote by π the projection

π : Sh(G,X)→ ShK̃(G,X) = G(Q)\(X×G(A f )/K̃).

Given a Shimura datum (G,X) there exists an adjoint Shimura datum

(Gad,Xad) where Xad is the Gad(R)-conjugacy class of the morphism had, defined

as the composition of any h : S→G and G→Gad. The construction gives a natural

morphism of Shimura data (G,X)→ (Gad,Xad) and, choosing a compact open K̃ad

in Gad(A f ) containing the image of K̃, we obtain also a finite morphism of Shimura

varieties

ShK̃(G,X)→ ShK̃ad(Gad,Xad).

2.2.1 Shimura varieties as moduli spaces of Hodge structures

Quoting Edixhoven [62, Section 2], Hodge structures are really at the start of the

theory of Shimura varieties. We discuss how conditions SD1-3 of Definition 2.2.1

imply that connected components of X are Hermitian symmetric domains and faith-

ful representations of G induce variations of polarisable Q-Hodge structures. For

an introduction to Hodge theory we refer to the book [83].

2.2.1.1 Hodge structures

Let VR be a finite dimensionalR-vector space and VC=C⊗RVR it complexification.

The complex conjugation acts on VC by λ ⊗ v 7→ λ ⊗ v. A Hodge decomposition of

VR is a direct sum decomposition of VC into C-subspaces V p,q indexed by Z2:

VC =⊕(p,q)∈Z×ZV p,q,

such that V p,q =V q,p. An R-Hodge structure is a finite dimensional R-vector space

VR with a Hodge decomposition. The type of this Hodge structure is the set of (p,q)

for which V p,q 6= 0. Equivalently it is a real representation of the Deligne torus

h : S→ GL(VR).
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With this interpretation we have natural notions of dual, homomorphism, tensor

product, direct sum and irreducibility of Hodge structures. Fixing an n ∈ Z, the

subspace

Vn :=⊕p+q=nV p,q

is stable under complex conjugation and it is referred to as a Hodge structure of

weight n.

AQ-Hodge structure (HS from now on) is a finite dimensionalQ-vector space

V together with an R-HS on V ⊗R and a Z-HS is a free1 Z-module of finite rank

VZ together with a Q-HS on VZ⊗Q.

Definition 2.2.3. Let (V,h) be a Q-HS of weight n. A polarisation of (V,h) is a

bilinear map of Q-Hodge structures q : V ⊗V →Q(−n), that is qR(h(z)v,h(z)w) =

(zz)nqR(v,w), such that

q(v,h(i)w)

defines a positive definite symmetric form on VR. Finally (V,h) is called polarisable

if there exists a polarisation q on it.

The category of Q-HS is abelian and the category of polarisable Q-HS is

semisimple.

Remark 2.2.4. Since h(i)2 = (−1)n, q is symmetric if the weight is even, alternat-

ing if it is odd.

All the HSs in this thesis will be polarisable (and pure). We therefore simply

say Hodge structure to mean polarisable Hodge structure. If it is clear from the

context, by HS we could also mean Q-HS. Moreover a weight and a type will in

general be fixed. We conclude this short section with an important definition.

Definition 2.2.5. Let (VQ,h) be aQ-HS. The Mumford–Tate group of (V,h), simply

denoted by MT(h), is the Q-Zariski closure of the image of

h : S→ GL(VR)
1With this definition the cohomology with Z-coefficients of a smooth projective complex variety

does not come with a Z-HS. It does only after the torsion is killed. In our thesis such difference does
not play any role.
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in GL(VQ). That is the smallest Q-subgroup H of GL(VQ) such that HR contains

h(S).

2.2.1.2 Variations of Hodge structures

Let S be a smooth quasi-projective variety and let V= (VZ,F,QZ) a polarised vari-

ation of Z-Hodge structure on S (VHS from now on). That is the data of

• A local system VZ with a flat quadratic form QZ;

• A holomorphic locally split filtration F of VZ⊗ZOSan such that the flat con-

nection O satisfies Griffiths transversality:

O(Fp)⊂ Fp−1 for all p;

• (VZ,F,QZ) is fiberwise a Z-HS.

In the same way we have definitions of Z,Q, K and R-VHS, where K is a sub-field

of R.

Let λ : S̃→ S be the universal cover of S and fix a trivialisation λ ∗V∼= S̃×V .

Similarly to Definition 2.2.5, we have the following.

Definition 2.2.6. Let s ∈ S. The Mumford–Tate group at s of V, denoted by MTs ⊂

GL(Vs), is the smallest Q-algebraic group M such that the map

hs : S−→ GL(Vs,R)

describing the Hodge-structure on Vs, factors through MR. Choosing a point s̃ ∈

λ−1(s) ⊂ S̃ we obtain an injective homomorphism MTs ⊂ GL(Vs). When a point

t ∈ S is such that MTt is abelian (hence a torus), we say that t is a special point2.

It is well known, see [47, Proposition 7.5], that there exists a countable union

Σ( S of proper analytic subspaces of S such that:

2In this thesis a special point could also be called CM-point (see also Example 2.2.8 for more
details).
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• For s∈ S−Σ, MTs ⊂GL(V ) does not depend on s, nor on the choice of s̃. We

call this group the generic Mumford–Tate group of V and we simply write it

as G;

• For all s and s̃ as above, with s ∈ Σ, MTs is a proper subgroup of the generic

Mumford–Tate group of V.

To be more precise Σ is also known to be a countable union of algebraic subvarieties

of S. This follows indeed from the work of Cattani, Deligne and Kaplan [34].

2.2.1.3 Period domains

A useful reference for this section is also [102]. Let (VZ,qZ) be a polarisedZ-Hodge

structure. Let G be theQ-algebraic group Aut(VQ,qQ). Consider the space D of qZ-

polarised Hodge structures on VZ with specified Hodge numbers (it is homogeneous

for G). Fixing a reference Hodge structure, we write D = G(R)/M where M is a

subgroup of the compact unitary subgroup G(R)∩U(h) with respect to the Hodge

form h of the reference Hodge structure.

Let S be a smooth quasi-projective complex variety. By period map

San→ Γ\D

we mean a holomorphic locally liftable Griffiths transverse map, where Γ is a finite

index subgroup of G(Z) = Aut(VZ,qZ). A period map San→G(Z)\D is equivalent

to the datum of a Z-VHS on S with generic Mumford–Tate group G/Q. The period

map lifts to Γ\D if Γ contains the image of the monodromy representation of the

corresponding Z-VHS. See also [102, Section 3].

Remark 2.2.7. Shimura varieties are particular cases of period domains. See indeed

[46, Proposition 1.1.14 and Corollary 1.1.17]. Period domains, in the generality

defined above, do not have a natural algebraic structure [84]. Shimura varieties

could indeed be thought as the most special example of period domains.
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2.2.2 Canonical models and reflex field

To be of arithmetic interest, Shimura varieties must admit models over a number

field. Thanks to the work of Borovoi, Deligne, Milne and Milne-Shih [22, 122, 119],

among others, the C-scheme

Sh(G,X) = G(Q)\
(
X×G(A f )

)
,

together with its G(A f )-action, can be canonically defined over a number field E :=

E(G,X) ⊂ C called the reflex field of (G,X). That is there exists an E-scheme

Sh(G,X)E with an action of G(A f ) whose base change to C gives Sh(G,X) with its

G(A f )-action. For the precise definition of canonical model we refer to [50, section

2.2]. For the easier fact that Shimura varieties can be defined over Q, we refer for

example to [66].

It follows that for every compact open subgroup K̃ of G(A f ), the variety

ShK̃(G,X) admits a canonical model over E in such a way that Hecke corre-

spondences commute with the Galois action. Moreover the map π : Sh(G,X)→

ShK̃(G,X) is defined over E. In general we write K for a finite extension of E such

that ShK̃(G,X)(K) is not empty.

2.2.3 Some examples of Shimura varieties

We briefly discuss some of the main motivating examples of Shimura varieties. We

point out here in which chapter each type of Shimura variety appears:

Chapter 3: Shimura curves (and mixed Shimura varieties);

Chapter 4: Orthogonal Shimura varieties;

Chapter 5: Modular curves and Hilbert modular varieties;

Chapter 6: Arbitrary Shimura varieties and Siegel modular varieties;

Chapter 7: Picard and Hilbert modular varieties.

For brevity we actually describe here five examples of connected Shimura varieties.
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Example 2.2.8 (Modular curves). Denote by H the complex upper half plane. It

becomes a Hermitian symmetric space when endowed with the metric y−2dxdy.

The SL2-actiona b

c d

 · z = az+b
cz+d

, where

a b

c d

 ∈ SL2(R) and z ∈H,

identifies SL2(R)/{±I}with the group of holomorphic automorphisms ofH, where

I ∈ SL2(R) denotes the identity. For any x+ iy ∈H

x+ iy =

√y x/
√

y

0 1/
√

y

 · i,
and so H is a homogeneous space. Let Γ be a congruence subgroup of SL2(Z), that

is a subgroup containing

Γ0(N) := {M ∈ SL2(Z) : M ≡ I modN},

for some N. The curve Γ\H is a connected modular curve and can be realized as a

moduli variety for elliptic curves with some level structure.

Remark 2.2.9. From Definition 2.2.6, we have a notion of special points in a mod-

ular curve Γ\H. They are points x that correspond to CM-elliptic curves Ex, that

is elliptic curves whose endomorphism ring is different from Z. This is the reason

why special points are often referred to as CM points. More about this is discussed

in Chapter 3.

Let L be a totally real number field. What if we want to take the quotient of H

by (subgroups of) SL2(OL)? The problem is that SL2(OL) is in general not discrete

in SL2(R). This can be circumnavigated by a construction called Weil restriction.

Example 2.2.10 (Hilbert modular varieties). Let nL be the degree of L over Q.

The subgroup SL2(OL) can naturally be identified as G(Z), where G is the Weil

restriction from L to Q of SL2 /L. Indeed, using the nL-real embeddings of L, we
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see that SL2(OL) acts on the product of nL copies of H. Hilbert modular varieties

are obtained as quotients Γ\HnL , where Γ is a congruence subgroup of G(Z) and

naturally parametrise principally polarised nL-dimensional abelian varieties with

OL-multiplication (with some level structure).

Example 2.2.11 (Siegel modular varieties). Let g be an integer ≥ 1. Consider the

Siegel upper half space

Hg := {M ∈Mg(C) : M is symmetric and Im(M) is positive definite }.

By Riemann every matrix in Hg is the period matrix of some principally polarised

abelian variety, unique up to isomorphism of polarised abelian varieties. The Siegel

modular variety, also denoted as Ag, is the quotient Sp2g(Z)\Hg. As in the case

of modular curves one can see that there is a bijection between the complex points

of the Siegel modular variety and isomorphism classes of principally polarised g-

dimensional abelian varieties. For more details we refer to section 5.2.

Example 2.2.12 (Orthogonal Shimura varieties). By K3 surface X/K we mean

a complete smooth K-variety of dimension two such that Ω2
X/K
∼= OX and

H1(X ,OX) = 0. The group H2(X(C),Z) endowed with the cup product is a

even, unimodular lattice with signature (3,19). Indeed there exists a unique 22-

dimensional lattice with these properties which we usually denote by ΛK3. Thanks

to the work of Rizov and Madapusi-Pera [110], we have that the moduli space of

triples (X , l,u) where X is a K3 surfaces, l a polarisation of degree 2d and u an

isometry

det(P2(X ,Z2))→ det(Λ2d⊗Z2),

is a double cover of the coarse moduli space of polarised K3 surfaces of degree 2d

(which is a quasiprojective variety defined over Q) and that the former embeds as

a Zariski open subset of a Shimura variety associated to the group SO(2,19). Here

we denoted by P2(X ,Z2), the primitive part of the H2(X ,Z2), with respect to the

polarisation l. For details see for example [110, Section 2 and 3] and [31, Section

6].
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Finally one of the oldest and simplest examples of Shimura varieties. They

were first studied by Picard in 1881 [141].

Example 2.2.13 (Picard modular surfaces). Let E be an imaginary quadratic exten-

sion of Q and V be a 3-dimensional E-vector space (which we consider as a vector

space over Q). Fix an integral structure on V , given by an OE-lattice L⊂V and let

J : V ×V → E

be a non-degenerate Hermitian form on V , satisfying J(αu,βv) = αβJ(u,v) and

which is OE-valued on L and has signature (1,2) over V ⊗R. Let G′ := SU(J,V )/Q

be the special unitary group of J, viewed as a semisimple algebraic group over Q.

The group G′(R)/K′, for any compact maximal K′ ⊂ G′(R) can be identified with

the complex two-dimensional ball. The Picard modular group of E is

G′(Z) := {γ ∈ G′(Q) : γL = L},

and given a finite index subgroup Γ of G′(Z) we obtain a Picard modular surface

Γ\X . Picard modular surfaces parametrise 3-dimensional homogeneously polarised

abelian varieties with OE-multiplication, signature (1,2) and some level structure.

For details and a complete introduction to Picard modular varieties we refer to [81,

Sections 1, 2 and 3].

Part of the beauty of the theory of Shimura varieties is that many problems

stated in the moduli language translate in the “(G,X)-language”. Such translation

often allows us to use in a more transparent way powerful group-theoretical tools

and, in many cases, it is the first step towards understanding more general period

domains. This point of view will be more evident in Chapter 6.

A remark regarding the difference between Shimura varieties and connected

Shimura varieties is in order.

Remark 2.2.14. Already in the example of modular curves we described the con-
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nected case when we decided to consider the upper half plane H, rather than

H± := C−R,

with its natural GL2-action. The main advantage of Shimura varieties, over their

connected counterparts, is that their canonical models do not depend on a realisa-

tion of G as the derived group of a reductive group nor on the level structure. For

example the curve Γ0(N)\H admits a (geometrically connected) model overQ(µN),

rather than over Q.

2.3 Galois representation
Let K be a number field, K a fixed algebraic closure and denote by Gal(K/K) its

absolute Galois group. Being profinite, by construction, Gal(K/K) naturally comes

as a topological group.

Definition 2.3.1. Let G a topological group. A Galois representation of K with

G-coefficients is a continuous group homomorphism

Gal(K/K)→G.

Here G is usually given as G(Q`) or G(A f ), for some algebraic group G/Q.

In this case the topology on G comes from the fact that Q` and A f have a natural

structure of topological rings. The first example of Galois representation to keep in

mind is given by the `-adic Tate module of an elliptic curve E/K.

2.3.1 Weakly compatible systems

Given a rational prime `, we denote by Σ` the set of places of K dividing `. If

v is a place of K we write Kv for the local field obtained completing K at v and

Gal(Kv/Kv) for its absolute Galois group.

Let m ∈ N be non zero. Consider a family of continuous `-adic Galois repre-

sentation, indexed by every rational prime `

{ρ` : Gal(K/K)→ GLm(Q`)}`.
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The definition of weakly compatible families presented is orginally due to Serre,

who called them strictly compatible on page I-11 of the book [156]. We say that

ρ` is unramified at a place v of K if the image of the inertia at v is trivial. If ρ` is

attached to the `-adic cohomology of a smooth proper variety defined over a number

field, the smooth and proper base change theorems, see for example [49, I, Theorem

5.3.2 and Theorem 4.1.1], imply that ρ` is unramified at every place v /∈ Σ` such that

X has good reduction at v (hence at all but finitely many places).

Definition 2.3.2. A family {ρ` : Gal(K/K)→ GLm(Q`)}` is weakly compatible if

there exists a finite set of places Σ of K such that

(i) For all `, ρ` is unramified outside Σ∪Σ`;

(ii) For all v /∈ Σ∪Σ`, denoting by Frobv a Frobenius element at v, the character-

istic polynomial of ρ`(Frobv) has rational coefficients and it is independent

of `.

Remark 2.3.3. Deligne’s work on the Weil conjectures [48, Theorem 1.6], the

smooth and proper base change theorems imply that the `-adic representations at-

tached to H i
et(XK,Q`( j)) form a weakly compatible system, whenever X is a smooth

projective variety defined over a number field K.

2.3.1.1 A quick detour on p-adic Hodge theory

Let p be a rational prime. Galois representations coming from the cohomology of

smooth projective varieties satisfy a number of constraints that are best understood

when formulated in the language of p-adic Hodge theory. Indeed a deep result of

Faltings, [67, Chapter III, Theorem 4.1], shows that if Y is a proper and smooth

variety over a p-adic field Kv, then the cohomology groups H i
et(Y ×Kv,Qp) give

rise to de Rham representations. See also [72, Theorem 5.32]. For an accessible

introduction to the notions of p-adic Hodge theory (such as de Rham representations

and their Hodge–Tate weights), we refer to [24] (in particular sections I.2 and II.6)

and to the monograph [72]. We present here just the main definitions we need.
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For the definitions of Fontaine’s period rings BdR,BHT and Bst we refer to [70]

and [72, Definition 5.1, 5.13 and 6.10]. They are Qp-algebras with an action of

Gal(Kv/Kv).

Definition 2.3.4. Let B ∈ {BdR,BHT ,Bst} a period ring and V a p-adic represen-

tation of Gal(Kv/Kv). We say that V is B-admissible if B⊗Kv V is a trivial B-

representation of Gal(Kv/Kv).

Definition 2.3.5. We say that a p-adic representation V of Gal(Kv/Kv) is Hodge-

Tate if it is BHT -admissible. We say that V is de Rham if it is BdR-admissible.

Since BGal(Kv/Kv)
st is a field [72, Proposition 6.28], it makes sense to consider

the following, which is Definition 6.29. in op. cit.. See also Theorem 2.13. in op.

cit. for the equivalence between various definitions of admissibility.

Definition 2.3.6. A p-adic representation V as above is semi-stable if and only if

the dimension over BGal(Kv/Kv)
st of

(
Bst⊗Qp V

)Gal(Kv/Kv) is dimQp V .

We remark here that semi-stable representations are de Rham and de Rham

representations are Hodge-Tate. Each inclusion is strict.

The following is given in [71, Page 193].

Definition 2.3.7. Let K be a number field. An `-adic Galois representation is called

geometric if it is unramified outside a finite set of places S of K and its restriction to

every decomposition group at v (for v ranging trough all non-archimedean places of

K) is potentially semistable (i.e. it becomes semistable after a finite field extension

K′/K).

2.3.2 Galois representations attached to algebraic points of

Shimura varieties

We explain how to attach a Galois representation to an algebraic point of a Shimura

variety. For details we refer for example to [174, 65]. Let (G,X) be a Shimura

datum as in section 2.2 and suppose that G is the generic Mumford-Tate group on

X and let K̃ ⊂ G(A f ) be neat. Let x = [s,g] ∈ ShK̃(G,X)E(K), from [174, Section

2] we have:
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1. The fibre of x along π : Sh(G,X)→ ShK̃(G,X) has a transitive and fixed-point

free right action of K̃;

2. π−1(x) has a left action of Gal(K/K) which commutes with the action of K̃

(as explained in section 2.2.2, π is defined over the reflex field).

Fixing a point x̃ ∈ π−1(x), an elementary argument in linear algebra shows that

there exists a continuous map

ρx : Gal(K/K)→ K̃,

such that

σ(x̃) = [s,ρx,x̃(σ)].

Projecting K̃ ⊂ G(A f ) to G(Q`), we obtain also a Galois representation with Q`

coefficients:

ρx,` : Gal(K/K)→ G(Q`).

Finally it is interesting to describe [108, Theorem 1.2]. Informally it says that,

from a Galois representation point of view, the representations attached to points of

Shimura varieties enjoy most of the properties that the Tate module of an abelian

variety has.

Theorem 2.3.8 (Liu, Zhu). Let x ∈ ShK̃(G,X)(K) as above. The Galois represen-

tation

ρx,` : Gal(K/K)→ G(Q`)

is geometric (in the sense of Definition 2.3.7).

Part of this thesis, in particular Chapter 4 and 5, is motivated by the following.

Question 2.3.9. Let K be a field as above and let ρ : Gal(K/K)→ K̃ ⊂ G(A f )

be a Galois representation. What are necessary and sufficient conditions for the

existence of x ∈ ShK̃(G,X)E(K) such that ρ = ρx?
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2.4 Motives
Let (A,⊗) be a ⊗-category, that is a symmetric monoidal category. We say that

(A,⊗) is a ⊗-category over Q if it is a Q-linear abelian category such that ⊗ is

Q-bilinear and EndA(1) = Q. Given a category A we denote by Aop the opposite

category, that is the category where the object are the same as A and the morphisms

are reversed.

Let K be a number field. We explain how the category of K-motives is con-

structed, for more details we refer to [3] and to [153] for a short introduction. By

nice variety X/K we mean a smooth projective geometrically irreducible scheme

of finite type over K. Let VK be the category of finite disjoint unions of nice K-

varieties. Given X ∈ VK and a positive integer d we denote by Zd(X) the free

abelian group generated by irreducible sub-varieties of X of codimension d and by

Ad(X) the quotient of Zd(X)⊗Q by numerical equivalence3. Given X ,Y ∈ VK ,

we define Corrr(X ,Y ), the group of correspondences of degree r from X to Y as

follows. Assuming for simplicity that X is purely j-dimensional, we set

Corrr(X ,Y ) :=A j+r(X×Y ).

Thanks to intersection theory, we can define a composition law:

Corrr(X ,Y )×Corrs(Y,Z)→ Corrr+s(X ,Z).

We denote by CorrK the category whose objects are the objects of VK and

Corrr(X ,Y ) as the Hom-set between X and Y . This is an additive, Q-linear, tensor

category, equipped with a tensor functor

h : Vop
K → CorrK.

Finally we define MK , the category of K-motives with rational coefficients, as

3Other choices of an adequate equivalence relation are possible, see [3, Section 3.1]. We remark
here that Jannsen [95] proved that the category of motives for an adequate equivalence relation is
semi-simple if and only if that equivalence relation is the numerical equivalence.
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the pseudo-abelian envelope of CorrK , i.e. the category whose objects are triplets

(X , i,n), where X is an object of VK , n is an integer and i an idempotent element of

Corr0(X ,X) and

HomMK((X , i,n),(Y, j,m)) := i Corrm−n(X ,Y ) j.

Give X ,Y ∈VK , we say that X and Y have isomorphic motives if h(X) := (X , idX ,0)

and h(Y ) := (Y, idY ,0) are isomorphic in the category of K-motives we have just

constructed.

2.4.1 Tannakian categories

In this section we follow the monograph [152] and the discussion of [51, Section

5,6 and 7]. Let (A,⊗) be a ⊗-category over Q. We say that (A,⊗) is a rigid ⊗-

category over Q if in addition it has an autoduality. That is there is an equivalence

of categories

−∨ : A→Aop such that −∨ ◦−∨ ∼= IdA,

and adjunction isomorphisms:

Hom(−⊗M∨,+)∼= Hom(−,+⊗M), and Hom(M⊗−,+)∼= Hom(−,M∨⊗+).

Definition 2.4.1. A neutral Tannakian category overQ is a rigid⊗-category (A,⊗)

over Q for which there exists an exact faithful Q-linear tensor functor

ω : (A,⊗)→ (VectQ,⊗).

Any such functor is said to be a fibre functor for (A,⊗).

From every fibre functor ω we obtain a functor in groups:

Aut⊗(ω) :Q− algebras of finite type→ groups, R 7→ Aut⊗(ωR)

where ωR : (A,⊗)→ (R−modules,⊗) is the functor mapping M to ω(M)⊗R and

Aut⊗(ωR) denotes the group of automorphisms of the ⊗-functor ωR.
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Example 2.4.2. Let G be an affine Q-group scheme and consider the category

RepQ(G) (i.e. the category of Q-linear representation of finite dimension of G). It

is a Tannakian category, where a fibre functor is the functor forgetting the G-action.

The following it the main theorem of Tannakian categories [152].

Theorem 2.4.3 (Saavedra Rivano). Let (A,⊗) be a neutral Tannakian category

over Q and ω : (A,⊗)→ (VectQ,⊗) be a fibre functor. The functor Aut⊗(ω) is

representable by an affine group GA overQ and the fibre functor factorises through

an equivalence of category

(A,⊗)∼= (RepQ(GA),⊗).

In particular every neutral Tannakian category is equivalent (possibly in many

different ways) to the category of finite-dimensional representations of an affine

group scheme.

Grothendieck’s idea of the category of Motives was that every “nice” coho-

mological theory should factorise through the category of motives and that motives

are again governed by linear algebra. This means that a good category of motives

should encode the information we can read from every cohomological theory, in a

universal way. More precisely we have the following far reaching folklore conjec-

ture.

Conjecture 2.4.4. Motives form a neutral Tannakian category.

In section 2.5, we will discuss how this conjecture is implied by other classical

conjectures.

2.4.2 Realisations

For brevity we do not describe in details all known cohomological theories. We

rather present them in an axiomatic and short way, following Deligne. In this thesis

we will mainly consider the `-adic/adelic, de Rham and Betti realisations.

The following is given by Deligne in [51, Section 7 (page 147)].



2.4. Motives 40

Definition 2.4.5. A system of realisations is the data (M1)–(M9), satisfying the

axioms (A1)–(A5) explained below.

(M1) Betti realisation. A finite dimensional Q-vector space MB;

(M2) De Rham realisation. A finite dimensional Q-vector space MdR;

(M3) Adelic realisation. An A f -module of finite type MA f ;

(M4) Crystalline realisation. For all but a finite number of primes p, a Qp-vector

space Mcris,p;

(M5) Comparisons. Isomorphisms

MB⊗C∼= MdR⊗C, MB⊗A f ∼= MA f , MdR⊗Qp ∼= Mcris,p;

(M6) Frobenius at infinity. MB has an involution F∞;

(M7) Hodge filtration. MdR has a descending filtration;

(M8) Galois action. MA f has a continuous Gal(Q/Q)-action;

(M9) crystalline Frobenius. Mcris,p comes with an automorphism

ϕp : Mcris,p→Mcris,p.

Axioms:

(A1) MB is a Q-HS, once equipped with the filtration from MB⊗C∼= MdR⊗C;

(A2) Over MB⊗C∼= MdR⊗C there are two real structures, MB⊗R and MdR⊗R.

They induce two antilinear involutions cB and cdR. We have

F∞ = cBcdR.

That is cdR respects MB ⊂MB⊗C∼= MdR⊗C and cdR restricted to MB is F∞;
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(A3) There exists a finite set of places S of Q, such that, for every `, the Galois

module M` is unramified outside S∪{`}, where M` is theQ`-module obtained

from MA f ;

(A4) For S big enough, if p /∈ S, for all ` 6= p the eigenvalues of the geometric

Frobenius at p acting on M` and the ones of ϕp acting on Mcris,p are algebraic

numbers with absolute value pn/2 and are `′-units for `′ 6= p;

(A5) Consider MB ⊂MA f and let c ∈ Gal(Q/Q) be the complex conjugation. The

action of c on MA f restricts to MB and induces F∞.

The category of systems of realisations from a Tannakian category. Given

X ∈ VQ we get a system of realisations often denoted by h(X), which associates to

X the corresponding well known cohomology theories. Here we presented system

of realisations with Gal(Q/Q)-action, but the same works with any other number

fields. Conjecture 2.4.4 wishes to describe the category of K-motives as the small-

est full subcategory of the system of realisations stable under direct sum, tensor

product, quotients and containing h(X) for all X ∈ VK .

2.5 Some conjectures in Arithmetic Geometry relat-

ing the three worlds
Let S = ShK̃(G,X) be a Shimura variety. So far we have explained that S is canoni-

cally defined over a number field E = E(G,X) and that:

• Complex points of S correspond to Hodge structures;

• Algebraic points of S correspond to Galois representation.

Moreover these structures behave in a similar fashion as if they were attached to a

motive. We conclude this chapter by describing conjectural properties of motives

and how they link Hodge structures to Galois representations.

2.5.1 Tate and semisimplicity

For any field F of characteristic zero, we denote by MK,F the category of pure

motives over K with coefficients in F , i.e. the category described in section 2.4,
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where the correspondences are tensored with F . Let

H` : MK,Q`
→ RepQ`

(Gal(K/K))

be the `-adic realisation functor. Tate [166, Conjecture T j(X) for every j and every

X (page 72)] proposed the following.

Conjecture 2.5.1 (Tate conjecture). The functor H` is full.

Another important conjecture is the following.

Conjecture 2.5.2 (Serre’s semisimplicity conjecture). The functor H` takes values

in semisimple Galois representations.

The following is [125, Theorem 1].

Theorem 2.5.3 (Moonen). The Tate conjecture implies the semisimplicity conjec-

ture.

Finally the Tate conjecture implies that MK,F is a semisimple neutral Tan-

nakian category over Q, in the sense of section 2.4.1. For details see for example

[139, Lemma 3.2]. To fix the notation, MK,F is equivalent to the Tannakian category

Rep(GK,F) for some pro-reductive group GK,F (choosing an F-linear fibre functor).

Moreover the Tate conjecture implies that numerical and homological equivalence

agree (in particular the latter does not depend on the choice of a Weil cohomology

theory). See also [88, Section (4), page 198]. In particular H` is a fully faithful

functor.

2.5.2 Fontaine–Mazur

In order to describe the essential image of the `-adic realisation functor, one needs

to combine the Tate conjecture with the following, which appears as [71, Conjecture

1].

Conjecture 2.5.4 (Fontaine–Mazur). An irreducible `-adic Galois representation

is geometric, in the sense of Definition 2.3.7, if and only if it comes from geometry.
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We fix a family of embeddings ι` :Q→Q`, for any F ⊂Q we write

Hι`
: MK,F → RepQ`

(Gal(K/K))

for the `-adic realisation functor associated to ι`.

More precisely, we have the following is [139, Lemma 3.3].

Theorem 2.5.5. Assume the Tate and the Fontaine–Mazur conjecture. Let r` :

Gal(K/K)→ GLm(Q`) be an irreducible geometric Galois representation. Then

there exists an object M ∈MK,Q such that

r`⊗Q`
∼= Hι`

(M) ∈ RepQ`
(Gal(K/K)).

Theorem 2.3.8 and the Fontaine-Mazur conjecture predict that every point of a

Shimura variety is attached to a motive (see also [106, Section 4] for more details).

2.5.3 Hodge

For a complete and precise description of the Hodge conjecture we refer to

Deligne’s exposition [52]. Hodge [93] conjectured that, on a complex smooth pro-

jective algebraic variety, any Hodge class is a rational linear combination of classes

cl(Z) of algebraic cycles. We present here an equivalent conjecture, stated in more

motivical terms. Let

HB : MC,Q→Q−HS

be the Betti realisation functor from the category of C-motives with Q-coefficients

to the category of Q-Hodge structures.

Conjecture 2.5.6 (Hodge conjecture). The functor HB is full.

Together, the Tate and the Hodge conjecture imply another famous conjec-

ture, namely the Mumford–Tate conjecture. Its statement for abelian varieties is as

follows. Let K ⊂ C be a number field, A/K be an abelian variety, M/Q be the

Mumford–Tate group attached to the natural Hodge structure on H1(A(C),Q) and

G` be the connected component of the identity of the Zariski closure of the image
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of

Gal(K/K)→ H1(AK,Q`).

Under the comparison isomorphism H1(AK,Q`) ∼= H1(A(C),Q) ⊗ Q`, the

Mumford–Tate conjecture asserts that G`
∼= M⊗Q`.

Remark 2.5.7. Interestingly every representation coming from a rational point of

a Shimura variety satisfies half of the Mumford–Tate conjecture. That is given

x ∈ ShK̃(G,X)E(K) and ρx : Gal(K/K) → G(Q`) as in section 2.3.2. Then the

image of ρx is contained in the Q`-points of the Mumford–Tate group of the Q-HS

naturally attached to x. For more details see [174, Proposition 2.9].

2.5.3.1 Absolute Hodge

We only give a brief overview of the category of absolute Hodge cycles. For more

details we refer to section 6 of Deligne-Milne’s paper in [53], where Deligne’s cat-

egory of absolute motives is described. Let X ,Y/C be smooth projective variety. A

morphism of Hodge structures between their Betti cohomology groups corresponds

to a Hodge class in the cohomology of X×Y :

Hom(H∗B(X ,Q),H∗B(Y,Q))∼= H2∗
B (X×Y,Q).

We say that a Hodge class α ∈ H2i
B (X ×Y,Q), or a morphism of Hodge struc-

tures between their H i’s, is absolute Hodge if, for every automorphism σ of C, the

class ασ ∈ H2i(Xσ ×Y σ ,C) is again a Hodge class. With such definition we can

split the Hodge conjecture 2.5.6 in two parts:

Hodge classes = Absolute Hodge classes = Algebraic cycles.

A special case of the absolute Hodge conjecture that we will assume in Chapter 5 is

the following.

Conjecture 2.5.8. If X ,Y/C are smooth projective complex varieties such that, for

some i, we have an isomorphism of Hodge structures

H i
B(X ,Q)∼= H i

B(Y,Q),
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then there exists an absolute Hodge class inducing such isomorphism.

2.5.4 Simpson

Finally we present a conjecture of Simpson [161, 162], predicting that certain VHS

come from geometry, in particular implying that they admit an integral structure (see

indeed [161, Conjecture 5]). For simplicity assume that S is a smooth projective

variety (the quasi-projective case will be described in Chapter 7). Recall that a

representation of the topological fundamental group of S is called rigid if any nearby

representation is conjugate to it. We have the following.

Conjecture 2.5.9 (Simpson). Suppose ρ is a rigid semisimple representation of

π1(X). Then ρ is a direct factor in the monodromy representation of a motive (i.e.

family of varieties) over S.

Example 2.5.10. Let Γ be a discrete subgroup of the classical group G = PU(1,n).

If Γ is an arithmetic subgroup of G, it is a well know fact that the representation

π1(Γ\Bn)→ G

is induced by a Z-VHS corresponding to a family of principally polarised abelian

varieties. See indeed Example 2.2.13. In chapter 7, we will investigate what hap-

pens for arbitrary smooth quasi-projective varieties whose universal covering is the

complex unit ball Bn ⊂ Cn.



Chapter 3

On a conjecture of Buium and

Poonen

Given a correspondence between a modular curve S and an elliptic curve A, we

prove that the intersection of any finite-rank subgroup of A with the set of points on

A corresponding to an isogeny class on S is finite. The question was proposed by

A. Buium and B. Poonen in 2009. We follow the strategy proposed by the authors,

using a result about the equidistribution of Hecke points on Shimura varieties and

Serre’s open image theorem. At the end of the chapter we show that the result is

an instance of the Zilber–Pink conjecture for mixed Shimura varieties. The work

presented here appeared in the paper [11].

3.1 Introduction
A. Buium and B. Poonen [25] studied the problem of independence of points on

elliptic curves arising from special points on modular and Shimura curves. As a

first approximation the problem can be described as follows. Let S/Q be a modular

curve, A/Q an elliptic curve and Γ0 ≤ A(Q) a finitely generated subgroup. Let

Ψ : S−→ A/Q

be a (non-constant) morphism and CM ⊂ S(Q) be the set of special points of S,

i.e. the points corresponding to elliptic curves with complex multiplication (also

referred to as CM-elliptic curves). One can ask whether the following are true:
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(1) André-Oort-Manin-Mumford: Ψ(CM)∩Ators is finite;

(2) André-Oort-Mordell-Lang: Ψ(CM)∩Γ0 is finite.

The first statement is an easy consequence of the André-Oort conjecture for S×A.

We recall the shape of the André-Oort conjecture (AO from now on) for products

of a modular curve and an elliptic curve. This is a particular case of a theorem of

Pila ([142, Theorem 1.1], see also [144]).

Theorem 3.1.1 (André-Oort-Manin-Mumford). Let S be a modular curve, A an el-

liptic curve and consider their product T := S×A. A point (s,a) ∈ T is said to be

special if s ∈ CM and a ∈ Ators. The only irreducible closed subvarieties of T con-

taining a Zariski dense set of special points are: {CM−point}×{torsion point},

S×{torsion point}, {CM−point}×A, S×A.

It is interesting to notice that (1), together with the modularity theorem of

Wiles, Breuil, Conrad, Diamond, Taylor dicussed in equation (1.2.1), implies that

there are only finitely many torsion Heegner points on any elliptic curve overQ (first

proven in [132]). For a complete discussion about this, we refer to [25, Section 1.2]

and the references therein.

Statement (2) is true because there are only finitely many classes of Q-

isomorphic CM-abelian varieties of a given dimension defined over a given number

field. For example, in the case of elliptic curves, it is a classical result in the theory

of complex multiplication that the set of CM-points of X1(N), defined over a given

number field, is finite.

A. Buium and B. Poonen [25, Theorem 1.1] were able to deal with finitely

generated subgroups and torsion points simultaneously. The main theorem they

discuss is as follows.

Theorem 3.1.2 (Buium-Poonen). Let A/Q be an elliptic curve, Ψ : X1(N)→ A be

a non-constant morphism defined over Q. Let Γ≤ A(Q) be a finite rank subgroup,

i.e. the division hull of a finitely generated subgroup Γ0 ≤ A(Q). Then Ψ(CM)∩Γ

is finite.
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Since the proof is very elegant and our results will follow a similar path, we

present here the main points of the strategy. It relies on two deep results from

equidistribution theory due to Zhang (namely [184, Corollary 3.3] and [183, Theo-

rem 1.1]) and the Brauer-Siegel theorem. The first result about equidistribution of

Galois orbits of CM-points on modular curves was established by Duke [60].

Strategy of the proof. Let µS be the hyperbolic measure on S(C) and µA be the nor-

malised Haar measure on A(C). Assume that S,A,Ψ are defined over a number field

K and that Γ is contained in the division hull of A(K). We have three main facts

preventing the existence of infinitely many points in Ψ(CM)∩Γ:

• Let (xn)n be an infinite sequence of CM-points in S(Q), then the uniform

probability measure on the Gal(K/K)-orbit of xn weakly converges, as n→∞,

to the measure µS;

• Let (an)n be an infinite sequence of almost division points relative to K, i.e.

lim
n→∞

sup
σ∈Gal(K/K)

||aσ
n −an||= 0,

such that [K(an) : K]→ ∞. Then the uniform probability measure on the

Gal(K/K)-orbit of an weakly converges to the measure µA;

• Some measure theoretic lemmas [25, Lemma 3.1, 3.2, 3.3] preventing this.

Remark 3.1.3. Such proof allows also to fatten Γ in the following sense. Let ε > 0,

we may replace Γ by Γε := Γ+Aε , where Aε is a set of points of small Néron-Tate

height, i.e. Aε := {a ∈ A(Q) such that h(a)≤ ε}. The theorem then asserts that, for

some ε > 0, the set Ψ(CM)∩Γε is finite, see [25, Theorem 2.3]. See also [150],

where B. Poonen strengthen the Mordell-Lang conjecture by fattening Γ in this way.

3.1.1 Main results

In the subsequent work, Buium and Poonen [26], motivated by some local results

involving the theory of arithmetic differential equations, conjectured that the same
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results hold when the CM-points are replaced by isogeny classes. Recall that a non-

cuspidal point x ∈ X1(N), defined over Q, corresponds to an elliptic curve Ex/Q

(with some extra structure) and its isogeny class is defined as the subset of X1(N)(Q)

given by the elliptic curves admitting a Q-isogeny to Ex (see 3.2.1 for more about

the definition). The following is [26, Conjecture 1.7].

Theorem 3.1.4. Let A be an elliptic curve defined over Q and Γ≤ A(Q) be a finite

rank subgroup. Let x ∈ X1(N)(Q) be a non-cuspidal point and Σx be its isogeny

class. Let X ⊂ X1(N)×A be a irreducible closed Q-subvariety such that X(Q)∩

(Σx×Γ) is Zariski dense in X, then X is one of the following: {point}×{point},

X1(N)×{point}, {point}×A, X1(N)×A.

The aim of this chapter is to prove Theorem 3.1.4, as a special case of the

following more general result.

Theorem 3.1.5. Let A,Γ,x,Σx be as in Theorem 3.1.4. If X ⊂ X1(N)× A is an

irreducible closed Q-subvariety such that X(Q)∩ (Σx×Γε) is Zariski dense in X

for every ε > 0, then X is one the following: {point}×{point}, X1(N)×{point},

{point}×A, X1(N)×A.

Remark 3.1.6. In particular taking X in Theorem 3.1.5 to be the graph of a non-

constant Q-morphism Ψ : X1(N)→ A, we get a result analogous to Theorem 3.1.2.

Namely we have that, for some ε > 0, the image of Σx along Ψ meets Γε in only

finitely many points.

Theorem 3.1.4 may be thought as an André-Pink-Mordell-Lang conjecture, as

will be discussed in section 3.4. See also [137] for more about the André-Pink

conjecture. It is worth noticing that this conjecture appears here in the form of [65,

Theorem B] and [146, Theorem 7.6.].

Our approach follows the strategy of Buium-Poonen presented above, using a

equidistribution result about Hecke points in place of Duke-Zhang’s equidistribu-

tion of CM-points on modular curves and Serre’s open image theorem for elliptic

curves without complex multiplication. The equidistribution result follows from the

work of Clozel, Eskin, Oh and Ullmo and it is described in section 3.2.2. Notice
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that it holds for arbitrary Shimura varieties, in particular it is possible to obtain a

result analogue to Theorem 3.1.5 for the isogeny class of Galois generic points in

higher dimensional Shimura varieties. We remark that, even if the André-Oort con-

jecture for Ag is now a theorem, the equidistribution conjecture for Galois orbits

of CM-points is still unsolved. Another advantage of such approach is that it could

be applied also replacing A by a torus Gn
m/Q, employing Bilu’s result [18] on the

equidistribution of small points on algebraic tori, in place of [183].

3.1.2 Related work

Another fruitful approach for problems like the ones discussed in this chapter is to

use o-minimality and the Pila-Zannier strategy. This approach relies on the Pila-

Wilkie counting theorem and it was used to prove both the Manin-Mumford and

the André-Oort conjecture. For example Z. Gao, in [76], obtained important results

towards what he calls the André-Pink-Zannier conjecture. After the paper [11] was

written, it was pointed out to the author that G. Dill employed such strategy to obtain

results about unlikely intersections between isogeny orbits and curves similar to the

ones presented here. Dill’s progress on a modification of the André-Pink-Zannier

conjecture ([59, Conjecture 1.1]) implies indeed Theorem 3.1.1 as well as Theorem

3.1.4 (see [59, Corollary 1.4]). More recently Pila and Tsimerman [143, Theorem

1.5] have also found an improvement of such results. They can indeed bound the

intersection Ψ(CM)∩Γ by a number depending only on the rank of Γ. For more

about this see the beginning of section 3.4.1.2.

As explained above, our strategy does not rely on o-minimality at any point.

The proofs obtained here are quite short but are confined to isogeny classes of Galois

generic points. An advantage of the equidistributional approach is that it allows

to fatten Γ, by adding points of small Néron-Tate height (as in Theorem 3.1.5).

Finally notice that our result does not invoke Masser-Wüstholz Isogeny Theorem,

as it often happens in results regarding isogeny classes (see 3.3.4 for a more detailed

discussion about this).
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Outline of chapter

In the first section we discuss Hecke orbits on modular curves and formulate the

equidistribution result of Clozel, Eskin, Oh and Ullmo in the form needed for the

main theorem. In the second section we prove the conjecture (Corollary 3.3.3).

We end section 3.3 showing how to obtain an analogous statement for quaternionic

Shimura curves XD(U) (Theorem 3.3.8) and discuss in more details the equidistri-

bution of Hecke points on higher dimensional Shimura varieties. We finally present

some conjectures about unlikely intersection for a product of a Shimura variety and

an abelian variety, inspired by the theorems presented so far. Eventually we prove

that they follow from the Zilber–Pink conjecture (Proposition 3.4.9).

3.2 Preliminaries

Let Λ be a neat congruence subgroup of SL2(Z), as in Example 2.2.8 and X+ =

H be the upper half plane, coming with the action of SL2(Z) by fractional linear

transformations. For the purpose of the chapter, we may assume Λ to be one of

Γ(N),Γ0(N),Γ1(N) (and N > 3). A (non-compact) modular curve is a Riemann

surface of the form

SΛ := Λ\X+.

Since in this chapter we are interested in maps from modular curves to elliptic

curves (which are compact), it is natural to identify the above quotients as the non-

cuspidal locus in their Alexandroff compactifications. The compactifications ob-

tained from the choices of Λ mentioned above are denoted by X(N),X0(N),X1(N).

They can be written as an opportune quotient of

H∗ :=H∪P1(Q),

and we denote by ∞SΛ
the projection of ∞ ∈ P1(Q)⊂H∗ onto the compactification

of SΛ.

Points on such complex curves naturally correspond to complex elliptic curves

(with some Λ-structure). Using the moduli interpretation one can show that modular
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curves are naturally defined over a number field. Let K ⊂ C be a field such that SΛ

is defined over K and SΛ(K) 6= /0. A K-point of a modular curve corresponds to an

elliptic curve defined over K. We usually write Ex/K for the elliptic curve associated

to x ∈ SΛ(K).

3.2.1 Hecke operators

For every a ∈ SL2(Q), consider the diagram of (Shimura) coverings

Λ\X+ pr←− (Λ∩a−1
Λa)\X+ a·−→ Λ\X+.

It induces a finite correspondence, called Hecke operator

Ta : SΛ −→ SΛ.

The Hecke operator Ta maps a point x ∈ SΛ to the finite set

{aλx | λ ∈ (Λ∩a−1
Λa)\Λ}.

Remark 3.2.1. Since Λ is neat, for all a,b ∈ SL2(Q) the following are equivalent:

• Ta(x)∩Tb(x) 6= /0 ;

• Ta(x) = Tb(x);

• ΛaΛ = ΛbΛ.

We set

degΛ(a) := |ΛaΛ/Λ|= [Λ : a−1
Λa∩Λ].

Given a point x ∈ SΛ we denote by T (x) its Hecke orbit:

T (x) :=
⋃

a∈SL2(Q)
Ta(x)⊂ SΛ.
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The Hecke operator Ta also acts on functions f on SΛ by

Ta f (x) :=
1

degΛ(a)
· ∑

s∈Ta(x)
f (s).

Example 3.2.2. Let x ∈ X0(N), corresponding to a pair (Ex,Ψx), where Ex is an

elliptic curve and Ψx is a Γ0(N)-level structure (i.e. subgroup of order N of Ex).

Given a prime p, not dividing N, the Hecke operator Tp applied to x gives

Tp(x) = Tp(Ex,Ψx) =
⋃
C

(Ex/C,(Ψx +C)/C)

where the union is over all the subgroups C ⊂ Ex of cardinality p.

3.2.1.1 Hecke orbits and isogeny classes

Let S = X1(N) and x ∈ S(Q) be a non-cuspidal point. It may be represented as a

pair (Ex,Px), where Ex is an elliptic curve defined over Q and Px is a point of order

N. We set

Σ
X1(N)
x := {(E,P) such that there exists an isogeny between E and Ex} ⊂ S(Q).

(3.2.1)

Otherwise stated, we are looking at elliptic curves isogenous to E and the isogeny

is not required to respect the points of order N. This is the notion of isogeny class

appearing in Theorem 3.1.4.

Consider A1 the modular curve parametrizing elliptic curves. It is easy to see

that T (x) = Σ
A1
x for any x ∈ A1(Q). By forgetting the point of order N, there is a

finite Shimura morphism associated to the same Shimura datum

π : X1(N)−→A1.

In particular the preimage of an A1-Hecke orbit can be written as a finite union of
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Hecke orbits in X1(N), in symbols

Σ
X1(N)
x =

m⋃
i=1

T (xi). (3.2.2)

This will be the main step in the deduction of Corollary 3.3.3 from Theorem 3.3.1.

3.2.1.2 Hecke orbits and strictly Galois generic points

Let K be a number field and x a non-cuspidal K-point in SΛ. As recalled in section

2.3.2, to such x there is a corresponding Galois representation

ρx : Gal(K/K)→ Λ⊂ GL2(A f ),

where Λ denotes the closure of Λ in GL2(A f ). In terms of the associated elliptic

curve Ex, ρx is nothing but the representation coming from the inverse limit of the

Galois modules Ex[n]. As in [146, Definition 6.3], we have:

• x is called Hodge generic/non-special if the elliptic curve Ex is not CM;

• x is called Galois generic if Im(ρx) is open in Λ;

• x is called strictly Galois generic if Im(ρx) is equal to Λ.

Let x ∈ X1(N) be a non-special non-cuspidal point defined over a number field.

As recalled in the sections 3.1 and 1.2, Serre’s open image theorem asserts that

Im(ρx) is open in Λ, i.e. that x is Galois generic. See [154, 156] for Serre’s proof.

Remark 3.2.3. We remark here that the difference between Galois generic and

strictly Galois generic points is not important in this chapter. Indeed let x ∈ SΛ a

Galois generic point, we may shrink Λ in such a way that x lifts along π : SΛ′ → SΛ

and becomes strictly Galois generic in SΛ′ .

It is easy to see that the Hecke orbit Ta(x) of a strictly Galois generic point x

is permuted transitively by Gal(K/K). See for example [146, Proposition 6.6]. In

particular

∀a ∈ SL2(Q) and s ∈ Ta(x), degΛ(a) = [K(s) : K].
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3.2.2 Equidistribution of Hecke points

Let S = SΛ be a modular curve and write µS for the hyperbolic measure on S(C). If

we fix coordinates (x,y) in H, as recalled in example 2.2.8, the measure µS is the

measure whose pullback toH equals a multiple of the hyperbolic measure y−2dxdy.

Given a point p in S we denote by δp the Dirac distribution at p.

This is the main result of the section.

Theorem 3.2.4. Let x ∈ S be a strictly Galois generic point defined over a number

field K. Let (an)n ⊂ SL2(Q) be an arbitrary sequence and fix sn ∈ Tan(x) for every

n. We have that

Tan(x) = Gal(K/K)sn.

Moreover, if the cardinality of {sn}n is not finite then [K(sn) : K]→ +∞ and the

sequence of measures

∆Tan(x) :=
1

|Gal(K/K)sn| ∑
p∈Gal(K/K)sn

δp

weakly converges to µS as n→+∞.

Proof. As explained in section 3.2.1.2, since x is a strictly Galois generic point, the

Hecke orbit coincides with the Galois orbit. In particular we have

degΛ(an) = [K(sn) : K],

and an equality of measures

1
degΛ(an)

∑
λ∈(Λ∩a−1

n Λan)\Λ
δλ =

1
|Gal(K/K)sn| ∑

p∈Gal(K/K)sn

δp.

From the former equation we see that degΛ(an) goes to infinity if and only if [K(sn) :

K] does. The results of [36], together with the existence of infinitely distinct sn,

imply that the degΛ(an)→ +∞ and the desired weakly convergence of measures

(see Theorems 3.3.5 and 3.3.6 for the general statements we are referring to)1.
1As the reader may have noticed, Masser-Wüstholz Isogeny Theorem shows that the existence of
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3.3 Proofs of the main results
Throughout this section we fix an elliptic curve A defined over Q and a subgroup

Γ≤ A(Q) of finite rank. Let

h : A(Q)−→ R≥0

be a canonical height function attached to some symmetric ample line bundle on A

and, for every ε ≥ 0, let

Γε := {γ +a such that γ ∈ Γ, a ∈ A(Q), h(a)≤ ε}.

By S = SΛ we denote a modular curve as in the previous section.

Theorem 3.3.1. Let x be Galois generic point of S and (an)n be an arbitrary se-

quence in SL2(Q). Let X ⊂ S×A be an irreducible closed Q-subvariety which is

not of the form S×{point}, {point}×A, S×A. For some ε > 0, X(Q) contains

only finitely many points lying in (
⋃

n Tan(x))×Γε .

Remark 3.3.2. In particular, by listing all the elements of SL2(Q), we have also

that

X(Q)∩ (T (x)×Γε)

is finite, where T (x) is defined as
⋃

g∈SL2(Q)Tg(x).

Regarding isogeny classes, as in section 3.2.1.1, and in the direction of Theo-

rem 3.1.5 we obtain the following.

Corollary 3.3.3. Suppose S is the modular curve X1(N) over Q. Let A, Γ, X be as

in Theorem 3.3.1, and x be a non-cuspidalQ-point of X1(N). For some ε > 0, X(Q)

contains only finitely many points lying in Σ
X1(N)
x ×Γε .

Proof of Corollary 3.3.3. Let Ex be the elliptic curve (with some extra structure)

corresponding to x. A non-cuspidal point in a modular curve is either special or

infinitely many distinct (sn) forces the degree to grow (as explained in section 3.3.4). However we
are showing this by invoking an equidistribution results which does not rely on the Isogeny Theorem
and holds for arbitrary Shimura varieties.
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Hodge generic. In terms of the endomorphisms ring of Ex this means that End(Ex)⊗

Q is either a quadratic imaginary field, or the field of rational numbers. In the former

case the corollary follows from Theorem 3.1.2. Indeed elliptic curves isogenous to

a CM-elliptic curve are again CM and therefore the set Σ
X1(N)
x is contained in the set

of special points of S, so

X(Q)∩
(

Σ
X1(N)
x ×Γε

)
⊂ X(Q)∩ (CM×Γε) .

Theorem 3.1.2, in the more general form of [25, Theorem 2.3], shows precisely that

the right hand side is finite (for some ε > 0).

Suppose now that x is Hodge generic. Serre’s open image theorem implies that

x is Galois generic. The result then follows from Theorem 3.3.1 since Σ
X1(N)
x is a

finite union of Hecke orbits (as explained in section 3.2.1, in particular 3.2.1.1).

3.3.1 Proof of Theorem 3.3.1

In the statement of Theorem 3.3.1 x is assumed to be Galois generic. As explained

in the remark of section 3.2.1.2, we may and do assume that x is strictly Galois

generic. Indeed there exist Λ′ and xΛ′ ∈ SΛ′ such that

π : SΛ′ −→ S

maps xΛ′ to x and xΛ′ is strictly Galois generic. Since π is a finite map, we may

replace X by an X ′ ⊂ SΛ′×A which projects onto X ⊂ S×A and the validity of the

result does not change.

Denote by µS the hyperbolic measure on S(C) and by µA the normalised Haar

probability measure on A(C). Define Br to be the open disk in S(C) with center ∞S

and radius r with respect to the metric. Lemma 3.3 in [25] shows that µS blows up

relative to the Riemannian metric near the cusp ∞S. Using also [25, Lemma 3.1] we

can choose a compact annulus C ⊂ Br−{∞S} such that

µS(C)> µA(Ψ(Br−{∞S})), (3.3.1)
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for more details see also [25, pp.6, last but second paragraph]. From now on we fix

such a C.

Finally we say that a sequence (yn)n in a scheme X is generic if it converges

to the generic point of X with respect to the Zariski topology, i.e. each proper

subvariety of X contains at most finitely many yn.

Proof of Theorem 3.3.1. Of course if the set
⋃

n Tan(x) is finite the theorem trivially

holds true. Therefore we may and do assume that the set

Σ
(an)
x :=

⋃
n

Tan(x)

is infinite.

Heading for a contradiction let us suppose that X(Q)∩ (Σ(an)
x ×Γε) is Zariski

dense in X for every ε > 0. Since X has only countably many subvarieties, we

may choose a generic sequence of points yn = (sn,γn) ∈ X(Q) with sn ∈ Σ
(an)
x and

γn ∈ Γεn where εn→ 0. In particular, each sn appears only finitely often.

Up to enlarging the base field, we may assume that A,S,X ,x are all defined

over a number field K and that Γ is contained in the division hull of A(K). Theorem

3.2.4 implies that [K(sn) : K]→+∞. Since, by assumption, X surjects onto S and A

and X 6= S×A we have that the projection X→ A is generically finite, say of degree

d. Since [K(sn) : K]≤ d[K(γn) : K], we have also that [K(γn) : K]→+∞ (as n goes

to infinity). The γns form a sequence of almost division points relative to K in the

sense of [183] and, by passing to a subsequence, we may assume that they admit a

coherent limit. Moreover, as dimA = 1, the only possibility for the coherent limit

of the γns is (A,{0}).

The combination of the next two facts implies the contradiction we were aim-

ing for:

• As explained in Theorem 3.2.4, the uniform probability measure associated
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to the points Gal(K/K)sn weakly converges to µS on S(C), i.e.

 1
|Gal(K/K)sn| ∑

p∈Gal(K/K)sn

δp

−→ µS, as n→+∞;

• Zhang’s result, [183, Theorem 1.1], implies that the uniform probability mea-

sure on Gal(K/K)γn, as n→ +∞, weakly converges to the Haar measure µA

on A(C).

In particular, arguing as in [25, pp.7, first paragraph], they imply that

µS(C)≤ µA(Ψ(Br−{∞S})),

contradicting the choice of C in 3.3.1. The theorem is eventually proven.

3.3.2 Shimura varieties

We now discuss the more general case of Shimura varieties, using the notation of

section 2.2. Let G be an almost Q-simple group, (G,X+) be a connected Shimura

datum and Λ an arithmetic subgroup of G(Q)+. In this section we present the

general setting for arbitrary connected Shimura varieties

SΛ := Λ\X+.

Remark 3.3.4. The definitions presented in section 3.2 naturally generalise to ar-

bitrary connected Shimura data (G,X+). Notice that there is a more general notion

of generalized Hecke orbit which takes into account non-inner automorphisms of

(G,X), see [146, Definition 3.1]. This generalisation does not substantially change

the content of the chapter. Indeed, when the group G is of adjoint type, the quotient

Aut(G,X+)/G(Q)+

is finite.

The main theorem about equidistribution of Hecke points (after Clozel, Eskin,



3.3. Proofs of the main results 60

Oh and Ullmo) is the following.

Theorem 3.3.5. Let (an)n ⊂ G(Q)+ be an arbitrary sequence of points and x ∈

Λ\X+. Exactly one of the following happens:

1. The set
⋃

n Tan(x) is finite and degΛ(an) is bounded;

2. The set
⋃

n Tan(x) is Zariski dense in S and the sequence of measures ∆Tan(x)

weakly converges to the canonical Haar measure on S. Where we set

∆Tan(x) :=
1

degΛ(an)
∑

λ∈(Λ∩a−1Λa)\Λ
δλ

and δλ denotes the Dirac distribution at λ .

Proof. See [65, Corollary 7.2.3], which follows from [65, Theorem 7.2.2]. In [65,

Section 9.1] it is also explained how the result can be deduced from [63] (using [63,

Proposition 2.1]). When Λ = GSp2g(Z), see also [146, Theorem 7.5], which builds

on [36].

Theorem 3.3.5 implies the next result.

Theorem 3.3.6. Let SΛ be a connected Shimura variety and x ∈ S be a strictly

Galois generic point defined over a number field K. Let (an)n ⊂ G(Q)+ be an

arbitrary sequence and fix sn ∈ Tan(x) for every n. We have that

Tan(x) = Gal(K/K)sn.

Moreover, if the cardinality of {sn}n is not finite then [K(sn) : K]→ +∞ and the

sequence of measures

∆Tan(x) =
1

|Gal(K/K)sn| ∑
p∈Gal(K/K)sn

δp

weakly converges to the hyperbolic measure µS on S(C) as n→+∞.
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3.3.3 Quaternionic Shimura curves

Let D be a non-split indefinite quaternion algebra over Q and fix a maximal order

OD. In this section we prove a statement analogous to Corollary 3.3.3 for quater-

nionic Shimura curves XD(U)/Q, i.e. the Shimura curves attached to (D,U), where

U is a sufficiently small compact subgroup of (OD⊗ Ẑ)∗ such that XD(U) is con-

nected (see [27] for more details). This curves parametrise fake elliptic curve (with

a U-level structure), i.e. abelian surfaces E with an embedding OD ⊂ End(E). Us-

ing such interpretation we have a notion of isogeny class Σx ∈ XD(U) as in section

3.2.1.1.

We have a version of Serre’s open image theorem which holds for arbitrary

Shimura curves.

Theorem 3.3.7. Let SΛ be a Shimura curve. A Q-point x ∈ S is either special or

Galois generic.

Proof. On a Shimura curve a point is either special or Hodge generic. The main

theorem of [135] shows precisely that Hodge generic points are Galois generic (the

proof is similar to the methods used by Serre).

The above theorem, combined with Theorem 3.3.6 implies the equidistribution

of the Hecke orbit associated to a Hodge generic point of a quaternioinc SHimura

curve. The equidistribution of the Galois orbit of CM-points, as used in [25, The-

orem 2.5 and Theorem 2.6], follows again from Brauer-Siegel and Zhang’s paper

[184].

To obtain a contradiction in this case, it is enough to use [25, Lemma 3.6]. In-

deed let Ψ : S→ A be a map from a Shimura curve2 to an elliptic curve, [25, Lemma

3.6] shows that Ψ∗µS 6= µA. Therefore we cannot have a sequence of measures ∆sn

weakly converging to µS, whose pushforward, Ψ∗∆sn , weakly converges to µA.

We have eventually proved the following.

2In the previous theorem we had to use a different strategy since the compact Riemann surface
X1(N) is only the compactification of a Shimura curve.
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Theorem 3.3.8. Let S/Q a quaternionic Shimura curve. Let A, Γ, Ψ be as in The-

orem 3.3.1. Let x be a Q-point of S. There exists an ε > 0, such that image of a

isogeny class Σx ⊂ S(Q) along Ψ intersects Γε in only finitely many points.

3.3.4 A remark on Masser-Wüstholz Isogeny Theorem

This is the main theorem of [114] (see also [78] for a bound that does not depend

on the polarisations).

Theorem 3.3.9 (Masser-Wüstholz). Let A,B be principally polarised abelian vari-

eties of dimension g over a number field K and suppose that AC and BC are isoge-

nous. Then if we let N be the minimal degree of an isogeny between them over C,

we have

N ≤ bg max(hFal(A), [K :Q])cg,

where bg,cg are positive constants depending only on g and hFal(A) denotes the

semistable Faltings height of A.

It has the following amusing consequence regarding the field of definition of

the Hecke points. For the proof see [65, Lemma 9.2.1].

Corollary 3.3.10. Let (G,X+) be a connected Shimura datum of abelian type. Let

x ∈ SΛ be a point with residue field K. For every integer d there are only finitely

many t ∈ T (x) such that the degree of K(t) over K is bounded by d.

It is interesting to notice that Theorem 3.3.9 is used in the proof of partial

results towards conjectures about unlikely intersections. For example in the AO and

André-Pink conjectures. Corollary 3.3.10 may be used for the result of this chapter.

Indeed, for Shimura varieties of abelian type, it implies the existence of finitely

many Hecke operators of bounded degree. In our approach we deduced this from

Theorem 3.3.5, which builds on different techniques.

Remark 3.3.11. For example Corollary 3.3.10 may be applied to arbitrary Shimura

curves. This is possible since all Shimura curves are of abelian type, as proven by

Deligne in [46, Section 6].
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3.4 Mixed Shimura varieties and the Zilber–Pink

conjecture
In section 3.1, we discussed characterisations of subvarieties of a product of a mod-

ular curve and an elliptic curve intersecting a dense set of special points (Theorems

3.1.1, 3.1.2, 3.1.4). We formulate analogous conjectures for products of higher di-

mensional Shimura varieties and abelian varieties. In section 3.4.1.2, we prove that

they follow from the Zilber–Pink conjecture about unlikely intersections in mixed

Shimura varieties (Conjecture 3.4.7).

Throughout this section let T := S×A be the product of S a Shimura variety

and A an abelian variety (of dimension g > 0). When we do not specify the field

of definition of an object, we assume that it is defined over the field of complex

numbers.

Recall that we have notions of being special and weakly special for both sub-

varieties of Shimura and abelian varieties, in particular we denote by CM ⊂ S(Q)

the subset of special points of S. In this section we combine the two as follows. For

an overview about special subvarieties and the André-Oort conjecture, we refer the

reader to [103].

Definition 3.4.1. A special (resp. weakly special) subvariety of T is a subvariety of

the form S′×A′ where S′ is a special (resp. weakly special) subvariety of S and A′

is a special (resp. weakly special) subvariety of A. We say that a subvariety of T is

weakly special generic if it not contained in any smaller weakly special subvariety

of T .

We state three conjectures about a weakly special generic closed irreducible

subvariety X  T .

Conjecture 3.4.2 (André-Oort-Manin-Mumford). The subset of special points of T

is not Zariski dense in X.

We denote by A[>d] the union of all algebraic subgroups of A of codimension

> d and we fix a subgroup of finite rank Γ≤ A(C).
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Conjecture 3.4.3 (André-Oort-Mordell-Lang). The set (CM×(A[>dimX ]+Γ))∩X

is not Zariski dense in X.

In the next conjecture, by isogeny class of a point s ∈ S ⊂ Ag′ , corresponding

to an abelian variety As, we mean the set of points s′ ∈ S corresponding to abelian

varieties As′ isogenous to As.

Conjecture 3.4.4 (André-Pink-Mordell-Lang). Assume S is a sub-Shimura variety

of Ag′ for some g′ > 0 and let Σs be the isogeny class of a point s ∈ S(C). The set

(Σs×Γ)∩X is not Zariski dense in X.

When the abelian variety A is defined overQ, we can also fatten Γ, by replacing

Γ by Γε , to formulate an André-Oort-Mordell-Lang-Bogomolov Conjecture and an

André-Pink-Mordell-Lang-Bogomolov Conjecture. Theorem 3.1.5 is a special case

of such formulation, requiring all the objects to be defined over Q. Since the aim

of the section is a comparison with the conjectures appearing in the work of Pink

[146, 147], we discuss only the case of subgroups of finite rank.

Remark 3.4.5. Combining the recent proof of the AO conjecture for Shimura vari-

eties of abelian type (culminated in [171]) and the proof of Manin-Mumford [144],

it is possible to prove Conjecture 3.4.2 whenever S is a Shimura variety of abelian

type.

For recent developments, using o-minimality, towards the André-Pink-

Mordell-Lang we point out to the main theorems of G. Dill [59]. See also the

main theorems of [76]. Indeed, as mentioned in section 3.1, Conjecture 3.4.4

formally follows from Gao’s André-Pink-Zannier3.

3.4.1 Zilber–Pink conjecture

To state the Zilber–Pink conjecture [147, Conjecture 1.1] we need to introduce some

vocabulary from the theory of mixed Shimura varieties. For a complete treatment

we refer the reader to [146, Section 2], [120, Chapter VI] and [145].

3Only a small modification is needed, in order to take into account non-polarised isogenies and
subgroups of arbitrary finite rank.
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3.4.1.1 Mixed Shimura varieties

In section 2.2 we discussed only the case of pure Shimura varieties. Since (con-

nected) mixed Shimura varieties appear only here, we briefly recall their definition.

Definition 3.4.6. A connected mixed Shimura datum is a pair (P,X+) where

• P is a connected linear algebraic group defined overQ, with unipotent radical

W and an algebraic subgroup U ⊂W which is normal in P;

• X+ ⊂Hom(SC,PC) is a connected component of an orbit under the subgroup

P(R) ·U(C)⊂ P(C);

satisfying axioms (i)-(vi) in [146, Definition 2.1]. A connected mixed Shimura

variety associated to (P,X+) is a complex manifold of the form Λ\X+ where Λ is a

congruence subgroup of P(Q)+ acting freely on X+.

A mixed Shimura datum allows to take into consideration groups of the form

GSp2gnG2g
a . For suitable congruence subgroups the associated connected mixed

Shimura variety is the universal family of abelian varieties over the moduli space

of principally polarised abelian varieties (with some n-level structure). The point is

that every (principally polarised) abelian variety can be realised as a fibre of such a

family.

As for the pure case, there is a notion of special and weakly special subvari-

eties of mixed Shimura varieties (see [146, Section 4]). Moreover every irreducible

component of the intersection of special subvarieties (resp. weakly special) is again

special (resp. weakly special) and a weakly special subvariety containing a special

point is itself special. For example special points in the universal family of abelian

varieties correspond to torsion points in the fibers As over all special points s ∈Ag.

Finally pure Shimura varieties, as described in section 2.2, are also mixed

Shimura varieties (they occur precisely when P is reductive) and a product of

(finitely many) mixed Shimura varieties is again a mixed Shimura variety.

3.4.1.2 The conjecture

Conjecture 3.4.7 (Zilber–Pink). Consider a mixed Shimura variety M over C and

a Hodge generic irreducible closed subvariety X ⊂M. Then the intersection of X
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with the union of all special subvarieties of M of codimension > dimX is not Zariski

dense in X.

It is interesting to notice that Conjecture 3.4.7 implies Mordell-Lang [146,

Section 5]. Moreover Stoll has recently proven that (a special case of) the Zilber-

Pink conjecture actually implies the following, see [165, Section 2.1].

Conjecture 3.4.8 (Uniform Mordell–Lang for curves). Given g≥ 2 and r≥ 0, there

is a constant N(g,r) such that for any genus g curve C/C with an embedding i :

C→ J into its Jacobian and for any subgroup Γ⊂ J(C) of rank r, one has that the

cardinality of i−1(Γ) is at most N(g,r).

The proof of the next proposition is similar to the arguments appearing in The-

orem 3.3, 5.3 and 5.7 of the preprint [147]. See also [76, Section 8] and [146],

where it is explained that André-Pink(-Zannier) for mixed Shimura varieties im-

plies Mordell-Lang ([146, Theorem 5.4]).

Proposition 3.4.9. Conjecture 3.4.7 implies both Conjecture 3.4.3 and Conjecture

3.4.4.

We first fix some notations. Let a ∈ Ag,n be the point corresponding to the

abelian variety A (for some n ≥ 3), Sa the smallest Shimura subvariety of Ag,n

containing a and M the universal abelian scheme over Sa. The variety S×M is a

mixed Shimura variety and it contains S×A = S×Ma, where Ma denotes the fibre

of

π : M→ Sa

over the point a.

Finally fix a maximal sequence of linearly independent elements a1, . . . ,an ∈Γ,

and let C the Zariski closure of the subgroup of An generated by the point a :=

(a1, . . . ,an). We may assume C is an abelian variety. Moreover, since a is Hodge

generic in Sa, we may view C as the fibre over a of an Sa flat subgroup scheme Z of

the n-th fibred power of M (cf. the discussion at the beginning of the proof of [147,

Theorem 5.7]). We will apply the Zilber–Pink conjecture to the subvarieties of the
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mixed Shimura variety

B := S× (M×Sa Z) .

Zilber–Pink implies André–Oort–Mordell–Lang. Equivalently we may suppose

that X is not contained in any special subvariety of T and deduce that (CM×Γ)∩X

is not Zariski dense in X . Consider the irreducible closed subvariety of B defined

by

Y := X×{a}.

Since a is Hodge generic in Sa, X is weakly special generic in T , a is Zariski dense

in C, then Y is a Hodge generic subvariety of B of dimension dimX .

As for abelian varieties, we denote by M[>d] the union of M[>d]
x , varying x in

Sa. To conclude, applying the Zilber–Pink conjecture to Y ⊂ B, we only need to

show that the set

(X ∩ (CM×(M[>dimX ]+Γ)))×{a}

is contained in the intersection between Y and the union of all special subvarieties

of B of codimension > dimX = dimY . Let G be a Sa-flat algebraic subgroup of M

of codimension > dimX , and let x = (c,g+ γ) ∈ X , where c is a special point in S

and γ an element of Γ. For some integer m > 0 we may write

mγ = m1a1 + · · ·+mnan,

then we have mγ = ϕ(a) for the homomorphism of Sa-group schemes ϕ :=

(m1, . . . ,mn) : Mn→M. We may therefore write (x,a) as an element in the set

H := CM×(m−1(G×{0}+(ϕ,m)(C))).

Since the codimension of H in B is bigger than dimX , we have proved the desired

inclusion.

The result on the fiber over a then follows in virtue of the following remark

(see proof of [147, Theorem 5.7]). Let X ⊂ A be an irreducible closed subvariety of

A, X is contained in a proper algebraic subgroup of A if and only it is contained in



3.4. Mixed Shimura varieties and the Zilber–Pink conjecture 68

a special subvariety of M of codimension > 0.

Zilber–Pink implies André–Pink–Mordell–Lang. By applying Hecke operators, we

may assume that X ×{a} and {s}×{a} lie in a given connected component of B.

Let Ss be the smallest Shimura subvariety containing s, and S′ the smallest Shimura

subvariety of B×Ag′ containing Y ×{s}.

Suppose (X ∩ (Σs× (M[>dimX ] +Γ))) is not Zariski dense in X , we want to

prove that X is weakly special, more precisely we show that X×{s} is an irreducible

component of a fibre of S′ → Ss. To do so we apply Zilber–Pink (actually in the

equivalent form appearing in [147, Conjecture 1.1]) to

Σs×{s}× (M[>dimX ]+Γ)×{a}.

The result follows by combining the argument presented in the previous proof,

which allows to see the points in Γ as special points in an opportune Shimura variety

(see also the last paragraph in the proof of [147, Theorem 5.3]), and the argument

of [147, Theorem 3.3] (noticing that given two points s, t ∈Ag′ such that the under-

lying abelian varieties are isogenous, then the defect of s∈Ag′ is equal to the defect

of (s, t) ∈A2
g′ , as in [137, Lemma 2.2]).



Chapter 4

Local to Global principle for the

moduli space of K3 surfaces

In 2016, S. Patrikis, J.F. Voloch and Y. Zarhin proved, assuming several well known

conjectures, that the finite descent obstruction holds on the moduli space of prin-

cipally polarised abelian varieties. We show an analogous result for K3 surfaces,

under some technical restrictions on the Picard rank. This is possible since abelian

varieties and K3s are quite well described by “Hodge-theoretical” results. In par-

ticular the theorem we present can be interpreted as follows: a family of `-adic

representations that looks like the one induced by the transcendental part of the `-

adic cohomology of a K3 surface (defined over a number field) determines a Hodge

structure which in turn determines a K3 surface (which may be defined over a num-

ber field). The work presented here appeared in the paper [10].

4.1 Introduction

Let X be an algebraic K3 surface defined over a number field K and ` a rational

prime. We consider T`(XK) the transcendental part of the second `-adic cohomo-

logical group of XK , i.e. T`(XK) is the orthogonal complement of the image of the

Néron-Severi group of XK = X ×K K in H2
et(XK,Q`). It is a free Q`-module of rank

22−ρ , where ρ ∈ {1,2, . . . ,20} denotes the rank of the Néron-Severi group of XK ,

usually called the (geometric) Picard rank of X . For every rational prime `, there is
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a continuous `-adic Galois representation of the absolute Galois group of K

ρX ,` : Gal(K/K)→ GL(T`(XK)).

The family {ρX ,`}` encodes many algebro-geometric properties of X that can ex-

pressed in the language of representation theory.

The problem discussed in this chapter is motivated by the following question,

which can be thought as a refinement of the Fontaine–Mazur conjecture, as recalled

in section 2.5.2, since it aims to describe the essential image of the `-adic realisa-

tions of K3 surfaces. See also Example 2.2.12 and Question 2.3.9.

Question 4.1.1. Given a family of `-adic representations of the absolute Galois

group of a number field K, can we understand if it is of the form {ρX ,`}` for some

K3 surface X/K (possibly after a finite field extension L/K)?

As explained in section 2.3.1.1, Question 4.1.1 requires some p-adic Hodge

theory. The analogous of Question 4.1.1 for abelian varieties has been addressed

and solved, assuming some of the conjectures recalled in section 2.5, in [139, The-

orem 3.1] (at least for abelian varieties with endomorphism ring equal to Z). More

precisely the authors proved the following.

Theorem 4.1.2 (Patrikis, Voloch, Zarhin). Let N > 0 be a natural number. Assume

the Hodge, Tate, Fontaine–Mazur and the semisimplicity conjectures, as recalled in

Section 2.5. Let

{ρ` : Gal(K/K)→ GL2N(Q`)}`

be a weakly compatible family (in the sense of Definition 2.3.2) of `-adic represen-

tations such that:

i) For some prime `0, ρ`0 is de Rham at all places of K above `0;

ii) For some prime `1, ρ`1 is absolutely irreducible;

iii) For some prime `2 and at least one place v above `2, ρ`2 |Gal(Kv/Kv)
is de Rham

with Hodge–Tate weights−1,0 each with multiplicity N, where Kv denotes the

completion of K at the place v.
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Then there exists a N-dimensional abelian variety A defined over K such that ρ`
∼=

V`(A) for all `, where V`(A) denotes the rational `-adic Tate module of A with its

natural Galois action.

Notice that conditions i) and iii) are satisfied by the cohomology of every

abelian variety and condition ii) holds for the generic abelian variety. For the link

between Theorem 4.1.2, the section conjecture of anabelian geometry and the suf-

ficiency of the finite descent obstruction to the Hasse principle for Ag we refer to

[139, Section 2, Theorem 3.7]. Interestingly, thanks to the Kodaira– Parshin con-

struction [113], such result could also have applications to the section conjecture

for curves. See indeed Theorem 5.2 in op. cit.. For expository article describing

some related ideas, we refer also to [100].

It is reasonable to expect a result of the same fashion for varieties whose ge-

ometry is well captured from cohomological invariants. For example the above

theorem can not tell the difference between a curve of genus N > 1 and its Jacobian

(see [139, Section 5] for a more detailed discussion about this). From this point of

view K3 surfaces (and hyperkähler varieties) are very similar to abelian varieties.

Indeed, over the complex numbers, they enjoy a Torelli type theorem [148] and the

surjectivity of the period map [170], see also the discussion in Example 2.2.12. We

refer to Proposition 4.3.2 for precise statements.

4.1.1 Main results

In Section 4.3 we prove the following, which is the main theorem of the chapter.

Theorem 4.1.3. Assume the Tate, Fontaine–Mazur and the Hodge conjectures. Let

ρ be a natural number such that such that 2 < 22−ρ ≤ 19 and let

{ρ` : Gal(K/K)→ GL22−ρ(Q`)}`,

be a weakly compatible family of `-adic representations satisfying the following

conditions:

1. For some prime `0, ρ`0 is de Rham at all places of K above `0;
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2. For some prime `1, ρ`1 is absolutely irreducible;

3. For some prime `2 and at least one place v above `2, ρ`2 |Gal(Kv/Kv)
is de Rham

with Hodge–Tate weights 0,1,2, with multiplicities, respectively, 1,20−ρ,1.

Then there exists a K3 surface X defined over a finite extension L/K with geometric

Picard rank ρ , such that the restriction of ρ` to Gal(L/L) is isomorphic to T`(XL)

for all `.

The proof shows something stronger: there exists a motive M defined over K,

in the sense of section 2.4, inducing the representations ρ` and a finite extension

L/K, such that the base change of M to L is isomorphic to the transcendental part

(in the sense of Section 4.2) of the motive of a K3 surface defined over L. It is not

clear whether or not the extension L/K is needed, more about this is discussed in

Section 4.1.3.

In the proof, from the motive M/K, we will first produce a complex (algebraic)

K3 surface and descend it to a number field. This is shown in the last section

and may be of independent interest. For a complex K3 surface X and an element

σ ∈ Aut(C/Q) we set
σ X := X×C,σ C

for the conjugate of X with respect to σ . Here we writeC to denote its spectrum. Let

T (X)Q be the rational polarised Hodge structure given by the transcendental part of

the H2(X(C),Q), i.e. the orthogonal complement of the image of NS(X)⊗Q in

H2(X ,Q).

Theorem 4.1.4. Let X/C be a K3 surface such that

T (X)Q ∼= T (σ X)Q for all σ ∈ Aut(C/Q),

where the isomorphism is an isomorphism of rational polarised Hodge structures.

Then X admits a model defined over a number field, i.e. there exists a number field

L⊂ C and a K3 surface Y/L, such that Y ×LC is isomorphic to X.
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The above condition can be thought as an isogeny relation between X and its

Aut(C/Q)-conjugates. With this interpretation the theorem is analogous of the de-

scent for abelian varieties established in [139, Lemma 3.6]. Let A/C be an abelian

variety such that all its Aut(C/Q)-conjugates are isogenous to A, then A descends

to a number field. Theorem 4.1.4 will follow from a general criterion proven by

González-Diez (see Lemma 4.4.3) and the fact that there are only finitely many

complex K3 surfaces with given transcendental lattice (see Lemma 4.4.2). It is

quite different from the proof of [139, Lemma 3.6] and can be used also to reprove

such result, as explained in Remark 4.4.4.

In the next remark we show that Theorem 4.1.4 implies that complex K3 sur-

faces with complex multiplication (or CM, for brevity) admit models over num-

ber fields. As from Definition 2.2.6, by complex multiplication we intend that the

Mumford-Tate group associated to the Hodge structure T (X)Q is commutative; for

example every K3 surface of geometric Picard rank 20 has such property (cf. [94,

Remark 3.10 (page 54)]). If X/K is a CM K3 surface, it is a consequence of the

Kuga–Satake construction and Deligne’s work on absolute Hodge cycles (see in-

deed Remark 2.5.7), that the `-adic monodromy associated to T (XK)Q`
is commu-

tative as well.

Remark 4.1.5. One can check that complex K3 surfaces with complex multiplica-

tion satisfy the condition of the above theorem. Therefore they admit a model over

a number field, reproving a result originally due to Pjateckiı̆-Šapiro and Šafarevič

[149, Theorem 4]. For example, when X/C has maximal Picard rank, it is enough to

notice that, thanks to the comparison between Betti and étale cohomology recalled

in section 2.4.2, the quadratic forms associated to T (X) and T (σ X) are in the same

genus.

Finally we point out that recently C. Klevdal [101] considered an analogue

of Theorem 4.1.3 for K3 surfaces of Picard rank 1. Therefore only the case of

geometric Picard rank two and twenty are left out of the picture. We hope to come

back to this in the future. We refer the reader to [101, Section 1.1] for a comparison

between the two results and a precise statement of Klevdal’s result.
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4.1.2 Comments on the assumptions of Theorem 4.1.3

As remarked above and in section 2.3.1.1, the cohomology of K3 surfaces (defined

over local fields) gives rise to de Rham representations. In particular condition

(3) is satisfied if there exists a K3 surface Xv/Kv of geometric Picard rank ρ and

ρ`2 |Gal(Kv/Kv)
is isomorphic to the representation induced by T`2(XKv

)1. So (1) and

(3) are necessary conditions for the existence of the K3 surface the theorem aims to

prove.

Condition (2), which appears also in Theorem 4.1.2 as ii), is crucial to make

the argument work (see Theorem 2.5.5) but it is not satisfied by every K3 surface

(even if it holds for the generic K3 surface of Picard rank ρ). Klevdal considers

the representations arising from the full H2 of K3 surface of geometric Picard rank

1 and works with a different irreducibility condition (see condition (3) in [101,

Theorem1.1]). His conditions, which are satisfied by the cohomology of the generic

K3 surface, imply that the representation attached to the motive M splits as a sum

of the trivial representation and an absolutely irreducible one and then works with

the latter.

The absolutely irreducibility of condition (2) can not be weakened to require

only the irreducibility of the `-adic Galois representations, as the beginning of sec-

tion 4.3 shows. Notice also that the `-adic and Betti realisations of simple motives

may be reducible and the irreducibility of the Hodge structure associated to a mo-

tive wont imply the irreducibility of the Galois representations attached to it. For

example, if X is a K3 surface defined over a number field K, T (X)Q, as Hodge

structure, is always irreducible (see [94, Chapter 3, Lemma 2.7 and Lemma 3.1]),

but the Galois representations T`(XK) may be reducible. This happens, for some `,

whenever X has complex multiplication.

The restriction on the Picard rank is due to the way we obtain a K3 surface from

a polarised Hodge structure of K3 type (see Proposition 4.3.2). As we observed, the

conditions in the theorem require the representations to have non-commutative im-

1In condition iii) of Theorem 4.1.2, the Hodge–Tate weights are −1,0 since they want to relate
ρ`2 |Gal(Kv/Kv)

to the Tate module of an abelian variety, which is the dual representation attached to
the H1. This explain the change of sings between the two theorems.
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age (unless they have values in GL1(Q`)). Therefore our approach can not deal with

case of Picard rank 20 (as Theorem 4.1.2 excludes abelian varieties with complex

multiplication).

4.1.3 How to get rid of the extension L/K

A positive answer to the following would allow to take L = K in Theorem 4.1.3.

Question 4.1.6. Assume the conjectures as in Theorem 4.1.3. Let M be a simple

motive defined over some number field K. Assume there exists a finite (Galois) ex-

tension L/K and a K3 surface Y/L such that ML is isomorphic to the transcendental

part of the motive of YL (in the sense of Section 4.2). Is there a K3 surface X defined

over K such that the transcendental part of the motive associated to X is isomorphic

to M.

In the case of abelian varieties (see the discussion before [139, Proof of Lemma

3.6]), the authors give an affirmative answer. The proof works by considering the

Weil restriction to K of the abelian variety YL and, using Frobenius reciprocity,

producing an endomorphism of it whose image corresponds to a K-abelian variety

with the desired property. Unfortunately the argument does not apply to K3 surfaces

and it is not clear if this field extension is necessary or not.

4.1.4 Examples and applications

We explain how to obtain examples of Galois representations to which Theorem

4.1.3 applies, without writing down a K3 surface and how it produces a phantom

isogeny class of K3 surfaces, in analogy with the phantom isogeny class of abelian

varieties defined by Mazur in [117, page 38].

Let Y/K be a smooth projective variety defined over a number field K such

that, for some i, the Hodge decomposition induced on the primitive cohomology

H2i
prim(Y (C),Q) looks like the one of a K3 surface. More precisely its Hodge num-

bers are all zero but hi,i and hp,q = 1 for a unique, up to reordering, pair (p,q) with

p+q= 2i and the transcendental part of the H i,i has positive dimension less or equal

than 18. Examples are provided by the H4 of cubic fourfolds (where the Hodge

numbers are h0,4 = 0,h1,3 = 1 and h2,2 = 21) and many varieties with h2,0 = 1.
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Consider the family of representations attached to the transcendental part of

the H2i
et (YK,Q`(i−1)), simply denoted by T`(YK), where we considered a Tate twist

by (i−1) to obtain the weight of an H2:

{ρY,` : Gal(K/K)→ GL(T`(YK))}`.

The geometric origin of such representations implies that {ρY,`}` is a weakly com-

patible system (cf. Remark 2.3.3) and that condition (1) of Theorem 4.1.3 is satis-

fied. The assumptions on the Hodge decomposition of the H2i(Y (C),Q) imply that

condition (3) is satisfied.

Assume now that Y is such that also condition (2) is satisfied, i.e. for some

prime `1, ρ`1 is absolutely irreducible (such condition is satisfied by the generic

cubic fourfold). Theorem 4.1.3, after a finite extension L/K, associates a K3 sur-

face X/L to Y , with an isomorphism of Gal(L/L)-representations between ρY,` and

ρX ,`. Such K3 surface need not to be unique and we think about K3s satisfying such

condition as a phantom isogeny class. The existence of such K3s could greatly sim-

plify the study of Galois representations attached to such Y s. It would be interesting

to construct them (over a number field!) without assuming any conjectures. For a

survey explaining how K3 surfaces can help the study of the geometry of cubic four-

folds we refer the reader to [90]. In particular in [90, Section 3] it is discussed how

to associate K3 surfaces to special cubic fourfolds via Hodge theoretical methods.

Theorem 4.1.3 has also the following amusing consequence, purely expressed

in the `-adic language.

Corollary 4.1.7. Assume the Tate, Fontaine–Mazur and the Hodge conjectures. Let

{ρ` : Gal(K/K)→ GL22−ρ(Q`)}`,

be a family of `-adic representations as considered in Theorem 4.1.3. Then there

exists a reductive group G/Q such that, after a finite extension K′/K, for every `,

the image of Gal(K/K′) via ρ` has finite index in G(Z`) and the index is bounded

when ` varies.
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Proof. Theorem 4.1.3 shows that the weakly compatible system {ρ`}`, up to re-

placing K with a larger number field is associated to a K3 surface X . By a result

of Serre there exists a finite extension K′/K such that the `-adic monodromy of the

ρ`|Gal(K/K′) is connected for every ` (see [31, Section 1.1] for precise references).

Let G be the Mumford-Tate group of the K3 surface XC. The combination of the

Tate and Hodge conjectures implies that, for every `, the image of ρ`|Gal(K/K′) is

contained in G(Q`) as a subgroup of finite index. Thanks to [31, Theorem 6.6],

which is peculiar to K3 surfaces and abelian varieties, we have furthermore that the

index is bounded independently from `.

Remark 4.1.8. In the proof of Theorem 4.1.3 it is first produced a motive M whose

`-adic realisations induce the family {ρ`}`. This weaker conclusion is not enough

to obtain the corollary. Indeed the proof uses the Integral Mumford-Tate conjecture

which is known to follow from the classical Mumford-Tate conjecture, thanks to

the work of Cadoret and Moonen, only for Galois representations attached to K3

surface and abelian varieties. More details about this can be found in [31, Sections

1 and 2].

To conclude this section we point out that Theorem 4.1.3 can be interpreted in

the setting of anabelian geometry and the section conjecture for the moduli space

classifying primitively polarised K3 surfaces of degree 2d. For more about this we

refer the reader to the introduction of [139] and the second part of Section 1.1 in

[101].

Outline of chapter

In Section 4.2 we review the motive of a surface and how it splits in the algebraic

and the transcendental part. In Section 4.3 we prove the first main result (assuming

Theorem 4.1.4). The beginning of the proof closely follows the proof of [139,

Theorem 3.1] and we present here only the main steps. The last section of the

chapter, which is independent from the previous ones, proves Theorem 4.1.4.
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Notations

By K3 surface X/K we mean a complete smooth K-variety of dimension two such

that Ω2
X/K
∼=OX and H1(X ,OX) = 0. In this chapter K will always denote a subfield

of C. For a complete overview of the theory of K3 surfaces we refer to the book

[94]. We will make free use of the following standard notations:

• We denote by (ΛK3,q) the K3-lattice, where q is the quadratic form: it is the

unique even unimodular lattice of signature (3,19) (i.e. E8(−1)2⊕U3);

• We write PHS as an acronym for rational polarised Hodge structure and Z-

PHS for integral polarised Hodge structure (in particular we require that the

underlying Z-module is torsion free). See also section 2.2.1.1. Morphism

in the category of PHS are maps of Hodge structure preserving the induced

pairing;

• By Hodge structure of K3 type we mean an irreducible PHS of weight two

such that h2,0 = h0,2 = 1. In other references the irreducibility is not part of

the definition and they refer to irreducible PHS of K3 type;

• Let X be a complex K3 surface, we denote by T (X)Q the transcendental

part of the H2(X(C),Q), i.e. the orthogonal complement of NS(X)⊗Q ⊂

H2(X(C),Q). It is a Hodge structure of K3 type (the irreducibility was first

established in [182]);

• Analogously, if X is a K3 surface defined over a number field K, we define

T`(XK) to be the orthogonal complement of the image of NS(XK)⊗Q` in

H2
et(XK,Q`) with respect to the cup product in `-adic cohomology.

4.2 The motive of a surface
Here we use the same notation of section 2.4. Let M = h(X) be the motive of a

(smooth projective connected) surface. The class of the diagonal Λ ∈ Corr0(X×X)

can be written as

[Λ] = ∑
i

π
i ∈ H4(X×X).
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Since the decomposition is algebraic, in the sense that each π i can be seen as the

class of some orthogonal projector π i in Corr0(X ×X), we can decompose the mo-

tive M as follows (Chow-Künneth decomposition):

M = 1⊕h1(X)⊕h2(X)⊕h3(X)⊕L2,

where 1 is the motive of a point, L is the Lefschetz motive (defined by the equation

h(P1
k) = 1⊕L) and hi(X) = (X ,π i,0).

Moreover, in [97, Proposition 2.3], it is explained that there exists a unique

splitting

π
2 = π

2
alg +π

2
tr

inducing a refined Chow-Künneth decomposition for the motive M:

h2(X) =
(

h2
alg(X)⊕ t2(X)

)
where h2

alg(X) = (X ,π2
alg,0) and t2(X) = (X ,π2

tr,0).

In this chapter we will be interested in the case of a K3 surface, so, from now

on we will consider just the weight-two part of the motive of X . In particular the

Betti realisation satisfies the following relation:

HB(h2
alg(X)⊕ t2(X)) = NS(X)Q⊕T (X)Q.

4.3 Proof of Theorem 4.1.3

The proof of Theorem 4.1.3 begins like the argument in [139], so we only recall

the main steps. As explained in section 2.5.2, thanks to the Tate, Fontaine–Mazur

(and semisimplicity) conjectures the essential image of the `-adic realisation func-

tor from the category of motives over K with coefficients in Q can be described

explicitly, as recalled in Theorem 2.5.5. In particular, choosing a place `0 as in (1),
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there exists a representation of the group GK,E (as explained after Conjecture 2.4.4)

ρ : GK,E → GL22−ρ,E

for some number field E, such that H`0(ρ)
∼= ρ`0 ⊗Q`0 . Since the family {ρ`}` is

weakly compatible and we assumed ρ`1 to be absolutely irreducible, it follows that

ρ induces every ρ`. This allows to read the assumptions imposed at some prime li

in every ρ`. Finally, since every ρ` is a representation with Q` coefficients (rather

than with coefficients in the completions of E), hence [139, Lemma 3.4] guarantees

that the representation ρ can be defined over Q.

To summarise, we know that the compatible family {ρ`}` arises from a repre-

sentation

ρ : GK → GL22−ρ,Q,

or, in equivalent terms, from a motive M ∈MK of rank 22−ρ . By construction M

is also absolutely simple and End(ρ) =Q.

By hypothesis there exists a prime `2 and a place v dividing `2 such that

ρ`2 |Gal(Kv/Kv)
is de Rham with Hodge–Tate numbers equal to those of the transcen-

dental lattice of a K3 surface of rank ρ . Denote by HdR : MK → FilK the de Rham

realisation functor into the category of filtered K-vector spaces. From the compari-

son theorem between de Rham and étale cohomology2 we have

HdR(M)⊗K BdR,Kv
∼= H`2(M)⊗Q`2

BdR,Kv

where BdR,Kv is the de Rham period ring over Kv, as recalled in section 2.3.1.1.

The fact that the above isomorphism is compatible with the filtration and the Galois

action, the definition of DdR,Kv and the fact that BGal(Kv/Kv)
dR = Kv, imply that

HdR(M)⊗K Kv ∼= DdR,Kv(H`2(M)). (4.3.1)

2Such comparison was conjectured by Fontaine in [69, Conjecture A.6] and proved by Faltings
in [68].
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We write M|C for the base change of M ∈MK in the category MK,C (we fixed from

the beginning an embedding of K into the complex numbers). Recall, as in section

2.4.2, the Betti-de Rham comparison isomorphism:

HdR(M)⊗K C∼= HB(M|C)⊗ZC.

By 4.3.1, HB(M|C) is a polarisable rational Hodge structure of weight two and with

Hodge numbers 1− (20−ρ)−1.

Remark 4.3.1. While the previous part of the proof works in general (and closely

follows the beginning of the proof of [139, Theorem 3.1]), from now on we will

use in a substantial way the condition on the Hodge–Tate weights to produce a K3

surface. Our aim is to use HB(M|C) to produce a period and then a K3 surface,

invoking the surjectivity of the period map of Todorov. To apply this strategy we

need the conjunction of the Tate and the Hodge conjecture, so that we can deduce

properties of the Hodge structure from the properties imposed on the family {ρ`}`
(especially condition (3)). To do so, the Hodge conjecture will be used from now

on.

Since M is absolutely simple, HB(M|C) is an irreducible Hodge structure. Fix-

ing a polarisation ψ on HB(M|C), the pair (HB(M|C),ψ) becomes Q-PHS of K3

type. Moreover, since End(M) = Q, we have have that the endomorphism field of

(HB(M|C),ψ) is Q as well (here again the fact that the representation is absolutely

irreducible and the Hodge conjecture are fundamental).

Invoking the surjectivity of the period map, we want to produce a complex K3

surface from the rational polarised Hodge structure associated to M|C. We argue as

follows.

Proposition 4.3.2. Let (V,h,ψ) be a Q-PHS of K3 type of dimension 22− ρ . If

2≤ 22−ρ ≤ 19, then there exists a complex K3 surface X with T (X)Q isomorphic

to (V,h,ψ) as rational Hodge structures.

Remark 4.3.3. Proposition 4.3.2 requires ρ to be different from 1 and 2, where

some restriction on the square class of the determinant of (V,ψ) and its Hasse in-
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variant appears (see [136, Section IV]). Even if the above proposition applies, the

case ρ = 20 has to be excluded from the theorem, as remarked in section 4.1.2. In-

deed if X has Picard rank 20 then the endomorphism field of T (X)Q has to be larger

than Q (see [94, Remark 3.10 (page 54)] for an elementary proof of this fact).

Proof of Proposition 4.3.2. Notice that the quadratic form (V,ψ) is rationally rep-

resented by the K3-lattice (ΛK3,q). Indeed, as explained in [136, Section IV] (see

also [96, Theorems 17 and 31]), this is true whenever

defect := dimΛK3−dimV = ρ ≥ 3.

We can therefore interpret V as a subspace of ΛK3⊗Q and let T be the intersection

of V with ΛK3 (seen in ΛK3⊗Q). By definition T is a primitive sub-lattice of ΛK3.

Since the Hodge structure h on V is of K3 type, the quadratic form on V (and thus

on T ) has signature (2,19−ρ). Transporting the Hodge structure h from V to T we

obtain an irreducible integral Hodge structure with the right signature. Finally we

can apply the surjectivity of the period map (see for example [94, Theorem 6.3.1

and Remark 6.3.3 (page 114)]), to obtain a complex (algebraic) K3 surface X such

that T (X)∼= T .

Let X be the complex K3 surface obtained as in the above proposition from

(HB(M|C),ψ). Thanks to the Hodge conjecture 2.5.6, we can lift the isomorphism

of Hodge structures

T (X)Q ∼= HB(M|C),

to get an isomorphism at the level of motives. We indeed have

t2(X)∼= M|C ∈MC,

where t2(X) is the transcendental part of the motive of X , introduced in Section 4.2.

To complete the proof we need a model YL of X defined over a finite extension

L of K, such that

t2(YL)∼= M|L ∈ML.
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Since M is defined over a number field, for all σ ∈Aut(C/Q), we have the following

chain of isomorphisms:

σ
t2(X)∼= σ M|C = M|C ∼= t2(X) ∈MC. (4.3.2)

Notice that σ t2(X) = (σ X ,σ π2
alg,0) = t2(σ X) from the uniqueness of the splitting

π2 = π2
alg +π2

tr in X×X .

In particular we have

HB(t2(X)) = T (X)Q and HB(
σ

t2(X)) = T (σ X)Q.

Taking the Betti realisation (with Q-coefficients, as usual) of the equation

4.3.2, we observe that T (X)Q∼= T (σ X)Q for all σ ∈Aut(C/Q). Applying Theorem

4.1.4, that will be proved in the next section, this condition is enough to obtain a

model YL of X/C defined over some number field L/K where t2(YL)∼= M|L ∈ML.

Theorem 4.1.3 is finally proven: YL is the K3 surface, defined over a finite

extension L of K, we were looking for. As remarked in the section 4.1 we actually

proved something more: there exists a simple motive M defined over K inducing

the representations ρ` and a finite extension L/K such that the base change of M to

L, denoted by ML, is isomorphic to the transcendental part of the motive of a K3

surface defined over L.

4.4 Descent to a number field
In this last section, we prove Theorem 4.1.4. The result will follow from the com-

bination of the following:

• The number of complex K3 surfaces, up to isomorphism, Y such that T (Y )Q

is isomorphic to T (X)Q is at most countable, cf. Lemma 4.4.2;

• If all the conjugates of X , with respect to Aut(C/Q), fall into countably many

isomorphism classes, then X descends to a number field, cf. Lemma 4.4.3.

The first point resembles the fact the the isogeny class of a given complex abelian
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variety consists of a countable set of (complex) abelian varieties (up to an isomor-

phism).

Remark 4.4.1. In the integral case we have the following. Let K3 be the full sub-

category of complex varieties whose objects are K3 surfaces and X be a K3 surface.

The set

FM(X) := {Y ∈ K3 such that there exists a Hodge isometry T (Y )∼= T (X)}

contains only finitely many isomorphism classes. The proof of this result is due

to Mukai [129] and builds on the derived Torelli theorem and the finiteness of the

Fourier-Mukai partners. See also [94, Proposition 16.3.10, Corollary 16.3.7 and

Corollary 16.3.8] and [138, Proposition 4.4] for a direct argument which we emulate

in the next lemma.

Lemma 4.4.2. Let X/C be a K3 surface. The set

S := {Y ∈ K3 such that T (Y )Q ∼= T (X)Q as Q−PHS}/isomorphism,

is either finite or countable.

Proof. Let Y ∈ S, by reasoning as in [138, Prop 4.4], it is enough to show that

there are at most countably many choices for the rank and the discriminant of T (Y ).

The rank is clearly fixed, so we have only to explain how the discriminant may

vary. We notice that the discriminant of T (Y ) has to be equal to the discriminant of

T (X) modulo (Q∗)2, since the quadratic forms are non-degenerate and so there are

countably many choices.

Lemma 4.4.3. Let X/C be a K3 surface such that the set

{σ X}/isomorphism

varying σ ∈ Aut(C/Q) is at most countable. Then there exists a K3 surface Y/Q

such that Y ×QC is isomorphic to X.
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Proof. This is by no means specific to K3 surfaces. Indeed it follows from a more

general result due to González-Diez (and the fact that Q is countable). Let X be an

irreducible complex projective variety, in [80, Criterion 1 (page 3)] is proven that

the following are equivalent:

a) X can be defined over Q;

b) The set {σ X : σ ∈ Aut(C/Q)} contains only finitely many isomorphism

classes of complex projective varieties;

c) The set {σ X : σ ∈ Aut(C/Q)} contains only countably many isomorphism

classes of complex projective varieties.

Remark 4.4.4. Using González-Diez’s result as above, we can also offer an-

other proof of [139, Lemma 3.6], which, for example, does not invoke the exis-

tence of the moduli space of abelian varieties (with some extra structure) estab-

lished by Mumford in [130, Part II, Section 6]. Let A/C be an abelian variety

such that all its Aut(C/Q)-conjugates are isogenous to A. In particular the set

{σ A : σ ∈ Aut(C/Q)} is contained in the set of complex abelian varieties isoge-

nous to A which, up to isomorphism, is a countable set. As above, the implication

c)⇒ a) shows that A can be defined over Q.

Proof of Theorem 4.1.4. Thanks to Lemma 4.4.2, we may apply Lemma 4.4.3

which produces the desired model of X .



Chapter 5

Finite descent obstruction for Hilbert

modular varieties (joint with G.

Grossi)

Let S be a finite set of primes. We prove that a form of finite Galois descent ob-

struction is the only obstruction to the existence of ZS-points on integral models

of twists of Hilbert modular varieties, extending a result of D.Helm and F.Voloch

about modular curves. Let L be a totally real field. Under (a special case of) the

absolute Hodge conjecture and a weak Serre’s modularity conjecture for mod ` rep-

resentations of the absolute Galois group of L, we prove that the same holds also

for the OL,S-points. The work presented here appeared in the paper [13].

5.1 Introduction
As discussed in Chapter 1, a leading problem in arithmetic geometry is to determine

whether or not an equation with coefficients in a number field F has any solutions.

Since there can be no algorithm determining whether a given Diophantine equation

is soluble in the integers Z, one usually tries to understand the problem under strong

constraints of the geometry of the variety defined by such equation or assuming the

existence of many local solutions. In the case of curves, for example, Skoroboga-

tov [163] asked whether the Brauer–Manin obstruction is the only obstruction to

the existence of rational points. The question, or variations thereof, attracted the
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attention of Bruin, Harari, Helm, Poonen, Stoll and Voloch among others. In par-

ticular Helm and Voloch [91] studied a form of the finite Galois descent obstruction

for the integral points of modular curves. To goal of our chapter is to present a

case of arbitrary large dimensional Shimura varieties that can be treated similarly to

modular curves. More precisely, we give sufficient conditions for the existence of

OL,S-integral points on (twists of) Hilbert modular varieties associated to K, where

both L and K are totally real fields.

The philosophy underlying our strategy is the relation, predicted by the Lang-

lands’ programme, between the worlds:

Automorphic forms↔Motives↔ Galois representations.

We refer to [35] for an introduction to such circle of ideas (the latter arrow was

already discussed in section 2.5 and in the previous chapter). More precisely, from

a system of Galois representations that “looks like” the one coming from an abelian

variety with OK-multiplication, we want to produce, via Serre’s conjecture, a Hilbert

modular form over L with Fourier coefficients in K. To this modular form we at-

tach, via Eichler–Shimura theory, an abelian variety over L with OK-multiplication,

which will correspond to an L-point on the Hilbert modular variety over K. If L=Q,

Serre’s conjecture is known to hold true by the work of Khare and Wintenberger [98]

and the Eichler–Shimura theory has been worked out by Shimura [160]. If L 6= Q,

to make such a strategy work, we will need to assume Serre’s conjecture and also

(a special case of) the absolute Hodge conjecture, where the latter is required by

Blasius in [19] in order to attach abelian varieties to Hilbert modular forms. In the

next section we present in more details the main results of the chapter.

5.1.1 Main results

Let L,K be totally real extensions of Q and set

nL := [L :Q], nK := [K :Q].

We denote by w a place of L and by v a place of K. In what follows, one should

think of L as the field of definition and K as the Hecke field. We denote by OL and
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OK the rings of integers of L and K, by Lw (respectively Kv) the completion of L at

w (respectively of K at v) and by OLw (respectively OKv) the ring of integers of Lw

(respectively Kv). Finally Gal(L/L) will denote the absolute Galois group of L.

Let S be a finite set of places of L (including all archimedean places). Our

initial datum is a system of Galois representations

ρv : Gal(L/L)→ GL2(Kv) (S)

for every v finite place of K such that:

(S.1) {ρv}v is a weakly compatible system of Galois representations;

(S.2) det(ρv) = χ`, where χ` is the `-adic cyclotomic character and v | `;

(S.3) The residual representation ρ̄v is finite flat at w | `, for all v | ` such that ρ̄v is

irreducible and ` is not divisible by any prime in S;

(S.4) ρ̄v is absolutely irreducible for all but finitely many v;

(S.5) The field generated by the trace of ρv(Frobw) for every w is not smaller than

K.

We discuss separately the case when nL = 1 and nL > 1, to make clear which

case is conjectural and which one is not.

Theorem 5.1.1. If L =Q, there exists an nK-dimensional abelian variety A/Q with

OK-multiplication, such that, for every v, the v-adic Tate module of A, denoted by

TvA, is isomorphic to ρv as representations of Gal(Q/Q).

Theorem 5.1.2. Assume nL > 1. Under the validity of the absolute Hodge–

conjecture (more precisely Conjecture 2.5.8) and a suitable generalisation of

Serre’s conjecture (Conjecture 5.1.4), there exists an nK-dimensional abelian va-

riety A/L with OK-multiplication, such that, for every v, TvA is isomorphic to ρv as

representations of Gal(L/L).
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We apply the above theorems to study the finite descent obstruction of Hilbert

modular varieties. For an introduction to descent obstruction, we refer to [163, 164,

89]; a recap is given in section 5.4.1. More precisely denote by YK the Hilbert

modular variety associated to K. Let N be an ideal in OK and denote by YK(N) the

moduli space of nK-dimensional abelian variety, principally OK-polarized and with

N-level structure (see section 5.2.1.1 for a precise definition). As a corollary of the

above theorems, we prove that the finite Galois descent obstruction (as defined in

section 5.4) is the only obstruction to the existence of S-integral points on integral

models of twists of Hilbert modular varieties, denoted by YK(N), over the ring of

S-integers of a totally real field L, generalising [91, Theorem 3]. Assume that S

contains the places of bad reduction of YK(N). The set Y f−cov
ρ (OL,S) will be defined

in section 5.4.1. We prove the following.

Theorem 5.1.3. If nL > 1, assume the conjectures of Theorem 5.1.2. Let Yρ

be the S-integral model of a twist of YK(N), corresponding to a representation

ρ : Gal(L/L)→ GL2(OK/N). If Y f−cov
ρ (OL,S) is non-empty then Yρ(OL,S) is non-

empty.

In the work of Helm–Voloch, Y is the integral model of an affine curve. In

the case of curves there are also other tools to establish (variants) of such results,

without invoking Serre’s conjecture. Indeed, as noticed after the proof of [91, The-

orem 3], Stoll [164, Corollary 8.8] proved a similar result, under some extra as-

sumptions, using the fact that a factor of the Jacobian of such modular curves has

finite Mordell-Weil and Tate-Shafarevich groups. The goal of this chapter is to push

Helm–Voloch’s strategy to a particular class of varieties of arbitrary large dimen-

sion and whose associated Albanese variety is trivial (see Theorem 5.2.2) showing

that the method could be applied to study also L-points.

5.1.2 Serre’s weak conjecture over totally real fields

Having already discussed the Absolute Hodge conjecture in Section 2.5.3.1, we now

briefly state the conjecture of Serre appearing in Theorem 5.1.2 needed to obtain

the main theorem when L 6= Q. See for example [29, Conjecture 1.1], where it is
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referred to as a folklore generalisation of Serre’s conjecture. For more details we

refer to the introduction of [29] and references therein.

Conjecture 5.1.4. Let ` be any odd prime and ρ : Gal(L/L)→ GL2(F`) be an

irreducible and totally odd1 Galois representation. Then there exists some Hilbert

modular eigenform f for L such that ρ is isomorphic to the reduction mod λ of ρ f ,λ ,

where ρ f ,λ is the λ -adic Galois representation attached to f and λ is a prime of the

Hecke field of f dividing `.

Remark 5.1.5. This is usually referred to as weak Serre’s conjecture, because there

is no explicit recipe to compute the weight k(ρ) and the level N(ρ). It has been

proven (see [79] and [75]) that such refined version follows from the weak version

under some assumptions. We state the needed results in Theorem 5.3.5.

When L = Q, this was proven by Khare and Wintenberger [98]. When L 6=

Q, Conjecture 5.1.4 is known when the coefficient field is F3 (Langlands-Tunnell

[107, 172]), but we need to assume that the conjecture holds for all (but finitely

many) `’s. Our strategy follows indeed the lines of the proof of modularity theorems

assuming Serre’s conjecture: starting from a system of Galois representations, we

produce a Hilbert modular form whose Fourier coefficients are equal to the traces

of Frobenii modulo infinitely many primes and hence are equal as elements of OK .

Finally, a potential version of the above conjecture has been proven in [168,

Theorem 1.6]. Taylor proves a potential modularity result, i.e. if ρ̄ : Gal(L/L)→

GL2(F`) is a totally odd irreducible representation with determinant equal to the

cyclotomic character, then there exists L′/L a finite totally real Galois extension

such that all the primes of L above ` split in L′ and there exists f a Hilbert modular

form for L′ such that ρ̄ f ,λ ′ is isomorphic to ρ̄ restricted to Gal(L′/L′).

5.1.3 Related work

We compare our results with [139, Theorem 3.1 and Theorem 3.7], the main theo-

rem of Chapter 4 and the work of Klevdal [101], where, however, a finite extension

of the base field is required. In the approach of Patrikis, Voloch and Zarhin there

1Here totally odd means that det(ρ(c)) =−1 for all nL complex conjugations c.
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are no restrictions on the base field, wheras here it is crucial that L is a totally real

field. We believe that it is easier to make the results of this chapter unconditional.

We notice here that the absolute Hodge conjecture is not enough for such results: in

[139] and Chapter 4 the Hodge conjecture is not only needed to descend complex

abelian varieties over number fields. Finally the version of Serre’s conjecture we

are assuming here is always about GL2-coefficients and so is certainly easier than

the full Fontaine-Mazur conjecture [71].

Outline of chapter

In Section 5.2 we collect all the results we need about Hilbert modular forms (es-

pecially how Eichler-Shimura works in this setting). In Section 5.3, which is the

heart of the chapter, we prove Theorem 5.1.1 and 5.1.2. We then explain how these

results are related to the finite descent obstruction for Hilbert modular varieties in

Section 5.4, eventually proving Theorem 5.1.3.

5.2 Recap on Hilbert modular varieties and modular

forms

5.2.1 Hilbert modular varieties

In Example 2.2.10, we briefly discussed Hilbert modular varieties. We present here

a more complete and precise description of such Shimura varieties. Let F/Q be

a totally real extension of degree nF and fix {σi}nF
i=1 the set of real embeddings of

F into C. We let G be the Q-algebraic group obtained as the Weil restriction of

GL2 from F to Q and X be nF copies of H± = {τ ∈ C : Im(τ) 6= 0}, on which

G(Q) = GL2(F) acts on the ith component via σi, i.e.

a b

c d

 · (τ1, . . . ,τnF )


i

=
σi(a)τi +σi(b)
σi(c)τi +σi(d)

.

In this case, the reflex field of (G,X) is Q and the set of geometrically con-

nected components of the Shimura variety S := ShG(Ẑ)(G,X) is Pic(OF)
+ (different

choices of level structure will appear later).
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Remark 5.2.1. To obtain a Shimura variety from the above construction, it is funda-

mental that F is totally real. Indeed if F is a number field, G an algebraic F-group,

then the real points of ResF/QG have a structure of Hermitian symmetric space if

and only if F is a totally real field and the symmetric space associated to each real

embedding of F is Hermitian.

It is interesting to notice here a first difference between modular curves (i.e.

when F = Q) and higher dimensional Hilbert modular varieties. We recall the fol-

lowing folklore result, see [19, Section 2.3.2.], to see how it follows from Mat-

sushima’s formula [21, Theorem VII.5.2].

Theorem 5.2.2. Let (G,X) be a Shimura datum as above and let SK̃ be the Hilbert

modular variety associated to (G,X) and a neat K̃. Unless nF = 1, the first group

of Betti cohomology of SK̃ , with rational coefficients, is trivial. In particular there

are no non-constant maps from SK̃ to an abelian variety.

To have a better interpretation as moduli space we can actually consider the

subgroup G∗ of G given by its elements whose determinant is in Q. More precisely

we let G∗ be the pull-back of

det : G→ ResOF/ZGm

to Gm/Q. The Shimura variety YF := ShG∗(Ẑ)(G
∗,X∗)(C) is connected and comes

with a finite map to S/C. It is a quasi projective nF -dimensional Q-scheme.

In the next section we present the moduli problem solved by YF . It will be clear

also from such moduli interpretation that the reflex field of YF is the field of rational

numbers.

5.2.1.1 Hilbert modular varieties as moduli spaces

As explained for example in [61, Section 3], the Shimura variety YF represents the

(coarse) moduli space for triplets (A,α,λ ) where:

• A is a complex abelian variety of dimension nF ;

• α : OF ↪→ End(A) is a morphism of rings;
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• λ : A→ A∗ is a principal OF -polarisation.

By A∗ we denoted the OF -dual abelian variety of A, i.e. it is defined as Ext1(A,OF⊗

Gm). Otherwise one can obtain such abelian variety considering A∨ (the dual of

A, in the standard sense) and tensoring it over OF with the different ideal of the

extension F/Q. By principal OF -polarisation we mean an isomorphism λ : A→ A∗,

such that the induced map A→ A∨ is a polarisation.

Furthermore, the Shimura variety of level

U0(N) :=
{

γ ∈ G(Ẑ) : γ ≡
(
∗ ∗

0 1

)
mod N

}
,

where N is an integral ideal of OF , parametrises triplets as above, equipped with a

N-level structure as follows. We fix an isomorphism of OF -modules

(OF/NOF)
2→ A[N]

making the following diagram commutative:

(
(OF/NOF)

2
)2

A[N]2

OF ⊗Z/NZ OF ⊗µN ,

ψN
eλ ,N

where (N) = Z∩N, ψN is the pairing given by
(

0 1

−1 0

)
, eλ ,N is the perfect Weil

pairing on A[N] induced by the OF -polarisation λ and OF ⊗Z/NZ→ OF ⊗ µN

is an arbitrarily chosen isomorphism. When a level structure is needed, we al-

ways assume that N > 3 to have a fine moduli space. A rational point of YF(N) :=

ShU0(N)∩G∗(G∗,X) represents then a triple as above together with such level struc-

ture. In section 5.4.2, we will see a similar description for OL,S-points of an integral

model of YF(N).
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5.2.2 Eichler–Shimura theory

We discuss Eichler–Shimura theory for classical and Hilbert modular forms, re-

viewing results that attach opportune abelian varieties to modular forms.

5.2.2.1 Classical modular eigenform

The following is [160, Theorem 7.14, page 183 and Theorem 7.24, page 194].

Theorem 5.2.3 (Shimura). Let f be a holomorphic newform of weight 2 with ratio-

nal Fourier coefficients (an( f ))n. There exists an elliptic curve E/Q such that, for

all primes p at which E has good reduction one has

ap( f ) = 1−Np(E)+ p,

where Np(E) denotes the number of points of the reduction mod p of E, over the field

with p-elements. In other words, up to a finite number of Euler factors, L(s,E/Q)

and L(s, f ) coincide.

More generally, let K( f ) be the subfield of C generated over Q by (an( f ))n

for all n. Then there exists an abelian variety A/Q and an isomorphism K( f ) ∼=

End0(A) with the following properties:

• dim(A) = [K( f ) :Q];

• Up to a finite number of Euler factors at primes at which A has good reduction

L(s,A/Q,K( f )) coincides with L(s, f );

where the L-function L(s,A/Q,K( f )) is defined by the product of the following local

factors, where v is a prime of K not dividing `

det(1− `−s Frob` |Tv(A)).

Shimura considers the Jacobian of the modular curve of level N and takes the

quotient by the kernel of the homomorphism giving the Hecke action on f . What

happens if we want to produce an abelian variety with such properties, defined over

our totally real field F , when Q ( F? Here is where Hilbert modular forms come



5.2. Recap on Hilbert modular varieties and modular forms 95

into play. In the next section we discuss what we need from such theory and explain

Blasius’ generalisation of Theorem 5.2.3 and why the absolute Hodge conjecture is

needed.

5.2.2.2 Hilbert modular forms for F

With the same notation as in the previous sections, we now recall the definition of

Hilbert modular forms. Consider HF , which is defined to be nF copies of the upper

half plane H+. We fix {σ1, . . . ,σnF} the set of all real embeddings of F ↪→ C. We

consider subgroups Γ⊂GL2(OF) of the form U0(N)∩G(Q)+. Moreover for λ ∈ F

and r = (r1, . . . ,rnF ) ∈ ZnF , we write λ r = λ
r1
1 · · ·λ

rnF
nF , where λi = σi(λ ). Similarly

if τ = (τ1, . . . ,τnF ) ∈HF , we write τλ = τ
r1
1 · · ·τ

rnF
nF .

Definition 5.2.4. A Hilbert modular form of level N and weight (r,w) ∈ ZnF ×Z,

with ri ≡ w mod 2 (and trivial nebentype character) is a holomorphic function f :

HF → C such that

f (γ · τ) = (detγ)−r/2(cτ +d)r f (τ),

for every γ =
(

a b

c d

)
∈U0(N)∩G(Q)+ and for every τ = (τ1, . . . ,τnL) ∈HF .

Since Hilbert modular forms are holomorphic functions on HF invariant under

the lattice OF , they admit a q-expansion over O∨F = d−1, where q = e2πi∑τi , see [82,

Definition 3.1] for more details.

5.2.2.3 Hecke operators and Hilbert eigenforms

On the space of Hilbert modular forms of level

U0(N)∩G(Q)+

one has Hecke operators T (n) for every integral ideal of OF coprime with N. The

definition is analogous to the one for classical modular forms. For example, if p

does not divide N and x is a totally positive generator of p, one defines

(T (p) f )(τ) := Nm(p) f (x · τ)+ 1
Nm(p) ∑

a∈OF/p

f (γa · τ),
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where γa :=
(

1 a

0 x

)
. We have the following.

Definition 5.2.5. A cuspidal Hilbert modular form (i.e. such that the 0-th Fourier

coefficient a0( f ) vanishes) is an eigenform if it is an eigenvector for every Hecke

operator T (n).

As in the case of classical modular forms, if f is an eigenform, normalised so

that a1( f ) = 1, then the eigenvalues of the Hecke operators are the Fourier coef-

ficients, i.e. T (n) f = an( f ) · f ; moreover they are algebraic integers lying in the

number field K( f ) :=Q((an( f ))n), as shown in [159, §2].

5.2.2.4 Eichler–Shimura for Hilbert modular form

Blasius and Rogawski [20], Carayol [33] and Taylor [167] proved that to any Hilbert

eigenform, one may attach representations of Gal(F/F) in a similar way to the

classical case. They proved the following.

Theorem 5.2.6. If f is a Hilbert eigenform for F of weight (r, t) and level N, trivial

nebentype character and K( f ) is the number field generated by its eigenvalues,

then for every finite place λ of K( f ) there is an irreducible 2-dimensional Galois

representation

ρ f ,λ : Gal(F/F)→ GL2(K( f )λ )

such that for every prime w -NNmK( f )/Q(λ ) in F, ρ f ,λ is unramified at w and

det(1−Xρ f ,λ (Frobw)) = X2−aw( f )X +Nmt−1
F/Q(w).

Assume that f is of weight (2, . . . ,2). As in the classical case, we would like to

have such Galois representations to be attached to opportune abelian varieties. The

existence of abelian varieties associated to f was first considered by Oda in [134];

Blasius gave a conjectural solution to the problem.

Theorem 5.2.7 (Blasius). Let f be a Hilbert eigenform for F of parallel weight

2. Denote by K( f ) the number field generated by the aw( f ) for all w. Assume

Conjecture 2.5.8. There exists an [K( f ) : Q]-dimensional abelian variety A f /F
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with OK( f )-multiplication such that for all but finitely many of the finite places w of

F at which A f has good reduction, we have

L(s,A f ,K( f )) = L( f ,s),

where the L-function L(s,A f ,K( f )) is defined by the product of local factors

det(1−Nm(w)−s Frobw |Tv(A)Iw),

where v is a prime of K and w is a prime of F lying above distinct rational primes.

Proof. If K( f ) = Q, this is precisely [19, Theorem 1 on page 3]. As noticed by

Blasius [19, 1.10], the proof easily adapts to the general case (where the necessary

changes are hinted in the remarks in section [19, 5.4., 5.7., 7.6.]).

Remark 5.2.8. The proof is completely different from the one of Shimura, since, as

noticed in Theorem 5.2.2, we can not obtain a non-trivial abelian variety as quotient

of the Albanese variety of a Hilbert modular variety. Blasius instead considers the

symmetric square of the automorphic representation of GL2(A f
F) associated to the

Hilbert eigenform; it is an automorphic representation of GL3(A f
F) and its base

change to a quadratic imaginary field appears in the middle degree cohomology of

a Picard modular variety (see Example 2.2.13). He then considers the associated

motive and shows that its Betti realisation is the symmetric square of a polarised

Hodge structure of type (1,0),(0,1). This gives a complex abelian variety A and

Conjecture 2.5.8 (applied to the product of the Picard modular variety and A) lets

him conclude that A is defined over a number field containing F . He then finds the

desired abelian variety inside the restriction of scalars of A over F .

Remark 5.2.9. Theorem 5.2.7 is known to hold unconditionally in many interesting

cases (for example when nF is odd, by the work of Hida). For more details we

refer to [19, Theorem 3] and references therein. The proof of such unconditional

cases actually follows Shimura’s proof of Theorem 5.2.3, rather than the strategy

described in the previous remark.
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5.2.3 A remark on polarisations

To use Theorem 5.2.3 and 5.2.7 to produce F-points of a Hilbert modular variety,

we need of course the abelian varieties produced to be principally polarised (up to

isogeny would actually be enough for our applications, if the isogeny is defined over

the base field F). An abelian variety over an algebraically closed base field always

admits an isogeny to a principally polarised abelian variety. But since the same does

not hold over number fields, some considerations are needed. The first observation

is that every weight one Hodge structure of dimension 2 with an action by OK( f ), is

automatically OK( f )-polarised, as explained for example in [61, Appendix B].

As noticed in [19, Remark 5.7.], Blasius first finds a principally polarised

abelian variety A over a finite extension L′/F . Actually we can assume that A has

a principal OK( f )-polarisation λ . As explained above, the proof considers then the

Weil restriction of A to F , which is again principally OK( f )-polarised and finds here

the desired abelian variety. It is not hard to see that the construction of [19, sec-

tion 7] behaves well with respect to the OK( f )-polarisation and so the proof actually

produces an OK( f )-polarised abelian variety over F .

5.3 Producing abelian varieties via Serre’s conjec-

ture
In this section we prove Theorems 5.1.1 and 5.1.2. As in Section 5.1.1, here L and K

are totally real fields of degree nL and nK respectively. We work with a compatible

system of Galois representations of Gal(L/L) with values in ResK/Q(GL2(A f )) =

GL2(A f ,K) that “looks like” an algebraic point of the Hilbert modular variety for K.

We then produce a Hilbert modular form for L of weight (2, . . . ,2) and opportune

explicit conductor and from this we obtain an abelian variety over L that will allow

us to produce a L-rational point on the Hilbert modular variety for K.

5.3.1 Weakly compatible systems with coefficients

Definition 5.3.1 (Weakly compatible system). A family {ρv : Gal(L/L) →

GL2(Kv)}v is weakly compatible if there exists a finite set of places S of L such
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that:

(i) For all places w of L, ρv is unramified outside the set Sv. Here we denoted

by Sv the union of S and all the primes of L dividing ` where ` is the residue

characteristic of Kv.

(ii) For all w /∈ Sv, denoting by Frobw a Frobenius element at w, the characteristic

polynomial of ρv(Frobw) has K-rational coefficients and it is independent of

v.

From the Weil conjectures, it can be easily shown that the `-adic Tate modules

of abelian varieties form a weakly compatible family of Galois representations. The

case ofQ`-coefficients was already discussed in Chapter 2, see indeed section 2.3.1.

5.3.2 Key proposition

Let S be a finite set of places of L, including all archimedean places. Let K/Q be

a totally real field extension of degree nK . We now work with a system of Galois

representations

ρv : Gal(L/L)→ GL2(Kv)

for every v finite place of K satisfying the conditions (S.1)-(S.4) as in (S). In order

to prove Theorem 5.1.1 and Theorem 5.1.2 we need the following.

Proposition 5.3.2. Assume Conjecture 5.1.4 and let (ρv)v a system of representa-

tions satisfying conditions (S.1)-(S.4). For every w 6∈ S, let aw ∈ OK be the trace of

ρv(Frobw). Then there exists f a normalised Hilbert eigenform for L with Fourier

coefficients in OK , such that for every w 6∈ S, aw( f ) = aw. Moreover f is of weight

(2, . . . ,2) and conductor divisible only by primes in S.

Remark 5.3.3. Given an abelian variety A/L with OK-multiplication, we can pro-

duce a system

ρv : Gal(L/L)→ GL(Tv(A))

which satisfies the four conditions of (S) for S the union of infinite places and the

set of places of bad reduction of A, see [151, §3]. Proposition 5.3.2 hence implies
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that A is modular, i.e. there exists a Hilbert modular form for the totally real field L,

such that

L(A/L,s) = L( f ,s)

up to a finite number of Euler factors. Unconditionally, it has been proven that

elliptic curves over real quadratic fields are modular (see [74]) and, more in general,

the work of Taylor and Kisin implies that elliptic curves over L become modular (in

this sense) after a totally real extension L′/L. See [28, Theorem 1.16] and reference

therein.

In the proof of Proposition 5.3.2 we use Conjecture 5.1.4 and the following

result due to Serre (for the proof see [155, 4.9.4]).

Proposition 5.3.4 (Serre). Let q be a power of `. Let r : Gal(E/E)→ GL2(Fq) a

continuous homomorphism, where q = `t and E is a local field of residue charac-

teristic p 6= ` and discrete valuation vE . Let eE := vE(p) and c ≥ 0 be an integer

such that the image via r of the wild inertia of E has cardinality pc. We denote by

n(r,E) the exponent of the conductor of r. We have

n(r,E)≤ 2
(

1+ eE · c+ eE
p−1

)
.

We also need to compute the weight and the conductor of the modular forms

produced by Conjecture 5.1.4. As anticipated in Remark 5.1.5, this is a known

result under some assumptions. The weight part stated in the following theorem is

a special case of the work [79]; the conductor part follows from automorphy lifting

methods or can be seen as a consequence of the main theorem of [75].

Theorem 5.3.5 ([79, 75]). Let ` > 5 and ρ̄ : Gal(L/L)→GL2(F`) be an irreducible

totally odd representation such that its determinant is the cyclotomic character and

it is finite flat at all places w | `. Assume furthermore that ρ̄ satisfies the Taylor–

Wiles assumption, namely

ρ̄|Gal(L(ζ`)/L(ζ`))
is irreducible, (TW)
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where ζ` is a primitive `th root of unity. Then if ρ̄ is modular, there exists a Hilbert

modular form of parallel weight 2 and conductor equal to the Artin conductor of ρ̄

giving rise to ρ̄ .

We are ready to prove Proposition 5.3.2.

Proof of Proposition 5.3.2. Our goal is to apply Serre’s conjecture to ρ̄v, the reduc-

tion modulo v of the representation ρv, for infinitely many v /∈ SK , where SK is the

following finite set of primes of K:

SK = {v : v | ` and w | ` for some w ∈ S or ` is ramified in L}.

Let v be such a prime, let ` be its residue characteristic.

We now want to compute the conductor N(ρ̄v). Since ρ̄v is unramified outside

Sv, the conductor is divisible only by primes in S. We then apply Proposition 5.3.4 to

E =Lw and r = ρ̄v. The image of ρ̄v s contained in GL2(F`t ), where t ≤ [K :Q] = nK .

The cardinality of this group is `t(`2t − 1)(`t − 1). Let Ww denote the wild inertia

subgroup of Gal(Lw/Lw). If ` satisfies the following congruences

`nK 6≡


±1 mod p if p 6= 2,3

±1 mod 8 if p = 2

±1,4,7 mod 9 if p = 3,

(?)

then the same congruences hold for `t and hence ρ̄v(Ww) is trivial if p 6= 2,3 and is

at most p5 if p = 2 and at most p if p = 3. Hence for v /∈ S laying above ` satisfying

the above conditions, using that eE ≤ [L : Q] = nL, the inequality of Proposition

5.3.4 implies

nK(ρ̄v,Lw)≤


2(1+nL) if p 6= 2,3

2(1+6nL) if p = 2

2(1+2nL) if p = 3.

Writing, pw for the prime ideal of L corresponding to w, we hence find that the
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conductor of ρ̄v divides

C := ∏
w∈S,
w-2,3

p2+2nL
w ·∏

w∈S,
w|2

p2+12nL
w ·∏

w∈S,
w|3

p2+4nL
w .

Finally, notice that ρv is odd thanks to the condition on the determinant and, more-

over, [15, Proposition 5.3.2] implies that there exists a density one set of primes

such that (ρ̄v)|GL(ζ`)
is irreducible, i.e. (TW) is satisfied.

We can hence apply Conjecture 5.1.4 to ρ̄v for v ∈ Σ, where Σ is the infinite

set of primes v | ` such that v 6∈ SK , ` satisfies (?), ρ̄v is absolutely irreducible and

satisfies (TW). We have produced infinitely many fv Hilbert modular eigenform,

which by Theorem 5.3.5 are of parallel weight 2 and level dividing C. Their Fourier

coefficients are defined over a ring O(v) ⊂ OK and at a prime λ | v the associated

Galois representation ρ fv,λ is isomorphic to ρ̄v modulo λ . Since the space of Hilbert

modular form of fixed weight and with conductor dividing C is finite dimensional

(see [73, Theorem 6.1]), we can find at least one Hilbert modular eigenform f of

parallel weight 2 and level dividing C defined over some O ⊂ OK such that for

infinitely many of the v above the same property holds for ρ f ,λ for λ | v. This

implies that for all w 6∈ S the congruence

aw( f )≡ aw mod λ | v

holds for infinitely many primes λ and hence aw( f ) = aw as required.

5.3.3 Proof of Theorems 5.1.1 and 5.1.2

Recall that, as in Section 5.1.1, the system (ρv)v is required to satisfy the following

additional property:

the field generated by aw for every w is exactly K. (S.5)

In other words, with have K( f ) = K, where f is the Hilbert modular form for L

produced in Proposition 5.3.2.
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Proof of the Theorems. Starting with our initial datum of Galois representations, we

have produced a Hilbert modular form f for L. We can then apply Theorem 5.2.7,

which gives an abelian variety A f over L of dimension [K :Q] and an embedding of

OK into End(A). For all but finitely many w | p at which A f has good reduction

det(1−XρA f ,v(Frobw)) = 1−aw( f )X +NwX2,

where v is a finite prime of K not dividing p and ρA f ,v is the Gal(L/L)-representation

on Tv(A f ), the v-adic Tate module of A f . We therefore have produced an abelian

variety A f as stated in Theorem 5.1.1 and 5.1.2.

We just need to stress that we do not require any conjectural statement in

the case nL = 1. Indeed we can use Theorem 5.2.3 in place of Blasius’ conjec-

tural version and Serre’s conjecture is fully known thanks to the work of Khare–

Wintenberger [98, Theorem 1.2].

5.3.4 A corollary

We rephrase the main results of the section as needed to prove Theorem 5.1.3.

Corollary 5.3.6. Assume that, in the setting of Theorems 5.1.1 and 5.1.2, we also

have a representation

ρ : Gal(L/L)→ GL2(OK/N)

for some integral ideal N⊂OK , such that for all pairs (v,b), where v is a place of K

and b a natural number, such that vb divides N, the reductions of ρ and ρv modulo vb

agree. Then there exists a nK-dimensional abelian variety A/L with good reduction

at all w outside S and the action of Gal(L/L) on A[N] is given by ρ .

Proof. Theorems 5.1.1 and 5.1.2 give an nK-dimensional abelian variety A/L and,

using the Néron-Ogg-Shafarevich criterion, we can see that it has good reduction at

all w outside S. Finally Gal(L/L) acts on A[N] via ρ , since the reduction modulo vb

of ρ and ρv agree.
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5.4 Finite descent obstruction and proof of Theorem

5.1.3
In this final section we discuss the finite descent obstruction for integral points,

explaining how it relates to the system of Galois representations considered in the

previous section. Using the main theorems of the chapter, we indeed produce an

OL,S-point of integral models of twists of Hilbert modular varieties, therefore prov-

ing Theorem 5.1.3.

5.4.1 Recap on the integral finite descent obstruction

Let Y/F be a smooth, geometrically connected variety (not necessarily proper) over

a number field F . Let S be a finite set of places of F and, as before, assume that S

contains the archimedean places and all places of bad reduction of Y . Choose and

fix a smooth model Y of Y over OF,S. In this section we present the definition of the

set Y f−cov, which corresponds to the adelic points of Y that are unobstructed by all

Galois covers. To make the chapter self contained we recall the discussion from [91,

Section 2] (where they work with affine curves). We then explain that, for Hilbert

modular varieties, a point unobstructed by finite covers admits an infinite tower of

twists of covers with a compatible system of lifts of adelic points along the tower

(following [91, Proposition 1]).

Let π : X→ Y be a map of OF,S-schemes, such that it becomes a Galois cov-

ering over F . Such map is called geometrical Galois cover of Y. Denote by Tw(π)

the set of isomorphism classes of twists of π , i.e. of maps π ′ : X′→ Y that become

isomorphic to π over F . We have

Y(OF,S) =
⋃

π ′∈Tw0(π)

π
′ (X′(OF,S)

)
,

where Tw0(π) is a suitable finite subset of Tw(π) (for a more detailed discussion we

refer to [163, Page 105 and 106]) and π ′ : X′→ Y is a twist of π . In what follows,

w denotes a place of F .

Definition 5.4.1. We define Y f−cov(OF,S) = Y f−cov as the set of (Pw)w ∈
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∏w/∈SY(OFw) such that, for each geometrical Galois cover π , we can write

Pw = π
′(Qw), ∀w /∈ S

for some π ′ ∈ Tw0(π) and (Qw)w ∈∏w/∈SX
′(OFw).

Proposition 5.4.2. A point (Pw)w lies in Y f−cov if and only if, for each geometrical

Galois cover π : X→ Y, we can choose a twist π ′ : X′ → Y and a point (Pw)π ∈

∏w/∈SX
′(OFw) lifting (Pw)w in a compatible way (i.e. if π1,π2 are Galois covers and

π2 dominates π1, then π ′2 dominates π ′1 and (Pw)π ′2
maps to (Pw)π ′1

).

A few words to justify the equivalence between the two definitions are needed.

This is explained in [91, Proposition 1] for curves and it relies on results from [164]

(notably [164, Lemma 5.7]2). In [164], Stoll works with projective varieties and

their rational points, but what he says still holds true for the integral points of non-

projective varieties. Once such differences are taken into account, the proof works

in the same way in our setting.

Clearly we have Y(OF,S)⊂ Y f−cov and so if Y f−cov is empty, then Y(OF,S) has

to be empty as well. What can be said when Y f−cov contains a point?

Definition 5.4.3. We say that the S-integral finite descent obstruction is the only ob-

struction for the existence of S-integral points, whenever Y f−cov(OF,S) 6= /0 implies

that Y(OF,S) is non-empty.

From now on we specialise to the case of Hilbert modular varieties (and their

twists).

5.4.2 Integral points on Hilbert modular varieties

Recall the notation from section 5.2.1.1. Let YK(N) be the nK-dimensional Q-

scheme described in Section 5.2.1.1 and let N be the integer such that N∩Z= (N).

The set of twists of π : YK(N)→YK(1) over a number field F corresponds to the set

of Galois representations ρ : Gal(F/F)→ GL2(OK/N) whose determinant is the

2It is actually better to refer to the corrected version of [164] available on the author’s website
(www.mathe2.uni-bayreuth.de/stoll/papers/Errata-FiniteDescent-ANT.
pdf).

www.mathe2.uni-bayreuth.de/stoll/papers/Errata-FiniteDescent-ANT.pdf
www.mathe2.uni-bayreuth.de/stoll/papers/Errata-FiniteDescent-ANT.pdf
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cyclotomic character χ : Gal(F/F)→ (Z/NZ)×. Moreover a point x ∈ YK(1)(F)

lifts to a F-rational point of the twist of YK(N) corresponding to a representation ρ ,

if and only if ρ describes the action of Gal(F/F) on the N-torsion of the underlying

abelian variety Ax (as an OK-module).

Using its moduli interpretation, as described in Section 5.2.1.1, we can con-

struct a model of YK(N) over Z, which is smooth over Z[1/b], for some natural

number b, divisible by N. To be more precise b depends on the level structure and

the discriminant of K. Fixing such model, that we denote by YK(N), we can talk

about OF,S-points of YK(N), for any number field F and set of places S containing

the archimedean places and the ones dividing b. Such OF,S-points then correspond

to abelian varieties (with some extra structure), having good reduction outside S.

Notice that N is assumed to be bigger than 3, since it is important to have a fine

moduli space. For example the affine line is the moduli space of elliptic curves and

has plenty of Z-points, even though there are no elliptic curves defined over Z.

We are ready to study the finite descent obstruction for the OL,S-points of

YK(N), where L is a totally real field (the fact that L is totally real is used only

in the next section) and its twists. Let

ρ : Gal(L/L)→ GL2(OK/N).

be a representation whose determinant is the cyclotomic character. Assume that

S contains the places w of ramification of ρ . Under such assumption, arguing as

above, we can consider Yρ the S-integral model of the twist of YK(N) corresponding

to ρ . From now on we assume that Yρ(OL,S) is non-empty. The next lemma relates

a point (Pw)w ∈ Y
f−cov
ρ to a system of Galois representations as considered in the

previous section.

Lemma 5.4.4. A point (Pw)w ∈ Y
f−cov
ρ (OL,S) corresponds to the following data:

• For each v finite place of K a representation ρv : Gal(L/L)→ GL2(Kv);

• For each w finite place of L such that w /∈ S an abelian variety Aw/Lw of

dimension nK , with good reduction and OK-multiplication;
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such that

• For every place v in K the action of Gal(Lw/Lw) on Tv(Aw) is given by the

restriction of ρv to the decomposition group at w;

• For all pairs (v,a) such that va divides N, the reductions of ρ and ρv modulo

va agree.

Moreover every such system satisfies the first four conditions of (S).

Proof. We first check, using Lemma 5.4.2, that an unobstructed point corresponds

to a family of Galois representations as described above and then we show that

every such family enjoys the desired properties.

Thanks to Proposition 5.4.2, we can fix a compatible system of lifts of (Pw)w

on Y
f−cov
ρ (OL,S). In particular, for each M divisible by N, we obtain a twist YK(M)′

of YK(M) and a compatible family of points (Pw)M of YK(M)′ lifting (Pw)w. We

remark here that the latter compatible family of points depends on (Pw)w. Indeed, a

priori, we can not simply lift ρ to mod M coefficients.

By the interpretation of YK(M)′ as moduli space of abelian varieties, as dis-

cussed above, the point (Pw)M corresponds to an abelian variety Aw/Lw of dimen-

sion nK , with good reduction and OK-multiplication and prescribed M-torsion. The

other conditions are easily checked as at the end of proof of [91, Theorem 2].

The fact that the action of Gal(Lw/Lw) on Tv(Aw) is given by the restriction

of ρv to the decomposition group at w ensures that (S.1) and (S.2) are satisfied.

Moreover, since Aw has good reduction, then Aw[v]' ρ̄v is a finite flat group scheme

over OKw for all w | ` if v | `, giving that (S.3) also holds.

Finally, we need to show that (S.4) is satisfied. With the three conditions above

one can show, as in the proof of Proposition 5.3.2, that the conductor of ρ̄v divides

a fixed ideal C of L. If w is such that Aw/Lw is supersingular at v, then Aw[v]' ρ̄v is

absolutely irreducible. If there existed infinitely many v such that ρ̄v is absolutely

reducible, we could then write the semisemplification of ρ̄v as direct sum of φ and

χ`φ
−1, for some character φ . Since ρ̄v ' Aw[v] for w | p, we then have that Aw is

ordinary and hence φ is unramified at w. We also know that the conductor of φ
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divides C, hence if w≡ 1 mod C we have

aw(Aw) := Tr(Frobw,Tv(Aw))≡ χ`(Frobw)+1 mod v.

Since χ`(Frobw) = p[Lw:Qp], we showed that if we had infinitely many v such that ρ̄v

is absolutely reducible, we would find aw(Aw) = p[Lw:Qp]+1. Since the Weil bound

says that |aw| ≤ 2
√

p[Lw:Qp], we reached a contradiction.

Remark 5.4.5. As discussed above, for any number field F , we have a map from

YK(F) to systems of Galois representations satisfying (S.1)− (S.4). Thanks to Falt-

ings [65, Satz 6], this map has finite fibres. Indeed if two points give rise to the same

system, the two corresponding abelian varieties have the same locus of bad reduc-

tion, that we denote by S, it follows from the Shafarevich conjecture that Shimura

varieties of abelian type have only finitely OF,S-points. For more details we refer to

[173, Theorem 3.2(A)].

We are now ready to prove the main theorem about descent obstruction for

Hilbert modular varieties.

5.4.3 Proof of Theorem 5.1.3

We do not treat the cases nL = 1 and nL > 1 separately, but, as in the proof of The-

orem 5.1.1 and 5.1.2, we emphasize that we do not need any conjectural statement

in the case nL = 1, since we have Shimura’s unconditional result, Theorem 5.2.3.

Proof of Theorem 5.1.3. Thanks to Lemma 5.4.4, a point in Y
f−cov
ρ (OL,S), which

is assumed to be non-empty, gives rise to a compatible system of representations

of Gal(L/L), denoted by {ρv}v. Let E be the the subfield of K generated by

tr(ρv(Frobw)) for all w. If E = K, Corollary 5.3.6 produces an OL,S-abelian va-

riety A with OK-multiplication, such that Gal(L/L) acts on A[N] via ρ . To conclude

the proof we just need to see how A corresponds to a point P ∈ Yρ(OL,S). The

only issue that is not clear from the quoted corollary is whether A is principally

OK-polarised, but this follows from the discussion in section 5.2.3.

If E is strictly contained in K, i.e. condition (S.5) is not satisfied, we consider

SE , the Hilbert modular variety associated to E and of level N∩OE . For the same
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reason as above, the system {ρv} corresponds to a OL,S-point P of the twist by ρ of

SE . The embedding ResE/QGL2 ↪→ResK/QGL2 induces a map of Shimura varieties

r : SE → YK(N),

and therefore on their twists by ρ . Via r, we can regard P as an OL,S-point of

Yρ , therefore concluding the proof of the theorem. The only difference is that the

abelian variety constructed in this case is not primitive. The proof of Theorem 5.1.3

is concluded.



Chapter 6

On the geometric Mumford–Tate

conjecture for subvarieties of

Shimura varieties

We study the image of `-adic representations attached to subvarieties of Shimura va-

rieties ShK(G,X) that are not contained in a smaller Shimura subvariety and have no

isotrivial components. We show that, for ` large enough (depending on the Shimura

datum (G,X) and the subvariety), such image contains the Z`-points coming from

the simply connected cover of the derived subgroup of G. This can be regarded

as a geometric version of the integral `-adic Mumford–Tate conjecture. The work

presented here appeared in the paper [12].

6.1 Introduction

6.1.1 Geometric and `-adic monodromy

Let (G,X) be a Shimura datum, as in section 2.2 and K a compact open subgroup

of G(A f ). For the length of this chapter we fix a faithful rational representation

G⊂GL(V ) and an integral structure VZ⊂V such that the image of Γ :=G(Q)+∩K

in GL(V ) is contained in GL(VZ).

Let S be the the image of X+×{1} in ShK(G,X). Write π ét
1 (S) for the étale

fundamental group of S, with respect to some base point. One can attach to S (and
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its subvarieties) an adelic representation

π
ét
1 (S)→ K ⊂ G(A f ),

corresponding to the tower of étale covering of ShK(G,X) indexed by open sub-

groups of K (see for example [65, Section 4] and [174, Section 2]).

Let C ⊂ S be a smooth irreducible complex subvariety. We define the `-adic

monodromy of C, denoted by Π`
C, as the image of

π
ét
1 (CC)→ π

ét
1 (SC)→ K

π`−→ G(Q`),

where π` : G(A f )→ G(Q`) denotes the projection to the `-th component. See Sec-

tion 6.3.1 for a more detailed description of Π`
C.

Here we prove that, for `-large enough, the `-adic monodromy of subvarieties

C ⊂ S, satisfying two conditions we introduce in the next subsection, is large.

6.1.2 Main theorem

To study the geometric and `-adic monodromy of subvarieties of S we may assume

they are not contained in any smaller Shimura subvariety of S (Theorem 6.2.5 will

explain what happens if this is not the case). This is made precise in the next

definition.

Definition 6.1.1. Let S be a connected component of a Shimura variety ShK(G,X)

and C be an irreducible smooth complex subvariety of S. We say that C is Hodge

generic if there exists a point c ∈ C whose corresponding morphism of real alge-

braic groups S→ GR does not factor through HR ⊂ GR for any rational algebraic

subgroup H  G.

Let Gad be the adjoint group of G and Xad be the Gad(R)-orbit in Hom(S,Gad)

that contains the image of X in Hom(S,Gad). Choose a compact open subgroup

Kad ⊂Gad(A f ) containing the image of K. Then (Gad,Xad) is a Shimura datum and

we call ShKad(Gad,Xad) the adjoint Shimura variety associated to ShK(G,X). The

last ingredient needed to state our main theorem is the following.
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Definition 6.1.2. Let S be a connected component of a Shimura variety ShK(G,X)

and C be an irreducible smooth complex subvariety of S. We say that C has no

isotrivial components if, for every decomposition (Gad,Xad,Kad) ∼ (G1,X1,K1)×

·· · × (Gn,Xn,Kn), the image of C → S→ ShKi(Gi,Xi) has dimension > 0 for all

i = 1, . . . ,n.

Set G(Z`) = G(Q`)∩GL(VZ⊗Z`). Let Gder be the derived subgroup of G and

λ : Gsc → Gder be the simply connected cover of Gder. We write G(Z`)
+ for the

subgroup of G(Z`) given by the image of λZ` : Gsc(Z`)→ Gder(Z`). It is an open

subgroup of Gder(Z`) of index bounded independently of `. We now state the main

theorem of the chapter.

Theorem 6.1.3. Let S be a connected component of a Shimura variety ShK(G,X)

and C be an irreducible smooth complex subvariety of S which is Hodge generic and

has no isotrivial components. For all ` big enough (depending only on (G,X ,K) and

C), we have that G(Z`)
+ ⊂Π`

C.

Remark 6.1.4. In general one cannot expect the equality Π`
C = G(Z`), even for

large `. Indeed this may only happen when the Hodge structure associated to C,

hC : S→GR, is Hodge maximal, i.e. there is no non-trivial isogeny of connectedQ-

groups H→G such that hC lifts to a homomorphism hC : S→HR→GR (see [157,

Definition 11.1] and [31, Definition 2.1]). Of course if G is simply connected, there

are no such isogenies. Theorem 6.1.3, when G is semisimple simply connected,

shows indeed that G(Z`)
+ = G(Z`) = Π`

C, for all but finitely many primes `.

6.1.3 Main theorem for Shimura varieties of Hodge type

Let g be a positive natural number. The prototype of all Shimura varieties is the

Siegel moduli space of principally polarised (complex) abelian varieties of dimen-

sion g with a level structure, in which case (G,X) = (GSp2g,H
±
g ), as recalled in

Example 2.2.11. For more details see also [46, Section 4]. We end the introduction

of the chapter reformulating Theorem 6.1.3 for subvarieties of Shimura varieties

parametrising abelian varieties. We remark that the notion of having no isotrivial
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components for C ⊂ ShK(GSp2g,H
±
g ) we proposed in the (G,X)-language (Defini-

tion 6.1.2) does not translate as parametrising a family of abelian varieties A→C

with no non-zero constant factors (not even after passing to a finite cover of C).

This is discussed in [1, Scholie (page 13)] and [124, Section 4.5]. Here we say that

a g-dimensional abelian scheme A→C is with no isotrivial components if it corre-

sponds to a subvariety with no isotrivial components (as in Definition 6.1.2) of the

Shimura variety associated to (GSp2g,H
±
g ). We have the following.

Corollary 6.1.5. Let C be a complex smooth irreducible variety and η its geometric

generic point. Let A→ C be a g-dimensional abelian scheme with no isotrivial

components, write M for the Mumford–Tate group of Aη and T`(Aη) for the `-adic

Tate module of Aη . For all ` large enough, the image of the map

π
ét
1 (CC)→ GL(T`(Aη))

contains M(Z`)
+.

In proving the corollary, we may replace C with a finite cover and the family

A→ C with an isogenous abelian variety. Hence we may assume that the family

A→ C gives rise to a subvariety of ShK(3)(GSp2g,H
±
g ), where K(3) ⊂ GSp2g(Ẑ)

is the subgroup of elements that reduce to the identity modulo 3. By assumption

such subvariety has no isotrivial components (in the sense of Definition 6.1.2).

Since such family is contained in a Shimura subvariety whose defining group is

the Mumford–Tate group of the abelian variety Aη , the corollary follows from The-

orem 6.1.3 applied to the smooth locus of the image of C in ShK(3)(GSp2g,H
±
g ).

Remark 6.1.6. We explain why Corollary 6.1.5 can be thought as a geometric ana-

logue of the integral Mumford–Tate conjecture for abelian varieties (see [157, Con-

jectures 10.3, 10.4 ,10.5] and [31]). As recalled in section 2.2.2, Shimura varieties

admit canonical models over number fields. Definition 6.1.2 implies, among other

things, that C has positive dimension. Let us make the analogy with the case of an

abelian variety B over a number field L. Let C be the spectrum of L. We still have a
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continuous morphism

ρ` : π
ét
1 (C)→ GL(T`(B))

describing the action of the absolute Galois group of L on the torsion points of B.

The Mumford–Tate conjecture, as discussed at the end of section 2.5.3, predicts that

the image of ρ` is open in the Z`-points of the Mumford–Tate group M of B and its

integral refinement that Im(ρ`) is as large as possible and its index in M(Z`) can be

bounded independently of `.

Outline of chapter

In Section 6.2 we discuss how to compute the geometric monodromy of subvari-

eties of (connected components of) Shimura varieties and explain the importance of

Definition 6.1.2. In Section 6.3 we prove Theorem 6.1.3, combining the results of

Section 6.2 with a theorem of Nori.

6.2 Monodromy of subvarieties, after Deligne, André

and Moonen
We explain how to produce, starting form a subvariety C ⊂ ShK(G,X), a Shimura

subvariety of ShK(G,X) containing C and such that C becomes Hodge generic and

has no isotrivial components in such Shimura subvariety. This section builds on the

interpretation of Shimura varieties in terms of Hodge theory, as recalled in section

2.2.1.

6.2.1 Deligne–André Monodromy Theorem

Let S be a connected, smooth complex algebraic variety and V = (V,F,Q) a po-

larised variation of Z-Hodge structure on S, as described in section 2.2.1.2.

Let s ∈ S be a Hodge generic point. From the local system underlying V we

obtain a representation ρ : π
top
1 (S(C))→GL(V ), where π

top
1 denotes the topological

fundamental group of San with base point s.

Definition 6.2.1. We denote by Ms the connected component of the identity of the

Zariski closure of the image of ρ and we call Ms the (connected) monodromy group.
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Since we fixed a trivialisation for λ ∗V, we have that Ms ⊂ GL(V ) and Ms does not

depend on the choice of s and s̃.

The following will be crucial for proving the results of the chapter. The proof

can be found in [1, Theorem 1] and [45] (see also [103, Theorem 4.10.]). As in sec-

tion 2.2.1.2, here Σ denotes a suitable countable union of proper analytic subspaces

of S.

Theorem 6.2.2 (Deligne, André). Let s ∈ S−Σ. We have:

Normality. Ms is a normal subgroup of the derived group Gder;

Maximality. Suppose S contains a special point. Then Ms = Gder.

An immediate application of Theorem 6.2.2 is the following. Let S be a con-

nected component of a Shimura variety ShK(G,X). For simplicity assume that G is

a semi-simple algebraic group of adjoint type and that G is the generic Mumford–

Tate group on X . Fixing a rational representation of G in GL(V ), as we did from

the section 6.1, we obtain a polarised variation of Q-Hodge structure, denoted by

V, on the constant sheaf VX+ . Moreover, since Γ = G(Q)+∩K acts freely on X+,

V descends to a variation of Hodge structures on S. To obtain a Z-structure and to

apply the previous theorem, we may choose VẐ, a K-invariant lattice in V ⊗A f and

define VZ as V ∩VẐ. Let c ∈C be a Hodge-generic point on C, since π1(C,c) acts

on VZ,c, it acts on VZ. Let Π be its image in GL(VZ), it is a finitely generated group.

We have

Corollary 6.2.3. Let C be a smooth irreducible Hodge generic subvariety of S con-

taining a special point t. We have Π ⊂ Γ and both of them are Zariski dense in

G.

The next section explains what happens when C does not contain a special

point and it is not Hodge generic. More details can be found in [124, Sections 2.9,

3.6 and 3.7].
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6.2.2 Monodromy of subvarieties with no isotrivial components

Let C be an irreducible smooth complex subvariety of a Shimura variety ShK(G,X).

Since the irreducible components of the intersection of two Shimura subvarieties

of ShK(G,X) are again Shimura subvarieties, there exists a unique smallest sub-

Shimura variety SC ⊂ ShK(G,X) containing C. By definition there exists aQ-group

M such that SC is an irreducible component of the image of X+
M ×ηK in ShK(G,X),

for some η ∈ G(A f ), where X+
M is the restriction of X+ to M. Moreover we may

take M to be the generic Mumford–Tate group on C (recall that we fixed from the

beginning a faithful representation of G). By construction, C is Hodge generic in

SC.

Let H the connected monodromy group associated to the polarised variation

of Z-Hodge structures V restricted to C. Theorem 6.2.2 implies that H is a normal

subgroup of the derived subgroup of M and, since M is reductive, we can find a

normal algebraic subgroup H2 in M such that M is the almost direct product of H

and H2. This induces a decomposition of the adjoint Shimura datum:

(Mad,XMad) = (Had,XHad)× (Had
2 ,XHad

2
).

As in Corollary 6.2.3, when C contains a special point, H is the derived subgroup of

M, XM is isomorphic to XH and XH2 is nothing but a point. But if C does not contain

a special point, Moonen, in [124, Proposition 3.7], proves the following.

Proposition 6.2.4 (Moonen). Let C be an irreducible component in the preimage

of C in XM. The image of C under the projection XM → XH2 is a single point,

say y2 ∈ XH2 . We have that C is contained in the image of (Y1×{y2})×η ′K in

ShK(G,X) for some connected component Y1 ⊂ XH and a class η ′K ∈ G(A f )/K.

To summarise our discussion, from Corollary 6.2.3 and Proposition 6.2.4 ap-

plied to C, we have

Theorem 6.2.5. Let C be an irreducible smooth complex Hodge generic subvari-

ety of a Shimura variety ShKM(M,XM). There exists a unique sub-Shimura datum
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(H,XH) ↪→ (M,XM) such that

(Mad,XMad) = (Had,XHad)× (Had
2 ,XHad

2
),

and

• the projection of C to ShKHad (H
ad,XHad), denoted by C̃, is Hodge generic and

has no isotrivial components;

• the projection of C to ShKHad
2
(Had

2 ,XH2) is a single point.

Moreover

• the fundamental groups of C̃ and of ShKHad (H
ad,XHad) are both Zariski dense

in Had.

6.3 `-adic monodromy
After describing the interplay between the geometric and the `-adic monodromy of

subvarieties of S, we eventually prove Theorem 6.1.3.

6.3.1 A commutative diagram

Let V be a variation of polarised Z-Hodge structures on S (as explained in Section

6.2) and let

π
top
1 (C(C))→ Γ⊂ GL(VZ)

be the monodromy representation of the induced variation on C. Let Γ be the closure

of Γ in GL(VZ⊗ Ẑ). The map π
top
1 (C(C))→ Γ→ Γ canonically factorises trough

the profinite completion of π
top
1 (C(C)), which is canonically isomorphic to π ét

1 (CC),

the étale fundamental group of CC. Therefore we have a commutative diagram

π
top
1 (C(C)) Γ⊂ GL(VZ)

π ét
1 (CC) Γ⊂ GL(VZ⊗ Ẑ) .
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Let π` : GL(VZ⊗ Ẑ)→ GL(VZ⊗Z`) be the projection to the `-th component. The

image of the map

π
ét
1 (CC)→ Γ

π`−→ GL(VZ⊗Z`)

is precisely the `-adic monodromy of C, that we denoted in section 6.1 by Π`
C.

6.3.2 Proof of Theorem 6.1.3

First of all notice that, to prove Theorem 6.1.3, the difference between (Gad,Xad)

and (G,X) is irrelevant. Indeed the arithmetic data play no role in the problem.

Therefore we may and do assume that G is of adjoint type. Since Theorem 6.1.3 is

about large enough primes `, we may ignore finitely many primes and assume that

G is the generic fiber of a semisimple adjoint group scheme over Z.

Before starting the proof we fix some notations. By (−)` we denote the re-

duction modulo-` of subgroups of G(Z) and we write G(F`) (resp. G(F`)+) for the

reduction modulo-` of G(Z) (resp. G(Z`)
+).

Let C ⊂ S = Γ\X+ be a subvariety as in the statement of Theorem 6.1.3 and

let Π⊂ Γ be the image of the geometric monodromy representation

π
top
1 (C(C))→ π

top
1 (S(C))→ Γ⊂ GL(VZ).

Since C is Hodge generic and has no isotrivial components, Corollary 6.2.3 shows

that Π is Zariski dense in G.

The following is a theorem of Nori [133, Theorem 5.1] about Zariski dense

subgroups of semisimple groups.

Theorem 6.3.1 (Nori). Let H ⊂ GLn/Q be a semisimple group and Π ≤ H(Q)

be a discrete finitely generated Zariski-dense subgroup. Then for all sufficiently

large prime numbers ` (depending only on H and Π), the reduction modulo-` of Π

contains H(F`)+.

Reducing modulo-` is well defined for ` large enough: indeed, since Π is

finitely generated, there are only finitely many primes `1, . . . , `k such that Π belongs
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to

H(Z[`−1
i ]i) := H ∩GLn(Z[`−1

1 , . . . , `−1
k ]),

and the reduction mod ` is well-defined for all other primes.

Since the group G is assumed to be semisimple and adjoint we may apply

Theorem 6.3.1 to get, for ` large enough, a chain of inclusions

G(F`)+ ⊂Π` ⊂ Γ` ⊂ G(F`).

We are left to lift such chain of inclusions to the Z`-points of G. Denote by α`

the reduction modulo-` map:

α` : G(Z`)→ G(F`).

It is a well known fact that, for ` large enough, if G is a connected semisimple group,

α` is a Frattini cover, i.e. α` is surjective and G(Z`) contains no strict subgroups

mapping surjectively onto G(F`) (equivalently, the kernel of α` is contained in the

Frattini subgroup of G(Z`)). A proof of this fact can be found in [109, Lemma

16.4.5 (page 403)], see also [30, Section 2.3] and [116, Proposition 7.3].

Nori, in [133, Section 3] (in particular [133, Remark 3.6]), shows also that, for

` large enough, G(F`)+ can be identified with the subgroup of G(F`) generated by

its `-Sylow subgroups. Hence we have that the index [G(F`) : G(F`)+], for `-large

enough, is prime to `. From this and the fact that α` is Frattini, we deduce that the

maps

α
−1
` (G(F`)+)→ G(F`)+, and α

−1
` (Π`)→Π`

are also Frattini covers (see also [30, Section 2.3]). Since Π`
C ⊂ α

−1
` (Π`) surjects

onto Π` and G(Z`)
+ onto G(F`)+, the inclusions

G(Z`)
+ ⊂ α

−1
` (G(F`)+), and Π

`
C ⊂ α

−1
` (Π`)



6.3. `-adic monodromy 120

are actually equalities. Eventually we have

G(Z`)
+ ⊂Π

`
C,

as desired. This ends the proof of Theorem 6.1.3.



Chapter 7

Non-arithmetic ball quotients and

Hodge theory (joint with E.Ullmo)

We study complex hyperbolic lattices Γ⊂ PU(1,n), for n > 1, using Hodge theory.

Let SΓ be the ball quotient associated to Γ. By the work of Baily, Borel and Mok,

SΓ is a quasi projective variety. We prove that SΓ naturally admits a holomorphic

map to a period domain for polarised integral variation of Hodge structures (not

necessarly of Shimura type). The work presented here appeared in the fourth section

of the preprint [14].

7.1 Introduction
The study of lattices of semisimple Lie groups G (without compact factors) is a

field rich in open questions and conjectures. Complex hyperbolic lattices and their

finite dimensional representations are certainly far from being understood. A lattice

Γ ⊂ G is archimedean superrigid if for any simple noncompact Lie group G′ with

trivial centre, every homomorphism Γ→ G′ with Zariski dense image extends to a

homomorphism G→ G′. Thanks to the work of Margulis [112], Corlette [42] and

Gromov–Schoen [86], all irreducible lattices in simple Lie groups are superrigid

unless G is SO(1,n) or SU(1,n) for some n≥ 1. Real hyperbolic lattices are known

to be softer and more flexible than their complex counterpart and non-arithmetic

lattices in SO(1,n) can be constructed for every n [85]. Non-arithmetic complex

hyperbolic lattices have been constructed only in SU(1,n), for n = (1,)2,3 [128,
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54].

One can consider the quotient by Γ of the symmetric space X associated to

G. In the complex hyperbolic case we obtain a ball quotient, denoted by SΓ, which

has a natural structure of a quasi-projective variety, as proven by Baily-Borel [7] in

the arithmetic case and by Mok [54] in general. Indeed, if Γ is arithmetic, SΓ is a

Shimura variety as described in section 2.2 (see also Example 2.2.13). In this chap-

ter we prove, using a recent work of Esnault and Groechenig [64] and Simpson’s

theory [162], that SΓ always embeds in a period domain for polarised integral vari-

ations of Hodge structures. In particular we show that the traces of elements of Γ,

under the adjoint representation, lie in the ring of integers of a totally real number

field. Applications of such result to a generalisation of the Zilber-Pink conjecture,

which generalises the one described in section 3.4.1, are discussed in Chapter 8.1.

Notations

In this and the next chapter we denote by G real algebraic groups and by G algebraic

groups defined over some number field, which is eitherQ, or a (totally) real number

field. Let K be a real field, the K-forms of G = SU(1,n) are known, by the work of

Weil [176], to be obtained as SU(h) for some Hermitian form h on Fr, where F is

a division algebra with involution over a quadratic imaginary extension L of K and

n+1 = r deg(F).

7.2 Preliminaries on lattices
A discrete subgroup Γ of a locally compact group G is a lattice if G/Γ has a finite

invariant Haar measure. All lattices considered in this chapter are also assumed to

be torsion free. Selberg’s Lemma asserts if G is a semisimple Lie group, then Γ

has a torsion-free subgroup of finite index, see for example [127, Theorem 4.8.2].

Finally a subgroup Γ⊂ G is arithmetic if there exists a semisimple linear algebraic

group G/Q and a surjective morphism with compact kernel p : G(R)→ G such

that Γ lies in the commensurability class of p(G(Z)). Here we denote by G(Z)

the group G(Q)∩ v−1(GL(VZ)) for some faithful representation v : G→ GL(VQ),

where VQ is a finite dimensional Q-vector space and VZ a lattice in VQ. Torsion
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free arithmetic subgroups are lattices. We remark here that there is an isogeny from

λ : SU(1,n)→ PU(1,n) and we may assume that, up to replacing the lattice by a

finite index subgroup, that any lattice in PU(1,n) comes from a lattice in SU(1,n).

7.2.1 Local and cohomological rigidity

Let G be a semisimple algebraic group without compact factors and Γ be a subgroup

of G. Denote by

Ad : Γ
ρ−→ G Ad−→ Aut(g) (7.2.1)

the adjoint representation in the automorphism of the Lie algebra g of G.

Definition 7.2.1. We define the trace field of Γ as the field generated over the ratio-

nal by

{trAdγ : γ ∈ Γ}.

If Γ is a lattice, its trace field is a finitely generated field extension of Q, which

depends only on the commensurability class of Γ. Indeed it is well known that

lattices are finitely generated (and even finitely presented), see for example [127,

Theorem 4.7.10] and references therein.

Definition 7.2.2. An irreducible lattice Γ⊂G is locally rigid if there exists a neigh-

bourhood U of the inclusion i : Γ ↪→ G in Hom(Γ,G), such that any elements of U

is conjugated to i.

The trace field K of a locally rigid lattice is a number field. By Borel density

theorem, lattices in G are Zariski dense (see for example [127, Corollary 4.5.6]).

In particular Γ determines a K-form of G, which we denote by G, such that, up

to conjugation by an element in G, Γ lies in G(K) (and K is minimal with this

property). For references see [175], [112, Chapter VIII, Proposition 3.22] and [54,

Proposition 12.2.1].

Lattices in G = SU(1,n), necessarily for n > 1, are known to be locally rigid

(and the trace field is a totally real number field, as we prove in section 7.4). For

completeness we describe a more general1 result [77, Theorem 0.11], which builds
1More general in the sense that it allows also to consider G = SL2(C). Even if local rigidity for

non-cocompact lattices in SL2(C) can fail.



7.2. Preliminaries on lattices 124

on the study of lattices initiated by Selberg, Calabi and Weil [177].

Theorem 7.2.3. If G is not locally isomorphic to SL2(R), then, for every lattice

Γ in G there exists g ∈ G and a subfield K ⊂ R of finite degree over Q, such that

gΓg−1 is contained in the set of K-rational points of G.

To construct a Z-VHS we need a stronger rigidity, namely cohomological

rigidity (without boundary conditions). Bulding on a study initated by Weil [177]

in the cocompact case, Garland-Raghunathan [77, Theorem 1.10], proved also the

following.

Theorem 7.2.4 (Garland-Raghunathan). Let G be a semisimple Lie group, not lo-

cally isomorphic to SL2, nor to SL2(C). For any lattice Γ in G, the first Eilenberg–

MacLane cohomology group of Γ with respect to the adjoint representation is zero.

In symbols:

H1(Γ,Ad) = 0.

Too see why such vanishing is related to a rigidity result, observe that the

the space of first-order deformations of ρ : Γ ↪→ G is naturally identified with

H1(Γ,Ad), where Ad is the adjoint representation, as in 7.2.1.

Since lattices are finitely generated, we know that there exist a finite set of

finite places Σ of K such that Γ lies in G(OK,Σ) (once a representation is fixed and

up to conjugation by G). In the next subsection we discuss what happens when the

lattices Γ are contained in G(OK).

7.2.2 Lattices and integral points

Let K ⊂ R be a totally real number field and OK its ring of integers. The following

is [54, Corollary 12.2.8 ], see also [128, Lemma 4.1].

Theorem 7.2.5 (Mostow–Vinberg arithmeticity criterion). Let Γ⊂G(OK) be a lat-

tice in G. Γ is arithmetic if and only if for every embedding σ : K → R different

form the fixed embedding K ⊂ R, the group Gσ is compact.

Remark 7.2.6. If Γ⊂G(OK) is a non-arithmetic lattice, then G(OK) is not discrete

in G and Γ has infinite index in G(OK).
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Let G be a semisimple algebraic group defined over a totally real number field

K ⊂ R and write G for its real points. For each place σ of K, let Gσ be the real

group G⊗K,σ R by σ . Denote by Ω∞ the set of all archimedean places of K and

write Ĝ for the Weil restriction from K to Q of G, see [178, Section 1.3]. It has a

natural structure of Q-algebraic group and

Ĝ(R) = ∏
σ∈Ω∞

Gσ .

For details and proofs we refer to [127, Section 5.5]. See also Example 2.2.10,

where we described Hilbert modular varieties.

Proposition 7.2.7. The subgroup G(OK) of G embeds as an arithmetic subgroup of

Ĝ via the natural embedding

G(OK) ↪→ Ĝ, g 7→ (σ(g))σ∈Ω∞
.

Indeed G(OK) is identified with Ĝ(Z). We also have:

• If G is simple, then G(OK) gives rise to an irreducible lattice in Ĝ(R);

• If, for some σ ∈ Ω∞, Gσ is compact, then G(OK) gives rise to a cocompact

lattice.

7.2.3 Examples of complex hyperbolic lattices

Regarding commensurability classes of non-arithmetic lattices in PU(1,n), we have:

n = 2. By the work of Deligne, Mostow and Deraux, Parker, Paupert, there are 22

known commensurability classes in PU(1,2). See [57, 58] and references

therein;

n = 3. By the work of Deligne, Mostow and Deraux, there are 2 commensurability

classes of non-arithmetic lattices in PU(1,3). In both cases the trace field is

Q(
√

3) and the lattices are not cocompact. See [56] and references therein.

For n> 3 non-arithmetic lattices are currently not known to exist. One of the biggest

challenge in the study of complex hyperbolic lattices is to understand for each n how
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many commensurability classes non-arithmetic lattices exist in PU(1,n). We hope

the main results of this chapter could shed some light towards such question.

7.3 Main result
The main result of the Chapter is the following (the fact that K is totally real is

proven in the next section).

Theorem 7.3.1. Let Γ be a lattice in G= SU(1,n), for some n> 1. Then there exists

a finite index subgroup Γ′ ⊂ Γ with integral traces. Equivalently, up to conjugation

by G, Γ′ lies in G(OK), for some number field K ⊂ R.

The following is [64, Theorem 1.1], whose argument relies on Drinfeld’s the-

orem on the existence of `-adic companions over a finite field.

Theorem 7.3.2 (Esnault–Groechenig). Let S be a smooth connected quasi-

projective complex variety. Then a complex local system V on S is integral, i.e.

it comes as extension of scalars from a local system of projective OL-modules of

finite type (for some number field L⊂ C), whenever it is:

1. Irreducible;

2. Quasi-unipotent local monodromies around the components at infinity of a

compactification with normal crossings divisor i : S ↪→ S;

3. Cohomologically rigid, that is H1(S, i!∗End0(V)) vanishes;

4. Of finite determinant.

Here i!∗End0(V) denotes the intermediate extension seen as a perverse sheaf

as in [17]. See [64, Remark 2.4] for more details. Moreover H1(S, i!∗End0(V))

is the Zariski tangent space at the moduli point of V of the Betti moduli stack of

complex local systems of given rank with prescribed determinant and prescribed

local monodromies along the components of the normal crossing divisor S− i(S).

Theorem 7.3.2 is predicted by the conjectures of Simpson described in section 2.5.4,

since cohomologically rigid local systems are rigid. We remark here that is not
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know of a single example of a rigid local system which is not cohomologically

rigid (in the sense of (3)).

Proof of Theorem 7.3.1. The fact that V is integral in the sense of Theorem 7.3.2

if and only if Γ has integral traces is content of Bass-Serre theory [16], see also

[43, Lemma 7.1]. In the proof we are free to replace Γ with a finite index subgroup

and so may and do assume that Γ is torsion free and with only unipotent parabolic

elements. The latter condition is needed to have a nice toroidal compactification of

the associated ball quotient, see for example [14, Section 3.3], for a more detailed

discussion2. Let SΓ be the ball quotient Γ\X . It is a smooth quasi-projective variety

and admits a smooth toroidal compactification

i : SΓ ↪→ SΓ,

with smooth boundary. The boundary is actually a disjoint union of N abelian va-

rieties. Moreover, since G has rank one, the toroidal compactification of SΓ does

not depend on any choices. See indeed the main theorem of [123] and, even if it is

written for arithmetic lattices, the monograph [4].

Consider the standard complex n+ 1-dimensional representation of SU(1,n)

in GL(VC) and let

ρ : π1(SΓ)∼= Γ→ GL(VC),

be the associated complex representation of the fundamental group of SΓ. Let V be

the corresponding local system on SΓ/C. By construction the local system End0(V)

corresponds to the adjoint representation described in equation (7.2.1).

Notice that, since Γ is irreducible and Zariski dense in G, also V is irreducible

(this of course depends on our choice of the faithful representation of G in GL(VC)).

To prove the integrality of V we are left to check conditions (2), (3) and (4) of

Theorem 7.3.2. By construction, since we can assume Γ lies in SU(1,n), ρ is of

finite determinant, checking therefore (4).

Proof of (2). Denote by ∆ ⊂ C the complex disk and by ∆∗ the punctured disk.

2This condition is implicitly used also in [123].
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There exists an open cover {Uα}α of SΓ such that Uα =∆n and Uα∩SΓ =∆n−1×∆∗.

We notice here that the singular locus of B is empty and therefore SΓ is equal to

what is denoted by U in [64, Section 2]. As proven in [123, Section 1.3], for any Γ-

rational parabolic P3, the set UP∩Γ where UP is the centre of the unipotent radical

of P, is isomorphic to Z. We want to prove that the image of fundamental group

of Uα ∩ SΓ
∼= ∆n−1×∆∗ in the fundamental group of SΓ lies in Γ∩UP ∼= Z. We

work with the local coordinates as in [131, pages 255-256]. Let X∨ be the compact

dual of X and X⊂ X∨ be the Borel embedding. Assume that we are working with a

Γ-rational boundary component F = {b} corresponding to the Γ-rational parabolic

P and let V be the quotient of the unipotent radical of P by it centre. It is a real

vector space of rank n−1 (where n = dimSΓ). For any boundary component b ∈ X ,

set

Xb :=
⋃

g∈UP⊗C
g ·X⊂ X∨.

There exists a canonical holomorphic isomorphism

j : X∼= Cn−1×C×F,

where Cn−1 =VC and the latter copy of C is UP⊗C. We can naturally identify the

universal cover of Uα ∩SΓ = ∆n−1×∆∗ with

D∼= {(z1, . . . ,zn−1,zn,b) ∈ Cn−1×C×F : Im(zn)≥ 0} (7.3.1)

The group UP ⊗ C acts on D, in these coordinates, by (z1, . . . ,zn−1,zn,b) 7→

(z1, . . . ,zn−1,zn +a,b). Observe that we can factorise the map π : X→ SΓ as

X
expF−−→ expF(X)→ S,

where expF : Cn−1 ×C× F → Cn−1 ×C∗ × F is simply exp(2πi−) on the C-

component and the identity on Cn−1. Moreover expF(X) is ΓUP\X. To conclude,

3Here a parabolic subgroup P of SU(1,n) is said to be Γ-rational if its its unipotent radical
intersects Γ as a lattice.
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notice that we have a commutative diagram:

expF(X) expF(X)
∨

SΓ SΓ ,

since, as in the arithmetic case (see for example [4, Theorem 7.2 ]), the boundary

of expF(X)
∨ is mapped onto the boundary of SΓ.

Proof of (3). Here we show thatV is cohomologically rigid (without boundary con-

ditions). We have that

H1(SΓ,End0(V)) = H1(Γ,Ad) = 0,

where the last equality follows from Theorem 7.2.4. To show thatH1(SΓ, i!∗End0(V))

vanishes, it is enough that it injects in H1(SΓ,End0(V)) = 0. This follows from the

description of H1(SΓ, i!∗End0(V)) appearing in [64, Proposition 2.3], more pre-

cisely see page 4284 line 8 and Remark 2.4 in op. cit..

Eventually we have checked all the conditions of Theorem 7.3.2 and therefore

concluded the proof of Theorem 7.3.1. Indeed we proved that the traces of Γ, seen in

GL(VC) via the standard representation, are integral, which implies the same result

for the adjoint representation.

7.4 Weil restriction, after Deligne–Simpson
The following is the main result of the section and concludes to proof of the theorem

that appeared at the end of Chapter 1. As in the previous section, we let Γ be a lattice

in SU(1,n), for some n > 1 and SΓ be the associated ball quotient.

Theorem 7.4.1. The trace field K of Γ is totally real and for each embedding σ :

K→ R the representation

Γ⊂G(K)→G×K,σ R
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is induced by a OK-VHS, denoted by Vσ . Moreover the OK-VHS

V̂ :=
⊕

σ :K→R
Vσ (7.4.1)

has a natural structure of Z-VHS of weight zero.

The proof is inspired by the arguments of [162, Theorem 5] and [46]. For

completeness and related discussions we refer also to [43, Section 10] and [105,

Proposition 7.1].

Proposition 7.4.2 (Simpson). If for each embedding σ : K → C, the local system

Vσ associated to the representation

Γ⊂G→G×K,σ C

underlies a polarised complex VHS of weight zero, then the direct sum of

V̂=
⊕

σ :K→C
Vσ

has a natural structure of Z-VHS.

To be more precise, in the proof of Proposition 7.4.2 one has to use all the

embeddings of E into C, where, as in the proof of Theorem 7.3.1, we let E ⊂ C

be the field generated by the traces of Γ in GL(VC). In our exposition a choice of

CM type of E is implicitly made. For more details we refer to the proof of [105,

Proposition 7.1].

Proof of Theorem 7.4.1. The fact that V̂ has a natrual strucutre of Z-VHS, rather

than of Q-VHS, is the content of Bass-Serre theory [16]. For each embedding

σ : K → C, let Gσ (C) be complex group G×K,σ Spec(C). Consider the complex

representation

ρσ : π1(SΓ)→G(OK)→ Gσ (C).
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Here we prove that ρσ is induced by an OK-VHS of weight zero Vσ . Since

H1(Γ,Ad◦ρσ ) = H1(Γ,Ad) = 0,

the twisted representation ρσ is again cohomologically rigid (see also [43, Lemma

6.6]). Moreover Vσ has also quasi-unipotent monodromy at infinity by construc-

tion. Indeed, with the notation of the proof of (2) of Theorem 7.3.1, let Pi be a

Γ-rational parabolic corresponding to an irreducible divisor Bi of the boundary and

denote by Ti the local monodromy for V and by Ti
σ the local monodromy for Vσ .

By construction ofVσ , the element Ti
σ is obtained by Ti ∈ΓUPi

⊂Γ⊂G(OK) by ap-

plying σ to its entries. Since being unipotent is a geometric condition, it is enough

to check that Ti
σ ∈ Gσ ⊗C ∼= G⊗C is unipotent, which holds true because Ti is

unipotent.

Eventually we can apply Theorem 7.4.3, which is recalled below, to conclude

that each Vσ is a OK-VHS. This imply that all infinite places of K are real, that is K

is totally real. To compute the weight of Vσ , notice that it corresponds to a map

S→ Gσ ,

and each of the Gσ is of adjoint type (since G = PU(1,n) is of adjoint type and they

are geometrically isomorphic). Therefore each Vσ has weight zero. The reason

being that the weight homomorphism is a map from Gm to the centre of Gσ , see

[50, 1.1.13.].

The following is [43, Theorem 8.1], see also references therein.

Theorem 7.4.3 (Corlette). Suppose V is local system with quasi-unipotent mon-

odromy at infinity. If V is rigid, then it underlines a C-VHS.

In the next section we make explicit how the Z-VHS V̂ of Theorem 7.4.1 re-

alises SΓ inside a period domain (in the sense of section 2.2.1.3).
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7.4.1 Generalised modular embeddings

As recalled in section 2.2.1.3 we have a Mumford–Tate domain associated to

(Ĝ,M), were Ĝ, as in section 7.2.2, is the Weil restriction from K to Q of G4

and M a compact subgroup of Ĝ. If M happens to be a compact maximal subgroup,

the Mumford–Tate domain is indeed a Shimura variety.

As in section 7.2.2, we write r for the degree of K over Q and σi : K→ R the

real embeddings of K, ordered in such a way that σ1 is simply the identity on K.

Let ψ : SΓ
an → Ĝ(Z)\D be the period map associated to the Z-VHS V̂ we

constructed in 7.4.1. We have a commutative diagram in the analytical category

X D = DĜ

SΓ
an Ĝ(Z)\D

ψ̃

ψ

π π

.

By construction DĜ is the product of X and a homogeneous space under the group

∏i=2,...,r Gσi . We notice here that, by Theorem 7.2.5, the group ∏i=2,...,r Gσi is

compact if and only if Γ is an arithmetic lattice. Given such decomposition we can

write:

ψ̃(x) = (x,xσ2, . . . ,xσr),

where xσi is the Hodge structure obtained by the fibre of Vσi , or more precisely

of its lift to X , at x. Finally it is important to observe that ψ̃ is holomorphic and

Γ-equivariant, in the sense that for each γ ∈ Γ, we have

ψ̃(γx) = (γx,ρσ2(γ)xσ2, . . . ,ρσr(γ)xσr),

where ρσi : Γ→ Gσi is obtained by applying σi : K→ R to the coefficients of Γ ⊂

G(OK).

Remark 7.4.4. The map ψ generalises the theory of modular embeddings of trian-

4To be more precise here we should take the generic Mumford-Tate group of V̂, which, a priori,
could be a strict subgroup of Ĝ.
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gle groups [181, 37], which are indeed cohomological rigid lattices and Deligne–

Mostow lattices [38].

It is interesting to compare the above diagram with a famous result of Cor-

lette. Let S be a closed connected Kähler manifold, with universal covering S̃ and

fundamental group Γ. Let

ρ : Γ→ Ĝ

be a group homomorphism form Γ into a real reductive group. If the Zariski closure

of Γ in Ĝ is reductive, then Corlette [41] proved that there exists a ρ-equivariant

harmonic map from S̃ to the quotient of Ĝ by a compact maximal subgroup K̂0. If

S is a ball quotient SΓ, we have constructed a holomorphic map from X to Ĝ/M,

where M is a compact. We can compose the map ψ̃ with Ĝ/M → Ĝ/K̂0, but the

result wont be holomorphic.



Chapter 8

General conclusions and furhter

directions

We conclude by presenting some related results, conjectures and future directions in

our research. Part of this thesis was indeed motivated by the Zilber–Pink conjecture

for (mixed) Shimura varieties. We explain here how the results of Chapter 7 bring

non-arithmetic ball quotients in the realm of a Zilber–Pink conjecture for Z-VHS

and we discuss both geometric and arithmetic aspects of such conjecture. This

Chapter is an extract of the preprint [14], which is a joint work with E. Ullmo.

8.1 Klingler’s generalised Zilber-Pink conjecture
Recently B. Klingler [102] has proposed a far reaching generalisation of the Zilber–

Pink Conjecture, as discussed in section 3.4.1, for arbitrary irreducible smooth

quasi-projective complex varieties supporting a (mixed) Z-VHS. See [102, Section

5.1.] and references therein. In this section we explain his conjecture and discuss

its consequences for the pair (SΓ, V̂), where SΓ is a ball quotient as in Chapter 7,

associated to a non-arithmetic lattice Γ⊂ PU(1,n) (for n > 1) and V̂ is the Z-VHS

constructed in Theorem 7.4.1.

We start with some definitions from [102]. As in section 2.2.1.3, let S be a

smooth quasi-projective complex variety, with a period map

ψ : San→ R(Z)\D
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associated to a Z-VHS V on S with generic Mumford-Tate group R/Q.

Definition 8.1.1. Let W ⊂ S be an irreducible subvariety. The Hodge codimension

of W is the codimension of the tangent space at a Hodge-generic smooth point of

ψ(W ) in the corresponding horizontal tangent space of R(Z)\D:

H-cd(W ) := rkTh(R(Z)\D)−dimW.

Let r be the Lie algebra of R. Notice that the rank of Th(R(Z)\D) is the dimen-

sion, over C, of the −1 part of r, with respect to the Hodge-filtration induced from

V. Moreover

Th(R(Z)\D) = T (R(Z)\D)

holds if and only if R(Z)\D is a Shimura variety. If this is the case, the Hodge

codimension of W is just the codimension of W in its special closure (that is the

smallest sub-Shimura variety of R(Z)\D containing W ).

Definition 8.1.2. An irreducible subvariety W ⊂ S is said to be Hodge-optimal if

for any irreducible subvariety W ( Y ⊂ S we have

H-cd(W )< H-cd(Y ).

The following is [102, Conjecture 1.9].

Conjecture 8.1.3 (Klingler). There are only finitely many Hodge optimal subvari-

eties of S.

Consider now the pair (SΓ, V̂), as in the previous chapter. Conjecture 8.1.3

for (SΓ, V̂) is meaningful only if Γ is non-arithmetic. Otherwise the period map

ψ : SΓ
an→ Ĝ(Z)\DĜ is an isomorphism, the Hodge codimension of SΓ is zero and

therefore there are no Hodge-optimal subvarieties.

The following is [14, Proposition 6.1.4]. Here we say that an algebraic subva-

riety W of SΓ is totally geodesic if its smooth locus is totally geodesic with respect

to the Kähler metric coming from the universal covering of SΓ. We say that W is
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a maximal totally geodesic subvariety if the only totally geodesic subvariety of SΓ

strictly containing W is SΓ itself.

Theorem 8.1.4 (Baldi-Ullmo). If Γ is non-arithmetic, maximal totally geodesic sub-

varieties of SΓ are Hodge optimal.

In [14, Theorem 1.2.1], we proved the following instance of Conjecture 8.1.3.

Interestingly, one of the main difficulties in proving the following theorem is that

the André-Deligne monodromy theorem of section 6.2.1 can not be applied to study

the natural VHS on SΓ (since it is not a Z-VHS).

Theorem 8.1.5 (Baldi-Ullmo). If Γ ⊂ PU(1,n), for n > 1, is non-arithmetic, then

SΓ contains only finitely many maximal totally geodesic subvarieties.

The idea behind the proof of Theorem 8.1.5 is to interpret the problem as a

phenomenon of unlikely intersections inside the period domain for polarised Z-

VHS, thanks to the discussions of section 7.4.1 and deduce the finiteness from the

Ax-Schanuel theorem established by Bakker and Tsimerman [8]. For a complete

discussion about the role of the Ax-Schanuel towards the Zilber-Pink conjecture,

we refer to [44].

Remark 8.1.6. It is interesting to point out that a similar statement holds true also

for a locally symmetric space associated to a lattice Γ⊂ SO(1,n). Indeed the prob-

lem was originally proposed informally by Reid and, independently, by McMullen

for real hyperbolic lattices [55, Question 7.6], [118, Question 8.2]. For SO(1,n) this

was recently proven by Bader, Fisher, Miller and Stover [5] and, for closed hyper-

bolic 3-manifolds, by Margulis and Mohammadi [111]. Such approaches build on

superrigidity theorems and use results on equidistribution from homogeneous dy-

namics. Finally around the same time a similar result has also been proven by Bader,

Fisher, Miller and Stover [6] (they consider both real and complex geodesics). It

would certainly be worth investigating more the link between homogeneous dy-

namics and Zilber–Pink like problems.

Since this thesis presented results about both the geometry and the arithmetic
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of Shimura varieties, in the next section, we discuss arithmetic aspects of Conjecture

8.1.3 that may be approached in the future.

8.2 André–Oort type conjectures
It is worth noticing that non-arithmetic ball quotients still have models over number

fields. We discuss some conjectures that appeared in [14, Section 8]. They mix

geometry and arithmetic in a similar fashion as the problems described so far.

8.2.1 Models

Let S be a smooth complex quasi-projective variety. We say that S admits aQ-model

if there exists Y/Q such that Y ×QC∼= S, with respect to some embedding Q ↪→C.

For example if Γ is cocompact, [158, Theorem 1] and [32, Theorem 1] imply

the following.

Theorem 8.2.1 (Shimura, Calabi, Visentini). Let Γ be a lattice in PU(1,n) such that

SΓ = Γ\Bn is projective. Let Θ be the sheaf of germs of holomorphic sections of the

tangent bundle of SΓ. If the dimension of SΓ is greater or equal to two, then

H1(SΓ,Θ) = 0.

It follows that SΓ admits a Q-model.

If Γ is arithmetic, the above proof can be generalised to cover the case when SΓ

is not compact, by using Mumford’s theory [131]. See indeed [66, 140]. It should

be possible to generalise such arguments to the case of non-arithmetic lattices. It is

also possible to give a different argument which uses only the fact that all lattices

in PU(1,n), for n > 1, have entries in some number field, as explained in section

7.2.1. Both approaches give only the existence of aQ-model, rather than a canonical

model in the sense of section 2.2.2. The following is [14, Theorem 8.4.4].

Theorem 8.2.2 (Baldi-Ullmo). Let SΓ be a ball quotient of dimension at least two.

Then SΓ admits a model over a number field.



8.2. André–Oort type conjectures 138

Now that we have highlighted another similarity between non-arithmetic ball

quotients and Shimura varieties, we can discuss conjectures inspired by the André–

Oort conjecture for Shimura varieties.

8.2.2 Γ-Special points

Let G = PU(1,n), for some n > 1 and X the associated Hermitian space. Let Γ be a

lattice in G and SΓ the associated quasi-projective variety. Recall that Γ determines

a K-form G of G.

Definition 8.2.3. A point x ∈ X is pre-Γ-special if the K-Zariski closure of the

image of x : S→ G in G is commutative. A point s ∈ SΓ is Γ-special if it is the

image along π : X → SΓ of a pre-Γ-special point x ∈ X .

The following can be proven as in the classical case of Shimura varieties (see

[46, Section 5]).

Proposition 8.2.4. Pre-Γ-special point are defined over Q, with respect to the Q-

structure given by looking at X ⊂ X∨ inside its associated flag variety. Moreover

Γ-special points are Zariski dense in SΓ.

A first possibility one could investigate is the following.

Conjecture 8.2.5 (Γ-André–Oort). An irreducible subvariety W ⊂ SΓ is totally

geodesic if it contains a Zariski dense set of Γ-special points.

8.2.3 Z-special points

Another natural possibility is to look at zero dimensional intersections between

ψ(SΓ
an) and Mumford–Tate sub-domains of Ĝ(Z)\DĜ.

Definition 8.2.6. A point s ∈ SΓ is Z-special if it is a zero dimensional Z-special

subvariety. That is there exists R a Q-subgroup of Ĝ inducing a Mumford–Tate

sub-domain DR of DĜ and R(Z)\DR intersects ψ(SΓ
an) in a finite number of points

containing s.

A first relation between Z-special points and Γ-special is given by the follow-

ing. For the proof see [14, Proposition 8.2.3.].
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Proposition 8.2.7. Let π(x) ∈ SΓ be a Z-special point, then π(x) is Γ-special.

We propose the following conjecture.

Conjecture 8.2.8. Let W ⊂ SΓ an algebraic subvariety. W contains a Zariski dense

set of Z-special points if and only if is special and arithmetic. That is W is totally

geodesic and the period map ψ restricted to W an is an isomorphism.

8.2.4 Complex multiplication points

As in Theorem 7.4.1, we denote by V̂ the Z-VHS on SΓ induced by V. Another

interesting class of points is given by the following (see also Definition 2.2.6).

Definition 8.2.9. A point s ∈ SΓ is called a CM-point if the Mumford–Tate group

of V̂ at s is commutative.

Such points are both Z and Γ-special, but they are even more special. The

following is a special case of [102, Conjecture 5.6] and it is indeed predicted by, the

more difficult, Conjecture 8.2.8.

Conjecture 8.2.10. Let W ⊂ SΓ be an algebraic irreducible subvariety. W contains

a Zariski dense set of CM-points if and only if is special and arithmetic.

If Γ is an arithmetic lattice, this is the classical André-Oort conjecture. If Γ

is non-arithmetic, but Ĝ(Z)\DĜ is a Shimura variety, then the above conjecture

follows from André–Oort conjecture for Shimura varieties of abelian type, which

is now a theorem [171]. With our definition of Q-models of SΓ it is not clear that

CM-points are defined over Q. This could be a starting point for applying the Pila-

Zannier strategy in such context.
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