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Benchmarking Video Service Quality: Quantifying
the Viewer Impact of Loss-Related Impairments

Vidhyalakshmi Karthikeyan, Brahim Allan, Detlef D. Nauck, and Miguel Rio

Abstract—We present the first empirical study of the impact of
loss-related errors on TV viewing engagement across disparate
platforms, delivery technologies and performance measures. Our
dataset comprises anonymised video viewing sessions and data
about quality of delivery from a content service provider with
a nationwide customer base. We study buffering events on
streaming apps, mild and severe packet loss errors on multicast-
delivered IPTV to a Set-Top-Box (STB) and signal strength
errors on Digital Terrestrial TV. Since these metrics cannot be
directly compared to each other, we use engagement as our proxy
measure. We first characterise the relationship between each
impairment and viewing engagement, investigating confounding
factors such as type of content, asset length and connection type.
We conclude that the loss of engagement due to poor quality
delivery is incurred immediately for on-demand content and
in the long-term for live content. We rank impairments across
platforms by their impact on engagement.

Index Terms—Streaming, IPTV, DTT, Video quality, Engage-
ment

I. INTRODUCTION

V ideo viewing has rapidly evolved in recent years and is
expected to dominate Internet traffic by 2021 [1]. Major

content providers already support converged usage, enabling
customers to seamlessly watch the same content item across
multiple platforms, for example, on one or more set-top-boxes
(STBs) and a multitude of apps on mobile devices. Customers
can watch live content or catch-up on selected items for
a limited time period after broadcast. Platform diversity is
common – a service provider achieves end-to-end delivery
by managing integration and interoperation of components
from multiple vendors. Delivery technologies, error recovery
mechanisms and, most importantly, the data captured about
session performance varies vastly by platform. Irrespective
of end-to-end heterogeneity, video quality delivered across
multiple platforms to a converged customer should to be
equivalent from the customer’s perspective, suggesting the
need for cross-platform benchmarking of end-to-end video
quality. However, customer expectations and context play a
key role in benchmarking – the same viewer has a different
tolerance to (re)buffering experienced on an application (app)
on a portable device whilst travelling on a train than on a STB
connected to a family room television during prime time [2].
A viewer may also pay different levels of attention in both
scenarios.
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Content service providers therefore look for ways to com-
pare disparate measures in order to prioritise improvements in
customer experience across platforms. Which service degrada-
tion has more customer impact – five seconds of buffering time
on an app over unicast, ten uncorrected packet loss errors on
a STB over multicast or one thresholded signal strength error
over Digital Terrestrial Television (DTT)?

Service providers quantify customer impact in many ways.
Monetary cost can be clearly attributed to complaint calls,
engineer appointments and service churn. However, they are
not representative of the impact on the entire viewer base
as not all customers with poor service get in touch or are
surveyed and the delay between impacted experience and
contact can be arbitrary. Viewing engagement, on the other
hand, is unreserved customer feedback. We note that viewing
disengagement can result from at least three aspects of content
consumption: video quality, disinterest in the content and
changes in lifestyle. Whilst subjective and objective testing
models explore user-perceived video quality and promise a
more causal relationship, such models are highly parameter-
dependent. Service providers find themselves grappling with
ever-changing, bespoke implementations and error messages
that may not have been previously modelled. Therefore, there
is value in studying observable behaviour of their entire nation-
wide customer base and the relationship to levers that service
providers can control to deliver a better experience. These
avenues of research are complementary. We acknowledge that
quality metrics can have interdependent and counter-intuitive
relationships to each other and user behaviour [3]. We explore
these topics in this paper and develop ways of representing en-
gagement and performance such that the relationship becomes
clearer. We propose that viewing engagement is a common
proxy measure that can be used at scale through which we
can compare different metrics across different platforms that
are otherwise uncomparable.

The purpose of this study is to quantify the impact that
loss-related impairments have on viewing engagement across
different video delivery platforms using anonymised data from
a nationwide video service provider in the UK. Our findings
and methodology apply to a wide range of video platforms
beyond the exact implementation of this service provider. We
characterise the relationship between engagement and each of
the impairment types on STB and streaming apps on portable
devices. We then develop a method to benchmark loss-related
errors across all delivery methods to rank the scale of impact
on viewers.

The rest of the paper is structured as follows. We present
related work in Section II, identifying our original contribution
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to the field. We describe our measurement setup and dataset
in Section III and evaluate key metrics that capture different
facets of viewing engagement in Section IV. We present
baseline viewing and error performance in the population in
Section V. Section VI characterises the impact of loss-related
errors on session abandonment, highlighting confounding fac-
tors. Section VII presents our analysis methods and findings on
the long-term impact of loss-related errors on STB and app
viewing engagement. Finally, we describe our engagement-
based method to benchmark video quality across platforms,
delivery technologies and metrics measured in Section VIII.
We rank different loss-related impairments that occur in a
complete video delivery ecosystem by their impact on user
engagement.

II. RELATED WORK

Traditional indices of video quality scoring use subjective
and objective testing. Modelling Quality of Experience (QoE)
from Quality of Service (QoS) metrics is characterised by
[4]–[9]. Studies [10]–[13] focus on IPTV. Studies [14]–[16]
focus on QoE modelling in HTTP streaming environments and
we also refer readers to [17] for a survey of this area. ITU-
T frameworks on subjective and objective testing for media
delivery also exist [18]–[21]. Note that perceptual quality
depends on the nature of the service and its implementation.
Resolution, compression ratios, video/audio formats and re-
covery strategies such as buffering, error correction [22] and
re-transmission impact perceived quality loss. Where interac-
tivity such as pause/seek actions are included in the service,
response times also contributes to system QoE. Increasingly,
however, such video quality scores are being replaced by
relating delivery quality to measurable engagement metrics
to better align with business objectives and also take into
account individual delivery implementations. We review the
most relevant literature on the impact of quality of service
delivery on user engagement within the scope of our work.

An objective User Satisfaction Index that statistically cor-
relates QoS metrics (bitrate, delay, jitter and round trip time)
to Skype call quality is proposed in [23]. The index is shown
to correlate well to call duration and speech quantity during
the call. Note, however, that the requirements for two-way
conversations differ from one-way viewing of video. In the
mobile video delivery space, [24] characterise and model the
relationship of 31 different mobile network parameters on
session abandonment using a decision tree approach. Using
Yahoo! toolbar browsing data, [25] use clustering methods
on user behaviour to categorise websites visited in terms
of metrics that represent popularity, activity and loyalty. An
objective measurement on the impact of end-to-end application
QoE such as join time, buffering ratio and frequency, average
bitrate and rendering quality on per-video and per-viewer
engagement is presented in [26]. It concludes that buffering
ratio, a consequence of packet loss, has the highest impact on
engagement. The magnitude of impact depends upon content
length and type (live/VoD). Similarly, a decision tree-based
method to determine application QoS metric interdependencies
and their complex relationship to viewing engagement is

developed in [3]. The authors conclude that type of video
(live/on-demand), viewing device (mobile/PC/TV), connec-
tivity (wired/wireless) and time of day (peak/off-peak) are
inter-related confounding factors that impact viewing engage-
ment. Understandably, customer expectations vary by context
and affect overall satisfaction. Other authors model video
buffering, QoE and user engagement as three cornerstones
of content delivery. The authors of [27] fit a mixture of two
exponentials to model video playtime and buffering ratio in
a HTTP streaming application and examine the correlation
between QoE and video engagement. Using data from a live
tennis event broadcast to a Francophone audience over the
Internet using HTTP, [28] describes and correlates the impact
of a spectrum of video quality metrics on video playtime.
Focused on VoD content delivered from an Akamai Content
Delivery Network (CDN), the investigation in [29] concludes
that fewer content chunks are viewed on lossy sessions overall
with early loss being particularly detrimental to engagement.
Using CDN-delivered VoD sessions, [30] propose a method
to demarcate correlation and causation. The authors use a
customer matching algorithm to design quasi-experiments
from data that identifies causal links between start-up delay
and session abandonment by connection strength, rebuffering
ratio and viewing duration, and video failure to start and low
likelihood of viewer to return to platform.

There is a rich area of literature on modelling and predicting
Mean Opinion Score (MOS) from video quality metrics. Such
modelling requires a wide variety of metrics in order to
produce a robust model. Our dataset focuses on one aspect
of quality per session, i.e. loss-related impairments, unique to
each delivery platform. We also find that existing literature
tends to focus on a single delivery mechanism in each study.
The strength of our dataset lies in its variety across streaming,
multicast and terrestrial broadcast technologies for a nation-
wide base of real users ’in the wild’. Studies also tend to focus
on immediate session abandonment following impairments
whereas we cover long-term effects as well. We present point
comparisons to literature where possible as well as adding
novel insights to user behaviour within each platform. We then
make further unique contributions that, to our knowledge, are
the first of their kind as stated below.

We present the first study that benchmarks the quality of
TV delivered across:

• Disparate platforms with different customer context and
expectation, namely app streaming and STB viewing

• Disparate delivery technologies, namely unicast over
wireless and mobile networks, multicast and DTT over
fixed networks

• Uncomparable quality metrics measured per platform,
namely buffering events, multicast packet loss and thresh-
olded low DTT signal strength errors

Our empirical study is based on a common customer base.
We have developed a method using various facets of viewing
engagement to make this cross-comparison. Our aim is to rank
different loss-related impairments by their impact on video
viewing.
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III. LOG DATA COMPOSITION

Viewers may subscribe to either or both of the app and
STB platforms, although some app content is only available to
viewers who also have a STB. App content is delivered using
HTTP adaptive streaming over fixed and mobile networks,
typically to a portable device. On the STB, a mixed subset
of High Definition (HD), Standard Definition (SD) and Ultra-
High Definition (UHD) channels are delivered using non-
adaptive multicast streams over Real-time Transport Protocol
(RTP) with unicast recovery mechanisms that fetch missing
packets, ideally before playout occurs. Other channels are de-
livered using DTT by radio waves. Customers can purchase the
STB product only if they meet a minimum access line quality
criterion and multicast traffic is prioritised through the net-
work. Both live and video-on-demand (VoD) can be watched
on both platforms. This is henceforth referred to as the content
type. End user access speeds on the STB depend upon access
technology and line performance. Possible technologies are
ADSL, ADSL2+, FTTC and FTTP. The bandwidths for app
content consumed over mobile technologies depends on the
mobile service provider. The service provider in this study
uses one vendor solution for collection of telemetry data from
the STB and a different vendor to collect application-level
performance data from the app platform.

A summary of loss-related metrics collected on each plat-
form is shown in Table I. The app dataset used for this analysis
includes an anonymised device identifier, session duration,
metadata including connection type, and two aspects of session
quality, namely duration of buffer underrun and number of
interruptions. Session duration and buffering duration do not
include startup delay. Note that buffer underrun relates to video
stalling duration but may not be identical. This depends on the
individual player implementation as some players may wait to
fill the buffer to a specific level before playout starts again.
We do not know the policy implemented on all the players but
we know the duration in milliseconds for which the buffer was
empty. The STB log dataset includes a (different) anonymised
device identifier, session duration and a thresholded event that
marks a loss-related impairment detected over a preceding time
window (in the order of seconds). We can distinguish between
DTT and multicast delivery. Multicast loss errors distinguish
mild and severe packet loss and the DTT error is triggered
due to low signal strength, based on vendor-implemented
thresholds for packet loss and poor signal respectively. A
session in VoD content demarcates a user starting and exiting
the viewing of a single VoD asset, including any start-up
delay, buffering and trick play operations. A live session in
all platforms starts when the user expresses the intention to
view the channel through the player or the remote control and
ends when the user exits that channel. A viewer leaving and
returning to the same asset or channel is recorded as a new
session.

All loss-related impairments manifest to viewers as video
and/or audio glitchiness and/or stalling of varying severity.
Additionally, severe packet loss and DTT signal strength error
messages are also displayed on the TV screen, persisting until
resolved or dismissed by the customer. The transport protocols

TABLE I
SUMMARY OF LOSS-RELATED IMPAIRMENT METRICS ON APP AND STB

PLATFORMS

Type of TV viewing Loss-related errors

TV Apps
(Live and VoD, Unicast
using HTTP streaming)

Buffering events
• Presents as glitchiness and/or video stall

due to buffer underrun
• When resumed, stream skips content in

live TV or plays from point of stall in
VoD

IPTV
(Live only, Multicast
using RTP)

Multicast ribbon error/notification
• Presents as glitchiness and/or video stall

due to mild packet loss
• When resumed, stream skips content

Multicast dialog error
• Presents as severe glitchiness and

stalling due to severe packet loss
• Also presents an on-screen dialog that

can be dismissed by viewer

Freeview
(Live only, DTT)

DTT signal strength error
• Presents as severe glitcheness and

stalling due to low signal strength
• Also presents an on-screen dialog that

can be dismissed by viewer

and the impact on viewers is summarised per error type in
Table I.

Note that performance metrics are not captured for any
third-party on-demand content viewing on the STB, which is
the most popular type of VoD consumption on that platform.
Therefore, all analysis of on-demand viewing is restricted to
the app platform. Due to the commercially sensitive nature of
our data, we are unable to report specific absolute numbers
and instead report orders of magnitude or relative values. Our
data covers nationwide usage over a six week period starting
August 2017, obtained with customer consent, anonymised,
stored and analysed in a secure big data Hadoop cluster.

We apply filters to our dataset to only retain valid sessions
with play start and end events, and reasonable viewing du-
rations using respective distributions as explained in Section
V. Our insights are derived from analysing over half a billion
sessions from over a million customers across both STB and
app platforms, and delivery technologies. DTT contributes
the largest proportion of viewing, followed by viewing on
multicast and finally app-based unicast content.

IV. FACETS OF ENGAGEMENT

Viewing engagement may be quantified in many ways,
including:

• Absolute duration of video play (playtime) or session
volume

• Asset completion ratio
• Time to return to platform
Fig. 1 shows the cumulative distribution of session playtime

by buffering performance for live and VoD content on the
app. Playtime does not include rebuffering or start up time. It
shows that errored sessions are typically longer than error-free
sessions. Independent of content type, the longer the session,
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Fig. 1. CDF of errored and errorless session playtime by type of content

the more chance there is of a buffering event happening. Simi-
larly, the higher the session volume, the greater the likelihood
of packet loss materialising during the viewing experience.
The same holds for STB viewing (figure not shown). Even if
the probability of loss at any point in the session is uniform,
the probability of the error materialising during the session
increases linearly with longer viewing time. Longer sessions
are more likely to experience errors. Therefore, absolute play-
time and session volume cannot be directly compared between
generic errored and error-free populations. However, we can
frame performance measures in relation to the content length
to assess their severity and this can be correlated to absolute
playtime as in Section VI. Deviations from an expected growth
in playtime is also comparable across platforms for increasing
volume of errors, as proposed in Section VII.

An alternative facet is asset completion ratio, defined per
session as the percentage ratio of asset playtime to asset length.
For example, a viewer who watches thirty seconds of a one
minute asset has watched 50% of the item. In order to relate
errors to item abandonment, identifying customer intent is key
– a VoD viewer clearly intends to watch the chosen item but a
live TV viewer may watch a single session spanning multiple
assets. Given that our dataset contains performance measures
per session, we cannot attribute the errors to an individual
live content item within the session and its completion ratio.
Completion ratio is also typically lower for longer assets and
higher for popular items. Our dataset also does not mark the
position of advertisements in live content or start/end credits
of the asset, if any.

In this paper, we derive a growth rate metric from absolute
playtime for our long-term engagement analysis in Section
VII. We primarily use asset completion ratios to characterise
the immediate consequence of errors on session abandonment
in Section VI.

V. BASELINE VIEWING DISTRIBUTIONS

Any viewing benchmarking based on loss-related errors
must be preceded by an understanding of baseline viewing
and error distributions. This section draws a cross-platform
comparison in typical viewing behaviour. Table II shows
selected percentile viewing durations by the three delivery
platforms investigated in this paper (top table). Since the

TABLE II
CUMULATIVE DISTRIBUTION VALUES OF VIEWING DURATION ON

STREAMING TV APPS AND STB

app platform has both variety in content type and access
technology which informs customer behaviour, we also show
the breakdown of viewing durations on the app platform by
content type (bottom left) and by access technology (bottom
right). Other access technologies are used in the population
but we only study the three most popular to ensure sufficient
data volume. The findings are discussed below.

App viewing tends to be shorter than STB viewing but
viewing duration varies by connection type and content type.
App viewing is shortest on mobile connections and VoD
sessions are typically shorter than live content sessions. STB
session durations show most spread on DTT. Viewing live
content is most prevalent on the app and WiFi is the most
common connection type – 65% of all app viewing is of live
streams over WiFi and 11% is of live streams over 4G. VoD
streaming over WiFi accounts for 18% of all app viewing in
session volume.

Sessions on the three delivery mechanisms (app unicast,
STB multicast and STB DTT) experience different profiles of
loss-related errors. Over the six week period, the proportion
of customers that experience one or more multicast packet
loss errors or one or more DTT signal strength errors are
approximately, and coincidentally, equal. An app viewer is
1.8 times more likely than a STB viewer to experience any
loss-related errors. At a session level, STB multicast and
app unicast sessions are 4.3 and 34.3 times more likely than
DTT sessions respectively to record one or more loss-related
impairments. Note, however, that preset error thresholds affect
their likelihood and impact, and therefore cannot be directly
compared. A DTT signal strength error may be substantially
less likely to happen than a single app buffering event but
could be more intrusive.

Buffering ratio is the percentage proportion of the total ses-
sion duration that was spent buffering. It is a key performance
indicator (KPI) in industry since it takes into account viewing
time and buffering time. The authors of [28] investigate a live
sport event. They report that 65% of their sessions have a
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buffering ratio of 2% or less and we find the same in our live
app dataset as well. On the other hand, [26] report that 7%
of sessions viewing long VoD content experience buffering
of over 10%. We find that 22% of VoD sessions experience
the same buffering across all content durations. Note that [26]
analyse data across numerous content providers over all access
technologies, whilst our app VoD viewing population connects
primarily using WiFi or mobile technologies. We build upon
these results to show a breakdown by connection type in
Section VI-E.

For the rest of this analysis, we only consider sessions
with durations less than the 99th percentile of their content
type as very long sessions may well not have a viewer. Note
that although we do not explicitly separate out and analyse
channel surfing behaviour, a substantial portion of all viewing
is channel surfing and is therefore included in our dataset.

VI. IMPACT OF BUFFERING ON APP SESSION
ABANDONMENT

In this section, we characterise the relationship between
loss-related impairments and abandonment within the same
session using the app dataset due to availability of logs for
both VoD and live content types. We compare buffering impact
on video playtime to findings in literature. We examine the
effect of the following confounding factors on the relationship
between aspects of buffering and session abandonment:

• Asset length
• Content type
• Connection type
We then study the importance of the two dimensions of

buffer underrun, duration and number of interrupts, on session
abandonment.

A. Impact of buffering ratio on video play time

Authors of [27] propose that a mixture of two exponential
decay functions is a good fit to model the relationship between
buffering ratio and asset playtime in long VoD content. They
use data about long duration VoD content from [26] to do so
and achieve a Root Mean Squared Error (RMSE) of 0.659. We
have fitted the same type of decay function to our app VoD
dataset, resulting in the following fitting function with asset
playtime T and buffering ratio R:

T = 14.96219 · e−0.47372·R + 3.44452 · e−0.05076·R (1)

Our dataset contains both long and short assets delivered
primarily over WiFi and mobile technologies. The VoD assets
in our dataset are typically short sport-related content includ-
ing promo videos due to the nature of the product offered
by the service provider on the app platform. We do not have
actual asset lengths in our dataset and we estimate this from
the percentage completion and absolute video play time, noting
that any fastforward/rewind actions will impact this variable.
We find that 50% and 70% of the VoD assets in our dataset are
up to 2 minutes and 4 minutes long respectively. Some assets
last many hours. Moreover, the data also includes channel
surfers and users who abandon due to disinterest in content.
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Fig. 2. Relationship between buffering ratio and play time showing a fitted
mixture of two exponentials

This is exhibited in a noticeably low average playtime for
buffering-free sessions (R = 0). We exclude this data point
from our fitted model but it is included in Fig. 2. This plot
shows the distribution between buffering ratio and VoD asset
play time overlaid on the fitted curve of the mixture of two
exponentials.

The RMSE of our model is 0.103 and the Pearson correla-
tion coefficient of the fitted model to the raw data is 0.998,
showing a better fit than that in [27] (RMSE: 0.659, Pearson
correlation: 0.996). Using a mixture of two exponential decay
curves does indeed show a good fit for this relationship,
although the parameters of the function vary significantly
between the two datasets due to the reasons described above.
Therefore, service providers must understand the attributes of
their assets on the platform and perform empirical studies to
determine the best parameters for further modelling.

B. Role of content type on buffered session abandonment

Whilst all valid VoD sessions that meet the duration filter are
taken into account, live sessions must be prepared differently
to be comparable to VoD viewing. Raw live sessions are
matched to a programme guide and split by programme item.
A single session that spans three items is split into three
viewing chunks and a completion ratio computed per asset
based on programme duration. We then only retain sessions
that start close to the start of the programme. The spread of
start times around programmes varies by programme length –
the shorter the programme, the closer to its start the viewers
typically arrive. Therefore, for this analysis, we retain any
session that starts within 10% of the programme duration
on either side of the programme start time. For example,
any session that starts within three minutes on either side
of the start of a thirty-minute programme is included. Since
it is conceivable that a viewer arrives just at the end of a
previous programme and leaves just after the start of the
subsequent programme, sessions that span more than three
programmes are filtered out. This leaves us with a subset of
live viewing sessions where we have a better estimate of the
viewer’s intent to watch the specific programme as a similar
comparison to intentional VoD viewing. We also ensure that
the impact of errors in the session on the completion ratio of
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Fig. 3. Cumulative distribution of asset completion ratio by content type and
buffering performance

the intended asset is clear. We find that 91% of all live sessions
view one programme only and therefore our filter still retains
a substantial portion of live sessions that were successfully
matched to the programme schedule.

Fig. 3 shows the cumulative distribution of video asset
completion ratios by content type and buffering performance.
The four combinations of sessions with buffering and no
buffering, live and VoD content are represented using unique
symbols.

Both VoD and live content show baseline abandonment
behaviour in the absence of any buffering. This may be
explained by viewers losing interest in the item for reasons
unrelated to quality. Also, since VoD assets tend to be shorter
on the app than live assets, completion ratios tend to be higher
on VoD than on live programmes. Compared to the error-
free baseline VoD completion ratios, Fig. 3 shows that VoD
sessions with buffering have higher asset abandonment than
those without buffering. This shows that customers are likely
to abandon VoD viewing in the presence of buffering. Live
content, on the other hand, shows the opposite trend – sessions
with buffering tend to complete more of the intended asset than
sessions without buffering. We cannot interpret this to mean
that buffering encourages completion but rather than customers
persevere in spite of buffering to view the asset.

Whilst the results in Fig. 3 characterises a large volume
of sessions on the platform, individual viewer tolerance to
buffering is a significant confounding variable. We construct a
quasi-experiment from our data to control for this. We identify
all app viewer devices who consume live and VoD content
and experience errored and error-free sessions in both content
types over a three month summer period. This selects 5.8% of
all viewers in that time. Fig. 4 shows the distribution of rel-
ative average completion ratio per customer per content type,
computed as the difference between the average completion
rate on sessions with and without buffering. A negative value
corresponds to a viewer who had a lower average completion
ratio when the session experienced buffering. For example,
assuming a viewer watched on average 100% of all VoD asset
where there was no buffering and 25% of all VoD assets when
there was buffering, their average relative completion ratio
would be 25 − 100 = −75%. Every customer contributes
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Fig. 4. Relative average asset completion ratio per customer viewing live and
VoD content with and without buffering

to one value on the x-axis. We expect to see a distribution
of relative completion rates across our common viewer base,
ranging from customers who abandon all their sessions with
buffering and fully complete when without ((0 − 100)%) to
vice versa ((100− 0)%).

Completion ratios per customer also show the same trend
across the viewing base. Fig. 4 shows that 71.8% of VoD
viewers have lower average completion rates on sessions
with buffering than on sessions without buffering. However,
only 39.9% of viewers abandon earlier when encountering
buffering on live viewing. This confirms that VoD viewers
are more likely to abandon when encountering buffering and
live viewers are more likely to persist despite buffering.

The contrast between live and VoD completion ratios in
the presence of buffering can be explained by two competing
forces that inform viewer engagement in every platform inter-
action. The first is the viewer’s intent to watch the item. The
second is the annoyance felt by poor delivery quality. In every
viewing experience, one effect outweighs the other. Our result
shows that the annoyance factor has the stronger influence
when content is available on-demand, and in live viewing,
intent to view outweighs the disruption caused by buffering.
Time-sensitive content like sport or the news are typically
watched live and even though some content is available on-
demand after broadcast, one hypothesis for this user behaviour
is perceived scarcity, where a user perceives increased value
when the specific content item is viewed live than after the
event. An analysis of drivers for perseverance with live content
and session abandonment in VoD content is a valuable next
step.

C. Cost of buffering interruptions

We have shown that streaming VoD viewers abandon ses-
sions in the presence of buffering. In this subsection, we
aim to quantify the disengagement cost of every additional
interruption in a session.

Noting that longer sessions typically have more interrup-
tions, discussed in Section V, we still find that asset com-
pletion ratios fall with increasing number of interruptions per
session. However, the cost of disengagement is non-linear. The
first interruption is most expensive – we report a 22% drop
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Fig. 5. Average asset completion over volume of interrupts per asset length
quartile

in overall average asset completion rates from an error-free
baseline of 62%. The next three interrupts cost an additional
10% loss in completion. The next five interrupts cost the
final 4% loss in completion before a plateau is reached at
26–27%. This highlights the importance of error-free delivery
but also shows some tolerance to interruption. We conclude
that, on average, every additional interruption costs session
engagement.

The rest of this section addresses the impact of other key
variables on this overall relationship.

D. Role of asset length on buffered session abandonment

In this subsection, we present our findings on the impact that
VoD asset length on the app platform has on the relationship
between number of interruptions and asset completion ratios.
We estimate the asset length from the completion ratio and ab-
solute video play time per session as this is not available in our
original dataset. Our estimates show that 70% of our content is
up to 4 minutes long with much longer durations also present.
We then bucket the estimated lengths into quartiles with the
following approximate boundaries: 1=up to 1 minute, 2=up
to 2 minutes, 3=up to 5 minutes, 4=over 5 minutes. Fig. 5
shows the plot of average completion ratio to the number of
interruptions in the session for the four asset length quartiles.

We expect to see that short assets have higher completion
ratios and higher number of interrupts taking place on longer
assets, both confirmed by the figure. Whilst we observe an
immediate drop in completion ratios with the first interrupt
across all asset length quartiles, we then observe a recov-
ery in asset completion, which appears counterintuitive. We
hypothesise that viewers, having already persevered through
the first interruption and knowing that the item is not longer
than 5 minutes, persevere with the asset despite interruptions
beyond a certain point. It would be interesting to see how
abandonment behaviour develops within the session following
each additional interruption but our data lacks this granularity.

We can quantify the average impact of interruptions per
usage quartile q using data from this figure. We compute the
normalised relative average completion rate d̄q for each asset
length quartile q over all interruptions Iq in that quartile. We

define dq,i and d̄q as follows with p̄q,i being the average play-
time for all sessions in quartile q with number of interruptions
i:

dq,i =
p̄q,i − p̄q,0

p̄q,0
· 100% (2)

d̄q =
1

Iq

Iq∑
i=1

dq,i (3)

We obtain the following values: d̄1 = −4.48%, d̄2 =
−6.59%, d̄3 = −6.54%, d̄4 = −27.6%. We conclude from
this result that not only do interruptions impact asset comple-
tion rates, the effect is greater with increasing asset length.

E. Role of connection type on VoD buffered session abandon-
ment

We now focus on streaming VoD asset completion ratios in
the presence of buffering by connection type. Fig. 6a shows
the cumulative distribution of VoD asset completion ratios by
connection type with and without buffering. We show the three
most popular connection methods – WiFi, 4G and 3G. Every
connection type has two lines on the plot. The lighter line
shows the distribution of completion rates across all error-free
sessions for that connection type. The black line shows the
same for errored sessions. The error-free distributions for 3G
and 4G overlap in the figure. Since WiFi is the most prevalent,
it forms a good reference for VoD content completion ratios on
cellular mobile connections. We find that overall completion
ratios on error-free sessions are higher on mobile than on WiFi.
This is explained by the nature of viewed assets – we find
that viewers choose shorter assets on mobile than on WiFi,
therefore reaching higher completion ratios on the former.

Fig. 6b shows the cumulative distribution of VoD session
buffering ratios by connection type. This plot shows that
sessions on WiFi and 4G have almost identical distributions of
buffering ratios, and 3G sessions perform worst overall. Note
that the viewing population is not necessarily common across
the different connection types.

The two figures show that although viewers on 4G reach
higher completion rates than those on WiFi when there is
no buffering, they are the least tolerant population overall
when encountering buffering. In contrast, 3G customers suffer
the most buffering but are most persistent. This offers an
interesting insight to service providers in determining how
to prioritise between 4G and 3G performance improvements.
Whilst the 3G network is unsurprisingly more error-prone,
viewers are more tolerant. Those on 4G, however, are quicker
to disengage than those on WiFi, despite identical buffering
ratios seen in both networks.

Fig. 7 shows the cost of every additional interrupt per
connection type, in line with Figs. 5 and 8 for the other
confounding variables we study in this section. Fig. 7 shows
the average completion ratio per number of interruptions for
VoD sessions by connection type. It confirms the findings
of Fig. 6b that error-free completion rates vary slightly by
connection type and also that viewers on 4G show the highest
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Fig. 6. Impact of connection type on VoD session abandonment with buffering
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Fig. 7. Average VoD asset completion ratios by number of interrupts per
connection type

disengagement for every added interruption whilst 3G viewers
remain more tolerant.

We compute the normalised relative average completion rate
d̄c for each connection type c defined in analogy to Eq. 2 and
3.

We obtain the following values: d̄3G = −44.3%, d̄WiFi =
−49.5%, d̄4G = −60.1%. We conclude from this result
sessions on 4G have the highest overall abandonment in the
presence of interruptions followed by sessions on WiFi and
finally 3G. Note that d̄q is not comparable to d̄c because of
the different ways of aggregating the data. The values in d̄c
are brought down by the lower completion ratios observed
when more than eight number of interruptions occur. This
is typically experienced on long assets which have a lower
completion ratio overall (quartile 4 of Fig. 5). Therefore, the
effect of asset length influences d̄c. Future multi-dimensional
analyses of the confounding factors could help isolate the
individual effects.

F. Buffering duration vs. number of interruptions

Buffering interruptions within a session have two dimen-
sions: duration and volume. We now compare the two facets

in terms of cost of engagement on app VoD sessions through
Fig. 8.

Fig. 8a shows the average completion ratio of increasing
buffering duration with an overlay of the number of interrup-
tions over which the buffering duration was spread. Fig. 8b
is the corollary to Fig. 8a and shows the average completion
rate by number of interrupts and each line shows an interval
of buffering duration. A minimum session volume per data
point is enforced to ensure credibility of the average value.
We only show selected number of interruptions in Fig 8a and
we bucket buffering durations in 10 second intervals for clarity.
Cut-offs on both buffering duration and number of interrupts
have been informed by respective population distributions to
retain a large but robust proportion of our dataset.

Fig. 8 shows that VoD viewers persist to reach higher asset
completion rates despite longer buffering durations (Fig. 8a).
However, the more interruptions for the same buffering dura-
tion, the lower the completion ratio, i.e. higher abandonment
(Fig. 8b). We recognise again that total asset length impacts
tolerance to absolute buffering duration and number of in-
terruptions. But given a fixed buffering duration, we aim to
study the impact of number of interruptions, which can be
done independent of asset length.

We compute the normalised relative average completion rate
d̄b for each buffering duration interval b defined in analogy to
Eq. 2 and 3.

We obtain the following values: d̄(0,10] = −36.0%,
d̄(10,20] = −41.9%, d̄(20,30] = −36.1%, d̄(30,40] = −31.2%.

We conclude that the number of interruptions is more
detrimental to asset completion than buffering duration itself,
within a boundary of tolerance. Given a fixed buffering du-
ration, every additional interruption results in more abandon-
ment. However, for a fixed number of interruptions, an increase
in buffering duration typically does not show the same trend.
Therefore, viewing engagement with the app VoD content
may be increased by delivering items such that the number of
interruptions is minimised whilst remaining within an envelope
of buffering duration. We note that the same result has been
observed in [2] through subjective studies using assets of fixed
duration.
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Fig. 8. Comparison of cost of buffering duration vs. cost of number of interruptions on asset completion

VII. IMPACT OF ERRORS ON LONG-TERM VIEWING
ENGAGEMENT ON APPS AND STB

Long-term loyalty to a platform is important for service
providers for customer retention and show a different facet of
viewing engagement. Completion ratios of individual assets
can be very variable for each viewer and are also affected by
interest in the specific content item and lifestyle. We find that
live viewing shows higher asset completion in the presence
of buffering, which may be explained by perceived content
scarcity and the importance of time-sensitive viewing. This
does not mean that there is no engagement benefit to error-
free delivery in live content.

In this section, we investigate the impact of the presence
and intensity of loss-related errors on long-term viewing
engagement across both streaming app and STB platforms.
Note that the potential types of impairments are greater in live
viewing since there is more diversity in delivery technology
and platform. Nonetheless, we present our findings for both
live and VoD viewing.

A. Method to evaluate impact of error persistence on long-
term engagement

Average errored session playtime is higher than average
error-free session playtime (Fig. 1) since the likelihood of
errors materialising is cumulative with increasing session dura-
tion. Therefore, absolute playtime cannot be directly compared
to determine any loss of viewing due to errors. We developed
a relative method based on rate of growth of viewing with
worsening error performance that enables this comparison to
be made.

A heavy user is differently impacted by errors than a light
user, as shown later. Therefore, we first group customers into
usage level categories U = {1, . . . , 5}, defined by grouping
the total number of sessions N viewed in the six week data
period into intervals. Subsequently, we calculate the percent-
age of sessions that saw any loss-related errors e in the time
period. For example, of all viewers who watched two sessions
(N = 2) on the app, most will have experienced buffering
on none of those sessions, some on one session and others

on both sessions. This gives us subpopulations of viewers
at discrete percentage errored-session values of e = 0%,
e = 50% and e = 100% respectively. As the total session
volume viewed increases, the potential percentage errored-
session values becomes continuous. We are more interested in
the spread of buffering across sessions than in the intensity
of buffering within each session. We compute the average
playtime p̄u,e, u ∈ U for each subpopulation (u, e) with
percentage of errored-sessions e. It is to be expected that the
higher the value of u, the higher the average playtime p̄u,e,
especially for the error-free subpopulations (e = 0). Therefore,
we compute the percentage difference in average playtime
from the error-free subpopulation for each u as shown in Eq. 4.

du,e =
p̄u,e − p̄u,0

p̄u,0
· 100% (4)

This key final step enables cross-comparisons across and
within each usage level.

If error intensity has no impact on long-term viewing
engagement, we expect to see a linear plot for all usage levels.

B. Loss-related errors and long-term live TV engagement by
platform

This subsection presents our findings for live viewing.
Fig. 9 plots the du,e values for each of our four loss-related
errors across multicast, DTT and app streaming platforms to
quantify the impact of loss-related errors on long-term average
playtime. We determine the cutoff for the maximum N shown
on the figure using distributions of session volume by platform
and error type. We find that our session volume cutoff for N
includes a minimum of 95.5% of all sessions on the respective
platform. We bucket N into intervals of 20 sessions to create
the set of usage categories U in Fig. 9a and 200 sessions in
Figs. 9b to 9d. Customers in the fifth highest session volume
interval (u = 5) are the heaviest users of the platform. The
x-axis shows values of e and has been bucketed into 10%
intervals for clarity.

We observe non-linear growth rate in playtime with increas-
ing error intensity. The concave curves in Fig. 9 capture the



10 KARTHIKEYAN et al., FINAL VERSION, 28TH MAY 2020

●

●

● ●

●

●

●

●
●

●

●

0

50

100

150

200

250

0 25 50 75 100
Per−customer errored session ratio (%)

A
vg

. o
ve

ra
ll 

pl
ay

tim
e 

re
la

tiv
e 

to
er

ro
rle

ss
 b

uc
ke

t (
%

)

Total session volume: ● 1−20 21−40 41−60 61−80 81−100

(a) App buffering errors
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(b) Mild multicast packet loss errors
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(c) Severe multicast packet loss errors
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(d) DTT signal strength errors

Fig. 9. Long-term average playtime by usage volume relative to error-free baseline per platform and type of impairment for live viewing

level of disengagement that groups of customers at similar
usage levels show as they experience more errored sessions.
The higher the number of live sessions that experience loss-
related impairments at a given usage level, the lower the rate of
growth of live viewing relative to the error-free subpopulation.
The steeper the curvature, the more the disengagement. We
conclude that in the long term, customers view less than we
expect as they experience more errored sessions.

We now discuss observations on the impact of usage cat-
egory u on viewer disengagement. The lightest users show a
high peak in the first errored-session bucket e = 10% followed
by a rapid decline in relative average playtime with increasing
percentage errored sessions. Heavy users show a shallower rise
to start followed by a moderate decline in comparison. This
trend is most visible for viewers who experience DTT signal
strength errors, followed by multicast dialog errors, ribbon
errors and app buffering events.

We find that the fall in engagement is more pronounced on
the STB platform compared to the app platform. Light users on
the STB where e > 10% disengage aggressively irrespective
of delivery technology and type of loss impairment. This leads
to the convex shape of the curve, especially notable in the low
usage category of viewers who experience DTT signal strength
errors (Fig. 9d).

This low-usage DTT disengagement might be explained by
content commoditisation and disinterest in the specific content
item. Typically popular content delivered on DTT is easily

accessible for free on other platforms in the UK including
a popular streaming app. Low engagers who can afford to
abandon DTT content on this service provider’s STB could
watch the same content elsewhere. In contrast, popularly-
watched content delivered over multicast and the apps are
more exclusive to the service provider and typically paid-for
by subscription. Viewers who choose to stream content on the
app may do so in the absence of a TV or when mobile and
are more invested in the platform, potentially due to a lack of
options in viewing live content. Therefore frustration due to
buffering may not result in disengagement or may indeed be
seen as normal for an Internet streaming experience [2].

We conclude this section with the finding that live content
viewers continue watching a programme despite buffering
(Section VI). However, they watch less than we expect in the
long term with increasing errors. This holds across both app
and STB platforms on unicast, multicast and DTT delivery
technologies.

C. App buffering and long-term VoD engagement

Fig. 10 shows the relationship between average playtime
relative to the error-free baseline for each usage level u for
VoD content on the TV streaming apps.

In contrast to live content, VoD viewers on the app do
not disengage with increasing buffering levels as represented
by the linear relationship between rate of growth of average
playtime and percentage errored sessions in Fig. 10. Therefore,



KARTHIKEYAN et al.: BENCHMARKING VIDEO SERVICE QUALITY: QUANTIFYING THE VIEWER IMPACT OF LOSS-RELATED IMPAIRMENTS 11

●

●

●

●

●

●

●

●

●

●

●

0

300

600

900

0 25 50 75 100
Percentage errored sessions (%)

A
pp

 V
oD

: A
vg

. d
ro

p 
in

 p
la

yt
im

e
re

la
tiv

e 
to

 e
xp

ec
te

d 
vi

ew
in

g 
(%

)

Total session volume: ● 1−20 21−40 41−60 61−80 81−100

Fig. 10. Long-term average playtime by usage volume relative to error-free
baseline for VoD viewing on the app

we conclude that the engagement cost of buffering in app VoD
content is incurred immediately on the same session (Section
VI) but not in the long term.

VIII. CROSS-PLATFORM BENCHMARKING OF
LOSS-RELATED ERRORS

This section is focused on quantifying the level of dis-
engagement in a way that enables cross-comparison across
platforms and types of impairments. We have investigated
four types of loss-related impairments – buffering events on
unicast delivery to TV streaming apps on portable devices,
mild and severe multicast stream packet loss on a STB, and
signal strength errors in DTT delivery to the STB. Our aim
is to rank the various types of viewing impairments by their
size of impact on viewing engagement.

Since live viewing forms the largest proportion of content
consumption at present [31] and can be viewed across both
platforms with this specific service provider, we focus on
relative benchmarking of long-term disengagement of live
content.

A. Method to quantify error-driven loss of growth in long-term
engagement

In Section VII, we defined a relative average playtime metric
du,e to characterise the diminishing rate of increase in playtime
with increasing percentage errored sessions e. In order to
compare our four types of loss impairments across usage
categories and platforms, we summarise du,e over all error
levels e to create d̄u, the mean of the average playtime relative
to the error-free baseline for usage category u. Given that we
bucket our percentage errored session values e into intervals of
10% from 0% to 100%, we expect 11 discrete steps to compute
this average. However not each usage category u displays high
values of e with sufficient representation in the population.
For example, in order for a viewer who watches 1000 DTT
sessions in our data period to have e = 80%, 800 sessions must
have experienced a severe signal strength error. We therefore
find that our more severe error types have max(e) < 100%
for high usage levels. We define Eu to be the total number of
discrete steps of e observed for usage category u. Our cross-
platform comparison metric d̄u is defined as follows:
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Fig. 11. Cross-platform benchmarking of the impact of loss-related impair-
ments on long-term live playtime by usage category as given in Fig. 9

d̄u =
1

Eu

Eu∑
e=0

du,e (5)

Every combination of loss impairment and usage category
has one d̄u value, resulting in 4 · 5 = 20 values for cross-
platform comparison.

B. Relative benchmarking of error-driven long-term live TV
disengagement

Fig. 11 shows all d̄u values in our live viewing dataset
across the four loss impairment types. The lower the value,
the greater the disengagement in the presence of the loss
impairment.

We find that users of the app platform show the most
persistence in viewing across all usage categories, followed
by multicast viewers who experience ribbon errors. All d̄u
are positive, which means that average playtime for errored-
sessions is greater than average playtime of error-free sessions.

We also observe that STB viewers in higher usage categories
appear more persistent to loss impairments on their respective
platform. This trend is especially pronounced for viewers
experiencing multicast dialog errors and DTT signal strength
errors, both of which are displayed on the screen to the
customer and are clearly intrusive to the viewing experience.

Comparing the height of the bars in Fig. 11 across usage
categories, we conclude that DTT signal strength errors on
the STB have the most impact on long term loss of playtime,
followed by severe packet loss (dialog) and mild packet loss
(ribbon) errors on multicast delivered to the STB. Buffering
events on the app have the least impact on playtime for the
same number of errored sessions per usage category.

Content and context influence viewer engagement. Three
hypotheses explain why app users are more persistent:

• App users have more intent to watch a specific live
item despite the inconvenience of the less immersive
experience.

• The thresholds set for each impairment error is different
and a single buffering event has less impact on viewing
quality on a small screen than a signal strength error
during evening entertainment on a large-screen TV.
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• App users take a ’lean forwards’ approach to TV viewing,
whereas STB viewers are traditionally opt for a ’lean
backwards’ experience. Whilst hard to quantify, differ-
ences in state of mind of the typical user impacts their
willingness to take action and abandon a viewing session.

It is noteworthy that DTT signal strength errors have
greater impact on disengagement than severe packet loss
(dialog errors) on multicast, although the perceptual impact
to a viewer is very similar on the television. This effect is
attributable to the difference in perceived value of content on
each platform. Whilst popular multicast content is exclusive
to the service provider’s TV product, some DTT-delivered
channels are available on other platforms such as catch-up
players over broadband. Noting also that the DTT platform has
a wider spread in distribution of session durations observed, it
is plausible that channel surfers disengage sooner than viewers
invested in the content. Recognising that usage category in our
analysis is a function of session volume, repeating the analysis
by grouping sessions in each usage category by their viewing
duration will show the impact of errors on each platform on
channel surfers and invested viewers.

We have concluded this section with a ranking and dis-
cussion of the four types of loss-related impairments that
are fundamentally uncomparable to each other. In a world
where more errors typically occurs with more viewing, it
is challenging for service providers to establish the cost of
those errors on viewing engagement at scale across their
entire customer base. It is furthermore challenging to compare
that cost across different bespoke delivery technologies and
customer contexts. Whilst the ranking of the four impairments
in this study is a novel finding in itself, we have also derived
a proxy measure based on long-term viewing engagement to
enable us to make this cross-comparison. This method may
also be applied in other scenarios with different error types
and service delivery technologies.

IX. CONCLUSION

We present the first study that benchmarks the quality of
TV delivered across disparate platforms, delivery technologies
and uncomparable quality metrics to a nationwide audience.
We have shown that loss-related impairments have a tangible
impact on viewer engagement, independent of the viewing
platform. However, the nature of disengagement is influenced
by a number of attributes. Viewers on 4G and 3G are less
and more tolerant to buffering respectively than viewers on
WiFi. The shorter the asset, the more tolerance viewers show
to buffering interruptions on app VoD content. Live viewers
continue watching a programme despite buffering. However,
they watch less than we expect in the long term with increasing
errors. This holds true across both app and STB platforms. In
contrast, we conclude that the engagement cost of buffering
in app streamed VoD content is incurred immediately, not in
the long term. We find that viewers have some tolerance to
buffering duration but little tolerance to increasing number of
interrupts. An alternative delivery method that minimises the
number of interrupts may increase user engagement with the
app platform.

Potential next steps include a more detailed multi-
dimensional drivers analysis to identify pockets of customers
who show behaviour that differs from the global trends. We
intend to model the cost to serve consequences of disengage-
ment to highlight the impact of video quality on the business
model of a service provider. We have found that subjective
testing corroborates a number of our population-wide results
but more subjective tests are underway to further explore the
impact of visual impairments arising from measured errors on
viewer engagement across disparate platforms and modes of
content consumption.
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