
A step-by-step method for producing 3D crania models from CT data 

 

Abstract 

Objectives: Modern computed tomography (CT) databases offer a valuable resource for 

obtaining skeletal reconstructions and contemporary population data. However, researchers 

may not utilise CT data due to limited funds for proprietary modelling software, or from a lack 

of awareness of visualization techniques. This paper presents a step-by-step method for 

creating accurate 3D crania models from CT data using the free and open-source platform 

3D Slicer. This method is tested to 1) establish if novice users can produce 3D crania 

models following the steps, and 2) determine if these models are accurate to models from 

experienced users. 

 

Materials and Methods: The step-by-step method was recorded and tested by five observers 

who each produced twenty 3D models using clinical sinus CT scans (n=20). The models 

(n=100) were evaluated through a quantitative mesh comparison to establish the accuracy 

with experienced users and against novice users. 

 

Results: The mesh comparison between the models from the experienced observers 

resulted in an average absolute mean distance of 0.4 mm, with 99% of models accurate to 

within 0.5 mm. The novice observers were able create robust 3D models following the step-

by-step method with average absolute mean distances of 0.5 to 0.6 mm, and 95% of the 

mean distances within 1 mm of the reference model. 

 

Conclusion: All of the crania models produced were comparably accurate with minor 

variances seen in the background noise and orbital bone modelling. The tested method is 

accessible and suitable for use with modern CT databases and for forensic reconstruction 

approaches. 
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Introduction 

Digitisation techniques are becoming increasingly popular across the archaeological and 

anthropological sciences for generating models of human osteological specimens [1]. 

Moreover, modern computed tomography (CT) databases are providing a novel resource for 

archaeologists and anthropologists to access virtual skeletal data, opening up opportunities 

for the comparison of modern and historical population data [1] as well as the development 

of novel techniques for identification [2, 3]. CT scanning is a non-destructive and non-

invasive acquisition method traditionally used in medical applications that has distinct 

advantages in its capabilities for imaging bony structures [4]. However, there can be barriers 

to the accessibility of CT data including the financial cost of software, a lack of user 

knowledge and experience with 3D modelling, and no established method. This study 

presents a step-by-step method that can be used to create 3D osteological models with a 

free open-source platform and assesses the accuracy of 3D models made through 

quantitative mesh comparison analysis. 

 

Background 

Virtual anthropology and the application of biological profiling techniques to digital data is 

well-documented and a growing trend that has facilitated the development of quantitative 

forensic anthropology methodologies [5]. There is an increasing number of examples of CT 

scanning being used across archaeology and forensic anthropology that are documented in 

the published scientific literature for a wide range of sample types and applications [6-13] 

and CT is increasingly routinely used in forensic institutes for post-mortem examinations 

[14]. 

 

As a result, CT databases are being created using modern populations [1, 15], such as the 

database developed by the Radiology-Pathology Center for Forensic Imaging (CFI) at the 

University of New Mexico School of Medicine [16], which contains 15,000 whole-body 

decedent CT scans. CT databases based on post-mortem computed tomography (PMCT) 



data or clinical patient data offer a valuable source of data that better represent modern 

populations in comparison to historical skeletal collections [1, 17], and can facilitate more 

opportunities for novel research that will provide new methods of measurement and analysis 

to ultimately support more robust and valid human identifications.   

 

The virtual modelling process allows for automatic calibration of measurements. This 

capability enables greater accuracy and quicker data collection of any object or specimen 

under analysis [18], and so the accuracy and reproducibility of digitisation techniques for 

obtaining biological profiling data is considered to be greater than traditional linear methods 

[5, 19]. The accuracy of a 3D model is fundamentally linked to the scanning and modelling 

parameters employed [4, 20-22]. Moreover, while CT imaging parameters are vital for 

achieving high quality data [14, 21, 23], it is not necessary for end-users (e.g. archaeologists 

or anthropologists) to have expertise in generating CT scans; a skilled radiographer will 

image a sample based on its properties (e.g. if it is wet, dry, soft, hard or containing metal) 

and the final intended use of the data (which informs the level of detail required) [4]. The 

end-user can then use the CT data to produce 3D models. 

 

3D modelling Methods 

Best practice guidelines for surface scanning [24], a CT dataset for biological profiling in 

forensic anthropology [25], and useful 3D printing primers tailored for radiologists [26, 27] 

are available. Additionally, online good practice guides [28], are also easily accessible which 

include notes on laser scanning, photogrammetry as well as data collection, analysis and 

visualisation. However, there is currently a lack of established methods available for 

producing 3D models from CT data in forensic anthropology that are specifically aimed at 

non-CT experts. 

 

To produce a CT scan, a beam of ionising radiation is passed through a sample to create an 

image in slices that can then be digitally recorded as Digital Imaging and Communications in 



Medicine (DICOM) data. Medical imaging data (including DICOM data) can be viewed in 

two-dimensions (2D) as a multiplanar reconstruction (MPR) in coronal, axial and sagittal 

views. Additionally, the stack of volumetric data (slices) can be rendered as a three-

dimensional (3D) surface volume rendering [19]. Areas of differing densities, such as skin, 

tissue, bone or metal can automatically be differentiated and rendered individually due to 

differences in x-ray attenuation [4]. A 3D volume rendering can be automatically generated 

using DICOM viewing software and 2D images (screenshots) or 3D animations (videos), 

however this rendering is not exportable and therefore not printable. 

 

In order to produce an exportable file-type the DICOM data must be segmented, a process 

that requires a user to manually carry out a series of steps. Segmentation exploits the 

difference in material density (measured in Hounsfield units) to distinguish between regions 

of interest (ROI). Segmentation can be achieved using thresholding, a method that applies a 

label map to a ROI, through segmenting objects based on their density (measured in 

Hounsfield units). Subsequently, a modelling algorithm can convert the labelled DICOM data 

into an exportable surface model, commonly an STL (Stereolithography) file format. DICOM 

data rendering and segmentation is performed using a DICOM viewer software platform. 

There are a number of different DICOM viewers available, see Hodgdon, et al. [26] for 

examples of software for creating 3D prints from CT data. With so many different software 

packages available, scientific studies are inevitably based on a variety of software. This has 

led to inconsistency within the field, and results can rarely be directly compared between 

studies whereby different software and methodologies have been implemented. 

 

Additionally, a major limitation to many proprietary software packages is the associated 

financial cost. The use of free software may be more fit-for-purpose in forensic science 

where practitioners and researchers often do not have the budget for expensive licence fees. 

3D Slicer [29] is a CT reconstruction software (DICOM viewer) that was developed with 

support from the US National Institutes of Health [30] for surgical planning and visualisation 



of medical imaging data. 3D Slicer was specifically designed as a research tool and as such 

it is highly accessible; it is free, open-source, cross-platform, supports extensions and has a 

non-restrictive license [29] making it a potentially valuable tool for forensic anthropology and 

identification approaches.  

 

Presently, many specialists working with human remains have not received training in or 

been exposed to 3D modelling. As a result, it has been recommended that anthropologists 

be trained in 3D modelling and digital data interpretation to develop modern forensic 

anthropology methodologies [31]. Given the advantages of working with CT databases and 

the superior analytical prospects of virtual skeletal models, the ability to handle and utilise 

CT data is an emerging challenge facing researchers. The purpose of this paper was to 

enhance the ability of a user to handle CT data for the examination of human remains. This 

was addressed by creating an accessible and tested method that users (such as 

archaeologists or forensic anthropologists) with limited experience of 3D modelling CT data 

can easily use to create virtual skeletal models to assist with forensic identification. 

 

Material and Methods 

3D Slicer Guidelines 

A step-by-step method was designed for application with 3D Slicer to create 3D models of 

bones from CT data (Figure 1). The method was designed with 3D Slicer version 4.9.0 for 

Mac (3D Slicer, Brigham Women’s Hospital, Boston, MA, US), which can be downloaded 

from https://www.slicer.org/; for support with installation and set-up of 3D Slicer (see 

https://www.slicer.org/wiki/Main_Page) [29]. This step-by-step method records each step in 

the general 3D modelling process using CT scan data and were divided into seven distinct 

stages:  

1. Importing 

2. Creating a volume render 

3. Manoeuvring model 



4. Cropping volume 

5. Segment data using Thresholding effect;  

6. Make model  

7. Export model as STL.  

Each stage incorporated details of which tools to use and were specific to modelling bone 

tissue (see Figure 1). The step-by-step method was then presented to novice observers to 

establish if they were able to produce 3D models, and to determine if the models were 

comparably accurate to the experienced users. 



 

Figure 1 3D Slicer step-by-step method 



 

The step-by-step method was updated following feedback from the initial observers to 

include a glossary of terms (Table 1) and an annotated screenshot of the 3D Slicer interface 

(Figure 2) to assist users unfamiliar with the interface. Technical terms relating to CT data 

and segmentation from within the guidelines were incorporated into the glossary and each 

term explained. For the 3D Slicer interface annotated screenshot, an image was taken from 

the ‘Welcome to Slicer’ module when no data was present. The screenshot was annotated to 

display the three main aspects of the interface (the toolbar, the module menu and the 

viewport) and a selection of key buttons that feature in the guidelines. Additionally, the steps 

were updated to more clearly describe each stage, including the addition of symbols and 

references to the interface annotated screenshot. 

 

Table 1 Glossary of terms to complement guidelines 

Term Description 

CT Computed Tomography (a radiographic imaging technique) 
DICOM A file format for medical image data, including CT volume data 
Volume CT data reconstructed in 3D from 2D images 
Volume render Surface model on screen (non-exportable) 
Thresholding Method used to segment an object based on its density (measured in Hounsfield Units) 
Volume cropping Isolating a region (volume) of interest (ROI) 
ROI Region of Interest 
Segmentation Defining boundaries to a ROI to enable modelling 
STL Stereolithic; a file format for 3D data 
Modules Platforms for different interfaces to perform different functions 

 



 

Figure 2 Annotated 3D Slicer interface screenshot 

Method Testing Protocol 

Twenty clinical sinus CT scans (ten female and ten male) were obtained from a wider 

database of 500 CT scans provided by the picture archiving and communications (PACS) 

department at University College London Hospital from the hospital-wide database. Scans 

were anonymised but contained minimal demographic data. Approval was received from the 

Health Research Authority (HRA) and deemed exempt from requiring NHS REC approval by 

the HRA. The age of the patients ranged from 29-64 years for females and 26-91 years for 

males. All scans were acquired using 100kVp at 1 mm slice thickness on three different 

scanners with variable reconstruction diameters, currents and filters (see Table 2); 16 of the 

20 scans contained flaring artefacts from metallic dental fillings [32]. 

 

Table 2 CT scan parameters 

Crania 
 

CT Manufacturer 
 

Reconstruction 
diameter (mm) 

Tube current 
(mA) 

Reconstruction 
algorithm/filter 

Spiral Pitch 
Factor 

1 Siemens Somatom Definition AS+ 259 26 H60f 0.8 
2 Siemens Somatom Definition AS+ 258 27 H60f 0.8 
3 Siemens Somatom Definition AS+ 237 26 Q40f 0.8 
4 Siemens Somatom Definition AS+ 169 26 Q40f 0.8 
5 Siemens Somatom Definition AS+ 255 31 Q40f 0.8 
6 Siemens Sensation 64 223 72 H60f 0.9 



7 Siemens Sensation 64 154 72 H60f 0.9 
8 Siemens Somatom Definition AS+ 205 93 Q40f 0.8 
9 Siemens Somatom Definition AS+ 277 29 Q40f 0.8 
10 Siemens Somatom Definition AS+ 147 20 J70h 0.8 
11 Toshiba Aquilion One 202.2 80 FC08 - 
12 Siemens Sensation 64 188 72 H60f 0.9 
13 Siemens Somatom Definition AS+ 195 43 H60s 0.8 
14 Siemens Somatom Definition AS+ 195 28 H60f 0.8 
15 Siemens Somatom Definition AS+ 228 27 Q40f 0.8 
16 Siemens Somatom Definition AS+ 204 28 H60f 0.8 
17 Siemens Somatom Definition AS+ 234 25 H60f 0.8 
18 Siemens Somatom Definition AS+ 186 30 Q40f 0.8 
19 Siemens Somatom Definition AS+ 234 25 Q40f 0.8 
20 Siemens Somatom Definition AS+ 214 31 H60f 0.8 

 

Three observers (observers 1-3) produced twenty separate 3D crania models as exportable 

STL files using 3D Slicer following the step-by-step method. The method was then updated 

to accommodate recommendations for improved ease-of-use. Two additional observers 

(observers 4 and 5) subsequently then created the 3D models using the updated guidelines. 

Observers 1 and 2 each had c.3 years of experience of working with 3D Slicer, CT data and 

3D modelling. Observers 3-5 had no previous experience in using 3D Slicer, CT data or 3D 

modelling. Additionally, observer 5 was not trained in osteology while the other observers 

were. Each observer completed data collection on the computer of observer 1 with the 

software already installed. Models were generated on separate occasions with modelling 

taking approximately 1 hour for observers 1 and 2, and approximately 4-6 hours for the other 

observers split over one or two days. 

 

Quantitative analysis was performed via a mesh comparison method using CloudCompare 

(Version 2.10.2 for Mac, available from https://asmaloney.com/software/), a free, open-

source software for comparing point clouds and 3D mesh models. The cloud-to-mesh 

distance tool [33] was employed to measure the difference between the 3D crania models, 

which provides a value for the mean distance with a standard deviation (SD), as well as 

colour scalar maps illustrating the differences (as in Villa, et al. [34]). The crania models 

made by the two experienced users (observer 1 and 2) were initially compared to generate a 

criterion for the accuracy comparison and determine a ‘reference model’, after which the 

remaining crania models from the novice observers 3-5 were compared to that accuracy 



value and ‘reference model’. An accuracy threshold of ± 1 mm was also incorporated (as 

specified as ideal for osteometric data by Carew, et al. [35]). 

 

The mesh comparison data was analysed in Microsoft Excel version 16.36 for Mac 

(Microsoft, Redmond, WA, US). To assess the inter-observer distances values, within-

subject standard deviations (wSD) and 95% repeatability were calculated (as in [22, 36, 37]). 

 

Results 

The CloudCompare mesh comparison data for all observers are provided in Table 3. The 

mesh comparison between the experienced users (observer 2 and observer 1 as the 

reference model) resulted in mean distances ranging from -0.5 to 1.9 mm, with an overall 

mean value of 0.1 ± 0.9 mm and an average absolute mean of 0.4 mm. Model 14 resulted in 

a higher mesh distance with a mean of 1.9 mm ± 4.2 mm. Aside from this anomalous result 

all mean mesh distances were within ± 0.5 mm for observer 2 (to one significant figure), thus 

this value was used as the accuracy threshold for the novice mesh comparison data. 99% of 

the models produced by the experienced observers were accurate to within 0.5 mm. 

 

The mesh comparison between the novice users and the reference models (chosen to be 

observer 1), ranged from -1.1 to 5 mm, with average absolute means per observer of 0.5 to 

0.6 mm. 74% of all novice models were within ± 0.5 mm, and 95% were accurate to within 1 

mm. Observer 3 produced four models with mean distances greater than ± 0.5 mm (see * in 

Table 3). Observers 4 and 5 both produced eight models each that were greater than ± 0.5 

mm. Model 5 had particularly greater mesh distances for novice observers 3 and 5, the 

scalar map in Figure 3 demonstrates that this difference is due to excess noise modelled 

within the cranium. 



 

Figure 3 Colour scale illustrating mesh distances between observers 3 and 5 and the reference model for crania 
model 5 

  



 
Table 3 Mesh comparison data for the distance (± SD, standard deviation) between the reference models 
(observer 1) and observers 2-5 (mm). Lower section: average data per observer, absolute mean distance, within-
subject standard deviation (wSD) and 95% repeatability. Righthand section: average data per model. * = mean 
distance values >±0.5 

 
Observer 2 

(experienced) 
Observer 3 

(novice) 
Observer 4 

(novice) 
Observer 5 

(novice) 
Average 

mean 
Average 

SD 

Model Number Mean SD Mean SD Mean SD Mean SD   
1 -0.2 0.8 -0.2 0.3 -0.1 0.2 -0.1 0.1 -0.1 0.3 
2 0.5 0.9 0.1 0.3 -0.4 0.4 -0.1 0.1 0.0 0.4 
3 -0.4 0.4 -0.6* 0.6 -0.6* 0.6 -0.3 0.4 -0.5 0.5 
4 -0.4 0.6 2.1* 2.5 0.5 0.7 1.1* 1.8 0.8 1.4 
5 -0.3 0.4 5.0* 7.2 -0.7* 0.6 1.9* 4.6 1.5 3.2 
6 0.3 1.2 0.4 1.2 0.9* 2.4 0.1 0.4 0.4 1.3 
7 0.2 1.1 0.2 1.2 0.8* 2.2 -0.1 0.2 0.3 1.2 
8 -0.5 0.7 0.1 0.6 -0.3 0.6 -0.2 0.2 -0.2 0.5 
9 -0.4 0.6 0.3 0.7 -1.1* 0.8 0.0 0.4 -0.3 0.6 

10 0.2 1.1 0.4 1.3 0.0 0.3 0.9* 2.3 0.4 1.2 
11 0.5 0.4 1.4* 2.9 -0.1 0.1 0.1 0.1 0.5 0.9 
12 0.4 1.9 0.1 2.6 -0.1 0.3 1.5* 2.6 0.5 1.9 
13 -0.1 0.2 0.4 0.9 -0.3 0.3 0.8* 1.1 0.2 0.6 
14 1.9* 4.2 -0.3 0.3 -0.1 0.5 0.7* 2.1 0.5 1.8 
15 -0.5 0.6 -0.1 0.1 -0.9* 0.7 0.3 1.0 -0.3 0.6 
16 0.0 0.1 -0.1 0.2 -0.2 0.2 0.0 0.2 -0.1 0.2 
17 0.5 1.3 0.1 0.5 -0.3 0.4 0.8* 0.6 0.3 0.7 
18 -0.3 0.4 -0.2 0.3 -0.6* 0.5 0.1 0.6 -0.2 0.4 
19 0.0 0.2 -0.1 0.2 -1.0* 0.6 0.2 0.4 -0.3 0.3 
20 0.5 1.4 -0.2 0.2 -0.3 0.3 1.1* 1.8 0.3 0.9 

           
Average mean 0.1 0.9 0.4 1.2 -0.2 0.6 0.4 1.1   

Absolute mean 0.4  0.6  0.5  0.5    
wSD 0.6  0.8  0.7  0.7    

95% Repeatability 1.8  2.2  1.9  2.0    

  

The within-subject standard deviation (wSD) and 95% repeatability results did not show any 

obvious difference between the novice users and experienced user data. Overall, wSD 

ranged from 0.6 to 0.8 mm with 95% repeatability ranging from 1.8 to 2.2 mm. 

 

A visual comparison of the crania models from each observer showed no major differences 

to the macromorphology of the crania between-observers. Differences were seen in the 

amount of background noise included and in the variation of the amount of bone surface 

modelled in the orbits between observer 2 (experienced) and the novice observers (Figure 

4). 

 



 

Figure 4 Colour scalar maps of crania model 1 (compared to the reference model) from observers 2-5. 

Differences can be seen with background noise (white circle) and in the orbital bone modelling 

 

Discussion 

An easy-to-use method for modelling CT data has the potential to be an invaluable tool that 

can be utilised by non-experts to generate good-level virtual skeletal models. This 

experiment provides empirical data testing the utility of the step-by-step method developed 

for this study. The quantitative mesh comparison showed that the experienced users 

produced models of comparable dimensions and that the majority of the models from the 

novice users (75%) were accurate to the reference model to within ± 0.5 mm, and 95% were 

accurate to within ± 1 mm. This accuracy threshold was additionally the same value as the 

CT slice thickness (1 mm), which is intrinsically linked to the level of accuracy obtainable 

with these 3D models (as noted in the background section). Many of the differences seen 



may be due to the background noise that was included in the mesh comparison, this noise 

could easily be deleted using a range of visualisation software programs and may result in 

even lower mesh distance values, however this was outside the scope of this study. The 

inter-observer distances resulted in low within-subject standard deviations and similar 

repeatability, indicating that there was little difference between the experienced user and the 

novice users modelling overall. 

 

The color scalar maps showed that the 3D crania models made by each observer were of 

good overall quality, with no major macromorphological differences observed beyond the 

variation of the orbital bones and the amount of background noise generated. This variation 

by the experienced user (observer 2) is due to a different approach in thresholding wherein 

the user filled in the orbital bones knowing that the excess noise could be deleted in post-

processing. Conversely, it appears the novice users tried to reduce the amount of 

background noise in the initial thresholding step, which resulted in more holes in the orbital 

bones. The novice users were unaware of post-processing that can clean the models. This is 

typical of observer variation seen in a method that is dependent upon the tacit knowledge of 

the user. 

 

Observer 3 (with no previous modelling experience) found difficulty with understanding 

certain terms used in the step-by-step method. The method was then updated to address 

this, and consequently observers 4 and 5 with no previous modelling experience were able 

to successfully create models of the crania following the steps. Although the modelling time 

of each observer was not recorded, it was observed that they generally became faster at 

modelling with increased practice, i.e. as they became familiar with the steps within the 

method. Ultimately, the results of the mesh-to-mesh comparison indicate the suitability of 

this step-by-step method to produce 3D models from CT scans for novice users. 

 



The crania scans selected were modern clinical scans that did not exhibit any obvious 

pathology or trauma. In this paper it is noted that the crania scans did not include the whole 

crania. Although minor surface differences were seen in the orbital bone and background 

noise between the models, this was due to the segmentation process which could have been 

affected by the dental flaring. Metallic dental amalgams are known to affect CT scans,33 and 

are going to be a common occurrence when using modern CT data. Nevertheless, the major 

crania landmarks are not adjacent to the dentition and the overall morphology of the crania 

appears to have been unaffected by the flaring. With more experience a user will become 

more knowledgeable in thresholding and could be expected to produce higher quality 

models, as seen with the experienced observers. Furthermore, the quality of the models 

produced could have been improved with post-processing to remove background artefacts. 

 

As the data used in this study was derived from living patients there were many ethical 

considerations that needed to be taken into account. For example, the DICOM data was 

anonymised prior to collection by the PACS department, the data had to be securely stored 

and could not be used on computers other than that of the principal researcher. While 

clinical CT databases offer a valuable resource to obtain modern population data, there are 

additional ethical concerns and authorisations (such as anonymising clinical data and data 

protection) that need to be considered prior to data collection. 

 

In this study, five observers were tested in the task of creating 3D models using the step-by-

step method. The success of each observer demonstrates that this method can be followed 

by users with little-to-no previous 3D modelling experiences. Overall, these findings indicate 

that the step-by-step method offers a potentially valuable tool to enable the production of 3D 

models from CT data that is free of financial cost and requires no previous experience. 

Further work to verify the step-by-step method using different CT datasets, and utilising 

observers from different backgrounds will be valuable for enhancing the accessibility of the 

method allowing applications more broadly. While this step-by-step method was designed for 



use with skeletal features, it could potentially be applied to other materials such as soft 

tissues or ceramics as well. 

 

Additionally, whilst resources are available on the internet to support users in self-learning 

software, these resources have not been empirically tested or validated for specific 

applications. This method has shown to be useful for training novice users in 3D modelling of 

CT data, and could be a valuable teaching tool in forensic anthropology training to help 

ensure the next generation of forensic anthropologists become both skilled in virtual 

anthropology methods and become capable of taking advantage of modern CT databases. 

Although users must be vigilant in addressing the higher ethical considerations involved 

when accessing clinical data. 

 

Conclusion 

This study developed a method for application in archaeology and forensic anthropology to 

assist 3D modelling CT data and broaden access to this capability. The method enabled:  

1) Novice users to create 3D models following the step-by-step method. 

2) The production of robust and accurate 3D models of human crania. 

The step-by-step method presented here offers a tested tool for creating 3D virtual models of 

CT data using 3D Slicer, which can be implemented by those with little modelling 

experience. It is appropriate for forensic anthropology contexts were funding may be 

restricted and was designed to create a pathway to access new areas of research that can 

be derived from modern CT data and to assist in individual identification and forensic 

reconstruction approaches. This approach can further be updated as new versions of 3D 

slicer are released, and as more models are created. 
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