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Abstract
Survival Analysis and Reliability Theory are con-
cerned with the analysis of time-to-event data, in
which observations correspond to waiting times
until an event of interest, such as death from a
particular disease or failure of a component in a
mechanical system. This type of data is unique
due to the presence of censoring, a type of missing
data that occurs when we do not observe the actual
time of the event of interest but instead we have
access to an approximation for it given by random
interval in which the observation is known to be-
long. Most traditional methods are not designed
to deal with censoring, and thus we need to adapt
them to censored time-to-event data. In this pa-
per, we focus on non-parametric goodness-of-fit
testing procedures based on combining the Stein’s
method and kernelized discrepancies. While for
uncensored data, there is a natural way of imple-
menting a kernelized Stein discrepancy test, for
censored data there are several options, each of
them with different advantages and disadvantages.
In this paper, we propose a collection of kernel-
ized Stein discrepancy tests for time-to-event data,
and we study each of them theoretically and em-
pirically; our experimental results show that our
proposed methods perform better than existing
tests, including previous tests based on a kernel-
ized maximum mean discrepancy.

1. Introduction
An important topic of study in statistics is the distribution
of times to a critical event, otherwise known as survival
times: examples include the infection time from a disease
(Andersen et al., 2012; Mirabello et al., 2009); the death
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time of a patient in a clinical trial (Collett, 2015; Biswas
et al., 2007); or the possible re-offending times for released
criminals (Chung et al., 1991). Survival data are frequently
subject to censoring: the time of interest is not observed, but
rather a bound on it. The most common scenario studied is
right censoring, where a lower bound on the survival time is
observed, for instance, a patient might leave a clinical trial
before it is completed, meaning that we only obtain a lower
bound on the time of death (the definitions and terminologies
for the survival analysis setting will be provided in Section
2).

We address the setting where a model of survival times is
proposed, and it is desired to test this model against observed
data in the presence of censoring: this is known as goodness-
of-fit testing. When departures from the model follow a
known parametric family, a number of classical tests are
available, being the most popular in practice the Log-rank
test (Hollander & Proschan, 1979), and its generalization,
the weighted Log-rank test (Brendel et al., 2014). For an
overview of these and other methods we refer the reader to
(Klein & Moeschberger, 2006)

In the event of more general departures from the null, ker-
nel methods may be used to construct a powerful class of
non-parametric tests to detect a greater range of alternative
scenarios. For the uncensored case, a popular class of ker-
nel goodness-of-fit tests utilize Stein’s method (Barbour &
Chen, 2005; Chen et al., 2010; Ley et al., 2017; Gorham &
Mackey, 2015) to develop a test statistic (Liu et al., 2016;
Chwialkowski et al., 2016; Gorham & Mackey, 2017; Jitkrit-
tum et al., 2017), which can be computed even when the
model is known only up to normalization. In this paper we
consider the particular case of kernel Stein discrepancies
(KSDs) which are described in Section 2. While an alterna-
tive strategy would be simply to run a two-sample test using
samples from the model, using for instance the maximum
mean discrepancy (MMD) (Gretton et al., 2012), Stein tests
are more computationally efficient (no additional sampling
is needed), and can take advantage of model structure to
achieve better test power. KSD tests have been extended
to various settings such as discrete variable models (Yang
et al., 2018), point process (Yang et al., 2019), latent vari-
able models (Kanagawa et al., 2019), and directional data
(Xu & Matsuda, 2020).
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Figure 1. Example functions related to survival analysis.

In the present work, we propose to generalize Stein
goodness-of-fit tests to the setting of survival analysis with
right-censored data. In Section 3, we introduce three sep-
arate approaches to constructing a Stein operator in the
presence of censoring: the first, the Survival Stein Operator,
is the most direct generalization of the Stein operator used in
the uncensored KSD test. The second, the Martingale Stein
Operator, uses a different construction, based on a classical
martingale studied in the survival analysis literature. The
third, the Proportional Stein Operator, is designed for com-
posite null hypotheses: in this case, the hazard function
(that is, the instantaneous probability of an event at a given
time, conditioned on survival to that time) is known only
up to a constant of proportionality. For instance, we may
wish to use a constant hazard as the null hypothesis, without
specifying in advance the value of the constant.

The rest of the paper is structured as follows: in Section
4, we construct kernel statistics of goodness-of-fit, based
on each of the operators previously introduced. We char-
acterize the asymptotics of each statistic in Section 5. We
find that in order to guarantee convergence in distribution
under the null, the kernel statistic based on the Survival
Stein Operator requires more restrictive conditions than the
statistic built on the Martingale Stein Operator. In other
words, the straightforward extension of the uncensored test
is in fact the more restrictive approach of the two. Stronger
assumptions again are required in obtaining convergence
in distribution for the Proportional Stein Operator statistic,
which should come as no surprise, given that the null is now
an entire model class. For each statistic, we propose a wild
bootstrap approach to obtain the test threshold. Empirical
studies and results are presented in Section 6, where we
compare with a recent state-of-the-art non-parametric test
for censored data (Fernandez & Gretton, 2019) based on the
MMD, which has been shown to outperform classical tests.
For challenging cases, our Stein tests surpass the MMD test.

2. Background
Kernel Stein Discrepancy We briefly review the ker-
nel Stein discrepancy (KSD) in the absence of censoring

(Chwialkowski et al., 2016; Liu et al., 2016), which is in-
spired from (Gorham & Mackey, 2015; Ley et al., 2017).
Let f0 be a smooth probability density on R. For a bounded
smooth function ω : R → R, the Stein operator T0 is

T0 ω(x) = ω(x)(log f0(x))
� + ω�(x), (1)

where � denotes derivative w.r.t x. Since f0 vanishes at the
boundary and ω is bounded, integration by parts on R results
in Stein’s Lemma,

E0[T0ω] =
�

(T0ω)(x)f0(x) = 0,

under some regularity conditions. Since the Stein operator
T0 depends on the density f0 only through the derivative of
log f0, it does not involve the normalization constant of f0,
which is a useful property for dealing with unnormalized
models (Hyvärinen, 2005).

Let H be a reproducing kernel Hilbert space (RKHS) on
R with associated kernel K. By using the Stein operator
above, the kernel Stein discrepancy (KSD) (Chwialkowski
et al., 2016; Liu et al., 2016) between two densities fX and
f0 is defined as

KSD(fX�f0) = sup
ω∈B1(H)

EX [T0ω], (2)

where B1(H) denotes the unit ball of H, and EX denotes
the expectation w.r.t. the density fX . It is easy to see that
KSD(fX , f0) ≥ 0 and that KSD(fX , f0) = 0 for fX = f0.
Moreover, under some regularity conditions, we have that
KSD(fX , f0) = 0 if and only if fX = f0 (Chwialkowski
et al., 2016).

By using standard properties of RKHSs, we can conve-
niently write KSD(fX , f0) as

KSD2(fX�f0) = Ex,y∼fX [h0(x, y)], (3)

where h0(x, y) =

�log f0(x)�K(x, ·)+K �(x, ·), log f0(y)�K(y, ·)+K �(y, ·)�,

with �·, ·� denoting the inner product of H.
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Censored Data Let (X1, . . . , Xn)
i.i.d.∼ FX be the sur-

vival times, which are non-negative real-valued random vari-
ables of interest, and let (C1, . . . , Cn)

i.i.d.∼ FC be another
collection of non-negative random variables called censor-
ing times. In this work, we assume the non-informative
censoring setting, where the censoring times are indepen-
dent of the survival times. The data we observe correspond
to (Ti,Δi) where Ti = min{Xi, Ci} and Δi = 1{Xi≤Ci}.
We can imagine that Xi is the time of interest (death of a
patient) and Ci is the time a patient leaves the study for
some other reason, thus, for some patients we observe their
actual death time, whereas for others we just observe a lower
bound (the time they left the study). Δi indicates if we are
observing Xi or Ci.

We denote by fT , fX and fC , the respective density func-
tions associated with the random variables T , X and C.
Similarly, we denote by FT , FX and FC , the respective
cumulative distribution functions; and by ST = 1 − FT ,
SX = 1−FX and SC = 1−FC , the survival functions. An
important element in survival analysis is the hazard function
which represents the instantaneous risk of dying at a given
time (as X usually refers to a death time). Given a distribu-
tion with density fX and survival function SX , the hazard
function λX(x) is given by fX(x)/SX(x), which can be
seen as the density at x of a random variable X conditioned
on the event {X ≥ x}. The corresponding cumulative haz-
ard function is defined as ΛX(x) =

� x

0
λX(t)dt. A useful

feature of the hazard function is that there is a one-to-one
relation between hazard and density functions through the
relation SX(x) = e−ΛX(x). For the random variables T
and C, we denote by λT and λC their respective hazard
functions, and by ΛT and ΛC , their cumulative hazards
functions. As a remark, every continuous non-negative
function λ : R+ → R can be a hazard function, as long
as

�
R+

λ(t)dt = ∞, thus, describing hazards is much eas-
ier than describing densities, as we do not need to worry
about normalization constants. Examples of corresponding
functions for different models are displayed in Figure 1.

As observations come as pairs (Ti,Δi), it is convenient to
consider the joint measure µ on R+ ×{0, 1} induced by the
pair (T,Δ). We write µX to denote the measure µ when the
survival times of interest Xi are generated according to fX ,
and µ0 if they are generated under f0 (i.e., under the null).
Note that µX and µ0 also depend on fC , however we don’t
make this dependence explicit, since for goodness-of-fit we
only care about f0 and fX .

Finally, for any function φ, the following identities hold,
which the reader should keep in mind for later use:

EX [Δφ(T )] =

� ∞

0

φ(s)fX(s)SC(s)ds, (4)

EX [(1−Δ)φ(T )] =

� ∞

0

φ(s)fC(s)SX(s)ds. (5)

Here EX = EµX
means that we are taking expectation

w.r.t. (T,Δ) ∼ µX . Similarly, we write E0 to indicate
(T,Δ) ∼ µ0 (under the null hypothesis).

3. Stein Operator for Censored Data
In this section, we describe a set of Stein operators for
censored data. We denote by Ω the set of functions R+ ×
{0, 1} → R, and recall that µ0 is the measure induced by
data (T,Δ) under the null hypothesis.
Definition 1. Let H ⊆ L2(f0). We call T0 : L2(f0) → Ω
a Stein operator for H if for each ω ∈ H

E0 [(T0ω)(T,Δ)] = 0. (6)

An interesting technical point is that our operator takes
functions ω : R+ → R and maps them to Ω. The idea
behind having these two spaces is that while our data of
interest is a time (hence the space H of functions R+ → R),
we actually observe pairs (Ti,Δi), hence we need functions
in Ω.

We choose the general class H to be an RKHS. We assume
that H contains only differentiable and bounded functions,
and that if ω ∈ H then ω� ∈ H. These requirements are
not restrictive and most of the standard kernels in the liter-
ature generate RKHSs with these properties, including the
Gaussian kernel (furthermore, we can avoid this restriction,
but we keep it as it is convenient for the exposition of the
paper). Further properties of H will be imposed if needed
in particular cases.

3.1. Survival Stein Operator

Observe that Ti = Xi if and only if Δi = 1. One might be
tempted to use only the uncensored observations to approxi-
mate

�∞
0

(T0ω)(x)f0(x)dx (where T0 is the standard Stein
operator in (1)) by computing

1

n

n�

i=1

Δi(T0ω)(Ti) =
1

n

n�

i=1

Δi(T0ω)(Xi),

however, this sum does not converge to�∞
0

(T0ω)(x)f0(x)dx as the term Δi introduces bias
due to censoring. Indeed, such an empirical average
converges to

�∞
0

(T0ω)(x)SC(x)fX(x). To account for
this bias we redefine T0 : H(s) → Ω as

(T0ω)(x, δ) = δ
(ω(x)SC(x)f0(x))

�

SC(x)f0(x)
+ ω(0)f0(0). (7)
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Here we write H(s) instead of H whenever we assume that
the additional condition is satisfied,

�

R+

| (ω(x)SC(x)f0(x))
� |dx < ∞, ∀ω ∈ H, (8)

which guarantees that the operator is well-defined. Notice
that ω(0)f0(0) in equation (7) appears since we do not nec-
essarily assume a vanishing boundary at 0.

Under the null hypothesis, (Ti,Δi) ∼ µ0, it holds that

1

n

n�

i=1

(T0ω)(Ti,Δi) → E0[(T0ω)(T,Δ)] (9)

as the number of data points tends to infinity, and
E0[(T0ω)(T,Δ)] = 0 due to Equation (4) and the fact that

�

R+

(ω(x)SC(x)f0(x))
�dx+ ω(0)f0(0) = 0, (10)

which is proved using integration by parts. Notice that
in this argument we use that H(s) only contains bounded
functions, allowing us to get rid of the boundary at infinity.

The operator T0 can be seen as a natural extension of the
Stein operator (Gorham & Mackey, 2015) to censored data.
Observe that in the uncensored case, SC(x) ≡ 1 recovers
the standard Stein operator.

Unfortunately, in the goodness-of-fit setting, we only have
access to the null distribution f0(x) but not to the censor-
ing distribution fC(x), thus SC(x) needs to be estimated.
The standard estimator for SC is the Kaplan-Meier estima-
tor (Kaplan & Meier, 1958) which is very data inefficient,
leading to an unsatisfactory testing procedure.

To bypass the approximation of SC we define the survival
Stein operator T (s)

0 : H(s) → Ω as

(T (s)
0 ω)(x, δ) = δω�(x) +

λ�
0(x)

λ0(x)
δω(x)

− λ0(x)ω(x) + λ0(0)ω(0) (11)

Proposition 2. Consider T0 and T (s)
0 defined in equa-

tions (7) and (11), respectively. Let (T,Δ) ∼ µ0. Then

E0[(T (s)
0 ω)(T,Δ)] = E0[(T0ω)(T,Δ)] = 0, ∀ω ∈ H(s).

The previous proposition says that if the data we observed
was generated from µ0 then the expectation of the operators
T0 and T (s)

0 are equal for each function in H(s). However,
the relation between T0 and T (s)

0 is stronger than merely
equality in expectation, indeed, under a slightly stronger
condition on the form of the distribution f0 and fC we get
the following result, which is proven in Appendix A.

Proposition 3. Assume that
� ∞

0

(λC(x) + λ0(x))fC(x)f0(x) < ∞, (12)

then, under the null hypothesis, i.e. (Ti,Δi) ∼ µ0, we have
that, as the number of data points tends to infinity,

sup
ω∈B1(H)

1

n

n�

i=1

(T (s)
0 ω)(Ti,Δi)− (T0ω)(Ti,Δi)

P→ 0.

To better understand the survival Stein operator, we interpret
the proposed Stein operator by making connections to the
Stein operator used in the uncensored case.

A careful computation gives the following equivalent expres-
sion for the expectation of (T (s)

0 ω)(T,Δ) for (T,Δ) ∼ µX :

EX [(T (s)
0 ω)(T,Δ)] = EX

�
ω(T )Δ

�
log

f0(T )

fX(T )

���

− EX [ω(T )(1−Δ)(λ0 − λX)(T )] + ω(0)(λ0 − λX)(0).

Here, we can relate the first expectation to uncensored ob-
servations: Δ = 1; the second expectation to censored
observations: Δ = 0; and the third term describes a shift
due to boundary conditions.

The expectation of the uncensored part is equal to
� ∞

0

ω(x)

�
log

f0(x)

fX(x)

��
SC(x)fX(x)dx,

which is analogous to what we obtain in the uncensored
case, with an additional SC weighting. If we have no cen-
soring, then SC ≡ 1, recovering the expression found in
(Chwialkowski et al., 2016). On the other hand, the expecta-
tion of the censored part is equal to

� ∞

0

ω(x)

�
SX(x)

S0(x)
f0(x)− fX(x)

�
fC(x)dx,

which measures the discrepancy between f0 and fX through
survival weights, under the measure of censoring fC . In
the absence of censoring, fC = 0 a.e., so this term appears
due to the censoring variable. Notice that if differences
between f0 and fX occur at times t where SC(t) = 0, then
no method will detect these differences (the observations at
this time are entirely censored).

3.2. Martingale Stein Operator

While the previous approach mimics the classic Stein opera-
tor, it has similar drawbacks. Similarly to what we observe
in (Chwialkowski et al., 2016) and (Liu et al., 2016), our
Stein operator T (s)

0 requires very strong integrability condi-
tions on the involved distribution functions. In our setting,
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we find, for example condition c.1 in Section 5.1, which
involves integrals with respect to hazard functions which
are known to satisfy

�
λ0(x)dx = ∞, leading to a testing

procedure with weak theoretical guarantees. While these
conditions may hold for some models, it is not hard to find
simple examples where they do not hold.

In order to get a more robust test, we exploit a well-known
identity in survival analysis, allowing us to deduce a more
natural Stein operator. Such an identity is given by

E0

�
Δφ(T )−

� T

0

φ(t)λ0(x)dx

�
= 0, (13)

which holds for any function φ such that E0(|φ(T )|) < ∞
under µ0 (Aalen et al., 2008). This equality is derived by
using a martingale identity that appears in the derivation of
classical estimators in survival analysis (see Appendix B).

Assuming λ0(t) > 0, we replace φ = ω�/λ0 in (31) to get

E0

�
Δ
ω�(T )
λ0(T )

− (ω(T )− ω(0))

�
= 0.

Define the martingale Stein Operator T (m)
0 : H(m) → Ω as

(T (m)
0 ω)(x, δ) = δ

ω�(x)
λ0(x)

− (ω(x)− ω(0)) (14)

where we write H(m) instead of H whenever H satisfies
�

R+

����
ω�(x)
λ0(x)

����SC(x)f0(x)dx < ∞, ∀ω ∈ H. (15)

From its definition, it is clear that E0[(T (m)
0 ω)(T,Δ)] = 0.

Note that, by the definition of the hazard functions, condi-
tion (15) is equivalent to

�

R+

|ω�(x)|SC(x)S0(x)dx < ∞, ∀ω ∈ H, (16)

which holds true if the kernel is bounded (recall we as-
sume that ω� ∈ H), therefore, compared to T (s)

0 , the testing
procedure associated to T (m)

0 has very strong theoretical
guarantees. Indeed, we observe that condition c.2 in Sec-
tion 5.1 is much simpler to satisfy because, this time, we
consider integrals with respect to the inverse of the hazard
function.

Model-Free Implementation: Inspired by the test of uni-
formity via a F0 transformation (Fernandez et al., 2019),
we transform our data Ui = F0(Ti) to generate pairs
(Ui,Δi). Notice that since F0 is monotone Ui = F0(Ti) =
min{F0(Xi), F0(Ci)}, thus Δi remains consistent. Under
this transformation, testing the null hypothesis is equivalent
to test whether F0(Xi) is distributed as a uniform random
variable, thus, in this setting, λ0 = λU = 1

1−x and

(T (m)
0 ω)(u, δ) = δω�(u)(1− u)− ω(u) + ω(0)

for u = F0(x) (notice that F0(0) = 0). It will be shown
in the experiments that this transformation is beneficial in
terms of power performance. Similarly, we can exploit
that Λ0(X) ∼ Exp(1) under the null when the model is
described via the cumulative hazard function.

3.3. Proportional Stein Operator

In some scenarios, we are interested in the shape of the
hazard function up to a multiplicative constant, i.e. λ0(t) =
γλ(t) where we know λ(t) but not the constant γ. The
family indexed by γ is called a proportional hazards family
and it is one of the key objects of study in Survival Analysis.
This object is fundamental because sometimes it is more
important to test for qualitative results as “the hazard rate is
growing at a constant speed”, rather than obtaining precise
values of the hazard function. If we only know λX(t) up to
constant and we can ensure that ω(0)λ(0) = 0, then we can
define a Stein operator based on unnormalized hazard.

In order to define our operator, we assume that
�

R+

|(ω(x)λ0(x))
�|dx < ∞, and

ω(0)λ0(0) = lim
x→∞

ω(x)λ0(x) = 0, ∀ω ∈ H. (17)

As usual, we write H(p) to indicate that H satisfies property
(17). Note that for any function ω ∈ H(p) it holds that

� ∞

0

(ω(x)λ0(x))
�

λ0(x)
λ0(x)dx = 0.

The integral above can be estimated using the Nelson-Aalen
estimator (Nelson, 1972), leading to the statistic

1

n

n�

i=1

(ω(Ti)λ0(T ))
�

λ0(Ti)

Δi

Y (Ti)/n
,

where Y (t) =
�n

k=1 1{Tk≥t} is the so-called risk function,
which counts the number of individuals at risk at time t.
This suggests the following operator

( �T0
(p)

ω)(x, δ) =

�
ω�(x) +

ω(x)λ�
0(x)

λ0(x)

�
δ

Y (x)/n
. (18)

In the definition above we use the notation �T0
(p)

to indi-
cate that, the function Y (t) depends on all data points,

hence �T0
(p)

can be seen as an empirical estimator of a
deterministic operator. Indeed, if (Ti,Δi) ∼ µ0, then
Y (x)
n → SC(x)S0(x), which indicates that under the null

hypothesis, the operator �T0
(p)

is similar to T (p)
0 , given by

(T (p)
0 ω)(x, δ) =

�
ω�(x) +

ω(x)λ�
0(x)

λ0(x)

�
δ

SC(x)SX(x)
.
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This operator cannot be directly evaluated since we do not
have access to SC . The following proposition establishes

the formal relation between �T0
(p)

and T (p)
0 .

Proposition 4. Let (Ti,Δi) ∼ µ0, then for every ω ∈ H(p).

1

n

n�

i=1

(�T (p)
0 ω)(Ti,Δi)

P→ E0

�
(T (p)

0 ω)(T1,Δ1)
�
= 0.

(19)

4. Censored-Data Kernel Stein Discrepancy
In this section, we derive censored-data Kernel Stein Dis-
crepancies (c-KSD) using each of our three Stein operators
defined in the previous section. The idea is to compare the
largest discrepancy between two distributions fX and f0
over a class of test functions in the RKHS H. Since we have
access to censored data, we compare fX and f0 through the
measures µX and µ0, defined in Section 2.

We proceed to defined three censored-data kernel Stein dis-
crepancies: the Survival Kernel Stein Discrepancy (s-KSD),
the Martingale Kernel Stein Discrepancy (m-KSD), and
the Proportional Kernel Stein Discrepancy (p-KSD) based

on the respective Stein operators T (s)
0 , T (m)

0 and �T0
(p)

. In
general, for any given Stein operator T (c)

0 : H(c) → Ω we
define the c-KSD as

c-KSD(fX�f0) = sup
ω∈B1(H(c))

EX [(T0(c)ω)(T,Δ)].

Denote by K(c) the reproducing kernel of H(c). By using
this kernel we can get a close-form expression for c-KSD:
For any of the operators T (c)

0 , we define the application of
T (c)
0 on K(c)(x, ·) as a function R+ → R which is defined

as (T (c)
0 ω)(x, δ) but replacing ω(x) by K(c)(x, ·) and ω�(x)

by ∂
∂xK

(c)(x, ·). For example, for c = m, we get that�
(T

(m)
0 K(m))(x, δ)

�
(·) equals

δ

λ0(x)

�
∂

∂x
K(m)(x, ·)

�
− (K(m)(x, ·)−K(m)(0, ·)),

which the reader should compare with equation (14).

Recall that for c ∈ {s,m, p}, we assumed that if
ω ∈ H(c) then ω� ∈ H(c), and thus ξ(c)(x, δ)(·) =�
(T (c)K(c))(x, δ)

�
(·) ∈ H(c) since all operators involve

ω or ω�. Define the Stein kernel h(c) : (R+ × {0, 1})2 → R
by

h(c)((x, δ), (x�, δ�)) = �ξ(c)(x, δ), ξ(c)(x�, δ�)�H(c)

The following proposition gives a closed form for the kernel
Stein discrepancies c-KSD(fX�f0).

Proposition 5. For c ∈ {s,m, p}, and let (T,Δ) and
(T �,Δ�) be independent samples from µX , and suppose
that

EX

��
h(c)((T,Δ), (T,Δ)

�
< ∞, (20)

then

(c-KSD(fX�f0))2 = EX

�
h(c)((T,Δ), (T �,Δ�)

�
.

Detailed forms and the derivation for Stein kernels
h(c)((x, δ), (x�, δ�)) can be found in Appendix A.3.2.

5. Goodness-of-fit Test via c-KSD

In this section, we study goodness-of-fit testing procedures
based on c-KSD. We begin by estimating c-KSD2 using

�c-KSD2(fX�f0) =
1

n2

n�

i=1

n�

j=1

h(c)((Ti,Δi), (Tj ,Δj))

where (Ti,Δi) are independent samples from µX . By con-
struction, under the null hypothesis, the estimator above
should be close to zero, while under the alternative we ex-
pect it to be separated from zero.

5.1. Theoretical Analysis

We state some technical conditions that feature our analysis

in order to establish the asymptotic behavior of �c-KSD2.

TECHNICAL CONDITIONS

a) Reproducing kernel conditions: We assume that K has
continuous second-order derivatives, and that K(x, y) and
∂2

∂x∂yK(x, y) are bounded and c0-universal kernels.

b) Boundary condition: limx→0+

�
K(x, x)λ0(x) < ∞.

c) Null integrability conditions: Let (T,Δ), (T �,Δ�)
i.i.d.∼

µ0, and recall that E0 = Eµ0 . Depending on c ∈ {s,m, p},
we assume:

1) s-KSD:

i) E0[φ(T,Δ)2|K(T, T )|] < ∞, and
ii) E0[φ(T,Δ)2φ(T �,Δ�)2K(T, T �)2] < ∞,

where φ(x, δ) = δ
λ�
0(x)

λ0(x)
− λ0(x).

2) m-KSD:

i) E0

�
|K�(T,T )|Δ

λ0(T )2

�
< ∞, and

ii) E0

�
K�(T,T �)2ΔΔ�

λ0(T )2λ0(T �)2

�
< ∞,
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where K�(x, y) = ∂2

∂x∂yK(x, y).

3) p-KSD:

i) E0

�
|K�(T,T )|Δ

(f0(T )SC(T ))2

�
< ∞, and

ii) E0

�
K�(T,T �)2ΔΔ�

(f0(T )f0(T �)SC(T )SC(T �))2

�
< ∞,

where K�(x, y) =
�

∂2

∂x∂yK(x, y)λ0(x)λ0(y)
�

.

d) Alternative integrability conditions: Consider samples
(T,Δ), (T �,Δ�)

i.i.d.∼ µX . Then, for each c ∈ {s,m, p} we
assume:

1) s-KSD:

i) EX [φ(T,Δ)2|K(T, T )|] < ∞,

where φ(x, δ) = δ
λ�
0(x)

λ0(x)
− λ0(x).

2) m-KSD:

i) EX

�
|K�(T,T )|Δ

λ0(T )2

�
< ∞,

where K�(x, y) = ∂2

∂x∂yK(x, y).

3) p-KSD:

i) EX

�
|K�(T,T )|Δ

ST (T )2λ0(T )2

�
< ∞,

where K�(x, y) =
�

∂2

∂x∂yK(x, y)λ0(x)λ0(y)
�

.

The following theorem establishes consistency of our empir-
ical kernel Stein discrepancies to their population versions.

Theorem 6. [Asymptotics under the alternative H1] Let
c ∈ {s,m, p}, and suppose that fX satisfies conditions a),
b), and the corresponding condition d). Then it holds

�
�c-KSD(fX�f0)

�2 P→ (c-KSD(fX�f0))2 .

The previous theorem is not enough to ensure good behavior
under the alternative as we need to be sure that the discrep-
ancy of two different distribution functions fX and f0 is
different from 0 (regardless of censoring). We can prove
this for c-KSD for c ∈ {s,m}. This does not hold true for
p-KSD since it is designed to test if the hazard function λX

is proportional to λ0, and not for goodness-of-fit testing pur-
poses. Indeed, whenever the hazards are in a proportional
relation, p-KSD is 0.

Theorem 7. Let c ∈ {s,m}. Assume SC(x) = 0 implies
SX(x) = 0 and that K is c0-universal. Then, under Condi-
tions a), b) and d), f0 �= fX implies c-KSD(f0�fX) > 0.

Under the null distribution, fX = f0, we also have that
�c-KSD(f0�f0) → 0, but we can prove an even stronger

result that follows from the theory of V -statistics.

Theorem 8 (Asymptotics under the null H0). Let c ∈
{s,m, p}, and suppose that fX = f0 and that conditions a),
b), and the corresponding condition c) are satisfied. Then

n
�
�c-KSD(fX�f0)

�2 D→ rc + Yc.

where rc is a constant and Yc is an infinite sum of indepen-
dent χ2 random variables.

While Theorem 8 ensures the existence of a limiting null
distribution, which implies that a rejection region for the test
is well defined, in practice it is very hard to approximate the
limit distribution and the corresponding rejection regions,
for which, we rely on a wild bootstrap approach.

We remark that we can obtain concentrations bounds for the
test-statistics under the null hypothesis if we assume that
the kernels h(s) and h(m) are bounded, by using standard
methods. Obtaining concentration bounds for h(p) is harder
as it is a random kernel, depending on all data points.

5.2. Wild Bootstrap Tests

To resample from the null distribution we use the wild boot-
strap technique (Dehling & Mikosch, 1994). This technique
is quite generic and it can be applied to any kernel.

The Wild Bootstrap estimator is given by

1

n2

n�

i=1

n�

j=1

WiWjh
(c)((Ti,Δi), (Tj ,Δj)), (21)

where W1, . . . ,Wn are independent random variables from
a common distribution W with E(W1) = 0 and Var(W1) =
1. In our experiments we consider Wi sampled from a
Rademacher distribution, but any distribution with the prop-
erties above is suitable. Dehling & Mikosch (1994) proved
that if the limit distribution exists (in the sense of Theo-
rem 8), then the wild-bootstrap statistic also converges to
the same limit distribution.

The testing procedure for goodness-of-fit is performed as
follows: 1) Set a type 1 error α ∈ (0, 1). 2) Compute
�c-KSD2(fX�f0) using our n data points. 3) Compute m-

independent copies of the Wild Bootstrap estimator (21). 4)
Compute the proportion of wild bootstrap samples that are

larger than �c-KSD2(fX�f0) ; if such a proportion is smaller
than α we reject the null hypothesis, otherwise the do not
reject it.

6. Experiments and Results
Proposed approaches: In our experiments, we denote by
mKSD and by pKSD, the tests based on the martingale and
the proportional kernel Stein discrepancies described in Sec-
tion 3, implemented using the Wild bootstrap approach as
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Figure 2. Rejection rate w.r.t. sample size and model perturbation. Left two for Weibull Hazard; Right two for Periodic Hazard. α = 0.01.
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Figure 3. Rejection rate for a proportional class model. As expected, the proportional KSD test does not reject the null for different rates
as all the alternatives belong to the same proportional family.

described in Section 5.2. In all our experiments we choose
the null as an exponential distribution of rate 1, and in this
case we can check that sKSD and mKSD coincide. Addi-
tionally, we implement mKSDu, which is given by the test
mKSD applied to the transformed data ((F0(Ti),Δi))

n
i=1

to test H0 : F0(X) ∼ U(0, 1). Finally, for the experiments,
we use an exponentiated quadratic kernel with length-scale
parameter chosen by using the median-heuristic, which is
the median of all the absolute differences between two differ-
ent data points. We did not perform any further optimization
to improve the performance of the tests.

Competing Approaches: MMD denotes the maximum-
mean-discrepancy approach proposed by Fernandez & Gret-
ton (2019), which provides state-of-the-art results, Pearson
denotes the Pearson-type goodness-of-fit test proposed by
Akritas (1988), which is quite competitive. LR1 and LR2
denote the weighted log-rank tests with respective weights
functions w1(t) = 1 and w2(t) =

�n
i=1 1{Ti≥t}, which

are classical tests, but not very competitive except for some
very simple settings (e.g. testing H0 : λ0(t) = 1 against
λX(t) = c, for c �= 1).

Simulated experiments

Data Setting We begin by studying our method in a sim-
ulated environment where we can control all the possible
parameters. We consider two data scenarios.

1. Weibull hazard functions: In our first experiment, we
consider the Weibull model, which is commonly used in Sur-
vival Analysis (Bradburn et al., 2003). The Weibull distri-
bution is characterized by the density function f(x; k, r) =

kr (rx)
k−1

exp{−(rx)k}, where k and r denote shape and
rate parameters, respectively. 2. Periodic hazard func-
tions: A much more interesting scenario is the so-called
periodic hazards, which are used to describe, for example,
seasonal diseases such as Influenza. In this example, we
consider the hazard function λX(x) = 1− cos (θπx) stud-
ied in Fernandez & Gretton (2019). Note that when θ → ∞,
then the distribution tends to a exponential of parameter 1.
See Figure 1 for a comparison between the models.

For both models, we investigate the performance of our
test in two setting: perturbations from the null and increas-
ing sample size, which we proceed to explain. Perturba-
tions from the null: In this experiment, we investigate how
the power changes for perturbations of the null hypothe-
sis. For the Weibull data, we set H0 : f0(x) = f(x; 1, 1)
and consider Weibull alternatives fX(x) = f(x; k, 1) with
k ∈ (0, . . . , 2]. Notice that we recover the null hypoth-
esis when k = 1. Also, we consider a constant 30% of
censored observations and a fixed sample size of n = 100.
For the periodic experiment we set H0 : f0(x) = e−x,
which is recovered when we take θ tending to infinity. In
this case, we consider alternatives θ ∈ {1, 2, . . . , 8}. We
consider, again, a constant 30% of censoring, and a fixed
sample size of n = 100. Increasing sample size: In this
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scenario, we investigate how the rejection rate of our test
increases as the sample size increases. In the Weibull setting
we set the null H0 : f0(x) = f(x; 1, 1), the alternative as
fX(x) = f(x; 1.5, 1), and in the periodic setting, we con-
sider the null H0 : f0(x) = e−x, and generate data from
the alternative θ = 3. In both settings we consider 30% of
censored data points

Results We show our results in Figure 2. For the Weibull
data (first and second plots), observe that all kernel-based
methods, except the pSKD, perform very similar to the Pear-
son test designed to perform extremely well in these types
of setting. For the Periodic data (third and fourth plots),
the goodness-of-fit problem is much more challenging, and
we see differences in the performances of the methods. We
observe that the MMD test of Fernandez & Gretton (2019)
has a better performance than the Pearson test, as was sug-
gested by the experiments in their work. Our test mSKD
performs slightly better than the the MMD test, whereas
mSKDu outperform all the other methods by a huge margin.
We can see that it is the most resistant to the increment in
the perturbation parameter (third plot), and, for example, for
θ = 4, most methods cannot differentiate between null and
alternative with large probability, whereas our method has
power of around 75%.

Proportionality Our results show that pKSD is not a very
powerful test. A possible explanation lies in the fact that,
since this method tests against a model class, it must ignore
all differences within this class, which affects the power of
the test. Despite its lower power, it remains the only test out
of the proposed methods that can test if our data was gener-
ated by a hazard proportional to λ0. In Figure 3, we consider
a Weibull hazard, given by λX(x; k, r) = rkkxk−1, with
shape k = 1 and rate r ∈ (0, 2). Note that changing the
parameter r gives the same hazard up to a constant. Figure 3
shows that for a family of proportional hazards our method
reaches the right type 1 error at low sample sizes, while
all the other methods have non-trivial power. We observe,
however, that for larger sample sizes, the test has a type 1
error that is slightly elevated over the design level. This
may occur as the conditions of Theorem 8 are very hard
to satisfy in general, and have yet to be proven to hold for
this case. Boostraping methods with with strong theoreti-
cal guarantees under broader conditions are the subject of
ongoing research.

Real Data Experiments

Data Sources We perform our tests on the following real
datasets to check relevant model assumptions. aml: Acute
Myelogenous Leukemia survival dataset (Miller Jr, 2011);
cgd: Chronic Granulotamous Disease dataset (Fleming
& Harrington, 2011); ovarian: Ovarian Cancer Survival

p-value aml cgd ovarian
Exponential 0.585 0.460 0.681

Weibull: shape=2 0.001 0.002 0.063

Table 1. Real data applications on testing hazard proportionality.

Dataset Covarites p-value
lung Age 0.061

stanford T5 mismatch score 0.057
nafld Weight and Gender 0.108

Table 2. Real data applications on testing goodness of fit

dataset (Edmonson et al., 1979); lung: North Central Can-
cer Treatment Group (NCCTG) Lung Cancer dataset (Lo-
prinzi et al., 1994); stanford: Stanford Heart Transplant
Data (Crowley & Hu, 1977); nafld: Non-alcohol fatty liver
disease (NAFLD) (Allen et al., 2018).

Test Results We apply our proposed tests on real dataset
for the Testing hazard proportionality and Goodness-of-fit
settings. First, we check model class assumption using
pKSD to test whether the observed data is from a desired
family model without fitting model parameters. We check
the exponential model class and the Weibull model with
shape=2. As the results shown in Table 1, our tests does
not reject the Exponential model, which is coherent with
scientific domain knowledge from the literature.1

For the Goodness-of-fit test setting, we fit a cox propor-
tional hazard model from the covariates provided in the
datasets. The cox-proportional hazard function has the form
λX(xi) = λb(xi) exp(βYi), where λb(x) is the base hazard
and Yi is the covariate for subject i. The procedure is done
via spliting the data into training set and test sets. Fitting
the cox proportional-hazard model is applied on the training
sets and the test sets are used to perform the goodness-of-fit
tests via mKSDu. Results in Table 2 shows that all the
models does not reject the fitted cox proportional hazard
models and validate the proportional hazard assumptions
for relevant fitted models, which is coherent with scientific
experience stated in the literature.2

1High-grade serous ovarian carcinoma (HG-SOC) is a major
cause of cancer-related death. The growth of HG-SOC acts as
an indicator of survival time of ovarian cancer (Gu et al., 2019).
This paper also suggests that that HG-SOC follows exponential
expansion, which implies exponentially distributed survival time
of ovarian patient.

2Chansky et al. (2016) suggests that cox proportional hazard
model is a reasonable tool among practitioners for lung dataset.
(Crowley & Hu, 1977) suggests a fit for cox proportional hazard
model for stanford dataset. (Allen et al., 2018) states that cox
proportional hazards is often used to study the impact of NAFLD
on incident metabolic syndrome or death.
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