
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Efficient Algorithms for Delay-Aware
NFV-Enabled Multicasting in Mobile Edge

Clouds with Resource Sharing
Haozhe Ren, Zichuan Xu, IEEE Member, Weifa Liang IEEE Senior Member, Qiufen Xia, IEEE Member,

Pan Zhou, IEEE Member, Omer F. Rana, IEEE Senior Member, Alex Galis, IEEE Senior Member,
and Guowei Wu.

Abstract—Stringent delay requirements of many mobile applications have led to the development of mobile edge clouds, to offer low
latency network services at the network edges. Most conventional network services are implemented via hardware-based network
functions, including firewalls and load balancers, to guarantee service security and performance. However, implementing hardware-based
network functions usually incurs both a high capital expenditure (CAPEX) and operating expenditure (OPEX). Network Function
Virtualization (NFV) exhibits a potential to reduce CAPEX and OPEX significantly, by deploying software-based network functions in
virtual machines (VMs) on edge-clouds. We consider a fundamental problem of NFV-enabled multicasting in a mobile edge cloud, where
each multicast request has both service function chain and end-to-end delay requirements. Specifically, each multicast request requires
chaining of a sequence of network functions (referred to as a service function chain) from a source to a set of destinations within specified
end-to-end delay requirements. We devise an approximation algorithm with a provable approximation ratio for a single multicast request
admission if its delay requirement is negligible; otherwise, we propose an efficient heuristic. Furthermore, we also consider admissions of
a given set of the delay-aware NFV-enabled multicast requests, for which we devise an efficient heuristic such that the system throughput
is maximized, while the implementation cost of admitted requests is minimized. We finally evaluate the performance of the proposed
algorithms in a real test-bed, and experimental results show that our algorithms outperform other similar approaches reported in literature.

Index Terms—Mobile edge clouds, network function virtualization, multicasting, approximation algorithms, algorithm design.

F

1 INTRODUCTION

With increasing uptake and use of multimedia technologies,
there is an associated increase in data being generated and
transmitted (processed) over our network-based systems,
often to multiple subscribers. Applications can include video-
on-demand, high definition streaming, multimedia social
networks (combing text, audio and video) and Internet-of-
Things (IoTs). This paradigm of data transfer to multiple
concurrent subscribers is referred to as multicasting, and
can significantly stress our current networks. Multicasting
not only requires use of various network functions such
as firewalls, Intrusion Detection Systems (IDSs), proxies,
and Wide Area Networks (WAN) optimizers to guarantee

• H. Ren, Z. Xu, and G. Wu are with the School of Software, Q. Xia is
with the International School of Information Science and Engineering,
Dalian University of Technology, and the Key Laboratory for Ubiquitous
Network and Service Software of Liaoning Province, China. E-mails: {
z.xu, qiufenxia, wgwdut}@dlut.edu.cn and renhaozhe@mail.dlut.edu.cn.

• W. Liang is with Research School of Computer Science, the Aus-
tralian National University, Canberra, ACT 2601, Australia. E-mail:
wliang@cs.anu.edu.au

• P. Zhou is with the School of Cyber Science and Engineering,
Huazhong University of Science and Technology, China. E-mail:
panzhou@hust.edu.cn.

• O. F. Rana is with Cardiff University, United Kingdom. E-mail:
RanaOF@cardiff.ac.uk.

• A. Galis is with University College London, United Kingdom. E-mail:
a.galis@ucl.ac.uk.

Corresponding author: Zichuan Xu. Email: z.xu@dlut.edu.cn

data transfer security, but also to meet stringent Quality-
of-Service (QoS) requirements to ensure that the traffic is
transferred on time. Considering that most multimedia data
needs to be multicast to mobile users, Mobile Edge-Cloud
Computing (MEC) [6], [15], [16], [18], [23], [27], [33], [50], [46],
[47] has emerged as a promising platform to meet the QoS
requirements of mobile users, by deploying data processing
resources within the proximity of mobile users. Network
Function Virtualization (NFV) moves network functions from
dedicated hardware to (software-based) virtual machines
(VMs) that can run on commodity hardware, thereby reduc-
ing the OPEX and CAPEX of network service providers. In
this paper, we consider NFV-enabled multicasting in an MEC
network, where each user request requires its traffic to pass
through a sequence of network functions, referred to as a
service function chain, before reaching its destination.

Provisioning NFV-enabled multicasting services in MEC
networks poses many challenges. First, each cloudlet (re-
source hosting a software-based Virtual Network Function
(VNF)) in an MEC network usually has limited computing
resource to support VNFs. Allowing multicast requests
to share existing VNF instances can significantly improve
resource utilization in MEC networks and reduce service
cost. It is however challenging to efficiently utilize existing
VNF instances or create new VNF instances to maximize
the number of multicast requests and minimize overall
cost – subject to the computing capacity constraint on each
cloudlet in the MEC network and the end-to-end delay

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

requirement of each admitted multicast request. The key
challenge is to identify which cloudlets should be used
to host VNFs required within a multicast request service
chain, i.e. which existing VNF instances can be used for
which request? Second, each NFV-enabled multicast request
usually has a QoS requirement to guarantee that its traffic
reaches the destinations within the specified end-to-end delay
requirement. Identifying how to meet the end-to-end delay
requirement of each admitted NFV-enabled multicast request
is challenging. In this paper, we tackle the aforementioned
challenges, by investigating efficient methods that investigate
VNF sharing, service chaining, and routing that can meet
QoS requirements of NFV-enabled multicast requests in an
MEC network.

There are extensive studies on multicasting in conven-
tional networks or software-defined networks, which do not
consider service function chain requirements [17], [18], [51].
These solutions however cannot be directly applied to NFV-
enabled multicasting. There are also recent investigations
on NFV-enabled multicasting. However, these approaches
do not consider end-to-end delay requirements [39], and
they assume that only one service instance is included in
the service function chain [51], or that the VNFs in each
service chain are consolidated into a single location [47],
[45]. For example, Zhang et al. [51] investigated the NFV-
enabled multicast problem by assuming that there are
sufficient computing and bandwidth resources in a Software
Defined Network (SDN) to accommodate a multicast request.
Xu et al. [47] investigated the problem of NFV-enabled
multicasting, by devising an approximation algorithm with
a provable approximation ratio for realizing a single NFV-
enabled multicast request and an online algorithm with a
guaranteed competitive ratio for the online NFV-enabled
multicasting problem. Ren et al. [39] investigated the NFV-
enabled multicasting in an SDN, by assuming that the traffic
of each multicast request can be processed by multiple
instances of the VNFs in its service chain. These methods
are likely to increase the cost/delay of implementing such
multicast requests, as placing VNFs into multiple cloudlets
can lead to a greater delay to form a service function chain
and incur a higher cost.

To the best of our knowledge, we are the first to consider
the problem of delay-sensitive NFV-enabled multicasting
problem in an MEC network, by designing both approxima-
tion algorithms and efficient heuristics. The main contribu-
tions of this paper are as follows.

• We study the NFV-enabled multicasting problem
in an MEC network, with an aim to minimize the
implementation cost of the request while meeting its
delay requirement.

• We propose an efficient heuristic for the NFV-enabled
multicasting problem. We also devise the very first
approximation algorithm with an approximation ratio,
if the delay requirement is neglected.

• We also consider a set of NFV-enabled multicast
request admissions with the aim to maximize the
weighted system throughput. We also propose a
heuristic for this problem.

• We evaluate the performance of the proposed algo-
rithms through experimental simulations in synthetic

networks and within a real test-bed. Experimental
results demonstrate that the proposed algorithms
outperform existing reported approaches.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 introduces the system model,
notations, and problem definition. Section 4 devises an
approximation algorithm for the NFV-enabled multicast-
ing problem without end-to-end delay requirements, and
proposes an efficient heuristic for the problem with delay
requirements using the proposed approximation algorithm as
a subroutine. Section 5 devises an efficient heuristic algorithm
for the the NFV-enabled multicasting problem with resource
constraints on cloudlets. Section 6 evaluates the performance
of the proposed algorithms experimentally in a real test-bed,
and Section 7 concludes the paper.

2 RELATED WORK

Recently, traffic steering has re-gained much attention due to
the challenges introduced by software defined networking
and network function virtualization [5], [6], [15], [16], [18],
[23], [27], [33], [50], [46], [47]. Unicasting is one of the
primary focus of existing studies. For example, Moens et
al. [33] focused on hybrid networks with both hardware and
software network functions. Cziva et al. [7] addressed the
problem of the placement of virtual functions by minimizing
the total number of VNF instances. Yu et al. [29] investigated
profit maximization associated with placing VNFs onto a
set of locations, and considered the delay requirement of
each unicast request. Xu et al. [45] studied the offloading
problem of delay-sensitive tasks with network function
requirements in an MEC network, by proposing efficient
heuristics and an online algorithm with a competitive ratio.
Xie et al. [44] investigated the VNF sharing problem with an
aim to improve resource utilization, by finding a common
link for a set of service chains, so that the deployed service
chains can be shared by all users. Kiji et al. [19] proposed a
virtual network function placement and routing algorithm
for multicast requests with service chain requests, through
merging multiple service paths (MSC-M). Although there
exist studies that consider the delay requirements of user
requests [22], [29], [45], they only considered unicast requests
and their solutions cannot be applied to the NFV-enabled
multicasting problem, which is a generalization of the NFV-
enabled unicasting problem. Chen and Wu [5] devised
algorithms for the VNF placement to minimize the cost of
implementing NFV-enabled unicast requests by balancing
set-up and bandwidth consumption costs.

There are studies on multicasting in conventional net-
works [2], [24], [25], [14], [34], [43]. Recently, with the
emergence of new networking technologies such as mobile
edge computing, software-defined networking (SDN) and
NFV, multicasting has re-gained the attention by the research
community [18], [17]. For example, Huang et al. [18] studied
online multicasting in software-defined networks with both
node and link capacity constraints. Huang et al. [17] studied
the scalability problem of multicasting in SDNs, by proposing
an efficient algorithm to find a branch-aware Steiner Tree for
each multicast request. These solutions however cannot be
directly applied to the problem of NFV-enabled multicasting

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

in MEC networks, because they did not consider the service
chain requirements of multicast requests.

Investigations on NFV-enabled multicasting include [1],
[39], [41], [47], [49], [31], [30], [51]. For instance, Zhang et
al. [51] investigated the NFV-enabled multicasting problem in
an SDN without resource capacity constraints, assuming that
data traffic of each multicast request can only be processed
by one server. Xu et al. [47], [48] considered the NFV
multicasting problem by assuming the traffic of each request
can be processed by multiple servers, with the objective to
minimize the implementation cost. Approximation and on-
line algorithms for the problems are proposed. They however
assumed that the VNFs in each service chain is consolidated
into a single data center. Ma et al. [31], [30] proposed an online
algorithm for the NFV-enabled multicasting problem without
taking into account the end-to-end delay requirement. Soni
et al. [41] proposed a scalable multicast group management
scheme and a load balancing method for the routing of best-
effort traffic and bandwidth-guaranteed traffic. These studies
however did not consider end-to-end delay requirements
of multicast requests. Alhussein et al. [1] devised exact
solutions for the problem of joint VNF placement and
routing for multicast requests in 5G core networks, such
that the cost of provisioning NFV-enabled multicast services
is minimized, by formulating the problem into a mixed
integer linear program (MILP). The delay requirement of
NFV-enabled requests has not been considered and the
MILP-based exact solutions might not be scalable for large
problem sizes. Yi et al. [49] considered delay requirements
of the NFV-enabled multicasting problem; however VNF
sharing is not explored. To guarantee scalability and solution
quality, Ren et al. [39] proposed approximation algorithm
with an approximation ratio for the problem of embedding a
service graph that consists of VNF instances into a substrate
network, by assuming that the traffic of each multicast
request can be processed by multiple instances of the VNFs in
its service chain. The delay requirement of multicast requests
however is not considered in the study. Similarly, the delay
requirement of multicast requests is not considered [31], [30],
and the authors only consider a single multicast request.

3 PRELIMINARIES

In this section, we first introduce the system model, nota-
tion and key concepts. We then define the problem being
considered more precisely.

3.1 System model

We consider a mobile edge cloud (MEC) network G = (V,E)
with a set V of switches, a set of cloudlets and a set E of links
between switches and cloudlets. Each cloudlet is attached to a
switch in V via an optical fiber, and the communication delay
between a switch and its attached cloudlet is negligible. Let
VCL be the set of switches with attached cloudlets. Clearly,
VCL ⊆ V . Cloudlets are usually deployed in shopping malls,
airports, or base stations that are within the proximity of
mobile users. Due to space limitation of installing cooling
equipment in those places, each cloudlet is usually equipped
with (a small number of) servers and thus has computing
resource capacity to implement VNF instances. We denote

by Cv the computing capacity of the cloudlet attached to
switch node v ∈ VCL. In addition, transferring data through
links in E incurs a communication latency. Let de be the
delay associated with transmitting a unit of data traffic via
link e ∈ E. We assume that there is an SDN controller that
both makes traffic steering decisions and manages network
function instances that run on a server in the MEC network
G. Fig. 1 is an illustrative example of an MEC network.

Fig. 1. An MEC network G.

3.2 NFV-enabled multicast requests and service chains

A delay-aware NFV-enabled multicast request is a request that
transfers an amount of data traffic from a source to a set
of destinations. The data traffic must be processed by a
sequence of VNFs before reaching their destinations, while
also meeting delay constraints.

Let rk be a delay-aware NFV-enabled multicast request,
denoted by a quadruple rk = (sk, Dk; bk, SCk), where sk ∈
V is the source, Dk is the set of destinations with Dk ⊆ V ,
bk is the size of its data traffic, and SCk is the service chain
of rk that consists of a sequence of VNFs. Without loss of
generality, we consider that the data traffic bk of request rk
is given (derived from historical information).

Let F be the set of VNFs provided by the network service
provider in G. A VNF fl ∈ F can be needed by request rk
to form its service function chain SCk. Assume that there
are Lk VNFs in SCk, where 1 ≤ l ≤ Lk for each SCk and
SCk ⊂ F . We further assume that there is a number of
already instantiated VNF instances for each type of network
function fl in cloudlets of G. Due to the resource capacity
constraints on cloudlets, we allow the instances of VNF fl to
be shared among different requests.

To admit request rk, all data traffic from source sk of
rk needs to be processed through an instance of each VNF
fl ∈ SCk prior to reaching destinations in Dk, as illustrated
in Fig. 2. An existing instance must therefore be selected
for each VNF fl ∈ SCk, or a new instance of fl must be
instantiated in a cloudlet of G. Existing or newly created
VNF instances of each service chain SCk can be placed in
multiple cloudlets, because a single cloudlet may not have
all the instances of the VNFs in SCk, or it may lack sufficient
computing resources to create new instances for all VNFs in
SCk.

Each multicast request needs a certain amount of comput-
ing resource to process its data traffic. Let Cunit(fl) be the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

number of computing resource needed to process a unit
amount of data traffic. If fl is implemented as a newly
created instance, the total number of computing resources
that should be assigned to the new instance to process
the data traffic of request rk is Cunit(fl) · bk. Otherwise,
an existing instance of fl should have at least an amount
Cunit(fl) · bk of available computing resource to process the
traffic of rk. Notice that we assume that the accumulative
available resources in the cloudlets of G are higher then the
total resource demand of a single request rk; however, for a
specific cloudlet in VCL, it may not have enough resources
to meet the demand of rk.

Fig. 2. A service chain 〈 NAT,Firewall, IDS 〉 with one instance of NAT
and two instances of Firewall and IDS.

3.3 Delay requirements of multicast requests

The end-to-end delay of implementing a multicast request
plays a vital role in guaranteeing the quality of services of
users. We thus consider that each multicast request has a
delay requirement, which specifies the maximum delay it
can tolerate for transmitting its data from its specified source
to its destinations. For a delay-aware NFV-enabled multicast
request, its experienced delay consists of the total processing
delay in the selected cloudlets and the total transfer delay
from the source to cloudlets and from the cloudlets to the
destinations, which are defined in the following.

Processing delay: The processing delay experienced by
a multicast request rk depends on both the amount of data
traffic that needs to be processed and the computing resource
assigned to process the traffic. Without loss of generality,
we assume that the processing delay dpk,l of each multicast
request rk by VNF fl is proportional to the amount of traffic
it needs to process, i.e.,

dpk,l = αl · bk, (1)

where αl is a given proportional factor of VNF fl.
The accumulative processing delay incurred due to the

traffic processing by network functions in SCk of rk is:

dpk =
∑

fl∈SCk

dpk,l. (2)

Transmission delay: Let Pk be the set of routing paths
from source sk to destinations in Dk, where each path pm ∈
Pk denotes a routing path from sk to a destination tm ∈ Dk.
The transmission delay of each rk is the maximum end-to-
end delay incurred in the paths in Pk. We denote by dtk the
transmission delay of request rk, which can be defined as
follows.

dtk = maxpm∈Pk

∑
e∈pm

de · bk. (3)

The delay experienced by multicast request rk thus is

dk = dpk + dtk, (4)

which needs no greater than the specified delay requirement
Dk, i.e.,

dk ≤ Dk. (5)

3.4 Cost models
As the network service provider of an MEC network G
charges user requests on a pay-as-you-go basis, the major
concern of the service provider is its operational cost, which
consists of computing resource usage costs in cloudlets,
bandwidth resource usage costs in links, and VNF instance
instantiation costs. Let c(e) and c(v) be the usage costs of one
unit of bandwidth and computing resources at link e ∈ E
and cloudlet v ∈ VCL, respectively. Denote by cl(v) the
cost of instantiating an instance of network function fl in
cloudlet v ∈ VCL, and let n′l,v be the number of newly created
instances for network function fl in cloudlet v. Denote by
nl,v the number of existing instances of fl in v that are used
to process the traffic of rk.

The operational cost of admitting a delay-aware NFV-
enabled multicast request rk can be specified as:

ck =
∑

fl∈SCk

∑
v∈VCL,rk

((nl,v + n′l,v) · c(v) · bk + n′l,v · cl(v))

+
∑
e∈Tk

c(e) · bk,

(6)
where VCL,rk is the set of cloudlets that are used to imple-
ment the instances of VNFs in SCk of request rk, and Tk
is the obtained multicast tree that is used to route the data
traffic of rk.

3.5 The directed Steiner tree [4]
The Steiner tree problem is defined as follows: given a graph
G = (V,E) with a cost function c on the edges, and a subset
of terminals X ⊂ V , the goal is to find a minimum cost tree
that includes all the terminals in X . The found minimum
cost tree is referred to as the Steiner tree.

3.6 Problem definition
We consider a mobile edge cloud (MEC) network G = (V,E)
with a set VCL of cloudlets with VCL ⊂ V , and a set of
multicast requests R. Given a snapshot of the MEC at a
given time instant and a NFV-enabled multicast request rk,
understanding how request rk can be realised across a set
of VNFs remains a key challenge. We thus first consider the
problem of admitting a single multicast request rk, such that
its operational cost is minimized. Further, considering that
the accumulated computing resources in an MEC may be
insufficient to implement all requests, another question is
identifying how to carry out admission control for multicast
requests to maximize weighted throughput. In the following
we define these two optimization problems precisely.

Problem 1: Assuming that each multicast request can
be implemented using the computing resources assigned to
existing VNF instances, the NFV-enabled multicasting problem
with a single multicast request in MEC network G is to route

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

the traffic of request rk to each destination in Dk by chaining
either existing or newly created instances of VNF, such
that the operational cost (i.e., Eq.(6)) of implementing rk is
minimized, while meeting the end-to-end delay requirement
Dk of rk and capacity constraint on each cloudlet v ∈ VCL.

Problem 2: Assuming that the computing resource in
each cloudlet in the MEC network G has available capacity.
For each request in R, the network may or may not have
enough resources to admit it, the NFV-enabled multicast-
ing problem in an MEC network G for a given set R of
NFV-enabled multicast requests is to maximize the system
throughput while minimizing the operational cost, subject
to computing capacity on each cloudlet, where the system
throughput is defined as the total amount of data that
is processed and transferred by the system for admitted
multicast requests. Let ST be the weighted throughput and
Rad the set of admitted multicast requests, then

ST =
∑

rk∈Rad

bk. (7)

The NFV-enabled multicasting problems are NP-hard, as
its special case – the traditional multicast problem without
NFV service chain constraints is NP-hard [8].

For clarity, the symbols used in this paper are summa-
rized in Table 1.

4 ALGORITHMS FOR THE ADMISSION OF A SINGLE
NFV-ENABLED MULTICAST REQUEST

In this section, we deal with NFV-enabled multicasting
for a single NFV-enabled multicast request admission. We
first propose an efficient heuristic for the problem. We
then consider a special case of the problem without delay
requirements, by devising an approximation algorithm.

4.1 An efficient heuristic

The basic idea of the proposed heuristic is based on an obser-
vation that a feasible solution to the problem needs to meet
the capacity constraints on cloudlets, service function chain
requirements, and the end-to-end delay requirement of each
multicast requests rk. We thus adopt a two-phase heuristic
that progressively considers the mentioned constraints and
requirements.

Phase one: we first propose an algorithm to jointly
consider the capacity constraint and the service chain re-
quirement, by ignoring the delay requirement of rk. The
proposed algorithm smartly explores existing VNF instances
in each cloudlet that can be shared with the VNF instances of
rk. Notice that the solution may not be feasible to the NFV-
enabled multicasting problem, because the delay requirement
of rk is not considered in this phase. For the sake of clarity,
we describe the proposed algorithm for the problem without
delay requirement in the next subsection, which is referred
to as Appro_NoDelay. By now, we assume we already
obtained the multicast tree for rk in G without considering
its delay requirement.

Phase two: we refine the obtained multicast tree into
a feasible solution to meet the delay requirement of rk.
In particular, we observe that a longer delay will be the
result if the VNFs of SCk are implemented in multiple

cloudlets. This is because that if the VNFs are distributed into
different cloudlets, the data traffic transmission among two
consecutive VNFs has to be performed by inter-cloudlet links,
which incurs higher delays than those by intra-cloudlet data
transfers. However, putting all VNFs into a single cloudlet
may also incur a longer delay, since the selected cloudlet
may be far away from the destinations of rk. This means
that a large or a small value for the number of cloudlets of
a request may not be proper to meet the delay requirement
of rk. We thus adopt a binary search to narrow down the
choices of the proper number of cloudlets for rk, making the
delay requirement of rk being met quickly. Specifically, let
n′k be the number of cloudlets that are used to implement the
VNFs in SCk in the current infeasible solution, and denote
by nk the proper number of cloudlets in the feasible solution.
We first set

nk =
⌊ |VCL|+ 1

2

⌋
. (8)

The proposed algorithm first tries to re-assign the VNFs
in service function chain SCk such that they are implemented
in exactly nk cloudlets. If nk < n′k, we identify a number
of (n′k − nk) cloudlets that implements VNFs of SCk in
the obtained infeasible solution from the Steiner tree [4]
(i.e., multicast tree) in G′ and have the longest average data
transfer delay from it to the destinations in Dk. Let F ′ be the
set of instances of VNFs in SCk that are implemented in the
identified cloudlets. The VNFs in F ′ are pre-consolidated to
the rest nk cloudlets in V ′ one by one, by selecting a cloudlet
with the lowest implementation cost for each fl ∈ Fv′ . If
the pre-consolidation makes the delay requirement of rk
being met, the algorithm terminates with a feasible solution.
Otherwise, if the experienced delay of rk is reduced but
still greater than its requirement, we continue the above
procedure by searching the appropriate number of cloudlets
in the range of [1, nk]. The rationale is that the number of
cloudlets in the multicast tree is still too many, and the
inter-cloudlet communication leads to the delay requirement
violation. The number of cloudlets still needs to be reduced.
Instead, if the experienced delay is increased, we try to find
the appropriate value for nk in the range of [nk, |VCL|]. This
means increasing the number of cloudlets for rk may reduce
the experienced delay of multicast request rk. On the other
hand, if nk > n′k, we need to find the additional nk − n′k
cloudlets that have the lowest implementation cost for VNFs
of rk, and pre-assign VNFs in F ′ to the cloudlets one by one.
The above binary search procedure continues until a feasible
solution is obtained or the multicast request is rejected. The
detailed heuristic is described in Algorithm 1 and its basic
idea is shown in Fig. 3. For simplicity, this algorithm is
referred to as algorithm Heu_Delay in the rest of this paper.

4.2 An approximation algorithm for the problem with-
out delay requirements

The proposed approximation algorithm for the problem
without delay requirements is to reduce the problem in G to
the Steiner tree problem in an auxiliary graph G′, via a non-
trivial reduction. Since each cloudlet v ∈ VCL has computing
capacity to implement the VNFs of each request, the VNFs
in each service function chain SCk can be implemented
in multiple cloudlets or consolidated into a single cloudlet

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

TABLE 1
Symbols

Symbols Meaning
G = (V,E) a mobile edge cloud (MEC) network with a set V of switches and a set E of links
R a set of delay-aware NFV-enabled multicast requests
VCL the set of switches with attached cloudlets, and clearly VCL ⊆ V
Cv the computing capacity of the cloudlet attached to a switch node v ∈ VCL

rk =
(sk, Dk; bk, SCk)

a delay-aware NFV-enabled multicast request, where sk ∈ V is the source, Dk is the set of destinations with
Dk ⊆ V , bk is the size of its data traffic, and SCk is the service chain of rk that consists of a sequence of VNFs.

F and fl the set of VNFs provided by the network service provider in G and a VNF fl
Lk The number of VNFs in SCk

Cunit(fl) the amount of computing resource needed to process a unit amount of data traffic
dpk,l the processing delay of each multicast request rk by VNF fl
αl a given proportional factor of VNF fl
dpk the accumulative processing delay incurred due to the traffic processing by network functions in SCk of rk
Pk the set of routing paths from source sk to destinations in Dk

pm ∈ Pk a routing path from sk to a destination tm ∈ Dk

dtk the transmission delay of request rk
dk and Dk the delay experienced by multicast request rk and its delay requirement
c(e) and c(v) the usage costs of one unit of bandwidth and computing resources at link e ∈ E and cloudlet v ∈ VCL

cl(v) the cost of instantiating an instance of network function fl in cloudlet v ∈ VCL

n′l,v the number of newly created instances for network function fl in cloudlet v
nl,v the number of existing instances of fl in v that are used to process the traffic of rk
ck the operational cost of admitting a delay-aware NFV-enabled multicast request rk
VCL,rk the set of cloudlets that are used to implement the instances of VNFs in SCk of request rk
Tk the obtained multicast tree that is used to route the data traffic of rk
ST and Rad the weighted throughput and the set of admitted multicast requests
n′k the number of cloudlets that are used to implement the VNFs in SCk in the current infeasible solution
nk the proper number of cloudlets in the feasible solution of algorithm Heu_Delay
nmax and nmin the minimum and maximum bounds of the binary search range in algorithm Heu_Delay
G′ = (V ′, E′) the auxiliary graph constructed in algorithm Appro_NoDelay
f ′i,l,v and f ′′i,l,v the pair of virtual VNF nodes for the ith VNF instance of fl in cloudlet v ∈ VCL

w(f ′i,l,v, f
′′
i,l,v) the weight of edge 〈f ′i,l,v, f ′′i,l,v〉 in the auxiliary graph G′.

v′k,l and v′′k,l a pair of virtual cloudlets for the lth VNF and cloudlet v in G′

Wl,v the widget that is built for network function fl in cloudlet v ∈ VCL

wsl,v and wdl,v a widget source node and a widget destination node for the widget for network function fl and cloudlet
v ∈ VCL in auxiliary graph G′

c∗ the optimal solution for the NFV-enabled multicasting problem
Lmax the maximum length of the service chains of the requests in R, i.e., Lmax = argmaxrk∈R |SCk|.
Lcom and R(Lcom) the number of common VNFs that requests have in their service chains VNFs in common of their service

chains, and the set of such requests.

Fig. 3. An illustration of the algorithm Heu_Delay.

to save the communication cost due to the transmissions
between different cloudlets. To ensure that each cloudlet
has sufficient computing resource to implement the VNFs in
SCk of each multicast request rk, we adopt a conservative
method of reserving

∑
fl∈SCk

bk · Cunit(fl) resource for rk

in each cloudlet. The cloudlet with an amount of available
computing resource that is less than

∑
fl∈SCk

bk · Cunit(fl)
will be removed from the network G, where the available
resource in idle VNF instances are also accounted.

The construction of auxiliary graph G′ = (V ′, E′): We
now construct G′ based on the sub-network of G.

We start by constructing the node set V ′ ofG′. Specifically,
we first add source node sk into the auxiliary graph. We also
add each node in V into V ′, i.e., V ′ ← V ′ ∪ V . Notice that,
since VCL ⊂ V , all switch nodes in VCL are added into V as
well. However, only their functionalities of forwarding traffic
will be used.

Recall that VNFs in SCk of multicast request rk can
be assigned to existing VNFs or newly instantiated VNF
instances. To determine whether making use of existing
VNF instances or creating new ones, we create a widget
for each cloudlet v ∈ VCL and each network function
fl ∈ SCk to represent the resource availability of the cloudlet
v for fl by two cases. Case 1: the amount of available
computing resource to instantiate new instances of VNFs;
Case 2: existing VNF instances of fl in v ∈ VCL that are
available to process the traffic of rk. There is a widget for each

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

Algorithm 1 Heu_Delay
Input: G = (V,E), VCL, computing capacity Cv for each

cloudlet v ∈ VCL, and a multicast request rk =
(sk, Dk; bk, SCk) and its delay requirement dreqk .

Output: The locations for the VNFs of service chain SCk of
multicast request rk and the multicast tree Tk to transfer its
data.

1: /*Phase one: find cloudlets and routing paths for rk by
considering its service chaining requirement and cloudlet
capacity constraints.*/

2: Find a multicast tree for rk without considering its delay
requirement dreqk , by invoking algorithm Appro_NoDelay;

3: Let n′k be the number of cloudlets that are used to implement
VNFs in SCk of the found multicast tree;

4: /*Phase two: adjust the multicast tree to meet the delay
requirement of rk.*/

5: nmin ← 1;
6: nmax ← |VCL|;
7: while nmin <= nmax do
8: nk ← bnmin+nmax

2
c;

9: if nk < n′k then
10: Identify the number of n′k − nk cloudlets that imple-

ments VNFs of SCk in the obtained solution from the
Steiner tree in G′ and has the top-(n′k − nk) highest
average data transfer delays from it to the destinations
in Dk;

11: Move the VNFs that were implemented in the n′k − nk

cloudlets of the infeasible solution to the rest cloudlets
one by one.

12: else
13: Find the additional nk − n′k cloudlets that have the

lowest implementation cost for VNFs of rk, and assign
VNFs in Fv′ to the cloudlets one by one.

14: if the experienced delay of rk is met then
15: return;
16: else
17: if the experienced delay of rk is decreased then
18: nmax ← nk;
19: else
20: nmin ← nk;

pair of cloudlet and VNF, which actually means a possible
placement of a VNF to a cloudlet.

For Case 1, we add a pair of virtual VNF nodes into the
widget, to represent each of existing VNF instances of fl
with sufficient computing resource processing the data traffic
of rk in cloudlet v ∈ VCL. Denote by f ′i,l,v and f ′′i,l,v the
pair of virtual VNF nodes for the ith VNF instance of fl in
cloudlet v ∈ VCL. We then add an edge from f ′i,l,v to f ′′i,l,v
into the widget. The weight of edge 〈f ′i,l,v, f ′′i,l,v〉 is the cost
of processing a unit traffic by an existing VNF instance of fl
in cloudlet v, i.e., w(f ′i,l,v, f

′′
i,l,v) = c(vfl,rk).

For Case 2, we add a pair of virtual cloudlets for each
cloudlet v ∈ VCL into each widget to denote the amount of
available computing resource to instantiate a new instance of
fl in cloudlet v, as shown in Fig. 4. Let v′k,l and v′′k,l be such
a pair of virtual cloudlets for the lth VNF and cloudlet v. To
jointly consider the processing and transmission costs, we
connect each pair of virtual cloudlets, v′k,l and v′′k,l, i.e., E′ ←
E′∪{〈v′k,l, v′′k,l〉}. The weight of edge 〈v′k,l, v′′k,l〉 is the sum of
the instantiation cost of VNF fl and the cost of processing a
unit traffic by the lth VNF in SCk for each multicast request
rk in cloudlet v. That is, w(〈v′k,l, v′′k,l〉) =

cl(v)
bk

+ c(vfl,rk).
We also add a widget source node wsl,v and a widget

destination node wdl,v for the widget for network function fl

and cloudlet v ∈ VCL. Node wsl,v is connected to node v′k,l
and the node f ′l for each existing instance of network function
fl that has enough computing resource to process the data
traffic of rk. In addition, node v′k,l and node f ′l for each
existing instance of network function fl are both connected
with the widget destination node wdl,v . The weights of those
edges are set to zeros. It must be mentioned that widget
source and destination nodes are used to guarantee that
either a new instance for fl is created or an existing VNF
instance of fl is selected to process the traffic of rk, which
will be proved in the algorithm analysis part.

The widgets become part of the auxiliary graph G′.

Fig. 4. An example of the widget for the VNF fl in SCk and cloudlet
v ∈ VCL

We then connect the widgets and other nodes in the
auxiliary graph G′ as follows.

• sk to widget source nodes: There is an edge from
source node sk to each widget source node wsl,v of
the widget for the first VNF f1 of SCk and every
v ∈ VCL. The weight of edge 〈sk, wsl,v〉 is set as the
transmission cost of data traffic of rk.

• widget destination to widget source nodes: Since
the data traffic of rk may be processed by multiple
cloudlets, there is an edge from the widget destination
node of each widget for network function fl to the
widget source node of each widget for VNF fl+1,
for each l with 1 ≤ l ≤ Lk − 1, i.e., E′ ← E′ ∪
{〈wdl,v, wsl+1,u〉} for l with 1 ≤ l ≤ Lk − 1 and v,
u in VCL. The weight of edge 〈wdl,v, wsl+1,u〉 is the
transmission cost of a unit traffic along the shortest
path from cloudlet v to cloudlet u.

• widget destinations of fLk
to cloudlet nodes: We

finally connect each of the widgets that are created
for the last VNF fLk

∈ SCk with the cloudlet node.
Specifically, there is an edge from node wdLk,v to
cloudlet node u in V ′, i.e., E′ ← E′ ∪ {〈wdLk,v, u〉}.
The weight of edge 〈wdLk,v, u〉 is the transmission
cost of a unit traffic along the shortest path from
cloudlet v to cloudlet u.

An example of the constructed auxiliary graph is shown in
Fig. 5.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

Fig. 5. An example of the auxiliary graph G′ = (V ′, E′) with two servers attached at node v and node u and multicast request rk transfer its data to
destinations in Dk = {d1, d2}. Note that there is a widget for each pair of VNF fl and cloudlet v, corresponding to a possible assignment of fl. The
original switches that attach the two cloudlets will just serve as normal forwarding switches.

Problem reduction We now reduce the NFV-enabled
multicasting problem without delay requirements in G to
the Steiner tree problem in the directed auxiliary graph G′.
Recall that in the construction of G′, the VNF processing and
transmission costs are considered as the weights of edges.
We thus find a directed Steiner tree in G′ that spans nodes
in {sk} ∪ Dk. We then transfer the Steiner tree in G′ to
routing paths for rk in the original network G. Specifically, if
a widget for fl ∈ SCk of and cloudlet v ∈ VCL is included
in the Steiner tree, either a newly created VNF instance or
an existing one in cloudlet v will be used to implement fl,
depending on which edge of the widget is included in the
Steiner tree. Notice that the edges among the widgets in G′

correspond to the shortest paths of their endpoints of the
edges in G. We thus replace each of such edges with its
shortest path in G.

Algorithm 2 Appro_NoDelay
Input: G = (V,E), VCL, computing capacity Cv for each

cloudlet v ∈ VCL, and a multicast request rk =
(sk, Dk; bk, SCk).

Output: The locations for the VNFs of service chain SCk of
multicast request rk and the multicast tree Tk to transfer its
data.

1: Construct an auxiliary directed graph G′ = (V ′, E′), as
shown in Fig. 5;

2: Find a directed Steiner tree T in G′ that spans nodes in
{sk} ∪Dk, using Charikar’s algorithm [4];

3: For each path from the widget source node to the widget
destination node of a widget in T , condense the path to a
single node;

4: Replace each of all other edges in T with its corresponding
shortest path in network G; /*The edges among widgets
correspond to shortest paths in the original network G. */

4.3 Algorithm analysis

We now analyze the feasibility of the solution obtained and
performance of the proposed algorithms.

We first show the feasibility of the solution delivered
by algorithm 2. Intuitively, if a solution to the NFV-enabled
multicasting problem, it needs to satisfy the following three
conditions:

• Condition 1: each VNF fl ∈ SCk will be assigned
to one or multiple cloudlets by either creating a new
instance or using an existing instance

• Condition 2: the traffic of rk will be processed by
VNFs as the specified order in SCk

• Condition 3: the processed traffic by the VNFs in
SCk is forwarded to destinations in Dk of rk.

For Condition 1, we show that in each of the selected
cloudlets for fl, either a new instance is created or an existing
instance is selected for it in the following lemma.

Lemma 1. If a cloudlet v ∈ VCL is selected for VNF fl ∈ SCk

of multicast request rk, either an existing instance of fl
or a newly created instance is used to process the traffic
of rk.

Proof Following the construction of G′, showing the fea-
sibility of the solution is to show that if the Steiner tree
found in G′ has one path from wsl,v to wdl,v of each selected
widget, the path will be the only path in the Steiner tree, and
no other paths in the widget will be included. Let Wl,v be
the widget that is built for network function fl in cloudlet
v ∈ VCL. Assume that widget Wl,v is included into the
Steiner tree for the subgraph, and let p be the path from
wsl,v to wdl,v of Wl,v in G′ that is included in the Steiner
tree. We prove by contradiction. Assume that there is another
instance (either newly created or existing one) of fl is used
to process the traffic of rk. Let the ith instance of fl be such
an additional instance. This means that edge 〈f ′i,l,v, f ′′i,l,v〉
has to be included in the Steiner tree found in G′. Edges
〈wsl,v, f ′i,l,v〉 and 〈f ′′i,l,v, wdl,v〉 have to included, according
to the structure of the widget; otherwise, edge 〈f ′i,l,v, f ′′i,l,v〉
is a stand alone edge that can be removed. Let p′ be the
path that consisting of edges 〈wsl,v, f ′i,l,v〉, 〈f ′i,l,v, f ′′i,l,v〉, and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

〈f ′′i,l,v, wdl,v〉, as shown in Fig. 6. Paths p′ and p however
make it not a tree. Therefore, only one path from wsl,v to

Fig. 6. A widget and its paths from its source to destination nodes that
are selected in the Steiner tree.

wdl,v will be included in the Steiner tree for the subgraph
of G′ that is composed of source node sk and the widgets,
meaning that a newly created or existing instance of fl will
be selected in cloudlet v ∈ VCL. The lemma holds.

We consider Condition 2 in the following lemma.
Lemma 2. The traffic of rk will be processed by the VNF

instances in SCk in the specified order.

Proof Assume that the traffic of rk is not processed by the
specified order in SCk. We have the following two cases: (1)
two instances of the same VNF fl processed the traffic, and
(2) the traffic of rk is processed by a previous VNF fl−1 after
being processed by fl.

For Case (1), the two instances must be in different
cloudlets as shown in Lemma 1. This means that two
widgets of the same VNF fl is selected in the Steiner tree
in G′. According to the construction of G′ and Lemma 1,
if the instances of fl in two cloudlets are used, the source
and destination nodes of the corresponding two widgets
have to be included in the Steiner tree in G′; otherwise,
the edges will be stand alone edges that can be removed
from the Steiner tree. Therefore, according to the problem
transformation method of the algorithm, this will correspond
to the processing of rk’s traffic by two instances of fl in
different cloudlets, rather than a sequence processing of the
two instances.

Case (2) can be dealt with similarly. Therefore, these two
cases are not possible according to the construction of G′.

In addition, since each edge in G′ may correspond to a
shortest path in G, making the traffic being forwarded to a
cloudlet more than once. this does not mean that the traffic
is to be processed by the cloudlet twice. This is because we
assume in such cloudlets will just forward the traffic instead
of processing.

We thus conclude that the traffic of rk will be processed
by the VNFs in the specified order in SCk.

We now show Condition 3 as follows.
Lemma 3. The traffic of rk will be forwarded to its destina-

tions in Dk after being processed by the instances of its
VNFs in SCk.

Proof In the construction of the auxiliary graph G′, we can
see that the destination nodes of the widgets for the last

VNF fLk
is connected to its corresponding switch node in

the original network. For each WLk,k of such widgets, if its
edges are included in the Steiner tree, edge 〈wdLk,k, v〉 has
to be included in the Steiner tree. The reasons include (1)
this is the only edge to the destination nodes in Dk, and
(2) as shown in Lemma 2, the traffic cannot be processed
sequentially by other cloudlets of the same VNF fLk

or the
instances of its previous VNFs in SCk. The lemma holds.

Theorem 1. Given an MEC network G = (V,E) with
a set VCL of cloudlets and a multicast request rk
(= (sk, Dk; bk, SCk)) that requires to transfer an amount
bk of data from its source to a set Dk of destinations
and process its traffic by the VNFs in SCk. There is an
approximation algorithm, i.e., Algorithm 2, for a special
case of the NFV-enabled multicasting problem without
delay requirements, which delivers a feasible solution that
has an approximation ratio of i(i− 1)|Dk|1/i [4], and the
time complexity of O((Lk · |V | · Cv

Cunit(fl)
+ |V |)i · |Dk|2i),

where Lk is the number of VNFs in the service chain SCk

of multicast request rk, i.e., Lk = |SCk|, and i is the level
of the directed Steiner tree [4].

Proof From Lemmas 1, 2, and 3, we know that the solution
obtained by finding a Steiner tree in G′ is feasible. In the
following, we analyze the approximation ratio and running
time of the proposed approximation algorithm.

Assume c∗ is the optimal solution for the NFV-enabled
multicasting problem. In Algorithm 2, we find an approxi-
mate Steiner tree T ′ in the auxiliary graph G′. T ′ is then
converted to routing paths for rk in G by (1) selecting
either an existing instance for a network function or a newly
created instance of each VNF fl in SCk if the widget for fl
is included in the Steiner tree, and (2) replacing the edges
between selected widgets using their corresponding shortest
paths in G. In (1), the processing is determined according to
which type of VNF instance is selected. In (2), the replaced
auxiliary graph edge has the same weight as the total cost of
its corresponding shortest path in G. Therefore, the cost do
not change in the transfer from tree T ′ to the multicast tree
T for multicast request rk. Since the approximation ratio of
the algorithm in [4] is i(i− 1)|Dk|1/i, the approximation of
Algorithm 2 is i(i− 1)|Dk|1/i as well.

We now show the time complexity of Algorithm 2. It can
be seen that the most time consuming part of the algorithm
is the finding of a Steiner tree in the auxiliary graph. The
time complexity of Charikar’s algorithm in auxiliary graph
G′ = (V ′, E′) is O(|V ′|3) [21]. We can see that there are
O(Cv

Cunit(fl)
) instances of VNF fl in cloudlet v ∈ VCL.

According to the construction of the auxiliary graph, we thus
have O(Cv

Cunit(fl)
+ 4) = O(Cv

Cunit(fl)
) nodes for each widget.

In total, we have Lk · |VCL| widgets. Therefore, there are
O(Lk ·|VCL|· Cv

Cunit(fl)
+|V |) nodes in auxiliary graphG′. The

time complexity thus is O((Lk · |V | · Cv

Cunit(fl)
+ |V |)i · |Dk|2i).

We finally analyze the performance of Algorithm 1 the
following theorem.

Theorem 2. Given an MEC network G = (V,E) with
a set VCL of cloudlets and a multicast request rk
(= (sk, Dk; bk, SCk)) that requires to transfer an amount
bk of data from its source to a set Dk of destinations

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

with an end-to-end delay requirement dreqk and process
its traffic by the VNFs in SCk. There is a heuristic algo-
rithm, i.e., Algorithm 1, for the NFV-enabled multicasting
problem for a single multicast request, which delivers a
feasible solution in time O(blog VCL + 1c · |V |3 + (Lk ·
|V | · Cv

Cunit(fl)
+ |V |)i · |Dk|2i), where Lk is the number

of VNFs in the service chain SCk of multicast request rk,
i.e., Lk = |SCk|, and i is the level of the directed Steiner
tree [4].

Proof We first show the solution feasibility of the proposed
heuristic by showing that the end-to-end delay requirement
of rk is met. Algorithm 1 adopts a binary search based
heuristic to find the proper number of cloudlets each mul-
ticast request rk until the end-to-end delay requirement of
rk is met or it is rejected. Therefore, as long as the request is
admitted, its end-to-end delay requirement is met.

We then analyze the time complexity of the proposed
heuristic. Clearly, in the worse case, the binary search can
make blog VCL + 1c iterations. Within each iteration, the
most time consuming parts include (1) the identification of
cloudlets that involved finding the delays from cloudlets to
destinations in Dk via all pair shortest paths, which take
O(|V |3) time, and (2) the assignment of VNFs one by one,
taking O(|SCk|) time. In total, the time complexity of the
proposed heuristic is O(blog VCL + 1c · |V |3 · |SCk|+ (Lk ·
|V | · Cv

Cunit(fl)
+ |V |)i · |Dk|2i) = O(blog |V |+1c · |V |3+(Lk ·

|V | · Cv

Cunit(fl)
+ |V |)i · |Dk|2i), assuming that |SCk| is a small

constant.

5 ALGORITHM FOR ADMISSIONS OF A SET OF
NFV-ENABLED MULTICASTING REQUESTS

In this section, we consider a set of multicast request
admissions. Given a set of NFV-enabled multicast request, we
admit as many as requests in the set such that the weighted
system throughput is maximized, while the accumulated
implementation cost of all admitted requests is minimized,
subject to computing capacities on cloudlets in an MEC.

5.1 Overview

Recall that we proposed both approximate and heuristic
solutions for the NFV-enabled multicasting problem for the
admission of a single multicast request, a simple method
for the NFV-enabled multicasting problem is to consider
algorithm Heu_Delay as a black-box and admit each request
one by one invoking algorithm Heu_Delay iteratively. This
method however may miss the opportunities of sharing
VNFs among the requests, if the consecutively admitted
requests do not have common VNFs in their service chains.
Further, the constructed auxiliary graph G′ in algorithm
Heu_Delay for a request may no longer useful for the other.
This consequently may lead to a prohibitively long time to
make decisions of request admissions.

The basic idea behind the proposed algorithm is as
follows. We observe that some requests have the same service
chain requirements, and the VNFs in their service chains can
be shared with high opportunities. Fig. 7 illustrates this
idea, from which we can see that requests are classified
into different categories, with each category having a set

of requests that share a number of VNFs. Specifically, the
algorithm first considers the category in which multicast
requests the maximum number of common VNFs of their
service chains. Then, the requests in this category, we start
with the requests with smaller data traffic, and admit the
requests one-by-one. This procedure continues until no more
requests can be admitted in the category.

Fig. 7. The basic idea of the proposed heuristic for the NFV-enabled
multicasting problem.

5.2 Heuristic algorithm
We propose an efficient heuristic for the NFV-enabled multi-
casting problem for a set of requests with different service
chain requirements, based on Algorithm 1.

Specifically, the heuristic consists of a number of iterations
within each iteration, a set of requests with the same number
of VNFs in common are processed. Let Lcom be the number
of common VNFs that requests have in their service chains.
Let Lmax be the maximum length of the service chains of
the requests in R, i.e., Lmax = argmaxrk∈R |SCk|. Initially,
Lcom = Lmax. It decreases by one in each iteration of the
algorithm until Lcom = 0.

Within each iteration, we first find the requests that
have Lcom VNFs in common of their service chains. Denote
by R(Lcom) the set of such requests. We then rank the
requests in R(Lcom) in increasing order of their data traffic.
For each request rk ∈ R(Lcom), we invoke the proposed
approximation algorithm in 2. Notice that the requests in
R(Lcom) may have different source nodes and different
destination sets. We thus need to adjust the auxiliary graph
after the admission of each multicast request, by removing
the source node for the previous request, and add the source
node of the current request. This means that, before admitting
the next multicast request rk+1, we make adjustments of the
constructed auxiliary graph G′ instead of constructing a new
one. Specifically, the widgets that are built for the Lcom VNFs
are updated accordingly, if multicast request rk is admitted.
Also, the widgets for the VNFs that are not among the Lcom

of request rk+1 is added to the auxiliary graph. This iteration
continues until no more requests can be admitted within
this category. The steps of this algorithm are detailed in
Algorithm 3.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Algorithm 3 Heu_MultiReq
Input: G = (V,E), VCL, Ce for each e ∈ E, Cv for each v ∈ VCL,

and a set of multicast requests with each multicast request
being denoted by rk = (sk, Dk; bk, SCk).

Output: The system throughput achieved by the admitted
requests in R.

1: Nad ← 0;
2: for Lcom ← 0, 1..., Lmax do
3: Find the maximum number of requests in R that have

Lcom common VNFs in their service chains, and let
R(Lcom) be the set of requests;

4: Rank the multicast requests in R(Lcom) according to their
data traffic;

5: for each request rk ∈ R(Lcom) do
6: T ← ∅;
7: while G is (sk-Dk)-connected OR rk is admitted do
8: Construct auxiliary graph G′ = (V ′, E′), by creating

Lk · |VCL| widgets, adding all the switch nodes in
V of the original network G, and interconnecting
the added nodes as shown in Fig. 5, or adjust the
auxiliary graph if it is already constructed in the
admission of previous requests;

9: Find a Steiner tree T for in auxiliary graph G′;
10: if the delay of each branch of T is smaller than dreqk

then
11: Admit multicast request rk;
12: else
13: Find the branches of T that violate delay require-

ment dreqk ;
14: For each of such found branch, identify an edge

with the maximum delay;
15: Remove the identified edges from graph G;
16: if T 6= ∅ then
17: For each path from the widget source node to the

widget destination node of a widget in T , condense
the path to a single node;

18: The widgets that are built for the Lcom VNFs are
updated according to the resource availabilities after
admitting rk;

19: if k + 1 < |R(Lcom)| then
20: The widgets for the VNFs that are not among the

Lcom of request rk+1 is added to the auxiliary graph;

We now analyze the feasibility of Algorithm
Heu_MultiReq in the following theorem.

Theorem 3. Given an MEC network G = (V,E) with
a set VCL of cloudlets, a set R of NFV-enabled
multicast requests with each multicast request rk (=
(sk, Dk; bk, SCk)) that requires to transfer an amount bk
of data from its source to a set Dk of destinations with an
end-to-end delay requirement dreqk and process its traffic
by the VNFs in SCk. There is an efficient algorithm,
Algorithm 3, for the NFV-enabled multicasting problem.

Proof To show the solution delivered by algorithm 3 is
feasible, we need to show the classification of requests does
not affect the solution feasibility of algorithm 2. Assume that
the algorithm currently considers request rk+1. If its previous
request rk is admitted, the widgets of the corresponding
cloudlets that implement the VNFs of rk are then updated,
since the resource availabilities of these cloudlets or statuses
of their existing VNF instances changed. Otherwise, there
is not any change of the widgets in the auxiliary graph.
Considering that the feasibility of admitting one request by

Algorithm 2 can be shown by Lemma 2, Algorithm 1 delivers
a feasible solution when multiple requests are considered.

6 PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed
algorithms in a real testbed.

6.1 Test-bed setup

We build a test-bed consisting of both an underlay network
with hardware switches and an overlay network with virtual
switches, as shown in Fig. 8 The physical underlay consists
of five H3C S5560X-30S-EI switches [12], with the support for
VXLAN for virtual tunnel building and SDN capabilities. It
has also one server with E5 Gold 5218 CPU, 128G RAM and
four PCs with i7-8700 CPU, 16G RAM. Netconf and SNMP
protocols are used to manage the switches and the links that
interconnect them [35], [3]. We considered a design approach
that uses the VXLAN functionality provided by the switch,
where VXLAN is a widely used overlay technology [37].
The H3C S5560X-30S-EI switch implements a VXLAN tunnel
based on hardware, which can greatly improve performance
compared to traditional methods. The overlay mechanism
provides connectivity within, and potentially across multiple
testbed sites as it can transit any routed layer-3 underlay.
We use VXLAN as a point-to-point tunneling mechanism
(VXLAN VNI identifies a single link between two nodes [37]).
SDN-capable switches can also perform encapsulation and
decapsulation of VXLAN tunnels, each tunnel corresponds
to a port in the switch. Using VXLAN, we build an overlay
network with a number of Open vSwitch (OVS) [36] nodes
and VMs. The overlay network is built following the topology
generated using a graph generation tool GT-ITM [10] and the
real network topologies AS1755, AS4755. Its OVS nodes and
VMs are controlled by a Ryu [40] controller. The proposed
algorithms are implemented as Ryu applications.

(a) The underlay and overlay of the test-bed. (b) The hard-
ware switches
and servers.

Fig. 8. A test-bed with both hardware switches and virtual resources.

6.2 Environment settings

We consider an MEC network consisting of the number of
nodes from 50 to 250. The number of servers in each network

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

(a) Average cost of implementing a multicast
request.

(b) Average delay experienced by a multicast
request.

(c) Running times.

Fig. 9. The performance of algorithms Appro_NoDelay, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost.

is set to 10% of the network size, and the servers are ran-
domly co-located with the switches. We also use real network
topologies, i.e.,the GÉANT [9] and an ISP network from [42].
There are nine cloudlets for the GÉANT topology as set
in [11] and the number of data centers in the ISP networks are
provided by [38]. The computing capacity of cloudlet varies
from 40,000 to 120,000 MHz [13] (cloudlets with around tens
of servers). Five types of network functions, i.e., Firewall,
Proxy, NAT, IDS, and Load Balancing, are considered, and
their computing demands are adopted from [11], [32]. The
source and destination nodes of each multicast request is
randomly generated, the ratio of the maximum number Dmax

of destinations of a multicast request to the network size |V |
is randomly drawn in the range of [0.05, 0.2]. The data of
each request is randomly drawn from [10, 200] Megabyte,
and the delay requirement of transferring such data is
randomly generated from [0.05, 5] seconds. Notice that the
transfer of larger amount of data can be divided into smaller
amounts and transferred by multiple multicast requests.
Unless otherwise specified, these parameters will be adopted
in the default setting.

We compare the performance of the proposed approx-
imation and heuristic algorithms against the following
benchmarks.

• We consider the case where the VNFs of each multi-
cast request may be placed to multiple cloudlets for
processing while there exist solutions that consolidate
all VNFs of a multicast request into a single location.
We thus compare our solutions with such a solution,
which is referred to as algorithm Consolidated.

• We evaluate the performance of the proposed ap-
proximation and heuristic algorithms against the one
in [39] that does not consider the delay requirement of
multicast requests, and we use NoDelay to represent
the algorithm.

• We also compare the performance of our algorithm
against that of a greedy solution that prefers to select
existing VNF instances for each multicast request rk.
Specifically, it finds the cloudlet that is the closest to
source node sk and has an VNF instance for its first
VNF in SCk, if there does not exist such cloudlets, a
new VNF instance is created in the closest cloudlet.
The procedure continues until all VNFs in SCk are
considered. This greedy algorithm is referred to as
algorithm ExistingFirst.

• Another greedy benchmark prefers to create new

instances for each of the VNFs in SCk, which is
referred to as algorithm NewFirst.

• The fifth benchmark selects the cloudlet that can
achieve the lowest processing cost for each VNF
in SCk. For simplicity, it is referred to as algo-
rithm LowCost. Specifically, algorithm LowCost
finds the cloudlet that is the closest to the source
sk and then places as many VNFs in SCk to the
cloudlet until all existing VNF instances are used or
no computing resource available to instantiate new
ones. If there are still VNFs in SCk that have not been
assigned, it finds the next cloudlet that is the closest
to the found cloudlets.

6.3 Performance evaluation of algorithms Heu_Delay
and Appro_NoDelay

We first evaluate the performance of algo-
rithms Heu_Delay and Appro_NoDelay against that
of algorithms Consolidated, NoDelay, ExistingFirst,
NewFirst, and LowCost, in terms of the average
operational cost, the average end-to-end delay, and the
running time, by varying the network size from 50 to 250
while fixing the number of requests at 100. Fig. 9 shows the
results of the proposed algorithms.

From Fig. 9 (a), we can see that Algorithm Heu_Delay
achieves a lower operational cost than these of algorithms
ExistingFirst, NewFirst, and LowCost. The reason is
that Algorithm Heu_Delay jointly considers existing VNF
instances and newly instantiated ones. However, the greedy
approaches NewFirst, ExistingFirst, and LowCost
only prefer new, existing, or low processing cost VNF
instances. They unfortunately could miss the opportunities
of further reducing the operational cost. Specifically, if the
use of existing VNF instances can save the processing
cost, NewFirst has a higher cost due to creating new
instances. Also, there are some cases when creating new
VNF instances can save transmission costs, which can be
missed by algorithm ExistingFirst. In addition, it can
be seen from Fig. 9 (a) that Algorithm Heu_Delay has a
higher operational cost than algorithms Appro_NoDelay
and NoDelay. This is because algorithms Appro_NoDelay
and NoDelay do not consider the delay requirement of
requests, making it choose cloudlets with lower operational
costs.

As shown in Fig. 9 (b), the average delay experienced
by each multicast request by Algorithm Heu_Delay is

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

(a) Average cost of implementing a multicast
request in network AS1755.

(b) Average delay experienced by a multicast
request in network AS1755.

(c) Running times in network AS1755.

(d) Average cost of implementing a multicast
request in network AS4755.

(e) Average delay experienced by a multicast
request in network AS4755.

(f) Running times in network AS4755.

Fig. 10. The performance of algorithms Appro_NoDelay, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost in networks
AS1755 and AS4755.

(a) Average cost of implementing a multi-
cast request.

(b) Average delay experienced by a multi-
cast request.

Fig. 11. The impact of the maximum delay requirement of each multicast request on the performance of algorithms Appro_NoDelay, Consolidated,
NoDelay, ExistingFirst, NewFirst, and LowCost.

much lower than its comparison counterparts. The reason
is that Algorithm Heu_Delay carefully finds a trade-off
between the delay and cost of implementing a NFV-enabled
request. Also, from Fig. 9 (c), we can see that the running
time of Algorithm Heu_Delay is around 50 seconds for
network size 200, which is slightly larger than those of
algorithms Appro_NoDelay and NoDelay and smaller than
algorithms ExistingFirst, NewFirst, and LowCost.
The reason is that Heu_Delay has an additional process of
binary search to find a proper number of cloudlets for each
request rk. Algorithm NoDelay has a lower running time
compared with algorithm Appro_Delay because the delay
requirement of requests is not considered, which reduces the
solution space.

We then evaluate the performance of algo-
rithms Heu_Delay and Appro_NoDelay against that
of algorithms Consolidated, NoDelay, ExistingFirst,

NewFirst, and LowCost, in real networks AS1755 and
AS4755, by varying the ratio of the number of cloudlets
to the number of switches, i.e., |CL|/|V | from 0.05 to 0.2.
Fig. 10 illustrates the results. Fig. 10(a) and (d) show
that algorithms Heu_Delay and Appro_NoDelay
achieve lower operational costs than algorithms
Consolidated, ExistingFirst, and NewFirst, while
algorithms Appro_NoDelay and NoDelay has the highest
delay. We can also see that the average cost of implementing
a multicast increases first when the ratio |CL|/|V | increases
from 0.05 to 0.1 and then decreases afterwards. The rationale
behind is that VNFs of each multicast request may be
assigned to more cloudlets with the increase of number
of cloudlets, thereby pushing up the transmission cost
from its source to the cloudlets and from the cloudlets
to its destinations. However, with the further increase of
cloudlets, it is more likely that these cloudlets are deployed

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

(a) System throughput. (b) Total cost of implementing a multicast
request.

(c) Average cost of implementing a multicast
request.

(d) Average delay experienced by a multicast
request.

(e) Running times.

Fig. 12. The performance of algorithms Heu_Multicast, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost.

(a) Average cost of implementing a multicast
request.

(b) Average delay experienced by a multicast
request.

(c) Running times.

(d) Average cost of implementing a multicast
request.

(e) Average delay experienced by a multicast
request.

(f) Running times.

Fig. 13. The performance of algorithms Heu_Multicast, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost.

in locations that are close to the source and destinations of
the multicast request. The transmission cost then can be
reduced afterwards.

We then investigate the impact of the maximum delay
requirement on algorithm performance in the real network

AS1755, by varying the maximum delay requirement of each
multicast request from 0.8 seconds to 1.8 seconds with an
increment of 0.2 seconds. Fig. 11 illustrates that the cost
of implementing a multicast request is decreasing with the
increase of the maximum delay requirement. The rationale

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 15

(a) System throughput in network AS1755 (b) Average cost in network AS1755 (c) Average delay in network AS1755

(d) System throughput in network AS4755 (e) Average cost in network AS4755 (f) Average delay in network AS4755

Fig. 14. The performance of algorithms Heu_Multicast, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost.

behind is that a higher delay requirement of a request
allows the algorithm to select cloudlets with lower costs
but further from the source node of the request. Obviously,
the experienced delay will be higher, as shown in Fig. 11.

6.4 Performance evaluation of algo-
rithm Heu_MultiReq

We now compare the performance of Algo-
rithm Heu_MultiReq against that of algo-
rithms Consolidated, NoDelay, ExistingFirst,
NewFirst, and LowCost, in terms of the system
throughput, the total operational cost, the average
end-to-end delay, and the running time, by varying the
network size from 50 to 250 and fixing the number of
requests to 100. Results are shown in Fig. 12, from which
we can see that Algorithm Heu_MultiReq achieves
around 30%, 30%, 35% higher system throughput than
algorithms ExistingFirst, NewFirst, LowCost, and
Consolidated when the network size is 200. The rationale
behind is that algorithms ExistingFirst, NewFirst,
and LowCost prefer existing, newly instantiated, and low
processing cost VNF instances for each multicast request, and
the cloudlets for those VNF instances may not have sufficient
computing resource to implement the request, thereby
leading to its rejection. Further, from figures 12 (a) and 12 (b),
it can be seen Algorithm NoDelay has a higher end-to-end
delay than that of Algorithm Heu_MultiReq, although it
delivers a slight higher system throughput. Similar results
can be observed from Fig. 13 when the performance of
Algorithm Heu_MultiReq is evaluated against that of
algorithms Consolidated, NoDelay, ExistingFirst,
NewFirst, and LowCost, in real networks AS1755 and
AS4755.

We then investigate the impact of the number of re-
quests on the performance of algorithms Heu_MultiReq,
Consolidated, NoDelay, ExistingFirst, NewFirst,
and LowCost, in terms of system throughput, average
operational cost, average end-to-end delay, and running
time, by varying the number of requests from 50 to 300
while fixing the network size to 100. Fig. 14 shows that the
system throughput increases first with the growth on the
number of requests from 50 to 100, and then keeps stable
afterwards, because the cloudlet capacities are saturated. We
can also see that the average cost of implementing a multicast
increases with the growth of request number. The rationale
behind is that each multicast request may be assigned to
more cloudlets for processing with the increase of number
of requests, considering that the resources in cloudlets are
saturated and may not be enough to implement all VNFs of
a service chain. This eventually increases the transmission
cost for each multicast request.

7 CONCLUSION AND FUTURE WORK

In this paper, we study the problem of delay-aware, NFV-
enabled multicasting in a mobile edge cloud network, by ex-
ploring the sharing of VNF instances of requests. If cloudlets
have sufficient computing resource to process traffic of a
multicast request, with no delay requirement, we proposed
an approximate solution with a provable approximation
ratio; otherwise, we developed an efficient heuristic. We also
considered a set of NFV-enable multicast request admissions
with the aim to maximize the weighted system throughput,
for which we proposed an efficient heuristic. We finally
evaluate the performance of the proposed algorithms against
state-of-the-arts approaches in a real test-bed, and the results
show that the performance of our algorithms is promising.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 16

In this paper we considered the sharing of idle VNFs
that have been released by other requests. The requests with
the same service chain requirements may share resources
with high probability. However, requests may have dynamic
resource demands, and may share resources with others as
long as they have complimentary demands. Understand-
ing how to learn such dynamic complimentary resource
demands among requests is challenging. Therefore, we
consider the adoption of machine learning methods to
classify requests with complimentary demands as our future
research study – akin to existing efforts in interference-aware
scheduling in cloud-based data centers. Existing efforts that
make use of an interference index to characterize these
competing/ complementary workloads can also be utilized
in the proposed environment. Another is to explore the
dynamic admission of NFV-enabled delay-aware requests,
taking account of uncertainty (variability) of processing
and transmission delays. The admission of requests in the
current time slot can impact the admission of future requests.
Understanding how online learning algorithms can adapt to
support such admission control remains another potential
research topic.

ACKNOWLEDGEMENTS

We would like to thank the three anonymous referees
and the associate editor for their expertise comments and
constructive suggestions, which have helped us improve
the quality and presentation of the paper greatly. The work
of Zichuan Xu, Qiufen Xia, and Guowei Wu is partially
supported by the National Natural Science Foundation of
China (Grant No. 61802048 and 61802047), the fundamental
research funds for the central universities in China (Grant
No. DUT17RC(3)061, DUT17RC(3)070, DUT19RC(4)035, and
DUT19GJ204), and the “Xinghai Scholar Program” in Dalian
University of Technology, China. The work by Weifa Liang
is supported by the Australian Research Council Discovery
Project (Grant No. DP200101985). The work by Pan Zhou is
supported by the National Natural Science Foundation of
China (Grant No. 61972448).

REFERENCES

[1] O. Alhussein, P. T. Do, J. Li, Q. Ye, W. Shi, W. Zhuang, X. Shen, X. Li,
and J. Rao. Joint VNF placement and multicast traffic routing in 5G
core networks. Proc. of ICC, IEEE, 2018.

[2] S. M. Banik, S. Radhakrishnan, and C. N. Sekharan. Multicast
routing with delay and delay variation constraints for collaborative
applications on overlay networks. IEEE Transactions on Parallel and
Distributed Systems, Vol. 18, No.3, pp. 421 - 431, 2007.

[3] J. Case et al. A Simple Network Management Protocol (SNMP). RFC
1098, IETF, https://tools.ietf.org/html/rfc1157, 1990.

[4] M. Charikar, C. Chekuri, T.-Y. Cheung, Z. Dai, A. Goel, S. Guha,
and M. Li. Approximation algorithms for directed Steiner problems.
Proc. of SODA, IEEE, 1998.

[5] Y. Chen and J. Wu. NFV middlebox placement with balanced set-up
cost and bandwidth consumption. Proc. of ICPP, ACM, 2018.

[6] R. Cohen, L. Eytan, J. Naor, and D. Raz. Near optimal placement of
virtual network functions. Proc. of INFOCOM, IEEE, 2015.

[7] R. Cziva, C. Anagnostopoulos, D. P. Pezaros Dynamic Latency-
Optimal vNF Placement at the Network Edge. Proc. of INFOCOM,
IEEE, 2018.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide
to the Theory of NP-Completeness. W.H. Freeman and Company, NY,
1979.

[9] GÉANT. http://www.geant.net, accessed in Feb. 2020.

[10] E. W. Zegura, K. Calvert and S. Bhattacharjee. How to Model an
Internetwork. Proc. of IEEE INFOCOM, IEEE, 1996.

[11] A. Gushchin, A. Walid, and A. Tang. Scalable routing in SDN-
enabled networks with consolidated middleboxes. Proc. of HotMid-
dlebox, ACM, 2015.

[12] H3C SDN Switches. http://www.h3c.com/en/Product
Technology/Enterprise Products/Switches/Campus Switches/
H3C S5560X-EI/, accessed in Feb. 2020.

[13] Hewlett-Packard Development Company. L.P. Servers for en-
terprise C bladeSystem, rack & tower and hyperscale. ttp://
www8.p.com/us/en/products/servers/, 2015.

[14] K. Han, Y. Liu, and J. Luo. Duty-cycle-aware minimum-energy
multicasting in wireless sensor networks. IEEE/ACM Transactions on
Networking, Vol. 21, No. 3, pp. 910 – 923, 2013.

[15] H. Huang, S. Guo, J. Wu, and J. Li. Service chaining for hybrid
network function. IEEE Transactions on Cloud Computing, Vol. 7, No.4,
pp. 1082 –1094, 2019.

[16] H. Huang, P. Li, and S. Guo. Traffic scheduling for deep packet in-
spection in software-defined networks. Concurrency and computation:
practice and experience, Vol. 29, No.16, pp. e3967, Wiley, 2016.

[17] L. Huang, H. Hung, C. Lin, and D. Yang. Scalable steiner
tree for multicast communications in software-defined networking.
Computing Research Repository (CoRR), vol. abs/1404.3454, 2014.

[18] M. Huang, W. Liang, Z. Xu, W. Xu, S. Guo and Y. Xu. Dynamic
routing for network throughput maximization in software-defined
networks. Proc. of INFOCOM, IEEE, 2016.

[19] N. Kiji, T. Sato, R. Shinkuma, and E. Oki Virtual network function
placement and routing model for multicast service chaining based
on merging multiple service paths. Proc. of HPSR, IEEE, 2019.

[20] S. Knight et al. The internet topology zoo. J. Selected Areas in
Communications, Vol. 29, pp. 1765 – 1775, IEEE, 2011.

[21] L. Kou, G. Markowsy, and L. Berman. A faster algorithm for Steiner
trees. Acta Informatica, Volume 15, pp. 141–145, Springer, 1981.

[22] T-W. Kuo, B-H. Liou, K. C. Lin, and M-J Tsai. Deploying chains of
virtual network functions: on the relation between link and server
usage. Proc. of INFOCOM, IEEE, 2016.

[23] Y. Li, L. T. X. Phan, and B. T. Loo. Network functions virtualization
with soft real-time guarantees. Proc. of INFOCOM, IEEE, 2016.

[24] D. Li, M. Xu, Y. Liu, X. Xie, Y. Cui, J. Wang, and G. Chen. Reliable
multicast in data center networks. IEEE Transactions on Computers,
Vol. 63, No. 8, pp. 2011 – 2024, IEEE, 2014.

[25] W. Liang. Approximate minimum-energy multicasting in wireless
ad hoc networks. IEEE Transactions on Mobile Computing, Vol. 5, No.
4, pp. 377 – 387, 2006.

[26] D. H. Lorenz and D. Raz. A simple efficient approximation scheme
for the restricted shortest path problem. Operations Research Letters,
Vol. 28, pp. 213-219, Elsevier, 2001.

[27] T. Lukovszki and S. Schmid. Online admission control and
embedding of service chains. Proc. of SIROCCO, 2015.

[28] L. Mamatas, S. Clayman, and A. Galis. Software-defined infras-
tructure. IEEE Communications Magazine, Vol. 53, No. 4, pp 166-174,
2015.

[29] Y. Ma, W. Liang, Z. Xu, and S. Guo. Profit maximization for
admitting requests with network function services in distributed
clouds. IEEE Transactions on Parallel and Distributed Systems, Vol.30,
No.5, pp.1143–1157, 2019.

[30] Y. Ma, W. Liang, J. Wu, and Z. Xu. Throughput maximization of
NFV-enabled multicasting in mobile edge cloud networks. IEEE
Transactions on Parallel and Distributed Systems, Vol. 31, No. 2, pp. 393
– 407, 2020.

[31] Y. Ma, W. Liang, and J. Wu. Online NFV-enabled multicasting in
mobile edge cloud networks. Proc. of ICDCS, IEEE, 2019.

[32] J. Martins et al. ClickOS and the art of network function virtualiza-
tion. Proc. of NSDI, USENIX, 2014.

[33] H. Moens and F. D. Turck. VNF-P: A model for efficient placement
of virtualized network functions. Proc. of CNSM, IEEE, 2014.

[34] M. Mongiovı́, A. K. Singh, X. Yan, B. Zong, and K. Psounis. Efficient
multicasting for delay tolerant networks using graph indexing. Proc.
of INFOCOM, IEEE, 2012.

[35] Netconf Working Group. https://datatracker.ietf.org/wg/netconf/about/.
[36] Open vSwtich. https://www.openvswitch.org
[37] M. Mahalingam et al. Virtual eXtensible Local Area

Network (VXLAN): A Framework for Overlaying Virtualized
Layer 2 Networks over Layer 3 Networks. RFC 7348, IETF,
https://tools.ietf.org/html/rfc7348.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 17

[38] Z. A. Qazi, C. C. Tu, L. Chiang, R. Miao, V. Sekar, M. Yu. SIMPLE-
fying middlebox policy enforcement using SDN. Proc. of SIGCOMM,
ACM, 2013.

[39] B. Ren, D. Guo, G. Tang, X. Lin, and Y. Qin. Optimal service function
tree embedding for NFV Enabled multicast. Proc. of ICDCS’18, IEEE,
2018.

[40] Ryu SDN Controller. https://osrg.github.io/ryu/
[41] H. Soni, W. Dabbous, T. Turletti, and H. Asaeda. NFV-based scalable

guaranteed-bandwidth multicast service for software-defined ISP
networks. IEEE Transactions on Network and Service Management,
Vol.14, No. 5, pp. 1157-1170, 2017.

[42] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with rocketfuel. Proc. of SIGCOMM, ACM, 2002.

[43] J. M. Vella and S. Zammit. A Survey of multicasting over wireless
access networks. IEEE Communications Surveys & Tutorials, Vol. 15,
No. 2, pp. 718 – 753, IEEE, 2013.

[44] K. Xie, X. Zhou, T. Semong, and S. He Multi-source multicast
routing with QoS constraints in network function virtualization.
Proc. of ICC, IEEE, 2019.

[45] Z. Xu, W. Liang, M. Jia, M. Huang, and G. Mao. Task offloading
with network function services in a mobile edge-cloud network.
IEEE Transactions on Mobile Computing, Vol.18, No.11, pp.2672 – 2685,
2019.

[46] Z. Xu, W. Liang, A. Galis, and Y. Ma. Throughput maximization
and resource optimization in NFV-enabled networks. Proc. of ICC’17,
IEEE, 2017.

[47] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis. Ap-
proximation and online algorithms for NFV-enabled multicasting in
SDNs. Proc of 37th IEEE Intl Conf on Distributed Computing Systems
(ICDCS’17), 2017.

[48] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis. Efficient
NFV-enabled multicasting in SDNs. IEEE Transactions on Communi-
cations, Vol.67, No.3, pp. 2052 – 2070, 2019.

[49] B. Yi, X. Wang, M. Huang, and A. Dong. A multi-stage solution
for NFV-enabled multicast over the hybrid infrastructure. IEEE
Communication Letters, vol. 21, no. 9, pp. 2061–2064, 2017.

[50] Y. Zhang et. al. StEERING: A software-defined networking for
inline service chaining. Proc. of ICNP, IEEE, 2013.

[51] S. Q. Zhang, Q. Zhang, H. Bannazadeh, and A. L. Garcia. Network
function virtualization enabled multicast routing on SDN. Proc. of
ICC, IEEE, 2015.

Haozhe Ren received the B.Sc degree from the
University of Science and Technology Beijing in
China, in 2012, and received the ME degree
from the Xinjiang Normal University in China in
2018. He is currently pursuing his PhD degree
in the School of Software, Dalian University of
Technology. His current research interests include
network function virtualization, software-defined
networking, algorithmic game theory, and opti-
mization problems.

Zichuan Xu (M’17) received his PhD degree from
the Australian National University in 2016, ME
degree and BSc degree from Dalian University
of Technology in China in 2011 and 2008, all in
Computer Science. From 2016 to 2017, he was a
Research Associate at Department of Electronic
and Electrical Engineering, University College
London, UK. He is currently an Associate Pro-
fessor in School of Software at Dalian University
of Technology. He is also a ‘Xinghai Scholar’ in
Dalian University of Technology. His research in-

terests include cloud computing, network function virtualization, software-
defined networking, wireless sensor networks, routing protocol design for
wireless networks, algorithmic game theory, and optimization problems.

Weifa Liang (M’99–SM’01) received the PhD
degree from the Australian National University
in 1998, the ME degree from the University
of Science and Technology of China in 1989,
and the BSc degree from Wuhan University,
China in 1984, all in computer science. He is
currently a Full Professor in the Research School
of Computer Science at the Australian National
University. His research interests include design
and analysis of energy efficient routing protocols
for wireless ad hoc and sensor networks, mobile

edge computing and cloud computing, Network Function Virtualization,
Software-Defined Networking, design and analysis of parallel and dis-
tributed algorithms, approximation algorithms, combinatorial optimization,
and graph theory. He is a senior member of the IEEE.

Qiufen Xia received her PhD degree from the
Australian National University in 2017, the ME
degree and BSc degree from Dalian University
of Technology in China in 2012 and 2009, all in
Computer Science. She is currently a lecturer at
the Dalian University of Technology. Her research
interests include mobile cloud computing, query
evaluation, big data analytics, big data manage-
ment in distributed clouds, and cloud computing.

Pan Zhou (S07M14) received the B.S. degree in
the Advanced Class of Huazhong University of
Science and Technology (HUST), Wuhan, China,
in 2006, and the Ph.D. degree from the School of
Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA, USA, in
2011. He is currently an Associate Professor
with the School of Electronic Information and
Communications, HUST, Wuhan, China. He was
a Senior Technical Member with Oracle, Inc.,
America, from 2011 to 2013, Boston, MA, USA.

His current research interests include security and privacy, machine
learning and big data analytics, and information networks.

Omer F. Rana received the B.S. degree in infor-
mation systems engineering from the Imperial
College of Science, Technology and Medicine,
London, U.K., the M.S. degree in microelectronics
systems design from the University of Southamp-
ton, Southampton, U.K., and the Ph.D. degree
in neural computing and parallel architectures
from the Imperial College of Science, Technology
and Medicine. He is a Professor of performance
engineering with Cardiff University, Cardiff, U.K.
His current research interests include problem

solving environments for computational science and commercial com-
puting, data analysis and management for large-scale computing, and
scalability in high performance agent systems.

Alex Galis is a Professor in Networked and
Service Systems at University College London.
He has co-authored 10 research books and more
that 250 publications in the Future Internet areas:
system management, networks and services, net-
working clouds, 5G virtualisation and programma-
bility. He was a member of the Steering Group
of the Future Internet Assembly (FIA) and he led
the Management and Service-aware Networking
Architecture (MANA) working group. He acted as
TPC chair of 14 IEEE conferences. He is also

a co-editor of the IEEE Communications Magazine feature topic on
Advances In Networking Software. He acted as a Vice Chair of the ITU-T
SG13 Group on Future Networking. He is involved in IETF and ITU-T
SG13 network slicing activities and he is also involved in IEEE SDN
initiative.

Guowei Wu received his Ph.D degree from
Harbin Engineering University in 2003,PR
China.He is now a professor at the School of
Software,Dalian University of Technology(DUT) in
China. His research interests include embedded
real-time system,cyber-physical systems(CPS),
and smart edge computing. He has published
over 100 papers in Journal and Conference.

