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Abstract:

Neonatal seizures are the most prevalent and distinctive sign of 
neurologic dysfunction in early life and pose an immense challenge for 
clinicians. Improvements in neonatal care have increased the survival 
rate of extremely premature infants, considerably changing the spectrum 
of underlying etiologies, and instigating a gradual shift from mortality to 
morbidity. Recognizing neonatal seizures can be challenging due to 
variability in presentation, but clinical features can often provide valuable 
clues about etiology. Even though conventional EEG with simultaneous 
video-detection of ictal events still represents the diagnostic gold 
standard, continuous monitoring using a 1-2 channel amplitude-
integrated EEG with simultaneous unprocessed EEG can be crucial for 
early recognition and intervention. Furthermore, tremendous progress 
has been made in neuroimaging. While the majority of neonatal seizures 
are caused by hypoxic-ischemic events, stroke, hemorrhage or infection, 
about 15% of patients will require more sophisticated algorithms for 
diagnostic workup, including metabolic and genetic screening. These 
recent developments have led to renewed interest in the classification of 
neonatal seizures, which aim to help identify etiology and guide 
appropriate therapeutic and prognostic decisions. In this review, we 
outline recent progress made in the etiology, diagnosis and treatment of 
neonatal seizures and highlight areas that deserve further research.
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ABSTRACT
Neonatal seizures are the most prevalent and distinctive sign of neurologic dysfunction in early 

life and pose an immense challenge for clinicians. Improvements in neonatal care have increased 

the survival rate of extremely premature infants, considerably changing the spectrum of 

underlying etiologies, and instigating a gradual shift from mortality to morbidity. Recognizing 

neonatal seizures can be challenging due to variability in presentation, but clinical features can 

often provide valuable clues about etiology. Even though conventional EEG with simultaneous 

video-detection of ictal events still represents the diagnostic gold standard, continuous 

monitoring using a 1-2 channel amplitude-integrated EEG with simultaneous unprocessed EEG 

can be crucial for early recognition and intervention. Furthermore, tremendous progress has been 

made in neuroimaging and all infants with seizures should have an MRI to help identify the 

underlying etiology. While the majority of neonatal seizures are caused by hypoxic-ischemic 

events, stroke, hemorrhage or infection, about 15% of patients will require more sophisticated 

algorithms for diagnostic workup, including metabolic and genetic screening. These recent 

developments have led to renewed interest in the classification of neonatal seizures, which aim 

to help identify etiology and guide appropriate therapeutic and prognostic decisions. In this 

review, we outline recent progress made in the etiology, diagnosis and treatment of neonatal 

seizures and highlight areas that deserve further research. 

Keywords: neonatal seizures, outcome, preterm, term infants
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INTRODUCTION
Seizure incidence is higher during the neonatal period than at any other time of life [1]. Neonatal 

seizures are the most common neurological emergency and are associated with a high risk of 

mortality and morbidity [2–4]. Neonatal seizures occur in 1-3 per 1000 live births [5–8], with 

substantially higher rates reported in preterm infants [9]. Improvements in neonatal care over the 

last few decades have changed the spectrum of injury seen in the immature brain and have 

facilitated a decrease in mortality following neonatal seizures. However, the prevalence of long-

term morbidity in survivors remains unchanged [10,11]. 

Neonatal seizures are unique, as the majority are symptomatic of brain injury occurring acutely 

in the perinatal period; in stark contrast to seizures presenting later in infancy and childhood. 

Hypoxic-ischemic encephalopathy (HIE) in term neonates and intraventricular hemorrhage 

(IVH) in preterm infants are the most prevalent etiology in neonates. Other common causes are 

cerebral infarction, central nervous system (CNS) infection, brain malformation, or metabolic 

disorders [11]. 

In the past decade, tremendous progress has been made in the area of neonatal seizure detection 

and etiological classification using continuous neuro-monitoring and cutting-edge neuroimaging, 

in addition to clinical observation. Challenges in diagnostics have been met with the 

development of metabolic as well as genetic screening, which carry the potential for rapid 

diagnosis and novel treatment options. In spite of increasing awareness about neonatal seizures 

and their dire consequences, including the high prevalence of cerebral palsy, developmental 

delay and post-neonatal epilepsy, little progress has been made in the development of effective 

treatments for neonatal seizures. Randomized controlled trials have never been more urgent.  
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In this review, we highlight key areas of neonatal seizure diagnosis and treatment, and identify 

the most imperative questions that still remain unanswered.

Classification of neonatal seizures

Neonatal seizures are usually acute symptomatic, often electrographic only (subclinical) or show 

discreet clinical manifestations that can be difficult to differentiate from movements seen in sick 

preterm or term babies [12,13].  Hence, the need for EEG confirmation of neonatal seizures is 

widely accepted [6,12]. However, this hinders the integration of neonatal seizures into a 

classification scheme serving all ages, which is reflected by the fact that, until recently, the ILAE 

seizure classification did not include neonatal seizures [14,15]. It is not surprising therefore that 

other classifications have been published by neonatologists and pediatric neurologists, which are 

unique to the neonatal period [13,16]. However, these were based on clinical semiology only 

[16], neglected electrographic seizures [16], and included epileptic and non-epileptic events 

[13,16]. 

In 2014, a new Task Force on Neonatal Seizures was established by the ILAE (International 

League Against Epilepsy - Commission for terminology and classification). This Task force has 

developed a diagnostic framework based on the Mizrahi classification of neonatal seizures and 

the 2017 ILAE seizure classification [17,18], which consists of four domains: clinical 

presentation (high risk or clinical suspicious events), diagnosis (with EEG), manifestation (with 

or without clinical manifestation) and seizure types (motor: automatisms, clonic, epileptic 

spasms,, myoclonic,  sequential and tonic and non-motor: autonomic and behavioural arrest, as 

well as unclassified).  This classification has several advantages: it is tailored towards neonates 

and ignores seizure types not seen in this age group, it includes electrographic seizures and 

allows the user to choose the degree of detail when classifying seizures: 
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https://www.ilae.org/guidelines/definition-and-classification/neonatal-seizure-classification.  At 

the same time the same terminology and seizure types as in the 2017 ILAE classification are 

used: https://www.ilae.org/journals/epigraph/epigraph-vol-17-issue-3-fall-2015/classifying-

seizures-in-the-very-young-initial-plans-of-the-neonatal-seizure-task-force-part-of-ilae-

commission-on-classification-and-terminology.

Does seizure semiology reveal seizure etiology?

Seizure phenomena in neonates differ from those observed in older infants, and this is 

particularly the case for premature neonates [1]. Recognizing seizures in the neonatal period can 

be challenging due to variability in presentation [19,20], and clinical suspicion should be 

verified by EEG recording, where possible, before treatment initiation.  Although amplitude-

integrated EEG (aEEG) is a particularly useful tool in the neonatal intensive care unit (NICU), 

full video-EEG remains the gold standard for the detection of epileptic seizures in neonates.

A wide range of underlying causes give rise to seizures in neonates, including HIE, intracranial 

hemorrhage or infarction, metabolic or electrolyte disorders, CNS infections or congenital 

malformations, and genetic disorders. Neonatal epileptic syndromes [14] such as self-limiting 

familial neonatal epilepsy (BFNE), early myoclonic encephalopathy (EME), and Early infantile 

epileptic encephalopathy (Ohtahara syndrome) are infrequent. Despite the inherent complexity in 

this long list of causes and variable seizure semiologies, clinical features of neonatal seizures can 

suggest the underlying etiology and help guide appropriate treatment options. 

True myoclonic seizures should raise suspicions of a metabolic disorder such as non-ketotic 

hyperglycinemia (NKH), propionic acidemia, and vitamin B6-dependent epilepsy. A variety of 

severe brain insults, e.g., cortical malformations as well as metabolic and genetic disorders 

(PEX, ARX, CDKL5, KCNQ2, SPTAN, STXBP1-related epilepsy etc.) are associated with tonic 
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seizures. Epileptic spasms in neonates are rare, mostly found in metabolic disorders, but can also 

be caused by cortical malformations or early epileptic encephalopathy. Sequential seizures with 

spasms are suggestive of a vitamin B6 dependent epilepsy [22,23]. Nearly all seizure types have 

been reported in neonates with HIE but a large proportion will be electrographic-only [13,21]. 

Focal clonic seizures point to a focal cortical lesion (stroke, intracranial hemorrhage, focal 

cortical dysplasia) [13]. Sequential seizures, encompassing a sequence of a tonic followed by a 

myoclonic or clonic phase have been observed in neonates with KCNQ2-mutations and a 

variable severity of clinical presentation [24].

HIE accounts for 60-65% of neonatal seizures occurring in the first day of life and most cases 

are evidenced by a complicated birth history. Neonatal seizures occurring up to 72 hours after 

birth may be associated with stroke or brain malformations, bacterial meningitis, intrauterine 

infection, IVH in preterm neonates, drug withdrawal, and metabolic-genetic disorders, whereas 

those occurring towards the end of the first week of life in otherwise healthy neonates with a 

family history of neonatal seizures may point to self-limiting familial neonatal epilepsy [23,25–

27]. The affected infants present with a normal developmental trajectory with seizures gradually 

stopping by 6 months of age [25]. Mutations in two potassium channel subunit genes are 

associated with self-limiting familial neonatal epilepsy. Potassium voltage-gated channel 

subfamily KQT member 2 (KCNQ2) mutations are the most common, whereas KCNQ3 

mutations are rare [25,28,29]. Another autosomal dominant epilepsy syndrome presenting with 

neonatal seizures is the self-limiting familial neonatal-infantile epilepsy, associated with 

mutations in the sodium channel subunit gene SCN2A [30,31]. Seizure onset in this disorder 

varies and seizures can start in the neonatal or infantile period and generally stop by 12 months 

of age [25]. 
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Overall, the variability of seizure types and the extensive list of etiologies pose a tremendous 

challenge to the diagnostic skills of even the most experienced clinicians. Yet, clinical features 

in neonatal seizures have the potential to help reveal the underlying etiology and thus facilitate 

the implementation of a suitable treatment.  

Ictal and interictal EEG

An electrographic seizure is a sudden, abnormal EEG event defined by a repetitive and evolving 

pattern with a voltage of >2μV and a duration of >10sec [32]. “Evolving” is defined as an 

unequivocal evolution in frequency, voltage, morphology, or location. An interval of at least 

10sec is required to separate two distinct seizures [32]. Nevertheless, cut-offs are arbitrary and 

exceptions to the rule may occur. For example, epileptic generalized myoclonic jerks are 

associated with discharges of <10sec duration. Brief rhythmic discharges of <10sec duration 

without clinical symptoms are considered non-ictal, although they can have the same 

characteristics and bear the same risk for mortality and neurologic disability as electrographic 

seizures [33]. Other critical aspects are the demarcation of the onset and the end of the ictal 

discharge from interictal activity and the differentiation of seizures from seizure-like artefacts, 

physiological or pathological non-ictal rhythmic patterns or periodic discharges [34]. 

Electrographic seizures can be: 

 unifocal: multiple seizures arise from a single region (Figs. 1, 2)

 multifocal: seizures originate from at least three independent foci with at least one in 

each hemisphere

 lateralized: seizures propagate within a single hemisphere

 bilateral independent: seizures occur simultaneously in two regions and begin, evolve, 

and behave independently
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 bilateral: involvement of both hemispheres (Fig. 3) 

 migrating: the seizure moves sequentially from one hemisphere to another, or

 diffuse: asynchronous involvement of all brain regions 

The morphology of ictal discharges consists of rhythmic spikes, sharp-waves or rhythmic beta-, 

alpha-, theta- or delta waves. In preterm infants, rhythmic delta waves are the most common ictal 

pattern [35]. Focal clonic or focal tonic seizures exhibit focal EEG discharges, while generalized 

myoclonic jerks are associated with generalized bursts [13]. Ictal EEGs are often focal in origin 

[36], while not necessarily corresponding to an underlying focal pathology. 

Status epilepticus is diagnosed when the summed duration of seizures comprises ≥50% of an 

arbitrarily defined one-hour epoch [32]. So-called periodic patterns are of uncertain significance. 

These are described as relatively uniform patterns with waveforms recurring at almost regular 

intervals without evolution, lasting >10sec, presenting different morphologies, and focal, 

bilateral synchronous, bilateral asynchronous or diffuse localizations [32]. 

A normal background pattern in an infant with unremarkable neurological examination and 

motor seizures may suggest self-limiting familial neonatal epilepsy [25,26]. Seizures in self-

limiting familial neonatal epilepsy, as recently characterized in a large cohort, may be focal or 

generalized clonic or tonic, often associated with apnea, head or eye deviation, or staring [25].

An interictal burst-suppression pattern is a characteristic pattern of early onset epileptic 

encephalopathy with onset in the first month of life i.e. Ohtahara syndrome, or early infantile 

epileptic encephalopathy and early myoclonic encephalopathy [37–40]. Tonic seizures are the 

predominant seizure type in Ohtahara syndrome, whereas myoclonic seizures are the 

predominant seizure type in early myoclonic encephalopathy. Ohtahara syndrome and early 

myoclonic encephalopathy were recently considered part of a spectrum, with a considerable 
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overlap in clinical presentation and etiology [41]. Known genetic causes of Ohtahara syndrome 

and early myoclonic encephalopathy include brain malformations (e.g., polymicrogyria and 

lissencephaly), inborn errors of metabolism (e.g., pyridoxine- and other vitamin-dependent 

epilepsies, mitochondrial disorders, and amino acidopathies), and other genetic etiologies (e.g., 

pathogenic variants in ARX, GABRA1, KCNQ2, KCNT1 SCN2A, SIK1, SLC25A22, STXBP1) 

[24,42–48]. Overall, single gene variants underlie > 20-30% of epileptic encephalopathies [49–

51]. The identification of these genetic etiologies may prove crucial for patients with early-onset 

refractory epilepsy who may profit from gene-based treatments in light of emerging precision 

medicine [52].  

aEEG in seizure monitoring

While full video-EEG remains the gold standard for neurophysiological monitoring, amplitude-

integrated EEG (aEEG), which displays a time-compressed, one-or two-channel trend of the 

EEG, is increasingly utilized for long-term monitoring and continuous surveillance in the NICU. 

This simplified monitoring enables the assessment of the background activity and facilitates the 

earlier recognition of state changes, but abnormal findings (especially suspected seizure activity) 

require further investigation by more detailed full EEG.

Full EEG is, however, difficult to implement on a 24/7 basis in non-expert centres. aEEG on the 

other hand provides much needed information when continuous full EEG monitoring is not 

available.  This is especially the case for infants with neonatal seizures, when the aEEG can help 

assess seizure burden and the impact of anticonvulsive therapy. Previous literature has shown an 

80% correlation of seizure detection by aEEG compared to full EEG [53] when used by aEEG 

experts, showing that aEEG-based seizure diagnosis is much more reliable than clinical 

diagnosis alone [54,55]. When non-experts assessed the aEEG results were, however, much 
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poorer [56]. Seizures are more common over central cerebral regions and, if EEG electrodes 

cover this area, neonatal seizures can be identified in 70-80% of cases [57]. Seizures can be 

detected in the aEEG as ‘saw-tooth-like’ augmentations of the baseline amplitude but should be 

confirmed by examination of the simultaneous raw-EEG trace to rule out any artefact (Fig. 4). 

Thus, aEEG can facilitate the verification of ‘clinical seizure’ diagnosis, detect subclinical 

seizures, monitor the effect of anticonvulsants and is a useful aid for clinical decision making in 

the NICU, particularly when full EEG monitoring is either not feasible or not available. 

However, it should be borne in mind that short-term, focal, and low-amplitude seizures may be 

missed [57–59]. 

Seizure treatment studies that compared clinical diagnosis alone with aEEG-based continuous 

monitoring for seizure detection showed a lower injury score on MRI and a lower epilepsy 

incidence later in life when aEEG monitoring was available [60,61]. The reduction of total 

seizure burden by optimized aEEG-guided treatment correlated with improved cognitive 

outcome in neonates suffering from hypoxic-ischemic encephalopathy [62]. In conclusion, 

continuous simplified monitoring of cerebral function by aEEG has the potential to support the 

diagnosis and treatment of neonatal seizures, particularly in non-specialist centres.

Neuroimaging of neonatal seizures

Neuroimaging techniques used in neonatal seizures include cranial ultrasound (cUS) and MRI. 

Although most NICUs use cUS as the method of choice, MRI is rapidly gaining ground with the 

majority of neonates with seizures or HIE in recent studies undergoing at least one MRI scan 

[63,64]. The distinct advantages of cUS are the wider availability, the feasibility of bedside use 

in all infants including those too unstable to be transported to the MRI unit, and its compatibility 

with minimal handling in very immature neonates. However, the acquisition of high quality cUS 
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images is user-dependent, thus posing clear limitations for the detection of certain brain injuries. 

On the other hand, MRI is not always available and requires a transfer of the neonate to a 

dedicated MRI unit. Nevertheless, MRI has been acknowledged as the optimal neuroimaging 

modality for neonatal seizures, particularly when age-appropriate acquisition protocols are 

applied [65]. Ultimately a combination of these two techniques could provide the ideal tools to 

evaluate the underlying etiology. 

The added value of MRI compared to cUS has been assessed in a large cohort of term and near-

term infants with different seizure etiologies [66]. In all but 6% of infants, the underlying 

etiology could be identified, helped significantly by MRI [66]. In 12% of infants, a diagnosis or 

major imaging abnormalities would have been missed if only cUS rather than a combination of 

cUS and MRI had been used. As expected, MRI was most useful in diagnosing cerebral sinus 

venous thrombosis, some metabolic disorders and cerebral dysgenesis [66]. Another study 

showed that the probability of neurodevelopmental impairment or recurrent seizures was low in 

the absence of significant cerebral lesions on MRI [67], highlighting the utility of MRI not only 

in identifying the cause of neonatal seizures but also in providing information on long-term 

outcome. 

Magnetic resonance spectroscopy (MRS) can contribute information additional to conventional 

MRI in the evaluation of neonatal seizures by noninvasively measuring central nervous system 

metabolite levels such as N-acetylaspartate (NAA), choline, creatine, and lactate. Abnormal 

lactate, pyruvate or amino acid peaks may point to inborn errors of metabolism [68] and MRS 

may guide the detection of mitochondrial disease in neonates with normal MRI [69].  

Furthermore, MRS has the potential to contribute information relevant to prognosis in HIE [70]. 

Several studies have shown that lactate/creatine plus phosphocreatine, lactate/NAA, or 

lactate/choline–containing compounds peak-area ratios in HIE provide accurate prognostic 
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markers of the severity of brain injury and subsequent neurodevelopmental outcome, before 

changes are apparent on conventional MRI [71–75].

Measuring the efficacy of neonatal seizure treatment 

To date, few studies have used a standardized protocol for measuring seizure treatment efficacy 

in neonates. Many older studies relied on the clinical abolition of seizures only as a measure of 

treatment efficacy: this is clearly not adequate. aEEG efficacy measurement is better, but there 

are some limitations already outlined that make aEEG inadequate for use in randomized 

controlled trials. Full EEG has been used in a number of small studies to measure treatment 

efficacy, but the methods used were heterogeneous; information on the length of time it took for 

seizures to reduce or abate was rarely included, and the percentage change in seizures from 

baseline was not discussed. This makes a comparison between studies particularly challenging 

and a meta-analysis almost impossible. As a result, it has been difficult to progress studies of 

anti-epileptic drug (AED) treatment in neonates. Measuring treatment outcomes for neonatal 

seizures can also be difficult because of the natural history of neonatal seizures, and this can vary 

with etiology [76].

We advocate the use of multichannel video EEG monitoring during neonatal seizure trials and 

that the accumulated duration of electrographic seizures, often referred to as seizure burden, 

should be the quantitative measure of choice when assessing AED efficacy [77–80].  Seizure 

burden can be measured in minutes per hour and is a measure of the short-term intensity of 

seizures. Video-EEG technology has advanced dramatically in the last ten years, and recordings 

can be stored either locally or centrally. Most importantly, it is now possible to review live cot-

side video-EEG recordings remotely, making EEG more accessible and allowing for 24-hour 

interpretation. Seizure detection algorithms are currently undergoing randomized trials, and there 
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is no doubt that this technology will very soon make it easier to automatically calculate the on-

going seizure burden and evolving seizure profile [81,82]. 

It has long been recognized that neonatal seizures evolve over time but very few studies have 

detailed the evolution of electrographic seizures in neonates and those that have, generally 

describe seizures in neonates with HIE [76,83–85]. Lynch et al. examined the temporal 

distribution of seizures in neonates with HIE and found that seizures had a short period of high 

electrographic seizure burden near the time of seizure onset, followed by a longer period of low 

seizure burden [76]. 

Neonatal seizure evolution does not only depend on etiology, and factors such as gestational age 

and treatment are also important (Fig. 5). However, it is not known if earlier treatment of 

electrographic seizures will alter the course of the seizure evolution and result in less brain injury 

though some studies do indicate that a lower seizure burden is associated with less severe MRI 

severity scores and better outcomes [60,62,86]. Due to logistic challenges in EEG monitoring 

and recruitment [12], studies that aim to treat electrographic seizures immediately after onset are 

rare [60,62,79]. 

Metabolic and genetic work up in pharmacoresistant neonatal seizures

Whilst most neonatal seizures are symptomatic and usually related to HIE (38%), ischemic 

stroke (18%), and intracranial hemorrhage (11%) [6], a subgroup of about 13% represent distinct 

neonatal epilepsy syndromes, related to either brain malformations or genetic aetiologies [87]. 

Within this subgroup, congenital brain malformations, detectable by neuroimaging, have been 

established in 41% of neonatal epilepsies in a recent study, whereas genetic aetiologies were 

identified in 42% [87], with an overlap of about 9% between structural and genetic causes. 

Inborn errors of metabolism, established on the grounds of clinical presentation and biochemical 
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investigations -and often verified by genetic work up- represent a major challenge that needs to 

be identified –and addressed- quickly in order to avoid metabolic decompensation and enable 

counselling regarding recurrence risks and overall prognosis [88,89]. 

As early diagnosis enables specific treatment in some metabolic disorders [90] and may 

influence the choice of drugs in primary genetic conditions, a diagnostic algorithm should be in 

place in all neonatal units. This should include a standardized and well-documented vitamin B6 

trial (Fig. 6), which may identify patients with defects in ALDH7A1 [91], PNPO [92], the newly 

described PLPBP (previously named PROSC) gene [93,94] or rare cases of severe congenital 

hypophosphatasia [95]. These patients manifest with myoclonic seizures or a variety of other 

seizure types that are typically resistant to standard anticonvulsants and may be associated with a 

burst suppression pattern in EEG. Respective biomarkers can be used to guide further diagnostic 

workup of inborn errors of metabolism (Table 1). 

Patients with molybdenum cofactor deficiency (MocD) manifest with tonic clonic seizures, poor 

feeding, and variable facial dysmorphic signs. In this disorder, neuroimaging is quite specific, 

with findings ranging from cerebral oedema to cystic leukoencephalopathy [96]. For MocD type 

A, substitution with purified cyclic pyranopterin monophosphate cPMP has proven effective, but 

the window of opportunity is very short [97]. The past decade has revealed a quickly growing 

number of genes that cause primary genetic early onset epileptic encephalopathies [98]. Some 

may have suggestive semiology, such as unilateral tonic and prolonged seizures in KCNQ2 

mutations, while in, e.g., STXBP1 mutations, broad phenotypic variability has been described 

[99]. Thus, many institutions have changed their policies by sequencing multiple genes in a 

panel approach or going for next generation sequencing of the whole exome [89] with a 

diagnostic yield of about 40% in patients with seizure onset < 2 months of age [100]. As 

Page 15 of 36

Georg Thieme Verlag KG. P. O. Box 30 11 20, D-70451 Stuttgart, Germany http://www.thieme.de/fz/neuropediatrics/index.html

Manuscript submitted to editorial office

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

15

mutations in some genes occur de novo, while others are of Mendelian inheritance, an exact 

diagnosis is crucial for further family planning and counselling. 

The need for trials in neonatal seizures

Considering that a high seizure burden may aggravate long-term outcome, there is an urgent 

need to control prolonged or recurrent seizures.  Nevertheless, there is still an open debate 

concerning the management of neonatal seizures [101]. As a first step, the underlying etiology of 

seizures must be established as soon as possible, since this can facilitate an etiological and 

effective treatment. As a second step, for symptomatic treatment, a short-term or long-term 

therapy should be chosen, depending on the risk of seizure recurrence.

One of the major issues in the management of neonatal seizures is the lack of effective 

antiepileptic drugs. In a Cochrane review from 2004 [102], only two randomized controlled 

trials could be identified, with the authors concluding that "there is little evidence from 

randomized controlled trials to support the use of any of the anticonvulsants currently used in the 

neonatal period." Phenobarbital, the most widely-used first-line drug in neonatal seizures, has a 

response rate of approximately 43% and phenytoin, as second-line AED, of 57% [77]. 

Benzodiazepines and levetiracetam are commonly used as second or third-line drugs. Lidocaine 

reached a response rate of 68% in full-term neonates with a higher response rate than midazolam 

as second-line AED (p = 0.049) [103]. However, lidocaine toxicity, mainly in the form of 

cardiac arrhythmias, can be life threatening [104,105]. Furthermore, in view of potential cardiac 

side effects, lidocaine cannot be combined with phenytoin [106]. However in a recent study 

involving 368 full-term and 153 preterm infants, lidocaine-associated cardiac events were rare, 

especially since the introduction of new reduced-dose regimens [107]. Furthermore, no specific 
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AED treatments for preterm infants are indicated, in spite of the vast differences in 

pharmacokinetics as well as in the maturation of the CNS. 

To address this, the NEMO (NEonatal Seizure Using Medication Off-patent) consortium set out 

in 2009 to evaluate the loop diuretic bumetanide as a potential second line treatment for neonatal 

seizures in a multi-centre study across Europe. This study was, unfortunately, stopped early 

because of possible ototoxicity concerns and limited evidence for seizure reduction. In the past 

decade, several AEDs, such as levetiracetam [108,109] and topiramate [110], have emerged as 

viable alternatives with the potential to address age-specific mechanisms and challenges, but 

randomized controlled trials are still pending [101]. 

Finally, it is still unclear if improved control of neonatal seizures has the potential to enhance 

long-term outcome and this will remain an open issue until effective treatments are found. New 

generation AEDs appear promising, considering the absence of pro-apoptotic properties 

[101,111], but there is still  an urgent need for randomized controlled studies in neonates. 

Outcome of neonatal seizures

Mortality following neonatal seizures has decreased from 40% to 20% in the last few decades.  

However the prevalence of long-term neurological sequelae in survivors remains unchanged at 

30% [1,11]. The incidence of postneonatal epilepsy, cerebral palsy and developmental delay is 

higher in preterm neonates [8,112], with a reported odds ratio of 14 (95% CI, 2-86) per week of 

gestational age [113]. This shift from mortality to morbidity in the preterms poses a significant 

challenge for clinical management in the NICU [114]. In a recent study [115], unfavourable 

outcome predictors in preterm neonates included low birth-weight, low Apgar score at 1 minute, 

abnormalities in neurologic examination, pathologic EEG or cUS findings, and particularly 

neonatal status epilepticus (a rarity at low gestational ages). 
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Moreover, recent preclinical [116] and clinical [117,118] studies in HIE have provided evidence 

that recurrent seizures themselves may amplify injury to the developing brain beyond that of the 

underlying etiology. Overall, experimental data support the belief that seizures in early life 

impede normal development and reduce the efficiency of cortical networks, even in the absence 

of cell loss [119,120]. Permanent impairments in learning, memory, and cognition, as well as 

increased seizure susceptibility, may result from these seizure-induced changes in neuronal 

connectivity and receptor expression [121,122]. Interestingly, animal models provide evidence 

that prolonged seizures or status epilepticus result in brain injury only in the presence of pre-

existing insults such as those associated with HIE [123]. These observations are crucial in terms 

of neonatal seizure management, but experimental data still awaits confirmation in prospective 

double blind clinical studies. It should be noted that a 2016 Cochrane review investigating 

prophylactic barbiturate use in HIE [124] reported a reduced risk of seizures but no reduction in 

neonate mortality, whereas long-term outcomes were unavailable.

In the meantime, several – usually single centre  – studies have sought to identify outcome 

predictors, mainly in the underlying etiology or specific seizure types and EEG patterns [10]. 

Research on this topic is, however, impeded by the variable criteria of neonatal seizure 

identification and etiologic diagnosis throughout research studies [10,114], with preterm 

neonates constituting a particular challenge in this respect. Nevertheless, considerable efforts 

have been made to develop a robust scoring system/predictive model for neonatal seizures that 

would facilitate clinical decision [125–129]. These models are yet to be validated in larger, 

representative contemporary cohorts, to promote their implementation in clinical practice.

The increased availability of continuous video-EEG and/or aEEG monitoring in diagnosis and 

treatment evaluation of neonatal seizures is offering more refined diagnostic and therapeutic 

approaches. Furthermore, biomarkers such as semiology and EEG are expected to play a new 
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role in the context of genetic disease [87], and novel therapies [108,109] deriving from lab 

research and aiming to minimize damage to the immature brain [130] are expected to improve 

long-term outcomes. Predictive models and scoring systems will have to adapt to this rapidly 

changing landscape of neonatal seizures and their outcomes.

CONCLUSION

Recent technological advances in diagnostics, including full EEG, aEEG, MRI, metabolic and 

genetic testing, have improved seizure detection and etiologic classification in neonates. 

Meanwhile, ground breaking preclinical research on the effects of seizures and AEDs in the 

immature brain has improved our understanding of this complex situation. However, little has 

changed in terms of treatment and, consequently, the long-term outcomes, with neonatal seizures 

continuing to pose a challenge for clinicians worldwide.  Research must continue to facilitate the 

decoding of the mechanisms underlying neonatal seizures, improve their management by 

developing age-specific agents, and, ultimately, improving long-term outcomes in affected 

infants.  
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FIGURE LEGENDS 

Fig. 1: Term neonate age 2 days, hypoxic-ischemic encephalopathy, focal clonic seizures 

involving the left arm and the left leg. The EEG seizure starts with rhythmic alpha waves 

evolving into irregular sharp theta waves and after 15 sec (not shown) in rhythmic sharp waves.

Fig. 2: Term neonate age 1 day, hypoxic-ischemic encephalopathy, focal clonic seizures 

involving the left arm and oral automatisms. The EEG seizure starts with rhythmic delta waves.

Fig. 3: Term neonate age 10 days, STXBP1 encephalopathy, bilateral clonic seizures involving 

both arms and legs. The EEG seizure starts with bilateral amplitude reduction followed by 

bilateral parasagittal and generalized rhythmic spike waves with centro-median maximum. 

Figure 4. aEEG (above) and EEG traces (below) depicting a seizure pattern in a neonate. 

Figure 5. Seizures in 2 neonates showing the evolving seizure burden. The red vertical lines 

indicate the administration of loading doses of Phenobarbitone and the green vertical lines 

represent the administration of loading doses of a second line anticonvulsant (Phenytoin or 

Midazolam). The neonate in A has a total seizure burden of 243mins with 185 seizures; the 

neonate in B has a total seizure burden of 214mins with 56 seizures. The middle black trace 

denotes the neurophysiologist annotation of seizures, and the bottom blue trace denotes the 

period of therapeutic hypothermia. Both neonates had periods of status epilepticus, i.e. seizure 

burden of >30 min/h. Reproduced from Boylan et al 2013 [12].

Figure 6: Proposed algorithm for a standardized vitamin B6 trial. The timing and switch from 

pyridoxine HCL to pyridoxal 5´-phosphate (PLP) is individual and should be considered after 

24h on pyridoxine in case of persistent high seizure frequency. Improvement on EEG can lag 

markedly behind clinical improvement and is thus not a basis for initial decision-making. The 

algorithm does not exclude the simultaneous use of conventional anticonvulsants.  
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TABLE 1

Disease Urin Plasma CSF Gene

Antiquitin 
deficiency

  AASA,  PA  PA  AASA, P6C, ↓PLP,  PA, 
sec NT abn.

ALDH7A1

PNPO deficiency (Vanillactate) B
6
 profile

 pyridoxamine
↓ PLP, sec NT abnorm. PNPO

Congenital 
Hypophosphatasia

↓ AP, B
6
 profile  PLP (↓ PLP ?) TNSALP

MOCOD, ISOD sulfocysteine
  AASA,   P6C

↓ uric acid  AASA, P6C ↓PLP,  PA MOCS1, MOCS2, GPNH

NKH (non ketotic 
hyperglycinemia)

aminoacids (glycine) aminoacids (glycine)
CSF/plasma >0.004

4-enzyme cleavage system

Organoacidurias (e.g. 
D2HGA)

organic acid profile aminoacids …

CDG syndromes Transferrin isoelectric 
focusing

Common in CDG type II 

Zellweger Syndrome VLCFA, PA, phytanic 
acid, pristanic acid

PEX genes 1-13

Adenylosuccinate lyase 
deficiency

purines ADSL 

Table 1: Common metabolic diseases associated with neonatal seizures, their metabolic and 
genetic biomarkers. Specific biomarkers in preferred material are set in black, while biomarkers 
in non-preferred material, inconsistent and/or secondary findings, are set in grey.
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Fig. 1: Term neonate age 2 days, hypoxic-ischemic encephalopathy, focal clonic seizures involving the left 
arm and the left leg. The EEG seizure starts with rhythmic alpha waves evolving into irregular sharp theta 

waves and after 15 sec (not shown) in rhythmic sharp waves. 
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Fig. 2: Term neonate age 1 day, hypoxic-ischemic encephalopathy, focal clonic seizures involving the left 
arm and oral automatisms. The EEG seizure starts with rhythmic delta waves. 
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Fig. 3: Term neonate age 10 days, STXBP1 encephalopathy, bilateral clonic seizures involving both arms and 
legs. The EEG seizure starts with bilateral amplitude reduction followed by bilateral parasagittal and 

generalized rhythmic spike waves with centro-median maximum. 
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Figure 4. aEEG (above) and EEG traces (below) depicting a seizure pattern in a neonate. 
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Figure 5. Seizures in 2 neonates showing the evolving seizure burden. The red vertical lines indicate the 
administration of loading doses of Phenobarbitone and the green vertical lines represent the administration 

of loading doses of a second line anticonvulsant (Phenytoin or Midazolam). The neonate in A has a total 
seizure burden of 243mins with 185 seizures; the neonate in B has a total seizure burden of 214mins with 
56 seizures. The middle black trace denotes the neurophysiologist annotation of seizures, and the bottom 
blue trace denotes the period of therapeutic hypothermia. Both neonates had periods of status epilepticus, 

i.e. seizure burden of >30 min/h. Reproduced from Boylan et al 2013 [12]. 
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Figure 6: Proposed algorithm for a standardized vitamin B6 trial. The timing and switch from pyridoxine HCL 
to pyridoxal 5´-phosphate (PLP) is individual and should be considered after 24h on pyridoxine in case of 

persistent high seizure frequency. Improvement on EEG can lag markedly behind clinical improvement and 
is thus not a basis for initial decision-making. The algorithm does not exclude the simultaneous use of 

conventional anticonvulsants.   
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