RAMSEY GOODNESS OF CYCLES*

ALEXEY POKROVSKIY ${ }^{\dagger}$ AND BENNY SUDAKOV ${ }^{\ddagger}$

Abstract

Given a pair of graphs G and H, the Ramsey number $R(G, H)$ is the smallest N such that every red-blue coloring of the edges of the complete graph K_{N} contains a red copy of G or a blue copy of H. If a graph G is connected, it is well known and easy to show that $R(G, H) \geq(|G|-1)(\chi(H)-1)+\sigma(H)$, where $\chi(H)$ is the chromatic number of H and $\sigma(H)$ is the size of the smallest color class in a $\chi(H)$-coloring of H. A graph G is called H-good if $R(G, H)=(|G|-1)(\chi(H)-1)+\sigma(H)$. The notion of Ramsey goodness was introduced by Burr and Erdős in 1983 and has been extensively studied since then. In this paper we show that if $n \geq 10^{60}|H|$ and $\sigma(H) \geq \chi(H)^{22}$, then the n-vertex cycle C_{n} is H-good. For graphs H with high $\chi(H)$ and $\sigma(H)$, this proves in a strong form a conjecture of Allen, Brightwell, and Skokan.

Key words. Ramsey theory, cycles, expanders
AMS subject classifications. $05 \mathrm{C} 55,05 \mathrm{C} 38$
DOI. $10.1137 / 18 \mathrm{M} 1199125$

1. Introduction. A celebrated theorem of Ramsey from 1930 says that for every n, there is a number $R(n)$ such that any 2-edge-coloring of a complete graph on $R(n)$ vertices contains a monochromatic complete subgraph on n vertices. Estimating $R(n)$ is a very difficult problem and one of the central problems in combinatorics. For a pair of graphs G and H, we can define the Ramsey number $R(G, H)$ to be the smallest integer N such that any red-blue edge coloring of the complete graph on N vertices contains a red copy of G or a blue copy of H. As a corollary of Ramsey's theorem, $R(G, H)$ is finite, since we always have $R(G, H) \leq R(\max (|G|,|H|))$.

Although in general determining $R(G, H)$ is very difficult, for some pairs of graphs G and H, their Ramsey number can be computed exactly. For example, Erdős [11] in 1947 showed that the Ramsey number of an n-vertex path versus a complete graph of order m satisfies $R\left(P_{n}, K_{m}\right)=(n-1)(m-1)+1$. The construction showing that this is tight comes from considering a 2-edge-coloring of $K_{N}, N=(n-1)(m-1)$ consisting of $m-1$ disjoint red cliques of size $n-1$ with all the edges between them blue. It is easy to check that this coloring has no red P_{n} or blue K_{m}. Chvátal and Harary observed that the same construction serves as a lower bound for $R(G, H)$ where G is any connected graph on n vertices and H is an m-partite graph. Let $\chi(H)$ be the chromatic number of H, i.e., the smallest number of colors needed to color the vertices of H so that no pair of adjacent vertices have the same color, and let $\sigma(H)$ be the the size of the smallest color class in a $\chi(H)$-coloring of H. Refining the above construction, Burr [5] obtained the following lower bound for the Ramsey number of a pair of graphs.

[^0]Lemma 1.1 (Burr [5]). Letting H be a graph and G a connected graph with $|G| \geq \sigma(H)$, we have

$$
\begin{equation*}
R(G, H) \geq(|G|-1)(\chi(H)-1)+\sigma(H) \tag{1}
\end{equation*}
$$

To prove this bound, consider a 2-edge-coloring of complete graph on $N=(|G|-$ 1) $(\chi(H)-1)+\sigma(H)-1$ vertices consisting of $\chi(H)-1$ disjoint red cliques of size $|G|-1$ as well as one disjoint red clique of size $\sigma(H)-1$. This coloring has no red G because all red connected components have size $\leq|G|-1$, and there is no blue H since the partition of this H induced by red cliques would give a coloring of H by $\chi(H)$ colors with one color class smaller than $\sigma(H)$, contradicting the definition of $\sigma(H)$.

The bound in Lemma 1.1 is very general but for some graphs is quite far from the truth. For example, Erdős [11] showed that $R\left(K_{n}, K_{n}\right) \geq \Omega\left(2^{n / 2}\right)$, which is much larger than the quadratic bound we get from (1). However, there are many known pairs of graphs (such as when G is a path and H is a clique) for which $R(G, H)=$ $(|G|-1)(\chi(H)-1)+\sigma(H)$. If this is a case we say that G is H-good. The notion of Ramsey goodness was introduced by Burr and Erdős [6] in 1983 and was extensively studied since then.

A lot of early research on Ramsey goodness focused on proving that a particular pair of graphs is good. For example, Gerencsér and Gyárfás [15] showed that for $n \geq m$ the path P_{n} is P_{m}-good. Chvátal showed that any tree T is K_{m}-good [8]. For more recent progress on Ramsey goodness see [1, 9, 13, 18, 19] and their references.

The problem of Ramsey goodness of cycles goes back to the work of Bondy and Erdős [4], who proved that the cycle C_{n} is K_{m}-good when $n \geq m^{2}-2$. Motivated by their result, Erdős et al. conjectured as follows.

Conjecture 1.2 (Erdős et al. [12]). If $n \geq m \geq 3$, then $R\left(C_{n}, K_{m}\right)=(n-$ 1) $(m-1)+1$.

Over the years, this problem has attracted a lot of attention. After several improvements, Nikiforov [18] showed that conjecture holds for $n \geq 4 m+2$. In addition several authors proved it for small m (see [7] and the references therein). Very recently, Keevash, Long, and Skokan [16] showed that $R\left(C_{n}, K_{m}\right)=(n-1)(m-1)+1$ for $n \geq \Omega\left(\frac{\log m}{\log \log m}\right)$. This proves the conjecture for large m.

In this paper we investigate Ramsey goodness of an n-vertex cycle versus a general graph H. When n is sufficiently large as a function of $|H|$, Burr and Erdős [6] proved more than 30 years ago that C_{n} is H-good. Recently Allen, Brightwell, and Skokan [1] conjectured that the cycle is H-good already when its length is linear in the order of H.

Conjecture 1.3 (Allen, Brightwell, and Skokan [1]). For $n \geq \chi(H)|H|$ we have $R\left(C_{n}, H\right)=(n-1)(\chi(H)-1)+\sigma(H)$.

There has been some work (see, e.g., [20] and its references) showing that the path P_{n} is H-good. Since $R\left(P_{n}, H\right)$ is always at most $R\left(C_{n}, H\right)$, a weakening of the above conjecture is to show that P_{n} is H-good for $n \geq \chi(H)|H|$. This was achieved by the authors of this paper in [21].

In this paper, we prove the following result.
THEOREM 1.4. For $n \geq 10^{60} m_{k}$ and $m_{k} \geq m_{k-1} \geq \cdots \geq m_{1}$ satisfying $m_{i} \geq i^{22}$, we have $R\left(C_{n}, K_{m_{1}, \ldots, m_{k}}\right)=(n-1)(k-1)+m_{1}$.

Here $K_{m_{1}, \ldots, m_{k}}$ is a complete multipartite with k parts of sizes m_{1}, \ldots, m_{k}. Notice that the vertices of a k-chromatic graph H can be partitioned into k independent sets
of sizes m_{1}, \ldots, m_{k} with $\sigma(H)=m_{1} \leq m_{2} \leq \cdots \leq m_{k}$. This is equivalent to H being a subgraph of $K_{m_{1}, \ldots, m_{k}}$. Therefore Theorem 1.4 implies the following.

Corollary 1.5. Suppose that we have numbers n, and a graph H with $n \geq$ $10^{60}|H|$ and $\sigma(H) \geq \chi(H)^{22}$. Then $R\left(C_{n}, H\right)=(n-1)(\chi(H)-1)+\sigma(H)$.

For graphs H with large $\chi(H)$ and $\sigma(H)$, the above theorem proves Conjecture 1.3 in a very strong form - it shows that in this case, the condition " $n \geq \chi(H)|H|$ " is unnecessary, and $n \geq 10^{60}|H|$ suffices. For certain graphs H, Theorem 1.4 shows that C_{n} is H-good in a range which is even better than " $n \geq 10^{60}|H|$." For example, if H is balanced (i.e., if $|H|=\sigma(H) \chi(H)$), then Theorem 1.4 implies that C_{n} is H-good as long as $n \geq 10^{60}|H| / \chi(H)$.
1.1. Proof sketch. Here we give an informal sketch of the proof of Theorem 1.4. For simplicity we talk just about the balanced case of the theorem, i.e., the proof of $R\left(C_{n}, K_{m}^{k}\right)=(k-1)(n-1)+m$.

Let $R\left(C_{\geq n}, K_{m_{1}, \ldots, m_{k}}\right)$ denote the smallest number N such that in every coloring of K_{N} by the colors red and blue there is a red cycle of length at least n or a blue $K_{m_{1}, \ldots, m_{k}}$. In [21] the following theorem is proved.

ThEOREM 1.6. Given integers $m_{1} \leq m_{2} \leq \cdots \leq m_{k}$ and $n \geq 3 m_{k}+5 m_{k-1}$, we have

$$
R\left(C_{\geq n}, K_{m_{1}, \ldots, m_{k}}\right)=(k-1)(n-1)+m_{1}
$$

Notice that the above theorem is essentially a version of Theorem 1.4, except that it produces a red cycle of length at least n rather than one of length exactly n. The proof of our main theorem uses many ideas from the proof of Theorem 1.6. Because of this it may help readers to familiarize themselves with the very short proof of that theorem in [21]. It can be summarized as follows: If K_{N} is colored so that there is no blue $K_{m_{1}, \ldots, m_{k}}$, then we use induction to find a large red subgraph G in K_{N} which is an expander. Then we use the famous Pósa rotation-extension technique to find a long red cycle in G.

To prove Theorem 1.4 we use a similar strategy, except that we build a red cycle of length at least n to also contain a special red subgraph called a gadget. Informally a gadget is a path between two special vertices x and y which has many chords. Because of these chords, the gadget has the property that it has paths between x and y of many different lengths. A consequence of this is that if we can find a cycle C of length at least n which contains a suitable gadget, then C also contains a cycle of length exactly n. Thus the proof of Theorem 1.4 naturally splits into two parts. The first part is to show that a large graph with no blue K_{m}^{k} contains a gadget (see section 2). The second part is to build a cycle of length at least n containing a gadget we found (see section 3).

To find a gadget in a graph with no blue K_{m}^{k}, we make heavy use of expanders. It turns out that if K_{N} has no blue K_{m}^{k}, then it contains a large red subgraph G with good expansion properties (see Lemma 2.5). Once we have an expander, we prove several lemmas which find various structures inside expanders such as trees (Lemma 2.8), paths (Lemma 2.9), and cycles (Lemma 2.13). We then put these structures together to build a gadget (Lemma 2.2). We remark that the gadgets that we use are very similar to absorbers introduced by Montgomery in [17] during the study of spanning trees in random graphs.

After constructing gadgets, the proof of Theorem 1.4 has three main ingredientsLemmas 3.7, 3.9, and 3.14.

The first ingredient, Lemma 3.7, should be thought of as a version of the $k=2$ case of Theorem 1.4. Since the full proof of Theorem 1.4 is inductive, Lemma 3.7 serves as the initial case of the induction. The proof of this lemma is quite similar to the proof of Theorem 1.6 in [21], with one extra ingredient-namely gadgets.

The second ingredient, Lemma 3.9, should be thought of as a strengthening of Theorem 1.4 in the case when the red subgraph of K_{N} is highly connected. In this case it turns out that the Ramsey number can be lowered significantly (to $n+0.07 \mathrm{kn}$). The proof of this lemma again uses gadgets.

The third ingredient, Lemma 3.14, should be thought of as a stability version of Theorem 1.4. It says that for N close to $R\left(C_{n}, K_{m}^{k}\right)$, if we have a 2 -colored K_{N} with no red C_{n} or blue K_{m}^{k}, then the coloring on K_{N} must be close to the extremal coloring. Specifically it shows that most of the graph can be partitioned into $k-1$ large sets A_{1}, \ldots, A_{k-1} with only blue edges between them. Once we have this structure, Theorem 1.4 is fairly easy to prove - since A_{1}, \ldots, A_{k-1} only have blue edges between them, they cannot contain a blue K_{m}^{2} (or else the whole graph would contain a blue $\left.K_{m}^{k}\right)$. Then we apply the a version of the $k=2$ case of Theorem 1.4 to one of the sets A_{i} to obtain a red C_{n} (specifically we apply Lemma 3.7 which serves as the "initial case" of the induction.)
1.2. Notation. For a graph G, the set of vertices is denoted by $V(G)$ and the set of edges by $E(G)$. We will often identify a graph with its vertex set, for example, we will use $|G|$ to mean the number of vertices of G. Throughout this paper the order of a path P, denoted $|P|$, is the number of vertices it has. The length of P is the number of edges P has, which is $|P|-1$. Similarly, for a cycle C, both the order and length of C are defined to be $|C|$, the number of vertices of C. If $P=p_{1}, p_{2}, \ldots, p_{t}$ is a path, then p_{1} and p_{t} are called the endpoints of P, and p_{2}, \ldots, p_{t-1} are called the internal vertices of P. We will say things like " P is internally contained in S " or " P is internally disjoint from S " to mean that the internal vertices of P are contained in S or disjoint from S. For a graph G and two vertices $x, y \in G$ we let $d_{G}(x, y)$ be the length of the shortest path in G between x and y.

Recall that a forest is a graph with no cycles, and a tree is a connected graph with no cycles. A rooted tree is a tree with a designated vertex called the root. In tree T with root r, we call $T \backslash\{r\}$ the internal vertices of T. We think of the edges in a rooted tree as being directed away from the root. Then for a vertex v, the out-neighbors of v are called the children of v, and the in-neighbor of v is the parent of v. The depth of a rooted tree is the maximum distance of a vertex from the root. A binary tree is a tree of maximum degree 3 . Notice that for any m, there is a rooted binary tree of depth $\lceil\log m\rceil$ and order m.

Recall that for a vertex v in a graph $G N_{G}(v)$ denotes the neighborhood of v in G-the set of vertices with edges going to v. The degree of a vertex in G is denoted by $d_{G}(v)=\left|N_{G}(v)\right|$, and the maximum degree taken over all vertices of the graph is denoted by $\Delta(G)$. For a set of vertices S in a graph G we let $N_{G}(S)=\bigcup_{s \in S} N_{G}(S)$ denote the set of neighbors in G of vertices of S. For $U \subseteq G$, we let $N_{U}(S)=$ $N_{G}(S) \cap U=\{u \in U: u s$ is an edge for some $s \in S\}$. When there is no ambiguity in what the underlying graph is, we will abbreviate $N_{G}(S)$ to $N(S)$.

The complement of a graph G, denoted \bar{G}, is the graph on $V(G)$ with $x y \in$ $E(G) \Longleftrightarrow x y \notin G$. Notice that $R(H, K) \leq R$ is equivalent to saying that in any graph on G on R vertices either G contains H or \bar{G} contains K. We let K_{m}^{k} denote the complete multipartite graph with k parts of size m. With this notation, K_{m}^{1} means a set of k vertices (with no edges.) Notice that we have $R\left(K_{m}^{1}, G\right) \leq m$ for any graph G.

Throughout the paper "log" always means " $\log _{2}$," the binary log. In this paper we will omit floor and ceiling signs where they are not essential.
2. Gadgets. In this section we construct gadgets which are one of the main technical tools which we use in this paper. A gadget is a graph containing paths of several different lengths between a designated pair of vertices a and b.

Definition 2.1. A k-gadget is a graph J containing two vertices a and b such that J has a to b paths of orders $|J|$ and $|J|-k$.

The vertices a and b are called the endpoints of the k-gadget. We will often identify a k-gadget J with the path of order $|J|$ contained in it. A $(\leq k)$-gadget is a graph J with two vertices a and b with a to b paths of lengths $|J|,|J|-1, \ldots,|J|-k$. In other words a $(\leq k)$-gadget is simultaneously a k^{\prime}-gadget for $k^{\prime}=1,2, \ldots k$.

An example of a k gadget is a cycle with $k+2$ vertices with a and b a pair of adjacent vertices. Then a to b paths of orders $k+2$ and 2 can be obtained by going around the cycle in different directions. For our purposes we will construct more complicated gadgets. The reason for this is that short cycles do not necessarily exist in graphs whose complements are K_{m}^{k}-free.

The main goal of this section is to prove the following lemma.
Lemma 2.2. There exists a constant $N_{1}=10^{7}$ so that the following holds for any $\lambda, \mu, k, m \in \mathbb{N}$ with $m \geq k^{3}, \lambda \geq 2 \mu \geq 10^{9}$, and $\mu m \geq 4100(\lambda m)^{\frac{3}{4}}$.

Let G be a graph with $|G| \geq\left(N_{1} \lambda \mu k\right) m$ and with $\bar{G} K_{m}^{k}$-free. Then G contains a $(\leq \lambda m)$-gadget J of order $(\lambda+\mu) m$ with endpoints a and b as well as an internally disjoint $a-b$ path Q of order μm.

The above lemma could be be rephrased as a Ramsey-type statement. If we let $\mathcal{J}_{t, n}$ be the family of all $\leq t$ gadgets on n vertices, then Lemma 2.2 implies that $R\left(\mathcal{J}_{\lambda m,(\lambda+\mu) m}, K_{m}^{k}\right) \leq\left(N_{1} \lambda \mu k\right) m$.

Notice that Lemma 2.2 also finds a path Q between the two endpoints of the gadget it produces. This path should be thought of as a technical tool which we will later use to join gadgets together.

The structure of this section is as follows. In section 2.1 we introduce expanders and give their basic properties. In section 2.2 we give a variant of a result of Friedman and Pippenger about embedding trees into expanders. In section 2.3 we prove some lemmas about embedding paths and cycles into expanders. In section 2.4 we prove Lemma 2.2. In section 2.5 we prove some additional properties of gadgets which we will need.
2.1. Expanders. We'll use the following notion of expansion.

Definition 2.3. For a graph G and $W \subseteq V(G)$, we say that $G(\Delta, \beta, m)$-expands into W if the following hold.
(i) $\left|N_{W}(S)\right| \geq \Delta|S|$ for $S \subseteq V(G)$ with $|S|<m$.
(ii) $\left|N_{G}(S) \cup S\right| \geq|S|+\beta m$ for $S \subseteq V(G)$ with $m \leq|S| \leq|G| / 2$.

The following easy observation shows how we can change the parameters Δ and β while maintaining expansion.

Observation 2.4. Suppose that $G(\Delta, \beta, m)$-expands into W.
(i) If $W^{\prime} \supseteq W, \Delta^{\prime} \leq \Delta$, and $\beta^{\prime} \leq \beta$, then $G\left(\Delta^{\prime}, \beta^{\prime}, m\right)$-expands into W^{\prime}.
(ii) If $W \subseteq U \subseteq \bar{V}(G)$ with $|V(G) \backslash U| \leq t m$, then $G[U](\Delta, \beta-t, m)$-expands into W.

The following lemma shows that graphs whose complement is K_{m}^{k}-free contain large subgraphs which expand well.

Lemma 2.5. For all $\beta, m, M, \Delta \geq 1$ with $\beta+2<M / 4$ and $3 \Delta<\beta$ the following holds.

Let G be a graph with $\bar{G} K_{m}^{k}$-free and $|G| \geq \max (m, M(k-1.5) m)$. Then there exists an integer k^{\prime} and an induced subgraph $H \subseteq G$ such that the following hold:

- \bar{H} is $K_{m}^{k^{\prime}}$-free.
- $M\left(k^{\prime}-1.5\right) m-m \leq|H| \leq M\left(k^{\prime}-1.5\right) m$. Also we have $|H| \geq m$.
- $H(\Delta, \beta, m)$-expands into $V(H)$.

Proof. The proof is by induction on k. The initial case is when $k=1$, which holds vacuously since any graph with m vertices contains a copy of K_{m}^{1} (by definition K_{m}^{1} is just any set of m vertices).

Assume that for $k \geq 2$ we have a graph G as in the statement of the lemma, and the result holds for all $\hat{k}<k$. Without loss of generality, we may assume that $|G|=M(k-1.5) m$ (by possibly passing to a subgraph of G of this order.)

Suppose that there is a set S with $m \leq|S| \leq|G| / 2$ such that $\left|N_{G}(S) \cup S\right|<$ $|S|+(\beta+1) m$. Let $T=V(G) \backslash\left(N_{G}(S) \cup S\right)$. Using $|S| \leq|G| / 2,\left|N_{G}(S) \cup S\right|<$ $|S|+(\beta+1) m,|G| \geq M(2-1.5) m$, and $\beta+2<M / 4$ we obtain that $|T| \geq m$. We also have that $|S \cup T|=|G|-\left|N_{G}(S) \backslash S\right| \geq M(k-1.5) m-(\beta+1) m$. Choose s and t maximum integers for which $|S| \geq M(s-1.5) m$ and $|T| \geq M(t-1.5) m$. We certainly have $s, t \geq 1$. From the maximality of s and t, we have $|S \cup T|=|S|+|T|<$ $M(s+1-1.5) m+M(t+1-1.5) m=M(s+t-1.5) m+M m / 2$. Combining this with $|S \cup T| \geq M(k-1.5) m-(\beta+1) m$, we get $k-(\beta+1) / M \leq s+t+1 / 2$. Together with $(\beta+1) / M+1 / 2<1$ and the integrality of k, s, and t this gives $s+t \geq k$. Let $s^{\prime} \in[1, s]$ and $t^{\prime} \in[1, t]$ be arbitrary integers with $s^{\prime}+t^{\prime}=k$. This ensures $s^{\prime}, t^{\prime} \leq k-1$. Since \bar{G} is K_{m}^{k}-free and there are no edges between S and T, we have that either $\overline{G[S]}$ is $K_{m}^{s^{\prime}}$-free or $\overline{G[T]}$ is $K_{m}^{t^{\prime}}$-free. By induction either S or T contains a subgraph with the required properties.

Now suppose that for every set S with $m \leq|S| \leq|G| / 2$ we have $\left|N_{G}(S) \cup S\right| \geq$ $|S|+(\beta+1) m$. Let S be the largest set of vertices in G with $|S| \leq 2 m$ for which $\left|N_{G}(S) \backslash S\right|<(\Delta+1)|S|$. We have that $\left|N_{G}(S) \cup S\right| \leq(\Delta+2)|S|<|S|+(\beta+1) m$. By our assumption we have that $|S|<m$.

Let $G^{\prime}=G \backslash S$. We claim that this graph satisfies the conditions of the lemma with $k^{\prime}=k$. Certainly $\overline{G^{\prime}}$ is $K_{m}^{k^{\prime}}$-free. Also since $k \geq 2$, we have $\left|G^{\prime}\right| \geq|G|-m=$ $M\left(k^{\prime}-1.5\right) m-m \geq m$. Suppose that we have $S^{\prime} \subseteq V\left(G^{\prime}\right)$ with $|S| \leq\left|G^{\prime}\right| / 2 \leq|G| / 2$. If $\left|S^{\prime}\right| \geq m$, then $\left|N_{G^{\prime}}\left(S^{\prime}\right) \cup S^{\prime}\right| \geq\left|N_{G}\left(S^{\prime}\right) \cup S^{\prime}\right|-|S| \geq\left|S^{\prime}\right|+(\beta+1) m-|S| \geq\left|S^{\prime}\right|+\beta m$. If $\left|S^{\prime}\right| \leq m$, then by maximality of S, we have $\left|N_{G}\left(S^{\prime} \cup S\right) \backslash\left(S^{\prime} \cup S\right)\right| \geq(\Delta+1)\left|S \cup S^{\prime}\right|$, which implies that $\left|N_{G^{\prime}}\left(S^{\prime}\right)\right| \geq\left|N_{G^{\prime}}\left(S^{\prime} \cup S\right)\right|-\left|N_{G^{\prime}}(S)\right| \geq\left|N_{G}\left(S^{\prime} \cup S\right) \backslash\left(S^{\prime} \cup S\right)\right|-$ $\left|N_{G}(S) \backslash S\right| \geq(\Delta+1)\left(\left|S^{\prime}\right|+|S|\right)-(\Delta+1)|S| \geq \Delta\left|S^{\prime}\right|$, proving the lemma.

Notice that in the above lemma, we can always take $k^{\prime} \geq 2$, since no graph with $|H| \geq m$ has \bar{H} is K_{m}^{1}-free. The following lemma shows that expanders have good connectivity properties.

Lemma 2.6. Suppose that $G(\Delta, \beta, m)$-expands into $W \subseteq V(G)$. Suppose that we have three disjoint sets of vertices $A, B, C \subseteq V(G)$ with $(\Delta-2)|A| \geq|C \cap W|$, $(\Delta-2)|B| \geq|C \cap W|$, and $\beta m \geq 2|C|$.

Then there is an A to B path P in G, avoiding C, and with $|P| \leq 8 \log m+$ $2|G| / \beta m$.

Proof. Let $a=4 \log m$ and $b=|G| / \beta m$. With this notation, it is sufficient to find an A to B path of length $\leq 2 a+2 b$.

Set $A^{0}=A$ and $A^{i+1}=\left(N_{G}\left(A^{i}\right) \cup A^{i}\right) \backslash C$ for each i. Using the definition of " (Δ, β, m)-expands" and $(\Delta-2)|A| \geq|C \cap W|$ we have that $\left|A^{i+1}\right| \geq 2\left|A^{i}\right|$ whenever $\left|A_{i}\right|<m$, which implies that $\left|A^{a}\right| \geq m$. Using the definition of " (Δ, β, m)-expands" and $\beta m \geq 2|C|$ we have that $\left|A^{i+1}\right| \geq\left|A^{i}\right|+\beta m / 2$ whenever $m \leq\left|A_{i}\right| \leq|G| / 2$. Combining this with $\left|A^{a}\right| \geq m$ gives $\left|A^{a+b}\right|>b \beta m / 2 \geq|G| / 2$.

Similarly, letting $B^{0}=B$ and $B^{i+1}=\left(N_{G}\left(B^{i}\right) \cup B^{i}\right) \backslash C$ we have $\left|B^{a+b}\right|>|G| / 2$. Therefore A^{a+b} and B^{a+b} intersect, giving us the required path.
2.2. Embedding trees. We'll need a version of a theorem of Friedman and Pippenger [14] about embedding trees into expanding graphs. The following lemma is proved in [2]

Lemma 2.7 (see [2, Lemma 5.2]). Suppose that we have Δ, M, m, and n such that $9 \Delta m<M$. Let $X=\left\{x_{1}, \ldots, x_{t}\right\}$ be a set of vertices in a graph G on n vertices. Suppose that we have rooted trees $T\left(x_{1}\right), \ldots, T\left(x_{t}\right)$ satisfying $\sum_{i=1}^{t}\left|T\left(x_{i}\right)\right| \leq M$ and $\Delta\left(T\left(x_{i}\right)\right) \leq \Delta$ for all i. Suppose that for all $S \subseteq V(G)$ with $m \leq|S| \leq 2 m$ we have $|N(S)| \geq M+10 \Delta m$, and for $S \subseteq V(G)$ with $|S| \leq m$ we have

$$
\begin{equation*}
|N(S) \backslash X| \geq 4 \Delta|S \backslash X|+\sum_{x \in S \cap X}\left(d_{\text {root }}(T(x))+\Delta\right) . \tag{2}
\end{equation*}
$$

Then we can find disjoint copies of the trees $T\left(x_{1}\right), \ldots, T\left(x_{t}\right)$ in G such that for each i, $T\left(x_{i}\right)$ is rooted at x_{i}. In addition for all $S \subseteq V(G)$ with $|S| \leq m$, we have

$$
\begin{equation*}
\left|N(S) \backslash\left(T\left(x_{1}\right) \cup \cdots \cup T\left(x_{t}\right)\right)\right| \geq \Delta|S| . \tag{3}
\end{equation*}
$$

The following version of the above lemma will be easier to apply.
Lemma 2.8. Suppose that we have a graph G and a set $W \subseteq V(G)$ such that G $(4 \Delta, \beta, m)$-expands into W with $20 \Delta \leq \beta$. Let $X=\left\{x_{1}, \ldots, x_{t}\right\}=G \backslash W$.

Then for any family of rooted trees $\left\{T\left(x_{1}\right), \ldots, T\left(x_{t}\right)\right\}$ with $\Delta\left(T\left(x_{i}\right)\right) \leq \Delta$ and $\sum_{i=1}^{t}\left|T\left(x_{i}\right)\right| \leq(\beta-10 \Delta) m$ we can find disjoint copies of $T\left(x_{1}\right), \ldots, T\left(x_{t}\right)$ in G with $T\left(x_{i}\right)$ rooted at x_{i} such that $G(\Delta, \beta, m)$-expands into $W \backslash\left(T\left(x_{1}\right) \cup \cdots \cup T\left(x_{t}\right)\right)$.

Proof. By setting $M=(\beta-10 \Delta) m$, we see that the assumptions of Lemma 2.7 hold for the family of trees $T\left(x_{1}\right), \ldots, T\left(x_{t}\right)$. This allows us to embed the trees $T\left(x_{1}\right), \ldots, T\left(x_{t}\right)$ such that $\left|N_{G}(S) \backslash\left(T\left(x_{1}\right) \cup \cdots \cup T\left(x_{t}\right)\right)\right| \geq \Delta|S|$ holds for all $S \subseteq V(G)$ with $|S| \leq m$. This shows that part (i) holds of the definition of $G(\Delta, \beta, m)$-expanding into $G \backslash\left(T\left(x_{1}\right) \cup \cdots \cup T\left(x_{t}\right)\right)=W \backslash\left(T\left(x_{1}\right) \cup \cdots \cup T\left(x_{t}\right)\right)$. Part (ii) also holds as a consequence of $G(4 \Delta, \beta, m)$-expanding into W.
2.3. Embedding paths and cycles. In this section we prove several lemmas about embedding paths and cycles into expanders. They will be the building blocks for the gadgets which we construct in the next section.

The following lemma allows us to connect prescribed vertices together by short paths.

Lemma 2.9. Let G be a graph, $\beta, m, t \in \mathbb{N}$, and fix $\ell=4|G| / \beta m+10 \log \beta m$. Suppose that $G(16, \beta, m)$-expands into $W \subseteq V(G)$ with $(\beta-80) m \geq 4 \ell t^{2}+|G \backslash W|$. Suppose that we have pairs of vertices $x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{t}, y_{t} \in G \backslash W$.

Then there are vertex-disjoint paths P_{1}, \ldots, P_{t} in G with P_{i} going from x_{i} to y_{i} and $\left|P_{i}\right| \leq \ell$.

Proof. Let $X=G \backslash W$ and list the vertices of X as $\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{t}, y_{t}\right.$, z_{1}, \ldots, z_{r}) for $r=|X|-2 t$. We assign a tree $T(v)$ to each $v \in X$ as follows. For $i=1, \ldots, t$ the trees $T\left(x_{i}\right)$ and $T\left(y_{i}\right)$ are both rooted binary trees with $t \ell$ vertices of depth $\leq\lceil\log t \ell\rceil$. For vertices z_{i} we let $T\left(z_{i}\right)$ be the tree consisting of a single vertex. Notice that $\Delta(T(v))<4$ for all $v, G(16, \beta, m)$-expands into $W, 20 \cdot 4 \leq \beta$, and that $\sum_{v \in X}|T(v)| \leq 2 t^{2} \ell+|G \backslash W| \leq(\beta-10 \cdot 4) m$. Therefore we can apply Lemma 2.8 to G with $\Delta=4$ in order to find disjoint copies of $T(v)$ rooted at all $v \in X$ such that G $(4, \beta, m)$-expands into $W^{\prime}=W \backslash \bigcup_{v \in X} T(v)$.

For $i=1, \ldots, t$ let $A_{i}=V\left(T\left(x_{i}\right)\right)$ and $B_{i}=V\left(T\left(y_{i}\right)\right)$. Notice that to prove the lemma it is sufficient to find vertex-disjoint paths Q_{i} from A_{i} to B_{i} internally inside W^{\prime} of length $\leq \ell-2\lceil\log t \ell\rceil-1$. Indeed once we have such paths, we can join Q_{i} to the paths $P_{x_{i}}$ in $T\left(x_{i}\right)$ and $P_{y_{i}}$ in $T\left(y_{i}\right)$ from the endpoints of Q_{i} to x_{i} and y_{i}, respectively, in order to obtain P_{i} (since A_{i} and B_{i} are binary trees of depth $\leq\lceil\log t \ell\rceil$, we know that $\left.e\left(P_{x_{i}}\right), e\left(P_{y_{i}}\right) \leq\lceil\log t \ell\rceil\right)$. We will repeatedly apply Lemma 2.6 to G and $W^{\prime} t$ times in order to find such paths Q_{1}, \ldots, Q_{t} of length $\leq \ell-2\lceil\log t \ell\rceil-1$.

Suppose that for some $i \in\{1, \ldots, t\}$, we have already found vertex-disjoint paths Q_{1}, \ldots, Q_{i-1}, each of length $\leq \ell-2\lceil\log t \ell\rceil-1$. Let $C=\left(\bigcup_{j<i} Q_{j}\right) \cup\left(\bigcup_{j \neq i} A_{j} \cup B_{j}\right)$. Notice that we have $2\left|A_{i}\right|, 2\left|B_{i}\right|=2 t \ell \geq\left|Q_{1}\right|+\cdots+\left|Q_{i-1}\right| \geq\left|C \cap W^{\prime}\right|$. We also have $\beta m \geq 4 t^{2} \ell \geq 2(i-1) \ell+2 t^{2} \ell \geq 2|C|$. Therefore, by Lemma 2.6 , there is a path Q_{i} from A_{i} to B_{i} avoiding C with $\left|Q_{i}\right| \leq 8 \log m+2|G| / \beta m \leq \ell-2\lceil\log t \ell\rceil-1$ (the last inequality uses $t \ell \leq \beta m$).

The following lemma allows us to find a short cycle C in an expander, such that the graph expands outside C.

Lemma 2.10. Suppose that we have a nonbipartite graph G which (Δ, β, m) expands into $W \subseteq G$ with $\Delta \geq 2$.

Then G contains an odd cycle C with $|C| \leq 16 \log m+4|G| / \beta m$ such that G $(\Delta-5, \beta, m)$-expands into $W \backslash V(C)$.

Proof. Let C be the shortest odd cycle in G.
Claim 2.11. For any vertices $x, y \in C$ we have $d_{C}(x, y)=d_{G}(x, y)$.
Proof. We certainly have $d_{C}(x, y) \geq d_{G}(x, y)$. Suppose for the sake of contradiction that we have $x, y \in C$ with $d_{C}(x, y)>d_{G}(x, y)$. Without loss of generality, we may suppose that $d_{G}(x, y)$ is as small as possible among such pairs of vertices. Let P be a $x-y$ path of length $d_{G}(x, y)$.

Suppose that $P \cap C$ contains some vertex $z \notin\{x, y\}$. We have $d_{G}(x, z)<d_{G}(x, y)$, so by minimality of $d_{G}(x, y)$ we have that $d_{C}(x, z)=d_{G}(x, z) \leq d_{P}(x, z)$. Similarly, we obtain $d_{C}(z, y)=d_{G}(z, y) \leq d_{P}(z, y)$. This gives us $d_{C}(x, y) \leq d_{C}(x, z)+$ $d_{C}(z, y) \leq d_{P}(x, z)+d_{P}(z, y)=d_{G}(x, y)$, contradicting $d_{C}(x, y)>d_{G}(x, y)$.

Suppose that $P \cap C=\{x, y\}$. Let Q be the $x-y$ path along C with $|C|$ having the same parity as $|P|$. By replacing Q by P we obtain an odd cycle shorter than C, contradicting the minimality of $|C|$.

From Lemma 2.6 applied with $C=\emptyset$, we have $\operatorname{Diam}(G) \leq 8 \log m+2|G| / \beta m$ and so Claim 2.11 implies that $|C| \leq 2 \operatorname{Diam}(G) \leq 16 \log m+4|G| / \beta m$.

For any $v \in V(G)$, Claim 2.11 implies that $\left|N_{G}(v) \cap C\right| \leq 5$, since otherwise there would be two vertices $x, y \in N_{G}(v) \cap C$ with $d_{C}(x, y) \geq 3>2=d_{G}(x, y)$. Using the fact that $G(\Delta, \beta, m)$-expands into W we obtain that for any S with $|S|<m$ we have $\left|N_{G}(S) \cap(W \backslash C)\right| \geq\left|N_{G}(S) \cap W\right|-\left|N_{G}(S) \cap C\right| \geq(\Delta-5)|S|$. This implies that G $(\Delta-5, \beta m, m)$-expands into $W \backslash V(C)$.

The same proof also proves the following.
Lemma 2.12. Suppose that we have a graph G which (Δ, β, m)-expands into $W \subseteq G$ with $\Delta \geq 2$, and we have two vertices $x, y \in V(G)$.

Then there is a path P from x to y with $|P| \leq 16 \log m+4|G| / \beta m$ such that G $(\Delta-5, \beta, m)$-expands into $W \backslash V(P)$.

To prove Lemma 2.12 one lets P be the shortest x to y path in G. The path P ends up having the required properties by the same argument as in Lemma 2.10.

The following lemma allows us to find a cycle whose length is close to a prescribed value.

Lemma 2.13. Suppose that we have a nonbipartite graph G which (Δ, β, m) expands into G for $\Delta \geq 20$ and $\beta \geq 8 \Delta$. Let r be an odd integer with $r \leq m$.

Then G contains an odd cycle C with $r+2 \leq|C| \leq r+16 \log m+5|G| / \beta m$. In addition there is an induced subgraph graph G^{\prime} of G such that $G^{\prime}(\Delta / 4-7, \beta-3, m)$ expands into $V(G) \backslash V(C)$, and $C \backslash V\left(G^{\prime}\right)$ is a path of order r.

Proof. By Lemma 2.10, G contains an odd cycle $C_{\text {odd }}$ such that $\left|C_{\text {odd }}\right| \leq 16 \log m+$ $4|G| / \beta m$ such that $G(\Delta-5, \beta, m)$-expands into $V(G) \backslash V\left(C_{o d d}\right)$. If $\left|C_{o d d}\right| \geq r+2$, then the lemma holds with $C=C_{\text {odd }}$ and G^{\prime} a subgraph of G formed by deleting r consecutive vertices on C (here $G^{\prime}(\Delta / 4-7, \beta-3, m)$-expands into $V(G) \backslash V(C)$ using $r \leq m$ and Observation 2.4). Therefore, suppose that $\left|C_{o d d}\right| \leq r$, and let x, y be two vertices in $C_{\text {odd }}$ at distance $\left\lfloor\left|C_{o d d}\right| / 2\right\rfloor$. Notice that this means that there are x to y paths R^{+}and R^{-}in C of orders $\left|C_{\text {odd }}\right| / 2+1 / 2$ and $\left|C_{\text {odd }}\right| / 2-1 / 2$, respectively.

By Lemma 2.8, G contains a path P of order $r-\left|C_{o d d}\right| / 2+5 / 2$ starting with x, with $P \cap C=\{x\}$, such that $G(\Delta / 4-2, \beta, m)$-expands into $V(G) \backslash(V(C) \cup V(P))$. (For this application, we have $G=G, W=V(G) \backslash V\left(C_{o d d}\right), X=V\left(C_{\text {odd }}\right), \Delta^{\prime}=\Delta / 4-2$, $\beta=\beta$, and $m=m$. Let $T(x)$ be a path of order $r-\left|C_{\text {odd }}\right| / 2+5 / 2$, and let $T\left(x^{\prime}\right)$ be the single-vertex tree for all $x^{\prime} \in X \backslash\{x\}$.) Let $z \neq x$ be the other endpoint of P and $W=V(G) \backslash\left(V\left(C_{\text {odd }}\right) \cup V(P)\right)$.

Suppose that $z y$ is an edge. Joining R^{+}to P gives a cycle C of order $r+2$ for which the lemma holds with G^{\prime} a subgraph of G formed by deleting r consecutive vertices on C (here $G^{\prime}(\Delta / 4-7, \beta-3, m)$-expands into $V(G) \backslash V(C)$ using $r \leq m$ and Observation 2.4).

Suppose that $z y$ is a nonedge. Let G_{1} be the induced subgraph of G on $(V(G) \backslash$ $\left.\left(C_{o d d} \cup P\right)\right) \cup\{z, y\}$. Notice that since $r \leq m$, Observation 2.4(ii) implies that G_{1} $(\Delta / 4-2, \beta-2, m)$-expands into W. By Lemma 2.12, G_{1} contains a z to y path Q of length $\leq 16 \log m+4|G| /(\beta-2) m \leq 16 \log m+5|G| / \beta m$ such that $G_{1}(\Delta / 4-7, \beta-$ $2, m)$-expands into $W \backslash V(Q)$. Since $z y$ is a nonedge, we have $|Q| \geq 3$.

Notice that $\left|R^{+}\right|$and $\left|R^{-}\right|$have different parities. Therefore we obtain an odd cycle C with $|C| \leq r+16 \log m+5|G| / \beta m$ by joining Q to P to either R^{+}or R^{-}. We have either $|C|=\left|R^{-}\right|+|P|+|Q|-3$ or $|C|=\left|R^{+}\right|+|P|+|Q|-3$. Using $\left|R^{-}\right|=\left|C_{\text {odd }}\right| / 2-1 / 2,\left|R^{+}\right|=\left|C_{\text {odd }}\right| / 2+1 / 2,|Q| \geq 3$, and $|P|=r-\left|C_{\text {odd }}\right| / 2+5 / 2$ we get $|C| \geq\left|R^{-}\right|+|P|+|Q|-3 \geq r+2$ and $|Q| \geq|C|-\left|R^{+}\right|-|P|+3=|C|-r$. Since $|Q| \geq|C|-r$, we can choose a set U of $|C|-r$ consecutive vertices on Q. Let G^{\prime} be the induced subgraph of G on $\left(V\left(G_{1}\right) \backslash V(Q)\right) \cup U$ to get $G^{\prime}(\Delta / 4-7, \beta-3, m)$-expanding into $W \backslash V(Q)=V(G) \backslash V(C)$ as required (using Observation 2.4(ii)).
2.4. Constructing gadgets. In this section we construct gadgets in graphs whose complement is K_{m}^{k}-free. The overall goal of this section is to prove Lemma 2.2.

Fig. 1. A 3-gadget.

The following lemma shows that odd r-gadgets exist in graphs whose complements are K_{m}^{k}-free. It also finds two large binary trees attached to the endpoints of the gadget. These binary trees will later be used to join several gadgets together.

LEMMA 2.14. Let m, k, and r be integers with $m \geq \max \left(k^{3}, 10^{9}\right)$, r odd, and $r \leq m$. Let G be a graph with $\bar{G} K_{m}^{k}$-free and $|G| \geq 9100000 \mathrm{~km}$.

Then G contains an r-gadget J with $|J| \leq r+2000 m^{\frac{2}{3}}$ with endpoints a and b. In addition there are two disjoint binary trees T_{a} and T_{b} in G of order m and depth $\leq\lceil\log m\rceil$ with T_{a} rooted at a and having $T_{a} \cap J=\{a\}$ and T_{b} rooted at b and having $T_{b} \cap J=\{b\}$.

Proof. For this lemma we fix $M=9000000, \Delta=4000$, and $\beta=1500000$. See Figure 1 for a diagram of what kind of r-gadget we will find in G.

Apply Lemma 2.5 to G in order to find an integer k^{\prime} and a subgraph G_{1} of G with $(M-2)\left(k^{\prime}-1.5\right) m \leq\left|G_{1}\right| \leq M\left(k^{\prime}-1.5\right) m$ such that $G_{1}(\Delta, \beta, m)$-expands into G_{1} and $\overline{G_{1}}$ is $K_{m}^{k^{\prime}}$-free. We have $k^{\prime} \geq 2$, since $\left|G_{1}\right| \geq m$ implies that $\overline{G_{1}}$ cannot be K_{m}^{1}-free. Notice that since $\left|G_{1}\right| \leq M\left(k^{\prime}-1.5\right) m \leq M k m \leq M m^{\frac{4}{3}}$ and $M / \beta \leq 6$, we have $\left|G_{1}\right| / \beta m \leq 6 m^{\frac{1}{3}}$. Notice that G_{1} is nonbipartite - indeed since $\overline{G_{1}}$ is $K_{m}^{k^{\prime}}$-free, every set of size $m k^{\prime}$ in G_{1} contains an edge which implies that $\alpha\left(G_{1}\right) \leq m k^{\prime}$ and $\chi\left(G_{1}\right) \geq\left|G_{1}\right| / \alpha\left(G_{1}\right) \geq(M-2)\left(k^{\prime}-1.5\right) / k^{\prime}>10000$.

Apply Lemma 2.13 to G_{1} in order to find an odd cycle C with vertex sequence $a, j_{1}, \ldots, j_{r}, x_{1}, x_{2}, \ldots, x_{t}, b, y_{t}, y_{t-1}, \ldots, y_{1}$ such that $t \leq 16 \log m+5\left|G_{1}\right| / \beta m \leq$ $50 m^{\frac{1}{3}}$. In addition, we obtain a subgraph $G_{2} \subseteq G_{1}$ which $(\Delta / 5, \beta-3, m)$-expands into $W_{2}=V\left(G_{1}\right) \backslash C$. Without loss of generality, we may assume that C is labeled so that $\left\{x_{1}, x_{2}, \ldots, x_{t}, b, y_{t}, y_{y-1}, \ldots, y_{1}, a\right\}=C \cap G_{2}$.

Apply Lemma 2.8 to G_{2} and W_{2} in order to find two binary trees T_{a} and T_{b} internally in W_{2} of order m and depth $\leq\lceil\log m\rceil$ with $T_{a} \cap C=\{a\}$ and $T_{b} \cap C=\{b\}$ (for this application let T_{x} be a single-vertex tree for $x \in C \backslash\{a, b\}$). From the application of Lemma 2.8 we have that $G_{2}(\Delta / 20, \beta-3, m)$-expands into $W_{2} \backslash\left(T_{a} \cup T_{b}\right)$. Let $G_{3}=G_{2} \backslash\left(T_{a} \cup T_{b}\right)$ and $W_{3}=W_{2} \backslash\left(T_{a} \cup T_{b}\right)$. Notice that since $G_{2}(\Delta / 20, \beta-3, m)$ expands into W_{3} and $\left|T_{a} \cup T_{b}\right|=2 m$, by Obervation 2.4(ii), $G_{3}(\Delta / 20, \beta-5, m)$ expands into W_{3}.

Apply Lemma 2.9 to G_{3}, W_{3}, and the set of pairs $x_{1}, y_{1}, \ldots, x_{t}, y_{t}$ in order to find disjoint paths P_{1}, \ldots, P_{t} in G_{3} with P_{i} joining x_{i} to y_{i} and $\left|P_{i}\right| \leq 40 m^{\frac{1}{3}}$ (for this application we use $\beta^{\prime}=\beta-5, t \leq 50 m^{\frac{1}{3}},\left|G_{3} \backslash W_{3}\right|=\left|G_{3} \cap C\right|=2 t+2$, $m \geq 10^{9}$, and $\ell=4|G| / \beta^{\prime} m+10 \log \left(\beta^{\prime} m\right) \leq 40 m^{\frac{1}{3}}$ which ensure that we have $\left.\left(\beta^{\prime}-80\right) m \geq 4 \cdot 50 m^{\frac{1}{3}} \cdot 50 m^{\frac{1}{3}} \cdot 40 m^{\frac{1}{3}}+2 \cdot 50 m^{\frac{1}{3}}+2 \geq 4 t^{2} \ell+\left|G_{3} \backslash W_{3}\right|\right)$.

Let $J=C \cup P_{1} \cup \cdots \cup P_{t}$. We will show that J is an r-gadget satisfying all the conditions of the lemma. Notice that the following are both vertex sequences of paths from a to b in J :

$$
\begin{gathered}
Q_{1}=a, j_{1}, j_{2}, \ldots, j_{r}, x_{1}, P_{1}, y_{1}, y_{2}, P_{2}, x_{2}, x_{3}, P_{3}, y_{3}, \ldots, x_{t}, P_{t}, y_{t}, b \\
Q_{2}=a, y_{1}, P_{1}, x_{1}, x_{2}, P_{2}, y_{2}, y_{3}, P_{3}, x_{3}, \ldots, y_{t}, P_{t}, x_{t}, b
\end{gathered}
$$

We have that $\left|Q_{1}\right|=|J|$ and $\left|Q_{2}\right|=|J|-r$, and so Q_{1} and Q_{2} qualify as the two paths in the definition of the r-gadget J. Finally we have $|J| \leq r+t \max _{i=1}^{t}\left|P_{i}\right| \leq$ $r+2000 m^{\frac{2}{3}}$.

The following lemma shows that if the complement of a sufficiently large graph is K_{m}^{k}-free, then the graph contains a $(\leq t)$-gadget.

Lemma 2.15. Let m, k, and r be integers with $m \geq \max \left(k^{3}, 10^{9}\right)$ and $r \leq \log m$. Let G be a graph with $\bar{G} K_{m}^{k}$-free and $|G| \geq 9500000 \mathrm{~km}$.

Then G contains $a\left(\leq 2^{r}\right)$-gadget J with $|J| \leq 2^{r}+2050 \cdot r \cdot m^{\frac{2}{3}}$ with endpoints a and b. In addition there are two disjoint binary trees T_{a} and T_{b} in G of order m and depth $\leq\lceil\log m\rceil$ with T_{a} rooted at a and having $T_{a} \cap J=\{a\}$ and T_{b} rooted at b and having $T_{b} \cap J=\{b\}$.

Proof. For this lemma we fix $M=9500000, \Delta=40000$, and $\beta=1500000$. Apply Lemma 2.5 to G in order to find an integer k^{\prime} and a subgraph G^{\prime} of G with $(M-2)\left(k^{\prime}-1.5\right) m \leq\left|G^{\prime}\right| \leq M\left(k^{\prime}-1.5\right) m$ such that $G^{\prime}(\Delta, \beta, m)$-expands into G^{\prime} and $\overline{G^{\prime}}$ is $K_{m}^{k^{\prime}}$-free. Notice that since $\left|G^{\prime}\right| \leq M\left(k^{\prime}-1.5\right) m \leq M k m \leq M m^{\frac{4}{3}}$ and $M / \beta \leq 7$, we have $\left|G^{\prime}\right| / \beta m \leq 7 m^{\frac{1}{3}}$.

The strategy of the proof of this lemma is to repeatedly apply Lemma 2.14 in order to find 2^{i}-gadgets for $i \in\{1, \ldots, r\}$ and join all these gadgets together using Lemma 2.6. See Figure 2 for an illustration of what the final $\left(\leq 2^{r}\right)$-gadget looks like.

Claim 2.16. For $s \leq r, G^{\prime}$ contains a $\left(\leq 2^{s}\right)$-gadget J with $|J| \leq 2^{s}+(s+$ 1)2050 $m^{\frac{2}{3}}$ with endpoints a and b. In addition there are two disjoint binary trees T_{a} and T_{b} in G^{\prime} of order m and depth $\leq\lceil\log m\rceil$ with T_{a} rooted at a and having $T_{a} \cap J=\{a\}$ and T_{b} rooted at b and having $T_{b} \cap J=\{b\}$.

Proof. The proof is by induction on s. The initial case " $s=0$ " follows from Lemma 2.14. Let $s \geq 1$. Suppose that we have a ($\leq 2^{s-1}$)-gadget J in G^{\prime} with $|J| \leq 2^{s-1}+s \cdot 2050 \cdot m^{\frac{2}{3}}$ with endpoints a and b as well as two disjoint binary trees T_{a} and T_{b} in G^{\prime} of order m and depth $\leq\lceil\log m\rceil$ with $T_{a} \cap J=\{a\}$ and $T_{b} \cap J=\{b\}$.

The cases " $s=1$ " and " $s \geq 2$ " are slightly different. If $s \geq 2$, apply Lemma 2.14 to $G^{\prime} \backslash\left(J \cup T_{a} \cup T_{b}\right)$ in order to find a $\left(2^{s-1}+1\right)$-gadget J^{\prime} in $G^{\prime} \backslash\left(J \cup T_{a} \cup T_{b}\right)$ with $\left|J^{\prime}\right| \leq 2^{s-1}+1+2000 m^{\frac{2}{3}}$ and with endpoints a^{\prime} and b^{\prime} as well as two disjoint binary trees T_{a}^{\prime} and T_{b}^{\prime} of order m and depth $\leq\lceil\log m\rceil$ with $T_{a}^{\prime} \cap J^{\prime}=\left\{a^{\prime}\right\}$ and $T_{b}^{\prime} \cap J^{\prime}=\left\{b^{\prime}\right\}$.

FIG. 2. Constructing $a\left(\leq 2^{\log m}\right)$-gadget in the proof of Lemma 2.15.

If $s=1$, we do the same, except we apply Lemma 2.14 to get a 1-gadget J^{\prime} (rather than a ($2^{1-1}+1$)-gadget which we wouldn't be able to obtain from Lemma 2.14 since $2^{1-1}+1$ is even).

Let $A=T_{a}, B=T_{b}^{\prime}$, and $C=J \cup J^{\prime} \cup T_{b} \cup T_{a}^{\prime} \backslash\left\{a, b^{\prime}\right\}$ to get three sets with $|C| \leq 30000 m \leq(\Delta-2)|A|,(\Delta-2)|B|, \beta m / 2$. Applying Lemma 2.6 to these three sets gives us a path P from T_{a} to T_{b}^{\prime} avoiding $J \cup J^{\prime} \cup T_{b} \cup T_{a}^{\prime} \backslash\left\{a, b^{\prime}\right\}$ and satisfying $|P| \leq 8 \log m+2|G| / \beta m \leq 22 m^{\frac{1}{3}}$. Notice that since T_{a} and T_{b}^{\prime} are trees with depth $\leq\lceil\log m\rceil$, there are paths P_{a} and $P_{b^{\prime}}$ of length $\leq 2\lceil\log m\rceil$ from a and b^{\prime} to the two endpoints of P. Joining P to P_{a} and $P_{b^{\prime}}$ gives a path Q from a to b^{\prime} of length $\leq 26 m^{\frac{1}{3}}$.

We claim that $\hat{J}=J \cup J^{\prime} \cup Q$ is a $\left(\leq 2^{s}\right)$-gadget in G^{\prime} with endpoints a^{\prime} and b. We'll deal with the $s \geq 2$ case first. Let $t \in\left\{0, \ldots, 2^{s}\right\}$. We need to find an a^{\prime} to b path in \hat{J} of order $|\hat{J}|-t$. Since J is a $\left(\leq 2^{s-1}\right)$-gadget, J contains an a to b path R with $|R|=|J|-\left(t \bmod 2^{s-1}+1\right)$. Since J^{\prime} is a $\left(2^{s-1}+1\right)$-gadget, J^{\prime} contains a^{\prime} to b^{\prime} paths R_{0} and R_{1} with $\left|R_{0}\right|=\left|J^{\prime}\right|$ and $\left|R_{1}\right|=\left|J^{\prime}\right|-2^{s-1}-1$. Now, depending on whether $t \geq 2^{s-1}+1$ or not, either $R Q R_{0}$ or $R Q R_{1}$ is a path of the required length. If $s=1$, then a similar argument works. (Since both J and J^{\prime} are 1-gadgets, we obtain paths Q_{0} and Q_{1} in J of orders $|J|$ and $|J|-1$ and paths R_{0} and R_{1} in J^{\prime} of orders $\left|J^{\prime}\right|$ and $\left|J^{\prime}\right|-1$. Now $Q_{0} Q R_{0}, Q_{0} Q R_{1}$, and $Q_{1} Q R_{1}$ are paths of lengths $|\hat{J}|,|\hat{J}|-1$, and $|\hat{J}|-2$, respectively.)

Notice that as required by the claim, we have the binary trees T_{a}^{\prime} and T_{b} of order m and depth $\leq\lceil\log m\rceil$ with $T_{a}^{\prime} \cap \hat{J}=\left\{a^{\prime}\right\}$ and $T_{b} \cap \hat{J}=\{b\}$. Finally, we have $|\hat{J}| \leq|J|+\left|J^{\prime}\right|+|Q| \leq\left(2^{s-1}+s \cdot 2050 \cdot m^{\frac{2}{3}}\right)+\left(2^{s-1}+1+2000 m^{\frac{2}{3}}\right)+26 m^{\frac{1}{3}} \leq$ $2^{s}+(s+1) 2050 m^{\frac{2}{3}}$ completing the induction step.

The lemma is immediate from the above claim with $s=r$.
We are now ready to prove Lemma 2.2
Proof of Lemma 2.2. For this lemma we fix $M=N_{1}=10^{7}, \Delta=40000, \beta=$ 1500000 , and $\tilde{m}=\lambda m$. Notice that \bar{G} is $K_{\tilde{m}}^{k}$-free. Apply Lemma 2.5 to G with $m=\tilde{m}$ in order to find an integer k^{\prime} and a subgraph G^{\prime} of G with $(M-2)\left(k^{\prime}-1.5\right) \tilde{m} \leq\left|G^{\prime}\right| \leq$ $M\left(k^{\prime}-1.5\right) \tilde{m}$ such that $G^{\prime}(\Delta, \beta, \tilde{m})$-expands into G^{\prime} and $\overline{G^{\prime}}$ is $K_{\tilde{m}}^{k^{\prime}}$-free. Notice that since $\left|G^{\prime}\right| \leq M\left(k^{\prime}-1.5\right) \tilde{m} \leq M k \tilde{m} \leq M \tilde{m}^{\frac{4}{3}}$ and $M / \beta \leq 7$, we have $\left|G^{\prime}\right| / \beta \tilde{m} \leq 7 \tilde{m}^{\frac{1}{3}}$.

Apply Lemma 2.15 twice with $m=\tilde{m}$ and $r=\lceil\log \tilde{m}\rceil$ in order to obtain two disjoint $(\leq \tilde{m})$-gadgets J_{1} and J_{2} in G^{\prime} with $\left|J_{1}\right|,\left|J_{2}\right| \leq \tilde{m}+2050 \cdot \log \tilde{m} \cdot \tilde{m}^{\frac{2}{3}}$. In addition, letting the endpoints of J_{i} be a_{i} and b_{i} we obtain disjoint binary trees $T_{a_{i}}$ and $T_{b_{i}}$ of order \tilde{m} and depth $\leq\lceil\log \tilde{m}\rceil$ with $T_{a_{i}} \cap\left(J_{1} \cup J_{2}\right)=\left\{a_{i}\right\}$ and $T_{b_{i}} \cap\left(J_{1} \cup J_{2}\right)=\left\{b_{i}\right\}$. In order to have disjointness, we first apply Lemma 2.15 to the graph G^{\prime}, and then apply Lemma 2.15 to the graph $G^{\prime} \backslash\left(J_{1} \cup T_{a_{1}} \cup T_{b_{1}}\right)$.

Let $A=T_{a_{1}}, B=T_{a_{2}}$, and $C=J_{1} \cup J_{2} \cup T_{b_{1}} \cup T_{b_{2}} \backslash\left\{a_{1}, a_{2}\right\}$ to get three sets of vertices with $|C| \leq 30000 \tilde{m} \leq(\Delta-2)|A|,(\Delta-2)|B|, \beta \tilde{m} / 2$. Applying Lemma 2.6 to these three sets gives us a path P_{a} from $T_{a_{1}}$ to $T_{a_{2}}$ avoiding $J_{1} \cup J_{2} \cup T_{b_{1}} \cup T_{b_{2}} \backslash\left\{a_{1}, a_{2}\right\}$ and satisfying $|P| \leq 8 \log \tilde{m}+2|G| / \beta \tilde{m} \leq 22 \tilde{m}^{\frac{1}{3}}$. Notice that since $T_{a_{1}}$ and $T_{a_{2}}$ are trees with depth $\leq\lceil\log \tilde{m}\rceil$, there are paths P_{1} and P_{2} of length $\leq 2 \log \tilde{m}$ from a_{1} and a_{2} to the two endpoints of P_{a}. Joining P_{a} to P_{1} and P_{2} gives a path Q_{a} from a_{1} to a_{2} of order $\leq 26 \tilde{m}^{\frac{1}{3}}$. By the same argument we can find a disjoint path Q_{b} from b_{1} to b_{2} of order $\leq 26 \tilde{m}^{\frac{1}{3}}$ (using $A=T_{b_{1}}, B=T_{b_{2}}$, and $C=J_{1} \cup J_{2} \cup T_{b_{1}} \cup T_{b_{2}} \cup Q_{a} \backslash\left\{b_{1}, b_{2}\right\}$).

Now, we have two $(\leq \lambda m)$-gadgets J_{1} and J_{2} of order $\leq \lambda m+2050 \cdot \log \lambda m$. $(\lambda m)^{\frac{2}{3}} \leq(\lambda+\mu) m$ (using $\left.\mu m \geq 4100(\lambda m)^{\frac{3}{4}}\right)$, as well as two paths Q_{a} and Q_{b} between their endpoints with $\left|Q_{a}\right|,\left|Q_{b}\right| \leq 26(\lambda m)^{\frac{1}{3}}$.

Notice that the following holds:

$$
0 \leq\left|J_{1} \cup J_{2} \cup Q_{a} \cup Q_{b}\right|-(\lambda+2 \mu) m+2 \leq \lambda m
$$

Indeed, the left-hand inequality follows from $\left|J_{1}\right|,\left|J_{2}\right| \geq \lambda m$ and $\lambda \geq 2 \mu$, whereas the right-hand inequality comes from $\mu m \geq 4100(\lambda m)^{\frac{3}{4}}$ and $\left|Q_{a}\right|,\left|Q_{b}\right| \leq 26(\lambda m)^{\frac{1}{3}}$, $\left(\left|J_{1}\right|-\right.$ $\lambda m),\left(\left|J_{2}\right|-\lambda m\right)<2050(\lambda m)^{\frac{3}{4}}$.

Therefore, since J_{1} is a $(\leq \lambda m)$-gadget, there is a path Q_{1} from a_{1} to b_{1} in J_{1} of order $\left|J_{1}\right|-\left(\left|J_{1} \cup J_{2} \cup Q_{a} \cup Q_{b}\right|-(\lambda+2 \mu) m+2\right)$. Notice that $\left|J_{2} \cup Q_{a} \cup Q_{b} \cup Q_{1}\right|=$ $(\lambda+2 \mu) m-2$ and $\left|J_{2}\right|<(\lambda+\mu) m$. Therefore we can choose two vertices a and b on the path $Q_{a} Q_{1} Q_{b}$ such that the interval Q of $Q_{a} Q_{1} Q_{b}$ from a to b has exactly μm vertices. Let J be J_{2} together with the two segments of $Q_{a} Q_{1} Q_{b}$ outside the internal vertices of Q. Noting that connecting paths to the endpoints of a $(\leq t)$-gadget produces another ($\leq t$)-gadget, we have a $(\leq \lambda m)$-gadget J with $|J|=(\lambda+\mu) m$ and an internally disjoint path Q of order μm joining its endpoints.
2.5. Gadget-cycles. We'll use gadgets by joining many of them into a cycle and then using the property of a $(\leq k)$-gadget to shorten the cycle into one of prescribed length. The following definition captures the notion of a cycle containing many gadgets on it.

Definition 2.17. An (a, b, m)-gadget-cycle C is a set of disjoint gadgets J_{1}, \ldots, J_{t} together with a set of disjoint paths Q_{1}, \ldots, Q_{t} with the following properties:
(i) J_{i} has endpoints a_{i} and b_{i}. Q_{i} goes from b_{i} to $a_{i+1}(\bmod t)$. Other than at these vertices, the paths do not intersect the gadgets.
(ii) $\left|J_{i}\right| \leq m$ for each $i=1, \ldots, t$.
(iii) $\left|\bigcup_{i=1}^{t}\left(J_{i} \cup Q_{i}\right)\right| \geq b$.
(iv) There is a number k such that each J_{i} is a $(\leq k)$-gadget with $\left|\bigcup_{i=1}^{t}\left(J_{i} \cup Q_{i}\right)\right|$ $t k \leq a$.
See Figure 3 for a diagram of a gadget-cycle. Notice that if C is an (a, b, m) -gadget-cycle C, then we have $|C| \geq b$. Notice that any (a, b, m)-gadget-cycle C is also an $(a,|C|, m)$-gadget-cycle. If C is a gadget-cycle as in Definition 2.17, we say that it contains the gadgets J_{1}, \ldots, J_{t}. If P_{i} is the path in J_{i} of order $\left|J_{i}\right|$ for $i=1, \ldots, t$, then we will sometimes identify C with the cycle with vertex sequence $P_{1} Q_{1} P_{2} Q_{2} \ldots P_{t} Q_{t}$.

FIG. 3. A gadget-cycle.

The following simple lemma shows that gadget-cycles contain cycles of all lengths between the parameters a and b.

Lemma 2.18. For any n with $a \leq n \leq b$, every (a, b, m)-gadget-cycle contains a cycle of length n.

Proof. Let J_{1}, \ldots, J_{t} be $(\leq k)$-gadgets and Q_{1}, \ldots, Q_{t} paths as in the definition of (a, b, m)-gadget-cycle. Choose numbers $k_{1}, \ldots, k_{t} \in\{1, \ldots, k\}$ such that $\left|\bigcup_{i=1}^{t}\left(J_{i} \cup Q_{i}\right)\right|-\sum_{k=1}^{t} k_{i}=n$ (parts (iii) and (iv) of the definition of "gadget-cycle" ensure that we can do this). Now since each J_{i} is a $(\leq k)$-gadget, it contains a path P_{i} between its endpoints of length $\left|J_{i}\right|-k_{i}$. Now $\bigcup_{i=1}^{t} P_{i} \cup Q_{i}$ is a cycle of length n.

The following lemma allows us to join two gadget-cycles into a larger gadget-cycle.
Lemma 2.19. Suppose that we have an $\left(a_{1}, b_{1}, m\right)$-gadget-cycle C_{1}, a vertexdisjoint $\left(a_{2}, b_{2}, m\right)$-gadget-cycle C_{2}, and $r \geq 16$ vertex-disjoint C_{1} to C_{2} paths P_{1}, \ldots, P_{r} of length $\leq \ell$. Then for some $i, j \leq r$ there is an (a, b, m)-gadget-cycle C with $V(C) \subseteq C_{1} \cup C_{2} \cup P_{i} \cup P_{j},|C| \geq\left(1-\frac{2}{\sqrt{r}}\right)\left(\left|C_{1}\right|+\left|C_{2}\right|\right) \geq\left(\left|C_{1}\right|+\left|C_{2}\right|\right) / 2$, and

$$
\begin{aligned}
& a=a_{1}+a_{2}+4 m+2 \ell, \\
& b=\left(b_{1}+b_{2}\right)\left(1-\frac{2}{\sqrt{r}}\right) .
\end{aligned}
$$

Proof. Without loss of generality, we can suppose that $b_{1}=\left|C_{1}\right|$ and $b_{2}=\left|C_{2}\right|$. For $i=1, \ldots, r$, by possibly replacing each P_{i} by a shorter path, we can assume that each P_{i} is internally outside $C_{1} \cup C_{2}$. Let $c_{1}^{1}, \ldots, c_{1}^{\left|C_{1}\right|}$ be the vertex sequence of C_{1} and $c_{2}^{1}, \ldots, c_{2}^{\left|C_{2}\right|}$ the vertex sequence of C_{2}. For a path P_{i}, let $x\left(P_{i}\right)=(s, t)$ where c_{1}^{s} and c_{2}^{t} are the endpoints of P_{i}. Notice that $x\left(P_{i}\right) \in\left[1,\left|C_{1}\right|\right] \times\left[1,\left|C_{2}\right|\right]$ for each i. There must be two paths P_{i} and P_{j} with $x\left(P_{i}\right)$ and $x\left(P_{j}\right)$ within L^{1} distance $2\left(\left|C_{1}\right|+\left|C_{2}\right|\right) / \sqrt{r}$. (Otherwise, the $r L^{1}$-balls of radius $\left(\left|C_{1}\right|+\left|C_{2}\right|\right) / \sqrt{r}$ would all be disjoint. This gives a contradiction to the total volume of these balls being less than $\left.\left|C_{1}\right| \cdot\left|C_{2}\right|.\right)$

Let S be the set of $\leq 2\left(b_{1}+b_{2}\right) / \sqrt{r}$ vertices of C_{1} and C_{2} between the endpoints of P_{i} and P_{j}. Let C be the gadget-cycle on $\left(C_{1} \cup C_{2} \cup P_{i} \cup P_{j}\right) \backslash S$ formed by joining C_{1} and C_{2} with P_{i} and P_{j} and discarding the vertices of S. The gadgets of C are all the gadgets of C_{1} or C_{2} which are completely contained in C. The paths in C are all the other vertices in C.

Notice that there are at most four gadgets in C_{1} and C_{2} which can intersect C but not be gadgets in C (the only way such a gadget can arise if one of the endpoints of P_{i} or P_{j} is contained in it). From this we see that C is an (a, b, m)-gadget-cycle with $a=a_{1}+a_{2}+4 m+\left|P_{i}\right|+\left|P_{j}\right| \leq a_{1}+a_{2}+4 m+2 \ell$ and $b=\left|C_{1}\right|+\left|C_{2}\right|+\left|P_{i}\right|+$ $\left|P_{j}\right|-|S| \geq b_{1}+b_{2}-2\left(b_{1}+b_{2}\right) / \sqrt{r}$. We also have $|C| \geq\left|C_{1}\right|+\left|C_{2}\right|+\left|P_{i}\right|+\left|P_{j}\right|-|S| \geq$ $\left(b_{1}+b_{2}\right)\left(1-\frac{2}{\sqrt{r}}\right)=\left(\left|C_{1}\right|+\left|C_{2}\right|\right)\left(1-\frac{2}{\sqrt{r}}\right) \geq\left(\left|C_{1}\right|+\left|C_{2}\right|\right) / 2$.
3. Ramsey numbers. In this section we will prove Theorem 1.4. The only results from the previous section which we will use here are Lemmas 2.2, 2.18, and 2.19. We will also employ Theorem 1.6 in this section. However, it is worth noting that the weaker result $R\left(C_{\leq n}, K_{m}^{k}\right) \leq O(n)$ would also suffice in all our applications of Theorem 1.6.

The structure of this section is as follows. In section 3.1 we introduce expanders. The expanders which we introduce here are slightly different from the ones we used
in the previous section. In section 3.2 we prove the special case of Theorem 1.4 when $k=2$. Since the full proof of Theorem 1.4 is inductive, the " $k=2$ " case will serve as the initial case for our induction. In section 3.3 we prove Theorem 1.4.
3.1. Expanders. We will use the following notion of expansion.

Definition 3.1. Let $H \subseteq G$ be an induced subgraph of a graph G. We say that H is an (d, m, n)-expander in G if the following hold:
(i) $\left|N_{H}(S)\right| \geq d|S|$ for $S \subseteq V(H)$ with $|S|<m$.
(ii) $\left|N_{G}(S) \cup S\right| \geq n$ for $S \subseteq V(H)$ with $|S| \geq m$.

Notice that if H is an (d, m, n)-expander in G and we have $G^{\prime} \supseteq G, d^{\prime} \leq d, m^{\prime} \geq m$, $n \geq d m^{\prime}$, and $n^{\prime} \leq n$, then H is an $\left(d^{\prime}, m^{\prime}, n^{\prime}\right)$-expander in G^{\prime}.

The following lemma shows that if the complement of a graph is $K_{m, m}$-free, and large sets expand to n, then the graph contains a large (d, m^{\prime}, n)-expander.

Lemma 3.2. Suppose that we have integers n, m, and d with $n>(d+2)(d+3) m$, a graph G, and a set of vertices $U \subseteq G$ with $|U| \geq(d+3)^{2} m$. Suppose that $\overline{G[U]}$ is $K_{m, m}$-free and that $\left|N_{G}(S) \cup S\right| \geq n$ for every $S \subseteq U$ with $|S| \geq m$.

Then there is a set $B \subseteq U$ with $|B|<m$ such that $G[U \backslash B]$ is a $(d,(d+2) m, n)$ expander in $G \backslash B$.

Proof. Let B be the largest subset of U with $|B| \leq(d+3) m$ and $\left|N_{U}(B) \backslash B\right|<$ $(d+1)|B|$. Since $\left|N_{U}(B) \cup B\right| \leq(d+2)(d+3) m$ we have that $\left|U \backslash\left(N_{U}(B) \cup B\right)\right| \geqq m$. Since there are no edges between B and $U \backslash\left(N_{U}(B) \cup B\right)$, the $K_{m, m}$-freeness of $\overline{\bar{G}[U]}$ implies that $|B|<m$. We show that $G[U \backslash B]$ satisfies (i) and (ii) of the definition of " $(d,(d+2) m, n)$ expander in $G \backslash B$."

To see that (i) holds, let $S \subseteq U \backslash B$ be a subset with $|S|<(d+2) m$. Notice that we have $\left|N_{U}(S) \backslash(S \cup B)\right| \geq(d+1)|S|$ since otherwise $S \cup B$ would be a larger set with $|S \cup B| \leq(d+3) m$ and $\left|N_{U}(S \cup B) \backslash(S \cup B)\right| \leq\left|N_{U}(S) \backslash(S \cup B)\right|+$ $\left|N_{U}(B) \backslash B\right|<(d+1)|S \cup B|$ (contradicting the maximality of B). This shows that $\left|N_{U \backslash B}(S)\right| \geq\left|N_{U}(S) \backslash(S \cup B)\right| \geq d|S|$.

To see that (ii) holds, let $S \subseteq U \backslash B$ be a subset with $|S| \geq(d+2) m$. We have $\left|N_{U}(B) \cap S\right| \leq\left|N_{U}(B) \backslash B\right| \leq(d+1)|B| \leq(d+1) m \leq|S|-m$, which implies that $\left|S \backslash N_{U}(B)\right| \geq m$. Therefore, using the assumption of the lemma we get

$$
\begin{aligned}
\left|N_{G \backslash B}(S) \cup S\right| & \geq\left|N_{G \backslash B}\left(S \backslash N_{U}(B)\right) \cup\left(S \backslash N_{U}(B)\right)\right| \\
& =\left|N_{G}\left(S \backslash N_{U}(B)\right) \cup\left(S \backslash N_{U}(B)\right)\right| \\
& \geq n .
\end{aligned}
$$

The following lemma shows that expanders are highly connected.
Lemma 3.3. Let G be a graph with $\bar{G} K_{m, m}$-free and H a $(d+1, m, n)$-expander in G. Then H is d-connected.

Proof. Let x, y be two vertices in H and S a set of $d-1$ vertices in $H \backslash\{x, y\}$. To prove the lemma, it is sufficient to find an x to y path avoiding S. Define $N_{H \backslash S}^{r}(v)$ to be the r th neighbourhood of a vertex $v \in H$, i.e., the set of all vertices in $H \backslash S$ at distance $\leq r$ from v in $H \backslash S$. From the definition of $(d+1, m, n)$-expander, we have that $\left|N_{H \backslash S}^{r}(v)\right| \geq \min \left(2^{r}, m\right)$ for all $v \in H \backslash S$. Therefore we have $\left|N_{H \backslash S}^{\log m}(x)\right|$, $\left|N_{H \backslash S}^{\log m}(y)\right| \geq m$.

We claim that $N_{H \backslash S}^{\log m+1}(x) \cap N_{H \backslash S}^{\log m+1}(y) \neq \emptyset$. If $N_{H \backslash S}^{\log m}(x) \cap N_{H \backslash S}^{\log m}(y) \neq \emptyset$, then this is obvious. Otherwise by $K_{m, m}$-freeness of \bar{G} there is an edge between $N_{H \backslash S}^{\log m}(x)$
and $N_{H \backslash S}^{\log m}(y)$ which is equivalent to $N_{H \backslash S}^{\log m+1}(x) \cap N_{H \backslash S}^{\log m+1}(y) \neq \emptyset$. We get an $x-y$ path avoiding S of length $\leq 2 \log m+1$ by joining paths from x and y to a vertex in $N_{H \backslash S}^{\log m+1}(x) \cap N_{H \backslash S}^{\log m+1}(y)$.

The same proof as above also gives the following lemma, which shows that any two vertices are connected by a short path in an expander.

Lemma 3.4. Let G be a graph with $\bar{G} K_{m, m}$-free and H a $(3, m, n)$-expander in G. Then for any $x, y \in H$, there is an $x-y$ path P in H with $|P| \leq 3 \log m$.

It is also possible to connect given vertices by long paths in an expander.
Lemma 3.5. Let G be a graph with $\bar{G} K_{m, m}$-free and H a $(3, m, n)$-expander in G with $|H| \geq 61 m$. Then for any $x, y \in H$, there is an $x-y$ path P in H with $10 m \leq|P| \leq 12 m$.

Proof. Notice that $H-x-y$ contains a cycle C with $|C| \geq 20 m$ (e.g., by Theorem 1.6). By Lemma 3.3 combined with Menger's theorem, there are two disjoint paths P_{x} and P_{y} from x and y, respectively, to C. Joining P_{x} and P_{y} to the longer segment of C between $P_{x} \cap C$ and $P_{y} \cap C$ gives an x to y path P of length $\geq 10 \mathrm{~m}$. If $P>12 m$, then by the $K_{m, m}$-freeness of \bar{G}, P has a chord whose endpoints are at distance at most $\leq 2 m$ on P. By repeatedly shortening P with such chords, we obtain a path of length between 10 m and 12 m .
3.2. $\boldsymbol{R}\left(\boldsymbol{C}_{\boldsymbol{n}}, \boldsymbol{K}_{\boldsymbol{m}_{1}, \boldsymbol{m}_{2}}\right)$. The goal of this section is to prove the $k=2$ case of Theorem 1.4. This serves as an initial case of the induction in the full proof of the theorem.

An important tool which we will need is the Pósa rotation-extension technique. Let $P=p_{1} p_{2} \ldots p_{t}$ be a path in a graph G. We say that a path Q is a rotation of P if the vertex sequence of Q is $p_{1} p_{2} \ldots p_{i-1} p_{t} p_{t-1} \ldots p_{i+1} p_{i}$ for some i. Notice that for Q to be a path, the edge $p_{t} p_{i-1}$ must be present. We say that a path Q is derived from P if there is a sequence of paths $P_{0}=P, P_{1}, \ldots, P_{s}=Q$ with P_{i} being a rotation of P_{i-1} for each i. We say that a vertex x is an ending vertex for P if it is the final vertex of some path derived from P. The following lemma from [3] is a variation of a result of Pósa from [22].

Lemma 3.6. For $v \in V(G)$, let P be a maximum length path in G starting at v. Let S be the set of ending vertices for P. Then $\left|N_{G}(S)\right| \leq 3|S|$.

The following lemma could be seen as a strengthening of the statement that " $R\left(C_{n}, K_{m, m}\right) \leq n-1+m$ "-it says that in a graph whose complement is $K_{m, m}$-free which satisfies certain other conditions, we can connect a given pair of vertices by a path of prescribed length. We will use this lemma at several points in the proof of Theorem 1.4.

Lemma 3.7. There is a constant $N_{2}=2 \cdot 10^{49}$ such that the following holds. Let n and m be integers with $n \geq N_{2} m$ and $m \geq 8$. Let G be a graph with $\bar{G} K_{m, m}$-free and $\left|N_{G}(A) \cup A\right| \geq n$ for every $A \subseteq V(G)$ with $|A| \geq m$. Let x and y be two vertices in G and P an x to y path with $|P| \geq 8 m$.

Then there is an x to y path of order n in G.
Proof. For this lemma we fix $\mu=10^{20}, \lambda=10^{21}, k=2$ and note that $N_{2} \geq$ $2 N_{1} k \lambda \mu$, where N_{1} is the constant from Lemma 2.2.

Without loss of generality, we may assume that $|P| \leq 10 \mathrm{~m}$. (Indeed if $|P|>10 \mathrm{~m}$, then by $K_{m, m}$-freeness of \bar{G}, P has a chord whose endpoints are at distance $\leq 2 m$
along P. Shortening P with this chord gives a shorter path of length $\geq 8 m$. Therefore there is an x to y path with length between $8 m$ and $10 m$.)

By Lemma 2.2, we see that $G \backslash P$ contains a $(\leq \lambda m)$-gadget J of order $(\lambda+\mu) m$ with endpoints a and b, together with an internally disjoint path Q of order μm from a to b. By $K_{m, m}$-freeness of \bar{G}, we can find two disjoint edges from the middle $m+1$ vertices of Q to the middle $m+1$ vertices of P. By deleting the segments of P and Q between these edges, we get two paths P_{x} and P_{y} of length $\geq 4 m$ going from x and y to a and b. Without loss of generality, we can suppose that a and b are labeled so that P_{x} connects x to a and P_{y} connects y to b.

Apply Lemma 3.2 to G with $U=G \backslash\left(V\left(P_{x}\right) \cup V\left(P_{y}\right) \cup V(J)\right)$ and $d=4$ in order to find a set $B \subseteq U$ with $|B|<m$ such that the subgraph $H=G \backslash\left(V\left(P_{x}\right) \cup V\left(P_{y}\right) \cup\right.$ $V(J) \cup B)$ is a $(4,6 m, n)$-expander in $G \backslash B$. Since $\left|V\left(P_{x}\right) \cup V\left(P_{y}\right) \cup V(J) \cup B\right| \leq$ $|P|+|Q|+|J|+|B| \leq 10^{22} \mathrm{~m}$, we have that $|H| \geq m$.

Let P_{x} have vertex sequence $x=p_{0}, p_{1}, p_{2}, \ldots, p_{t}$. By $K_{m, m}$-freeness of \bar{G}, there is an edge between some $p_{r} \in\left\{p_{m+1}, \ldots, p_{t}\right\}$ and some vertex $v \in H$. Let R be the longest path in H starting from v and S be the set of ending vertices of P. By maximality of $|R|$, we have that $N_{H}(S) \subseteq R$. Lemma 3.6 implies that $\left|N_{H}(S)\right| \leq 3|S|$. By property (i) of H being a $(4,6 m, n)$-expander in $G \backslash B$, we have that $|S| \geq 6 m$. Therefore by property (ii) of H being a $(4,6 m, n)$-expander in $G \backslash B$ we have $\mid\left(N_{G}(S) \cup\right.$ $S) \cap\left(R \cup P_{x} \cup P_{y} \cup J\right)\left|=\left|N_{G \backslash B}(S) \cup S\right| \geq n\right.$.

Notice that by $K_{m, m}$-freeness of \bar{G}, S has neighbors in $\left\{p_{0}, \ldots, p_{r-1}\right\}$. Let p_{i} be the last neighbor of S in this set. Let R^{\prime} be a path derived from R which ends with a neighbor of p_{i}. Let P^{\prime} be the x to y path formed by joining p_{0}, \ldots, p_{i} to R^{\prime} to $p_{r}, p_{r+1}, \ldots, p_{t}$ to J to P_{y}. Notice that $\left(N_{G}(S) \cup S\right) \cap\left(R \cup P_{x} \cup P_{y} \cup J\right)=$ $\left(N_{G}(S) \cup S\right) \cap P^{\prime}$ (this comes from $\left(R \cup P_{x} \cup P_{y} \cup J\right) \backslash P^{\prime}=\left\{p_{i+1}, \ldots, p_{r-1}\right\}$ and the fact that there are no edges from S to $\left\{p_{i+1}, \ldots, p_{r-1}\right\}$ by the definition of p_{i}). Together with $\left|\left(N_{G}(S) \cup S\right) \cap\left(R \cup P_{x} \cup P_{y} \cup J\right)\right| \geq n$, this gives $\left|P^{\prime}\right| \geq n$. The path P^{\prime} is of the form $P_{x}^{\prime} J P_{y}$ for some paths P_{x}^{\prime} and P_{y}. Let $P^{\prime \prime}$ be the shortest path with $\left|P^{\prime \prime}\right| \geq n$ and of the form $P_{x}^{\prime \prime} J P_{y}^{\prime \prime}$ for some paths $P_{x}^{\prime \prime}$ and $P_{y}^{\prime \prime}$. Notice that we must have $\left|P^{\prime \prime}\right| \leq n+5 m \leq n+\lambda m$ since otherwise, using $|J|=(\lambda+\mu) m \leq n$ and the $K_{m, m}$-freeness of \bar{G}, either $P_{x}^{\prime \prime}$ or $P_{y}^{\prime \prime}$ has a chord whose endpoints are at distance $\leq 2 m$ on $P^{\prime \prime}$ (contradicting the minimality of $\left.\left|P^{\prime \prime}\right|\right)$. Now using the property of the $(\leq \lambda m)$-gadget J we can find an a to b path J^{\prime} in J of order $|J|-\left(\left|P^{\prime \prime}\right|-n\right)$. Joining J^{\prime} to $P_{x}^{\prime \prime}$ and $P_{y}^{\prime \prime}$ we obtain an x to y path of order n.

From the above lemma it is easy to find $R\left(C_{n}, K_{m_{1}, m_{2}}\right)$.
COROLLARY 3.8. There is a constant $N_{2}=2 \cdot 10^{49}$ such that the following holds. Let n, m_{1}, m_{2} be integers with $m_{2} \geq m_{1}, m_{2} \geq 8$, and $n \geq N_{2} m_{2}$. Then we have $R\left(C_{n}, K_{m_{1}, m_{2}}\right)=n+m_{1}-1$.

Proof. From Lemma 1.1, we have $R\left(C_{n}, K_{m_{1}, m_{2}}\right) \geq n+m_{1}-1$. Therefore it remains to show that $R\left(C_{n}, K_{m_{1}, m_{2}}\right) \leq n+m_{1}-1$.

Let G be the red color class of a 2-edge-coloured $K_{n+m_{1}-1}$. Suppose that $K_{n+m_{1}-1}$ contains no blue $K_{m_{1}, m_{2}}$, i.e., that \bar{G} is $K_{m_{1}, m_{2}}$-free.

By Theorem 1.6 there are two adjacent vertices x and y with a path of length $\geq n \geq 8 m_{2}$ between them. Since \bar{G} is $K_{m_{1}, m_{2}}$-free and $|G|=n+m_{1}-1$ we have that $\left|N_{G}(A) \cup A\right| \geq n$ for any $A \subseteq V(G)$ with $|A| \geq m_{2}$. Also since $m_{2} \geq m_{1}, \bar{G}$ is $K_{m_{2}, m_{2}}$-free. Therefore, by Lemma 3.7 applied with $m=m_{2}$, there is a path of order n from x to y which together with the edge $x y$ gives a cycle of order n in G (and hence a red cycle of order n in the original graph).
3.3. $\boldsymbol{R}\left(\boldsymbol{C}_{\boldsymbol{n}}, \boldsymbol{K}_{\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{\boldsymbol{k}}}\right)$. Here we prove Theorem 1.4. First we need two intermediate lemmas.

Notice that Theorem 1.4 implies that $R\left(C_{n}, K_{m}^{k}\right) \leq(k-1)(n-1)+m$. The following lemma shows that a much better bound holds as long as the red color class of the 2 -colored complete graph is highly connected in a certain sense.

Lemma 3.9. There is a constant $N_{3}=10^{56}$ such that the following holds. Suppose that we have m, n, and k satisfying $n \geq N_{3} m$ and $m \geq k^{20}$. Let G be a graph with $|G| \geq 0.07 \mathrm{kn}+n$. Suppose that for any two sets of vertices A, B of order $2 m$, there are at least k^{20} disjoint paths from A to B.

Then either G contains a cycle of length n or \bar{G} contains a copy of K_{m}^{k}.
Proof. For this lemma we fix $\lambda=10^{24}, \mu=10^{21}$, and notice that $N_{3}=10^{49} N_{1}$, where N_{1} is the constant from Lemma 2.2 . For $k=2$, the lemma is weaker than Corollary 3.8, so we will assume that $k \geq 3$. Suppose that we have a graph G as in the lemma with $\bar{G} K_{m}^{k}$-free. We will find a length n cycle in G.

In G, select a maximal collection of disjoint $(\leq \lambda m)$-gadgets of order $(\lambda+\mu) m$ together with length μm paths joining their endpoints, i.e., choose disjoint $(\leq \lambda m)$ gadgets J_{1}, \ldots, J_{t} of order $(\lambda+\mu) m$ as well as internally disjoint paths Q_{1}, \ldots, Q_{t} of order μm with Q_{i} going between the endpoints of J_{i}, such that t is as large as possible. Let $U_{1}=G \backslash \bigcup_{i=1}^{t} V\left(J_{i}\right) \cup V\left(Q_{i}\right)$. By maximality of $t, G\left[U_{1}\right]$ contains no $(\leq \lambda m)$-gadget of order $(\lambda+\mu) m$ with a path of length μm joining its endpoints. By Lemma 2.2, we have that $\left|U_{1}\right| \leq\left(N_{1} \lambda \mu k\right) m$ (since $m \geq k^{20}, \lambda=10^{24}$, and $\mu=10^{21}$ imply $m \geq k^{3}, \lambda \geq 2 \mu$, and $\left.\mu m \geq 4100(\lambda m)^{\frac{3}{4}}\right)$. Using $N_{1} \lambda \mu \leq 0.005 N_{3}$ and $n \geq N_{3} m$ we get $\left|U_{1}\right| \leq\left(N_{1} \lambda \mu k\right) m \leq 0.005 k n$. This implies $\left|J_{1} \cup \cdots \cup J_{t} \cup Q_{1} \cup \cdots \cup Q_{t}\right| \geq$ $0.06 k n+n \geq 1.06 n$.

Construct an auxiliary graph H on $[t]$ with $i j$ and edge if there are at least 12 disjoint edges from Q_{i} to Q_{j}. Using $\left|J_{1} \cup \cdots \cup J_{t} \cup Q_{1} \cup \cdots \cup Q_{t}\right| \geq 0.06 \mathrm{kn}$ and $n \geq N_{3} m$, we have $|H| \geq\left|G \backslash U_{1}\right| /(\lambda+2 \mu) m \geq 900 k$. The reason for defining this graph H is that paths in H correspond to gadget-cycles in G. The following claim makes this precise.

Claim 3.10. Let P be a path in H. Then there is an ($a, b, 2 \lambda m$)-gadget-cycle contained in $\bigcup_{v \in P}\left(J_{v} \cup Q_{v}\right)$ where $a=0.01 \sum_{v \in P}\left|J_{v} \cup Q_{v}\right|$ and $b=0.99 \sum_{v \in P} \mid J_{v} \cup$ $Q_{v} \mid$.

Proof. Without loss of generality, we may assume vertices are labeled so that P has vertex sequence $1,2, \ldots,|P|$

Notice that it is sufficient to find a gadget-cycle C containing all the gadgets $J_{1}, \ldots, J_{|P|}$ and with $V(C) \subseteq \bigcup_{i=1}^{|P|} V\left(J_{i}\right) \cup V\left(Q_{i}\right)$. Indeed such a gadget-cycle is always an $\left(a, b,(\lambda+\mu) m\right.$)-gadget-cycle with $a=\sum_{i=1}^{|P|}\left(\left|J_{i} \cup Q_{i}\right|-\lambda m\right)$ and $b=$ $\sum_{i=1}^{|P|}\left|J_{i}\right|$. Using $\left|J_{i}\right|=(\lambda+\mu) m$ and $\left|Q_{i}\right|=\mu m$, we have that $a \leq 0.01 \sum_{i=1}^{|P|}\left|J_{i} \cup Q_{i}\right|$ and $b \geq 0.99 \sum_{i=1}^{|P|}\left|J_{i} \cup Q_{i}\right|$ (for these we use $\lambda \geq 200 \mu$). It remains to show that such a gadget-cycle containing all the gadgets $J_{1}, \ldots, J_{|P|}$ exists.

For each $i=1, \ldots,|P|-1$, let M_{i} be the matching of size 12 from Q_{i} to Q_{i+1} (which exists since $\{i, i+1\}$ is an edge in H). Fix some orientation of Q_{i} for each i.

Notice that for any two sets of distinct numbers S and T, there are two subsets $S^{\prime} \subseteq S$ and $T^{\prime} \subseteq T$ with $\left|S^{\prime}\right| \geq|S| / 2-1$ and $\left|T^{\prime}\right| \geq|T| / 2-1$ for which we have either " $s<t$ for all $s \in S^{\prime}, t \in T^{\prime \prime}$ " or " $t<s$ for all $s \in S^{\prime}, t \in T^{\prime}$." For $i=1,2, \ldots,|P|-1$ we apply this repeatedly with $S=Q_{i} \cap M_{i-1}$ and $T=Q_{i} \cap M_{i}$ in order to obtain new matchings $M_{1}^{\prime} \subset M_{1}, \ldots, M_{|P|-1}^{\prime} \subset M_{|P|-1}$ of size 2 with the property that the
endpoints of M_{i-1}^{\prime} in Q_{i} are either all to the left or all to the right of the endpoints of M_{i}^{\prime} in Q_{i}.

Now, for each i, we delete the segment of Q_{i} between the endpoints of M_{i-1}^{\prime} and the segment of Q_{i} between the endpoints of M_{i}^{\prime}. Adding the edges of $M_{1}, \ldots, M_{|P|}-1$ to the graph produces the required gadget-cycle containing all the gadgets J_{1}, \ldots, $J_{|P|-1}$.

We will often use the fact that the gadget-cycle produced by Claim 3.10 has order at least $0.99 \sum_{v \in P}\left|J_{v} \cup Q_{v}\right|$ (which holds since any (a, b, m)-gadget-cycle has order at least b).

Using the K_{m}^{k}-freeness of \bar{G} we obtain that H has small independence number.
Claim 3.11. $\alpha(H) \leq k-1$.
Proof. Suppose for the sake of contradiction that H contains an independent set I of order k. For $i, j \in I$, let $M_{i, j}$ be a maximal matching in G between Q_{i} and Q_{j}. From the definition of edges in H we have that $M_{i, j} \leq 12$ for $i, j \in I$. For $i \in I$, let $Q_{i}^{\prime}=Q_{i} \backslash \bigcup_{i, j \in I} V\left(M_{i, j}\right)$. Using $m \geq k^{10}$ we have $\left|Q_{i}\right|=\mu m \geq m+12 k$, which implies that $\left|Q_{i}^{\prime}\right| \geq m$. By maximality of $M_{i, j}$ there are no edges between Q_{i}^{\prime} and Q_{j}^{\prime}. But this means that $\overline{G\left[\bigcup_{i \in I} Q_{i}^{\prime}\right]}$ contains a copy of K_{m}^{k} contradicting the K_{m}^{k}-freeness of \bar{G}.

The following is a variant of the well-known fact that a graph can be covered by $\alpha(G)$ vertex-disjoint paths.

Claim 3.12. There are $k-1$ vertex-disjoint paths P_{1}, \ldots, P_{k-1} in H with $|H|-$ $\left|P_{1}\right|-\cdots-\left|P_{k-1}\right| \leq 200 k$ and $\left|P_{i}\right| \geq 200$ for $i=1, \ldots, k-1$.

Proof. Choose vertex-disjoint paths Q_{1}, \ldots, Q_{t} in H covering $V(H)$ with t as small as possible. Without loss of generality, suppose that we have $\left|Q_{1}\right| \leq\left|Q_{2}\right| \leq$ $\cdots \leq\left|Q_{t}\right|$. By minimality of t, we have that the starting vertices of Q_{1}, \ldots, Q_{t} form an independent set (otherwise we could join two of the paths together to obtain a smaller collection of paths). Claim 3.11 implies that $t \leq k-1$.

Let r be the index with $\left|Q_{r-1}\right|<200$ and $\left|Q_{r}\right| \geq 200$ (possibly with $r=0$.) Let $U_{1}=Q_{1} \cup \cdots \cup Q_{r-1}$ to obtain a set with $\left|U_{1}\right| \leq 200 k$. Using $\left|Q_{r} \cup \cdots \cup Q_{k-1}\right|=$ $|H|-\left|U_{1}\right| \geq 900 k-200 k=700 k$, it is possible to break some of the paths Q_{r}, \ldots, Q_{k-1} into shorter paths in order to obtain a collection of exactly $k-1$ paths P_{1}, \ldots, P_{k-1} of orders ≥ 200 (to do this notice that in any collection of $<k-1$ paths of total order $\geq 700 k$, there must be a path of order ≥ 700).

Let P_{1}, \ldots, P_{k-1} be the paths from the above claim and assume that they are ordered such that $\left|P_{1}\right| \geq\left|P_{2}\right| \geq \cdots \geq\left|P_{k-1}\right|$. Let $U_{2}=\bigcup_{v \in H \backslash\left(P_{1} \cup \ldots \cup P_{k-1}\right)} J_{v} \cup Q_{v}$, and observe that from Claim 3.12 we have that $\left|U_{2}\right| \leq 200(\lambda+2 \mu) m k \leq 0.005 \mathrm{kn}$.

Suppose that $\sum_{v \in P_{1}}\left|J_{v} \cup Q_{v}\right| \geq 2 n$. Then since for each $v,\left|J_{v} \cup Q_{v}\right| \leq(\lambda+2 \mu) m \leq$ n, there is a path $P \subseteq P_{1}$ with $3 n \geq \sum_{v \in P}\left|J_{v} \cup Q_{v}\right| \geq 2 n$. By Claim 3.10, there is a $\left(0.01 \sum_{v \in P}\left|J_{v} \cup Q_{v}\right|, 0.99 \sum_{v \in P}\left|J_{v} \cup Q_{v}\right|, 2 \lambda m\right)$-gadget-cycle in G. Notice that we have

$$
0.01 \sum_{v \in P}\left|J_{v} \cup Q_{v}\right| \leq 0.01 \cdot 3 n \leq n \leq 0.99 \cdot 2 n \leq 0.99 \sum_{v \in P}\left|J_{v} \cup Q_{v}\right|
$$

Lemma 2.18 implies that G contains a cycle of length n.

Suppose that $\sum_{v \in P_{1}}\left|J_{v} \cup Q_{v}\right| \leq 2 n$. For $i=1, \ldots, k-1$, let C_{i}^{g} be the gadgetcycle produced out of the path P_{i} using Claim 3.10. We have
(4) $\quad C_{i}^{g}$ is a $\left(0.01 \sum_{v \in P_{i}}\left|J_{v} \cup Q_{v}\right|, 0.99 \sum_{v \in P_{i}}\left|J_{v} \cup Q_{v}\right|, 2 \lambda m\right)$-gadget-cycle.

Let $U_{3}=\bigcup_{i=1}^{k-1}\left(\bigcup_{v \in P_{i}}\left(J_{v} \cup Q_{v}\right)\right) \backslash C_{i}^{g}$. Notice that from (4), we have the inequality $\left|C_{i}^{g}\right| \geq 0.99\left|\bigcup_{v \in P_{i}}\left(J_{v} \cup Q_{v}\right)\right|$ for $i=1, \ldots, k-1$, which together with $\sum_{v \in P_{i}}\left|J_{v} \cup Q_{v}\right| \leq$ $2 n$ implies that $\left|U_{3}\right| \leq 0.02 k n$. Let $U=U_{1} \cup U_{2} \cup U_{3}=G \backslash \bigcup_{i=1}^{k-1} C_{i}^{g}$ to get a set with $|U| \leq 0.03 \mathrm{kn}$. Notice that as a consequence of (4), $|U| \leq 0.03 \mathrm{kn} \leq 0.1|G|$, and $\left|P_{1}\right| \geq \cdots \geq\left|P_{k-1}\right|$ we have $\left|C_{1}^{g}\right| \geq|G| / 2 k$. Using $\left|P_{i}\right| \geq 200$ and (4) we have that for all i

$$
\begin{equation*}
\left|C_{i}^{g}\right| \geq 0.99 \sum_{v \in P_{i}}\left|J_{v} \cup Q_{v}\right| \geq 0.99 \cdot 200(\lambda m+2 \mu m-2) \geq 2 m \tag{5}
\end{equation*}
$$

For a permutation σ of $[k-1]$, we set $S_{i}^{\sigma}=\sum_{j=1}^{i} \sum_{v \in P_{\sigma(j)}}\left|J_{v} \cup Q_{v}\right|$ for $i=$ $1, \ldots, k-1$. Notice that $S_{k-1}^{\sigma}=|G|-\left|U_{1} \cup U_{2}\right|$ always holds. Using the fact that $\left|P_{i}\right| \geq 200$ for each i, we always have $S_{i}^{\sigma} \geq 199(\lambda+2 \mu) i m$.

Claim 3.13. There is a sequence of gadget-cycles D_{1}, \ldots, D_{k-1} as well as a permutation σ of $[k-1]$ with the following properties:
(a) $\sigma(1)=1$.
(b) For each i we have $D_{i} \subseteq U \cup C_{\sigma(1)}^{g} \cup C_{\sigma(2)}^{g} \cup \cdots \cup C_{\sigma(i)}^{g}$.
(c) For each i we have $\left|D_{i}\right| \geq 2 m$.
(d) D_{i} is an $\left(a_{i}, b_{i}, 2 \lambda m\right)$-gadget cycle for

$$
\begin{aligned}
a_{i} & =0.01 S_{i}^{\sigma}+8(i-1) \lambda m+2(i-1)|G| / k^{7} \\
b_{i} & =0.99\left(1-2 k^{-6}\right)^{i-1} S_{i}^{\sigma}
\end{aligned}
$$

Proof. Set $D_{1}=C_{1}^{g}$ and $\sigma(1)=1$. Now for $i=1$, (a) and (b) hold trivially, (c) comes from (5), and (d) is equivalent to the " $i=1$ " case of (4). For $i \geq 2$ we will recursively construct $D_{i}, \sigma(i)$ from D_{1}, \ldots, D_{i-1}, and $\sigma(1), \ldots, \sigma(i-1)$. Suppose that we have already constructed D_{1}, \ldots, D_{i-1}, and $\sigma(1), \ldots, \sigma(i-1)$ satisfying (a)-(d). We construct D_{i} and $\sigma(i)$ as follows.

By (c), we have $\left|D_{i-1}\right| \geq 2 m$ and by (5) we have $\left|\bigcup_{j \in[k-1] \backslash\{\sigma(1), \ldots, \sigma(i-1)\}} C_{i}^{g}\right| \geq$ $2 m$. Using the assumption of the lemma, we find at least k^{20} disjoint paths from D_{i-1} to $\bigcup_{j \in[k-1] \backslash\{\sigma(1), \ldots, \sigma(i-1)\}} C_{i}^{g}$ internally contained outside these sets. Since the paths are all disjoint, there is a subcollection of k^{20-7} of them with length $\leq|G| / k^{7}$. In addition, there is a further subcollection of k^{20-7-1} of them which go from D_{i-1} to C_{j}^{g} for some particular j. To get D_{i}, we apply Lemma 2.19 to this collection of k^{20-7-1} paths, the gadget-cycles $C_{1}=C_{j}^{g}$ and $C_{2}=D_{i-1}$ and with the parameters $m^{\prime}=2 \lambda m, r=k^{20-7-1}$, and $\ell=|G| / k^{7}$. We set $\sigma(i)=j$.

Now (b) holds as a consequence of " $V(C) \subseteq C_{1} \cup C_{2} \cup P_{i} \cup P_{j}$ " in Lemma 2.19 and (c) holds as a consequence of " $|C| \geq\left(\left|C_{1}\right|+\left|C_{2}\right|\right) / 2$ " in Lemma 2.19.

Recall that $C_{1}=C_{j}^{g}$ is a $\left(0.01\left(S_{i}^{\sigma}-S_{i-1}^{\sigma}\right), 0.99\left(S_{i}^{\sigma}-S_{i-1}^{\sigma}\right), 2 \lambda m\right)$-gadget-cycle by (4) and $C_{2}=D_{i-1}$ is a ($a_{i-1}, b_{i-1}, 2 \lambda m$)-gadget-cycle by (d) holding for D_{i-1}. Thus (d) holds for D_{i} from the application of Lemma 2.19 together with $m^{\prime}=2 \lambda m$, $r=k^{12}, \ell=|G| / k^{7}$, and " $\left(b_{i-1}+0.99\left(S_{i}^{\sigma}-S_{i-1}^{\sigma}\right)\right)\left(1-2 k^{-6}\right) \geq b_{i}$."

From here, fix σ to be the permutation from Claim 3.13. Notice that $S_{1}^{\sigma} \geq\left|C_{1}^{g}\right| \geq$ $|G| / 2 k$ implies $2(i-1)|G| / k^{7} \leq 0.1 S_{1}^{\sigma}$, while $S_{i}^{\sigma}-S_{1}^{\sigma} \geq 199(\lambda+2 \mu)(i-1) m$ implies
$8(i-1) \lambda m \leq 0.1\left(S_{i}^{\sigma}-S_{1}^{\sigma}\right)$. Combining these gives $8(i-1) \lambda m+2(i-1)|G| / k^{7} \leq 0.1 S_{i}^{\sigma}$ and hence $a_{i} \leq 0.11 S_{i}^{\sigma}$. We also have $b_{i} \geq 0.99\left(1-2 k^{-6}\right)^{k} S_{i}^{\sigma} \geq 0.99\left(1-2 k^{-6+1}\right) S_{i}^{\sigma} \geq$ $0.91 S_{i}^{\sigma}$ (using $k \geq 3$). Putting these together we have that $a_{i} \leq 0.25 b_{i}$ for all i.

Since $S_{i}^{\sigma}-S_{i-1}^{\sigma}=\sum_{v \in P_{\sigma(i)}}\left|J_{v} \cup Q_{v}\right| \leq 2 n$ for all i, we have that $b_{i} \leq 0.99(1-$ $\left.2 k^{-6}\right)^{i-2} S_{i}^{\sigma}=b_{i-1}+0.99\left(1-2 k^{-6}\right)^{i-2}\left(S_{i}^{\sigma}-S_{i}^{\sigma}\right) \leq b_{i-1}+2 n$. Also, using $k \geq 3$ we have $S_{k-1}^{\sigma}=\sum_{s=1}^{k-1}\left|J_{s} \cup Q_{s}\right|=|G|-\left|U_{1} \cup U_{2}\right| \geq(1+0.07 k) n-0.01 k n \geq 1.16 n$ which implies $b_{k-1} \geq 0.91 \cdot 1.15 n \geq n$. Combining these we get that there is some i for which $n \leq b_{i} \leq 3 n$ and hence $a_{i} \leq 0.25 \cdot 3 n \leq n$. By Lemma 2.18, D_{i} contains a cycle of length n.

The following lemma could be seen as a structural statement of the form "If N is close to $R\left(C_{n}, K_{m}^{k}\right)$ and K_{N} is 2-colored without red cycles C_{n} and blue K_{m}^{k}, then the coloring on K_{N} must be close to the extremal coloring."

Lemma 3.14. There is a constant $N_{3}=10^{58}$ such that the following holds. Suppose that $n \geq N_{3} m, m \geq k^{21}, k \geq 2$ and G is a graph with $|G| \geq(k-1) n, G C_{n}$-free, and $\bar{G} K_{m}^{k}$-free. Then $V(G)$ can be partitioned into sets A_{1}, \ldots, A_{k-1} and S such that the following hold:
(i) $\left|A_{i}\right| \geq m$ for $i=1, \ldots, k-1$.
(ii) There are no edges between A_{i} and A_{j} for $i \neq j$.
(iii) $\overline{G\left[A_{i}\right]}$ is $K_{m, m}$-free for $i=1, \ldots, k-1$.
(iv) $|S| \leq k^{21}$.

Proof. We construct a sequence of graphs G_{0}, G_{1}, \ldots recursively as follows. Let $G_{0}=G$. If G_{i} contains three sets A, B, S_{i} with $|A|,|B| \geq m,\left|S_{i}\right| \leq k^{20}$, such that A, B, and S_{i} all lie in the same connected component of G_{i} and S_{i} separates A from B, then let $G_{i+1}=G_{i} \backslash S_{i}$. Notice that since $\overline{G_{0}}$ is K_{m}^{k}-free, we must have $G_{k}=G_{k-1}$.

Choose a partition of $V\left(G_{k}\right)$ into sets A_{1}, \ldots, A_{t} such that for each i, we have $\left|A_{i}\right| \geq m$, there are no edges between A_{i} and A_{j} for $i \neq j$, and t is as large as possible. Notice that any A_{i} with $\left|A_{i}\right| \geq 3 m$ must have a connected component C_{i} of order at least $\left|A_{i}\right|-m+1$ (otherwise A_{i} can be split into sets of order $\geq m$ with no edges between them, contradicting the maximality of t). From this we obtain that any A_{i} with $\left|A_{i}\right| \geq 5 m$ must have the property that "for any two subsets $A, B \subseteq A_{i}$ of order $\geq 2 m$, there are at least k^{20} disjoint paths from A to B in A_{i}." Indeed otherwise, by Menger's theorem there would be a set S^{\prime} of size $\leq k^{20}$ separating $A \cap C_{i}$ from $B \cap C_{i}$, contradicting $G_{k}=G_{k-1}$. Let $S=S_{1} \cup \cdots \cup S_{k-1}=V(G) \backslash V\left(G_{k}\right)$ to get a set with $|S| \leq k^{21}$.

For $i=1, \ldots, t$, let $x_{i}=\min \left(0,\left|A_{i}\right|-n\right)$.
Claim 3.15. $\overline{G_{k}}$ contains K_{m}^{r} for $r=t+\left\lfloor\frac{4}{n} \sum_{i=1}^{t} x_{i}\right\rfloor$.
Proof. Without loss of generality, suppose that A_{1}, \ldots, A_{t} are ordered so that $x_{1}, \ldots, x_{a} \leq m$ and $x_{a+1}, \ldots, x_{t} \geq m$ for some integer a.

Using Lemma 3.9, we see that when $x_{i} \geq 0.25 n, \overline{G\left[A_{i}\right]}$ contains a K_{m}^{j} for $j=$ $1+\left\lceil 4 x_{i} / n\right\rceil$. (First notice that $\left\lfloor x_{i} / 0.07 n\right\rfloor \geq 1+\left\lceil 4 x_{i} / n\right\rceil$ for $x_{i} \geq 0.25 n$. This implies that $\left|A_{i}\right|=x_{i}+n \geq 0.07 j n+n$, and so the assumptions of Lemma 3.9 hold for $G\left[A_{i}\right]$ with $k^{\prime}=j$.) By Corollary 3.8 we know that $\overline{G\left[A_{i}\right]}$ contains a K_{m}^{2} whenever $\left|A_{i}\right| \geq n+m-1$. This implies that when $m \leq x_{i}<0.25 n$ then $\overline{G\left[A_{i}\right]}$ contains a copy of $K_{m}^{1+\left\lceil 4 x_{i} / n\right\rceil}=K_{m}^{j}=K_{m}^{2}$. Putting the above observations together, we obtain that $\overline{G\left[A_{a+1} \cup \cdots \cup A_{t}\right]}$ contains a $K_{m}^{t-a+\sum_{i=a+1}^{t}\left\lceil 4 x_{i} / n\right\rceil}$.

By Corollary 3.8 and the fact that $\left|A_{i}\right| \geq m$, we know that $\overline{G\left[A_{i}\right]}$ contains a $K_{m, x_{i}}$ whenever $x_{i} \leq m$. Since there are no edges between any of these $K_{m, x_{1}}, \ldots, K_{m, x_{a}}$,
their union consists of a K_{m}^{a} together with a $K_{x_{1}, \ldots, x_{a}}$. Using $x_{1}, \ldots, x_{a} \leq m$, we have that $K_{x_{1}, \ldots, x_{a}}$ contains a $K_{m}^{\left\lfloor\sum_{i=1}^{a} x_{i} / 2 m\right\rfloor}$. Together with K_{m}^{a} this gives a copy of $K_{m}^{a+\left\lfloor\sum_{i=1}^{a} x_{i} / 2 m\right\rfloor}$ in $\overline{G\left[A_{1} \cup \cdots \cup A_{a}\right]}$. Since $4 / n \leq 1 / 2 m$, this contains a copy of $K_{m}^{a+\left\lfloor\sum_{i=1}^{a} 4 x_{i} / n\right\rfloor}$.

Now, we have found a $K_{m}^{t-a+\sum_{i=a+1}^{t}\left\lceil 4 x_{i} / n\right\rceil}$ and a disjoint $K_{m}^{a+\left\lfloor\sum_{i=1}^{a} 4 x_{i} / n\right\rfloor}$. Putting these two together, and using $\lfloor x\rfloor+\lceil y\rceil \geq\lfloor x+y\rfloor$, we obtain a $K_{m}^{t+\left\lfloor\frac{4}{n} \sum_{i=1}^{t} x_{i}\right\rfloor}$ as required.

From Claim 3.15 and the K_{m}^{k}-freeness of \bar{G}, we obtain that $t+\left\lfloor\frac{4}{n} \sum_{i=1}^{t} x_{i}\right\rfloor \leq$ $k-1$. We also have that $t n+\sum_{i=1}^{t} x_{i} \geq|G|-|S| \geq(k-1) n-k^{21}$. Putting these together, we get $\frac{1}{n} \sum_{i=1}^{t} x_{i} \geq\left\lfloor\frac{4}{n} \sum_{i=1}^{t} x_{i}\right\rfloor-\frac{k^{21}}{n}$. Together with $n>10 k^{21}$, this gives $\sum_{i=1}^{t} x_{i}<n / 2$. Combined with $t n+\sum_{i=1}^{t} x_{i} \geq(k-1) n-k^{21}$ this implies $t-k+1 \geq-\frac{1}{2}-\frac{k^{21}}{n}$. Since $t-k+1$ is an integer, this implies that $t \geq k-1$. From $t+\left\lfloor\frac{4}{n} \sum_{i=1}^{t} x_{i}\right\rfloor \leq k-1$ we obtain that $t=k-1$. The K_{m}^{k}-freeness of \bar{G} implies that each $\overline{G\left[A_{i}\right]}$ is $K_{m, m}$-free, proving the lemma.

We can now prove the main result of this paper.
Proof of Theorem 1.4. From Lemma 1.1 we have that $R\left(C_{n}, K_{m_{1}, \ldots, m_{k}}\right) \geq(n-$ $1)(k-1)+m_{1}$. Therefore, it remains to prove the upper bound. Fix $N_{3}=10^{60}$. Let $n, \hat{k}, m_{1}, \ldots, m_{\hat{k}}$ be numbers with $n \geq N_{3} m_{\hat{k}}, m_{\hat{k}} \geq m_{\hat{k}-1} \geq \cdots \geq m_{1}$ and $m_{i} \geq i^{22}$ for $i=1, \ldots, \hat{k}$.

We prove that $R\left(C_{n}, K_{m_{1}, \ldots, m_{k}}\right) \leq(n-1)(k-1)+m_{1}$ for $k=2, \ldots, \hat{k}$ by induction on k. The initial case is when $k=2$ which comes from Corollary 3.8. Therefore assume that $k \geq 3$ and that we have $R\left(C_{n}, K_{m_{1}, \ldots, m_{k-1}}\right) \leq(n-1)(k-2)+m_{1}$. Let K be a 2-edge-colored complete graph on $(n-1)(k-1)+m_{1}$ vertices. Suppose, for the sake of contradiction, that K contains neither a red C_{n} nor a blue $K_{m_{1}, \ldots, m_{k}}$. Let G be the subgraph consisting of the red edges of K.

CLAIM 3.16. $\left|N_{G}(W) \cup W\right| \geq n$ for every $W \subseteq G$ with $|W| \geq m_{k}$.
Proof. Suppose that $\left|N_{G}(W) \cup W\right| \leq n-1$ for some W with $|W| \geq m_{k}$. Let $K^{\prime}=K \backslash\left(N_{G}(W) \cup W\right)$ to get a graph with $\left|K^{\prime}\right| \geq(n-1)(k-2)+m_{1}$. By induction K^{\prime} contains either a red C_{n} or a blue $K_{m_{1}, \ldots, m_{k-1}}$. In the former case, we have a red C_{n} in K, whereas in the latter case we have a blue $K_{m_{1}, \ldots, m_{k}}$ formed from the copy of $K_{m_{1}, \ldots, m_{k-1}}$ together with W.

Set $m=m_{k}$, and notice that \bar{G} contains no blue K_{m}^{k}. Apply Lemma 3.14 to G in order to partition it into sets A_{1}, \ldots, A_{k-1} and S satisfying (i)-(iv). Notice that from condition (ii) of Lemma 3.14 and Claim 3.16, we have $\left|\left(N_{G}(W) \cup W\right) \cap\left(A_{i} \cup S\right)\right| \geq n$ for any $W \subseteq A_{i}$ with $|W| \geq m$. Combined with $|S| \leq k^{21} \leq m$ and $n \geq N_{3} m$, this implies that $\left|A_{i}\right| \geq 10^{53} \mathrm{~m}$ for each i. For $i=1, \ldots, k-1$, apply Lemma 3.2 with $U=A_{i}$, $G=G\left[A_{i} \cup S\right]$, and $d=3$ in order to find subsets $H_{i} \subseteq A_{i}$ with $\left|H_{i}\right| \geq\left|A_{i}\right|-m$ such that $G\left[H_{i}\right]$ is a $(3,5 m, n)$-expander in $G\left[H_{i} \cup S\right]$. Let $G^{\prime}=G\left[H_{1} \cup \cdots \cup H_{k-1} \cup S\right]$.

Suppose that for some i and j, there exist two vertex-disjoint paths from H_{i} to H_{j} in G^{\prime}. Let P_{1} and P_{2} be two such paths with $\left|P_{1}\right|+\left|P_{2}\right|$ as small as possible. Using Lemma 3.4 we have that $\left|P_{1} \cap H_{s}\right|,\left|P_{2} \cap H_{s}\right| \leq 3 \log 5 m$ for all s (since if we had $\left|P_{1} \cap H_{s}\right|>3 \log 5 m$, then Lemma 3.4 would give a shorter path in H_{s} between the first and the last vertex of P_{1} in $P_{1} \cap H_{s}$). Together with $m \geq k^{22}$, this implies $\left|P_{1}\right|,\left|P_{2}\right|<3 k \log 5 m \leq m$. Let p_{1}^{i} and p_{2}^{i} be the endpoints of P_{1} and P_{2} in H_{i} and let p_{1}^{j} and p_{2}^{j} be the endpoints of P_{1} and P_{2} in H_{j}. By Lemma 3.5 applied with
$m^{\prime}=5 m$, there is an p_{1}^{i} to p_{2}^{i} path Q_{i} in H_{i} as well as a p_{1}^{j} to p_{2}^{j} path Q_{j} in H_{j} with $50 \mathrm{~m} \leq\left|Q_{i}\right|,\left|Q_{j}\right| \leq 60 \mathrm{~m}$. Notice that we have $n-62 m \leq n-\left|Q_{i} \cup P_{1} \cup P_{2}\right|+2 \leq n-50 m$ and " $\left|N_{H_{j}}(W) \cup W\right| \geq n-|S| \geq n-m$ for $W \subseteq H_{j}$ with $|W| \geq 5 m$." Therefore, we can apply Lemma 3.7 to H_{j} with $P=Q_{j}, m^{\prime}=5 m$, and $n^{\prime}=n-\left|Q_{i} \cup P_{1} \cup P_{2}\right|+2$ in order find a p_{1}^{j} to p_{2}^{j} path Q_{j}^{\prime} in H_{j} with $\left|Q_{j}^{\prime}\right|=n-\left|Q_{i} \cup P_{1} \cup P_{2}\right|+2$. Joining Q_{i} to P_{1} to Q_{j}^{\prime} to P_{2} gives a red cycle of length n in K.

Suppose that for all $i \neq j$, there do not exist two vertex-disjoint paths from H_{i} to H_{j} in G^{\prime}. We show that there is a vertex v which separates some H_{a} from the others.

Claim 3.17. There is a set $A \subseteq V\left(G^{\prime}\right)$, a 2-connected subgraph $D \subseteq G^{\prime}$, a vertex $v \in V(D)$, and an index $a \in\{1, \ldots, k-1\}$ such that $H_{a} \subseteq V(D) \subseteq A, A \backslash(S \cup\{v\})=$ $H_{a} \backslash\{v\}$, and $N_{G^{\prime}}(A-v) \subseteq A$.

Proof. Let D_{1}, \ldots, D_{t} be the maximal 2-connected subgraphs of G^{\prime}. By maximality we have that $\left|D_{i} \cap D_{j}\right| \leq 1$ for any $i \neq j$. By Lemma 3.3, H_{i} is 2-connected for all i, and hence $H_{i} \subseteq D_{j}$ for some j. By Menger's theorem we have that each of D_{1}, \ldots, D_{t} can contain at most one of the sets H_{i} for $i=1, \ldots, k-1$ (since there do not exist two vertex-disjoint paths between H_{i} and H_{j} for distinct i and j).

Let F be an auxiliary graph with $V(F)=\left\{D_{1}, \ldots, D_{t}\right\}$ with $D_{i} D_{j}$ an edge whenever $D_{i} \cap D_{j} \neq \emptyset$. It is well known that F is a forest (see Proposition 3.11 in [10]). Let T be any subtree of F which contains H_{i} for some i, and let $D_{\text {root }}$ be an arbitrary root of T. There is a vertex $D_{b} \in T$ such D_{b} contains H_{a} for some a, but no descendant of D_{b} contains H_{j} for any $j \neq a$. Let $D=D_{b}$.

If $D_{b} \neq D_{\text {root }}$, then let D_{s} be the parent of D_{b} and v the unique vertex in $D_{s} \cap D_{b}$. Let A be the set consisting of v plus all the vertices in the connected component of $G^{\prime}-v$ containing H_{a}. If $D_{b}=D_{\text {root }}$, then let A be the set consisting of all the vertices in the connected component of G^{\prime} containing H_{a} (which is just $\bigcup_{v \in T} D_{v}$), and let v be an arbitrary vertex in D.

In both of the above cases, $H_{a} \subseteq V(D) \subseteq A$ and $N_{G^{\prime}}(A-v) \subseteq A$ are immediate. To see $A \backslash(S \cup\{v\})=H_{a} \backslash\{v\}$, recall that $H_{1}, \ldots, H_{k-1}, S$ partitioned $V\left(G^{\prime}\right)$ and D_{b} was chosen so that no descendant of D_{b} in T contains H_{j} for any $j \neq a$.

Let A, v, and a be as produced by the above lemma. Notice that $\overline{G[A]}$ is $K_{m+1, m+1}$-free. Indeed given a copy of $K_{m+1, m+1}$ in $G[A]$, we have a copy of $K_{m, m}$ in $\overline{G[A]} \backslash\{v\}$. Since from Claim 3.17 there are no edges between this $K_{m, m}$ and $H_{t} \backslash\{v\}$ for $t \neq a$, we obtain a copy of K_{m}^{k} in \bar{G}.

Notice that for any $W \subseteq A$ with $|W| \geq 5 m+k^{21}+1$, we have

$$
\begin{aligned}
\left|N_{A}(W) \cup W\right| & \geq\left|N_{A}(W \backslash(S \cup\{v\})) \cup(W \backslash(S \cup\{v\}))\right| \\
& =\left|N_{A}\left(W \cap\left(H_{a} \backslash\{v\}\right)\right) \cup\left(W \cap\left(H_{a} \backslash\{v\}\right)\right)\right| \\
& \geq n
\end{aligned}
$$

To see the last inequality, recall that from Claim 3.17 we have $A \backslash(S \cup\{v\})=H_{a} \backslash\{v\}$, $N_{H_{a} \cup S}(A-v) \subseteq N_{G^{\prime}}(A-v) \subseteq A$, that H_{a} is a $(3,5 m, n)$-expander in $G\left[H_{a} \cup S\right]$, and that $\left|W \cap\left(H_{a} \backslash\{v\}\right)\right|=|W \backslash(S \cup\{v\})| \geq 5 m$.

Let u be any neighbor of v in D. Since $\left|H_{a}\right| \geq 10^{52} m$ and $\overline{H_{a}}$ is $K_{m, m}$-free, $H_{a}-v-u$ contains a cycle C with $|C| \geq 100 m$ (e.g., by Theorem 1.6). By 2connectedness of D combined with Menger's theorem, there are two disjoint paths P_{u} and P_{v} from u and v, respectively, to C. Joining P_{u} and P_{v} to the longer segment of C between $P_{u} \cap C$ and $P_{v} \cap C$ gives a u to v path P of length $\geq 50 \mathrm{~m}$. Applying Lemma 3.7 to the graph $G[A]$, the vertices u and v, the path P, and $m^{\prime}=5 m+k^{21}$
gives a path of order n from u to v which together with the edge $u v$ forms a cycle of length n in G (and hence a red C_{n} in K).
4. Concluding remarks. In Theorem 1.4 we needed two conditions for C_{n} to be $K_{m_{1}, \ldots, m_{k}}$-good-we needed $n \geq 10^{60} m_{k}$ and $m_{i} \geq i^{22}$.

The first of these conditions " $n \geq 10^{60} m_{k}$ " cannot be removed completely (although the constant 10^{60} can probably be significantly reduced) as there are constructions showing that C_{n} is not $K_{m_{1}, \ldots, m_{k}}$-good for $n \leq m_{k}$. One family of such constructions is to fix a number $r \in\{1, \ldots k\}$ and consider a 2-edge-coloring of a complete graph on $(k-r)(n-1)+r\left(m_{r}-1\right)$ vertices consisting of $(k-r)$ red cliques C_{1}, \ldots, C_{k-r} of size $n-1$ and r red cliques C_{k-r+1}, \ldots, C_{k} of size $m_{r}-1$. For $n \geq m_{r}$, this construction has neither red C_{n} nor blue $K_{m_{1}, \ldots, m_{k}}$ - there is no red C_{n} since all red components have size $\leq n-1$, and there is no blue $K_{m_{1}, \ldots, m_{k}}$ since the k parts of $K_{m_{1}, \ldots, m_{k}}$ have to all be contained in different sets C_{1}, \ldots, C_{k}, but only $k-r$ of these have size bigger than m_{r} (and so it is impossible to simultaneously embed the $k-r+1$ parts of $K_{m_{1}, \ldots, m_{k}}$ of sizes $\left.m_{r}, m_{r+1}, \ldots, m_{k}\right)$. This construction shows that for $n \geq m_{r}$ we have $R\left(C_{n}, K_{m_{1}, \ldots, m_{k}}\right) \geq(k-r)(n-1)+r\left(m_{r}-1\right)$. For $r=1$, this is exactly (1). From this bound we obtain that for $m_{r} \leq n<m_{r}+\frac{m_{r}-m_{1}}{r-1}-1$, the cycle C_{n} is not $K_{m_{1}, \ldots, m_{k}}$-good. By choosing $r=k$, we see that the bound " $n \geq 10^{60} m_{k}$ " in Theorem 1.6 cannot be improved significantly beyond " $n \geq k m_{k} /(k-1)$."

We conjecture that the second condition " $m_{i} \geq i^{22}$ " in Theorem 1.4 can be omitted completely. Such a result would in particular show that C_{n} is K_{m} good, i.e., it would prove particular cases of Conjecture 1.2. Because of this it would likely require different proof techniques from the ones used in this paper (for example, Nikiforov's ideas from [18] showing that C_{n} is K_{m}-good for $n \geq 4 m+2$ may be helpful).

The gadgets that we use are very similar to absorbers introduced by Montgomery in [17] during the study of spanning trees in random graphs. An absorber is a graph A with three special vertices x, y, and v such that A has x to y paths with vertex sets $V(A)$ and $V(A) \backslash\{v\}$. While absorbers have a long history, Montgomery's key insight was that they can be found in very sparse graphs with good expansion properties. The graphs in which we need to find gadgets are also very sparse, and structurally the gadgets that we find are a natural generalization of Montgomery's absorbers. However, the graphs in which we look for gadgets are even sparser than Montgomery's and have weaker expansion properties. Specifically, Montgomery was looking at graphs G in which any small set S satisfies $|N(S)| \geq C|S| \log ^{4}|G|$, whereas in this paper we consider graphs which only have $|N(S)| \geq C|S|$. The level of expansion at which we find gadgets is optimal up to a constant factor. Since we find gadgets (and as a consequence absorbers) at such a low expansion, our intermediate results are likely to have application in the study of random and pseudorandom graphs.

Acknowledgments. Part of this work was done when the second author visited Freie University Berlin. He would like to thank Freie University for its hospitality and stimulating research environment. The authors would like to thank an anonymous referee for many suggestions on improving this paper.

REFERENCES

[1] P. Allen, G. Brightwell, and J. Skokan, Ramsey-goodness and otherwise, Combinatorica, 33 (2013), pp. 125-160.
[2] I. Balla, A. Pokrovskiy, and B. Sudakov, Ramsey goodness of bounded degree trees, Combin. Prob. Comput., 27 (2018), pp. 289-309.
[3] S. Brandt, H. Broersma, R. Diestel, and M. Kriesell, Global connectivity and expansion: Long cycles and factors in f-connected graphs, Combinatorica, 26 (2006), pp. 17-36.
[4] A. Bondy and P. Erdős, Ramsey numbers for cycles in graphs, J. Combin. Theory Ser. B, 14 (1973), pp. 46-54.
[5] S. Burr, Ramsey numbers involving graphs with long suspended paths, J. London Math. Soc., 24 (1981), pp. 405-413.
[6] S. Burr and P. Erdős, Generalizations of a Ramsey-theoretic result of Chvátal, J. Graph Theory, 7 (1983), pp. 39-51.
[7] Y. Chen, T. C. E. Cheng, and Y. Zhang, The Ramsey numbers $R\left(C_{m}, K_{7}\right)$ and $R\left(C_{7}, K_{8}\right)$, European J. Combin., 29 (2008), pp. 1337-1352.
[8] V. Chvátal, Tree-complete graph Ramsey number, J. Graph Theory, 1 (1977), 93.
[9] D. Conlon, J. Fox, C. Lee, and B Sudakov, Ramsey numbers of cubes versus cliques, Combinatorica, 136 (2016), pp. 37-70.
[10] R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
[11] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc., 53 (1947), pp. 292-294.
[12] P. Erdős, R. Faudree, C. Rousseau, and R. Schelp, On cycle-complete graph Ramsey numbers, J. Graph Theory, 2 (1978), pp. 53-64.
[13] G. Fiz Pontiveros, S. Griffiths, R. Morris, D. Saxton, and J. Skokan, The Ramsey number of the clique and the hypercube, J. Lond. Math. Soc., 89 (2014), pp. 680-702.
[14] J. Friedman and N. Pippenger, Expanding graphs contain all small trees, Combinatorica, 7 (1987), pp. 71-76.
[15] L. Gerencsér and A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math, 10 (1967), pp. 167-170.
[16] P. Keevash, E. Long, and J. Skokan, Cycle-complete Ramsey numbers, Int. Math. Res. Not. IMRN, (2019), https://doi.org/10.1093/imrn/rnz119.
[17] R. Montgomery, Spanning trees in random graphs, Adv. Math., 356 (2019).
[18] V. Nikiforov, The cycle-complete graph Ramsey numbers, Combin. Probab. Comput., 14 (2005), pp. 349-370.
[19] V. Nikiforov and C. Rousseau, Ramsey goodness and beyond, Combinatorica, 29 (2009), pp. 227-262.
[20] C. Pei and Y. Li, Ramsey numbers involving a long path, Discrete Math., 339 (2016), pp. 564-570.
[21] A. Pokrovskiy and B. Sudakov, Ramsey goodness of paths, J. Combin. Theory Ser. B, 122 (2017), pp. 384-390.
[22] L. Pósa, Hamiltonian circuits in random graphs, Discrete Math., 14 (1976), pp. 359-364.

[^0]: *Received by the editors July 6, 2018; accepted for publication (in revised form) May 15, 2020; published electronically September 1, 2020.
 https://doi.org/10.1137/18M1199125
 Funding: This research was supported in part by SNSF grant 200021-175573. The second author received support from the Humboldt Foundation.
 ${ }^{\dagger}$ Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK (dr.alexey.pokrovskiy@gmail.com).
 \ddagger Department of Mathematics, ETH, 8092 Zürich, Switzerland (benjamin.sudakov@math.ethz.ch).

