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Abstract

Automata learning is a popular technique used to automatically construct an automaton model

from queries, and much research has gone into devising speci�c adaptations of such algorithms

for di�erent types of automata. This thesis presents a unifying approach to many existing

algorithms using category theory, which eases correctness proofs and guides the design of

new automata learning algorithms. We provide a categorical automata learning framework—

CALF—that at its core includes an abstract version of the popular L⋆ algorithm. Using this

abstract algorithm we derive several concrete ones.

We instantiate the framework to a large class of Set functors, by which we recover for the

�rst time a tree automata learning algorithm from an abstract framework, which moreover is

the �rst to cover also algebras of quotiented polynomial functors. We further develop a general

algorithm to learn weighted automata over a semiring. On the one hand, we identify a class

of semirings, principal ideal domains, for which this algorithm terminates and for which no

learning algorithm previously existed; on the other hand, we show that it does not terminate

over the natural numbers. Finally, we develop an algorithm to learn automata with side-e�ects

determined by a monad and provide several optimisations, as well as an implementation with

experimental evaluation. This allows us to improve existing algorithms and opens the door

to learning a wide range of automata.
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Impact

The framework developed in this thesis impacts future work in both academia and the in-

dustry. In academia, CALF provides deep insight into the fundamental theory that enables

automata learning algorithms, which advances the general study of automata seen from an

abstract perspective. In one concrete direction, CALF will supply the theoretical infrastruc-

ture for the CLeVer EPSRC Standard Grant,
1

which plans to investigate learning techniques

for concurrent models and develop a novel veri�cation framework for concurrency in hard-

ware systems.

As is the case with many �elds in Computer Science, there is a clear interplay between

academia and the industry when it comes to automata learning. Industrial demands to learn

models describing the behaviour of systems with ever increasing complexity stimulates re-

search into developing such algorithms. Using CALF, new algorithms that are correct by

construction can be derived from the abstract template. These algorithms are then applied

for purposes such as veri�cation, and as a result we contribute to ensuring that systems work

as intended. The CLeVer project is an example of this: the developed veri�cation methods

for hardware systems will be of use to companies such as ARM. CALF also helps to transfer

optimisations between algorithms for di�erent types of automata, which will have an impact

on tackling issues of scalability.

1https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/S028641/1

5

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/S028641/1


Contents

Abstract 4

Impact 5

1 Introduction 11

1.1 Learning from Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Example of Learning from Membership and Equivalence Queries . . . 13

1.2 Learning Di�erent Types of Automata . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Categorical Perspective on Automata and Learning . . . . . . . . . . . . . . . 16

1.4 Main Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Overview and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6.1 Additional Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Preliminaries 23

2.1 Semirings and Semimodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Category Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Factorisation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Algebras and Coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 Monads and their Algebras . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.4 Automata and Languages . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 The L⋆ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Minimisation of Automata 38

3.1 Bottom-Up Tree Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Notions of Minimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Minimisation via the Cobase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6



Contents 7

3.4 Nerode Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Categorical Automata Learning 59
4.1 Abstract Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Abstract Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 An Abstract Automata Learning Algorithm . . . . . . . . . . . . . . . . . . . . 73

4.5 Other Learning Algorithms and Minimisation . . . . . . . . . . . . . . . . . . 83

4.6 Learning Generalised Tree Automata . . . . . . . . . . . . . . . . . . . . . . . 90

4.6.1 Contextual Wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6.2 Witnessing Local Closedness . . . . . . . . . . . . . . . . . . . . . . . 95

4.6.3 Witnessing Local Consistency . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.4 Finite Counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Learning Weighted Automata over Principal Ideal Domains 105
5.1 Original Algorithm for Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1.1 Example: Learning a Weighted Language over the Reals . . . . . . . . 108

5.1.2 Learning Weighted Languages over Arbitrary Semirings . . . . . . . . 109

5.2 Generalised WFA Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Termination of the General Algorithm . . . . . . . . . . . . . . . . . . 113

5.3 Issues with Arbitrary Semirings . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Learning WFAs over PIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Learning Automata with Side-E�ects 125
6.1 Overview of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Automata with Side-E�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 A General Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4 Succinct Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 Optimised Counterexample Handling . . . . . . . . . . . . . . . . . . . . . . . 142

6.5.1 Using the Succinct Hypothesis . . . . . . . . . . . . . . . . . . . . . . 144

6.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



8 Contents

6.7.1 Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.7.2 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.7.3 Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.7.4 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.8.1 Comparing L⋆V to L⋆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.8.2 Comparing NL⋆ to L⋆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7 Further Directions 165

Bibliography 168

Acknowledgements 181



List of Figures

1.1 Example of manually learning a DFA. . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Angluin’s L⋆ algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Example run of L⋆ on  = {w ∈ {a}⋆ ∣ |w| ≠ 1}. . . . . . . . . . . . . . . . . . . 35

2.3 Maler and Pnueli’s variation on L⋆ . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Example run of L⋆MP on  = {w ∈ {a}⋆ ∣ |w| ≠ 1}. . . . . . . . . . . . . . . . . 37

4.1 Generalised Learning Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 Example run of the L⋆ adaptation for NFAs on  = {w ∈ {a}⋆ ∣ |w| ≠ 1}. . . . . 129

6.2 Adaptation of L⋆ for T -automata. . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 L⋆ variations on random DFAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4 L⋆V variations and L⋆ on random Moore automata. . . . . . . . . . . . . . . . . 161

6.5 L⋆V variations on random WFAs. . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9



List of Tables

6.1 L⋆ variations and L⋆V variations on random WFAs. . . . . . . . . . . . . . . . . 160

6.2 L⋆ and NL⋆ variations on random NFAs. . . . . . . . . . . . . . . . . . . . . . . 162

10



Chapter 1

Introduction

Models to describe the behaviour of a system are ubiquitous in computer science. The ab-

stractions made by such models enable e�cient analysis by both humans and computers,

via techniques such as model checking [CGP99; BK08]. One important type of model is the

automaton, usually represented as a state diagram consisting of the behavioural states of the

system, with transitions representing the actions one can take within a particular state. The

simplicity of automata allows for e�cient procedures to perform operations such as minim-

isation and equivalence checking.

Automata learning is the process of inferring an automaton model of a system from in-

formation about its behaviour. Automata learning algorithms have found diverse applications

over the past decade, ranging from reverse-engineering implementations of network proto-

cols [Cho+10; RP15; FJV16] and smartcard readers [Cha+14] to describing the errors in a pro-

gram [Cha+15] and refactoring legacy software [SHV16] (see also [Vaa17] for an overview).

In this introduction we discuss automata learning and e�orts to generalise the popular

L⋆ algorithm. We start by introducing the concept of learning from queries in Section 1.1,

which ends with an example of manually learning an automaton (Section 1.1.1). We then

discuss adaptations of L⋆ for di�erent types of automata in Section 1.2. This ends with a

problem statement about unifying learning algorithms for these di�erent automata, for which

we introduce a method involving category theory in Section 1.3. Based on this, we set out the

main aims of the thesis in Section 1.4. We then discuss related work in Section 1.5 and give

an overview of the rest of the thesis and its contributions in Section 1.6.

11



12 Chapter 1. Introduction

1.1 Learning from Queries

In this thesis we focus on active automata learning algorithms, which interact with (query)

the target system. This allows such an algorithm to choose what information it wants to have

based on previous interactions. Contrasted with active automata learning is passive automata

learning, where one takes prede�ned data and tries to �nd an automaton that generalises the

data as well as possible. The case studies mentioned earlier all use active learning algorithms,

as the learner has access to the system under consideration.

Arguably the most fundamental type of automaton is the deterministic �nite automaton

(DFA). Parametric on an alphabet set of possible inputs, it consists of a set of states, each of

which is either accepting or rejecting, together with a designated initial state and for each

state and input a next state. Examples over a single input a are depicted in Figure 1.1, which

will later be used to demonstrate the learning process. We indicate the initial state with an

arrow without origin and mark accepting states with a double circle.

Semantics of DFAs is de�ned in terms of acceptance of words, �nite sequences of inputs.

Given a word, one can start from the initial state of a DFA, follow the transitions corresponding

to the inputs of the sequence in order, and check if the resulting state is accepting. The word

is accepted if and only if that state is. A classi�cation of words into accepted and rejected

ones is called a language, and for each language there is a unique minimal DFA accepting it.

Systems exhibiting these languages as their behaviour are essentially simple parsers that read

an input sequence and determine whether it is valid.

In active automata learning, the most straightforward interaction the learner could make

with the target system is referred to as amembership query: the learner submits a word and ob-

serves whether the system accepts the word. Gold de�ned the concept of learning in the limit:

the learner provides a stream of DFAs based on accumulating knowledge of the target lan-

guage and guarantees only that the stream converges at some point to a correct DFA [Gol67].

Later algorithms made additional assumptions on the size of the state space of the minimal

automaton accepting the language, enabling a terminating learning algorithm that however

requires an exponential number of membership queries [AZ69].

Moore showed that just membership queries are insu�cient to correctly identify a correct

DFA in �nite time [Moo56]. The intuition behind this is simple: if only for a �nite set of

words it is known whether these are accepted, then there are multiple languages consistent

with the information, and the algorithm has no means to distinguish between them. It was

shown by Angluin [Ang81] that any algorithm using membership queries in combination

with knowledge of the number of states of the minimal DFA must use a number of queries
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q0 q1a
a

(a)

q0 q1 q2a a

a

(b)

Figure 1.1: Example of manually learning a DFA.

exponential in that number in the worst case. To obtain a polynomial time algorithm, it was

clear that a stronger assumption would be necessary.

Later, Angluin [Ang88] evaluated the use of various types of additional queries in auto-

mata learning. Apart from membership queries, the query types considered consisted in the

learner submitting a hypothesis DFA and being told in return how this DFA relates to the tar-

get language. One such query that has gained much attention is the equivalence query, where

the learner is told whether the hypothesis accepts the correct language and, if not, receives a

counterexample: a word incorrectly classi�ed by the hypothesis.

The L⋆ algorithm [Ang87] works with membership and equivalence queries, using which

it runs in time polynomial in the size of the alphabet, the number of states of the minimal DFA

accepting the target language, and the length of the longest counterexample. Since equival-

ence queries are not as straightforward to implement as membership queries, which can often

be realised just by interacting with the system, one speaks of an oracle or teacher providing

an interface of membership and equivalence queries to the learner. The assumption of being

able to pose equivalence queries is an elegant abstraction from an in practice often impossible

problem, which can be approximated or otherwise dealt with according to the application.

The abstraction enables a clearer view on the core of the learning algorithm that may be used

as a template for practical solutions. Equivalence queries are usually implemented via a num-

ber of membership queries, either by assuming limits on the size of the target DFA in order to

derive an exhaustive test set, or by determining according to the probably approximately cor-

rect framework [Val84] a number of random queries to test based on con�dence and accuracy

parameters.

1.1.1 Example of Learning from Membership and Equivalence Queries

We now perform an example of learning a DFA from membership and equivalence queries.

Instead of getting lost in the details of the L⋆ algorithm, we provide an intuitive account of

the accumulating knowledge that drives it during a run. To this end, let us �x a singleton

alphabet {a} and consider an unknown target language  ⊆ {a}⋆.

We know that a DFA accepting this language will need at least one state, the initial one.
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To determine whether this state should be accepting, we may pose a membership query for

the empty word. Suppose the teacher replies that the empty word is accepted. This means

that the initial state has to be an accepting one. If the DFA is to have only a single state, there

is only one transition on a possible for that state: a self-loop. One immediate check we can

perform for this is posing a membership query for the word a. Supposing the teacher replies

that a is rejected, we need to add a rejecting state and route the transition from the initial

state to that state. It remains to determine where the transition coming from the second state

leads. To do so, we pose a membership query for the word aa. The teacher replies it is not

accepted, so we equip the second state with a self-loop, as shown in Figure 1.1a, and submit

this hypothesis in an equivalence query.

Let us assume that the teacher replies that the above hypothesis is incorrect and provides

the counterexample aaa: this word is rejected by the hypothesis but apparently occurs in the

target language. Thus, we need to make sure that the next hypothesis accepts the word aaa.

Consider again our original hypothesis from Figure 1.1a. Reading either the word a or the

word aa, we end up in q1, but reading another a from there, the acceptance is supposed to

di�er: aa is rejected while aaa is accepted. Thus, the state reached after reading a cannot

be the same as the state reached after reading aa. In order to resolve this, we split q1 and

add a third state, q2, to which the transition from q1 leads. Since aa is rejected, q2 becomes

a rejecting state. We know that aaa is accepted, so the transition from q2 leads to the only

accepting state q0. This gives us the hypothesis shown in Figure 1.1b. Supposing that on an

equivalence query the teacher informs us that this hypothesis is correct, we conclude that the

target language is given by the set of words over {a} of which the length is a multiple of 3.
Note that Figure 1.1b contains the minimal DFA accepting this language.

The L⋆ algorithm generalises the above process in a systematic way. Attempting to con-

struct a hypothesis DFA consistent with the current knowledge of the language leads to the

discovery of additional states. Once a hypothesis is ready and an equivalence query results in

a counterexample, the counterexample further drives the state discovery process. This con-

tinues until no new counterexample is provided, which proves that the hypothesis is correct.

We will explain the algorithmic details of L⋆ in Section 2.3.

1.2 Learning Di�erent Types of Automata

Since L⋆ appeared in 1987 [Ang87], many variations on it have been proposed. These include

adjustments to the way counterexamples are handled [MP95; RS93] and more e�cient data

structures [KV94; IHS14], but also many adaptations to other types of automata than the DFAs
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that were originally learned.

Such adaptations were motivated by the fact that although the learning algorithm for

DFAs provided an elegant theoretical result, applicability remained limited. In many applic-

ations, one wants to learn a model describing the behaviour of a system that produces one

or more outputs after each individual input—a symbol from the alphabet—is submitted. Vilar

generalised the L⋆ algorithm to learn subsequential transducers, which produce words over an

output set on both states and transitions [Vil96]. Since then, many applications have focused

on learning the less complex Mealy machines, which allow just a basic input/output pair on

each transition. First appearing in [PO98], algorithms to learn Mealy machines have been ap-

plied in many case studies, including, with one exception, the ones listed near the beginning

of this chapter.

Apart from deterministic automata, adaptations of L⋆ have been introduced to learn for

instance weighted automata [BV96], which are used in image processing [CK93], text and

speech recognition [MPR05], and bioinformatics [AMT08]. Other adaptations of L⋆ focus on

nondeterministic automata [Bol+09] or universal and alternating automata [AEF15; Ber+17],

all of which accept the same class of languages as DFAs but provide a more succinct state

space via a more complex transition type. Learning such automata can thus be seen as an

optimisation.

Another type of automaton is given by Büchi automata, which accept words of in�nite

length and are widely used for veri�cation purposes [CGP99; BK08]. An algorithm to learn

languages accepted by both Büchi and co-Büchi automata was developed in [MP95]. Much

later, an algorithm was introduced to learn the full class of languages accepted by Büchi auto-

mata [AF16], via a type of automaton consisting of a family of DFAs. These accept languages

of pairs of words that are similar in principle to the so-called lasso languages, which capture

words made up by an in�nite repetition following a �nite pre�x [CNP93].

One may also consider data languages, which can contain parameters from an in�nite

domain. Such languages are typically processed using register automata, of which there are

many variations and for which several learning algorithms have been proposed [How+12;

Bol+13; Cas+16]. One alternative to these automata is given by nominal automata, a rede�ni-

tion of deterministic (and nondeterministic) automata based on nominal sets rather than plain

sets. Nominal sets are equipped with a group action in a way that allows them to be �nitely

representable despite being in�nite, via the symmetries exposed by the action [Gab01; Pit13].

An adaptation of L⋆ for nominal automata was developed a few years ago [Moe+17].

Whenever a new type of automaton is identi�ed for which an adaptation of L⋆ is desired,

the details of the algorithm and its correctness proof need to be devised from scratch. The
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mathematical intricacies associated with the type of automaton may distract from the connec-

tion with algorithms for other types of automata and thus cloud the fact that optimisations

and other variations can often be transferred. In this thesis we develop a framework in which

the core of the algorithm and its correctness proof can be studied on an abstract level. To do so,

we will use category theory and the perspective it o�ers on automata, which are introduced

in the next section.

1.3 Categorical Perspective on Automata and Learning

In computer science, category theory is often seen as a formalism using which various math-

ematical structures can be studied uniformly. Algebras and coalgebras, dependent on a func-

tor, are prime examples covering many classes of structures. They play an important role in

studying models of systems, where the functor determines the type of system [Man76; Rut00;

Rut19]. Algebras intuitively describe how states of a system are constructed from previous

states and additional input data, while coalgebras can be seen to decompose states of the sys-

tem into successor states and output data, generating behaviour [Jac17].

In this context, automata are often modelled as either algebras or coalgebras together

with initial states and outputs. For instance, automata that process binary trees are based on

algebras de�ned using a transition type (functor) given by pairing a set with itself. Similarly,

DFAs are recovered using algebras for the functor that pairs a set with the input alphabet, and

nominal automata using the functor that pairs a nominal set with a nominal input alphabet. In

these last cases the automata can also be modelled using coalgebras: DFAs are recovered using

coalgebras for the functor that takes a set and returns the functions from the input alphabet

into that set.

By varying the category and functor involved, many di�erent types of automata can

be recovered. These include weighted �nite automata (WFAs), probabilistic automata, non-

deterministic automata, and the families of DFAs mentioned earlier [CV12].

Given this diverse collection of automata covered within the categorical view, it would

seem like a promising setting for generalising automata learning algorithms. This was �rst

noticed by Jacobs and Silva [JS14], who rede�ned certain constructions in the L⋆ algorithm

using categorical tools and showed that it uni�ed algorithms for DFAs and WFAs. Van

Heerdt [Hee16] then described explicitly under which conditions these constructions work,

captured the central data structure abstractly, and developed theorems to characterise cor-

rectness in terms of this data structure.

However, this work did not de�ne an abstract version of L⋆ but only provided very high
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level guidelines for designing new algorithms. Moreover, the conditions on the categorical

setting were too strict to enable for instance the setting of tree automata to be captured.

1.4 Main Aims

In this thesis we aim to build a categorical automata learning framework that features a prov-

ably correct abstract version of L⋆, in which each step of the original algorithm receives an

explicit abstract analogue. From this framework di�erent algorithms for various types of auto-

mata can be studied and developed uniformly. Apart from resulting in new algorithms, we

expect that this provides new insights into existing ones, allowing us to devise variations and

optimisations by transferring those from di�erent settings.

Our actual contributions will be discussed in detail in Section 1.6. We �rst review related

work.

1.5 Related Work

Several categorical automata learning frameworks have been proposed over the last few years.

This thesis itself is a further development of the work that started from [JS14] and was initially

developed in the author’s master thesis [Hee16]. The developments set out in Section 1.4 are

additions and improvements to this work.

Barlocco, Kupke, and Rot [BKR19] proposed an abstract algorithm to learn coalgebras by

using coalgebraic modal logic to characterise tests. Urbat and Schröder [US19] developed an-

other abstract automata learning algorithm that is relatively close to our approach. However,

their work focuses on automata that can be seen both as algebras and as coalgebras. They

study a reduction of certain algebraic automata, but in the case of for example tree automata

this reduction leads to automata over an in�nite alphabet, leaving it unclear how to work with

them in practice.

Apart from categorical approaches, there have been other proposals of automata learn-

ing frameworks. Balcázar et al. [Bal+97] provided a common interface for studying di�erent

learning algorithms for DFAs. In Isberner’s thesis [Isb15], the focus is put on developing ef-

�cient algorithms, and although several types of automata are studied and terminology is

shared between those, the approach does not scale to more complex automata than determ-

inistic ones that read words.

Our abstract notion of automaton is based on the work of Arbib and Manes from the

early 70s [AM74; AM75a; AM75b]. Those developments started with a uni�ed formalism
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that captured both deterministic and weighted automata due to Arbib and Zeiger [AZ69],

which was �rst picked up by Goguen [Gog72a; Gog72b]. The abstract treatment of Goguen,

however, did not allow for certain important examples, such as tree automata. These were

studied by Arbib and Manes [AM74] and feature in Chapters 3 and 4 of the present thesis.

An extensive overview of the theory of abstract automata and minimal realisations has been

given by Adámek and Trnková [AT89]. Arbib and Manes also studied automata with side-

e�ects [AM75b], for which we develop a (coalgebraic) learning algorithm in Chapter 6.

The aim in the original work of Arbib and Zeiger [AZ69] was not just to unify descrip-

tions of automata, but also to provide a generic construction of minimal realisations. These

constructions did not just include theoretical ones, in the way the Myhill–Nerode congruence

for a regular language gives rise to a minimal DFA, but also a practical one. They invest-

igated identi�cation procedures to construct the minimal realisation by recording only for

�nitely many words whether they are in the language. For this purpose, however, they need

to assume an upper bound on the number of states of the minimal realisation, in which the

number of words evaluated in the language is exponential. This line of research continued

with Gold [Gol72], who dropped the condition of knowing such an upper bound and instead

provided an algorithm that learns in the limit: it continually collects additional data and guar-

antees only to converge to the minimal realisation after an unknown amount of time.

The abstract view on automata as (co)algebras has enabled generalisations of various

algorithms other than automata learning over recent years. These include algorithms for

minimisation [Adá+12; KK14; Dor+17], determinisation [Sil+13], and equivalence check-

ing [Rot15; BP15]. Both minimisation and equivalence checking are deeply related to auto-

mata learning, as we showed in [HSS17a]: automata learning is essentially a generalised form

of minimisation (see also Section 4.5), and (an extension of) the data structure produced in the

process of learning an automaton can be used to decide whether it is equivalent to other auto-

mata. In Chapter 6 we will initially introduce an algorithm that learns the determinisation of

an automaton with side-e�ects.

A detailed overview of related work will be provided at the end of each chapter.

1.6 Overview and Contributions

In Chapter 3 we explore minimisation of automata on an abstract level. Our main result is

an iterative construction for minimising these automata (Theorem 3.3.6), which resembles

partition re�nement. Furthermore, we study a di�erent characterisation of minimality via

the Nerode equivalence and provide a generalisation using monads that allows to treat auto-
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mata with equations. Crucially, we give conditions under which the existence of this abstract

Nerode equivalence corresponds to the existence of a minimal automaton (Theorems 3.4.11

and 3.4.14). The chapter is based on the following paper, which is a joint e�ort between its

authors:

• [Hee+19b] Gerco van Heerdt, Tobias Kappé, Jurriaan Rot, Matteo Sammartino and Al-

exandra Silva. “Tree automata as algebras: Minimisation and determinisation”. In:

CALCO. vol. 139. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019,

6:1–6:22. doi: 10.4230/LIPIcs.CALCO.2019.6.

Chapter 4 contains the main results. We develop a categorical automata learning frame-

work (CALF)
1

with abstract versions of each step in the L⋆ algorithm, including an abstract

treatment of counterexamples. Most importantly, in Theorem 4.4.7 we prove that the al-

gorithm terminates with a correct automaton, and we give conditions under which this auto-

maton is minimal. We then instantiate our abstract L⋆ algorithm to a concrete setting, provid-

ing the �rst learning algorithm for tree automata derived abstractly (Section 4.6). The chapter

is based on the following papers, of which the author of this thesis is the main author:

• [HSS17a] Gerco van Heerdt, Matteo Sammartino and Alexandra Silva. “CALF: Cat-

egorical Automata Learning Framework”. In: CSL. vol. 82. LIPIcs. 2017, 29:1–29:24.

doi: 10.4230/LIPIcs.CSL.2017.29.

• [Hee+20a] Gerco van Heerdt, Tobias Kappé, Jurriaan Rot, Matteo Sammartino and Al-

exandra Silva. “A Categorical Framework for Learning Generalised Tree Automata”. In:

CoRR (2020). arXiv: 2001.05786. url: https://arxiv.org/abs/2001.05786.

In Chapter 5 we develop an algorithm to learn weighted automata over principal ideal

domains. We �rst introduce a general weighted adaptation of L⋆ parametric on an arbitrary

semiring, together with conditions for termination that we prove su�cient (Theorem 5.2.10).

We then prove that not all semirings satisfy these conditions, and in particular that the al-

gorithm does not terminate when instantiated to the natural numbers (Theorem 5.3.1). We

then provide our main result in which we prove that the algorithm terminates if the semiring

is a principal ideal domain (Theorem 5.4.10). This yields the �rst active learning algorithm for

WFAs over the integers. The chapter is based on the following paper, which is a joint e�ort

between its authors:

1http://www.calf-project.org

https://doi.org/10.4230/LIPIcs.CALCO.2019.6
https://doi.org/10.4230/LIPIcs.CSL.2017.29
https://arxiv.org/abs/2001.05786
https://arxiv.org/abs/2001.05786
http://www.calf-project.org
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• [Hee+20b] Gerco van Heerdt, Clemens Kupke, Jurriaan Rot and Alexandra Silva.

“Learning Weighted Automata over Principal Ideal Domains”. In: FoSSaCS. LNCS.

Springer. 2020, pp. 602–621. doi: 10.1007/978-3-030-45231-5_31.

In Chapter 6 we generalise the algorithm from Chapter 5 to learn automata with side-

e�ects given by a monad (with a �niteness restriction). Our main result is a general algorithm

to learn automata in the category of algebras for a monad, which we prove correct (Sec-

tion 6.3.1). We then optmise by replacing the hypothesis by a succinct one that exploits the

side-e�ects enabled by the monad, and we also optimise the counterexample handling method.

By doing so we transfer this last optimisation that was originally developed for learning DFAs

to various settings where it had not been considered before, including NFAs and WFAs. We

provide a Haskell library to apply the algorithm and explain in detail how it can be instanti-

ated to NFAs and WFAs over a �nite semiring. Finally, we describe experimental results for

the NFA and WFA cases, comparing the optimisations enabled by our library. For NFAs we

show that the counterexample handling optimisation leads to an improvement in the number

of membership queries. The chapter is based on the following paper, of which the author of

this thesis is the main author:

• [HSS20] Gerco van Heerdt, Matteo Sammartino and Alexandra Silva. “Learning Auto-

mata with Side-E�ects”. In: CMCS. 2020, to appear.

An extended but unpublished version of this paper is given in [HSS17b]. This includes the

implementation and experiment sections missing in the above publication.

The algorithm presented in Chapter 5 would be an instance of the one in Chapter 6, with

the succinctness optimisation applied, if the latter did not have the requirement of the monad

preserving �nite sets. That requirement is satis�ed whenever the semiring considered in

Chapter 5 is �nite (Example 5.2.12). The initial algorithm developed in Chapter 6 can be seen

as an instance of the main algorithm in Chapter 4 when instantiating to the opposite of the

category of algebras for the monad.

We provide �nal thoughts on the future of automata learning from our categorical per-

spective in Chapter 7. First, in Chapter 2, we start with preliminary notions that will be useful

throughout the thesis.

We note that the articles [HSS17a; HSS20] are originally based on the author’s master

thesis:

• [Hee16] Gerco van Heerdt. “An Abstract Automata Learning Framework”. MA thesis.

Radboud University Nijmegen, 2016. url: https://www.ru.nl/publish/pages/

https://doi.org/10.1007/978-3-030-45231-5_31
https://www.ru.nl/publish/pages/769526/gerco_van_heerdt.pdf
https://www.ru.nl/publish/pages/769526/gerco_van_heerdt.pdf
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769526/gerco_van_heerdt.pdf.

1.6.1 Additional Publications

Apart from the publications mentioned above, the author produced the following articles over

the course of the studies that culminated in the present thesis.

• [Hee+18b] Gerco van Heerdt, Bart Jacobs, Tobias Kappé and Alexandra Silva. “Learning

to Coordinate”. In: It’s All About Coordination. LNCS. Springer, 2018, pp. 139–159. doi:

10.1007/978-3-319-90089-6_10.

In this work we extended the original foundations of CALF laid by Jacobs and

Silva [JS14], adding a new corrected proof of minimality for hypotheses and an example

application to Reo automata, which provide a semantics for Reo circuits. The present

author’s contributions consisted in providing a new proof of minimality for hypotheses,

making use of recursive coalgebras and corecursive algebras; bringing the presentation

closer to the implicit categorical generalisation; and correcting an example.

• [Hee+18a] Gerco van Heerdt, Justin Hsu, Joël Ouaknine and Alexandra Silva. “Convex

language semantics for nondeterministic probabilistic automata”. In: ICTAC. vol. 11187.

LNCS. Springer. 2018, pp. 472–492. doi: 10.1007/978-3-030-02508-3_25.

We explored language semantics for nondeterministic probabilistic automata, proving

that the categorical view on automata leads to exactly two natural options. We also

showed that in both of these cases the nondeterminism allows to express more than

what could be expressed with deterministic probabilistic automata, and we proved that

language equivalence is undecidable (or at least hard, in the case of a unary alphabet).

We �nally provided a discounted metric to approximate language equivalence to arbit-

rary precision. The author of this thesis is the main author of the paper, apart from the

proofs of extended expressivity and hardness of equivalence, both in the case of a unary

alphabet.

• [Hee+19a] Gerco van Heerdt, Joshua Moerman, Matteo Sammartino and Alexandra

Silva. “A (co)algebraic theory of succinct automata”. In: JLAMP 105 (2019), pp. 112–125.

doi: 10.1016/j.jlamp.2019.02.008.

We studied the reverse question to determinisation—given a deterministic automaton

and a type of side-e�ect, can we �nd an automaton with such side-e�ects that is as small

as possible? We answered this question positively with an algorithm—although the

https://www.ru.nl/publish/pages/769526/gerco_van_heerdt.pdf
https://www.ru.nl/publish/pages/769526/gerco_van_heerdt.pdf
https://doi.org/10.1007/978-3-319-90089-6_10
https://doi.org/10.1007/978-3-030-02508-3_25
https://doi.org/10.1016/j.jlamp.2019.02.008
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automata produced are minimal with respect to a certain property and not necessarily

minimal in size—and explored various examples, including alternating automata and

weighted automata. The author of this thesis is the main author of the paper.



Chapter 2

Preliminaries

In this chapter we recall concepts and set notation that will be used throughout this thesis.

We start by introducing semirings and their semimodules in Section 2.1. These will be useful

in Chapters 5 and 6. We then move on to category theory in Section 2.2, which ends with

an introduction to categorical automata. Knowledge of category theory will not be required

for Chapter 5. Finally, we explain the L⋆ algorithm in Section 2.3, which is relevant to every

chapter apart from Chapter 3.

2.1 Semirings and Semimodules

A semiring is a ring that does not necessarily admit an additive inverse. For instance, the

natural numbers with the usual addition and multiplication operations form a semiring, but

not a ring. We give a formal de�nition below.

De�nition 2.1.1 (Semiring). A semiring S is a set with two monoid structures denoted by +
and ⋅, where the addition + is commutative and has an identity element 0, the multiplication ⋅
has an identity element 1, and the following distributivity equations hold (for a, b, c ∈ S):

a ⋅ (b + c) = a ⋅ b + a ⋅ c (a + b) ⋅ c = a ⋅ c + b ⋅ c 0 ⋅ a = a ⋅ 0 = 0

Apart from the natural numbers, examples include the non-negative rational numbers and

the boolean semiring {true, false} with addition given by “or” and multiplication by “and”.

The generalisation of the notion of vector space from �elds to semirings is called semimod-

ule.

De�nition 2.1.2 (Semimodule). A (left) semimoduleM over a semiring S consists of a monoid

structure on M , written using + as the operation and 0 as the unit, together with a scalar

23
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multiplication map ⋅∶ S × M → M such that:

s ⋅ 0M = 0M 0S ⋅ m = 0M 1 ⋅ m = m

s ⋅ (m + n) = s ⋅ m + s ⋅ n (s + r) ⋅ m = s ⋅ m + r ⋅ m (sr) ⋅ m = s ⋅ (r ⋅ m).

When the semiring is in fact a ring, we speak of a module rather than a semimodule. In the

case of a �eld, the concept instantiates to a vector space.

As an example, commutative monoids are the semimodules over the semiring of natural

numbers. Any semiring forms a semimodule over itself by instantiating the scalar multiplica-

tion map to the internal multiplication. If X is any set and M is a semimodule, then MX
with

pointwise operations also forms a semimodule. A similar semimodule is the free semimodule

over X , which di�ers from MX
in that it �xes M to be the relevant semiring and requires

its elements to have �nite support. This enables an important operation called linearisation.

Below we �rst de�ne free semimodules.

De�nition 2.1.3 (Free semimodule). Given a semiring S, the free semimodule over a set X is

given by the set

V (X) = {f ∶ X → S ∣ supp(f ) is �nite}

with pointwise operations. Here supp(f ) = {x ∈ X ∣ f (x) ≠ 0}. We sometimes identify the

elements of V (X) with formal sums over X . Any semimodule isomorphic to V (X) for some

set X is called free.

If X is a �nite set, then V (X) = SX . We now de�ne the linearisation of a function into a

semimodule, which uniquely extends it to a semimodule homomorphism, witnessing the fact

that V (X) is free.

De�nition 2.1.4 (Linearisation). Given a set X , a semimoduleM , and a function f ∶ X → M ,

we de�ne the linearisation of f as the semimodule homomorphism f ♯∶ V (X) → M given by

f ♯(�) = ∑
x∈X

�(x) ⋅ f (x).

The operation (−)♯ has an inverse that maps a semimodule homomorphism g ∶ V (X) → M
to the function g†∶ X → M given by

g†(x) = g()x ), )x (y) =
⎧⎪⎪
⎨⎪⎪⎩

1 if y = x

0 if y ≠ x.
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2.2 Category Theory

We assume basic knowledge of categories, functors, natural transformations, limits, and dual-

ity (see for instance [Awo10]). Below we discuss several further topics: factorisation systems

(Section 2.2.1), algebras and coalgebras (Section 2.2.2), monads and algebras for a monad (Sec-

tion 2.2.3), and �nally automata (Section 2.2.4).

2.2.1 Factorisation Systems

The notion of factorisation system generalises the ability to take images of functions to the

categorical level. The idea is that a function f ∶ X → Y can be factorised as

X Y

img(f )

f

f ⊳ f ⊲

where f ⊳ is the surjective version of f—restricted to having its image as the codomain—and

f ⊲ is the inclusion of the image of f into Y . This factorisation also has a uniqueness property,

which altogether generalises as follows.

De�nition 2.2.1 (Factorisation system). An ( ,)-factorisation system on a category C con-

sists of classes of morphisms  and , closed under composition with isos, such that  con-

sists of epis,  consists of monos, and for every morphism f in C there exist f ⊳ ∈  and

f ⊲ ∈ with f = f ⊲ ◦ f ⊳, as indicated below on the left, and we have a unique diagonal �ll-in

property: for every commutative square as below on the right, with e ∈  and m ∈ , there

exists a unique diagonal d ∶ B → C making both triangles commute.

X Y
∙

f

f ⊳ f ⊲

A B

C D

e

d

m

We often denote morphisms in  using double-headeded arrows and morphisms in  using

tailed arrows when these properties are relevant.

As suggested above, (surjective functions, injective functions) forms a factorisation sys-

tem in Set. Similarly, in the category Vect of vector spaces and linear maps, a factorisation

system is given by (surjective linear maps, injective linear maps).
De�ne by ≤ the order on morphisms with common domain given by f ≤ g if and only if

there exists a morphism ℎ such that ℎ ◦ f = g. This induces an equivalence relation on such
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morphisms. In the context of a factorisation system ( ,), a quotient of an object X is a

morphism q∶ X � X ′
in  identi�ed up to the equivalence, i.e., an equivalence class. This

works because  is closed under composition with isomorphisms. For quotients of an object,

the order de�ned above intuitively says a quotient is bigger if it identi�es more.

Similarly, we also denote by ≤ the order on morphisms with common codomain given by

f ≤ g if and only if there exists a morphism ℎ such that g ◦ ℎ = f , which again induces an

equivalence relation on such morphisms. A subobject of an object X is a morphism m∶ X ′ �

X in  identi�ed up to this equivalence. For subobjects of an object, the order de�ned above

intuitively says a subobject is bigger if it contains more.

We sometimes refer to quotients or subobjects by representatives of the equivalence class.

Note that two representatives are isomorphic (ordered in both directions via an isomorphism)

if and only if they are in the same equivalence class. We thus sometimes speak of isomorphic

quotients or subobjects when considering two representatives that are in the same equivalence

class.

2.2.2 Algebras and Coalgebras

An algebra for a functor is the categorical generalisation of an algebraic operation, where the

functor determines the type of the operation. Such algebras will form the core of the automata

de�ned in Section 2.2.4, generalising the transition functions of DFAs.

De�nition 2.2.2 (Algebra for a functor). Given a categoryC, an algebra for a functor F ∶ C →
C, also called an F -algebra, is a tuple (X , �), where � ∶ FX → X is any morphism. Given two

F -algebras (X , �) and (Y ,  ), an F -algebra homomorphism f ∶ (X , �) → (Y ,  ) is a morphism

X → Y making the diagram below commute.

TX TY

X Y

T f

�  

f

For example, an algebra for the functor FX = X ×X on Set is a binary operation on the set

X . An F -algebra homomorphism is a function preserving the operation. For instance, if (X , �)
and (Y ,  ) are F -algebras for the above de�nition of F , then an F -algebra homomorphism

f ∶ (X , �) → (Y ,  ) is a function that satis�es f (�(x1, x2)) =  (f (x1), f (x2)) for all x1, x2 ∈ X .

The dual of an algebra is called a coalgebra. Both algebras and coalgebras are used to

abstractly describe the inner workings of systems, but whereas algebras describe how the
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system is constructed from the operations expressed by the functor F , coalgebras describe

how to deconstruct it and extract observations from states.

De�nition 2.2.3 (Coalgebra for a functor). Given a category C, a coalgebra for a functor

F ∶ C → C, also called an F -coalgebra, is a tuple (X , �), where � ∶ X → FX is any morphism.

Given two F -coalgebras (X , �) and (Y ,  ), an F -coalgebra homomorphism f ∶ (X , �) → (Y ,  )
is a morphism X → Y making the diagram below commute.

X Y

TX TY

f

�  

T f

For example, a coalgebra for the functor FX = X × X on Set is an operation that takes

one element from the set X and produces two in return. An F -coalgebra homomorphism is a

function preserving this operation. For instance, if (X , �) and (Y ,  ) are F -coalgebras for the

above de�nition of F , then an F -algebra homomorphism f ∶ (X , �) → (Y ,  ) is a function that

satis�es (f (x1), f (x2)) =  (f (x)) for all x ∈ X and letting (x1, x2) = �(x).

One can describe various types of state-based systems using coalgebras, including labelled

transition systems and automata such as deterministic, nondeterministic, and weighted auto-

mata [Rut00]. We note that, as coalgebras, these models do not include initial states. Similarly,

deterministic automata can be modelled as algebras, in which case their states do not carry

the accept/reject distinction. In Section 2.2.4 we will introduce an extended model that fully

captures the components of an automaton.

2.2.3 Monads and their Algebras

In computer science, monads are often seen as modelling a type of computation. They com-

prise a functor T together with natural transformations and compatibility laws between them

that allow for composing morphisms X → TY with morphisms Y → TZ to form functions

X → TZ . The additional expressive power enabled by the functor T in these computations is

sometimes referred to as a side-e�ect (see for instance Chapter 6). Below we give the formal

de�nition.

De�nition 2.2.4 (Monad). A monad in a category C is a triple (T , �, �), where T ∶ C → C is

a functor and �∶ Id ⇒ T and � ∶ T T ⇒ T are natural transformations making the diagrams
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below commute.

T T 2

T 2 T

T�

� �

�

T 3 T 2

T 2 T

T�

� �

�

We often identify the monad (T , �, �) with the functor T .

One obvious example is the identity monad on any category: it consists of the identity

functor with identity natural transformations. Below we give a few examples on the category

of sets and functions.

Example 2.2.5 (Monads in Set). An example of a monad in Set is the triple ( , {−},⋃), where

 denotes the powerset functor assigning to each set its set of subsets, {−} is the singleton

operation, and ⋃ is union of sets. Another example is the triple (V (−), e, m), where V (X) for

a semiring S is the free semimodule over X (see De�nition 2.1.3), e ∶ X → V(X) assigns the

characteristic function of x to each x ∈ X , which has weight 1 assigned to x and weight 0 to

every other element, and m∶ V (V (X)) → V (X) is de�ned for ' ∈ V (V (X)) and x ∈ X as

m(')(x) = ∑
 ∈V (X)

'( ) ⋅  (x).

An important concept is an algebra for a monad, which generalises for instance the se-

mimodules over a semiring introduced in Section 2.1. It di�ers from an algebra over a functor

in that there are additional laws involving the unit and multiplication of the monad that need

to be obeyed.

De�nition 2.2.6 (Algebras for a monad). An Eilenberg–Moore algebra algebra for a monad

(T , �, �), also called a T -algebra
1
, in a category C is a T -algebra (X , x) making the diagrams

below commute.

X TX

X

�

x

T 2X TX

TX X

Tx

� x

x

Given two T -algebras (X , x) and (Y , y), a T -algebra homomorphism f ∶ (X , x) → (Y , y) is

just a T -algebra homomorphism. Algebras for T and their homomorphisms form a category

EM(T ) called the Eilenberg–Moore category of T .

1
Note that this is the same terminology as for an algebra for the functor T . The present notion will be inten-

tended whenever there is a monad structure on T in the context, unless explicitly stated otherwise.
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Example 2.2.7 (Monad algebras in Set). Algebras for the powerset monad are complete join

semilattices, with the operation X → X representing the join. Algebras for the free se-

mimodule monad V for a semiring S are precisely the semimodules over S.

One important type of algebra over a monad is the free T -algebra.

De�nition 2.2.8 (Free T -algebra). Given a monad (T , �, �) and an object X , the free T -algebra
over X is given by (TX , �X ). It is free in that for every T -algebra (Y , y) and morphism f ∶ X →
Y , there exists a unique T -algebra homomorphism f ♯∶ (TX , �X ) → (Y , y) satisfying f ♯ ◦ �X =
f . We call this T -algebra homomorphism f ♯ the extension of f . The extension operation has

an inverse (−)† that maps a T -algebra homomorphism g ∶ (TX , �X ) → (Y , y) to a function

g† = g ◦ �X ∶ X → Y .

Apart from free algebras for a monad, we will also need free monads generated by a func-

tor. These are known as algebraically free monads, which we introduce below.

De�nition 2.2.9 (Algebraically free monad). An algebraically freemonad (F⋆, �, �) over a func-
tor F ∶ C → C is a monad in C such that the category of F⋆-algebras is isomorphic to the cat-

egory of F -algebras, with the isomorphism commuting with the forgetful functors into C. The

F -algebra corresponding to a free F⋆-algebra (F⋆X, �X ) is a component of a natural transform-

ation � ∶ FF⋆ ⇒ F⋆. Given an F -algebra (Y , y), we denote by y⋆ = id♯Y ∶ F⋆Y → Y the cor-

responding algebra for the monad, which is also an F⋆-algebra homomorphism (F⋆Y , �Y ) →
(Y , y).

Algebraically free monads are also free in the sense of [Bar70], and conversely a free

monad is algebraically free if the category it is de�ned on is locally small and complete [Kel80].

2.2.4 Automata and Languages

Below we introduce the categorical notion of automaton due to Arbib and Manes [AM74].

To this end, we �x an arbitrary category C with a factorisation system ( ,) and a functor

F ∶ C → C, as well as objects I and O. We assume F admits a free monad (F⋆, �, �). An

automaton is an (algebraic) transition structure together with initial states and outputs. The

objects I and O serve to select initial states and provide output options, respectively.

De�nition 2.2.10 (Automaton). An automaton is a quadruple (Q, �, i, o), where Q is the state

space, � ∶ FQ → Q is the dynamics, i ∶ I → Q is the initial state map, and o ∶ Q → O is the
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output map.

FQ

Q

I O

�

oi

Given automata = (Q, �, i, o) and′ = (Q′, � ′, i′, o′)An automaton homomorphism f ∶  →
′

is a morphism Q → Q′
making the diagrams below commute.

FQ FQ′

Q Q′

F f

� � ′

f

I

Q Q′

i i′

f

Q Q′

O

f

o o′

Example 2.2.11. If C = Set with ( ,) = (surjective, injective), F = (−) × A for a �nite set

A, I = 1 = {∗}, and O = 2 = {0, 1}, we recover deterministic automata (DAs) as automata: the

state space is a set Q, the transition function is the dynamics, the initial state is represented

as a morphism 1 → Q, and the classi�cation of states into accepting and rejecting ones is

represented by a morphism Q → 2. In this case we obtain the free monad ((−)×A)⋆ = (−)×A⋆,

with its unit pairing an element with the empty word " and the multiplication concatenating

words. The extension of � ∶ Q × A → Q to �⋆∶ Q × A⋆ → Q is the usual one that lets the

automaton read a word starting from a given state.

The behaviour of an automaton is referred to as its language, de�ned below. In the DA

setting above this instantiates to the actual language—the classi�cation of words—accepted

by a DA. In general, it is a classi�cation of F⋆I into the outputs O, which are 1 × A⋆ and 2
respectively in the DA case.

De�nition 2.2.12 (Language). A language is a morphism F⋆I → O.

The object F⋆I serves as a generalisation of the set of words, which in the DFA case can

be used to characterise from which inputs to reach states of the DFA. Before we can de�ne

the language accepted by an automaton, we need to generalise this concept of reachability.

De�nition 2.2.13 (Reachability map). Given an automaton  = (Q, �, i, o), its reachability

map is given by

reach = i♯∶ F⋆I → Q.

Given an automaton  = (Q, �, i, o), the reachability map reach is the unique F -algebra

homomorphism (F⋆I , �I ) → (Q, �) satisfying reach ◦ �I = i. In fact, this makes it the unique

automaton homomorphism (F⋆I , �I , �I ,) → .
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Using the reachability map, we obtain a language for an automaton by composing its

output map. This instantiates to familiar notions of behaviour, such as the language accepted

by a DFA. One can compute that language by taking for each word the acceptance decision

associated with the state reached after reading that word starting from the initial state.

De�nition 2.2.14 (Language accepted by an automaton). The language accepted by an auto-

maton = (Q, �, i, o) is given by

 = F⋆I
reach←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Q

o
←←←←←←→ O.

The existence of an automaton homomorphism between two automata witnesses their

languages being equivalent. That is, if  and ′
are automata and ℎ∶  → ′

is any

automaton homomorphism, then  = ′ .

Since the reachability map generalises the function that assigns to a word the state reached

in a DFA, we can also generalise the property of a DFA to be reachable: for each state there is

a word reaching it. This is the case if the reachability map is surjective, which we generalise

using the  part of the factorisation system.

De�nition 2.2.15 (Reachability). We say that an automaton  is reachable if reach ∈  .

Reachability is one step towards minimality, which in the DFA case also requires distinct

states to accept di�erent languages. This turns out to be equivalent to being �nal among all

reachable automata accepting the same language.

De�nition 2.2.16 (Minimality). An automaton  is minimal if it is reachable and for each

reachable automaton ′
with ′ =  there exists a unique automaton homomorphism

′ → .

Example 2.2.17. Consider the DA setting from Example 2.2.11. A DA  = (Q, �, i, o) is

reachable if and only if reach∶ A⋆ → Q is surjective. That is, for each q ∈ Q there needs to

exist u ∈ A⋆ with reach(u) = q. Suppose  is reachable and consider the state-minimal DA

m satisfying m = . We know that m is reachable and that each of its states accepts a

di�erent language. This DA is in fact minimal, with the unique homomorphism ℎ∶  → m

de�ned by ℎ(reach(u)) = reachm (u). It takes a state reach(u) and maps it to the one state

in m accepting the same language. One can show that this state is reachm (u) using that the

reachability maps are automaton homomorphisms.
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2.3 The L⋆ Algorithm

The L⋆ algorithm [Ang87] learns the minimal DFA accepting a language  ⊆ A⋆ over a �nite

alphabet A. It assumes the existence of a teacher, which is an oracle that can answer two types

of queries:

• Membership queries: given a word w ∈ A⋆, the teacher replies with 0 or 1 according to

whether w belongs to .

• Equivalence queries: given a hypothesis DFA , the teacher replies yes if  equals .

If not, the teacher returns a counterexample: a word w ∈ A⋆ incorrectly classi�ed by 
(i.e., w ∈  ⟺ w ∉ ).

In practice, membership queries are often easily implemented by interacting with the sys-

tem one wants to model the behaviour of. Equivalence queries are more complicated—as the

target automaton is not known they are commonly approximated by testing. Such testing can

however be done exhaustively if a bound on the number of states of the target automaton is

known [Cho78; Vas73]. Equivalence queries can also be implemented exactly when learning

algorithms are being compared experimentally on a generated automaton whose language

forms the target. In this case, standard methods for language equivalence, such as building a

bisimulation, can be used.

The learning algorithm incrementally builds an observation table made up of two parts: a

top part, with rows ranging over a �nite set S ⊆ A⋆; and a bottom part, with rows ranging over

S ⋅ A (where ⋅ is pointwise concatenation). Columns range over a �nite set E ⊆ A⋆. For each

u ∈ S ∪ S ⋅ A and v ∈ E, the corresponding cell in the table contains 1 if and only if uv ∈  and

this can be determined using a membership query. Intuitively, each row u approximates the

Myhill–Nerode equivalence class of u with respect to the target language—rows with the same

content are considered members of the same equivalence class. Recall that the Myhill–Nerode

right congruence ≡ of  is de�ned for all words u1, u2 ∈ A⋆ by

u1 ≡ u2 ⟺ ∀v ∈ A⋆.(u1v) = (u2v).

For S = E = A⋆, the relation that identi�es words of S having the same rows is precisely the

Myhill–Nerode right congruence.

As an example, and to set notation, consider the table below over A = {a, b}. It shows

that the language  it is based on contains the word aa and does not contain the words " (the

empty word), a, b, ba, aaa, and baa.
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E

" a aa

S[ " 0 0 1

S ⋅ A
[

a 0 1 0

b 0 0 0

row∶ S → 2E

row(u)(v) = 1 ⟺ uv ∈ 

srow∶ S ⋅ A → 2E

srow(ua)(v) = 1 ⟺ uav ∈ 

We use functions row and srow to describe the top and bottom (successor) parts of the

table, respectively. Notice that S and S ⋅ A may intersect. For conciseness, when tables are

depicted, elements in the intersection are only shown in the top part.

A key idea of the algorithm is to construct a hypothesis DFA from the rows in the table,

with rows having equal content being identi�ed. That is, the state space of the hypothesis is

given by the set H = {row(s) ∣ s ∈ S}. The construction is analogous to that of the minimal

DFA from the Myhill-Nerode equivalence. The initial state is row("), and we use the " column

to determine whether a state is accepting: row(s) is accepting whenever row(s)(") = 1. A row

row(s) advances on a transition with a ∈ A to the state given by srow(sa). (Notice that the

continuation is drawn from the bottom part of the table). For this hypothesis automaton to

be well-de�ned, " must be in S and E, and the table must satisfy two properties:

• Closedness states that each transition actually leads to a state of the hypothesis. That

is, the table is closed if for all t ∈ S and a ∈ A there is s ∈ S such that row(s) = srow(ta).

• Consistency states that there is no ambiguity in determining the transitions. That is,

the table is consistent if for all s1, s2 ∈ S such that row(s1) = row(s2) we have srow(s1a) =
srow(s2a) for all a ∈ A.

The algorithm updates the sets S and E to satisfy these properties, constructs a hypothesis,

submits it in an equivalence query, and, when given a counterexample, re�nes the hypothesis.

This process continues until the hypothesis is correct.

More concretely, we show L⋆ in Figure 2.1. It is organised into two procedures: Al-

gorithm 2.1 makes a table closed and consistent, and Algorithm 2.2 performs the learning

iterations. The latter works as follows: Initially the table corresponding to S = E = {"} is

made closed and consistent (line 1). Then as long as the corresponding hypothesis, denoted

by (S,E), is shown to be incorrect via an equivalence query, denoted by EQ, resulting in a

counterexample c ∈ A⋆ (line 2), the pre�xes of c are added to S (line 3) and the table is made
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Algorithm 2.1. Make table closed and consistent

1: function Fix(S, E)

2: while (S, E) is not closed or not consistent do
3: if (S, E) is not closed then
4: �nd s ∈ S, a ∈ A such that ∀t ∈ S. srow(sa) ≠ row(t)
5: S ← S ∪ {sa}
6: else if (S, E) is not consistent then
7: �nd s1, s2 ∈ S, a ∈ A and e ∈ E such that

row(s1) = row(s2) and srow(s1a)(e) ≠ srow(s2a)(e)
8: E ← E ∪ {ae}

9: return S, E

Algorithm 2.2. L⋆ algorithm

1: S, E ← Fix({"}, {"})
2: while EQ((S,E)) = c ∈ A⋆ do
3: S ← S ∪ prefixes(c)
4: S, E ← Fix(S, E)

5: return (S,E)

Figure 2.1: Angluin’s L⋆ algorithm

closed and consistent again (line 4). Once an equivalence query results in a positive answer,

the hypothesis is returned (line 5).

Example Run. We run the algorithm with the target language

 = {w ∈ {a}⋆ ∣ |w| ≠ 1},

of which the minimal DFA accepting it is shown below.

 =
a a a

Initially, S = E = {"}. We build the observation table given in Figure 2.2a. This table is not

closed, because the row with label a, having 0 in the only column, does not appear in the top
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"
" 1

a 0

(a)

"
" 1

a 0

aa 1

(b)

a

a

(c)

"
" 1

a 0

aa 1

aaa 1

aaaa 1

(d)

" a
" 1 0

a 0 1

aa 1 1

aaa 1 1

aaaa 1 1

(e)

Figure 2.2: Example run of L⋆ on  = {w ∈ {a}⋆ ∣ |w| ≠ 1}.

part of the table: the only row " has 1. To �x this, we add the word a to the set S. Now the

table (Figure 2.2b) is closed and consistent, so we construct the hypothesis that is shown in

Figure 2.2c and pose an equivalence query. The teacher replies no and informs us that the

word aaa should have been accepted. To process this counterexample, we add all its pre�xes

to the set S. We only have to add aa and aaa in this case. The next table (Figure 2.2d) is

closed, but not consistent: the rows " and aa both have value 1, but their extensions a and

aaa di�er. To �x this, we prepend the continuation a to the column " on which they di�er

and add a ⋅ " = a to E. This distinguishes row(") from row(aa), as seen in the next table in

Figure 2.2e. The table is now closed and consistent, and the new hypothesis automaton is

precisely .

Variations. Several variations on the original algorithm exist. For instance, Maler and

Pnueli [MP95] proposed to add all su�xes of a counterexample to E instead of its pre�xes

to S (line 3 in Algorithm 2.2). Since this variation maintains the invariant that for any two

s1, s2 ∈ S with s1 ≠ s2 we have row(s1) ≠ row(s2), consistency is always trivially satis�ed and

thus does not have to be checked. We give the resulting modi�ed algorithm, referred to as L⋆MP,

in Figure 2.3. An example is given below. Another variation on handling counterexamples is

given by Rivest and Schapire [RS93], who add only a single su�x of a counterexample to E.

The purpose of adding these columns is to distinguish two rows that were previously equal,

so �nding a single new column that does this avoids a large amount of unnecessary data in

the table, which would potentially require expensive membership queries to obtain. We will

discuss this variation in detail in Section 6.5.

Example Run of L⋆MP. We revisit the earlier example with target language

 = {w ∈ {a}⋆ ∣ |w| ≠ 1},
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Algorithm 2.3. Make table closed

1: function Fix(S, E)

2: while (S, E) is not closed do
3: �nd s ∈ S, a ∈ A such that ∀t ∈ S. srow(sa) ≠ row(t)
4: S ← S ∪ {sa}

5: return S, E

Algorithm 2.4. L⋆MP algorithm

1: S, E ← Fix({"}, {"})
2: while EQ((S,E)) = c ∈ A⋆ do
3: S ← S ∪ suffixes(c)
4: S, E ← Fix(S, E)

5: return (S,E)

Figure 2.3: Maler and Pnueli’s variation on L⋆

of which the minimal DFA is given below.

 =
a a a

This time we apply L⋆MP instead of L⋆. Again, initially S = E = {"}. As in the original example,

the table in Figure 2.4a is made closed in Figure 2.4b and results in the hypothesis Figure 2.4c,

an equivalence query for which leads to the teacher giving the counterexample aaa. Now

we add all the su�xes of the counterexample to the set E, which means we add a, aa, and

aaa. The next table (Figure 2.4d) is not closed: the lower row aa does not appear in the upper

part. Thus, we add aa to S to obtain the closed (and consistent) table in Figure 2.4e. The new

hypothesis automaton is precisely .
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"
" 1

a 0

(a)

"
" 1

a 0

aa 1

(b)

aa

(c)

" a aa aaa
" 1 0 1 1

a 0 1 1 1

aa 1 1 1 1

(d)

" a aa aaa
" 1 0 1 1

a 0 1 1 1

aa 1 1 1 1

aaa 1 1 1 1

(e)

Figure 2.4: Example run of L⋆MP on  = {w ∈ {a}⋆ ∣ |w| ≠ 1}.



Chapter 3

Minimisation of Automata

Automata have been extensively studied using category theory, both from an algebraic and a

coalgebraic perspective [AM74; Hol82; AT89; Rut98]. Categorical insights have enabled the

development of generic algorithms for minimisation [Adá+12], determinisation [Sil+13], and

equivalence checking [BP15].

A fruitful line of work has focused on characterising the semantics of di�erent types of

automata as �nal coalgebras. The �nal coalgebra contains unique representatives of beha-

viour, and the existence of a minimal automaton can be formalised by a suitable factorisa-

tion of the map from a given automaton into the �nal coalgebra. Algorithms to compute

the minimal automaton can be devised based on the �nal sequence, which yields proced-

ures resembling classical partition re�nement [KK14; Dor+17]. Unfortunately, bottom-up tree

automata, which generalise DFAs by processing trees instead of words, do not �t the abstract

framework of �nal coalgebras.
1

This impeded the application of abstract algorithms for min-

imisation, determinisation, and equivalence. We embrace the categorical algebraic view on

automata due to Arbib and Manes [AM74], introduced in Section 2.2.4, to study bottom-up

tree automata (Section 3.1). This algebraic approach is also treated in detail by Adámek and

Trnková [AT89], who, among other results, give conditions under which minimal realisations

exist (see also [Adá77]). However, generic algorithms for minimisation have not been studied

in this context.

The contributions of this chapter are as follows.

1. First, we explore the notion of cobase to devise an iterative construction for minimising

tree automata, at the abstract level of algebras, resembling partition re�nement (Sec-

1
The language semantics of top-down tree automata represented as coalgebras is given in [KR16], based on a

transformation to bottom-up tree automata. In this chapter, we focus on bottom-up automata only.

38
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tion 3.3). The notion of cobase is dual to that of base [Blo12], which plays a key role in

reachability of coalgebras [Wiß+19; BKR19] and therefore in minimisation of automata.

2. Second, we study a di�erent characterisation of minimality via the Nerode equivalence,

again based on work of Arbib and Manes [AM74], and provide a generalisation using

monads that allows to treat automata with equations (Section 3.4).

Before presenting our contributions, we recall bottom-up tree automata in Section 3.1,

after which we review and relate di�erent notions of abstract automaton minimality in Sec-

tion 3.2.

Throughout this chapter we work in an arbitrary category C with a factorisation system

( ,) and �x a functor F ∶ C → C and objects I and O in C. We assume that F maps

morphisms in  to epimorphisms and admits an algebraically free monad (F⋆, �, �). We also

assume thatC is cocomplete (has all small colimits) and cowellpowered, which will be explained

in Section 3.3.

3.1 Bottom-Up Tree Automata

In this section we show how automata as de�ned in Section 2.2.4 can capture (deterministic)

bottom-up tree automata. We �rst recall some basic concepts.

A ranked alphabet is a �nite set of symbols Γ, where each 
 ∈ Γ is equipped with an arity

arity(
 ) ∈ ℕ. The set of Γ-trees over a set of symbols I , denoted Γ(I ), is the smallest set such

that I ⊆ Γ(I ), and for all 
 ∈ Γ we have that t1, … , tarity(
 ) ∈ Γ(I ) implies (
 , t1, … , tarity(
 )) ∈
Γ(I ). In other words, Γ(I ) consists of �nite trees with leaves labelled by symbols from I
and internal nodes labelled by symbols from Γ; the number of children of each internal node

matches the arity of its label.

A ranked alphabet Γ gives rise to a polynomial signature endofunctor ΣΓ∶ Set → Set
given by ΣΓX = ∐
∈Γ X arity(
 )

. A bottom-up tree automaton is an automaton  = (Q, �, i, o)
where Q is �nite, the dynamics functor F is a signature endofunctor ΣΓ, and the output set

O = 2. Here Q is the set of states, i ∶ I → Q is the initial assignment, o ∶ Q → 2 is the

characteristic function of �nal states, and for each 
 ∈ Γ we have a transition function �
 =
� ◦ �
 ∶ Qarity(
 ) → Q, where �
 ∶ Qarity(
 ) → ΣΓQ is the coproduct injection.

The language  of a bottom-up tree automaton is the set of all Γ-trees t such that (o ◦
�̂)(t) = 1, where �̂ ∶ Γ(I ) → Q extends � to trees by structural recursion:

�̂ (� ) = i(� ) (� ∈ I ) �̂(
 , t1, … , tk) = �
 (�̂ (t1), … , �̂(tk))
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In other words,  contains the trees that evaluate to a �nal state. The map �̂ above is the

transpose i♯ in the adjunction between Set and the category of ΣΓ-algebras, where the left

adjoint sends a set I to the ΣΓ-algebra with carrier Γ(I ) and the obvious structure map.

Example 3.1.1. As an example, let the ranked alphabet be given by Γ = {∙} with arity(∙) = 2
and take I = {a, b}. We consider the the bottom-up tree automaton (Q, �, i, o), where Q =
{qa, qa+, qb , qb+, q⊥, q⊤}, i ∶ I → Q is given by i(a) = qa and i(b) = qb , and o ∶ Q → 2 is given

by

o(qa) = o(qa+) = o(qb) = o(qb+) = o(q⊥) = 0 o(q⊤) = 1.

That is, q⊤ is the only accepting state. Furthermore, we de�ne �∙∶ Q2 → Q via the following

assignments.

(qa, qb) ↦ q⊤ (qa, qb+) ↦ q⊤ (qa, q⊤) ↦ qa+ (qa+, qb) ↦ q⊤ (q⊤, qb) ↦ qb+

All remaining pairs are assigned q⊥. The language accepted by this automaton consists of

binary trees over {a, b} where the yield of the tree—its sequence of leaf symbols from left to

right—is a word of the form anbn for some 0 < n ∈ ℕ and every binary node in the tree has

one leaf child.

For instance, consider the tree below on the left.

∙

∙

a ∙

a b

b

∙

∙

qa ∙

qa qb

qb ∙

∙

qa q⊤

qb ∙

qa+ qb

In order to apply i♯ = �̂ ∶ Γ(I ) → Q, we �rst apply i ∶ I → Q to the leaves of the tree to

obtain the middle left tree. We now apply binary transitions from bottom to top. First, this

involves replacing the bottom pair (qa, qb)with q⊤, resulting in the middle right tree. Now we

replace (qa, q⊤) with qa+, as shown in the tree on the right. Finally, the pair (qa+, qb) becomes

q⊤. Since q⊤ is the accepting state, the tree is in the language.

In the next section we explore di�erent notions of minimality on the abstract level of auto-

mata as de�ned in Section 2.2.4. This therefore applies also to the bottom-up tree automata

introduced above.
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3.2 Notions of Minimality

In Section 2.2.4 we de�ned an automaton to be minimal if it is reachable and if each reachable

automaton accepting the same language has a unique automaton homomorphism into it. In

this section we de�ne two related notions that do not refer to reachability: minimisation and

simplicity. Minimisation is a notion relative to an automaton that characterises its “smallest

quotient”; simplicity states that an automaton has only trivial quotients.

Below we de�ne the minimisation of an automaton as the limit among its quotient auto-

mata. Given an automaton , we refer to an automaton ′
as a quotient automaton of  if

it comes with a quotient q∶  � ′
. That is, if Q and Q′

are the respective state spaces of

 and ′
, then q is a morphism Q � Q′ ∈  (see also Section 2.2.1) that forms an automaton

homomorphism.

De�nition 3.2.1 (Minimisation). The minimisation of an automaton  is a quotient auto-

maton m, q∶  � m, such that for any quotient automaton ′
, q′∶  � ′

of  there

exists a (necessarily unique) automaton homomorphism ℎ∶ ′ � m such that ℎ ◦ q′ = q.

 m

′

q

q′ ℎ

Note that the morphism ℎ in the de�nition of minimisation is in  because q′ and q are.

Minimisation is called minimal reduction in [AT89], but note that there initial state maps are

not taken into account.

We relate the existence of minimisations to the existence of minimal automata with Pro-

position 3.2.3 below, for which we need a simple lemma.

Lemma 3.2.2. An automaton  is minimal if and only if it is the minimisation of

(F⋆I , �I , �I ,).

Proof. Consider an automaton , and let @ = (F⋆I , �I , �I ,). Since any automaton ho-

momorphism @ →  must be the reachability map of ,  is a quotient automaton of

@ if and only if it is reachable. The automaton  is the minimisation of @ (necessarily

via reach) if and only if for any quotient automaton ′
, q∶ @ � ′

, with ′ = @

there exists an automaton homomorphism ℎ∶ ′ →  satisfying ℎ ◦ q = reach. By the

uniqueness of reachability maps we have q = reach′ and the above equality is automatically

satis�ed. Thus,  is the minimisation of @ if and only if for every reachable automaton ′
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with ′ = @ there exists an automaton homomorphism ℎ∶ ′ → , which is exactly

what it means for  to be minimal.

Proposition 3.2.3. There exists a minimisation for every reachable automaton if and only if a

minimal automaton exists for every language. In that case, if an automaton is reachable, then

the minimisation of  is minimal.

Proof. For the equivalence, the implication from left to right follows from Lemma 3.2.2. For the

converse, consider a reachable automaton  and let m be the minimal automaton accepting

. Since  and m are reachable and accept the same language, there is by minimality of

m a unique homomorphism ℎ∶  → m satisfying ℎ ◦ reach = reachm , and we know

ℎ ∈  . Suppose ′
, q∶  → ′

is any quotient automaton of . Then q ◦ reach = reach′

by the uniqueness of reachability maps, and ′ =  by the existence of the automaton

homomorphism q. By minimality ofm there then exists a unique automaton homomorphism

f ∶ ′ → m. We thus have the following situation, where we let @ = (F⋆I , �I , �I ,).

@  ′

m

reach

reach′

reachm

q

ℎ
f

Since f ◦ q ◦ reach = reachm by the uniqueness of reachability maps, we have by the unique-

ness property of ℎ that f ◦ q = ℎ. We conclude that m is the minimisation of  via ℎ.

For the second statement, consider a reachable automaton  and let ′
, q∶  � ′

be

its minimisation. Then reach′ = q ◦ reach ∈  by the uniqueness of reachability maps, so ′

is reachable. We also have m =  by the existence of the automaton homomorphism q.

Let m be the minimal automaton accepting . Then there exists a unique homomorphism

f ∶ ′ � m. This makes m a quotient automaton of  via f ◦ q ∶  → m. By ′

being the minimisation of  there exists a unique homomorphism g ∶ m → ′
satisfying

g ◦ f ◦ q = q. Since q is an epi we have g ◦ f = id and using that f ◦ g ◦ f = f and f is an epi we

have f ◦ g = id. We conclude that ′
is minimal, being isomorphic to m.

The de�nition of minimality relies on reachability. It is also interesting to ask whether

there is another property that, together with reachability, implies minimality, but is not itself

dependent on reachability [AM75a]. Here we propose precisely such a condition.

De�nition 3.2.4 (Simplicity). An automaton  is called simple if for every quotient auto-

maton ′
the associated quotient q∶  � ′

is an isomorphism.
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We note that the notion of minimisation is also independent of reachability. Indeed, we

can alternatively characterise simplicity via minimisation, as we show next.

Proposition 3.2.5. An automaton is simple if and only if it is its own minimisation.

Proof. First suppose  is simple. We will show that it is its own minimisation via the identity

morphism. Thus, suppose ′
, q∶  � ′

is any quotient automaton of . By simplicity we

have that q is an isomorphism. Then q−1∶ ′ →  satis�es q−1 ◦ q = id. For uniqueness, if

f ∶ ′ →  is any automaton homomorphism satisfying f ◦q = id, then f = q−1. We conclude

that  is its own minimisation.

Now suppose is its own minimisation via the identity morphism. To see that is simple,

consider any quotient automaton ′
, q∶  � ′

. We need to show that q is an isomorph-

ism. By  being its own minimisation, there exists a unique homomorphism f ∶ ′ → 
satisfying f ◦ q = id. Then q ◦ f ◦ q = q, so by q being an epi we have q ◦ f = id and conclude

that q is an isomorphism.

In Corollary 3.2.7 we will show an equivalence between minimality and the combination

of reachability and simplicity. To this end we �rst establish a further connection between

simplicity and minimisation. The result below asserts that any quotient of an automaton is

simple if and only if the quotient is the minimisation of the automaton. It can be seen as a

re�nement (and dual) of [BKR19, Theorem 17], computing the reachable part of a coalgebra.

Proposition 3.2.6. Let  = (Q, �, i, o) be an automaton that has a minimisation, and let ′,

q∶  � ′ be a quotient automaton. Then′ is simple if and only if it is the minimisation of

.

Proof. We denote the minimisation of  by m, qm ∶  � m. Suppose ′
is simple. Since

m is the minimisation of  and ′
is a quotient automaton of , there exists a homomorph-

ism of automata ℎ∶ ′ � m. Since ′
is simple, this homomorphism is an iso.

Conversely, suppose ′
is the minimisation of  and consider any quotient automaton

′′
of ′

, witnessed by some q′∶ ′ � ′′
. Then ′′

is also a quotient automaton of , via

q′ ◦ q. Because ′
is the minimisation of , there exists k ∶ ′′ → ′

such that k ◦ q′ ◦ q = q.

Thus k ◦ q′ = id, using that q is an epi. Since q′ ◦ k ◦ q′ = q′ and q′ is an epi as well, we also

have q′ ◦ k = id. Hence q′ is an iso, as needed.

The corollary below follows from the above together with Lemma 3.2.2, which identi�es

the minimal automaton as a particular minimisation.
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Corollary 3.2.7. Consider an automaton  such that the minimal automaton accepting 

exists. Then is minimal if and only if it is reachable and simple.

A crucial ingredient for the application of the above results is that the minimisation of a

given automaton exists. In the next section we will explore conditions under which this is

guaranteed. In fact, we will develop a procedure to �nd minimisations.

3.3 Minimisation via the Cobase

We will show how to compute the minimisation of a given automaton using the so-called

cobase [Blo12]. This is the dual of the base, which is used in [BKR19; Wiß+19] for reachability

of coalgebras. We will need some additional notions before we can de�ne the cobase.

Given an object X , we denote by Quot(X ) the class of all quotients of X (see Section 2.2.1).

Recall that we assume C to be cowellpowered, which implies
2

that Quot(X ) is a set. Since C is

also assumed to be cocomplete (all small colimits exist), Quot(X ) forms a complete lattice, with

the order given by ≤ (see Section 2.2.1). Least upper bounds (joins) are given by cointersections,

i.e., wide pushouts of quotients, under which  is closed [AHS09]. The cobase will allow us

to characterise the minimisation of an automaton (Q, �, i, o) as the greatest �xed point of a

certain monotone operator on Quot(Q).

De�nition 3.3.1 (Cobase). Let f ∶ FX → Y be a morphism. The ()-cobase of f (if it exists)

is the greatest quotient q ∈ Quot(X ) such that there exists a morphism g with g ◦ Fq = f .

The map g in the above de�nition is unique because we assume that F maps morphisms in

 to epis. A concrete instance of the cobase will be given below in Example 3.3.5. The cobase

can be computed as the join of all quotients satisfying the relevant condition, provided that the

functor preserves cointersections. A functor F ∶ C → C is said to preserve -cointersections if

it preserves wide pushouts of epimorphisms in  . In that case, for an epimorphism e, if e ∈  ,

then Fe is an epimorphism.

Theorem 3.3.2 (Existence of cobases). Suppose F ∶ C → C preserves -cointersections. Then
every map f ∶ FX → Y has a cobase, given by the cointersection

⋁{q ∈ Quot(X ) ∣ ∃g. g ◦ Fq = f }.

2
If  is the class of all epimorphisms, then C being cowellpowered is de�ned as Quot(X ) being a set for every

object X . Since  is a subclass of epimorphisms, Quot(X ) is a set.
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Proof. For  the class of all epis, the dual is shown in [BKR19; Wiß+19]. The proof goes

through in the current, more general setting, using that  is closed under cointersections. As a

proof sketch, one uses the fact that F preserves -cointersections to identify the cointersection

F ⋁{q ∈ Quot(X ) ∣ ∃g. g ◦ Fq = f } = ⋁{Fq ∣ q ∈ Quot(X ), ∃g. g ◦ Fq = f },

after which the universal property of the pushout can be applied to construct an appropriate

map g witnessing the desired cobase property.

Remark 3.3.3. Using the (surjective, injective) factorisation system, a Set functor preserves

cointersections if and only if it is �nitary [AT89]. In particular, this is the case for polynomial

signature endofunctors (see Section 3.1).

We now de�ne an operator on quotients of the state space of an automaton that charac-

terises its minimisation and gives a way of computing it. To this end, given a F -algebra (Q, �)
and a quotient q∶ Q � Q′ ∈ Quot(Q), de�ne the quotient Θ� (q)∶ Q � Θ� (Q′) as the cobase

of q ◦ � , assuming it exists (for instance via Theorem 3.3.2). This de�nes a monotone operator

Θ� ∶ Quot(Q) → Quot(Q) that has the following important property (see [BKR19; Wiß+19]):

Lemma 3.3.4. Suppose F preserves -cointersections. For any F -algebra (Q, �), a quotient

q∶ Q � Q′ in Quot(Q) satis�es q ≤ Θ� (q) if and only if there is an algebra structure

� ′∶ FQ′ → Q′ turning q into an algebra homomorphism (Q, �) → (Q′, � ′).

The operator Θ� allows us to quotient the transition structure of the automaton. In order

to obtain the minimal automaton, we incorporate the output map o ∶ Q → O into the con-

struction of a monotone operator based onΘ� . For technical convenience, we assume that this

map is an element of Quot(Q).3 The relevant monotone operator for minimisation is Θ� ∧ o
(where the meet ∧ is taken pointwise in Quot(Q)).

Example 3.3.5. Let F ∶ Set → Set be a polynomial functor induced by signature Γ. We �rst

spell out what the cobase means concretely in this case and then study the operator Θ� in

more detail. Since F is an endofunctor on Set, the cobase of a map f ∶ FX → Y is the largest

quotient q ∈ Quot(X ) such that for all t, t′ ∈ FX :

if Fq(t) = Fq(t′), then f (t) = f (t′) .

3
This is not a real restriction: one can just pre-process the automaton by factorising o, i.e., keeping only those

outputs actually occurring in the automaton.
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This means that for every 
 ∈ Γ with k = arity(
 ), and any x1, … , xk , y1, … yk , we have that

q(x1) = q(y1) … q(xk) = q(yk)

f (�
 (x1, … , xk)) = f (�
 (y1, … , yk))

or equivalently that for all x1, … , xk and x ′i with 1 ≤ i ≤ k we have

q(xi) = q(x ′i )

f (�
 (x1, … , xi−1, xi , xi+1, … , xk)) = f (�
 (x1, … , xi−1, x ′i , xi+1, … , xk))

Suppose (Q, �, i, o) is an automaton. For q ∈ Quot(Q), we have q ≤ Θ� (q) ∧ o if and only if

• for all x, x ′ ∈ Q: if q(x) = q(x ′), then o(x) = o(x ′); and

• for all 
 ∈ Γ with k = arity(
 ), and x1, … , xk and x ′i with 1 ≤ i ≤ k we have

q(xi) = q(x ′i )

q(�
 (x1, … , xi−1, xi , xi+1, … , xk)) = q(�
 (x1, … , xi−1, x ′i , xi+1, … , xk))

A partition q with the above two properties is known as a forward bisimulation [HMM09].

Theorem 3.3.6. Suppose F preserves -cointersections. Let  = (Q, �, i, o) be an automaton,

where o ∈ Quot(Q). Then gfp(Θ� ∧ o) ∈ Quot(Q) is a quotient witnessing the minimisation of.

Proof. Denote the quotient gfp(Θ� ∧ o) by qm ∶ Q � Qm. Thus qm ≤ Θ� (qm) and qm ≤ o, so

(using Lemma 3.3.4) there exist �m, om turning qm into an automaton homomorphism  →
(Qm, �m, qm ◦ i, om). We show that this is the minimisation of (Q, �, i, o).

To this end, let ′ = (Q′, � ′, i′, o′), q′∶  � ′
be a quotient automaton of . By

Lemma 3.3.4 we get q′ ≤ Θ� (q′), and since o′ ◦q′ = o we have q′ ≤ o and therefore q′ ≤ Θ� (q′)∧
o. Thus, q′ ≤ gfp(Θ� ∧ o), i.e., there is a quotient ℎ∶ Q′ � Qm such that ℎ ◦ q′ = qm. It only

remains to show that ℎ is a homomorphism of automata. First, since q′ ∈  and F preserves

-cointersections, Fq′ is an epimorphism. Combined with the fact that q′ and qm are algebra

homomorphisms and that ℎ ◦ q′ = qm, it easily follows that ℎ is an algebra homomorphism.

To see that it preserves the output, we have om ◦ ℎ ◦ q′ = om ◦ qm = o = o′ ◦ q′; hence, since q′

is epic, we get om ◦ ℎ = o′. For preservation of the input, we have ℎ ◦ i′ = ℎ ◦ q′ ◦ i = qm ◦ i,
where the �rst step holds because q′ is a homomorphism of automata.

The above characterisation of minimisation of an automaton (Q, �, i, o) gives us two ways

of constructing it by standard lattice-theoretic computations. First, via the Knaster–Tarski

theorem, we obtain it as the join of all post-�xed points of Θ� ∧ o, which, by Lemma 3.3.4,
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amounts to the join of all quotient algebras respecting the output map o. That corresponds to

the construction in [AT89]. Second, and perhaps most interestingly, we obtain the minimisa-

tion of (Q, �, i, o) by iterating Θ� ∧ o, starting from the top element ⊤ of the lattice Quot(Q).
The latter construction is analogous to the classical partition re�nement algorithm: Starting

from ⊤ corresponds to identifying all states as equivalent (or in other words, starting from

the coarsest equivalence class of states). Every iteration step of Θ� ∧ o splits the states that

can be distinguished successively by just outputs, trees of depth 1, trees of depth 2, etc. If the

state space is �nite, this construction terminates, yielding the minimisation of the original

automaton by Theorem 3.3.6.

3.4 Nerode Equivalence

We now show a generalised Nerode equivalence from which the minimal automaton can be

constructed. Most of this section is based upon the work by Arbib and Manes [AM74], whose

construction was further studied and re�ned by Anderson et al. [AAM76] and Adámek and

Trnková [AT89]. We make a signi�cant improvement in generality by phrasing the central

equivalence de�nition (De�nition 3.4.5) in terms of an arbitrary monad, which unlike the

previous cited work allows applications to algebras satisfying a �xed set of equations. A

monad generalisation of the Myhill–Nerode theorem appears in [Boj15], which con�nes itself

to categories of sorted sets and characterises the quotient of the equivalence rather than the

equivalence itself.

In this section we do not work with automata based on a dynamics functor F as in De�n-

ition 2.2.10. Instead, we note that such a functor induces the monad F⋆ and generalise by

�xing an arbitrary monad (T , �, �) in C. Let G ⊣ U ∶ C � EM(T ) be the adjunction with its

category of (Eilenberg-Moore) algebras. Given a C-morphism f ∶ X → UY for X in C and

Y in EM(T ), we write f ♯∶ GX → Y for its adjoint transpose. We can then use a generalised

notion of automaton.

De�nition 3.4.1 (T -automaton). A T -automaton is a tuple (Q, �, i, o), where (Q, �) is a T -

algebra and i ∶ I → Q and o ∶ Q → O are morphisms in C.
4

A homomorphism from (Q, �, i, o)
to (Q′, � ′, i′, o′) is a T -algebra homomorphism ℎ∶ (Q, �) → (Q′, � ′) such that ℎ ◦ i = i′ and

o′ ◦ ℎ = o.

4
The T -automata de�ned here di�er from the more standard T -automata in Chapter 6 in that the algebraic

structure on Q is the transition structure rather than additional structure on the state space that is preserved by

the automaton structure. Furthermore, here we do not need to assume a T -algebra structure on O.
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The reachability map of a T -automaton  = (Q, �, i, o) is given by reach = U (i♯)∶ T I →
Q and is therefore the unique T -algebra homomorphism (T I , �) → (Q, q) preserving initial

states, taking �I ∶ I → TI to be the initial state selector of T I . The language of  is given by

 = o ◦ reach∶ T I → O.

The automata de�ned in Section 2.2.4 are recovered using the following fact: the cat-

egory of F -algebras is isomorphic to EM(T ) for T the free F -algebra monad F⋆. In Set we

may add equations to the signature, as any algebraic theory corresponds to a monad [Lan13,

Chapter VI.8, Theorem 1]. For instance, if the signature contains just a binary operation that

we require to be associative, commutative, and idempotent, then the algebras correspond to

algebras in EM(T ) for T the non-empty �nite powerset monad.

Assumption 3.4.2. In this section we will need the class  to be the re�exive regular epis.
5

The second lemma below, which needs the �rst, will be used in proving our main theor-

ems.

Lemma 3.4.3. If f ∶ A → B and ℎ∶ A → C in EM(T ) are such that there exists g ∶ UB → UC
in C with g ◦ f = ℎ and T f is an epi, then g is a T -algebra homomorphism B → C .

Proof. Let � ∶ TA → A, � ∶ TB → B, and 
 ∶ TC → C be the respective T -algebra structures

on A, B, and C . By commutativity of

TA TB

A TC

TB B C

T f

Tℎ
�

T f

Tg

ℎf 

� g

and T f being an epi, we directly conclude that g is a T -algebra homomorphism B → C .

Lemma 3.4.4. Suppose T maps re�exive coequalisers to epimorphisms. If i ∶ B → UC is

such that U (i♯) re�exively coequalises q1, q2∶ A → TB in C, then i♯ re�exively coequalises

q♯1, q♯2 ∶ GA → GB.

Proof. For k ∈ {1, 2} we have

U (i♯ ◦ q♯k) = U (i
♯) ◦ U (q♯k) = U ((U (i

♯) ◦ qk)♯),
5
It is well known that (regular epi, mono) is a factorisation system in any regular category. We note that

(re�exive regular epi, mono) forms a factorisation system in the same way. However, the theory in this section

does not actually need a factorisation system; the instantiation of  is only invoked to obtain the right notion of

reachability.
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so by U (i♯) coequalising q1 and q2 we have i♯ ◦ q♯1 = i♯ ◦ q♯2. If a T -algebra homomorphism

f ∶ TB → Z is such that f ◦ q♯1 = f ◦ q♯2, then

U f ◦ q1 = U f ◦ U (q♯1) ◦ �A = U f ◦ U (q
♯
2) ◦ �A = U f ◦ q2,

which because U (i♯) coequalises q1 and q2 yields a unique function u∶ UC → UZ such that

u ◦U (i♯) = f . It remains to show that u is a T -algebra homomorphism. Note that since U (i♯) is

a re�exive coequaliser, TU (i♯) is an epi by assumption on T . Precomposing u withU (i♯) yields

the T -algebra homomorphism f , so by TU (i♯) being an epi and Lemma 3.4.3 we conclude u is a

T -algebra homomorphism C → Z . Re�exivity of the pair will follow from Lemma 3.4.13.

Before de�ning an abstract Nerode equivalence, we recall the classical de�nition for lan-

guages of words. Given a language L∶ A⋆ → 2, the equivalence R ⊆ A⋆ × A⋆ is de�ned

as

R = {(u, v) ∈ A⋆ × A⋆ ∣ ∀w ∈ A⋆. L(uw) = L(vw)}.

In this setting, I = 1 andO = 2. A functionQ×A → Q corresponds to an algebra for the monad

T = (−) × A⋆, whose unit and multiplication are de�ned using the unit and multiplication of

the monoid A⋆. If p1, p2∶ R → A⋆ ≅ 1 × A⋆ are the projections, we note that R is de�ned to

be the largest relation making the following diagram commute.

R × A⋆ 1 × A⋆ × A⋆

1 × A⋆

1 × A⋆ × A⋆ 1 × A⋆ 2

p2×id

p1×id

�

L� L

This leads to an abstract de�nition, using a limit
6

to generalise what it means to be maximal.

De�nition 3.4.5 (Nerode equivalence). Given a language L∶ T I → O and an object R with

morphisms p1, p2∶ R → TI , we say that (R, p1, p2) is the Nerode equivalence of L if the diagram

below on the left commutes and for all objects S with a re�exive pair q1, q2∶ S → TI such

that the diagram in the middle commutes there is a unique morphism u∶ S → R making the

diagram on the right commute. In this case we say that L has a Nerode equivalence.

TR T T I

T I

T T I T I O

Tp2

Tp1

�

L
� L

TS T T I

T I

T T I T I O

Tq2

Tq1

�

L
� L

S

T I R T I

q1
u

q2

p1 p2

6
Note that it is not exactly a limit, as the de�ning property works with cones under T .
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To show the versatility of our de�nition, we brie�y explain a di�erent example where the

language is a set of words. This example cannot be recovered from the original de�nition by

Arbib and Manes [AM74].

Example 3.4.6 (Syntactic congruence). Let T be the list monad (−)⋆, so that EM(T ) is the

category of monoids, I = A, and O = 2. Given a language L∶ A⋆ → 2, the Nerode equivalence

as de�ned above is then the largest relation R ⊆ A⋆ × A⋆ such that

n ∈ ℕ (u1, v1), … , (un, vn) ∈ R
L(u1⋯un) = L(v1⋯vn)

.

Equivalently, R is the largest relation such that

(u, v) ∈ R w, x ∈ A⋆

L(wux) = L(wvx)
,

which is precisely the syntactic congruence of the language.

We now give a more intuitive example of what a Nerode equivalence is required to contain

in the case of binary trees.

Example 3.4.7 (Binary trees). Let T be the monad assigning to each set X the set of binary

trees with leaves in X , and take I = {a, b, c}. Then the Nerode congruence R ⊆ T I × T I for a

language L∶ T I → O is such that if for instance (a, b), (b, c) ∈ R, where we consider a, b, and

c as trees, then we can consider trees in TR such as

∙

(a, b) (b, c)

∙

(b, c) ∙

(a, b) (a, b)

and deduce that the pairs of projected trees

⎛
⎜
⎜
⎝

∙

a b
,

∙

b c

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

∙

b ∙

a a
,

∙

c ∙

b b

⎞
⎟
⎟
⎟
⎟
⎠

must be such that for each pair (t1, t2) we have L(t1) = L(t2).

We can show that the Nerode equivalence of a language in Set exists, as long as the monad

is �nitary. To de�ne it concretely, we use the following piece of notation. For any set X and

x ∈ X , denote by ex ∶ 1 → X the constant x function, assuming no ambiguity of the set

involved.



3.4. Nerode Equivalence 51

Proposition 3.4.8. For C = Set and T any �nitary monad, every language L∶ T I → O has a

Nerode equivalence given by

R = {(u, v) ∈ T I × T I ∣ L ◦ � ◦ T [idT I , eu] = L ◦ � ◦ T [idT I , ev]∶ T (T I + 1) → O}

with the corresponding projections p1, p2∶ R → TI .

Proof. For each subset X ⊆ R, we de�ne pX ∶ R → TI by

pX (r) =
⎧⎪⎪
⎨⎪⎪⎩

p1(r) if r ∉ X

p2(r) if r ∈ X .

We have Tp1 = Tp∅ by de�nition. Consider any t ∈ TR and let a �nite E ⊆ R with inclusion

map e ∶ E → R and t′ ∈ TE be such that T (e)(t′) = t . These exist because T is �nitary. We

will show by induction on E that

(L ◦ � ◦ Tp∅)(t) = (L ◦ � ◦ TpE)(t). (3.1)

The case where E = ∅ is clear, so assume E = E′ ∪ {z} with z ∉ E′ and (3.1) holds when E′ is

substituted for E. We �x the singleton 1 = {�} and de�ne d ∶ R → TI + 1 by

d(r) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

(�1 ◦ p1)(r) if r ∉ E

(�1 ◦ p2)(r) if r ∈ E′

�2(�) if r = z,

where �1 and �2 are the coproduct injections. By this de�nition, we have [idT I , ep1(z)] ◦ d = pE′
and [idT I , ep2(z)] ◦ d = pE , so

(L ◦ � ◦ Tp∅)(t) = (L ◦ � ◦ TpE′)(t) (induction hypothesis)

= (L ◦ � ◦ T ([idT I , ep1(z)] ◦ d))(t)

= (L ◦ � ◦ T ([idT I , ep2(z)] ◦ d))(t) (de�nition of R)

= (L ◦ � ◦ TpE)(t),

thus concluding the proof of (3.1). Now Tp1 = Tp∅ by de�nition and

TpE(t) = T (pE ◦ e)(t′) = T (p2 ◦ e)(t′) = Tp2(t),

from which we �nd that (L ◦ � ◦ Tp1)(t) = (L ◦ � ◦ Tp∅)(t) = (L ◦ � ◦ TpE)(t) = (L ◦ � ◦ Tp2)(t). As

this argument works for any t ∈ TR, we have L ◦ � ◦ Tp1 = L ◦ � ◦ Tp2.



52 Chapter 3. Minimisation of Automata

Now consider any set S with q1, q2∶ S → TI making

TS T T I

T I

T T I T I O

Tq2

Tq1

�

L
� L

(3.2)

commute, and assume q1 and q2 have a common section j ∶ T I → S. We de�ne u∶ S → R
by u(s) = (q1(s), q2(s)). To see that this is indeed an element of R, note that for k ∈ {1, 2},

L ◦ � ◦ T [idT I , eqk (s)] = L ◦ � ◦ T [idT I , qk ◦ es]

= L ◦ � ◦ T [qk ◦ j, qk ◦ es] (section)

= L ◦ � ◦ Tqk ◦ T [j, es],

and therefore L ◦ � ◦ T [idT I , eq1(s)] = L ◦ � ◦ T [idT I , eq2(s)] follows from (3.2). By de�nition, u is

the unique map making the diagram below commute.

S

T I R T I

q1 u
q2

p1 p2

The de�nition of R above states that u, v ∈ T I are related if and only if the elements of T I
formed by putting either u or v in any context and then applying � have the same value under

L. A context is an element of T (T I + 1), where 1 = {�} denotes a hole where either u or v can

be plugged in. In the tree automata literature, such contexts, although restricted to contain a

single instance of �, are used in algorithms for minimisation [HMM09] and learning [Sak90;

DH07]. We will discuss such learning algorithms in the next chapter (Section 4.6).

A result related to Proposition 3.4.8 is Theorem 3.1 in [Boj15], which does not assume T is

�nitary and is given for any category of sorted sets. However, it does not construct a Nerode

equivalence but shows the existence of a minimal T -automaton.

With Theorem 3.4.11 below we show one of our main results, that under a few mild as-

sumptions the abstract equivalence is in fact a congruence: its quotient (coequaliser) is a T -

automaton. Moreover, this T -automaton is minimal. Intuitively, given a language L∶ T I → O
that has a Nerode equivalence, we use the equivalence to quotient the T -automaton (GI , �, L).
We �rst need two technical lemmas before we can prove the theorem.
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Lemma 3.4.9. Given a language L and q1, q2∶ S → TI making the diagram below on the left

commute, the diagram on the right commutes.

TS T T I

T I

T T I T I O

Tq2

Tq1

�

L
� L

T TS T T T I T T I

T T T I T I

T T I T I O

T Tq2

T Tq1

T�

�

T� L
� L

Furthermore, if (q1, q2) is a re�exive pair, then so is (�I ◦ Tq1, �I ◦ Tq2).

Proof. We extend the assumption to the following commutative diagram.

T TS T T T I T T I

TS T T I

T T T I T T I T I

T T I T I O

T Tq2

�

T Tq1

1

1

T�

�

�Tq2

Tq1
�

2

T�

�

�
L

�
2

L

1 naturality of �
2 monad law

As for re�exivity, (�I ◦ Tq1, �I ◦ Tq2) is the composition of the re�exive pairs (�I , �I ) and

(Tq1, Tq2).

Lemma 3.4.10. If C has coproducts, then for any Nerode equivalence (R, p1, p2) there exists a
unique T -algebra structure u∶ TR → R making p1 and p2 T -algebra homomorphisms (R, u) →
(T I , �) that have a common section.

Proof. Let L∶ T I → O be a language with Nerode equivalence (R, p1, p2). Then (p1, p2) is a

re�exive pair by the Nerode equivalence property, since (idT I , idT I ) is a re�exive pair trivially

satisfying the Nerode equivalence condition. We apply Lemma 3.4.9 to obtain from the Nerode

equivalence property a unique morphism r ∶ TR → R making the diagram below commute.

T T I TR T T I

T T I R T I
�

Tp1 Tp2

r �
p1 p2

(3.3)

We need to show that (R, r) is a T -algebra. The �rst commutative diagram below shows that

r ◦�R preserves p1 and p2, so since idR also does this we must have r ◦�R = idR by the uniqueness
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property of the Nerode equivalence.

R

T I T I

T T I TR T T I

T I R T I

p1 p2

�

�
2

1

�
2

1

� (3.3)

Tp1 Tp2

r
�(3.3)p1 p2

1 monad law

2 naturality of �
3 naturality of �

T T T I T TR T T T I

T T I TR T T I

T I R T I

T� (3.3)

T Tp1 T Tp2

Tr T�(3.3)

� (3.3)

Tp1 Tp2

r �(3.3)

p1 p2

T T T I T TR T T T I

T T I T T I TR T T I T T I

T I R T I

T�
� 3

T Tp1 T Tp2

� T�
�3

�

1

� (3.3)

Tp1 Tp2

r �

1

(3.3)
�

p1 p2

As for the other two, we use a double application of Lemma 3.4.9 to see that the pair (� ◦ T� ◦
T Tp1, � ◦ T� ◦ T Tp2) satis�es the Nerode equivalence conditions. Commutativity of the two

diagrams then shows that both r ◦ Tr and r ◦ � are the unique map commuting with the pairs

(� ◦ T� ◦ T Tp1, � ◦ T� ◦ T Tp2) and (p1, p2), so they must be equal and (TR, r) is a T -algebra.

It remains to show that p1 and p2 have a common section in EM(T ). To this end, note that

([�I , idT I ], [�I , idT I ]) is a re�exive pair trivially satisfying the Nerode equivalence condition.

Thus, we obtain by the Nerode equivalence property a unique morphism u∶ I + T I → R
making

I + T I

T I R T I

[�,id] u [�,id]

p1 p2

commute. Then for k ∈ {1, 2},

pk ◦ (u ◦ �1)♯ = (pk ◦ u ◦ �1)♯ = (pk ◦ [�I , idT I ])♯ = �♯I = id(T I ,�).

Theorem 3.4.11. If C has coproducts and re�exive coequalisers and T preserves re�exive co-

equalisers, then for every language that has a Nerode equivalence there exists a minimal T -
automaton accepting it.

Proof. Let L∶ T I → O be the language with Nerode equivalence (R, p1, p2) and c ∶ T → M
the coequaliser of p1 and p2 in C. By Lemma 3.4.10 there exists a T -algebra structure on R
making p1 and p2 T -algebra homomorphisms into (T I , �) that have a common section. Since
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T preserves re�exive coequalisers, they are lifted by U , and we have a morphism m∶ TM →
M making (M,m) a T -algebra such that c is a T -algebra homomorphism (T I , �) → (M,m).
Since the diagram below on the left commutes and c coequalises p1 and p2, there is a unique

morphism oM rendering the diagram on the right commutative.

R T I

TR T T I T I

T I T T I

T I O

p2
�

p1

1

1

� 2
Tp2

Tp1

3

�

L
�

2 �
L

1 naturality of �
2 monad law

3 Nerode equivalence

T I M

O

c

L
oM

(3.4)

Choosing iM = c ◦ �∶ I → M , we obtain a T -automaton  = (M,m, iM , oM ). Note that

U (i♯M ) = c, so c is the reachability map of . Hence, we �nd that  = L by (3.4). The

morphism c coequalises the re�exive pair (p1, p2) by de�nition, so  is reachable.

To see that  is minimal, consider any reachable T -automaton  = (Q, �, i, o) such that

 = L. Reachability amounts to the reachability map reach∶ T I → UQ being the re�exive

coequaliser of a pair of morphisms q1, q2∶ S → TI . From commutativity of

TS T T I

TQ T I

Q

T T I T I O

Tq2

Tq1

1 �T reach

�

2

2 L

reach

o
3

3

T reach

�
reach

L

1 reach coequalises q1 and q2
2 reach is a T -algebra homomorphism

3  = L

we obtain by the Nerode equivalence property a unique morphism v ∶ S → R making the

diagram below on the left commute.

S

T I R T I

q1
v

q2

p1 p2

S T I

R

T I M

q2
v

q1 c

p2

p1

c

Extending this with c, the coequaliser of p1 and p2, gives the commutative diagram on the

right. Recall that U (i♯M ) = c. We now �nd

i♯M ◦ q♯1 = (U (i
♯
M ) ◦ q1)

♯ = (c ◦ q1)♯ = (c ◦ q2)♯ = (U (i♯M ) ◦ q2)
♯ = i♯M ◦ q♯2.
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Here the �rst and last equality apply a general naturality property of the adjunction. Since

reach = U (i♯) is the re�exive coequaliser of q1 and q2, i♯ is the re�exive coequaliser of q♯1 and

q♯2 by Lemma 3.4.4. We then obtain a unique T -algebra homomorphism ℎ∶ (Q, �) → (M,m)
making the diagram below on the left commute.

GI Q

(M,m)

i♯

i♯M
ℎ

T I Q

Q M O

reach

Lc
reach

(3.4)

1 o

ℎ oM

I

T I

Q M

�

i

iM

2
3

reach
c

ℎ

1  = L
2 de�nition of reach

3 de�nition of iM

From commutativity of the other diagrams we �nd oM ◦ ℎ = o (using that reach is epi) and

ℎ ◦ i = iM . Thus, ℎ is a T -automaton homomorphism  → . To see that it is unique,

note that any T -automaton homomorphism ℎ′∶  →  is a T -algebra homomorphism

(Q, �) → (M,m) such that ℎ′ ◦ i = iM . It is then not hard to see that ℎ′ ◦ i♯ = (ℎ′ ◦ i)♯ = i♯M . We

conclude that ℎ′ = ℎ by the uniqueness property of ℎ satisfying ℎ ◦ i♯ = i♯M .

Remark 3.4.12. We brie�y discuss the conditions of the above theorem in the speci�c case

of C = Set with T a �nitary monad. This includes the setting of tree automata in Set, as a

monad on Set is �nitary if and only if EM(T ) is equivalent to the category of algebras for a

signature modulo equations. Proposition 3.4.8 shows that all Nerode equivalences exist here.

Furthermore, Lack and Rosickỳ [LR11] observe that an endofunctor on Set is �nitary if and

only if it preserves sifted colimits, of which re�exive coequalisers form an instance.

To conclude this section we show that the converse of the previous theorem also holds,

using the existence of kernel pairs rather than coproducts. We need a technical lemma �rst.

Lemma 3.4.13. If q1, q2∶ A → TB is a re�exive pair in C, then so is (q♯1, q♯2) in EM(T ).

Proof. Assume j ∶ TB → A is the common section of q1 and q2. Then, for k ∈ {1, 2},

q♯k ◦ (�A ◦ j ◦ �B)
♯ = U ((U (q♯k) ◦ �A ◦ j ◦ �B)

♯) = U ((qk ◦ j ◦ �B)♯) = U (�♯B) = idTB.

Theorem 3.4.14. If C has kernel pairs and re�exive coequalisers and T preserves re�exive co-

equalisers, then every language that has a minimal T -automaton has a Nerode equivalence.

Proof. Let  = (M, �M , iM , oM ) be a minimal T -automaton and p1, p2∶ K → TI the kernel

pair of its reachability map reach∶ GI → M . We claim that K together with p1 and p2 forms
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the Nerode equivalence of . To see this, note that the diagram below on the left commutes.

TK T T I

TM T I

M

T T I T I O

Tp2

Tp1

1 �T reach

�M

2

2 

reach

oM
3

3

T reach

�

reach



1 kernel pair

2 reach is a T -algebra homomorphism

3 de�nition of 

TS T T I

T I

T T I T I O

Tq2

Tq1

�


� 

Now if S with q1, q2∶ S → TI is any re�exive pair making the diagram on the right commute,

we let c ∶ T I → Q be the coequaliser of U (q♯1) and U (q♯2), noting that this is a re�exive pair by

Lemma 3.4.13. Then since T preserves re�exive coequalisers, they are lifted by U , meaning

that there exists a unique T -algebra structure � ∶ TQ → Q making c ∶ GI → (Q, �) a T -

algebra homomorphism that is the coequaliser of q♯1 and q♯2. We also have  ◦ U (q♯1) =
 ◦ U (q♯2) by commutativity of the diagram on the right, so with c coequalising U (q♯1) and

U (q♯2) there is a unique morphism o ∶ Q → O such that o ◦ c = . Setting i = c ◦ �I , we have

a T -automaton (Q, �, i, o) with reachability map U (i♯) = c that accepts the language . By

 being minimal there exists a unique T -automaton homomorphism ℎ∶ (Q, �, i, o) → .

Then the diagram below on the left commutes.

S T I

TS

Q

T I M

q2
�

q1 reach

c
U (q♯2)

U (q♯1) 1

ℎ
2

2
reach

c

1 c coequalises U (q♯1) and U (q♯2)
2 uniqueness of reachability maps

S

T I K T I

q1
u

q2

p1 p2

By p1 and p2 being the kernel pair of reach there exists a unique morphism u∶ S → K
making the diagram on the right commute.

3.5 Discussion

Although our minimisation construction in Section 3.3 suggests an algorithm, developing its

details is left open. For classical tree automata there exist sophisticated variants of partition

re�nement [HMM09; AHK07], akin to Hopcroft’s classical algorithm. A generalisation to the

current algebraic setting is an interesting direction of research, for which a natural starting
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point would be to try and integrate in our setting the e�cient coalgebraic algorithm presented

in [Dor+17].

Further, we characterised the minimal automaton as the greatest �xed point of a monotone

function, recovering the notion of forward bisimulations as its post-�xed points (although it

is perhaps more natural to think of these as congruences). This characterisation suggests

an integration with up-to techniques [PS12; Bon+17; BP15], which have, to the best of our

knowledge, not been applied to tree automata. In particular, we are interested in applying

these algorithms to decide equivalence of series-parallel rational and series-rational expres-

sions [LW00]. These may be in scope if were to generalise the minimisation procedure to the

level of T -automata as de�ned in Section 3.4. This is because series-parallel algebras form a

variety, which corresponds to a monad T .



Chapter 4

Categorical Automata Learning

Angluin’s algorithm L⋆ (Section 2.3) has served as a basis for many automata learning al-

gorithms that work for more expressive models than plain deterministic automata: I/O auto-

mata [AV10], weighted automata [BV96], register automata [IHS15; Aar+15], nominal auto-

mata [Moe+17], and families of DFAs (which describe !-regular languages) [AF16]. Many of

these extensions were developed independently and, though they bear close resemblance to

the original algorithm, arguments of correctness and termination had to be repeated every

time. This motivated Jacobs and Silva to provide a categorical understanding of L⋆ and cap-

ture essential data structures in an abstract way in the hope of developing a generic, mod-

ular, and parametric framework for automata learning based on (co)algebra [JS14]. Their

work was taken further in Van Heerdt’s master thesis [Hee16], with an explicit description of

the categorical conditions under which their constructions work. Moreover, an abstract data

structure central to the algorithm was identi�ed, along with conditions for correctness. This

work then formed the basis of a wider project on developing a Categorical Automata Learning

Framework—CALF.
1

In this chapter we introduce CALF. Most importantly, we will introduce an automata

learning algorithm that generalises L⋆. We also instantiate our algorithm to derive a learning

algorithm for generalised tree automata in Set. These tree automata are more general than

the ones considered in previous literature [Sak90; DH03; BM07] because the transition func-

tor is taken from a class that is strictly larger than the polynomial functors. That is, instead

of automata where the transitions move from an ordered n-tuple of states to a next state,

the automata we consider may have transitions originating from for instance an unordered

(�nite) set of states.

1http://www.calf-project.org

59

http://www.calf-project.org
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The work in the present chapter complements other recent work on abstract automata

learning algorithms: Barlocco, Kupke, and Rot [BKR19] gave an algorithm for coalgebras of

a functor, whereas Urbat and Schröder [US19] provided an algorithm for structures that can

be represented as both algebras and coalgebras. Our focus instead is on algebras, such as

tree automata, that cannot be covered by the aforementioned frameworks. A more detailed

comparison will be given in Section 4.7.

We start by developing in Section 4.1 the abstract data structure that in CALF replaces the

observation table, and accordingly we introduce suitable notions of closedness, consistency,

and hypothesis. Our contributions are then as follows.

1. We devise an abstract iterative process to ensure closedness and consistency (Sec-

tion 4.2).

2. We provide an abstract treatment of counterexamples, together with an analysis of pro-

gress made when processing a counterexample (Section 4.3).

3. We then put together a step-by-step generalisation of all components of L⋆ for categor-

ical automata (Section 4.4). This results in an algorithm that we prove correct.

4. We provide results that characterise conditions on the abstract datastructure under

which the corresponding hypothesis is correct (Section 4.5). We then show how these

can be used to devise an abstract minimisation algorithm from which reachability ana-

lysis, partition re�nement, and even other learning algorithms can be recovered.

5. In Section 4.6 we �nally instantiate our abstract L⋆ algorithm to a concrete setting,

providing the �rst learning algorithm for tree automata derived abstractly.

The chapter concludes with a discussion of related work in Section 4.7.

Our categorical setting involves the following assumptions, which we make throughout

the chapter. We work in an arbitrary category C with �nite coproducts, a �nal object, and a

factorisation system ( ,) and �x a functor F ∶ C → C and objects I and O in C. We assume

F preserves morphisms in  and admits an algebraically free monad (F⋆, �, �).

4.1 Abstract Data Structures

In this section we introduce the basic notions underpinning CALF: generalisations of the ob-

servation table and the notions of closedness, consistency, and hypothesis. We call the gen-
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eralised table a wrapper because it wraps a target object with two morphisms: one going in

and one going out.

De�nition 4.1.1 (Wrapper). A wrapper for a target object X is a pair of morphisms  =

(S Xsel , X Pcla ). We de�ne e = (cla ◦ sel)⊳ and m = (cla ◦ sel)⊲ and call the object

through which cla ◦ sel factorises H , as indicated below.

S X P

H
e

sel cla

m

In the above de�nition, sel∶ S → X can be seen as a selector of elements of X while

cla∶ X → P can be seen as a classi�er. This two-sided approximation induces the composition

cla ◦ sel∶ S → P that both selects and classi�es, with its image factorisation H intuitively

approximating X . Note that H in general is neither a subobject nor a quotient of X , though

using factorisation system properties one can show it is both a quotient of a subobject and a

subobject of a quotient.

Example 4.1.2 (Observation table wrapper). As in Example 2.2.11, let C = Set with the fac-

torisation system ( ,) = (surjective, injective), and de�ne F = (−) × A for a �nite set A,

I = 1 = {∗}, and O = 2 = {0, 1}. Recall that automata with these parameters are deterministic

automata (DAs). Consider a DA  = (Q, �, i, o). For all S, E ⊆ A⋆, we de�ne sel,S ∶ S → Q
and cla,E ∶ Q → 2E by

sel,S(w) = reach(∗, w) cla,E(q)(e) = (o ◦ �⋆)(q, e).

Let  = (sel,S , cla,E). One can show the following connection between the composition of

these maps and the language of  (see Proposition 4.1.3 below for a formal proof):

(cla,E ◦ sel,S)(s)(e) = (∗, se).

(See Proposition 4.1.3 below.) This composed function cla,E ◦ sel,S ∶ S → 2E is precisely

the upper part of the observation table with rows S and columns E in Angluin’s algorithm for

regular languages (Section 2.3). The image of cla,E ◦ sel,S is precisely the set of rows that

appear in the table, which are used as states in the hypothesis, and can be obtained as H .

Before we de�ne hypotheses in this abstract framework, we need generalised notions

of closedness and consistency. So far we have only recovered the upper part of the table

with our wrapper, but closedness and consistency rely on the lower part. Given a wrapper
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 = (S Qsel , Q Pcla ) for
2

an automaton (Q, �, i, o), we claim that the composition

FS
F sel
←←←←←←←←←←←←←←←←←←←←←←→ FQ

�
←←←←←←←→ Q

cla
←←←←←←←←←←←←←←←→ P

is an approximation of the dynamics � that instantiates to the lower part of the table in the

setting detailed in Example 4.1.2. The result below proves this. Furthermore, the compositions

cla ◦ i ∶ I → P and o ◦ sel∶ S → O will be used to determine the initial state and output map

of the hypothesis by incurring additional closedness and consistency requirements that are

satis�ed automatically throughout runs of the L⋆ algorithm.

Proposition 4.1.3. Let C = Set with ( ,) = (surjective, injective), F = (−) × A for a �nite set

A, I = 1, and O = 2. Given S, E ⊆ A⋆, we have, using the maps de�ned in Example 4.1.2,

cla,E ◦ sel,S ∶ S → 2E (cla,E ◦ sel,S)(s)(e) = (∗, se)

cla,E ◦ � ◦ (sel,S × idA)∶ S × A → 2E (cla,E ◦ � ◦ (sel,S × idA))(s, a)(e) = (∗, sae)

cla,E ◦ i ∶ 1 → 2E (cla,E ◦ i)(∗)(e) = (∗, e)

o ◦ sel,S ∶ S → 2 (o ◦ sel,S)(s) = (∗, s).

Proof. For all words u, v ∈ A⋆, we have

�⋆(reach(∗, u), v) = reach(∗, uv), (4.1)

since

�⋆(reach(∗, u), v) = (�⋆ ◦ (reach × idA⋆))((∗, u), v)

= (reach ◦ �1)((∗, u), v) (reach is an algebra homomorphism)

= reach(∗, uv) (de�nition of �).

We then have

(cla,E ◦ sel,S)(s)(e) = (cla,E ◦ reach)(∗, s)(e) (de�nition of sel,S)

= (o ◦ �⋆)(reach(∗, s), e) (de�nition of cla,E)

= (o ◦ reach)(∗, se) (4.1)

= (∗, se) (de�nition of ),

2
We often declare a wrapper  for an automaton , with  referencing the state space of . This phrasing

does not have any special meaning; “for” simply indicates quanti�cation.
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(cla,E ◦ � ◦ (sel,S × idA))(s, a)(e) = (cla,E ◦ �)(reach(∗, s), a)(e) (de�ntion of sel,S)

= (cla,E ◦ reach)(∗, sa)(e) (de�nition of reach)

= (o ◦ �⋆)(reach(∗, sa), e) (de�nition of cla,E)

= (o ◦ reach)(∗, sae) (4.1)

= (∗, sae) (de�nition of ),

(cla,E ◦ i)(∗)(e) = (o ◦ �⋆)(i(∗), e) (de�nition of cla,E)

= (o ◦ �⋆ ◦ (i × idA⋆))(∗, e)

= (o ◦ reach)(∗, e) (de�nition of reach)

= (∗, e) (de�nition of ),

and

(o ◦ sel,S)(s) = (o ◦ reach)(∗, s) (de�nition of reach)

= (∗, s) (de�nition of ).

Crucially, the above result shows that the compositions are independent of the target DA

(�xing its language) and can in fact be computed entirely using membership queries. We now

proceed to give the full abstract closedness and consistency de�nitions. The de�nitions are

relative to an automaton of which we want to approximate the structure.

De�nition 4.1.4 (Closedness and consistency). We say that a wrapper  =

(S Qsel , Q Pcla ) is -closed for an automaton  = (Q, �, i, o) if there exist

morphisms FS → H and I → H making the diagrams below commute.

FS FQ Q

H P

F sel �

cla

m

I Q

H P

i

cla

m

The wrapper  is -consistent if there exist morphisms FH → P and H → O making

the diagrams below commute.

FS FH

FQ Q P

F sel

Fe

� cla

S H

Q O

e

sel

o

To make sense of these properties in Set, we have the following result.
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Proposition 4.1.5. Consider given morphisms f , g, i, j as below, with g ∈ and i ∈  .

A

B C

f
ℎ

g

X Y

Z

i

j
k

Amorphism ℎ∶ A → Bmaking the triangle on the left commute exists if and only if for all a ∈ A
there exists b ∈ B such that g(b) = f (a). A morphism k ∶ Y → Z making the triangle on the

right commute exists if and only if for all x1, x2 ∈ X such that i(x1) = i(x2) we have j(x1) = j(x2).

Proof. If ℎ exists, then for all a ∈ A we have that ℎ(a) ∈ B satis�es g(ℎ(a)) = f (a). Conversely,

assume for each a ∈ A there exists ba ∈ B such that g(ba) = f (a). We de�ne ℎ by ℎ(a) = ba,

which satis�es

g(ℎ(a)) = g(ba) = f (a)

as required.

If k exists, then for all x1, x2 ∈ X with i(x1) = i(x2) we have

j(x1) = k(i(x1)) = k(i(x2)) = j(x2).

Conversely, assume that for all x1, x2 ∈ X such that i(x1) = i(x2) we have j(x1) = j(x2). Then k
de�ned by k(i(x)) = j(x) for all x ∈ X is well de�ned.

Using this result, we recover the original notions of closedness and consistency in the DA

setting.

Example 4.1.6 (Closedness and consistency for DAs). Recall the morphisms de�ned in Ex-

ample 4.1.2 and consider a DA  = (Q, �, i, o). Given S, E ⊆ A⋆, the wrapper  =
(sel,S , cla,E) is -closed if and only if there exists s ∈ S such that

(cla,E ◦ sel,S)(s) = (cla,E ◦ i)(∗)

and for all t ∈ S × A there exists s ∈ S such that

(cla,E ◦ sel,S)(s) = (cla,E ◦ � ◦ (sel,S × idA))(t).

The �rst condition holds immediately if " ∈ S because (cla,E ◦ sel,S)(") = cla,E ◦ i via

Proposition 4.1.3; in the second condition, recall from Proposition 4.1.3 that

cla,E ◦ � ◦ (sel,S × idA)∶ S × A → 2E
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represents the lower part of the observation table associated with S and E. Thus, this is the

same as the closedness condition in L⋆ (Section 2.3).

The wrapper  is -consistent if and only if for all s1, s2 ∈ S such that (cla,E ◦sel,S)(s1) =
(cla,E ◦ sel,S)(s2) it holds that

(o ◦ sel,S)(s1) = (o ◦ sel,S)(s2)

and

(cla,E ◦ � ◦ (sel,S × idA))(s1) = (cla,E ◦ � ◦ (sel,S × idA))(s2).

The �rst condition holds immediately if " ∈ E because (cla,E ◦ sel,S)(s)(") = (o ◦ sel,S)(s)
for all s ∈ S via Proposition 4.1.3; the second condition says that observations with the same

behaviour (i.e., the same row) should lead to rows with the same content in the lower part of

the table.

Remark 4.1.7. In a more general setting, if  contains only regular epimorphisms, then for

any wrapper  = (S Qsel , Q Pcla ) for an automaton  = (Q, �, i, o), we have that

e is the coequaliser of morphisms f , g ∶ X → S and Fe is the coequaliser of morphisms

p, q ∶ Y → FS for certain objects X and Y . The wrapper  is -consistent in this situation

if and only if the equalities below hold.

o ◦ sel ◦ f = o ◦ sel ◦ g cla ◦ � ◦ F sel ◦ p = cla ◦ � ◦ F sel ◦ q.

A dual remark applies for closedness when  contains only regular monomorphisms.

The following main result of this section shows that closedness and consistency corres-

pond precisely to a particular automaton structure on H . This correspondence is used to

construct the hypothesis. We omit the proof below because it will follow from the more gen-

eral result of Proposition 4.5.2.

Theorem4.1.8 (Hypothesis). Awrapper (S Qsel , Q Pcla ) is-closed and-consistent

for an automaton  = (Q, �, i, o) if and only if H extends to an automaton  =
(H , � , i , o ) making the diagrams below commute. We call the automaton  the hy-

pothesis, assuming the wrapper and target automaton are clear from the context.

FQ FS FH

Q P H

�

F sel Fe

�
cla m

I Q

H P

i

i cla

m

S H

Q O

e

sel o

o
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4.2 Abstract Iterations

A crucial point for the development of the abstract algorithm is de�ning what it means to

resolve the “current” closedness and consistency defects. We refer to these as local defects, by

which we mean the ones directly visible. For instance, in the DA example, the local closedness

defects are the rows from the bottom part missing in the upper part, together with the empty

word row if it is missing. The local consistency defects are the pairs of row labels that should

be distinguished based on di�ering acceptance of those labels by the target, or di�ering rows

when the labels are extended with a single symbol.

De�nition 4.2.1 (Local closedness and consistency). We say that a wrapper  =

(S Qsel , Q Pcla ) is locally -closed w.r.t. sel′∶ S′ → Q for an automaton  =
(Q, �, i, o) if sel′⊲ ≤ sel⊲ and there exist morphisms FS′ → H and I → H making the

diagrams below commute.

FS′ FQ Q

H P

F sel′ �

cla

m

I Q

H P

i

cla

m

The wrapper  is locally -consistent w.r.t. cla′∶ Q → P ′ if cla⊳ ≤ cla′⊳ and there exist

morphisms FH → P ′ and H → O making the diagrams below commute.

FS FH

FQ Q P ′
F sel

Fe

� cla′

S H

Q O

e

sel

o

Note that a wrapper (sel, cla) as in the above de�nition is -closed if and only if it is locally

-closed w.r.t. sel and -consistent if and only if it is locally -consistent w.r.t. cla.

Example 4.2.2 (Local closedness and consistency for DAs). Recall the morphisms de�ned

in Example 4.1.2. Given an automaton  = (Q, �, i, o) and S, S′, E ⊆ A⋆, the wrapper  =
(sel,S , cla,E) is locally -closed w.r.t. sel,S′ if S′ ⊆ S, there exists s ∈ S such that

(cla,E ◦ sel,S)(s) = (cla,E ◦ i)(∗),

and for all t ∈ S′ × A there exists s ∈ S such that

(cla,E ◦ sel,S)(s) = (cla,E ◦ � ◦ (sel,S′ × idA))(t).
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The last condition is equivalent to the property that any row in the bottom part of the table

(S′, E) can be found in the top part of the table (S, E).
Given E′ ⊆ A⋆, the wrapper  is locally -consistent w.r.t. cla,E′ if E′ ⊆ E and for all

s1, s2 ∈ S such that (cla,E ◦ sel,S)(s1) = (cla,E ◦ sel,S)(s2) it holds that

(o ◦ sel,S)(s1) = (o ◦ sel,S)(s2)

and

(cla,E′ ◦ � ◦ (sel,S × idA))(s1) = (cla,E′ ◦ � ◦ (sel,S × idA))(s2).

This last condition is equivalent to the property that for all s1, s2 ∈ S mapping to the same row

in the upper part of (S, E), the rows for s1a and s2a are the same in the lower part of (S, E′) for

all a ∈ A.

Proposition 4.2.4 below shows that for each wrapper (S Qsel , Q Pcla ) for an auto-

maton  = (Q, �, i, o) we can always �nd sel′∶ S′ → Q such that (sel′, cla) is locally -closed

w.r.t. sel. This is done by adding the object obtained by going one level higher along the

functor FI = I + F(−). That is, S′ = S + FI S. In the DA case this is equivalent to adding the

empty word and all single letter successors of the current words. We �rst need the following

technical result.

Lemma 4.2.3. For all morphisms sel1∶ S1 → Q, sel2∶ S2 → Q, and f ∶ S1 → S2 such that

sel2 ◦ f = sel1 we have sel⊲1 ≤ sel⊲2 .

Proof. This follows directly from the unique diagonal obtained in the commutative diagram

below.

S1 ∙

S2

⋆ Q

sel⊳1

f

sel⊲1

sel⊳2
sel⊲2

Proposition 4.2.4. Given an automaton  = (Q, �, i, o) and any morphisms sel∶ S → Q and

cla∶ Q → P , the wrapper ([sel, [i, �] ◦ FI sel], cla) is locally-closed w.r.t. sel.

Proof. Let  = ([sel, [i, �] ◦ FI sel], cla). Note that sel⊲ ≤ [sel, [i, �] ◦ FI sel]⊲ by Lemma 4.2.3

(via �1∶ S → S + FI S). Below we see that there exist morphisms I → H and FS → H
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satisfying the required commutativity conditions from De�nition 4.2.1.

I

S + FI S S + FIQ Q

H P

i

�2◦�1
�2◦�1

id+FI sel
e

[sel,[i,�]]

cla

m

FS FQ

S + FI S S + FIQ Q

H P

FI sel

�2◦�2

�

�2◦�2

id+FI sel
e

[sel,[i,�]]

cla

m

4.3 Counterexamples

In the original L⋆ algorithm counterexamples are used to re�ne the state space of the hypo-

thesis. A crucial property for termination, which we prove at a high level of generality in this

section, is that adding counterexamples to a closed and consistent table results in a table which

fails to be either closed or consistent, and hence needs to be extended. In turn, this results

in progress being made in the algorithm. We will show how we can use recursive coalgeb-

ras [Osi74; Tay99] as witnesses for discrepancies—i.e., as counterexamples—between a hypo-

thesis and the target language in our abstract approach. Recursive coalgebras have been used

to generalise pre�x-closedness in an automata learning context in earlier work [Hee+18b], and

in particular to generalise counterexamples [BKR19; US19]. Let us �rst recall the de�nition,

in which we use the functor FI = I + F(−)∶ C → C.

De�nition 4.3.1 (Recursive coalgebras). A coalgebra � ∶ S → FI S is recursive if for every

algebra x ∶ FIX → X there is a unique morphism x� ∶ S → X making the diagram below

commute.

FI S FIX

S X

FI x�

x

x�
�

The uniqueness property makes these morphisms commute with algebra homomorph-

isms. That is, if � ∶ S → FI S is recursive and (X , x) and (Y , y) are FI -algebras, then for any FI -
algebra morphism ℎ∶ (X , x) → (Y , y)we have ℎ◦x� = y� . Given an automaton = (Q, �, i, o)
and a recursive � ∶ S → FI S, the map [i, �]� ∶ S → Q can be seen as a generalised reachability

map. Indeed, noting that [�I , �I ]∶ FI F⋆(I ) → F⋆(I ) is the initial FI -algebra and thus has an

inverse, the reachability map of  can be recovered as reach = [i, �][�I ,�I ]
−1
∶ F⋆(I ) → Q.

The following example shows that recursive coalgebras generalise pre�x-closed sets.
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Example 4.3.2 (Pre�x-closedness). A pre�x-closed subset S ⊆ A⋆ is easily equipped with

a coalgebra structure � ∶ S → 1 + S × A that detaches the last letter from each non-empty

word and assigns ∗ to the empty one. Such a coalgebra is recursive, with the unique map into

an algebra being de�ned as a restricted reachability map. In fact, Adámek et al. [AMM20]

have shown that under certain conditions that are satis�ed in the DA setting, recursivity of a

coalgebra is equivalent to having a coalgebra homomorphism into [�1, �1]−1. This means that

every recursive coalgebra is isomorphic to one given by a pre�x-closed multiset of words. If

the unique morphism into [�1, �1] is injective, the multiset becomes a set.

In L⋆, using a pre�x-closed set of words to label the rows of the table guarantees a reachable

hypothesis. Analogously, using a recursive FI -coalgebra as the selector in a wrapper targeting

the state space of an automaton guarantees a reachable hypothesis, as we show next. The

commutativity result below shows the stronger result that instantiates in L⋆ to the fact that

after reading a word from the row set the hypothesis ends up in the state given by the row

indexed by that word.

Proposition 4.3.3. Given an automaton  = (Q, �, i, o), a recursive � ∶ S → FI S, and
cla∶ Q → P , consider the wrapper  = (S Q[i,�]� , Q Pcla ). If  is -closed and

-consistent, the diagram below commutes and  is reachable.

S H

e

[i ,� ]�

Proof. We will �rst show that e = [i , � ]� . This follows from the commutative diagram

below as a result of m being a mono, together with the uniqueness property of [i , � ]� .

FI S FIH

FIQ H

S Q P

H

FI e

FI [i,�]� [i ,� ]

[i,�]

2

m

[i,�]�

e

�

1

cla

m

1 de�nition of [i, �]�

2 Theorem 4.1.8

Now i♯ ◦ [�I , �I ]� = [i , � ]� = e ∈  , so i♯ ∈  by [AHS09, Proposition 14.11 via duality].

Thus, H is reachable.



70 Chapter 4. Categorical Automata Learning

Since the unique morphisms induced by a recursive coalgebra are essentially generalised

reachability maps (see also [CUV06, Corollary 3]), we can accordingly de�ne a generalised

version of the language of an automaton.

De�nition 4.3.4 (Generalised language). Given a recursive coalgebra � ∶ S → FI S, we de�ne

for any automaton  = (Q, �, i, o) its �-language as the composition

�
 = S

[i,�]�
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Q

o
←←←←←←→ O.

Next, we show that language equivalence of automata can be characterised via equival-

ence w.r.t. all generalised languages.

Proposition 4.3.5 (Language equivalence via recursion). Given automata1 = (Q1, �1, i1, o1)
and2 = (Q2, �2, i2, o2), we have 1 = 2 if and only if for all recursive � ∶ S → FI S we have
�
1
= �

2
.

Proof. First assume that �
1
= �

2
for all recursive � ∶ S → FI S. Note that F⋆(I ) is the initial

algebra of FI ; thus [�I , �I ]∶ FI F⋆(I ) → F⋆(I ) has an inverse. One easily sees that this inverse is

recursive, with the corresponding unique maps into algebras being reachability maps. Thus,

1 = o1 ◦ i♯1 = o2 ◦ i♯2 = 2 .

Conversely, assume 1 = 2 . Given a recursive coalgebra � ∶ S → FI S, we have that

[i1, �1]� = i♯1 ◦ [�I , �I ]
�

and [i2, �2]� = i♯2 ◦ [�I , �I ]
�

by uniqueness. Thus, the diagram below

commutes.

Q1

S F⋆(I ) O

Q

o1[i1,�1]�

[�I ,�I ]�

[i2,�2]�

i♯1
1=2

i♯2

o2

The above result suggests an abstract notion of a witness of the case when two automata

do not accept the same language: there is a recursive coalgebra witnessing the di�erence

via the corresponding generalised languages. This will be particularly useful in describing

counterexamples for hypotheses, which we thus formalise as follows.

De�nition 4.3.6 (Counterexample). Given an automaton  = (Q, �, i, o), a wrapper

(S Qsel , Q Pcla ) that is -closed and -consistent is said to be -correct up to a re-

cursive � ∶ S′ → FI S′ if �


= �
. An -counterexample for  (or  ) is a recursive

� ∶ S′ → FI S′ such that  is not -correct up to �.
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Proposition 4.3.7 (Counterexample existence). Given an automaton  = (Q, �, i, o) and a

wrapper (S Qsel , Q Pcla ) that is-closed and-consistent, we have  ≠  if and

only if there exists an -counterexample for  .

Proof. Follows directly from Proposition 4.3.5.

Given a counterexample, the algorithm should adjust its wrapper to accommodate the

new information. Below we show that if after adding a recursive coalgebra to the wrapper,

the resulting wrapper is closed and consistent, then the coalgebra was not a counterexample.

Theorem 4.3.8 (Correctness up to via closedness and consistency). Consider an automaton

 = (Q, �, i, o) and a wrapper = (S Qsel , Q Pcla ) that is-closed and-consistent.

For any recursive coalgebra � ∶ S′ → FI S′ such that the wrapper ([sel, [i, �]�], cla) is -closed

and-consistent, we have that is-correct up to �.

Proof. Let  ′ = ([sel, [i, �]�], cla). Since the diagram below on the left commutes, we obtain a

unique diagonal ℎ∶ H → H ′ on the right.

S H

S + S′ Q

H ′ P

e

�1 sel

m
[sel,[i,�]�]

e′ cla

m′

S H

S + S′

H ′ P

e

�1
ℎ

m

e′

m′

We will show that ℎ is an automaton homomorphism, namely that it commutes with the initial

states (ℎ ◦ i = i ′ ), outputs (o ′ ◦ ℎ = o ), and dynamics (ℎ ◦ � = � ′ ◦ Fℎ). Noting that
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m ′ is a mono and e is an epi, this follows from commutativity of the diagrams below.

I H H ′

Q

H ′ P

i

i
i′

ℎ

m

1
2

m′

cla

m′

1

S H

S + S′ Q

H H ′ O

e

�1
e

sel

o
[sel,[i,�]�]

e′ o

3

ℎ

2

o′

3

1 -closedness 2 de�nition of ℎ 3 -consistency 4 Theorem 4.1.8

FH H H ′

FS FQ Q P

F(S + S′)

FH FH ′ H ′

�

4

ℎ

m
2 m′Fe

F sel

F�1
Fe

2

�

4

cla

F[sel,[i,�]�]

Fe′

Fℎ �′

m′

The fact that ℎ is an automaton homomorphism  →  ′ implies in particular that ℎ ◦
[i , � ]� = [i ′ , � ′]� . It follows that the diagram below commutes.

S′ H

H ′ O

[i ,� ]�

[i′ ,�′ ]�
oℎ

o′

(4.2)

We now show that e ′ ◦ �2 = [i ′ , � ′]� . This follows by the uniqueness property of

[i ′ , � ′]� from commutativity of the diagram below, using that m ′ is monic.

FI (S + S′) FIH ′

FI S′ FIQ H ′

S′ Q

S + S′ H ′ P

FI e′

FI [sel,[i,�]�] [i′ ,�′ ]

FI �2

FI [i,�]�

[i,�]
2

m′

�

[i,�]�
�2

1

cla
[sel,[i,�]�]

e′ m′

1 de�nition of [i, �]�

2 Theorem 4.1.8
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The commutative diagram below completes the proof.

S′

S + S′ Q

H H ′

O

[i,�]�

�2

[i′ ,�′ ]�
[i ,� ]�

[sel,[i,�]�]

e′

1
2

o

o

(4.2)

o′

1 consistency

2 previous observation

Equivalently, the above shows that adding the counterexample information will lead to

either a closedness or a consistency defect.

Corollary 4.3.9 (Counterexample progress). Given an automaton  = (Q, �, i, o), a wrapper

(S Qsel , Q Pcla ) that is -closed and -consistent, and a recursive � ∶ S′ → FI S′ such
that � is an-counterexample for , we have that ([sel, [i, �]�], cla) is either not-closed or not

-consistent.

4.4 An Abstract Automata Learning Algorithm

We can now describe our general algorithm, for which we �x a target automaton t =
(Qt, �t, it, ot) throughout this section. Similarly to L⋆ (Section 2.3), the algorithm is organ-

ised into two procedures: Algorithm 4.1, which contains the abstract procedure for making a

wrapper closed and consistent, and Algorithm 4.2, containing the learning iterations. These

generalise the analogous procedures in L⋆, Algorithm 2.1 and Algorithm 2.2, respectively.

The procedure in Algorithm 4.1 assumes that for each wrapper  =

(S Qtsel , Qt Pcla ) there exists cla′∶ Qt → P ′ such that (sel, cla′) is locally -consistent

w.r.t. cla; for local closedness we do not need this assumption, thanks to Proposition 4.2.4.

We use local closedness and local consistency in the steps in lines 4 and 6 to �x closedness

and consistency defects. We will see later in Section 4.6 that for a large class of functors in

Set, existence of these maps ensuring local consistency can be proved.

In Algorithm 4.2, the wrapper is initialised with trivial maps and extended to be closed

and consistent using the subroutine Fix (line 1). The main loop constructs the corresponding

hypothesis and poses and equivalence query for it, denoted by EQ (line 2). If this equivalence

query returns a counterexample in the form of a recursive coalgebra, it is used to update the

wrapper (line 3). Note that instead of concretely updating sel to become [sel, [it, �t]�] we only
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Algorithm 4.1. Make wrapper t-closed and t-consistent

1: function Fix(sel, cla)
2: while (sel, cla) is not t-closed or not t-consistent do
3: if (sel, cla) is not t-closed then
4: sel ← sel′ such that (sel′, cla) is locally t-closed w.r.t. sel

5: else if (sel, cla) is not t-consistent then
6: cla ← cla′ such that (sel, cla′) is locally t-consistent w.r.t. cla

7: return sel, cla

Algorithm 4.2. Abstract automata learning algorithm

1: sel, cla ← Fix(!∶ 0 → Qt, !∶ Qt → 1)
2: while EQ((sel,cla)) = � ∶ S → FI S do
3: sel ← sel′ such that sel′⊲ = [sel, [it, �t]�]⊲

4: sel, cla ← Fix(sel, cla)

5: return (sel,cla)

Figure 4.1: Generalised Learning Algorithm.

require the  parts of their factorisations to be the same, which leaves room for optimisa-

tions that avoid adding the exact same information multiple times. The updated wrapper is

then again passed on to the subroutine Fix (line 4) to be made closed and consistent. If the

equivalence query instead is successful, we return the hypothesis (line 5).

We note that the algorithm references the automaton t, which is not known before ter-

mination. However, note that we only need this automaton to describe the de�nitions of

closedness and consistency. We will see that in concrete instances of the algorithm these

de�nitions actually depend only on the language accepted by t.

We now de�ne a run of the algorithm as a stream of wrappers, each of which corresponds

to the wrapper held by the algorithm at a given point in time during a possible execution.

This will give us a formal object to use for reasoning about termination.

De�nition 4.4.1 (Run of the algorithm). A run of the algorithm is a family of wrappers

{n = (Sn Qtseln , Qt Pnclan )}n∈ℕ

satisfying the following conditions:
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1. sel0∶ 0 → Qt and cla0∶ Qt → 1 are the unique morphisms;

2. if n is not t-closed, then clan+1 = clan and seln+1 is such that (seln+1, clan) is locally

t-closed w.r.t. seln;

3. if n is t-closed but not t-consistent, then seln+1 = seln and clan+1 is s.t. (seln, clan+1)
is locally t-consistent w.r.t. clan;

4. if n is t-closed and t-consistent and we obtain through an equivalence query for

n a counterexample � ∶ S → FI S for n, then sel⊲n+1 = [seln, [it, �t]
�]⊲ and clan+1 =

clan; and

5. if n is t-closed and t-consistent and t-correct up to all recursive FI -coalgebras,

then n+1 =n.

One easily sees that the de�nition above follows exactly the way the algorithm is de�ned.

To prove that termination corresponds to convergence of runs of the algorithm, however, we

need a technical result �rst.

Lemma 4.4.2. Let sel∶ S → Qt, sel′∶ S′ → Qt, and cla∶ Qt → P be such that sel⊲ and sel′⊲

are isomorphic subobjects. If (sel, cla) ist-closed andt-consistent, then so is (sel′, cla).

Proof. Write  = (sel, cla) and  ′ = (sel′, cla). Let X and X ′
be the respective objects through

which sel and sel′ factorise, and denote by �∶ X → X ′
the subobject isomorphism (sel′⊲ ◦ � =

sel⊲). We de�ne f ∶ X → H and g ∶ X ′ → H ′ as the unique diagonals in the diagrams

below.

S X

Qt

H P

sel⊳

e

sel⊲

f

cla

m

S′ X ′

Qt

H ′ P

sel′⊳

e′

sel′⊲

g

cla

m′

Note that sel⊳ and e are in  , and therefore so is f ; similarly, since sel′⊳ and e ′ are in  , so

is g [AHS09, Proposition 14.9 via duality]. We now de�ne  ∶ H → H ′ and  −1∶ H →
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H ′ as the unique diagonals in the diagrams below.

X H

X ′

H ′ P

f

�

m
 

g
m′

X ′ H ′

X

H P

g

�−1

m′
 −1

f
m

It is a standard result that  and  −1 are inverse to each other [AHS09, Proposition 14.7], as

suggested by their names. To show closedness and consistency, we will need the following

two equations.

o ◦ f = ot ◦ sel⊲ m ◦ � ◦ F f = cla ◦ �t ◦ F sel⊲. (4.3)

Note that both sel⊳ and F sel⊳ are in  because F preserves morphisms in  , and that they are

therefore both epis. We use this to prove (4.3) with the commutative diagrams below.

S X

X H

Qt O

e

sel⊳

sel⊳ 1

2

f

sel⊲
o

ot

1 de�nition of f
2 consistency

3 Theorem 4.1.8

FS FX

FX FH

FQt H

Qt P

F sel⊳

F sel⊳
Fe

3

1 Ff

F sel⊲ �

�t m

cla

Now the diagrams below commute.

I Qt

H

H ′ P

it

i

cla

m
 

1

2

m′

S′

X ′ H ′

X H

Qt O

e′

sel′⊳ 3
g

�−1

sel′⊲

5

4

 −1

f

sel⊲ (4.3) o
ot

FS′ FX ′

FH ′ FX FQt Qt

FH H

H ′ P

F sel′⊳

Fe′

3 F�−1
F sel′⊲

Fg 4

5

 −1

F sel⊲

Ff

�t

(4.3)

cla�

m
 2

m′

1 closedness 3 de�nition of g 5 de�nition of  −1

2 de�nition of  4 subobject morphism

It follows from Theorem 4.1.8 that  ′
is t-closed and t-consistent.
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We can now prove the following correspondence.

Proposition 4.4.3. Algorithm 4.2 terminates if and only if for all runs {n}n∈ℕ there exists

n ∈ ℕ such thatn+1 =n.

Proof. Note that a possible execution of the algorithm corresponds precisely to a run. Thus,

if Algorithm 4.2 terminates, then clearly n+1 = n for all runs {n}n∈ℕ, as provided by

clause 5 in the de�nition of a run.

Conversely, we need to show that clause 5 is the only way from which n+1 =n can be

achieved. Thus, if for some n ∈ ℕ the wrapper is updated due to a closedness or consistency

issue or due to a counterexample, we need to show that n+1 ≠ n. Suppose towards a

contradiction that n+1 =n. We will derive a contradiction for each of the three cases.

Suppose n is not t-closed. From the de�nition of a run we obtain that n+1 is locally

t-closed w.r.t. seln. Thus, n is locally t-closed w.r.t. seln, which equivalently provides the

contradiction that n is t-closed.

Suppose n is t-closed but not t-consistent. Again from the de�nition of a run we

obtain that n+1 is locally t-consistent w.r.t. clan. Thus, n is locally t-consistent w.r.t.

clan, which equivalently provides the contradiction that n is t-consistent.

Suppose n is t-closed and t-consistent and we obtain a counterexample � ∶ S → FI S
for n. By the de�nition of a run we have sel⊲n+1 = [seln, [it, �t]

�]⊲, so sel⊲n = [seln, [it, �t]
�]⊲. By

Lemma 4.4.2 this implies that ([seln, [it, �t]�], clan) is also t-closed and t-consistent, which

by Corollary 4.3.9 contradicts the fact that � is a counterexample for n.

To prove termination we will need an invariant on the way successive wrapper selectors

and classi�ers are ordered (see Section 2.2.1). This invariant will be provided in Lemma 4.4.6,

which �rst requires two additional lemmas.

Lemma 4.4.4. For any run {n = (seln, clan)}n∈ℕ and n ∈ ℕ, if sel⊲n+1 ≤ sel⊲n , then n is

t-closed.

Proof. For each j ∈ ℕ, denote by Sj the domain of selj and by Pj the codomain of claj , and let

Xj be the object through which selj factorises. Assume towards a contradiction that n is not

t-closed. By the de�nition of a run we then have that clan+1 = clan and n+1 is locally t-

closed w.r.t. seln. This means that there exist morphisms l ∶ FSn → Hn+1 and i ∶ I → Hn+1
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making the diagrams below commute.

FSn FQt Qt

Hn+1 Pn = Pn+1

F seln

l

�t

clan
mn+1

I Qt

Hn+1 Pn = Pn+1

it

i clan
mn+1

We de�ne for every j ∈ ℕ the morphism fj ∶ Xn → Hn as the unique diagonal in the

commutative square below.

Sj Xj

Qt

Hj Pj

sel⊳j

ej

sel⊲j

fj

claj
mj

Note that fj ∈  because ej ∈  . Thus, we can de�ne ℎ∶ Hn+1 → Hn as the unique

diagonal in the commutative diagram below, where we write v ∶ Xn+1 → Xn for the witness

of sel⊲n+1 ≤ sel⊲n .

Xn+1 Hn+1

Xn Qt

Hn Pn = Pn+1

fn+1

sel⊲n+1v

mn+1
sel⊲n

fn

clan=clan+1

1

mn

1

1 de�nition of fn or fn+1

Xn+1 Hn+1

Xn

Hn Pn = Pn+1

fn+1

v

mn+1
ℎ

fn
mn

Now the diagrams below commute, leading to the desired contradiction that n is t-closed.

I

Hn+1 Qt

Hn Pn = Pn+1

iti

mn+1
ℎ

1

2
clan

mn

1 local closedness

2 de�nition of ℎ

FSn FQt

Hn+1 Qt

Hn Pn = Pn+1

F seln

l �t

mn+1

ℎ

1

2
clan

mn

Lemma 4.4.5. For any run {n = (seln, clan)}n∈ℕ and n ∈ ℕ, if n is t-closed and cla⊳n ≤
cla⊳n+1, thenn ist-consistent.

Proof. For each j ∈ ℕ, denote by Sj the domain of selj and by Pj the codomain of claj , and let Xj
be the object through which claj factorises. Assume towards a contradiction thatn is nott-

consistent. By the de�nition of a run of the algorithm we then have that seln+1 = seln and n+1
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is locally t-consistent w.r.t. clan. This means that there exist morphisms l ∶ FHn → Pn+1
and o ∶ Hn+1 → O making the diagrams below commute.

FSn = FSn+1 FHn+1

FQt Qt Pn

F seln

Fen+1

l
�t clan

Sn = Sn+1 Hn+1

Qt O

en+1

seln o
ot

We de�ne for every j ∈ ℕ the morphism fj ∶ Hj → Xj as the unique diagonal in the

commutative square below.

Sj Hj

Qt

Xj Pj

ej

selj

fj mj

cla⊳j
cla⊲j

Note that fj ∈  because mj ∈ . Thus, we can de�ne ℎ∶ Hn → Hn+1 as the unique

diagonal in the commutative diagram below, where we write v ∶ Xn → Xn+1 for the witness

of cla⊳n ≤ cla⊳n+1.

Sn = Sn+1 Hn

Qt Xn

Hn+1 Xn+1

en

seln=seln+1en+1

fn
cla⊳n

cla⊳n+1

1

v
fn+1

1

1 de�nition of fn or fn+1

Sn = Sn+1 Hn

Xn

Hn+1 Xn+1

en

en+1

fn
ℎ

v
fn+1

Now the diagrams below commute, leading to the desired contradiction that n is t-

consistent.

Sn = Sn+1 Hn

Qt Hn+1

O

en

en+1
seln

2
ℎ

ot

1

o

1 local consistency

2 de�nition of ℎ

FSn = FSn+1 FHn

FQt FHn+1

Qt Pn

Fen

Fen+1

F seln
2

Fv

�t
1

l
clan

We now introduce the invariant concerning the relations between successive wrappers in

a run.
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Lemma 4.4.6. Consider a run {n = (seln, clan)}n∈ℕ and n ∈ ℕ. We have sel⊲n ≤ sel⊲n+1 and

cla⊳n+1 ≤ cla⊳n for all n ∈ ℕ. Moreover, if sel⊲n+1 ≤ sel⊲n , then seln+1 = seln; if cla⊳n ≤ cla⊳n+1, then

clan+1 = clan.

Proof. We consider each of the cases listed in the de�nition of a run of the algorithm. If n

is not t-closed, then clan+1 = clan and sel⊲n ≤ sel⊲n+1 by the de�nition of local closedness.

Supposing sel⊲n+1 ≤ sel⊲n leads by Lemma 4.4.4 to the contradiction that n is t-closed.

If n is t-closed but not t-consistent, then seln+1 = seln and we have cla⊳n+1 ≤ cla⊳n

by the de�nition of local consistency. Supposing cla⊳n ≤ cla⊳n+1 leads by Lemma 4.4.5 to the

contradiction that n is t-consistent.

Ifn ist-closed andt-consistent and we obtain a counterexample � ∶ S → FI S forn,

then clan+1 = clan and sel⊲n+1 = [seln, [it, �t]
�]⊲. We have sel⊲n ≤ [seln, [it, �t]

�]⊲ using Lemma 4.2.3.

Suppose sel⊲n+1 ≤ sel⊲n . Then [seln, [it, �t]�]⊲ = sel⊲n+1 ≤ sel⊲n , so sel⊲n and [seln, [it, �t]�]⊲ are

isomorphic subobjects. By Lemma 4.4.2 this implies that ([seln, [it, �t]�], clan) is also t-closed

and t-consistent, which by Corollary 4.3.9 contradicts the fact that � is a counterexample

for n.

If n is t-closed and t-consistent and correct up to all recursive FI -coalgebras, then

we immediately have seln+1 = seln and clan+1 = clan.

Putting the above results together, we obtain the following theorem showing that the

algorithm terminates. Moreover, it necessarily terminates with a correct automaton, for which

we give conditions that guarantee minimality.

Theorem 4.4.7 (Termination). If Qt has �nitely many subobject and quotient isomorphism

classes, then for all runs {n = (seln, clan)}n∈ℕ there exists n ∈ ℕ such that n is closed and

consistent and the corresponding hypothesis is correct. If t is minimal and for all k ∈ ℕ there

exists a recursive �k ∶ Sk → FI Sk such that selk = [it, �t]�k , then the �nal hypothesis is minimal.

Proof. We will show that {n}n∈ℕ converges, for which it su�ces to show that both {seln}n∈ℕ
and {clan}n∈ℕ converge. Suppose {seln}n∈ℕ does not converge. By Lemma 4.4.6 there exist

in ∈ ℕ for all n ∈ ℕ such that in+1 > in, sel⊲in ≤ sel⊲in+1, and sel⊲in+1 ≰ sel⊲in for all n ∈ ℕ. Note that

isomorphic subobjects are ordered in both directions. Using transitivity of the order on subob-

jects we know that for all m, n ∈ ℕ with m ≠ n we have that sel⊲im and sel⊲in are not isomorphic

subobjects. This contradicts the fact that Qt has �nitely many subobject isomorphism classes.

Thus, {seln}n∈ℕ must converge.

Now suppose {clan}n∈ℕ does not converge. By Lemma 4.4.6 there exist in ∈ ℕ for all

n ∈ ℕ such that in+1 > in, cla⊳in+1 ≤ cla⊳in , and cla⊳in ≰ cla⊳in+1 for all n ∈ ℕ. Note that iso-
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morphic quotients are ordered in both directions. Using transitivity of the order on quotients

we know that for allm, n ∈ ℕ withm ≠ n the quotients cla⊲im and cla⊲in are not isomorphic. This

contradicts the fact that Qt has �nitely many quotient isomorphism classes. Thus, {clan}n∈ℕ
must converge. We conclude that {n}n∈ℕ converges, and by Proposition 4.4.3 the algorithm

terminates. By de�nition, it does so with a correct hypothesis.

Now assume that t is minimal and that for all k ∈ ℕ there exists a recursive �k ∶ Sk →
FI Sk such that selk = [it, �t]�k . Let n ∈ ℕ be such that n+1 =n, which by the above we know

exists, and de�ne  = n. We know from Proposition 4.3.3 that  is reachable. Together

with correctness of  and minimality of t there exists a unique automaton homomorph-

ism ℎ∶  → t. We show that clan ◦ ℎ = m with the commutative diagram below,

where we precompose with the epi e and use that automaton homomorphisms commute

with generalised reachability maps.

Sn H

H Qt Pn

e

e=[i ,� ]�n
seln=[it,�t]�n m

ℎ clan

It follows that ℎ ∈  [AHS09, Proposition 14.11]. Being an automaton homomorphism,

ℎ commutes with the reachability maps: ℎ ◦ i♯ = i♯t . Because i♯ ∈  and i♯t ∈  , we have

ℎ ∈  [AHS09, Proposition 14.9 via duality]. Since ∩ contains only isomorphisms [AHS09,

Proposition 14.6], it follows that ℎ is an isomorphism of automata and therefore that the

hypothesis is minimal.

Let us discuss how the minimality condition in the above theorem can be satis�ed. We

need to make sure that for a run {n = (seln, clan)}n∈ℕ of the algorithm we have for any n ∈ ℕ
that seln is induced by a recursive coalgebra (that is, there exists a recursive �n ∶ Sn → FI Sn
such that seln = [it, �t]�n ). To do so, we will give more concrete instructions to replace line 4

in Algorithm 4.1 and line 3 in Algorithm 4.2. Together with the fact that initially sel0∶ 0 →
Qt is trivially induced by a (unique) recursive coalgebra, this will make it an invariant that

the selector is induced by a recursive coalgebra. Regarding line 4 in Algorithm 4.1, suppose

sel∶ S → Qt is such that there exists a recursive � ∶ S → FI S satisfying sel = [it, �t]� . We

propose to choose sel′ = [it, �t] ◦ FI [it, �t]� , which the following general result shows is also

induced by a recursive coalgebra.

Proposition 4.4.8. Given an automaton  = (Q, �, i, o), a recursive � ∶ S → FI S, and
cla∶ Q → P , the wrapper ([i, �] ◦ FI [i, �]� , cla) is locally -closed w.r.t. [i, �]� . Furthermore,

FI� is also recursive and [i, �] ◦ FI [i, �]� = [i, �]FI � .
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Proof. Let sel = [i, �]� and  = ([i, �]◦FI sel, cla). Note that sel⊲ ≤ ([i, �]◦FI sel)⊲ by Lemma 4.2.3

(via �). Below we see that there exist morphisms I → H and FS → H satisfying the

required commutativity conditions from De�nition 4.2.1.

I

FI S FIQ Q

H P

i

�1�1

FI sel
e

[i,�]

cla

m

FS FQ

FI S FIQ Q

H P

FI sel

�2

�

�2

FI sel
e

[i,�]

cla

m

We know from [CUV06, Proposition 6] that FI� is recursive, so we have [i, �] ◦ FI sel = [i, �]FI �

by uniqueness from commutativity of the diagram below.

FI FI S FI FIQ FIQ

FI S FIQ Q

FI FI [i,�]� FI [i,�]

FI [i,�] [i,�]FI �
FI [i,�]� [i,�]

Regarding the counterexample handling in line 3 of Algorithm 4.2, we simply note that if

sel1∶ S1 → Qt and sel2∶ S2 → Qt are induced by recursive coalgebras, then so is [sel1, sel2]
by the result below. Thus, given sel∶ S → Qt and the counterexample � ∶ S′ → FI S′ we can

choose sel′ = [sel, [it, �t]�]∶ S + S′ → Qt.

Proposition 4.4.9. Given two recursive coalgebras �1∶ S1 → FI S1 and �2∶ S2 → FI S2, the
composition

�′ = S1 + S2
�1+�2←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ FI S1 + FI S2

[FI �1,FI �2]←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ F(S1 + S2)

is also a recursive coalgebra, and for any algebra x ∶ FIX → X we have x�′ = [x�1 , x�2].

Proof. Consider any algebra x ∶ FIX → X , and note that the diagram below commutes.

FI (S1 + S2) FIX

FI S1 + FI S2

S1 + S2 X

FI [x�1 ,x�2 ]

x

[FI �1,FI �2]
[FI x�1 ,FI x�2 ]

�1+�2

[x�1 ,x�2 ]

[x◦FI x�1 ◦�1,x◦FI x�2 ◦�2]

1

1 de�nitions of x�1 and x�2
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Suppose f ∶ S1 + S2 → X is any morphism making the diagram below on the left commute.

FI (S1 + S2) FIX

FI S1 + FI S2

S1 + S2 X

FI f

x

[FI �1,FI �2]

�1+�2
f

FI S1 FI (S1 + S2) FIX

FI S1 + FI S2

S1 S1 + S2 X

FI �1

�1

FI f

x

[FI �1,FI �2]

�1

�1

�1+�2
f

Commutativity of the diagram on the right shows that f ◦�1 = x�1 by the uniqueness property

of x�1 . Analogously, we have f ◦ �2 = x�2 . Thus, f = [x�1 , x�2].

In Section 4.6 we extensively detail an instantiation of our abstract algorithm for a large

class of automata in Set. Furthermore, Chapter 6 will be based on a dualisation of the al-

gorithm. First, however, we develop more general results that characterise which wrappers

induce a correct hypothesis. As we will, these see apply to many more algorithms than just

L⋆.

4.5 Other Learning Algorithms and Minimisation

We have seen in this chapter that wrappers generalise the data structure used in the L⋆ al-

gorithm. In this section we will show that we can also use these structures to develop an

abstract minimisation algorithm (Algorithm 4.3), which we prove correct in Theorem 4.5.6.

We show that instances of this algorithm in the DFA setting are reachability analysis and

merging equivalent states, and we derive variants of those that can in fact be seen as learn-

ing algorithms, one of which is known from the literature [Ang81]. In order to simplify the

proofs in this section, we �rst generalise closedness and consistency to be relative to arbitrary

algebras.

De�nition 4.5.1 (Closedness and consistency relative to an algebra). Given a wrapper  =

(S Xsel , X Pcla ), a functor G∶ C → C, and an algebra x ∶ GX → X , we say that

 is x-closed if there exists morphism GS → H making the diagram below on the left

commute; it is x-consistent if there exists a morphism GH → P making the diagram on the

right commute.

GS GX X

H P

Gsel x

cla

m

GS GH

GX X P

Gsel

Ge

x cla
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We leave the functor implicit, as it will be clear from the context.

We see that a wrapper  = (S Qsel , Q Pcla ) is -closed for an automaton  =
(Q, �, i, o) if and only if it is i-closed and �-closed; it is -consistent if and only if it is �-

consistent and (cla, sel) is o-closed as a wrapper in Cop
. This correspondence allows us to

recover the hypothesis result from Theorem 4.1.8 via multiple applications of the following

core property.

Proposition 4.5.2. Given a wrapper  = (S Xsel , X Pcla ), a functor G∶ C → C
that preserves morphisms in  , and an algebra x ∶ GX → X , we have that  is x-closed and

x-consistent if and only if there exists an algebra a∶ GH → H making the diagram below

commute.
GX GS GH

X P H

x

Gsel Ge

a

cla m

Proof. First assume that  is x-closed and x-consistent. This means that there are morphisms

f ∶ GS → H and g ∶ GH → P making the diagrams below commute.

GS GX X

H P

Gsel

f

x

cla

m

GS GH

GX X P

Gsel

Ge

g

x cla

We de�ne a∶ GH → H as the unique diagonal in the commutative diagram below.

GS GH

H P

Ge

f ga

m

Conversely, assume there exists a∶ GH → H making the diagram in the statement

commute. We de�ne

f = GS
Ge←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ GH

a
←←←←←←←→ H g = GH

a
←←←←←←←→ H

m←←←←←←←←←←←←←←←←←←←←←←←→ P

The required properties are satis�ed precisely by the de�nition of a.

Recall that a wrapper  = (S Xsel , X Pcla ) intuitively can be seen as a two-sided

approximation of X : sel selects a part of X while cla provides a classi�cation of X . With

this intuition we develop two properties that together imply the approximation is completely

accurate: intuitively, we have selected everything if sel ∈  , and the classi�cation is faithful if

cla ∈. We �rst show that the former implies closedness while the latter implies consistency.
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Lemma 4.5.3. Given a wrapper  = (S Xsel , X Pcla ), a functor G∶ C → C, and an

algebra x ∶ GX → X , if sel ∈  , then is x-closed; if cla ∈, then is x-consistent.

Proof. If sel ∈  , we obtain a diagonal �∶ X → H in the commutative square below on the

left.

S X

H P

sel

e
�

cla

m

GS GX X

GX

X

H P

Gsel

Gsel

x

clax

�
m

Then the diagram on the right commutes, which means  is x-closed.

If cla ∈ , we obtain a diagonal  ∶ H → X in the commutative square below on the

left.

S H

X P

e

sel
 m

cla

GS GH

GX

X

GX X P

Ge

Gsel

G 

x

cla
x cla

Now the diagram on the right commutes, which means  is x-consistent.

Going a little further, if we select everything and satisfy consistency, or if we classify faith-

fully and satisfy closedness, then there exists a homorphism preserving the relevant structure

between the hypothesis and the target.

Proposition 4.5.4. Given a wrapper  = (S Xsel , X Pcla ), a functor G∶ C → C that

maps morphisms in  to epis, and an algebra x ∶ GX → X , if sel ∈  and  is x-consistent,
then  is also x-closed and the unique diagonal �∶ X → H in the diagram below on the

left is an algebra homomorphism (X , x) → (H , a); if cla ∈  and  is x-closed, then  is

also x-consistent and the unique diagonal  ∶ H → X in the diagram below on the right is

an algebra homomorphism (H , a) → (X , x). In both cases a∶ GH → H is the algebra

obtained via Proposition 4.5.2.

S X

H P

sel

e
�

cla

m

S H

X P

e

sel
 m

cla

(4.4)
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Proof. First suppose sel ∈  and  is x-consistent. We know from Lemma 4.5.3 that  is also

x-closed. Using that Gsel is an epi and m a mono, the commutative diagram below shows

that � is an algebra homomorphism (X , x) → (H , a).

GS GX GH

GX H

X H P

Gsel

Gsel Ge

G�

a

x m

�

cla

m

Commutativity follows from the de�nition of � and from Proposition 4.5.2.

Now suppose cla ∈  and  is x-closed. We know from Lemma 4.5.3 that  is also x-

consistent. Using that Ge is an epi and cla a mono, the commutative diagram below shows

that  is an algebra homomorphism (H , a) → (X , x).

GS GH GX

GH X

H X P

Ge

Ge Gsel

G 

x

a cla

 

m

cla

Commutativity follows from the de�nition of  and from Proposition 4.5.2.

This implies in particular that both selecting everything and classifying faithfully allow

us to recover the target structure up to isomorphism.

Corollary 4.5.5. Given a wrapper  = (S Xsel , X Pcla ), a functor G∶ C → C, and
an algebra x ∶ GX → X , if sel ∈  and cla ∈ , then  is x-closed and x-consistent and the

unique diagonals as in (4.4) form an algebra isomorphism between (X , x) and (H , a), where
a∶ GH → H is the algebra obtained via Proposition 4.5.2.

We now specialise Proposition 4.5.4 to automata in order to obtain conditions under which

the target automaton is recovered up to isomorphism as the hypothesis. To arrive at an iso-

morphism rather than a homomorphism, an additional assumption is required of the auto-

maton being reachable. For this reason the result below does not have the symmetry of Pro-

position 4.5.4.
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Algorithm 4.3. Abstract minimisation algorithm

Require: a morphism cla∶ Qt → P ∈, assume t is reachable

1: sel ← !∶ 0 → Qt

2: while (sel, cla) is not t-closed do
3: sel ← sel′ such that (sel′, cla) is locally t-closed w.r.t. sel

4: return (sel,cla)

Theorem 4.5.6. Consider a reachable automaton  = (Q, �, i, o) and let  =
(S Qsel , Q Pcla ) be a wrapper. If  is -closed and cla ∈ , then  is -consistent

and  and are isomorphic.

Proof. We de�ne  ∶ H → Q as the unique diagonal in the commutative square below.

S H

Q P

e

sel
 m

cla

Recall that the initial state map i of the automaton is an algebra for the constant functor

I while the output map o is a coalgebra for the constant functor O. Hence, we can apply

Proposition 4.5.4 (or its dual for the coalgebra) to them and to � to �nd that  ∶ H → Q is

an automaton homomorphism  → . Then reach =  ◦ reach . Since reach is in  ,

this means that  ∈  [AHS09, Proposition 14.11 via duality]. Because sel =  ◦ e by the

de�nition of  , sel ∈  . Therefore, we can apply Corollary 4.5.5, again three times, and obtain

an automaton isomorphism between  and  .

The above result provides the foundation for Algorithm 4.3: assume a wrapper that faith-

fully classi�es a reachable target, make it closed, and obtain the target up to isomorphism.

Here we �x, as in Section 4.4, a target automaton t = (Qt, �t, it, ot), which the algorithm as-

sumes to be reachable. It further requires a given classi�er cla∶ Qt → P ∈ . Although the

target automaton is not initially known to the algorithm, we assume we are able to decide t-

closedness for the wrappers under consideration and advance them through local closedness.

To see how this could be used in practice, suppose  is any given automaton, known to

the algorithm, and let t be its reachable part. Letting cla∶ t →  ∈  be the unique

embedding, we can apply Algorithm 4.3 to compute the reachable part of . To make this

more concrete, we give an example for DFAs below.
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Example 4.5.7 (DFA reachability analysis). Consider the following DFA  = (Q, �, i, o) over

the alphabet A = {a, b}.

 =
q0 q1

q2

q3

q4

a

b
a

b

a
b

a

b

a

b

Let r = (Qr, �r, ir, or) be the reachable part of . We de�ne cla∶ Qr → Q to be the automaton

embedding. Given a set S ⊆ Qr, we de�ne selS ∶ S → Qr be the inclusion, which gives us a

wrapper (selS , cla) for Qr. Starting from S = ∅, note that this wrapper is not -closed. We

will repeatedly �nd the smallest superset S′ of S such that (selS′ , cla) is locally r-closed w.r.t.

selS and update S to S′. We have that (sel{q0}, cla) is locally r-closed w.r.t. selS , so we update

S = {q0}. Now (sel{q0,q1,q2}, cla) is locally r-closed w.r.t. selS , so we update S = {q0, q1, q2}.

Finally, (sel{q0,q1,q2,q3}, cla) is locally r-closed w.r.t. selS , so we update S = {q0, q1, q2, q3}. We

then have that (selS , cla) isr-closed, so by Theorem 4.5.6 it isr-consistent and its hypothesis

is isomorphic to r. One can show that the hypothesis construction simply consists in taking

restricting the structure of Q to the state space S. Thus, the �nal hypothesis is the one below.

q0 q1

q2

q3a

b
a

b

a
b

a

b

A di�erent approach is in a learning setting where we know that the target DFA has at

most n states and each of its states accepts a di�erent language than the other states. In this

case the restricted language map cla∶ Qt → 2A<n , where A<n contains all words in A⋆ of

length less than n, satis�es cla ∈ . One can use an observation table and make it closed in

the usual way to obtain the reachable version of t as the hypothesis.

We know that DAs can be described with the setting C = Set, F = (−) ×A, I = 1, and O = 2,
but they can equivalently be recovered in C = Setop with F = (−)A, I = 2, and O = 1. To see

this, note that a structure as below on the left in Setop is a structure as below on the right in
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Set.

QA

Q

2 1

1 2

Q

QA

This is precisely a DA with its transition function curried. The algebraically free monad ((−)A)⋆

in Setop assigns to each set X the set XA⋆
, its unit has components �X ∶ XA⋆ → X (in Set)

given by �X (l) = l("), and its multiplication has components �X ∶ XA⋆ → (XA⋆)A⋆ given

by �X (f )(u)(v) = f (uv). Given a DA  = (Q, �, o, i) in Setop, this leads to a reachability

map in the form of the function obs∶ Q → 2A⋆ that assigns to each state the language it

accepts. It is referred to as the observability map of , and the property of reachability is

in this dual setting referred to as observability: distinct states accept distinct languages. By

applying Algorithm 4.3 we recover an algorithm to merge equivalent states.

Example 4.5.8 (DFA observability analysis). Consider the DFA  = (Q, �, o, i) in Setop given

below.

 =
q0 q1

q2

q3a

b
a

b

a
b

a

b

By factorising the observability map of  we know there is an observable DFA o =
(Qo, �o, oo, io) with an automaton quotient sel∶ Q → Qo that merges language equivalent

states. We start from a trivial classi�er cla∶ Qo → 1. Note that the wrapper this induces

is (cla, sel) in Setop. It is not o-closed, since q0 is identi�ed with the other states while it is

the only rejecting state. Adjusting to cla∶ Qo → 2 in such a way that (cla ◦ sel)(q0) = 0 and

(cla◦sel)(q) = 1 for all q ∈ Q ⧵{q0} results in a wrapper that is locally o-closed w.r.t. the trivial

classi�er. Note that this classi�er is well-de�ned because Qo will not identify states with dif-

fering outputs. Similarly, in the next step we update the classi�er to cla∶ Qo → {0, 1, 2} in

such a way that (cla◦sel)(q0) = 0, and (cla◦sel)(q1) = (cla◦sel)(q2) = 1, and (cla◦sel)(q3) = 2. This

classi�er is o-closed, and by Theorem 4.5.6 it is consistent and its hypothesis is isomorphic

to o. We obtain this hypothesis by quotienting  according to cla ◦ sel. This gives the DFA
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below.

a,b

a

b

a

b

Again, we can carry this approach to a learning setting where we know that the target DFA

is reachable and has at most n states. In this case the restricted reachability map sel∶ A<n →
Qt, where A<n contains all words in A⋆ of length less than n, satis�es sel ∈  . One can use an

observation table and make it consistent in the usual way to obtain the minimisation of t

as the hypothesis. In the more general case where sel∶ S → Qt is any restricted reachability

map for a provided �nite set S ⊆ A⋆ satisfying sel ∈  , this automata learning algorithm is

called ID and was introduced by Angluin [Ang81].

4.6 Learning Generalised Tree Automata

In this section we instantiate the development of Section 4.4 to a wide class of Set endofunc-

tors. This yields an abstract algorithm for generalised tree automata—i.e., automata accepting

sets of trees, possibly subject to equations—which include bottom-up tree automata and un-

ordered tree automata. These are examples that were not in scope of any of the existing

abstract learning frameworks in the literature.

We �rst introduce the running examples for this section.

Example 4.6.1 (Tree automata). Let Γ be a ranked alphabet, i.e., a �nite set where 
 ∈ Γ
comes with arity(
 ) ∈ ℕ. The set of Γ-trees over a �nite set of leaf symbols I is the smal-

lest set TΓ(I ) such that I ⊆ TΓ(I ), and for all 
 ∈ Γ we have that t1, … , tarity(
 ) ∈ TΓ(I ) im-

plies (
 , t1, … , tarity(
 )) ∈ TΓ(I ). The alphabet Γ gives rise to the polynomial functor FX =
∐
∈Γ X arity(
 )

. The corresponding free F -algebra monad F⋆ is precisely TΓ, where the unit

turns elements into leaves, and the multiplication �attens a nested tree into a tree. A bottom-

up deterministic tree automaton is then an automaton over F with a �nite input set I and

output set O = 2.

Example 4.6.2 (Unordered tree automata). Consider the �nite powerset functorfin∶ Set →
Set, mapping a set to its �nite subsets. The corresponding free fin-monad maps a set X to the

set of �nitely-branching unordered trees with nodes in X . Automata over fin, with output

set O = 2 and �nite I , accept sets of such trees. Note that unordered trees can be seen as trees
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over a ranked alphabet Γ = {si ∣ i ∈ ℕ}, where arity(si) = i, satisfying equations that collapse

duplicate branches and identify lists of branches up to permutations.

Automata in these examples are algebras for endofunctors with the following properties:

they are strongly �nitary [AMV03]—i.e., they preserve both �ltered colimits and �nite sets;

and they preserve weak pullbacks. In this section we will show that the abstract algorithm

from Section 4.4 can be concretely instantiated for any �nite automaton over a strongly �-

nitary, weak-pullback-preserving functor F ∶ Set → Set and a �nite input set I . For the

rest of this section we assume these properties for F and I , and we �x a target automaton

t = (Qt, �t, it, ot). The strongly �nitary condition will be needed to ensure all abstract in-

gredients of the algorithm can be instantiated with terminating procedures; the weak pull-

back preservation allows us to solve local consistency. If the target automaton has a �nite

state space, the algorithm terminates by Theorem 4.4.7.

In Section 4.6.1 we instantiate wrappers to ones with a speci�c format, which make use

of contexts to generalise string concatenation to trees, and we show how these wrappers and

their hypotheses can be computed, whereupon we develop procedures for local closedness

(Section 4.6.2) and local consistency (Section 4.6.3). We conclude by identifying a set of suit-

able (�nite) counterexamples in Section 4.6.4. Altogether, this makes the ingredients of our

abstract algorithm concrete for the present setting.

4.6.1 Contextual Wrappers

Denote by 1 the set {�}. Given x ∈ X for any set X , we write ex ∶ 1 → X for the function

that assigns x to �. Note that for all functions f ∶ X → Y we have

ef (x) = f ◦ ex . (4.5)

We use the set 1 to de�ne the set of contexts F⋆(I +1), where the holes� occurring in a context

c ∈ F⋆(I + 1) can be used to plug in further data such as another context or a tree, e.g., in the

case of Example 4.6.1. In fact, it is well known that F⋆(I + (−)) forms a monad [LG02], of

which we denote the unit by �̂X = F⋆�2 ◦ �X ∶ X → F⋆(I + X) and the multiplication by

�̂X ∶ F⋆(I + F⋆(I + X)) → F⋆(I + X). We now introduce a class of wrappers where, intuitively,

contexts are used to distinguish inequivalent states. These wrappers will induce observation

tables with trees as their row labels and contexts as their column labels.

De�nition 4.6.3 (Contextual wrappers). Given S ⊆ F⋆I and E ⊆ F⋆(I + 1), we de�ne

• selS ∶ S → Qt as the restriction of the reachability map of t to S; and
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• claE ∶ Qt → OE
, as the function given by

claE(q)(e) = (ot ◦ [it, eq]♯)(e).

A contextual wrapper is a wrapper of the form (S QtselS , Q OEclaE ) for some S and E.

The map [it, eq]♯ in the de�nition of claE above plugs the state q ∈ Q into the holes of the

context e ∈ E ⊆ F⋆(I + 1) to produce an element of F⋆Q. In the following example we show

how contextual wrappers for the DA setting (F = (−) × A, I = 1, O = 2) are the wrappers

corresponding to observation table wrappers.

Example 4.6.4. In the case of DAs, contextual wrappers are essentially those of Example 4.1.2.

In fact, selS is the restriction of i♯∶ A⋆ ≅ 1 × A⋆ → Qt to S ⊆ A⋆ ≅ 1 × A⋆. For claE , a bit of

care is required due to the generality of contexts. Note that ((−) × A)⋆(I + 1) = {∗,�} × A⋆. We

have E ⊆ {∗,�} × A⋆, and

claE(q)(x) =
⎧⎪⎪
⎨⎪⎪⎩

(ot ◦ �⋆t )(q, e) if x = (�, e)

(ot ◦ �⋆t )(it(∗), e) if x = (∗, e).

Note that the second case is not useful as a context distinguishing two states, because it does

not depend on q. Moreover, choosing q = it(∗) uni�es the two cases. Thus, we need not

consider any contexts not containing a hole, and we can choose columns E ⊆ {�} × A⋆ ≅ A⋆.

Let us consider contextual wrappers for tree automata (Example 4.6.1). We have that

S ⊆ TΓ(I ) is a set of Γ-trees over I , and E ⊆ TΓ(I + 1) is formed by contexts, i.e., Γ-trees where

a special leaf � may occur. The function selS(t) is the state reached after reading the tree

t , and claE(q)(t) can be seen as a generalisation of the DA case: it is the output of the state

reached via �⋆ after replacing every occurrence of � with q and x ∈ I with i(x) in t . Therefore

(selS ◦claE)∶ S → OE
is the upper part of an observation table where rows are labelled by trees,

columns by contexts, and rows are computed by plugging labels into each column context and

querying the language. When E contains only contexts with exactly one instance of �, this

corresponds precisely to the observation tables of [DH03; BM07].

We show in Proposition 4.6.6 how to compute the morphisms induced by a wrapper that

are used in the de�nitions of closedness, consistency, and the hypothesis. In particular, we

show that they can be computed by querying the language . This in practice amounts to

asking membership queries to the teacher. The following lemma shows how an arbitrary row

for a given row label u ∈ F⋆I can be computed: plug u into a context taken from the column

label set and evaluate the resulting tree in the language.



4.6. Learning Generalised Tree Automata 93

Lemma 4.6.5. Given E ⊆ F⋆(I + 1) with inclusion k ∶ E → F⋆(I + 1), we have for all u ∈ F⋆I ,

(claE ◦ i♯t )(u) = E
k
←←←←←←←→ F⋆(I + 1)

F⋆[�I ,eu]←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ F⋆F⋆I
�I←←←←←←←←←←←→ F⋆I

t←←←←←←←←←←←←←←←←←←←←←←←→ O.

Proof. First note that (omitting the inclusion k)

(claE ◦ i♯t )(u) = ot ◦ [it, ei♯t (u)]
♯

(de�nition of claE)

= ot ◦ �⋆t ◦ F⋆[it, ei♯t (u)] (de�nition of (−)♯)

= ot ◦ �⋆t ◦ F⋆[it, i♯t ◦ eu] (4.5)

= ot ◦ �⋆t ◦ F⋆[i♯t ◦ �I , i
♯
t ◦ eu] (property of (−)♯)

= ot ◦ �⋆t ◦ F⋆i♯t ◦ F
⋆[�I , eu].

It remains to show that ot ◦�⋆t ◦F⋆i♯t = t ◦�I , which follows by commutativity of the diagram

below.

F⋆F⋆I F⋆I

F⋆Qt Qt O

�I

F⋆i♯t 1 i♯t

t

2

�⋆t
ot

1 i♯t is an F⋆-algebra homomorphism 2 de�nition of t

Proposition 4.6.6 (Computing wrapper morphisms). Given S ⊆ F⋆I with inclusion j ∶ S →
F⋆I and E ⊆ F⋆(I + 1) with inclusion k ∶ E → F⋆(I + 1), we have

claE ◦ selS ∶ S → OE s ↦ E
k
←←←←←←←→ F⋆(I + 1)

F⋆[�I ,ej(s)]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ F⋆F⋆I

�I←←←←←←←←←←←→ F⋆I
t←←←←←←←←←←←←←←←←←←←←←←←→ O

claE ◦ �t ◦ F selS ∶ FS → OE f ↦ E
k
←←←←←←←→ F⋆(I + 1)

F⋆[�I ,�I ◦F j◦ef ]
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ F⋆F⋆I

�I←←←←←←←←←←←→ F⋆I
t←←←←←←←←←←←←←←←←←←←←←←←→ O

claE ◦ it∶ I → OE x ↦ E
k
←←←←←←←→ F⋆(I + 1)

F⋆[idI ,ex ]←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ F⋆I
t←←←←←←←←←←←←←←←←←←←←←←←→ O

ot ◦ selS ∶ S → O s ↦ t(s).

Proof. For the �rst equation, we derive

(claE ◦ selS)(s) = (claE ◦ i♯t )(s) (de�nition of selS)

= t ◦ �I ◦ F
⋆[�I , ej(s)] ◦ k Lemma 4.6.5.
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For the second equation, we derive

(claE ◦ �t ◦ F selS)(f ) = (claE ◦ �t ◦ F i♯t ◦ F j)(f ) (de�nition of selS)

= (claE ◦ i♯t ◦ �I ◦ F j)(f ) (i♯t is an F -algebra homomorphism)

= t ◦ �I ◦ F
⋆[�I , e(�I ◦F j)(f )] ◦ k Lemma 4.6.5

= t ◦ �I ◦ F
⋆[�I , �I ◦ F j ◦ ef ] ◦ k (4.5).

For the third equation, we derive

(claE ◦ it)(s) = (claE ◦ i♯t ◦ �I ◦ j)(s) (property of i♯t )

= t ◦ �I ◦ F
⋆[�I , e(�I ◦j)(s)] ◦ k Lemma 4.6.5

= t ◦ �I ◦ F
⋆[�I , �I ◦ ej(s)] ◦ k (4.5)

= t ◦ �I ◦ F
⋆�I ◦ F⋆[idI , ej(s)] ◦ k

= t ◦ F
⋆[idI , ej(s)] ◦ k (monad law).

Finally, for the fourth equation, we derive:

(ot ◦ selS)(s) = (ot ◦ i♯t )(s) (de�nition of selS)

= t(s) (de�nition of t ).

Example 4.6.7. As in the DA case, the maps of Proposition 4.6.6 correspond to the observa-

tion table. The proposition tells us how they can be computed by querying the language.

For bottom-up tree automata:

• claE ◦ sels is the upper part of the observation table, as explained in Example 4.6.4;

• claE ◦ �t ◦ F selS is the bottom part of the table. In fact, in this case the successor rows

for S are labelled by FS = ∐
∈Γ Sarity(
 ), i.e., by trees obtained by adding a new root

symbol to those from S. Successor rows are then computed by plugging these trees into

the contexts E, and querying the language. Note that this requires using the map � to

convert the additional root and its arguments into a tree before they are plugged into a

context.

• claE ◦ it returns the leaf rows, i.e., those labelled by the leaf symbols I ;

• ot ◦ selS queries the language for each row label.

For unordered tree automata the maps are similar. The key di�erence is that now rows are

labelled by trees and contexts up to equations. As a consequence, there is just one successor
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row for each set of trees in S, whereas in the previous case we have one successor row for

each symbol 
 ∈ Γ and arity(
 )-list of trees from S.

To see that hypotheses can be represented, consider �nite S ⊆ F⋆I and E ⊆ F⋆(I + 1) and

consider the wrapper  = (selS , claE). Assuming closedness and consistency, the state space

of the associated hypothesis is given by the image of claE ◦ selS ∶ S → OE
. Furthermore, the

automaton structure of the hypothesis is de�ned by

i (x) = (claE ◦ it)(x) o (e (s)) = (ot ◦ selS)(s) � (F (e )(x)) = (claE ◦ �t ◦ F selS)(x).

We know from Proposition 4.6.6 how to compute those functions via membership queries.

The hypothesis automaton for bottom-up and unordered tree automata, as in the DA case

(see Example 4.1.2), is obtained by taking distinct rows as states. See Example 4.6.7 for the

description of the hypothesis input, output, and transition maps for those automata types.

4.6.2 Witnessing Local Closedness

We now show how the general notion of local closedness can be concretely instantiated for

Set automata.

Lemma 4.6.8 (Local closedness for Set automata). Given S ⊆ S′ ⊆ F⋆I and E ⊆ F⋆(I + 1), the
wrapper (selS′ , claE) is locallyt-closed w.r.t. selS if there exist k ∶ I → S′ and � ∶ FS → S′ such
that

selS′ ◦ k = it selS′ ◦ � = �t ◦ F selS .

Proof. Let  = (selS′ , claE), and choose

i = e ◦ k l = e ◦ � .

The necessary diagrams now commute:

I Qt

S′

H P

it

i

k

cla

e

selS′

m

FS FQt Qt

S′

H P

F selS

l

�

�t

cla

e

selS′

m

Note that selS ≤ selS′ because S ⊆ S′. Thus,  is locally t-closed w.r.t. selS .
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Example 4.6.9. For bottom-up tree automata, local closedness holds if the table (S′, E) already

contains each leaf row (left equation), and it contains every successor row for S, namely FS =
∐
∈Γ Sarity(
 ) (right equation).

For unordered tree automata the condition is similar, and now involves successor trees in

fin(S).

The following proposition guarantees that we can always extend S to make the wrapper

locally closed. Moreover, this can be done in such a way that if selS is a generalised reachability

map and S′ is the extension of S, then the resulting sel′S is again a generalised reachability map.

Proposition 4.6.10. Given �nite S ⊆ F⋆I and E ⊆ F⋆(I + 1), there exists a �nite S′ ⊆ F⋆I such
that (selS′ , claE) is locallyt-closed w.r.t. selS . Furthermore, if there exists a recursive � ∶ S → FI S
such that [�I , �I ]� ∶ S → F⋆I is the inclusion map, then there exists a recursive �′∶ S′ → FI S′

such that [�I , �I ]�
′
∶ S′ → F⋆I is the inclusion map.

Proof. Let j ∶ S → F⋆I be the inclusion map and de�ne

S′ = S ∪ {([�I , �I ] ◦ FI j)(x) ∣ x ∈ FI S} ⊆ F⋆I .

Since S and I are �nite and F preserves �nite sets, S′ is also �nite. We choose k ∶ I → S′ and

� ∶ FS → S′ by setting

k(x) = �I (x) � (x) = (�I ◦ F j)(x).

Note that k and � are well-de�ned by construction of S′. Using the de�nitions of selS′ and k,

we can then derive that

(selS′ ◦ k)(x) = i♯t (k(x)) = i
♯
t (�I (x)) = it(x)

Furthermore, we �nd that

(selS′ ◦ � )(x) = i♯t (� (x)) (de�nition of selS′ )

= i♯t (�I (F j(x))) (de�nition of � )

= �t(F (i♯t )(F j(x))) (i♯t is an F -algebra homomorphism)

= �t(F (i♯t ◦ j)(x))

= (�t ◦ F selS)(x) (de�nition of selS)

Hence (selS′ , claE) is locally t-closed w.r.t. selS , by Lemma 4.6.8.
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Given a recursive � ∶ S → FI S such that [�I , �I ]� ∶ S → F⋆I is the inclusion map, de�ne

�′∶ S′ → FI S′ for all s ∈ S and x ∈ FI S by

�′(s) = (FI j ◦ �)(s) �′(([�I , �I ] ◦ FI j)(x)) = FI j(x).

To see that this is well-de�ned, note that [�I , �I ]◦FI j is injective. Moreover, if s ∈ S and x ∈ FI S
are such that

s = ([�I , �I ] ◦ FI j)(x),

we have

([�I , �I ]−1 ◦ j)(s) = FI j(x).

Because the inclusion map j = [�I , �I ]� by assumption, it follows that

(FI j ◦ �)(s) = ([�I , �I ]−1 ◦ j)(s) = FI j(x).

This completes the proof of �′ being well-de�ned.

Note that � is a subcoalgebra of [�I , �I ]−1 via the inclusion map j by assumption. The

de�nition of �′ makes �′ also a subcoalgebra of [�I , �I ]−1 via the inclusion map S′ → F⋆I .
This implies that it is recursive [ALM07, Theorem 3.17],

3
and thus its inclusion map must be

[�I , �I ]�
′
∶ S′ → F⋆I by uniqueness.

Example 4.6.11. To better understand this proposition, it is worth describing what the relev-

ant recursive coalgebras are for the automata of Example 4.6.1 and Example 4.6.2. For bottom-

up tree automata, pre�x-closed subsets of TΓ(I ) are sets of trees closed under taking subtrees.

Every pre�x-closed S can be made into a recursive coalgebra S → ∐
∈Γ Sarity(
 )+I that returns

the root symbol and its arguments, if applied to a tree of non-zero depth; and a leaf otherwise.

For unordered tree automata, a recursive coalgebra S → finS + I on a subtree-closed set S
may just return the set of subtrees or a leaf.

Note that using the construction from the proof of Proposition 4.6.10 to �nd a locally

closed wrapper in the algorithm is rather ine�cient, as it involves adding all successor rows

to the table. For instance, in the case of Example 4.6.4, it adds rows obtained by adding a new

root symbol to existing row labels in all possible ways, for each symbol in the alphabet. One

may optimise the algorithm by adding instead only missing rows, and one instance of each.

3
As stated in the introduction of [ALM07], preservation of inverse images is implied by preservation of weak

pullbacks.
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4.6.3 Witnessing Local Consistency

Analogously to the previous section, we now show how local consistency can be concretely

instantiated for Set automata.

Lemma 4.6.12 (Local consistency for Set automata). Let S ⊆ F⋆I and E ⊆ E′ ⊆ F⋆(I + 1), with
S �nite. Furthermore, suppose that for s, s′ ∈ S with (claE′ ◦ selS)(s) = (claE′ ◦ selS)(s′) we have

(ot ◦ selS)(s) = (ot ◦ selS)(s′) claE ◦ �t ◦ F (selS ◦ [idS , es]) = claE ◦ �t ◦ F (selS ◦ [idS , es′])

Then = (selS , claE′) is locallyt-consistent w.r.t. claE .

Proof. Since e is surjective, so is Fe . We de�ne the function l ∶ FH → OE
for all p ∈ FS

by

l(Fe (p)) = (claE ◦ �t ◦ F selS)(p).

By de�nition this satis�es the local consistency condition. It remains to show that the function

is well-de�ned. Consider y, z ∈ FS such that Fe (y) = Fe (z). Equivalently, Fe ◦ ey =
Fe ◦ ez . Denote by K the kernel

{(s, s′) ∣ s, s′ ∈ S, e (s) = e (s′)}

and let j ∶ K → S × S be the inclusion. Because F preserves weak pullbacks, the pullback

square below on the left is taken by F to the weak pullback square below on the right.

K S

S H

�1◦j

�2◦j ⊳

⊳

FK FS

FS FH

F (�1◦j)

F (�2◦j) F⊳

F⊳

By the weak pullback property we obtain x ∈ FK such that F (�1◦j)◦ex = ey and F (�2◦j)◦ex = ez .

That is, F (�1 ◦ j)(x) = y and F (�2 ◦ j)(x) = z.

We will de�ne a sequence of contexts (or rather elements of F (S + 1)) in order to trans-

form y into z by replacing one element of S at a time. Using that S is �nite, write K =
{(s1, s′1), … , (sn, s′n)}. For all 1 ≤ m ≤ n we de�ne fm ∶ K → S + 1 by

fm(sk , s′k) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

�1(s′k) if k < m

�2(�) if k = m

�1(sk) if k > m.

Furthermore, let cm = F(fm)(x) ∈ F (S + 1). We will prove that

(claE ◦ �t ◦ F (selS ◦ [idS , es1]))(c1) = (claE ◦ �t ◦ F (selS ◦ [idS , esn ]))(cn), (4.6)
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for which it su�ces by induction to prove for all 1 ≤ m < n that

(claE ◦ �t ◦ F (selS ◦ [idS , esm ]))(cm) = (claE ◦ �t ◦ F (selS ◦ [idS , esm+1]))(cm+1).

Note that

[idS , es′m ] ◦ fm = [idS , esm+1] ◦ fm+1

by the de�nitions of fm and fm+1, so

(claE ◦ �t ◦ F (selS ◦ [idS , esm ]))(cm)

= (claE ◦ �t ◦ F (selS ◦ [idS , es′m ]))(cm) (assumption)

= (claE ◦ �t ◦ F (selS ◦ [idS , es′m ] ◦ fm))(x) (de�nition of cm)

= (claE ◦ �t ◦ F (selS ◦ [idS , esm+1] ◦ fm+1))(x)

= (claE ◦ �t ◦ F (selS ◦ [idS , esm+1]))(cm+1) (de�nition of cm+1).

This concludes the proof of (4.6). Then

(claE ◦ �t ◦ F selS)(y) = (claE ◦ �t ◦ F (selS ◦ �1 ◦ j))(x) (de�nition of x)

= (claE ◦ �t ◦ F (selS ◦ [idS , es1] ◦ f1))(x) (de�nition of f1)

= (claE ◦ �t ◦ F (selS ◦ [idS , es1]))(c1) (de�nition of c1)

= (claE ◦ �t ◦ F (selS ◦ [idS , esn ]))(cn) (4.6)

= (claE ◦ �t ◦ F (selS ◦ [idS , es′n ]))(cn) (assumption)

= (claE ◦ �t ◦ F (selS ◦ [idS , es′n ]) ◦ fn)(x) (de�nition of cn)

= (claE ◦ �t ◦ F (selS ◦ �2 ◦ j))(x) (de�nition of fn)

= (claE ◦ �t ◦ F selS)(z) (de�nition of x).

We conclude that l is well-de�ned.

We de�ne o ∶ H → O by

o(e (s)) = (ot ◦ selS)(s).

Again the local consistency condition is satis�ed by de�nition, but we need to show that the

function is well-de�ned. Consider s1, s2 ∈ S such that e (s1) = e (s2). Then

(claE′ ◦ selS)(s1) = (m ◦ e )(s1) = (m ◦ e )(s2) = (claE′ ◦ selS)(s2),

so (ot ◦ selS)(s1) = (ot ◦ selS)(s2). Note that claE′ ≤ claE because E ⊆ E′. Thus,  is locally

t-consistent w.r.t. claE .
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Example 4.6.13. For bottom-up tree automata, local consistency amounts to requiring the

following for the table for (S, E′). For every pair of trees s, s′ ∈ S such that the corresponding

rows are equal we must have:

• both s and s′ are either accepted or rejected;

• successor rows obtained by extending s and s′ in the same way are equal. Formally,

comparable extensions of s and s′ are obtained by plugging them into the same “one-

level” context from F (S + 1) = ∐
∈Γ(S + {�})arity(
 ).

For unordered-tree automata, we need to compare s and s′ only when they are equation-

ally inequivalent. Note that one-level contexts are also up to equations, which means that the

position of the hole in the context is irrelevant for computing extensions of s and s′.

Proposition 4.6.15 below ensures that we can always make the wrapper locally consistent

by �nding a suitable �nite E′. We need the following lemma to prove the result.

Lemma 4.6.14. For all F⋆-algebras (X , x), p∶ I → X , and c ∈ F⋆(I + X), the diagram below

commutes.
F⋆(I + F⋆(I + X)) F⋆(I + X)

F⋆(I + 1) X

�̂X

[p,idX ]♯F⋆(idI+ec )
[p,e[p,idX ]♯(c)]

♯

Proof. Given any set Y and an F⋆(I +(−))-algebra (Z , z), the extension of a morphism f ∶ Y →
Z to the F⋆(I + (−))-algebra homomorphism f ♮∶ F⋆(I +Y ) → Z is given by f ♮ = z ◦ F⋆(idI + f ).
We can supply X with the F⋆(I + (−))-algebra structure [p, idX ]♯∶ F⋆(I + X) → X . Thus,

[p, e[p,idX ]♯(c)]
♯ = [p, eid♮X (c)]

♯

= [p, idX ]♯ ◦ F⋆(idI + eid♮X (c))

= e♮id♮X (c)

= (id♮X ◦ ec)♮ (4.5)

= id♮X ◦ e♮c
= [p, idX ]♯ ◦ e♮c
= [p, idX ]♯ ◦ �̂X ◦ F⋆(idI + ec).

Proposition 4.6.15. Given �nite S ⊆ F⋆I and E ⊆ F⋆(I + 1), the set E′ ⊆ F⋆(I + 1) is de�ned as

E′ = E ∪ {(�I +1 ◦ �2)(�)}

∪ {(�̂1 ◦ F⋆(idI + cx ))(e) ∣ e ∈ E, x ∈ F (S + 1)},
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where cx ∶ 1 → F⋆(I + 1), with cx = �I +1 ◦ F [F⋆�1 ◦ j, �̂1] ◦ ex , where j ∶ S → F⋆I is set inclusion.
It holds that E′ is �nite and (selS , claE′) is locallyt-consistent w.r.t. claE .

Proof. Note that since S is �nite and F preserves �nite sets we have that F (S + 1) is also �nite.

Together with the fact that E is �nite it follows that E′ is �nite. Suppose s1, s2 ∈ S are such

that (claE′ ◦ selS)(s1) = (claE′ ◦ selS)(s2). For all s ∈ S we have

(ot ◦ selS)(s) = (ot ◦ eselS (s))(�)

= (ot ◦ [it, eselS (s)] ◦ �2)(�)

= (ot ◦ [it, eselS (s)]
♯ ◦ �I +1 ◦ �2)(�)

= (claE′ ◦ selS)(s)((�I +1 ◦ �2)(�)) (de�nition of claE′ ),

so

(ot ◦ selS)(s1) = (claE′ ◦ selS)(s1)((�I +1 ◦ �2)(�))

= (claE′ ◦ selS)(s2)((�I +1 ◦ �2)(�))

= (ot ◦ selS)(s2).

Furthermore, for all s ∈ S we have

F[F⋆it ◦ j, F⋆eselS (s) ◦ �1]

= F[F⋆[it, eselS (s)] ◦ F
⋆�1 ◦ j, F⋆[it, eselS (s)] ◦ F

⋆�2 ◦ �1]

= FF⋆[it, eselS (s)] ◦ F [F
⋆�1 ◦ j, F⋆�2 ◦ �1]

= FF⋆[it, eselS (s)] ◦ F [F
⋆�1 ◦ j, �̂1] (de�nition of �̂1),

so for all s ∈ S and x ∈ F(S + 1) we have

(�t ◦ F [selS , eselS (s)])(x)

= (�t ◦ F [�⋆t ◦ F⋆it ◦ j, �⋆t ◦ F⋆eselS (s) ◦ �1])(x) (de�nition of selS)

= (�t ◦ F�⋆t ◦ F [F⋆it ◦ j, F⋆eselS (s) ◦ �1])(x)

= (�⋆t ◦ �Qt ◦ F [F
⋆it ◦ j, F⋆eselS (s) ◦ �1])(x) (�⋆t is an F -algebra homomorphism)

= (�⋆t ◦ �Qt ◦ FF
⋆[it, eselS (s)] ◦ F [F

⋆�1 ◦ j, �̂1])(x) (shown above)

= (�⋆t ◦ F⋆[it, eselS (s)] ◦ �I +1 ◦ F [F
⋆�1 ◦ j, �̂1])(x)

= (�⋆t ◦ F⋆[it, eselS (s)] ◦ �I +1 ◦ F [F
⋆�1 ◦ j, �̂1] ◦ ex )(�)

= (�⋆t ◦ F⋆[it, eselS (s)] ◦ cx )(�) (de�nition of cx )

= ([it, eselS (s)]
♯ ◦ cx )(�)

= [it, idQt]
♯((F⋆(idI + eselS (s)) ◦ cx )(�)).
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Note that for all s ∈ S, x ∈ F(S + 1) we have

�̂Qt ◦ F
⋆(idI + e(F⋆(idI+eselS (s))◦cx )(�))

= �̂Qt ◦ F
⋆(idI + (F⋆(idI + eselS (s)) ◦ ecx (�))) (4.5)

= �̂Qt ◦ F
⋆(idI + (F⋆(idI + eselS (s)) ◦ cx )) (de�nition of ecx (�))

= �̂Qt ◦ F
⋆(idI + (F⋆(idI + eselS (s)))) ◦ F

⋆(idI + cx )

= F⋆(idI + eselS (s)) ◦ �̂1 ◦ F
⋆(idI + cx ),

so for all s ∈ S, x ∈ F(S + 1), and e ∈ E,

(claE ◦ �t ◦ F (selS ◦ [idS , es]))(x)(e)

= (claE ◦ �t ◦ F [selS , eselS (s)])(x)(e) (4.5)

= (ot ◦ [it, e(�t◦F [selS ,eselS (s)])(x)]
♯)(e) (de�nition of claE)

= (ot ◦ [it, e[it,idQt ]♯((F⋆(idI+eselS (s))◦cx )(�))]
♯)(e) (shown earlier)

= (ot ◦ [it, idQt]
♯ ◦ �̂Qt ◦ F

⋆(idI + e(F⋆(idI+eselS (s))◦cx )(�)))(e) (Lemma 4.6.14)

= (ot ◦ [it, idQt]
♯ ◦ F⋆(idI + eselS (s)) ◦ �̂1 ◦ F

⋆(idI + cx ))(e) (shown above)

= (ot ◦ [it, eselS (s)]
♯ ◦ �̂1 ◦ F⋆(idI + cx ))(e)

= (claE′ ◦ selS)(s)((�̂1 ◦ F⋆(idI + cx ))(e)) (de�nition of claE′ ),

and therefore for all x ∈ F(S + 1) and e ∈ E,

(claE ◦ �t ◦ F (selS ◦ [idS , es1]))(x)(e)

= (claE′ ◦ selS)(s1)((�̂1 ◦ F⋆(idI + cx ))(e))

= (claE′ ◦ selS)(s2)((�̂1 ◦ F⋆(idI + cx ))(e)) (assumption)

= (claE ◦ �t ◦ F (selS ◦ [idS , es2]))(x)(e).

Thus, it follows from Lemma 4.6.12 that (selS , claE′) is locally t-consistent w.r.t. claE .

We remark that the above de�nition of E′ results in a highly ine�cient procedure that

involves plugging all possible one level contexts with subtrees in S to each element of E and

collecting those in E′. One can optimise it by incrementally adding elements of the proposed

E′ to E that distinguish rows not distinguished by the current elements of E and that need to

be added in order to satisfy the conditions of Lemma 4.6.12.
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4.6.4 Finite Counterexamples

Finally, we re�ne Proposition 4.3.5 to show that the teacher can always pick a �nite counter-

example.

Proposition 4.6.16 (Language equivalence via �nite recursion). Given an automaton  =
(Q, �, i, o), we have t =  if and only if �

t
= �

 for all recursive � ∶ S → FI S such that S
is �nite.

Proof. Suppose that for all recursive coalgebras � ∶ S → FI S such that S is �nite we have

ot ◦ [it, �]� = o ◦ [i, �]� . Given t ∈ F⋆I , note that (F⋆I , [�I , �I ]) is the initial algebra of functor

FI , which by being �nitary is also the colimit of the initial sequence of FI [Adá74] and hence

isomorphic to (⋃n∈ℕ F nI ∅, a) for an initial algebra structure a∶ FI (⋃n∈ℕ F nI ∅) → ⋃n∈ℕ F nI ∅.

Let �∶ (F⋆I , [�I , �I ]) → (⋃n∈ℕ F nI ∅, a) be the isomorphism. There exists n ∈ ℕ such that

�(t) ∈ F nI ∅. The set F nI ∅ is �nite by FI preserving �nite sets and the carrier of a recursive

coalgebra � ∶ F nI ∅ → F n+1I ∅ by [CUV06, Proposition 6], with a� ∶ F nI ∅ → ⋃n∈ℕ F nI ∅ being

the inclusion. Then S = {�−1(x) ∣ x ∈ F nI ∅} is also �nite and the carrier of a recursive

coalgebra �′∶ S → FI S, with [�I , �I ]�
′
∶ S → F⋆I being the inclusion. Moreover, t ∈ S. Thus,

t(t) = (t ◦ [�I , �I ]
�′)(t)

= (ot ◦ i♯t ◦ [�I , �I ]
�′)(t) (de�nition of t )

= (ot ◦ [it, �t]�
′
)(t) (i♯t is an FI -algebra homomorphism)

= �′
t
(t) (de�nition of �′

)

= �′
(t) (assumption)

= (o ◦ [i, �]�
′
)(t) (de�nition of �′

)

= (o ◦ i♯ ◦ [�I , �I ]�
′
)(t) (i♯ is an FI -algebra homomorphism)

= ( ◦ [�I , �I ]�
′
)(t) (de�nition of )

= (t).

The converse follows from Proposition 4.3.5.

Corollary 4.6.17 (Finite counterexample existence). Given a closed and consistent wrapper
for Qt, we have  ≠ t if and only if there exists a counterexample � ∶ S → FI S for such

that S is �nite.

Example 4.6.18. Recall from Example 4.6.11 that �nite recursive coalgebras for bottom-up

(resp. unordered) tree automata are coalgebras � ∶ S → ∐
∈Γ Sarity(
 )+I (resp. � ∶ S → finS+
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I ). Therefore, �nite counterexamples are recursive coalgebras of this form such that S is �nite

or, more concretely, a �nite subtree-closed set of trees.

4.7 Related work

Barlocco et al. [BKR19] proposed an abstract algorithm for learning coalgebras. It stipulates

the tests to be formed by an abstract version of coalgebraic modal logic. On the one hand,

the notion of wrapper and closedness from CALF essentially instantiate to that setting; on

the other hand, the combination of logic and coalgebra is precisely what enables to de�ne

an actual learning algorithm in [BKR19]. The current work focuses on algebras rather than

coalgebras, and is orthogonal. In particular, it covers (bottom-up) tree automata, which is

outside the scope of [BKR19].

Urbat and Schröder have recently proposed another categorical approach to automata

learning [US19], which—similarly to the work of Barlocco et al.—makes stronger assumptions

than in CALF in order to de�ne a learning algorithm. Their work focuses primarly on auto-

mata, assuming that the systems of interest can be viewed both as algebras and coalgebras,

and the generality comes from allowing to instantiate these in various categories. Moreover, it

allows covering algebraic recognisers in certain cases, through a reduction to automata over a

carefully constructed alphabet; this (orthogonal) extension allows covering, e.g., !-languages

as well as tree languages. However, the reduction to automata makes this process quite di�er-

ent than the approach to tree learning in the present chapter: it makes use of an automaton

over all (�at) contexts, yielding an in�nite alphabet, and therefore the algorithmic aspect is

not clear. The extension to an actual algorithm for learning tree automata is mentioned as

future work in [US19]. In the present chapter, this is achieved by learning algebras directly.

Concrete algorithms for learning tree automata and languages have appeared in the liter-

ature [Sak90; DH03; BM07]. The inference of regular tree languages using membership and

equivalence queries appeared in [DH03], who extended earlier work of Sakakibara [Sak90].

Later, [BM07] provided a learning algorithm for regular tree automata using only membership

queries. The instantiated algorithm in our work has elements (such as the use of contexts)

close to the concrete algorithms. However, our focus is on presenting an algebraic frame-

work that can e�ectively be instantiated to recover such concrete algorithms in a modular

and canonical fashion, with proofs of correctness and termination stemming from the general

framework.



Chapter 5

Learning Weighted Automata over
Principal Ideal Domains

Weighted �nite automata (WFAs) are an important model made popular due to their applic-

ability in image processing and speech recognition tasks [CK93; MPR05]. The model is also

prevalent in other areas, including bioinformatics [AMT08] and formal veri�cation [AKL11].

Passive learning algorithms and associated complexity results have appeared in the literature

(see e.g. [BM12] for an overview), whereas active learning has been less studied [BM15; BV96].

Furthermore, existing learning algorithms, both passive and active, have been developed as-

suming the weights in the automaton are drawn from a �eld, such as the real numbers.
1

To

the best of our knowledge, no learning algorithms, whether passive or active, have been de-

veloped for WFAs in which the weights are drawn from a general semiring.

In this chapter, we explore active learning for WFAs over a general semiring. The main

contributions are as follows:

1. We introduce a weighted variant of L⋆ parametric on an arbitrary semiring, together

with su�cient conditions for termination (Section 5.2).

2. We show that for general semirings our algorithm might not terminate. In particular, if

the semiring is the natural numbers, one of the steps of the algorithm does not always

converge (Section 5.3).

3. We prove that the algorithm terminates if the semiring is a principal ideal domain, cov-

ering the known case of �elds, but also the integers. This yields the �rst active learning

1
Balle and Mohri [BM15] de�ne WFAs generically over a semiring but then restrict to �elds from Section 3

onwards as they present an overview of existing learning algorithms.

105
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algorithm for WFAs over the integers (Section 5.4).

We start in Section 5.1 by explaining the learning algorithm for WFAs over the reals and

pointing out the challenges in extending it to arbitrary semirings. We do not attempt to �t the

developments of this chapter in the framework of Chapter 4, and no explicit category theory

will be used. However, in Chapter 6 we will generalise the main algorithm from the present

chapter (Algorithm 5.1) and relate it to Algorithm 4.2.

5.1 Original Algorithm for Fields

In this section we give an overview of the work developed in the chapter through examples.

We start by informally explaining the general algorithm for learning weighted automata that

we introduce in Section 5.2, for the case where the semiring is a �eld. More speci�cally, for

simplicity we consider the �eld of real numbers throughout this section. Later in the section,

we illustrate why this algorithm does not work for an arbitrary semiring.

Angluin’s L⋆ algorithm, as introduced in Section 2.3, provides a procedure to learn the

minimal DFA accepting a certain (unknown) regular language. In the weighted variant we

will introduce in Section 5.2, for the speci�c case of the �eld of real numbers, the algorithm

produces the minimal WFA accepting a weighted rational language (or formal power series)

∶ A⋆ → ℝ.

A WFA over ℝ consists of a set of states, a linear combination of initial states, a transition

function that for each state and input symbol produces a linear combination of successor

states, and an output value in ℝ for each state (De�nition 5.2.1). As an example, consider the

WFA over A = {a} below.

q0/2 q1/3a, 1

a, 1 a, 2

Here q0 is the only initial state, with weight 1, as indicated by the arrow into it that has no

origin. When reading a, q0 transitions with weight 1 to itself and also with weight 1 to q1; q1
transitions with weight 2 just to itself. The output of q0 is 2 and the output of q1 is 3.

The language of a WFA is determined by letting it read a given word and determining

the �nal output according to the weights and outputs assigned to individual states. More

precisely, suppose we want to read the word aaa in the example WFA above. Initially, q0 is

assigned weight 1 and q1 weight 0. Processing the �rst a then leads to q0 retaining weight 1,

as it has a self-loop with weight 1, and q1 obtaining weight 1 as well. With the next a, the

weight of q0 still remains 1, but the weight of q1 doubles due to its self-loop of weight 1 and
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is added to the weight 1 coming from q0, leading to a total of 3. Similarly, after the last a the

weights are 1 for q0 and 7 for q1. Since q0 has output 2 and q1 output 3, the �nal result is

2 ⋅ 1 + 3 ⋅ 7 = 23.

The learning algorithm assumes access to a teacher, who answers two types of queries:

• membership queries, consisting of a single word w ∈ A⋆, to which the teacher replies

with a weight (w) ∈ ℝ; and

• equivalence queries, consisting of a hypothesis WFA , to which the teacher replies yes
if its language  equals the target language . If not, the teacher returns a counter-

example, i.e., a word w ∈ A⋆ such that (w) ≠ (w).

As in Section 2.3, the learning algorithm incrementally builds an observation table,

which at each stage contains partial information about the language  determined by

two �nite sets S, E ⊆ A⋆. The algorithm �lls the table through membership quer-

ies. As an example, and to set notation, consider the following table (over A = {a}).

E

" a aa

S
[

" 0 1 3

S ⋅ A[
a 1 3 7

aa 3 7 15

row∶ S → ℝE

row(u)(v) = (uv)

srow∶ S ⋅ A → ℝE

srow(ua)(v) = (uav)

This table indicates that  assigns 0 to ", 1 to a, 3 to aa, 7 to aaa, and 15 to aaaa. For

instance, we see that row(a)(aa) = srow(aa)(a) = 7. Since row and srow are fully determined

by the language , we will refer to an observation table as a pair (S, E), leaving the language

 implicit.

If the observation table (S, E) satis�es certain properties described below, then it represents

a WFA (S, �, i, o), called the hypothesis, as follows:

• � ∶ S → (ℝS)A is a linear map de�ned by choosing for �(s)(a) a linear combination over

S of which the rows evaluate to srow(sa);

• i ∶ S → ℝ is the initial weight map de�ned as i(") = 1 and i(s) = 0 for s ≠ ";

• o ∶ S → ℝ is the output weight map de�ned as o(s) = row(s)(").
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For this to be well-de�ned, we need to have " ∈ S (for the initial weights) and " ∈ E (for the

output weights), and for the transition function there is a crucial property of the table that

needs to hold: closedness. In the weighted setting, a table is closed if for all t ∈ S ⋅ A, there

exist rs ∈ ℝ for all s ∈ S such that

srow(t) = ∑
s∈S

rs ⋅ row(s).

If this is not the case for a given t ∈ S ⋅ A, the algorithm adds t to S. The table is repeatedly

extended in this manner until it is closed. The algorithm then constructs a hypothesis, us-

ing the closedness witnesses to determine transitions, and poses an equivalence query to the

teacher. It terminates when the answer is yes; otherwise it extends the table with the counter-

example provided by adding all its su�xes to E, and the procedure continues by closing again

the resulting table. In the next subsection we describe the algorithm through an example.

Remark 5.1.1. The original L⋆ algorithm (Section 2.3) requires a second property to construct

a hypothesis, called consistency. Consistency is di�cult to check in extended settings, so the

present chapter is based on a variant of the algorithm inspired by Maler and Pnueli [MP95]

where only closedness is checked and counterexamples are handled di�erently. See also Fig-

ure 2.3 in Section 2.3. In Chapter 6 we will give an overview of consistency in di�erent settings.

5.1.1 Example: Learning a Weighted Language over the Reals

Throughout this section we consider the following weighted language:

∶ {a}⋆ → ℝ (aj) = 2j − 1.

The minimal WFA recognising it has 2 states. We will illustrate how the weighted variant of

Angluin’s algorithm recovers this WFA.

We start from S = E = {"}, and �ll the entries of the table on the left below by asking

membership queries for " and a. The table is not closed and hence we build the table on

its right, adding the membership result for aa. The resulting table is closed, as srow(aa) =
3 ⋅ row(a), so we construct the hypothesis 1.

"
" 0

a 1

"
" 0

a 1

aa 3

1 = q0/0 q1/1a, 1 a, 3

q0 = " q1 = a



5.1. Original Algorithm for Fields 109

The teacher replies no and gives the counterexample aaa, which is assigned 9 by the hypo-

thesis automaton 1 but 7 in the language. Therefore, we extend E ← E ∪ {a, aa, aaa}. The

table becomes the one below. It is closed, as srow(aa) = 3 ⋅ row(a) − 2 ⋅ row("), so we construct

a new hypothesis 2.

" a aa aaa
" 0 1 3 7

a 1 3 7 15

aa 3 7 15 31

2 = q0/0 q1/1 a, 3

a, 1

a, −2

The teacher replies yes because 2 accepts the intended language assigning 2j − 1 ∈ ℝ to the

word aj , and the algorithm terminates with the correct automaton.

5.1.2 Learning Weighted Languages over Arbitrary Semirings

Consider now the same language as above, but represented as a map over the semiring of

natural numbers ∶ {a}⋆ → ℕ instead of a map ∶ {a}⋆ → ℝ over the reals. Accordingly,

we consider a variant of the learning algorithm over the semiring ℕ rather than the algorithm

over ℝ described above. For the �rst part, the run of the algorithm for ℕ is the same as above,

but after receiving the counterexample we can no longer observe that srow(aa) = 3⋅row(a)−2⋅
row("), since −2 ∉ ℕ. In fact, there are no m, n ∈ ℕ such that srow(aa) = m ⋅ row(") + n ⋅ row(a).
To see this, consider the �rst two columns in the table and note that

3
7 is bigger than

0
1 = 0 and

1
3 , so it cannot be obtained as a linear combination of the latter two using natural numbers.

We thus have a closedness defect and update S ← S ∪ {aa}, leading to the table below.

" a aa aaa
" 0 1 3 7

a 1 3 7 15

aa 3 7 15 31

aaa 7 15 31 63

Again, the table is not closed, since
7
15 > 3

7 . In fact, these closedness defects continue ap-

pearing inde�nitely, witnessing non-termination of the algorithm. This is shown formally in

Section 5.3.

Note, however, that there does exist a WFA over ℕ accepting this language:

q0/0 q1/1a, 1

a, 1 a, 2

(5.1)
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The reason that the algorithm cannot �nd the correct automaton is closely related to the

algebraic structure induced by the semiring. In the case of the reals, the algebras are vector

spaces and the closedness checks induce increases in the dimension of the hypothesis WFA,

which in turn cannot exceed the dimension of the minimal one for the language. In the case

of commutative monoids, the algebras for the natural numbers, the notion of dimension does

not exist. In Section 5.4 we show that one can get around this problem for a class of semirings

that includes the integers.

The rest of this chapter is organised as follows. First, we introduce in Section 5.2 our

general algorithm with its (parameterised) termination proof of Theorem 5.2.10. We then

proceed to prove non-termination of the example discussed above over the natural numbers

in Section 5.3 before instantiating our algorithm to PIDs in Section 5.4 and showing that it

terminates (Theorem 5.4.10). We conclude with a discussion of related and future work in

Section 5.5.

5.2 Generalised WFA Learning Algorithm

In this section we de�ne the general algorithm for WFAs over a semiring S, as described

informally in Section 5.1. Our algorithm assumes the existence of a closedness strategy (De�n-

ition 5.2.4), which allows one to check whether a table is closed, and in case it is, provide

relevant witnesses. We then introduce su�cient conditions on S and on the language  to be

learned under which the algorithm terminates. First, we �x a semiring S and a �nite alphabet

A, which will be used throughout this chapter, and recall the de�nition of WFAs and their

languages.

De�nition 5.2.1 (WFA). A weighted �nite automaton (WFA) over S is a tuple (Q, �, i, o), where

Q is a �nite set, � ∶ Q → (SQ)A, and i, o ∶ Q → S.

A weighted language (or just language) over S is a function A⋆ → S. To de�ne the lan-

guage accepted by a WFA  = (Q, �, i, o), we �rst introduce the notions of reachability map

reach∶ V (A⋆) → V (Q) and observability map obs∶ V (Q) → SA⋆ as the semimodule ho-

momorphisms given by

reach
†
(") = i obs(m)(") = o♯(m)

reach
†
(ua) = �

♯(reach†(u))(a) obs(m)(au) = obs(�♯(m)(a))(u).

The language accepted by a WFA  = (Q, �, i, o) is the function ∶ A⋆ → S given by

 = obs(i). Equivalently, one can de�ne this as  = o♯ ◦ reach†.
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Moving on to the learning algorithm setup, an observation table in the WFA setting is

very similar to the one in L⋆ (Section 2.3). We de�ne it formally as follows.

De�nition 5.2.2 (Observation table). An observation table (or just table) (S, E) consists of

two sets S, E ⊆ A⋆. We write Tablefin = fin(A⋆) × fin(A⋆) for the set of �nite tables (where

fin(X) denotes the collection of �nite subsets of a set X ). Given a language ∶ A⋆ → S, an

observation table (S, E) determines the row function row(S,E,)∶ S → SE and the successor row

function srow(S,E,)∶ S ⋅ A → SE as follows:

row(S,E,)(w)(v) = (wv) srow(S,E,)(wa)(v) = (wav).

We often write row and srow, or simply row and srow, when the parameters are clear from

the context.

A table is closed if the successor rows are linear combinations of the existing rows in S. To

make this precise, we use the linearisation row♯
(De�nition 2.1.4), which extends row to linear

combinations of words in S.

De�nition 5.2.3 (Closedness). Given a language , a table (S, E) is closed if for all w ∈ S and

a ∈ A there exists � ∈ V (S) such that srow(wa) = row♯(�).

This de�nition corresponds to the notion of closedness described in Section 5.1.

A further important ingredient of the algorithm is a method for checking whether a table

is closed. This is captured by the notion of closedness strategy.

De�nition 5.2.4 (Closedness strategy). Given a language , a closedness strategy for  is a

family of computable functions

cs∶ S ⋅ A → {⊥} ∪ V (S),

one for each table (S, E) ∈ Tablefin, satisfying the following two properties:

• if cs(t) = ⊥, then there is no � ∈ V (S) such that row♯(�) = srow(t); and

• if cs(t) ≠ ⊥, then row♯(cs(t)) = srow(t).

The relevant table will be clear from the context.

Thus, given a closedness strategy as above, a table (S, E) is closed if and only if cs(t) ≠ ⊥
for all t ∈ S ⋅ A. More speci�cally, for each t ∈ S ⋅ A we have that cs(t) ≠ ⊥ if and only if the

(successor) row corresponding to t already forms a linear combination of rows labelled by S.
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In that case, such a linear combination is given by cs(t). This is used to close tables in our

learning algorithm, introduced below.

Examples of semirings and (classes of) languages that admit a closedness strategy are de-

scribed at the end of this section. Important for our algorithm will be that closedness strategies

are computable. This problem is equivalent to solving systems of equations Ax = b, where A
is the matrix whose columns are row(s) for s ∈ S, x is a vector of length |S|, and b is the vector

consisting of the row entries in srow(t) for some t ∈ S ⋅ A. These observations motivate the

following de�nition.

De�nition 5.2.5 (Solvability). A semiring S is solvable if a solution to any �nite system of

linear equations of the form Ax = b is computable.

We have the following correspondence.

Proposition 5.2.6. For any language accepted by aWFA over any semiring there exists a closed-

ness strategy if and only if the semiring is solvable.

Proof. If the semiring is solvable, we obtain a closedness strategy by the remarks prior to

De�nition 5.2.5. Conversely, we can construct a language that is non-zero on �nitely many

words and encode in a table (S, E) a given linear equation. To be able to freely choose the

value in each table cell, we can consider a su�ciently large alphabet to make sure S and E
contain only single-letter words. This avoids dependencies within the table.

We now have all the ingredients to formulate the algorithm to learn weighted languages

over a general semiring. It requires a �xed closedness strategy cs for the target language .

The pseudocode is displayed in Algorithm 5.1.

The algorithm keeps a table (S, E), and starts by initialising both S and E to contain just the

empty word. The inner while loop (lines 3–4) uses the closedness strategy to repeatedly check

whether the current table is closed, and adds new rows in case it is not. Once the table is closed,

a hypothesis is constructed, again using the closedness strategy (lines 5–8). This hypothesis

is then given to the teacher for an equivalence check. The equivalence check is modelled by

EQ (line 9) as follows: if the hypothesis is incorrect, the teacher non-deterministically returns

a counterexample w ∈ A⋆, the condition evaluates to true, and the su�xes of w are added to

E; otherwise, if the hypothesis is correct, the condition on line 9 evaluates to false, and the

algorithm returns the correct hypothesis on line 12.
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Algorithm 5.1. Abstract learning algorithm for a WFA over S
1: S, E ← {"}
2: while true do
3: while cs(t) = ⊥ for some t ∈ S ⋅ A do
4: S ← S ∪ {t}

5: for s ∈ S do
6: o(s) ← row(s)(")
7: for a ∈ A do
8: �(s)(a) ← cs(sa)

9: if EQ(S, �, ", o) = w ∈ A⋆ then
10: E ← E ∪ suffixes(w)
11: else
12: return (S, �, ", o)

5.2.1 Termination of the General Algorithm

The main question remaining is: under which conditions does this algorithm terminate and

hence learns the unknown weighted language? We proceed to give abstract conditions under

which it terminates. There are two main requirements:

1. A way of measuring progress the algorithm makes with the observation table when it

distinguishes linear combinations of rows that were previously equal, together with a

bound on this progress (De�nition 5.2.7).

2. An assumption on the Hankel matrix of the target language (De�nition 5.2.8), which

makes sure we encounter �nitely many closedness defects throughout any run of the

algorithm. More speci�cally, we assume that the Hankel matrix satis�es a �nite ap-

proximation property (De�nition 5.2.9).

The �rst assumption is captured by the de�nition of progress measure.

De�nition 5.2.7 (Progress measure). A progress measure for a language  is a function

size∶ Tablefin → ℕ such that

(a) there exists n ∈ ℕ such for all (S, E) ∈ Tablefin we have size(S, E) ≤ n;

(b) given (S, E), (S, E′) ∈ Tablefin and s1, s2 ∈ V (S) such that E ⊆ E′ and row♯
(S,E,)(s1) =

row♯
(S,E,)(s2) but row♯

(S,E′,)(s1) ≠ row♯
(S,E′,)(s2), we have size(S, E′) > size(S, E).
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A progress measure assigns a ‘size’ to each table, in such a way that (a) there is a global

bound on the size of tables, and (b) if we extend a table with some proper tests in E, i.e., such

that some combinations of rows in row♯
that were equal before get distinguished by a newly

added test, then the size of the extended table is properly above the size of the original table.

This is used to ensure that, when adding certain counterexamples supplied by the teacher, the

size of the table, measured according to the above size function, properly increases.

The second assumption that we use for termination is phrased in terms of the Hankel mat-

rix associated with the target language , which represents  as (the semimodule generated

by) the in�nite table where both the rows and columns contain all words. The Hankel matrix

is de�ned as follows.

De�nition 5.2.8 (Hankel matrix). Given a language ∶ A⋆ → S, the semimodule generated

by a table (S, E) is given by the image of row♯
. We refer to the semimodule generated by the

table (A⋆, A⋆) as the Hankel matrix of .

The Hankel matrix is approximated by the tables that occur during the execution of the

algorithm. For termination, we will therefore assume that this matrix satis�es the following

�nite approximation condition.

De�nition 5.2.9 (Ascending chain condition). We say that a semimodule M satis�es the as-

cending chain condition if for all inclusion chains of subsemimodules of M ,

S1 ⊆ S2 ⊆ S3 ⊆ ⋯ ,

there exists n ∈ ℕ such that for all m ≥ n we have Sm = Sn.

Given the notions of progress measure, Hankel matrix and ascending chain condition, we

can formulate the general theorem for termination of Algorithm 5.1.

Theorem 5.2.10 (Termination of the abstract learning algorithm). In the presence of a progress
measure, Algorithm 5.1 terminates whenever the Hankel matrix of the target language satis�es

the ascending chain condition (De�nition 5.2.9).

Proof. Suppose the algorithm does not terminate. Then there is a sequence {(Sn, En)}n∈ℕ of

tables where (S0, E0) is the initial table and (Sn+1, En+1) is formed from (Sn, En) after resolving

a closedness defect or adding columns due to a counterexample.

We write Hn for the semimodule generated by the table (Sn, A⋆). We have Sn ⊆ Sn+1 and

thusHn ⊆ Hn+1. Note that a closedness defect for (Sn, En) is also a closedness defect for (Sn, A⋆),
so if we resolve the defect in the next step, the inclusion Hn ⊆ Hn+1 is strict. Since these are
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all included in the Hankel matrix, which satis�es the ascending chain condition, there must

be an n such that for all k ≥ n we have that (Sk , Ek) is closed.

In Section 6.5 we will show that in a general table used for learning automata with side-

e�ects given by a monad there exists a su�x of each counterexample for the corresponding

hypothesis that when added as a column label leads to either a closedness defect or to distin-

guishing two combinations of rows in the table (see Proposition 6.5.3 and the discussion pre-

ceding it). Since WFAs are automata with side-e�ects given by the free semimodule monad
2

and we add all su�xes of the counterexample to the set of column labels, this also happens

in our algorithm. Thus, for all k ≥ n where we process a counterexample, there must be two

linear combinations of rows distinguished, as closedness is already guaranteed. Then the se-

mimodule generated by (Sk , Ek) is a strict quotient of the semimodule generated by (Sk+1, Ek+1).
By the progress measure we then �nd size(Sk , Ek) < size(Sk+1, Ek+1), which cannot happen

in�nitely often. We conclude that the algorithm must terminate.

To illustrate the ingredients required for Algorithm 5.1 and its termination (The-

orem 5.2.10), we consider two classes of semirings for which learning algorithms are already

known in the literature [BV96].

Example 5.2.11 (Weighted languages over �elds). Consider any �eld for which the basic op-

erations are computable. Solvability is then satis�ed via a procedure such as Gaussian elim-

ination, so by Proposition 5.2.6 there exists a closedness strategy. Hence, we can instantiate

Algorithm 5.1 with S being such a �eld.

For termination, we show that the hypotheses of Theorem 5.2.10 are satis�ed whenever

the target language is accepted by a WFA. First, a progress measure is given by the dimension

of the vector space generated by the table. To see this, note that if we distinguish two lin-

ear combinations of rows, we can assume without loss of generality that one of these linear

combinations in the extended table uses only basis elements. This in turn can be rewritten to

distinguishing a single row from a linear combination of rows using �eld operations, with the

property that the extended version of the single row is a basis element. Hence, the row was

not a basis element in the original table, and therefore the dimension of the vector space gen-

erated by the table has increased. Adding rows and columns cannot decrease this dimension,

so it is bounded by the dimension of the Hankel matrix. Since the language we want to learn

is accepted by a WFA, the associated Hankel matrix has a �nite dimension [CP71; Fli74] (see

also, e.g., [BM12]), providing a bound for our progress measure.

2
We note that Chapter 6 assumes the monad to preserve �nite sets. However, the relevant arguments do not

depend on this.
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Finally, for any ascending chain of subspaces of the Hankel matrix, these subspaces are of

�nite dimension bounded by the dimension of the Hankel matrix. The dimension increases

along a strict subspace relation, so the chain converges.

Example 5.2.12 (Weighted languages over �nite semirings). Consider any �nite semiring.

Finiteness allows us to apply a brute force approach to solving systems of equations. This

means the semiring is solvable, and hence a closedness strategy exists by Proposition 5.2.6.

For termination, we can de�ne a progress measure by assigning to each table the size of

the image of row♯
. Distinguishing two linear combinations of rows increases this measure. If

the language we want to learn is accepted by a WFA, then the Hankel matrix contains a subset

of the linear combinations of the languages of its states. Since there are only �nitely many

such linear combinations, the Hankel matrix is �nite, which bounds our measure. A �nite

semimodule such as the Hankel matrix in this case does not admit in�nite chains of subspaces,

which means the ascending chain condition is satis�ed. We conclude by Theorem 5.2.10 that

Algorithm 5.1 terminates for the instance that the semiring S is �nite if the target language is

accepted by a WFA over S.

For the Boolean semiring, an instance of the above �nite semiring example, WFAs are non-

deterministic �nite automata. The algorithm we recover by instantiating Algorithm 5.1 to this

case is close to the algorithm �rst described by Bollig et al. [Bol+09]. The main di�erences

are that in their case the hypothesis has a state space given by a minimally generating subset

of the distinct rows in the table rather than all elements of S, and they do apply a notion of

consistency.

In Section 5.4 we will show that Algorithm 5.1 can learn WFAs over principal ideal

domains—notably including the integers—thus providing a strict generalisation of existing

techniques.

5.3 Issues with Arbitrary Semirings

We concluded the previous section with examples of semirings for which Algorithm 5.1 ter-

minates if the target language is accepted by a WFA. In this section, we prove a negative

result for the algorithm over the semiring ℕ: we show that it does not terminate on a certain

language over ℕ accepted by a WFA over ℕ, as anticipated in Section 5.1.2. This means that

Algorithm 5.1 does not work well for arbitrary semirings. The problem is that the Hankel

matrix of a language recognised by WFA does not necessarily satisfy the ascending chain
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condition that is used to prove Theorem 5.2.10. In the example given in the proof below, the

Hankel matrix is not even �nitely generated.

Theorem 5.3.1. There exists a WFA ℕ over ℕ such that Algorithm 5.1 does not terminate

when given ℕ as target, regardless of the closedness strategy used.

Proof. Let ℕ be the automaton over the alphabet {a} given in (5.1) in Section 5.1.2. Formally,

ℕ = (Q, �, i, o), where

Q = {q0, q1} i = q0 o(q0) = 0

�(q0)(a) = q0 + q1 �(q1)(a) = 2q1 o(q1) = 1.

As mentioned in Section 5.1.2, the language ∶ {a}⋆ → ℕ accepted by ℕ is given by

(aj) = 2j − 1. This can be shown more precisely as follows. First one shows by induction on

j that obsℕ(q1)(aj) = 2j for all j ∈ ℕ—we leave the straightforward argument to the reader.

Second, we show, again by induction on j, that obsℕ(q0)(aj) = 2j − 1. This implies the claim,

as  = obsℕ(q0). For j = 0 we have obsℕ(q0)(aj) = o(q0) = 0 = 20 − 1 as required. For the

inductive step, let j = k + 1 and assume obsℕ(q0)(ak) = 2k − 1. We calculate

obsℕ(q0)(a
k+1) = obsℕ(q0 + q1)(a

k)

= obsℕ(q0)(a
k) + obsℕ(q1)(a

k)

= (2k − 1) + 2k

= 2k+1 − 1.

Note that in particular the language  is injective.

Towards a contradiction, suppose the algorithm does terminate with table (S, E). Let J =
{j ∈ ℕ ∣ aj ∈ S} and de�ne n = max(J ). Since the algorithm terminates with table (S, E), the

latter must be closed. In particular, there exist kj ∈ ℕ for all j ∈ J such that ∑j∈J kj ⋅ row(aj) =
srow(ana). We consider two cases. First assume E = {"} and let  = (Q′, � ′, i′, o′) be the

hypothesis. For all l ∈ ℕ we have row♯
(reach

†
(a

l ))(") = 2l − 1 because  must be correct.

Thus, if al ∈ S ⋅ A, then row♯
(reach

†
(a

l )) = srow(al ). In particular,

row♯
(reach

†
(a

na)) = srow(ana) = ∑
j∈J

kj ⋅ row(aj).
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Note that we can choose the kj such that reach
†
(a

na) = ∑j∈J kj ⋅ aj . Since

row♯
 (

� ′♯
(
∑
j∈J

kj ⋅ aj)
(a)

)
= row♯

 (
∑
j∈J

kj ⋅ � ′(aj)(a))

= ∑
j∈J

kj ⋅ row(� ′(aj)(a))

= ∑
j∈J

kj ⋅ srow(aja),

we have

row♯
(reach

†
(a

naa)) = ∑
j∈J

kj ⋅ srow(aja)

and therefore

∑
j∈J

kj ⋅ srow(aja)(") = row♯
(reach

†
(a

naa))(") = 2n+2 − 1.

Then

2n+2 − 1 = ∑
j∈J

kj ⋅ srow(aja)(") = ∑
j∈J

kj(2j+1 − 1)

= 2
(
∑
j∈J

kj(2j − 1))
+∑

j∈J
kj = 2(2n+1 − 1) +∑

j∈J
kj ,

so ∑j∈J kj = 1. This is only possible if there is j1 ∈ J such that kj1 = 1 and kj = 0 for all

j ∈ J ⧵ {j1}. However, this implies that row(aj1) = srow(ana), which contradicts injectivity

of  as n ≥ j1. Thus, the algorithm did not terminate.

For the other case, assume there is am ∈ E such that m ≥ 1. We have

2n+1 − 1 = srow(ana)(") = ∑
j∈J

kj ⋅ row(aj)(") = ∑
j∈J

kj(2j − 1),
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so we can calculate

∑
j∈J

kj(2j+m − 1) = ∑
j∈J

kj ⋅ row(aj)(am)

= srow(ana)(am)

= 2n+m+1 − 1

= 2m(2n+1 − 1) + 2m − 1

= 2m
(
∑
j∈J

kj(2j − 1))
+ 2m − 1

=
(
∑
j∈J

kj(2j+m − 2m))
+ 2m − 1

=
(
∑
j∈J

kj(2j+m − 1))
+
(
∑
j∈J

kj(1 − 2m))
+ 2m − 1

and conclude that

(
∑
j∈J

kj(1 − 2m))
+ 2m − 1 = 0.

Since m ≥ 1 this is only possible if there is j1 ∈ J such that kj1 = 1 and kj = 0 for all j ∈ J ⧵ {j1}.

However, this implies row(aj1) = srow(ana), which again contradicts injectivity of  as

n ≥ j1. Thus, the algorithm did not terminate.

Remark 5.3.2. Our proof shows non-termination for a bigger class of algorithms than Al-

gorithm 5.1; it uses only the de�nition of the hypothesis, that closedness is satis�ed before

constructing the hypothesis, that S and E contain the empty word, and that termination im-

plies correctness. For instance, adding the pre�xes of a counterexample to S instead of its

su�xes to E will not �x the issue.

We have thus shown that our algorithm does not instantiate to a terminating one for an

arbitrary semiring. To contrast this negative result, in the next section we identify a class

of semirings not previously explored in the learning literature where we can guarantee a

terminating instantiation.

5.4 Learning WFAs over PIDs

We show that for a subclass of semirings, namely principal ideal domains (PIDs), the abstract

learning algorithm of Section 5.2 terminates. This subclass includes the integers, Gaussian in-

tegers, and rings of polynomials in one variable with coe�cients in a �eld. We will prove that
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the Hankel matrix of a language over a PID accepted by a WFA has analogous properties to

those of vector spaces—�nite rank, a notion of progress measure, and the ascending chain con-

dition. We also give a su�cient condition for PIDs to be solvable, which by Proposition 5.2.6

guarantees the existence of a closedness strategy for the learning algorithm.

To de�ne PIDs, we �rst need to introduce ideals. Given a ring S, a (left) ideal I of S is an

additive subgroup of S such that for all s ∈ S and i ∈ I we have si ∈ I . The ideal I is (left)

principal if it is of the form I = Ss for some s ∈ S.

De�nition 5.4.1 (PID). A principal ideal domain ℙ is a non-zero commutative ring in which

every ideal is principal and where for all p1, p2 ∈ ℙ such that p1p2 = 0we have p1 = 0 or p2 = 0.

A module M over a PID ℙ is called torsion free if for all p ∈ ℙ and any m ∈ M such that

p ⋅ m = 0 we have p = 0 or m = 0. It is a standard result that a module over a PID is torsion

free if and only if it is free [Jac12, Theorem 3.10].

The next de�nition of rank is analogous to that of the dimension of a vector space and

will form the basis for the progress measure.

De�nition 5.4.2 (Rank). We de�ne the rank of a �nitely generated free module V (X) over a

PID as rank(V (X )) = |X |.

This de�nition extends to any �nitely generated free module over a PID, as V (X) ≅ V (Y )
for �nite sets X and Y implies |X | = |Y | [Jac12, Theorem 3.4].

Now that we have a candidate for a progress measure function, we need to prove it has

the required properties. The following lemmas will help with this.

Lemma 5.4.3. Given �nitely generated free modules M,N over a PID such that rank(M) ≥
rank(N ), any surjective module homomorphism f ∶ N → M is injective.

Proof. Since rank(M) ≥ rank(N ), there exists a surjective module homomorphism g ∶ M → N .

Therefore g ◦ f ∶ N → N is surjective and by [Orz71] an iso. In particular, f is injective.

Lemma 5.4.4. If M and N are �nitely generated free modules over a PID such that there exists

a surjective module homomorphism f ∶ N → M , then rank(M) ≤ rank(N ). If f is not injective,

then rank(M) < rank(N ).

Proof. Let f ∶ N → M be a surjective module homomorphism. Suppose towards a contradic-

tion that rank(M) > rank(N ). By Lemma 5.4.3 f is injective, so M is isomorphic to a submodule

of N and rank(M) ≤ rank(N ) [Jac12]; contradiction.
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For the second part, suppose f is not injective and assume towards a contradiction that

rank(M) ≥ rank(N ). Again by Lemma 5.4.3 f is injective, which is a contradiction with our

assumption. Thus, in this case rank(M) < rank(N ).

The lemma below states that the Hankel matrix of a weighted language over a PID has

�nite rank which bounds the rank of any module generated by an observation table. This will

be used to de�ne a progress measure, used to prove termination of the learning algorithm for

weighted languages over PIDs.

Lemma 5.4.5 (Hankel matrix rank for PIDs). When targeting a language accepted by a WFA

over a PID, any module generated by an observation table is free. Moreover, the Hankel matrix

has �nite rank that bounds the rank of any module generated by an observation table.

Proof. Given a WFA  = (Q, �, i, o), let M be the free module generated by Q. Note that

the Hankel matrix is the image of the composition obs ◦ reach. Consider the image of the

module homomorphism reach∶ V (A⋆) → M , which we write as R. Since R is a submodule

of M , we know from [Jac12] that R is free and �nitely generated with rank(R) ≤ rank(M). The

Hankel matrix can now be obtained as the image of the restriction of obs∶ M → SA⋆ to

the domain R. Let H be this image, which we know is �nitely generated because R is. Since

H is a submodule of the torsion free module SA⋆ , it is also torsion free and therefore free.

We also have a surjective module homomorphism s ∶ R → H , so by Lemma 5.4.4 we �nd

rank(H ) ≤ rank(R).
LetN be the module generated by an observation table (S, E). We have thatN is a quotient

of the module generated by (S, A⋆), which in turn is a submodule ofH . Using again [Jac12] and

Lemma 5.4.4 we conclude that N is free and �nitely generated with rank(N ) ≤ rank(H ).

The fact that the Hankel matrix has �nite rank in the statement of Lemma 5.4.5 above

would follow from a PID variant of Fliess’s theorem [Fli74], which states that the size of the

minimal WFA over a �eld is the dimension of the Hankel matrix of its language. We are not

aware of such a generalisation and leave this for future work.

Proposition 5.4.6 (Progress measure for PIDs). There exists a progress measure for any lan-

guage  accepted by a WFA over a PID.

Proof. De�ne size(S, E) = rank(M), where M is the module generated by the table (S, E). By

Lemma 5.4.5 this is bounded by the rank of the Hankel matrix. If M and N are modules

generated by two tables such that N is a strict quotient of M , then by Lemma 5.4.4 we have

rank(M) > rank(N ).
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Recall that, for termination of the algorithm, Theorem 5.2.10 requires a progress measure,

which we de�ned above, and it requires the Hankel matrix of the language to satisfy the

ascending chain condition (De�nition 5.2.9). Proposition 5.4.7 shows that the latter is always

the case for languages over PIDs.

Proposition 5.4.7 (Ascending chain condition PIDs). The Hankel matrix of a language accep-

ted by a WFA over a PID satis�es the ascending chain condition.

Proof. Let H be the Hankel matrix, which has �nite rank by Lemma 5.4.5. If

M1 ⊆ M2 ⊆ M3 ⊆ ⋯

is any chain of submodules of H , then M = ⋃i∈ℕMi is a submodule of H and therefore also

of �nite rank [Jac12]. Let B be a �nite basis of M . There exists n ∈ ℕ such that B ⊆ Mn, so

Mn = M .

The last ingredient for the abstract algorithm is solvability of the semiring: the following

fact provides a su�cient condition for a PID to be solvable.

Proposition 5.4.8 (PID solvability). A PID ℙ is solvable if all of its ring operations are comput-

able and if each element of ℙ can be e�ectively factorised into irreducible elements.

Proof. It is well-known that a system of equations of the formAx = b with integer coe�cients

can be e�ciently solved via computing the Smith normal form [Smi61] of A. The algorithm

generalises to principal ideal domains, if we assume that the factorisation of any given ele-

ment of the principal ideal domain
3

into irreducible elements is computable, cf. the algorithm

in [Jac53, p. 79-84]. To see that all steps in this algorithm can be computed, one has to keep

in mind that the factorisation can be used to determine the greatest common divisor of any

two elements of the principal ideal domain.

Remark 5.4.9. In the case that we are dealing with an Euclidean domain ℙ, a su�cient condi-

tion for ℙ to be solvable is that Euclidean division is computable (again this can be deduced

from inspecting the algorithm in [Jac53, p. 79-84]). Such a PID behaves essentially like the

ring of integers.

Putting everything together, we obtain the main result of this section.

3
Note that factorisations exist as each principal ideal domain is also a unique factorisation domain,

cf. e.g. [Jac12, Thm. 2.23].
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Theorem 5.4.10 (Termination for PIDs). Algorithm 5.1 can be instantiated and terminates for

any language accepted by a WFA over a PID of which all ring operations are computable and of

which each element can be e�ectively factorised into irreducible elements.

Proof. To instantiate the algorithm, we need a closedness strategy. According to Propos-

ition 5.2.6 it is su�cient for the PID to be solvable, which is shown by Proposition 5.4.8.

Proposition 5.4.6 provides a progress measure, and we know from Proposition 5.4.7 that the

Hankel matrix satis�es the ascending chain condition, so by Theorem 5.2.10 the algorithm

terminates.

The example run given in Section 5.1.1 is the same when performed over the integers.

We note that if the teacher holds an automaton model of the correct language, equivalence

queries are decidable by lifting the embedding of the PID into its quotient �eld to the level of

WFAs and checking equivalence there.

5.5 Discussion

We have introduced a general algorithm for learning WFAs over arbitrary semirings, together

with su�cient conditions for termination. We have shown an inherent termination issue over

the natural numbers and proved termination for a subclass of semirings—principal ideal do-

mains (PIDs). Our work extends the results by Bergadano and Varricchio [BV96], who showed

that WFAs over �elds could be learned from a teacher. Although a PID can be embedded into

its corresponding �eld of fractions, we note that the WFAs produced when learning over this

�eld potentially have weights outside the PID.

On the technical level, a variation on WFAs is given by probabilistic automata, where

transitions point to convex rather than linear combinations of states. One easily adapts the

example from Section 5.3 to show that learning probabilistic automata has a similar termina-

tion issue. On the positive side, Tappler et al. [Tap+19] have shown that deterministic MDPs

can be learned using an L⋆ based algorithm. The deterministic MDPs in loc.cit. are very dif-

ferent from the automata in our paper, as their states generate observable output that allows

to identify the current state based on the generated input-output sequence.

Algorithmic issues with WFAs over arbitrary semirings have been identi�ed before. For

instance, Krob [Kro94] showed that language equivalence is undecidable for WFAs over the

tropical semiring. We conjecture that for each semiring over which language equivalence of

WFAs is undecidable our algorithm will not in general terminate. This conjecture is based

on the connection between learning and testing [Ber+05; HSS17a]: one should be able to
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transform the learning algorithm into an equivalence testing method. We do not believe the

converse implication, that non-termination of our algorithm implies language equivalence is

undecidable, to be true. Evidence for this can be seen from the similar setting of probabilistic

automata mentioned above. Although the adapted learning algorithm does not terminate,

equivalence is easily decided by considering the automata as WFAs over the �eld of real num-

bers and testing equivalence on that level.

One drawback of the ascending chain condition on the Hankel matrix is that this does

not give any indication of the number of steps the algorithm requires. Indeed, the submodule

chains traversed, although converging, may be arbitrarily long. We would like to measure

and bound the progress made when �xing closedness defects, but this turns out to be challen-

ging for PIDs: the rank of the module generated by the table may not increase. We leave an

investigation of alternative measures to future work.

Our counterexample over the natural numbers justi�es the ascending chain condition

imposed on the Hankel matrix, as the condition breaks in that case. We have not identi�ed

an example where the lack of a progress measure leads to the algorithm failing to terminate.

Future research will have to determine whether the progress measure requirement is essential.

We would like to adapt the algorithm so that for PIDs it always produces minimal auto-

mata. At the moment this is already the case for �elds,
4

since adding a row due to a closed-

ness defect preserves linear independence of the image of row. For PIDs things are more

complicated—adding rows towards closedness may break linear independence and thus a basis

needs to be found in row♯
. This complicates the construction of the hypothesis.

Our results show that, on the one hand, WFAs can be learned over �nite semirings and

arbitrary PIDs (assuming computability of the relevant operations) and, on the other hand,

that there exists an in�nite commutative semiring for which they cannot be learned. However,

there are many classes of semirings in between commutative semirings and PIDs such as

integral domains, GCD domains, and unique factorisation domains. For such classes we would

like to conclusively know whether their WFAs can be learned by our general algorithm.

4
There is one exception: the language that assigns 0 to every word, which is accepted by a WFA with no states.

The algorithm initialises the set of row labels, which constitute the state space of the hypothesis, with the empty

word.



Chapter 6

Learning Automata with Side-E�ects

A limitation in automata learning is that the state spaces of models of real systems can be-

come too large to be handled by tools. This demands compositional methods and techniques

that enable compact representation of behaviors. In this chapter, we show how monads can

be used to add optimisations to learning algorithms in order to obtain compact representa-

tions. Monads allow us to take an abstract approach, in which category theory is used to

devise an optimised learning algorithm and a generic correctness proof for a broad class of

compact models. We direct our attention to monads on Set and accordingly provide concrete

algorithms. This chapter can be seen as an extended case study of a large class of instances

of the general algorithm presented in Chapter 4.

The inspiration for this work is quite concrete: it is a well-known fact that non-

deterministic �nite automata (NFAs) can be much smaller than deterministic ones for a reg-

ular language. The subtle point is that given a regular language, there is a canonical de-

terministic automaton accepting it—the minimal one—but there might be many “minimal”

non-deterministic automata accepting the same language. This raises a challenge for learning

algorithms: which non-deterministic automaton should the algorithm learn? In one answer

to this, Bollig et al. [Bol+09] developed a version of Angluin’s L⋆ algorithm, NL⋆, in which they

use a particular class of NFAs, Residual Finite State Automata (RFSAs). These do admit min-

imal canonical representatives. Although NL⋆ indeed is a �rst step in incorporating a more

compact representation of regular languages, there are several questions that remain to be

addressed.

DFAs and NFAs are formally connected by the subset construction. Underpinning this

construction is the rich algebraic structure of the set of languages and of the state space of the

DFA obtained by determinising an NFA. The state space of a determinised DFA—consisting of

125
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subsets of the state space of the original NFA—has a join-semilattice structure. Moreover, this

structure is preserved in language acceptance: given subsets of statesU andV , the language of

U ∪V is the union of the languages of the �rst two. Formally, the function that assigns to each

state its language is a join-semilattice map into the join-semilattice of languages structured

with the subset relation. The set of languages is even richer: it has the structure of a complete

atomic Boolean algebra. This leads to several questions: Can we exploit this structure and

have even more compact representations? What if we slightly change the setting and look

at weighted languages over a semiring, which have the structure of a semimodule (or vector

space, if the semiring is a �eld)?

The latter question is strongly motivated by the widespread use of weighted languages and

corresponding weighted �nite automata (WFAs) in veri�cation, from the formal veri�cation

of quantitative properties [CDH08; DG05; Kup14], to probabilistic model-checking [BGC09],

to the veri�cation of on-line algorithms [AKL10]. These are the automata we generalised a

learning algorithm for in Chapter 5.

Our key insight is that the algebraic structures mentioned above are in fact algebras for a

monad T . In the case of join-semilattices this is the powerset monad, and in the case of vector

spaces it is the free vector space monad. These monads can be used to de�ne a notion of T -

automaton, with states having the structure of an algebra for the monad T , which generalises

non-determinism as a side-e�ect. From T -automata we can derive a compact, equivalent

version by taking as states a set of generators and transferring the algebraic structure of the

original state space to the transition structure of the automaton.

This perspective enables us to generalise L⋆ to a new algorithm L⋆T , which learns compact

automata featuring non-determinism and other side-e�ects captured by a monad. Moreover,

L⋆T incorporates further optimisations arising from the monadic representation, which lead to

more scalable algorithms.

Besides the theoretical aspects, we devote large part of this chapter to implementation and

experimental evaluation. Monads are key for us to faithfully translate theory into practice.

We provide a library that implements all aspects of our general framework, making use of

Haskell monads. For any monad, the library allows the programmer to obtain a basic, correct-

by-construction instance of the algorithm and of its optimised versions for free. This enables

the programmer to experiment with di�erent optimisations with minimal e�ort. Our library

also allows the programmer to re-de�ne some basic operations, if a more e�cient version is

available, in order to make the algorithm more amenable to real-world usage. For instance,

generators can be computed e�ciently in the vector space case via Gaussian elimination. The

library already provides e�cient algorithms for weighted and non-deterministic automata.
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We start by giving an overview of our approach in Section 6.1, which is followed by pre-

liminary notions regarding automata with side-e�ects in Section 6.2. We then present the

main contributions:

1. In Section 6.3, we develop a general algorithm L⋆T , which generalises the NFA one we

will discuss in Section 6.1 to an arbitrary monad T capturing side-e�ects, and we provide

a general correctness proof for our algorithm.

2. In Section 6.4, we describe the �rst optimisation, which replaces the hypothesis by a

succinct one, and prove its correctness.

3. In Section 6.5 we describe the second optimisation that replaces the counterexample

handling method. We also show how it can be combined with the optimisation of Sec-

tion 6.4, and how it can lead to a further small optimisation, where the consistency

check on the table is dropped. We show that the correctness proof remains valid for

each of these modi�cations of the algorithm.

4. In Section 6.6 we show how L⋆T can be applied to several automata models, highlighting

further case-speci�c optimisations when available.

5. In Section 6.7 we describe our library and explain in detail how it can be instantiated to

NFAs and WFAs. The implementation of monads for these two cases is non-trivial, due

to speci�c Haskell requirements. We also give e�cient versions of both instances. To

the best of our knowledge, we are the �rst ones to implement an Angluin-style learning

algorithm for WFAs, and to provide optimisations for it.

6. Finally, in Section 6.8 we describe experimental results for the non-deterministic and

weighted cases, comparing all the optimisations enabled by our library. In particular, for

NFAs we show that the counterexample handling optimisation, not available to Bollig et

al. [Bol+09], leads to an improvement in the number of membership queries, as happens

in the DFA case.

6.1 Overview of the Approach

In this section, we discuss the challenges in adapting the L⋆ algorithm to learn automata with

side-e�ects, illustrating them through a concrete example—NFAs. We then highlight our main

contributions.
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Learning non-deterministic automata. As is well known, NFAs can be smaller than the

minimal DFA for a given language. For example, the language  = {w ∈ {a}⋆ ∣ |w| ≠ 1}
accepted by the minimal DFA

a a a (6.1)

is also accepted by the smaller NFA

a

a
a

(6.2)

Though in this example, which we chose for simplicity, the state reduction is not massive, it

is known that in general NFAs can be exponentially smaller than the minimal DFA [Koz12].

Learning NFAs can lead to a substantial gain in space complexity, but it is challenging. The

main di�culty is that NFAs do not have a canonical minimal representative: there may be sev-

eral non-isomorphic state-minimal NFAs accepting the same language, which poses problems

for the development of the learning algorithm. In one answer to this, Bollig et al. [Bol+09]

proposed to use a particular class of NFAs, namely RFSAs, which do admit minimal canonical

representatives. However, their solution for NFAs does not extend to other automata, such as

weighted or alternating. In this chapter we present a solution that works for any side-e�ect,

speci�ed as a monad.

The crucial observation underlying our approach is that the language semantics of an NFA

is de�ned in terms of its determinisation, i.e., the DFA obtained by taking sets of states of the

NFA as state space. In other words, this DFA is de�ned over an algebraic structure induced

by the powerset, namely a (complete) join semilattice (JSL) whose join operation is set union.

This automaton model does admit minimal representatives, which leads to the key idea for

our algorithm: learning NFAs as automata over JSLs. In order to do so, we use an extended

table where rows have a JSL structure, de�ned as follows. The join of two rows is given by an

element-wise or, and the bottom element is the row containing only zeroes. More precisely,

the new table consists of the two functions

row♯∶ (S) → 2E srow♯∶ (S) → (2E)A

given by row♯(U ) = ⋁{row(s) ∣ s ∈ U} and srow♯(U )(a) = ⋁{srow(s)(a) ∣ s ∈ U}. Formally,

these functions are JSL homomorphisms, and they induce the following general de�nitions:

• The table is closed if for allU ⊆ S, a ∈ A there isU ′ ⊆ S such that row♯(U ′) = srow♯(U )(a).
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"
" 1

a 0

(a)

a

a

(b) (c)

" a aa
" 1 0 1

a 0 1 1

(d)

" a aa
" 1 0 1

a 0 1 1

aa 1 1 1

(e)

Figure 6.1: Example run of the L⋆ adaptation for NFAs on  = {w ∈ {a}⋆ ∣ |w| ≠ 1}.

• The table is consistent if for all U1, U2 ⊆ S such that row♯(U1) = row♯(U2) we have

srow♯(U1) = srow♯(U2).

We remark that our algorithm does not actually store the whole extended table, which can

be quite large. It only needs to store the original table over S because all other rows in (S)
are freely generated and can be computed as needed, with no additional membership queries.

Thus, we remain close to the original L⋆ algorithm (Section 2.3). The only lines in Figure 2.1

that need to be adjusted are lines 4 and 7 of Algorithm 2.1, where closedness and consistency

are replaced with the new notions given above. Moreover, the hypothesis is now built from

the extended table.

Optimisations. We also present two optimisations to our algorithm. For the �rst one, note

that the state space of the hypothesis constructed by the algorithm can be very large since

it encodes the entire algebraic structure. We show that we can extract a minimal set of gen-

erators from the table and compute a succinct hypothesis in the form of an automaton with

side-e�ects, without any algebraic structure. For JSLs, this consists in only taking rows that

are not the join of other rows, i.e., the join-irreducibles. By applying this optimisation to

this speci�c case, we essentially recover the learning algorithm of Bollig et al. [Bol+09]. The

second optimisation is a generalisation of the optimised counterexample handling method of

Rivest and Schapire [RS93], originally intended for L⋆ and DFAs. Recall that the Maler and

Pnueli [MP95] variation on L⋆ adds all su�xes of a given counterexample to the column set

E (Figure 2.3 in Section 2.3). The optimisation due to Rivest and Schapire [RS93] consists in

processing counterexamples by adding a single su�x of the counterexample to E. This can

avoid the algorithm posing a large number of membership queries.

Example run. We now run the new algorithm on the language  = {w ∈ {a}⋆ ∣ |w| ≠ 1}
considered earlier. Starting from S = E = {"}, the observation table (Figure 6.1a) is im-
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mediately closed and consistent. (It is closed because we have row♯({a}) = row♯(∅).) This

gives the JSL hypothesis shown in Figure 6.1b, which leads to an NFA hypothesis having a

single state that is initial, accepting, and has no transitions (Figure 6.1c). The hypothesis

is incorrect, and the teacher may supply us with counterexample aa. Adding the su�xes a
and aa to E leads to the table in Figure 6.1d. The table is not closed: srow(a)(a) ≠ row♯(∅)
and srow(a)(a) ≠ row♯({"}). Thus, we add a to S. The resulting table (Figure 6.1e) is closed

and consistent (srow(a)(a) = row♯({", a})). We note that row aa is the union of other rows:

row♯({aa}) = row♯({", a}) (i.e., it is not a join-irreducible), and therefore can be ignored when

building the succinct hypothesis. This hypothesis has two states, " and a, and indeed it is the

correct one (6.2).

In the next section we formally introduce automata with side-e�ects given by a monad,

which generalise automata such as NFAs and WFAs.

6.2 Automata with Side-E�ects

We �x a monad (T , �, �) with T preserving �nite sets, as well as a �nite alphabet A and a T -

algebra O that models outputs of automata. This setting allows us to de�ne a general notion

of automaton with algebraic structure in the form of an algebra for a monad that is preserved

by the automaton operations. The assumption that T preserves �nite sets guarantees that the

algebraic structure on a �nite automaton can be represented.

De�nition 6.2.1 (T -automaton). A T -automaton is a quadruple (Q, �, i, o), where Q is a T -

algebra, the transition map � ∶ Q → QA
and output map o ∶ Q → O are T -algebra homo-

morphisms, and i ∈ Q is the initial state.1

One can recover T -automata as automata according to De�nition 2.2.10 by choosing the

base category EM(T )op, the initial state object O, the output object T (1), and the transition

functor (−)A.

Example 6.2.2 (DFAs as T -automata). DFAs are Id-automata when O = 2 = {0, 1} is used to

distinguish accepting from rejecting states. For the more general case of O being an arbitrary

set, DFAs generalise into automata called Moore automata.

Example 6.2.3 (NFAs as T -automata). Recall that-algebras are JSLs, and their homomorph-

isms are join-preserving functions. In a -automaton, Q is equipped with a join operation,

1
Our notion of T -automaton generalises the T -automata in for instance [Jac06], where they are restricted to

have a free state space and represented as in Proposition 6.2.4 below. (However, the T -automata in [Jac06] do

allow di�erent dynamics functors.)
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and QA
is a join-semilattice with pointwise join: (f ∨ g)(a) = f (a) ∨ g(a) for a ∈ A. Since

the automaton maps preserve joins, we have, in particular, �(q1 ∨ q2)(a) = �(q1)(a) ∨ �(q2)(a).
One can represent an NFA over a set of states S as a -automaton by taking Q = ((S), ⋃)
and O = 2, the Boolean join-semilattice with the or operation as its join. Let i ⊆ S be the set

of initial states and o ∶ (Q) → 2 and � ∶ (S) → (S)A the respective extensions of the

NFA’s output (S → O) and transition functions (S → (S)A). The resulting -automaton is

precisely the determinised version of the NFA.

More generally, an automaton with side-e�ects given by a monad T always represents a

T -automaton with a free state space.

Proposition 6.2.4 (Succinct automata). A T -automaton of the form ((TX , �X ), � , i, o), for any
set X , is completely de�ned by the set X with the element i ∈ TX and functions

�†∶ X → (TX)A o†∶ X → O.

Proof. Since (−)♯ has an inverse (−)†, the T -algebra homomorphisms � and o can be repres-

ented by the functions �† and o†.

We call such a T -automaton a succinct automaton, which we sometimes identify with

the representation (X , �†, i, o†). These automata are closely related to the ones studied

in [GMS14].

A language is a function ∶ A⋆ → O. For every T -automaton we have an observability

and a reachability map, telling respectively which state is reached by reading a given word

and which language each state recognises.

De�nition 6.2.5 (Reachability/observability maps). The reachability map of a T -automaton

 is a function reach∶ A⋆ → Q inductively de�ned as: reach(") = i and reach(ua) =
�(reach(u))(a). The observability map of  is a function obs∶ Q → OA⋆

given by:

obs(q)(") = o(q) and obs(q)(av) = obs(�(q)(a))(v).

The language accepted by is the map  = obs(i) = o ◦ reach∶ A⋆ → O.

Example 6.2.6. For an NFA  represented as a -automaton, as seen in Example 6.2.3,

obs(q) is the language of q in the traditional sense. Note that q, in general, is a set of states:

obs(q) takes the union of languages of singleton states. The set  is the language accepted

by the initial states, i.e., the language of the NFA. The reachability map reach(u) returns the

set of states reached via all paths reading u.
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Given a language ∶ A⋆ → O, there exists a (unique) minimal T -automaton M accept-

ing . Its existence follows from the general fact that the factorisation system (surjective

functions, injective functions) lifts to the category of T -automata (see for example [Hee16]).

Below we give a concrete de�nition that follows from this abstract perspective.

De�nition 6.2.7 (Minimal T -automaton for). Let t∶ A⋆ → OA⋆
be the function giving the

residual languages of , namely t(u) = �v.(uv). The minimal T -automaton M accepting 
has state spaceM = img(t♯), initial state i = t("), and T -algebra homomorphisms o ∶ M → O
and � ∶ M → MA

given by o(t♯(U )) = (U ) and �(t♯(U ))(a)(v) = t
♯
(U )(av).

In the following, we will also make use of the minimal Moore automaton accepting : the

minimal deterministic automaton without algebraic structure. Although this always exists—

by instantiating De�nition 6.2.7 with T = Id—it need not be �nite. The following property

says that �niteness of Moore automata and of T -automata accepting the same language are

related.

Proposition 6.2.8. The minimal Moore automaton accepting  is �nite if and only if the min-

imal T -automaton accepting  is �nite.

Proof. The left to right implication is proved by freely generating a T -automaton from the

Moore one via the monad unit, and by recalling that T preserves �nite sets. The resulting

T -automaton accepts  and is �nite, therefore any of its quotients, including the minimal

T -automaton accepting , is �nite. The right to left implication follows by forgetting the

algebraic structure of the T -automaton: this yields a �nite Moore automaton accepting .

6.3 A General Algorithm

In this section we introduce our extension of L⋆ to learn automata with side-e�ects. The al-

gorithm is parametric in the notion of side-e�ect, represented as the monad T , and is therefore

called L⋆T . We �x a language ∶ A⋆ → O that is to be learned, and we assume that there is a

�nite T -automaton accepting . This assumption generalises the requirement of L⋆ that  is

regular (i.e., accepted by a speci�c class of T -automata, see Example 6.2.2).

An observation table is identi�ed by a pair (S, E) of �nite sets S, E ⊆ A⋆ such that " ∈ S ∩E.

The actual table is a representation of the following functions associated with the sets S and

E:

row∶ S → OE srow∶ S → (OE)A
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They are given by row(s)(e) = (se) and srow(s)(a)(e) = (sae). For O = 2, we recover exactly

the L⋆ observation table. The key idea for L⋆T is de�ning closedness and consistency over the

free T -extensions of those functions.

De�nition 6.3.1 (Closedness and Consistency). The table is closed if for all U ∈ T (S) and

a ∈ A there exists a U ′ ∈ T (S) such that row♯(U ′) = srow♯(U )(a). The table is consistent if for

all U1, U2 ∈ T (S) such that row♯(U1) = row♯(U2) we have srow♯(U1) = srow♯(U2).

For closedness, we do not need to check the entire image of srow♯
against the image of

row♯
, but only the image of srow, thanks to the following result.

Lemma 6.3.2. If for all s ∈ S and a ∈ A there is U ∈ T (S) such that row♯(U ) = srow(s)(a), then
the table is closed.

Proof. Let m∶ img(row♯) ↪ OE
be the embedding of the image of row♯

into its codomain.

The de�nition of closedness given in De�nition 6.3.1 amounts to requiring the existence of a

function c ∶ T (S) → img(row♯)A making the following diagram commute:

T (S)

img(row♯)A (OE)A
c srow♯

mA

(6.3)

It is easy to see that the condition of this lemma corresponds to requiring the existence of

a function c0∶ S → img(row♯)A making the diagram below on the left in Set commute.

S

img(row♯)A (OE)A

c0
srow

mA

T (S)

T (img(row♯)A) T ((OE)A)

img(row♯)A (OE)A

T(c0)
T (srow)

T (mA)

mA

This diagram can be made into a diagram of T -algebra homomorphisms as on the right, where

the compositions of the left and right legs give respectively c♯0 and srow♯
. This diagram com-

mutes because the top triangle commutes by functoriality of T , and the bottom square com-

mutes by mA
being a T -algebra homomorphism. Therefore we have that (6.3) commutes for

c = c♯0 .

Example 6.3.3. For NFAs represented as -automata, the properties are as presented in

Section 6.1. Recall that for T =  and O = 2, the Boolean join-semilattice, row♯
and
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srow♯
describe a table where rows are labelled by subsets of S. Then we have, for instance,

row♯({s1, s2})(e) = row(s1)(e) ∨ row(s2)(e), i.e., row♯({s1, s2})(e) = 1 if and only if (s1e) = 1 or

(s2e) = 1. Closedness amounts to check whether each row in the bottom part of the table is

the join of a set of rows in the top part. Consistency amounts to check whether, for all sets of

rows U1, U2 ⊆ S in the top part of the table whose joins are equal, the joins of rows U1 ⋅ {a}
and U2 ⋅ {a} in the bottom part are also equal, for all a ∈ A.

As in the original L⋆ algorithm, closedness and consistency allow us to de�ne a hypothesis.

De�nition 6.3.4 (Hypothesis T -automaton). Given a closed and consistent table (S, E), we

can de�ne the hypothesis T -automaton , with state space H = img(row♯), i = row("), and

output and transitions

o ∶ H → O o(row♯(U )) = row♯(U )(")

� ∶ H → HA �(row♯(U )) = srow♯(U ).

Well-de�nedness of the above T -automaton follows from the abstract treatment of

Chapter 4, instantiated to the category of T -algebras and their homomorphisms.

We can now give the algorithm L⋆T . Similarly to the example in Section 6.1, we only have

to adjust lines 4 and 7 of Algorithm 2.1 in Figure 2.1. The resulting algorithm is shown in

Figure 6.2. As in Figure 2.1, the hypothesis for a table (S, E) is denoted by (S,E). In this case

it is constructed via De�nition 6.3.4.

The pseudocode in Figure 6.2 hides a few computability assumptions. In lines 3 and 4 of

Algorithm 6.1 we need to be able to decide whether closedness holds, and if not �nd a witness

that this is not the case. Given that A is �nite and T preserves �nite sets this can be done by

enumerating all bottom rows and checking for each of them whether there is an element of

TS for which the corresponding row is equal to that bottom row. This requires enumerability

of the (�nite) set TS and decidability of row♯
. Similarly, lines 6 and 7 require decidability

of consistency, with a witness being obtained if it does not hold. This could be achieved by

enumerating all elements of TS ×TS, checking which ones lead to the same row, and for those

ones checking for each element of A whether the corresponding bottom rows match. Again,

this requires enumerability of TS and decidability of row♯
, as well as decidability of srow♯

.

These same requirements also make sure the hypothesis of De�nition 6.3.4 is computable.

6.3.1 Correctness

Correctness of L⋆T amounts to proving that, for any target language , the algorithm termin-

ates returning the minimal T -automaton M accepting . As in the original L⋆ algorithm,
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Algorithm 6.1. Make table closed and consistent

1: function Fix(S, E)

2: while (S, E) is not closed or not consistent do
3: if (S, E) is not closed then
4: �nd s ∈ S,a ∈ A such that ∀U ∈ T (S). srow(s)(a) ≠ row(U )
5: S ← S ∪ {sa}
6: else if (S, E) is not consistent then
7: �nd U1, U2 ∈ T (S), a ∈ A and e ∈ E such that

row♯(U1) = row♯(U2) and srow♯(U1)(a)(e) ≠ srow♯(U2)(a)(e)
8: E ← E ∪ {ae}

9: return S, E

Algorithm 6.2. L⋆T algorithm

1: S, E ← Fix({"}, {"})
2: while EQ((S,E)) = c ∈ A⋆ do
3: E ← E ∪ suffixes(c)
4: S, E ← Fix(S, E)

5: return (S,E)

Figure 6.2: Adaptation of L⋆ for T -automata.

when the algorithm terminates the �nal hypothesis by de�nition accepts —the algorithm

only terminates once an equivalence query yields a positive outcome.

Our proof of termination and minimality is based on a bound on the size of the state

spaceH of the hypothesis and showing thatH increases with each operation performed in the

algorithm. For the processing of counterexamples, we need the following lemma showing that

adding the su�xes of a counterexample to E (line 3) will either distinguish two rows or cause

a closedness defect. We defer the proof of Lemma 6.3.5 below to the stronger Proposition 6.5.3

in Section 6.5.

Lemma 6.3.5. If z ∈ A⋆ is such that (z) ≠ (z), then after adding suffixes(z) to E we

have that either two rows become distinguished (there exist U1, U2 ∈ T (S) such that row♯(U1) ≠
row♯(U2), whereas they were previously equal) or the updated table is not closed.
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We now give the full proof.

Theorem 6.3.6 (Correctness of L⋆T ). The L⋆T algorithm (Figure 6.2) terminates returning the

minimal T -automaton accepting .

Proof. We argue that the state space H of the hypothesis increases while the algorithm loops,

and that H cannot be larger than M , the state space of M. When a closedness defect is

resolved (line 5), a row that was not previously found in the image of row♯∶ T (S) → OE
is

added, so the setH grows larger. When a consistency defect is resolved (line 8), two previously

equal rows become distinguished, which also increases the size of H . As for counterexamples,

Lemma 6.3.5 shows that adding their su�xes to E (line 3) will either distinguish two rows or

cause a closedness defect, which will be �xed during the next iteration, causing H to increase.

Now, note that by increasing S or E, the hypothesis state space H never decreases in size.

Moreover, for S = A⋆ and E = A⋆, row♯ = t♯. Therefore, since H and M are de�ned as the

images of row♯
and t♯, respectively, the size of H is bounded by that of M . As H increases

while the algorithm loops, the algorithm must terminate and thus correctly �nds the minimal

automaton accepting .

Note that the learning algorithm of Bollig et al. does not terminate using this counter-

example processing method [Bol+08, Appendix F]. This is due to their notion of consistency

being weaker than ours: we have shown that progress is guaranteed because a consistency

defect, in our sense, is created using this method.

Query complexity. The complexity of automata learning algorithms is usually measured

in terms of the number of both membership and equivalence queries asked, as it is common

to assume that computations within the algorithm are insigni�cant compared to evaluating

the system under analysis in applications. The cost of answering queries themselves is not

considered, as it depends on the implementation of the teacher, which the algorithm abstracts

from.

The table is a T -algebra homomorphism, so membership queries for rows labelled in S
are enough to determine all other rows. We measure the query complexities in terms of the

number of states n of the minimal Moore automaton, the number of states t of the minimal

T -automaton, the size k of the alphabet, and the length m of the longest counterexample.

Note that t cannot be smaller than n.

Remark 6.3.7. The number t can be much bigger than n. For example, when T =  , t may be

in (2n). Take the language {ap}, for some p ∈ ℕ and a singleton alphabet {a}. Its residual
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languages are ∅ and {ai} for all 0 ≤ i ≤ p. Thus, the minimal DFA accepting the language

has p + 2 states. However, the residual languages w.r.t. sets of words are all the subsets of

{", a, aa, … , ap}—hence, the minimal T -automaton has 2p+1 states.

The maximum number of closedness defects �xed by the algorithm is n, as a closedness

defect for the setting with algebraic structure is also a closedness defect for the setting without

that structure. The maximum number of consistency defects �xed by the algorithm is t , as �x-

ing a consistency defect distinguishes two rows that were previously identi�ed. Since counter-

examples lead to consistency defects, this also means that the algorithm will not pose more

than t equivalence queries. A word is added to S when �xing a closedness defect, and (m)
words are added to S when processing a counterexample. The number of rows that we need

to �ll using queries is therefore in (tmk). The number of columns added to the table is given

by the number of times a consistency defect is �xed and thus in (t). Altogether, the number

of membership queries is in (t2mk).

6.4 Succinct Hypotheses

We now describe the �rst of two optimisations, which is enabled by the use of monads. Our

algorithm produces hypotheses that can be quite large, as their state space is the image of row♯
,

which has the whole set T (S) as its domain. For instance, when T =  , T (S) is exponentially

larger than S. We will show how we can represent succinct hypotheses, whose state space is

given by a subset of S, and how we can compute a suitable subset of S that has a minimality

property and still induces an equivalent succinct hypothesis. We start by de�ning sets of

generators for the table.

De�nition 6.4.1. A set S′ ⊆ S is a set of generators for the table whenever for all s ∈ S there

is U ∈ T (S′) such that row(s) = row♯(U ).2

Intuitively, given s ∈ S and U ∈ T (S′) as in the above de�nition, U is the decomposition

of s into a “combination” of generators. When T =  , S′ generates the table whenever each

row can be obtained as the join of a set of rows labelled by S′. Explicitly: for all s ∈ S there is

{s1, … , sn} ⊆ S′ such that row(s) = row♯({s1, … , sn}) = row(s1) ∨ ⋯ ∨ row(sn).
Recall that , with state spaceH , is the hypothesis automaton for the table. The existence

of generators S′ allows us to compute a T -automaton with state space T (S′) equivalent to .

We call this the succinct hypothesis, although T (S′) may be larger than H . Proposition 6.2.4

2
Here and hereafter we assume that T (S′) ⊆ T (S), and more generally that T preserves inclusion maps. To elim-

inate this assumption, one could take the inclusion map f ∶ S′ ↪ S and write row♯(T (f )(U )) instead of row♯(U ).
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tells us that the succinct hypothesis can be represented as an automaton with side-e�ects in

T that has S′ as its state space. This results in a lower space complexity when storing the

hypothesis.

We now show how the succinct hypothesis is computed. Observe that, if generators S′

exist, row♯
factors through the restriction of itself to T (S′). Denote this latter function ̂row♯

.

Since we have T (S′) ⊆ T (S), the image of ̂row♯
coincides with img(row♯) = H , and therefore

the surjection restricting ̂row♯
to its image has the form e ∶ T (S′) → H . Any right inverse

dec∶ H → T(S′) of the function e (that is, e ◦ dec = idH , but whereas e is a T -algebra homo-

morphism, dec need not be one) yields a succinct hypothesis as follows. We refer to such a

function dec as a decomposition function.

De�nition 6.4.2 (Succinct Hypothesis). Given a table (S, E) and a set of generators S′ ⊆ S
with decomposition function dec∶ H → T(S′), the succinct hypothesis is the T -automaton

 = (T (S′), � , i, o) given by i = dec(row(")) and

o†∶ S′ → O o†(s) = row(s)(")

�†∶ S′ → T(S′)A �†(s)(a) = dec(srow(s)(a)).

This de�nition is inspired by that of a scoop, due to Arbib and Manes [AM75b]. Below

we prove that any succinct hypothesis accepts the same language as the actual hypothesis.

This ensures that we can replace the hypothesis constructed in line 2 of Algorithm 6.2 with a

succinct one without invalidating correctness of the algorithm.

Proposition 6.4.3. Any succinct hypothesis of  accepts the language of .

Proof. Assume a right inverse dec∶ H → T(S′) of e ∶ T (S′) → H . We �rst prove obs ◦ e† =
obs

†
 , by induction on the length of words. For all s ∈ S′, we have

obs(e†(s))(") = o(e†(s)) (de�nition of obs)

= o(row(s)) (de�nition of e)

= row(s)(") (de�nition of o)

= o† (s) (de�nition of o )

= obs
†
 (s)(") (de�nition of obs ).

Now assume that for a given v ∈ A⋆ and all s ∈ S′ we have obs(e†(s))(v) = obs
†
 (s)(v). Then,
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for all s ∈ S′ and a ∈ A,

obs(e†(s))(av) = obs(�(e†(s))(a))(v) (de�nition of obs)

= obs(�(row(s))(a))(v) (de�nition of e)

= obs(srow(s)(a))(v) (de�nition of �)

= (obs ◦ e ◦ dec)(srow(s)(a))(v) (e ◦ dec = idH )

= (obs ◦ dec)(srow(s)(a))(v) (induction hypothesis)

= obs (�† (s)(a))(v) (de�nition of � )

= obs
†
 (s)(av) (de�nition of obs ).

This concludes the proof of obs ◦ e† = obs
†
 . Then

obs ◦ e = (obs ◦ e)†♯ = (obs ◦ e†)♯ = obs
†

♯
= obs ,

so

obs (i ) = (obs ◦ dec)(row(")) (de�nition of i )

= (obs ◦ e ◦ dec)(row(")) (obs ◦ e = obs )

= obs(row(")) (e ◦ dec = idH )

= obs(i) (de�nition of i).

We now give a simple procedure to compute a minimal set of generators, that is, a set

S′ such that no proper subset is a set of generators. This generalises a procedure de�ned by

Angluin et al. [AEF15] for non-deterministic, universal, and alternating automata.

Proposition 6.4.4. The following algorithm returns a minimal set of generators for the table:

S′ ← S
while there are s ∈ S′ and U ∈ T (S′ ⧵ {s}) s.t. row♯(U ) = row(s) do

S′ ← S′ ⧵ {s}

return S′

Proof. Minimality is obvious, as S′ not being minimal would keep the loop guard true.

We prove that S′ is a set of generators throughout a run of the algorithm. For clarity, we

denote by dS′ ∶ S → T(S′) the function associated with a set of generators S′. The main idea

is incrementally building dS′ while building S′. In the �rst line, S is a set of generators, with

dS = �S ∶ S → T(S). For the loop, suppose S′ is a set of generators. If the loop guard is false,
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the algorithm returns the set of generators S′. Otherwise, suppose there are there are s ∈ S′

and U ∈ T (S′ ⧵ {s}) such that row♯(U ) = row(s). Then there is a function

f ∶ S′ → T(S′ ⧵ {s}) f (s′) =
⎧⎪⎪
⎨⎪⎪⎩

U if s′ = s

�(s′) if s′ ≠ s

that satis�es row(s′) = row♯(f (s′)) for all s′ ∈ S′, from which it follows that row♯(U ′) =
row♯(f ♯(U ′)) for all U ′ ∈ T (S′). Then we can set dS′⧵{s} to f ♯ ◦ dS′ ∶ S → T(S′ ⧵ {s}) because

row(s′) = row♯(dS′⧵{s}(s′)) for all s′ ∈ S. Therefore, S′ ⧵ {s} is a set of generators.

To determine whether U as in the above algorithm exists, one can always naively enumer-

ate all possibilities, using that T preserves �nite sets. This is what we call the basic algorithm.

For speci�c algebraic structures, one may �nd more e�cient methods, as we show in the

following example.

Example 6.4.5 (RFSAs). Consider the powerset monad T =  . We now exemplify two ways

of computing succinct hypotheses, which are inspired by canonical RFSAs [DLT02]. The basic

idea is to start from a deterministic automaton and to remove states that are equivalent to a

set of other states. The algorithm given in Proposition 6.4.4 computes a minimal S′ that only

contains labels of rows that are not the join of other rows. (In case two rows are equal, only

one of their labels is kept.) In other words, as mentioned in Section 6.1, S′ contains labels of

join-irreducible rows. To concretize the algorithm e�ciently, we use a method introduced by

Bollig et al. [Bol+09], which essentially exploits the natural order a ≤ b ⟺ a ∨ b = b on the

JSL of table rows. In contrast to the basic exponential algorithm, this results in a polynomial

one.
3

Bollig et al. determine whether a row is a join of other rows by comparing the row just

to the join of rows below it. Like them, we make use of this also to compute right inverses of

e, for which we will formalise the order.

The function e ∶ (S′) → H tells us which sets of rows are equivalent to a single state in

H . We show two right inverses H → (S′) for it. The �rst one,

dec1(ℎ) = {s ∈ S′ ∣ row(s) ≤ ℎ},

stems from the construction of the canonical RFSA of a language [DLT02]. The resulting

natural construction of a succinct hypothesis was �rst used by Bollig et al. [Bol+09]. This

succinct hypothesis has a “maximal” transition function, meaning that no more transitions

can be added without changing the language of the automaton.

3
When we refer to computational complexities, as opposed to query complexities, they are in terms of the sizes

of S, E, and A.
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The second inverse is, for ℎ ∈ H ,

dec2(ℎ) = {s ∈ S′ ∣ row(s) ≤ ℎ ∧ ∀s′ ∈ S′. row(s) ≤ row(s′) ≤ ℎ ⟹ row(s) = row(s′)},

resulting in a more economical transition function, where some redundancies are removed.

This corresponds to the simpli�ed canonical RFSA [DLT02].

Example 6.4.6. Consider T =  , and recall the table in Figure 6.1e. When S′ = S, the right

inverse given by dec1 yields the succinct hypothesis shown below.

a a
a

a

a

a

a

Note that dec1(row(aa)) = {", a, aa}. Taking dec2 instead, the succinct hypothesis is just the

DFA (6.1) because dec2(row(aa)) = {aa}. Rather than constructing a succinct hypothesis dir-

ectly, our algorithm �rst reduces the set S′. In this case, we have row(aa) = row♯({", a}), so we

remove aa from S′. Now dec1 and dec2 coincide and produce the NFA (6.2). Minimising the

set S′ in this setting essentially comes down to determining what Bollig et al. [Bol+09] call

the prime rows of the table.

Remark 6.4.7. The algorithm in Proposition 6.4.4 implicitly assumes an order in which ele-

ments of S are checked. Although the algorithm is correct for any such order, di�erent orders

may give results that di�er in size. Consider for instance the free semimodule monad V for

the semiring ℤ6 of integers modulo 6, the free output object ℤ6 ≅ V (1), and the language

∶ {a}⋆ → ℤ6 given by (an) = (n + 1) mod 6. The observation table for S = {", a, aa} and

E = {"} is given below.

"
" 1

a 2

aa 3

aaa 4

We initialise S′ = S. Note that row(") = row♯(2 × a + aa), so we can remove " from S′. After

doing so, however, neither a nor aa can be removed from S′. If, instead, from S′ = S we

observe that row(a) = row♯(2 × ") and row(aa) = row♯(3 × "), we may end up with the singleton

S′ = {"}.
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6.5 Optimised Counterexample Handling

The second optimisation we give generalises the counterexample processing method due to

Rivest and Schapire [RS93], which improves the worst case complexity of the number of mem-

bership queries needed in L⋆. Maler and Pnueli [MP95] proposed to add all su�xes of the

counterexample to the set E instead of adding all pre�xes to the set S. This eliminates the

need for consistency checks in the deterministic setting. The method by Rivest and Schapire

�nds a single su�x of the counterexample and adds it to E. This su�x is chosen in such a way

that it either distinguishes two existing rows or creates a closedness defect, both of which

imply that the hypothesis automaton will grow.

The main idea is �nding the distinguishing su�x via the hypothesis automaton . Given

u ∈ A⋆, let qu be the state in  reached by reading u, i.e., qu = reach(u). For each q ∈ H ,

we pick any Uq ∈ T (S) that yields q according to the table, i.e., such that row♯(Uq) = q. Then

for a counterexample z we have that the residual language w.r.t. Uqz does not “agree” with the

residual language w.r.t. z.

The above intuition can be formalised as follows. Let ∶ A⋆ → OA⋆
be given for all

u ∈ A⋆ by (u) = t♯(Uqu ). Given u ∈ A⋆, (u) computes the residual language of Uqu ∈ T (S).
If the hypothesis is correct, the residual languages (u) and t(u) should be equal for all

words u ∈ A⋆. We will show that  can be used to analyse a counterexample in order to

extract a distinguishing su�x from it. Towards this result we have the following technical

lemma, saying that a counterexample z distinguishes the residual languages t(z) and (z).

Lemma 6.5.1. If z ∈ A⋆ is such that (z) ≠ (z), then t(z)(") ≠ (z)(").

Proof. We have

t(z)(") = (z) (de�nition of t)

≠ (z) (assumption)

= (o ◦ reach)(z) (de�nition of )

= reach(z)(") (de�nition of o)

= qz(") (de�nition of qz)

= row♯(Uqz )(") (de�nition of Uqz )

= t♯(Uqz )(") (de�nitions of row and t)

= (z)(") (de�nition of ).

We assume that Uq" = �("). For a counterexample z, we then have (")(z) = t(")(z) ≠
(z)("). While reading z, the hypothesis automaton passes a sequence of states qu0 ,
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qu1 ,qu2 ,. . . ,qun , where u0 = �, un = z, and ui+1 = uia for some a ∈ A is a pre�x of z. If z were

correctly classi�ed by , all residuals (ui) would classify the remaining su�x v of z, i.e.,

such that z = uiv, in the same way. However, the previous lemma tells us that, for a counter-

example z, this is not case, meaning that for some su�x v we have (ua)(v) ≠ (u)(av). In

short, this inequality is discovered along a transition in the path to z.

Corollary 6.5.2. If z ∈ A⋆ is such that (z) ≠ (z), then there are u, v ∈ A⋆ and a ∈ A such

that uav = z and (ua)(v) ≠ (u)(av).

To �nd such a decomposition e�ciently, Rivest and Schapire use a binary search al-

gorithm. We conclude with the following result that turns the above property into the elimin-

ation of a closedness witness. That is, given a counterexample z and the resulting decompos-

ition uav from the above corollary, we show that, while currently row♯(Uqua ) = srow♯(Uqu )(a),
after adding v to E we have row♯(Uqua )(v) ≠ srow♯(Uqu )(a)(v). (To see that the latter follows

from the proposition below, note that for all U ∈ T (S) and e ∈ E, row♯(U )(e) = t♯(U )(e) and

for each a′ ∈ A, srow♯(U )(a′)(e) = t♯(U )(a
′e).) The inequality means that either we have a

closedness defect, or there still exists some U ∈ T (S) such that row♯(U ) = srow♯(Uqu )(a). In this

case, the rows row♯(U ) and row♯(Uqua ) have become distinguished by adding v, which means

that the size of H has increased. A closedness defect also leads to an increase in the size of H ,

so in any case we make progress.

Proposition 6.5.3. If z ∈ A⋆ is such that (z) ≠ (z), then there are u, v ∈ A⋆ and a ∈ A
such that row♯(Uqua ) = srow♯(Uqu )(a) and t♯(Uqua )(v) ≠ t

♯
(Uqu )(av).

Proof. By Corollary 6.5.2 we have u, v ∈ A⋆ and a ∈ A such that (ua)(v) ≠ (u)(av). This

directly yields the inequality by the de�nition of . Furthermore,

row(Uqua ) = qua (de�nition of Uqua )

= reach(ua) (de�nition of qua)

= �(reach(u))(a) (de�nition of reach)

= �(qu)(a) (de�nition of qu)

= �(row♯(Uqu ))(a) (de�nition of Uqu )

= srow♯(Uqu )(a) (de�nition of �).

Thus, the optimised algorithm is as follows. Compared to Algorithm 6.2, the only line that

changes is line 3. Here instead of adding all su�xes of the counterexample to the set E, we

�nd according to Proposition 6.5.3 above words u, v ∈ A⋆ and a ∈ A such that row♯(Uqua ) =
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srow♯(Uqu )(a) and t♯(Uqua )(v) ≠ t♯(Uqu )(av). We then add v to the set E, which as discussed

above guarantees that either causes a closedness defect or distinguishes two previously equal

rows in srow♯
, thus making progress like the original L⋆T . This means that the correctness

proof Theorem 6.3.6 applies also to the present variation on L⋆T .

6.5.1 Using the Succinct Hypothesis

We now show how to combine the optimised counterexample processing method with the

succinct hypothesis optimisation from Section 6.4. Recall that the succinct hypothesis  is

based on a right inverse dec∶ H → T(S′) of e ∶ T (S′) → H . Choosing such a dec is equivalent

to choosing Uq for each q ∈ H . We then rede�ne  using the reachability map of the succinct

hypothesis. Speci�cally, (u) = t♯(reach (u)) for all u ∈ A⋆.

Unfortunately, there is one complication. We assumed earlier that Uq" = �("), or more

speci�cally (")(z) = (z). This now may be impossible because we do not necessarily have

" ∈ S′. We show next that if this equality does not hold, then there are two rows that we can

distinguish by adding z to E. Thus, after testing whether (")(z) = (z), we either add z to E
(if the test fails) or proceed with the original method.

Proposition 6.5.4. If z ∈ A⋆ is such that(")(z) ≠ (z), then row♯(i ) = row(") and t♯(i )(z) ≠
t(")(z).

Proof. We have row♯(i ) = row♯(dec(row("))) = row(") by the de�nitions of i and dec, and

t♯(dec(row(")))(z) = t
♯
(i )(z) (de�nition of i )

= t♯(reach ("))(z) (de�nition of reach )

= (")(z) (de�nition of )

≠ (z) (assumption)

= t(")(z) (de�nition of t).

To see that the original method still works, we prove the analogue of Proposition 6.5.3 for

the new de�nition of  with Proposition 6.5.7. This �rst requires an additional lemma.

Lemma 6.5.5. If z ∈ A⋆ is such that  (z) ≠ (z) and(")(z) = (z), then(")(z) ≠ (z)(").
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Proof. We have

(")(z) = (z) (assumption)

≠  (z) (counterexample)

= (o ◦ reach† )(z) (de�nition of  )

= (row♯ ◦ reach† )(z)(") (de�nition of o )

= t♯(reach
†
 (z))(") (de�nition of row♯

)

= (z)(") (de�nition of ).

Corollary 6.5.6. If z ∈ A⋆ is such that  (z) ≠ (z) and (")(z) = (z), then there are

u, v ∈ A⋆ and a ∈ A such that uav = z and(ua)(v) ≠ (u)(av).

We can now prove the analogue of Proposition 6.5.3. Recall that this shows that a su�x

of the counterexample can be added to E in order to either cause a closedness defect, or to

distinguish two rows in the table. More speci�cally, the result below �nds u, v ∈ A⋆ and

a ∈ A such that adding v to E will distinguish the previously equal row♯(reach† (ua)) and

srow♯(reach† (u))(a).

Proposition 6.5.7. If z ∈ A⋆ is such that  (z) ≠ (z) and (")(z) = (z), then there are

u, v ∈ A⋆ and a ∈ A such that row♯(reach† (ua)) = srow♯(reach† (u))(a) and t
♯
(reach

†
 (ua))(v) ≠

t♯(reach
†
 (u))(av).

Proof. Let u, a, and v be as in Corollary 6.5.6. Thus,

t♯(reach
†
 (ua))(v) = (ua)(v) ≠ (u)(av) = t♯(reach

†
 (u))(av).

Furthermore, since for all s ∈ S and b ∈ A we have

((row♯)A ◦ �† )(s)(b) = row♯(�† (s)(b))

= (row♯ ◦ dec)(srow(s)(b)) (de�nition of �† )

= srow(s)(b) (de�nition of dec),

it follows that (row♯)A ◦ � = srow♯
. Therefore,

row♯(reach† (ua)) = row♯(� (reach† (u))(a)) (de�nition of reach
†
 )

= ((row♯)A ◦ � )(reach† (u))(a)

= srow♯(reach† (u))(a).
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Again, we summarise the full algorithm based on L⋆T from Figure 6.2. Now there are two

di�erences: instead of the hypothesis T -automaton we construct a succinct hypothesis, and

instead of adding all su�xes of a given counterexample to the set E we only add a single

su�x to the set E. Thus, we only have to replace lines 2 and 3 in Algorithm 6.2. This is done

as follows.

Instead of implicitly constructing the hypothesis from De�nition 6.3.4, we take the current

set of rows S ⊆ A⋆ and apply Proposition 6.4.4 to �nd a minimal set of generators S′ ⊆ S for the

table. We then construct the corresponding succinct hypothesis (De�nition 6.4.2) and submit

it in an equivalence query. If this equivalence query returns a counterexample z ∈ A⋆, we �rst

test whether(")(z) = (z). If the test fails, we simply add z to E. If the test succeeds, we apply

Proposition 6.5.7 to �nd u, v ∈ A⋆ and a ∈ A such that row♯(reach† (ua)) = srow♯(reach† (u))(a)
and t♯(reach

†
 (ua))(v) ≠ t

♯
(reach

†
 (u))(av). We then add v to E. As before, we have shown with

the results and discussion above that processing a counterexample in this way leads to either

a new closedness defect or to two previously equal rows in srow♯
being distinguished, thus

making progress like the original L⋆T . This means that the correctness proof Theorem 6.3.6

applies also to this variation on L⋆T .

Example 6.5.8. Recall the succinct hypothesis  from Figure 6.1c for the table in Figure 6.1a.

Note that S′ = S cannot be further reduced. The hypothesis is based on the right inverse

dec∶ H → (S) of e ∶ (S) → H given by dec(row(")) = {"} and dec(row♯(∅)) = ∅. This is

the only possible right inverse because e is bijective. For the pre�xes of the counterexample

aa we have reach (") = {"} and reach (a) = reach (aa) = ∅. Note that t♯({"})(aa) = 1 while

t(∅)(a) = t(∅)(") = 0. Thus, (")(aa) ≠ (a)(a). Adding a to E would indeed create a

closedness defect.

Query complexity. Again, we measure the membership and equivalence query complexit-

ies in terms of the number of states n of the minimal Moore automaton, the number of states

t of the minimal T -automaton, the size k of the alphabet, and the length m of the longest

counterexample.

A counterexample now gives an additional column instead of a set of rows, and we have

seen that this leads to either a closedness defect or to two rows being distinguished. Thus,

the number of equivalence queries is still at most t , and the number of columns is still in (t).
However, the number of rows that we need to �ll using membership queries is now in (nk).
This means that a total of (tnk) membership queries is needed to �ll the table.

Apart from �lling the table, we also need queries to analyze counterexamples. The binary

search algorithm mentioned after Corollary 6.5.2 requires for each counterexample (logm)
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computations of (x)(y) for varying words x and y. Let r be the maximum number of queries

required for a single such computation. Note that for u, v ∈ A⋆, and letting � ∶ TO → O be

the algebra structure on O, we have (u)(v) = �(T (evv ◦ t)(Uqu )) for the original de�nition

of  and

(u)(v) = �(T (evv ◦ t)(reach† (u)))

in the succinct hypothesis case. Since the restricted map T (evv ◦ t)∶ TS → TO is completely

determined by evv ◦ t∶ S → O, r is at most |S|, which is bounded by n in this optimised

algorithm. For some examples (see for instance the writer automata in Section 6.6), we even

have r = 1. The overall membership query complexity is (tnk + tr logm).

Dropping consistency. We described the counterexample processing method based

around Proposition 6.5.3 in terms of the succinct hypothesis  rather than the actual hy-

pothesis  by showing that  can be de�ned using  . Since the de�nition of the succinct

hypothesis does not rely on the property of consistency to be well-de�ned, this means we

could drop the consistency check from the algorithm altogether. We can still measure pro-

gress in terms of the size of the set H , but it will not be the state space of an actual hypothesis

during intermediate stages. This observation also explains why Bollig et al. [Bol+09] are able

to use a weaker notion of consistency in their algorithm. Interestingly, they exploit the ca-

nonicity of their choice of succinct hypotheses to arrive at a polynomial membership query

complexity that does not involve the factor t .

6.6 Examples

In this section we list several examples that can be seen as T -automata and hence learned

via an instance of L⋆T . We remark that, since our algorithm operates on �nite structures (re-

call that T preserves �nite sets), for each automaton type one can obtain a basic, correct-by-

construction instance of L⋆T for free, by plugging the concrete de�nition of the monad into the

abstract algorithm. However, we note that this is not how L⋆T is intended to be used in a real-

world context; it should be seen as an abstract speci�cation of the operations each concrete

implementation needs to perform, or, in other words, as a template for real implementations.

This view is the one we will take for our implementation in the next section.

For each instance below, we discuss whether certain operations admit a more e�cient

implementation than the basic one, based on the speci�c algebraic structure induced by the

monad. Due to our general treatment, the optimisations of Section 6.4 and Section 6.5 apply

to all of these instances.



148 Chapter 6. Learning Automata with Side-E�ects

Non-deterministic automata. As discussed before, non-deterministic automata are -

automata with a free state space, provided that O = 2 is equipped with the “or” operation

as its -algebra structure:

⊥ = 0 ∨ 0 = 0 0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1.

We also mentioned that, as Bollig et al. [Bol+09] showed, there is a polynomial time algorithm

to check whether a given row is the join of other rows. This gives an e�cient method for

handling closedness straight away. Moreover, as shown in Example 6.4.5, it allows for an e�-

cient construction of the succinct hypothesis. Unfortunately, checking for consistency defects

seems to require a number of computations exponential in the number of rows. However, as

explained at the end of Section 6.5, we can in fact drop consistency altogether.

Universal automata. Just like non-deterministic automata, universal automata can be seen

as -automata with a free state space. The di�erence is that the -algebra structure on O = 2
is dual: it is given by the “and” rather than the “or” operation. Thus, universal automata

accept a word when all paths reading that word lead to accepting states. One can dualise the

optimised speci�c algorithms for the case of non-deterministic automata, which is precisely

what Angluin et al. [AEF15] have done.

Partial automata. Consider the maybe monad Maybe(X ) = 1 + X , with natural transform-

ations having components �X ∶ X → 1 + X and �X ∶ 1 + 1 + X → 1 + X de�ned in the

standard way. Partial automata with states X can be represented as Maybe-automata with

state space Maybe(X ) = 1 + X , where there is an additional sink state, and output algebra

O = Maybe(1) = 1 + 1. Here the left value is for rejecting states, including the sink one. The

transition map � ∶ 1 + X → (1 + X)A represents an unde�ned transition as one going to the

sink state. The algorithm L⋆Maybe is mostly like L⋆, except that implicitly the table has an addi-

tional row with zeroes in every column. Since the monad only adds a single element to each

set, there is no need to optimise the basic algorithm for this speci�c case.

Weighted automata. Recall from Chapter 2 the free semimodule monad V , sending a set X
to the free semimodule over a �nite semiring S. Weighted automata over a set of states X can

be represented as V -automata whose state space is the semimodule V (X), the output function

o ∶ V (X) → S assigns a weight to each state, and the transition map � ∶ V (X) → V(X)A sends

each state and each input symbol to a linear combination of states. The obvious semimodule

structure on S extends to a pointwise structure on the potential rows of the table. The basic
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algorithm loops over all linear combinations of rows to check closedness and over all pairs of

combinations of rows to check consistency, making them extremely expensive operations. If S
is a �eld, a row can be decomposed into a linear combination of other rows in polynomial time

using standard techniques from linear algebra. As a result, there are e�cient procedures for

checking closedness and constructing succinct hypotheses. Below we show that consistency

in this setting is equivalent to closedness of the transpose of the table. This trick is due to

Bergadano and Varricchio [BV96], who �rst studied learning of weighted automata. De�ne

the transpose of a table for the language given by S, E ⊆ A⋆ as the table with row labels rev(E)
and column labels rev(S) for the language rev(), where rev reverses all words in a language.

Proposition 6.6.1. If T = V over a �eld F and the transpose of a given table is closed, then that

table is consistent.

Proof. Suppose there is an l ∈ V (S) such that row♯(l)(e) = 0 for all e ∈ E. For any a ∈ A and

e ∈ E there are by closedness of the transposed table a �nite set J , {vj}j∈J ⊆ F, and {ej}j∈J ⊆ E
such that for every s ∈ S,

srow(s)(a)(e) = ∑
j∈J

vj × row(s)(ej). (6.4)

Let K be a �nite set and {v′k}k∈K ⊆ F and {sk}k∈K ⊆ S such that l = ∑k∈K v′k × sk . Then

srow♯(l)(a)(e) = srow♯

(
∑
k∈K

v′k × sk)
(a)(e) (de�nition of l)

=
(
∑
k∈K

v′k × srow(sk))
(a)(e) (de�nition of (−)♯)

= ∑
k∈K

v′k × srow(sk)(a)(e) (pointwise vector space structure)

= ∑
k∈K

v′k ×∑
j∈J

vj × row(sk)(ej) (6.4)

= ∑
j∈J

vj ×∑
k∈K

v′k × row(sk)(ej)

= ∑
j∈J

vj × (
∑
k∈K

v′k × row(sk))
(ej) (pointwise vector space structure)

= ∑
j∈J

vj × row♯

(
∑
k∈K

v′k × sk)
(ej) (de�nition of (−)♯)

= ∑
j∈J

vj × row♯(l)(ej) (de�nition of l)

= ∑
j∈J

vj × 0 = 0.
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In the case that S is a principal ideal domain, the weighted automata are the ones studied

in Chapter 5. Indeed, one can see Algorithm 5.1 as an instance of Algorithm 6.2 with a suc-

cinct hypothesis representation and without performing the consistency check. Note that in

Chapter 5 we did not have the �niteness constraint that is assumed in the present chapter: we

assume that V preserves �nite sets, which is the case if and only if S is �nite.

Alternating automata. We use the characterisation of alternating automata due to Ber-

trand and Rot [BR18]. Recall that, given a partially ordered set (P , ≤), an upset is a subset U of

P such that, if x ∈ U and x ≤ y, then y ∈ U . Given Q ⊆ P , we write ↑Q for the upward closure

of Q, that is the smallest upset of P containing Q. We consider the monad A that maps a set

X to the set of all upsets of (X ). Its unit is given by �X (x) =↑{{x}} and its multiplication by

�X (U ) = {V ⊆ X ∣ ∃W∈U ∀Y∈W ∃Z∈Y Z ⊆ V}.

Algebras for the monad A are completely distributive lattices [Mar79]. The sets of sets in A(X )
can be seen as DNF formulae over elements of X , where the outer powerset is disjunctive

and the inner one is conjunctive. Accordingly, we de�ne an algebra structure � ∶ A(2) → 2
on the output set 2 by letting �(U ) = 1 if {1} ∈ U , 0 otherwise. Alternating automata with

states X can be represented as A-automata with state space A(X ), output map o ∶ A(X ) → 2,
and transition map � ∶ A(X ) → A(X )A, sending each state to a DNF formula over X . The

only di�erence with the usual de�nition of alternating automata is that A(X ) is not the full

set (X ), which is not a monad [KS18]. However, for each formula in (X ) there is an

equivalent one in A(X ).
An adaptation of L⋆ for alternating automata was introduced by Angluin et al. [AEF15]

and further investigated by Berndt et al. [Ber+17]. The former found that given a row r ∈ 2E

and a set of rows X ⊆ 2E , r is equal to a DNF combination of rows from X (where logical

operators are applied component-wise) if and only if it is equal to the combination de�ned by

Y = {{x ∈ X ∣ x(e) = 1} ∣ e ∈ E ∧r(e) = 1}. We can reuse this idea to e�ciently �nd closedness

defects and to construct the hypothesis. Even though the monad A formally requires the use of

DNF formulae representing upsets, in the actual implementation we can use smaller formulae,

e.g., Y above instead of its upward closure. In fact, it is easy to check that DNF combinations

of rows are invariant under upward closure. Similar as before, we do not know of an e�cient

way to ensure consistency, but we could drop it.

Writer automata. The examples considered so far involve existing classes of automata. To

further demonstrate the generality of our approach, we introduce a new (as far as we know)
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type of automaton, which we call writer automaton.

The writer monad Writer(X ) = M ×X for a �nite monoid M has a unit �X ∶ X → M×X
given by adding the unit e of the monoid, �X (x) = (e, x), and a multiplication �X ∶ M×M×X →
M×X given by performing the monoid multiplication, �X (m1, m2, x) = (m1m2, x). In Haskell,

the writer monad is used for such tasks as collecting successive log messages, where the

monoid is given by the set of sets or lists of possible messages and the multiplication adds a

message.

The algebras for this monad are sets Q equipped with an M-action. One may take the

output object to be the set M with the monoid multiplication as its action. Writer-automata

with a free state space can be represented as deterministic automata that have an element of

M associated with each transition. The semantics is as expected: M-elements multiply along

paths and �nally multiply with the output of the last state to produce the actual output.

The basic learning algorithm has polynomial time complexity. To determine whether a

given row is a combination of rows in the table, i.e., whether it is given by a monoid value

applied to one of the rows in the table, one simply tries all of these values. This allows us to

check for closedness, to minimise the generators, and to construct the succinct hypothesis,

in polynominal time. Consistency involves comparing all ways of applying monoid values to

rows and, for each comparison, at most |A| further comparisons between one-letter extensions.

The total number of comparisons is clearly polynomial in |M|, |S| and |A|.

6.7 Implementation

We have implemented the general L⋆T algorithm in Haskell
4
, taking full advantage of the mon-

ads provided by its standard library. Apart from the high-level implementation, our library

provides

• a basic implementation for weighted automata over a �nite semiring, with a polynomial

time variation for the case where the semiring is a �eld
5
;

• an implementation for non-deterministic automata that has polynomial time imple-

mentations for ensuring closedness and constructing the hypothesis, but not for ensur-

ing consistency;

4http://www.calf-project.org/files/LStarT_hs.tar.gz
5
Despite the assumption throughout this chapter that the monad preserves �nite set, our implementation can

learn weighted automata over in�nite �elds and thus implements the algorithm introduced by Bergadano and

Varricchio [BV96], which was �rst studied in a categorical context in [JS14].

http://www.calf-project.org/files/LStarT_hs.tar.gz
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• a variation on the previous algorithm that uses the notion of consistency de�ned by

Bollig et al. [Bol+09];

• instantiations of the basic algorithm to the monad being (−) + E, for E a �nite set of

exceptions, and Writer, both of which result in polynomial time algorithms;

In this section we describe the main structure and ingredients of our library. After re-

calling monads in Haskell in Section 6.7.1, we start with the formalisation of automata in

Section 6.7.2. We then introduce teachers in Section 6.7.3 before exploring the actual learning

algorithm in Section 6.7.4. We give details for the non-deterministic and weighted case, whose

monads deserve a closer analysis.

6.7.1 Monads

We note that a monad in Haskell is speci�ed as a Kleisli triple (T , �, (−)♯), where T assigns

to every set X a set TX , � consists of a component �X ∶ X → TX for each set X , and (−)♯

provides for each function f ∶ X → TY an extension f ♯∶ TX → TY . These need to satisfy

f ♯ ◦ � = f �♯ = id (g♯ ◦ f )♯ = g♯ ◦ f ♯.

Kleisli triples are in a one-to-one correspondence with monads. On both sides of this corres-

pondence we have the same T and �, which for a Kleisli triple are turned into a functor with

a natural transformation by setting T f = (� ◦ f )♯. Furthermore, (−)♯ and � are obtained from

each other by f ♯ = � ◦ T f and � = id♯. Indeed, under this correspondence the (−)♯ operation is

a speci�c instance of the extension operation de�ned for a monad, with the T -algebra codo-

main restricted to free T -algebras. In Haskell, the � of the Kleisli triple is written return, and,

given f ∶ X → TY and x ∈ TX , f ♯(x) is written x »= f and referred to as the bind operation.

Furthermore, for any f ∶ X → Y , T f is given by fmap f.

Some basic Setmonads cannot directly be written down in Haskell because their de�nition

can only be given on types equipped with an equality check, or, for reasons of e�ciency, a

total order. For example, the Set type provided by Data.Set comes with a union function

that has the following signature:

union :: Ord a => Set a -> Set a -> Set a

One will have to use unions in one way or another in de�ning the bind of the powerset monad.

However, since this bind needs to be of type

(>>=) :: Set a -> (a -> Set b) -> Set b
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and does not assume an Ord instance on b, the powerset monad cannot be de�ned in this way.

One solution is to delay the monadic computations in a wrapper type whose constructors

are used to de�ne a monad instance: the free monad. Speci�cally, we endow the freer monad

of Kiselyov and Ishii [KI15] with a constraint parameter:

data CFree c m a where

Return :: a -> CFree c m a

Bind :: (c b) => m b -> (b -> CFree c m a) -> CFree c m a

Such a constrained free monad was �rst de�ned by George Giorgidze, but only for the speci�c

case where m is Set and c is Ord.
6

On the constrained free monad we can de�ne a complete

Monad instance:

instance Monad (CFree c m) where

return = Return

f >>= g = case f of

Return a -> g a

Bind s h -> s ‘Bind‘ (h >=> g)

This is the same code as used by [KI15], but we note that on the last line, since s is the �rst

argument of Bind in f, we know that the appropriate constrained needed to invoke Bind on

the right-hand side, with again s as its �rst argument, is satis�ed.

Finally, if there is a monad that is de�ned only on types satisfying a certain constraint, then

we can convert from our free monad type with that constraint back to the actual “monad”:

class ConstrainedMonad c m | m -> c where

constrainedReturn :: (c a) => a -> m a

constrainedBind :: (c a, c b) => m b -> (b -> m a) -> m a

unCFree :: (ConstrainedMonad c m, c a) => CFree c m a -> m a

unCFree f = case f of

Return a -> constrainedReturn a

Bind s g -> s ‘constrainedBind‘ (unCFree . g)

Note that operations such as equality checks for CFree c m use unCFree to delegate the

operation to whatever is de�ned for m. This means that in code that abstracts from the monad

we seem to be working with m as a monad.

As an example, the Set “monad” becomes

6https://hackage.haskell.org/package/set-monad-0.2.0.0

https://hackage.haskell.org/package/set-monad-0.2.0.0
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instance ConstrainedMonad Ord Set where

constrainedReturn = Set.singleton

s ‘constrainedBind‘ f = Set.unions [f a | a <- Set.toList s]

We may then use CFree Ord Set as the monad.

To implement the free semimodule monad in Haskell, we use the Map type from Data.Map.

Note that the monad will be de�ned in the �rst argument for that type, so we need to create

an auxiliary type to swap the arguments.

newtype Linear s k = Linear {fromLinear :: Map k s}

De�ning the monad again requires Ord constraints.

instance (Semiring s, Eq s) => ConstrainedMonad Ord (Linear s) where

constrainedReturn a = Linear $ Map.singleton a mempty

l ‘constrainedBind‘ f = Linear .

foldl’ (\m (k, s) -> ladd m . lscale s . fromLinear $ f k) Map.empty .

Map.toList . lminimize $ fromLinear l

The function lscale scales a map by an element from the semiring; ladd adds two maps

together. Both operations are pointwise. The monad we can use is CFree Ord (Linear s).

6.7.2 Automata

We model an automaton as a simple deterministic automaton.

data Aut a o q = Aut {

initial :: q,

delta :: q -> a -> q,

out :: q -> o }

For such automata, we can easily implement reachability and language functions, as well

as bisimulation. Bisimulation is used to realise exact equivalence queries for the teachers

that hold an automaton accepting the language to be learned. To optimise for the monad in

the same way the learning algorithm is optimised, we use bisimulation up to context [San98;

Bon+17].

bisimT :: (Eq o) => ((t q, t r) -> [(t q, t r)] -> Bool) ->

[a] -> Aut a o (t q) -> Aut a o (t r) -> Maybe [a]
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Here t represents the monad that we optimise for. Up to context means that, when considering

a pair p :: (t q, t r) of next states and the current relation b :: [(t q, t r)], the

pair p does not need to be added to the relation if it can be obtained as a combination of the

elements of b, using the free algebra structures of t q and t r. The �rst argument of bisimT

is a function that should determine this. Because of this abstraction, we do not actually need

to constrain t to be a monad here. For the Identity monad, one can simply use elem as the

�rst argument. The second argument is the alphabet.

Succinct automata optimised by a monad t enjoy a more concrete representation involving

maps.

data SAut t a o q = SAut {

sinitial :: t q,

sdelta :: Map q (Map a (t q)),

sout :: Map q o }

This is the type of the automata that the L⋆T implementation learns. The concrete represent-

ation allows the automaton to be displayed and exported. Of course, one can determinise a

succinct automaton using t-algebras for a -> t q and o.

det :: (Monad t, Ord q, Ord a) =>

Alg t (a -> t q) -> Alg t o -> SAut t a o q -> Aut a o (t q)

The type Alg t x is de�ned to be t x -> x. We allow an arbitrary algebra on a -> t q

rather than assuming the component t (a -> t q) -> a -> t (t q) of the distributive

law used in earlier sections because this allows us to run the delayed monadic computations

discussed earlier, which would otherwise pile up and cause serious performance issues.

6.7.3 Teaching

A teacher in our implementation is an object that comprises membership and equivalence

functions. It also records the alphabet.

data Teacher s a o q = Teacher {

membership :: [a] -> s o,

equivalence :: Aut a o q -> s (Maybe [a]),

alphabet :: [a] }

Teacher objects are parameterized by a monad s that serves a di�erent purpose than optim-

ising the learning algorithm: it is the monad of side-e�ects allowed by the implementation of
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queries. Whereas the Identity monad su�ces for a prede�ned automaton, one may have to

use the IOmonad to interact with an actual black-box system. By allowing an arbitrary monad

rather than assuming the IO monad, we are able to build features such as query counters and

a cache on top of any teacher through the use of monad transformers. A monad transformer

provides for any monad a new monad into which the original one can be embedded. For ex-

ample, the StateT x s monad adds a state with values in x to an existing monad s. This is

the transformer that enables the addition of query counters and a cache to a teacher:

countTeacher :: (Monad s) =>

Teacher s a o q -> Teacher (StateT (Int, Int) s) a o q

cacheTeacher :: (Monad s, Ord a) =>

Teacher s a o q -> Teacher (StateT (Map [a] o) s) a o q

The most basic teacher holds an automaton that it uses to determine membership and

equivalence, the latter of which is implemented through bisimulation.

autTeacherT :: (Monad s, Eq o) => ((t q, t r) -> [(t q, t r)] -> Bool) ->

[a] -> Aut a o (t q) -> Teacher s a o (t r)

It implements a Teacher for any monad s because it does not have any side-e�ects.

We also provide a teacher that implements equivalence queries through random testing.

randomTeacher :: (Monad s, Eq o) => Int -> State StdGen [a] ->

[a] -> ([a] -> s o) -> Teacher (StateT StdGen s) a o q

Its �rst argument is the number of tests per equivalence query, while the second argument

samples test words: StdGen is a random number generator. Once more we use the StateT

monad transformer, in this case to add a random number generator state to the monad s that

the membership query function, which is the last argument, may use. This query function

is used both for membership queries and for generated test queries. Note that this particular

teacher does not give any guarantees on the validity of positive responses to equivalence

queries. We do also provide the random sampling teacher suggested by Angluin [Ang87],

which guarantees that on a positive answer the hypothesis is probably approximately correct,

a notion introduced by Valiant [Val84].

pacTeacher :: (Monad s, Eq o) => Double -> Double -> State StdGen [a] ->

[a] -> ([a] -> s o) -> Teacher (StateT (Int, StdGen) s) a o q
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Here the �rst argument is the accuracy �, while the second one is the con�dence ). Both

should be values between 0 and 1. If d ∶ A⋆ → [0, 1] is the distribution represented by the

third argument (converting between Haskell types and sets for convenience) and l1, l2∶ A⋆ →
O are the languages of the hypothesis and the target, the guarantee is that, with probability

at least 1 − ), ∑u∈A⋆,l1(u)≠l2(u) d(u) ≤ �. Compared to randomTeacher, an Int has been added

to the state because the number of tests depends on the number of equivalence queries that

have already been asked.

6.7.4 Learning

We de�ne a Learner type that allows us to switch between variations on L⋆T and to optimise

certain speci�c procedures.

data Learner t a o = Learner {

decomposeRow :: ObservationTable a o -> [[a]] -> [o] -> Maybe (t [a]),

consistencyDefect :: Maybe (ObservationTable a o -> Maybe [a]),

ceh :: CEHandler }

The function decomposeRow takes an observation table, a list of labels l, and a row r, and

determines whether r can be obtained as a combination of the rows with labels in l. If this

is the case, it returns the combination, which has type t [a]. This function is used to check

closedness, to minimise the labels used as states for the hypothesis, and to construct the hy-

pothesis. If consistencyDefect is set to Nothing, it indicates that consistency should be

solved by solving closedness for what we call the transpose of the table (swapping S and E
and reversing their words while considering the reverse of the target language as the target

language); otherwise, it contains a function that given an observation table produces a new

column to �x one of its consistency defects, unless the table is already consistent. Solving

closedness for the transpose of the table always ensures consistency, but in general it may

add more columns than necessary. Lastly, CEHandler is a type that enumerates our adapta-

tions of the three counterexample handling methods: the original one by Angluin [Ang87],

the one by Maler and Pnueli [MP95], and the one by Rivest and Schapire [RS93].

To enable basic implementations of decomposeRow and consistencyDefect that work

for any monad T (preserving �nite sets), we need to be able to loop over the values of TS. In

order to facilitate this, there is a class Concrete f whose only member function turns a list

of values of any type into a list of values with type f applied to that type. It is intended to

be the concrete application of a functor to a set (represented as a list). We provide the func-
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tions lazyDecomposeRow and lazyConsistencyDefect, both conditioned with a Concrete

t constraint, which directly enable a basic version of the learning algorithm.

To optimise the algorithm in a speci�c setting, a programmer only has to adjust these

two functions. We provide such optimised functions for the cases of non-deterministic and

weighted automata (over a �eld). Regarding the former case, we provide crfsaDecompose

and scrfsaDecompose, which are essentially the right inverses corresponding to the canon-

ical and simpli�ed canonical RFSA, respectively, as explained in Example 6.4.5. Our optimised

weighted algorithm uses Gaussian elimination in a function called gaussianDecomposeRow

and solves consistency by solving closedness for the transpose of the table, a method readily

available regardless of the monad.

Enabling our adaptation of the counterexample handling method due to Rivest and Scha-

pire requires an additional condition. Recall that this method requires us to pose membership

queries for combinations of words, which can be done by extending the membership query

function (the language) of type [a] -> o to one of type t [a] -> o using the algebra struc-

ture de�ned on o. However, our membership query function actually has type [a] -> s o,

and there is no reason to assume any interaction between s and t. As a workaround, we will

assume an instance of Supported for the monad t, where Supported is a class de�ned as

follows:

class Supported f where

supp :: (Ord a) => f a -> [a]

Given any u :: f a and g :: a -> b, we require supp u to be such that the computation

of fmap g u only evaluates g on the elements of supp u. Naturally, we want supp u to be as

small as possible: it should contain exactly those elements of type a that are present in u. As

an example, recall that the free semimodule monad with values in a semiring s can be de�ned

on a type a as Map a s, where we identify a missing value for an element with that element

being assigned zero. Given u :: Map a s, supp u is given by the keys of the map u that

are assigned a non-zero value.

Using the instance for a monad t, the membership query function can be extended by

querying the words in the support of a given element of t [a] sequentially, constructing a

partial membership query function de�ned only on that support, and evaluating the extension

of that function. This method works because we assume that the side-e�ects exhibited by s

do not in�uence future membership queries.

Finally, our general L⋆T implementation has the following signature:

lStarT :: (Monad s, Monad t, Supported t, Ord a, Eq o) =>
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Figure 6.3: L⋆ variations on random DFAs.

Alg t (a -> t [a]) -> Alg t o ->

Teacher s a o (t [a]) -> Learner t a o -> s (SAut t a o [a])

6.8 Experiments

In this section we analyze the performance, in terms of number of queries, of several variations

of our algorithm by running them on randomly generated WFAs, NFAs, and plain Moore

automata. Our aim is to show the e�ect of exploiting the right monad and of using our adapted

optimised counterexample handling method. We note that di�erent algorithms considered

may produce di�erent types of automata. However, when we compare two algorithms they

will produce automata accepting the same language. We will compare them on how many

membership and equivalence queries they need.

The experiments are run using the implementation discussed in Section 6.7. In all cases

we use an alphabet of size 3. Random Moore automata are generated by choosing for each

state an output and further for each input symbol a next state using uniform distributions.

The WFAs are over the �eld of size 5. Here the outputs are chosen in the same way, and for

each pair of states and each input symbol, we create a transition symbol from the �rst to the

second state with a random weight chosen uniformly. We take the average of 100 iterations for

each of the sizes for which we generate automata. Membership query results in tables will be

rounded to whole numbers. We use bisimulation to �nd counterexamples in all experiments,

exploiting the fact that the target automaton will be known. We cache membership queries

so that the counts exclude duplicates.

For reference, Figure 6.3 compares L⋆ and the two counterexample handling variations

by Maler and Pnueli (denoted MP) and by Rivest and Schapire (denoted RS), on randomly
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generated DFAs of size 20 through 200 with increments of 20. Compared to L⋆, both L⋆MP

and L⋆RS remove the need for consistency checks. Interestingly, whereas L⋆RS compared to L⋆

improves in membership queries and worsens in equivalence queries, the situation is reversed

for L⋆MP.

6.8.1 Comparing L⋆V to L⋆

In Table 6.1 we compare the performance of L⋆ with that of L⋆V . (Recall that V is the free vector

space monad.)

Here L⋆ is the obvious generalisation of the original L⋆ algorithm to learn Moore

automata—DFAs with outputs in an arbitrary set, which here is the �eld with �ve elements.

Thus, as opposed to L⋆V , L⋆ ignores the vector space structure on the output set. In both cases

we consider the three di�erent counterexample handling methods. The algorithms are run

on randomly generated WFAs of sizes 1 through 4. As expected, each L⋆V variation provides

a massive gain over the corresponding L⋆ variation in terms of membership queries, and a

more modest one in terms of equivalence queries. Comparing the results of the L⋆ variations,

we see that the membership query results of L⋆ and L⋆RS are extremely close together. Other

than that, the ordering of the counterexample handling methods is the same as with the DFA

experiments. The L⋆V variations will be compared in more detail later.

Now we run L⋆ and variations of L⋆V on randomly generated Moore automata of sizes 5

through 50 with increments of 5. We chose to compare the L⋆V variations only to L⋆ because of

its average performance in between L⋆MP and L⋆RS as seen in Figure 6.3. The results are shown

in Figure 6.4. We see that, in terms of membership queries, both RS and MP counterexample

handling methods improve over the one by Angluin in this setting, and MP performs best in

terms of either query type. In these experiments, L⋆ performs much better than the algorithms

that attempt to take advantage of the non-existent vector space structure. Together with the

MQs EQs

Size L⋆ L⋆V L⋆MP L⋆V
MP L⋆RS L⋆V

RS L⋆ L⋆V L⋆MP L⋆V
MP L⋆RS L⋆V

RS

1 10 4 10 4 10 4 1.00 1.00 1.00 1.00 1.00 1.00

2 105 15 154 15 104 11 1.86 1.73 1.86 1.73 1.86 1.73

3 845 27 1003 27 844 24 2.84 2.10 2.16 2.14 3.00 2.81

4 5570 50 7904 50 5567 40 3.71 2.88 2.90 2.83 3.97 3.78

Table 6.1: L⋆ variations and L⋆V variations on random WFAs.
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Figure 6.5: L⋆V variations on random WFAs.

results in Table 6.1, this is consistent with the �ndings of Angluin et al. [AEF15]: they found

that for DFAs and non-deterministic, universal, and alternating automata, the adaptation of L⋆

that takes advantage of the exact type of structure of the randomly generated target automata

performs the best.

Figure 6.5 illustrates the performance of L⋆V variations on randomly generated WFAs. Here

we generated WFAs of sizes 5 through 30 with increments of 5. We emphasize that in Table 6.1

we could not go beyond size 4, because of performance issues with L⋆. There is hardly any

di�erence between the use of Angluin’s counterexample handling method and MP, neither in

terms of membership queries, nor in terms of equivalence queries. Interestingly, while the RS

method performs worse than the other methods in terms of equivalence queries, as usual, it

provides no signi�cant gain in terms of membership queries. We ran these experiments also

with the variations on the MP and RS algorithms where we drop the consistency checks. In

both cases the di�erences were negligible.
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6.8.2 Comparing NL⋆ to L⋆

We now consider learning algorithms for NFAs. To generate random NFAs, we use the strategy

introduced by Tabakov and Vardi [TV05] with a transition density of 1.25, meaning that for

each input symbol there are on average 1.25 transitions originating from each state. Accord-

ing to Tabakov and Vardi, this density results in the largest equivalent minimal DFAs. Like

Tabakov and Vardi, we let half of the states be accepting. We ran several variations of L⋆ and

NL⋆ on randomly generated NFAs of sizes 4 through 16 with increments of 4. The results are

shown in Table 6.2. Here NL⋆MP refers to the original algorithm by Bollig et al. [Bol+09], with

their notion of consistency; NL⋆RS is the same algorithm, but using the counterexample hand-

ling method that we adapted from Rivest and Schapire’s. The variations NL⋆MP- and NL⋆RS-

drop the consistency checks altogether. Unfortunately, doing the full consistency check was

not computationally feasible. As expected, the NL⋆ algorithms yield a great improvement over

L⋆ in terms of membership queries, and in most cases they also improve in terms of equi-

valence queries. This was already observed by Bollig et al. The exception is NL⋆RS-, which,

despite having the best membership query results, requires by far the most equivalence quer-

ies. As happened to L⋆ on DFAs, switching within NL⋆ from the MP to the RS counterexample

handling method improves the performance in terms of membership queries and worsens it

in terms of equivalence queries. Dropping consistency altogether turns out to increase both

query numbers.

6.9 Discussion

We have presented L⋆T , a general adaptation of L⋆ that uses monads to learn an automaton with

algebraic structure, as well as a method for �nding a succinct equivalent based on its generat-

ors. Furthermore, we adapted the optimised counterexample handling method of Rivest and

MQs EQs

Size L⋆ NL⋆MP NL⋆MP− NL⋆RS NL⋆RS− L⋆ NL⋆MP NL⋆MP− NL⋆RS NL⋆RS−

4 138 79 82 55 54 3.75 3.01 3.64 3.59 4.64

8 1792 666 729 389 381 10.38 6.52 8.83 9.37 14.10

12 11130 2467 2701 1331 1286 18.93 11.08 14.92 17.88 27.61

16 38256 5699 6240 3036 2999 28.81 15.75 22.59 27.29 45.53

Table 6.2: L⋆ and NL⋆ variations on random NFAs.
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Schapire [RS93] to this setting and discussed instantiations to non-deterministic, universal,

partial, weighted, alternating, and writer automata. We have provided a prototype imple-

mentation in Haskell, using which we obtained experimental results con�rming that exploit-

ing the algebraic structure reduces the number of queries posed. The results also reveal that

the best counterexample handling method depends on the type of automata considered and

the algebraic structure exploited by the algorithm. We found that there is a signi�cant gain in

membership queries compared to the NL⋆ algorithm by Bollig et al. [Bol+09] when using our

adapted optimised counterexample handling method.

Related Work. An adaptation of L⋆ that produces NFAs was �rst developed by Bollig et

al. [Bol+09]. Their algorithm learns a special subclass of NFAs consisting of RFSAs, which

were introduced by Denis et al. [DLT02]. Angluin et al. [AEF15] uni�ed algorithms for NFAs,

universal automata, and alternating automata, the latter of which was further improved by

Berndt et al. [Ber+17]. We are able to provide a more general framework, which encompasses

and goes beyond those classes of automata. Moreover, we study optimised counterexample

handling, which [AEF15; Bol+09; Ber+17] do not consider.

The algorithm for weighted automata over an arbitrary �eld was studied in a category

theoretical context by Jacobs and Silva [JS14]. The algorithm itself was introduced by Ber-

gadano and Varricchio [BV96]. The theory of succinct automata used for our hypotheses is

based on the work of Arbib and Manes [AM75b], revamped to more recent category theory.

Our library is currently a prototype, which is not intended to compete with a state-of-the-

art tool such as LearnLib [IHS15] or other automata learning libraries like libalf [Bol+10]. Our

Haskell implementation does not provide the computational e�ciency achieved by LearnLib,

which furthermore includes the TTT-algorithm with its optimised data structure that in par-

ticular replaces the observation table by a tree [IHS14]. Such an optimisation is ad-hoc for

DFAs, and an extension to other classes of automata is not trivial. First steps in this direc-

tion have been set by [HSS17a], who have studied the tree data structure in a more general

setting. We intend to further pursue investigation in this direction, in order to allow for optim-

ised data structures in a future version of our library. We note that, although libalf supports

NFAs, none of the existing tools and libraries o�ers the �exibility of our library, in terms of

available optimisations and classes of models that can be learned.

Future Work. Whereas our general algorithm e�ortlessly instantiates to monads that pre-

serve �nite sets, a major challenge lies in investigating monads that do not enjoy this property.

The algorithm for weighted automata generalises to an in�nite �eld [BV96; JS14] and, as we



164 Chapter 6. Learning Automata with Side-E�ects

saw in Chapter 5, even a principal ideal domain. However, we also showed in Chapter 5 that

for an in�nite semiring in general we cannot guarantee termination, which is because a �-

nitely generated semimodule may have an in�nite chain of strict submodules. Intuitively, this

means that while �xing closedness defects increases the size of the hypothesis state space

semimodule, an in�nite number of steps may be needed to resolve all closedness defects. In

future work we would like to characterize more precisely for which semirings we can learn,

and ideally formulate this characterisation on the monad level.

As a result of the correspondence between learning and conformance testing [Ber+05;

HSS17a], it should be possible to include in our framework the W-method [Cho78], which is

often used in case studies deploying L⋆ (e.g. [Cha+14; RP15]). We defer a thorough investiga-

tion of conformance testing to future work.
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Further Directions

In this thesis we have developed CALF: a categorical automata learning framework built

around an abstract version of the L⋆ algorithm. Using this framework we recovered and ex-

tended an algorithm to learn tree automata, we generalised a learning algorithm for WFAs to

include WFAs over PIDs, and we provided a general algorithm to learn automata with side-

e�ects, parametric on a monad. In this chapter we explore the perspective CALF o�ers on

various avenues that could be pursued for future work within the �eld of automata learning.

A �rst direction worth exploring is optimising classes of learning algorithms, such as the

one from Chapter 6. We have already shown that the counterexample handling optimisation

due to Rivest and Schapire [RS93] can be transferred from the DFA setting to our algorithm

for a wide range of automata with side-e�ects (Section 6.5). This transfer was enabled by our

categorical view on these automata, interpreting them in the category of algebras for a monad.

Apart from the counterexample handling method, potential ingredients of the algorithm to

optimise include the way closedness and consistency are ensured, as well as the data structure

that represents the wrappers.

One alternative datastructure to replace the observation tables of L⋆ was proposed

in [KV94], where so-called classi�cation trees are used instead. In an observation table, pre�xes

are distinguished when they are assigned di�erent rows, which are obtained by appending

su�xes from a �xed set and querying membership on the resulting concatenations. A classi-

�cation tree generalises this by making the su�xes form the nodes of a binary tree. Given a

pre�x, one starts at the root node. Taking the su�x corresponding to the current node, one

queries membership on the concatenation of the pre�x and the su�x, the result of which de-

termines which of the two subtrees is considered next. The set of leaves of such a tree forms

a set of labels that serve to distinguish pre�xes. When two previously equivalent pre�xes are

165



166 Chapter 7. Further Directions

discovered to be di�erent, for instance due to a consistency defect, one simply replaces their

leaf with a node containing the distinguishing experiment. This gains much e�ciency com-

pared to the analogous process for an observation table, which requires a membership query

for every row when a column is added.

Both observation tables and classi�cation trees can be modelled using the notion of wrap-

per that is central to CALF [HSS17a]. The categorical view tells us more about redesigning

classi�cation trees to be applied in learning algorithms for di�erent types of automata: for

instance, in the WFA setting the operation that assigns to a pre�x its label needs to factor

through a linear map from the target (minimal) linear weighted automaton to the set of labels.

This constraint generalises to automata with side-e�ects (Chapter 6), where the correspond-

ing algebraic structure needs to be preserved. It turns out that this is a challenging constraint

to maintain in general, and transferring the optimisation by adapting it to suitable alternatives

is left to future research.

Another avenue to explore further is to study existing automata learning algorithms by

comparing them an algorithm derived from CALF, and to derive algorithms for other types

of automata when a new application is identi�ed. Here, the categorical view directly drives

the design of the algorithm: the majority of the e�ort lies in modelling the automaton us-

ing the categorical notion of automaton (De�nition 2.2.10). Using this model, major parts of

developing an algorithm come for free by instantiating Algorithm 4.2.

Fitting an automaton type in the categorical model can be a challenging task. For instance,

so far no suitable categorical treatment of register automata has been identi�ed. Although

nominal automata [BKL14], which recognise the same class of languages, can be modelled

categorically and have been learned with an adaptation of L⋆ [Moe+17], they are not as suc-

cinct as traditional register automata can be. This is because the “registers” of a state of a

nominal automaton must adhere to �xed equality constraints. Thus, if two values can but do

not have to be the same, di�erent states are needed. This explodes as the number of registers

lacking such clear relations increases. Progress on this drawback of nominal automata was

made by Moerman and Rot [MR20], who introduced separated nominal automata based on

the theory of nominal renaming sets [GH08]. These automata achieve the same succinctness

as register automata, but unfortunately they can only be used to accept languages of words

in which data values do not occur twice. Future research may lead to a hybrid automaton

model that combines the expressivity of nominal automata with the succinctness of separated

nominal automata.

One of the open problems identi�ed in Chapter 5 is the search for a more precise charac-

terisation of the semirings for which our algorithm terminates. In Chapter 6 we generalised
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this problem: we wondered if we could characterise the monads for which our general al-

gorithm to learn automata with side-e�ects, currently presented with a limitation to monads

preserving �nite sets, terminates. As a �rst step, it would seem that the termination proof

Theorem 5.2.10 generalises without much e�ort to the level of monads, along with the de�n-

itions of closedness strategy and progress measure that it uses. Once this generalisation of

the theory in Chapter 6 is made, one additional example worth exploring is that of subsequen-

tial transducers, which accumulate words of output symbols along their transitions. Here the

side-e�ect is a monad pairing the set of output words with a given set, which is an operation

that does not preserve �nite sets and is therefore not covered by Chapter 6 in its current form.

A broader goal for future work is to exhibit an extensive portfolio of automata learning

algorithms covered by CALF. Apart from subsequential transducers, we expect to be able to

cover for instance the families of DFAs of Angluin and Fisman [AF16] in the form of the de-

pendent coalgebras of Ciancia and Venema [CV12]. These are also an instance of the categor-

ical algorithm in [US19], but as with tree automata in that work a reduction to an automaton

accepting words is used. We expect to recover an algorithm similar to the one by Angluin and

Fisman.

Another class of automata for which automata learning techniques have not yet been

developed is given by pomset automata, which are used in concurrency theory [Kap+19]. We

expect that the �exibility of CALF will allow the development of such algorithms and their

applications in veri�cation.

Ultimately, CALF and the automata learning algorithm at its core provide a powerful tool-

box for future studies of automata learning. The framework o�ers a deep understanding that

can be used to compare automata learning algorithms in general, and to transfer optimisa-

tions between them; at the same time, new algorithms that are correct by construction can

be derived from the abstract template. Being formulated on an abstract level, the framework

provides a strong guideline for designing algorithms but does not obstruct choices of im-

plemenation details, leaving room in particular for ad hoc optimisations.
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