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Positive solutions to Schrödinger equations and
geometric applications

By Ovidiu Munteanu at Storrs, Felix Schulze at Coventry and Jiaping Wang at Minneapolis

Abstract. A variant of Li–Tam theory, which associates to each end of a complete
Riemannian manifold a positive solution of a given Schrödinger equation on the manifold,
is developed. It is demonstrated that such positive solutions must be of polynomial growth of
fixed order under a suitable scaling invariant Sobolev inequality. Consequently, a finiteness
result for the number of ends follows. In the case when the Sobolev inequality is of particular
type, the finiteness result is proven directly. As an application, an estimate on the number of
ends for shrinking gradient Ricci solitons and submanifolds of Euclidean space is obtained.

1. Introduction

Recall that a complete manifold .M; g/ is a gradient shrinking Ricci soliton if there exists
a function f onM such that the Ricci curvature ofM and the hessian of f satisfy the equation

RicC Hess.f / D
1

2
g:

As self-similar solutions to the Ricci flow, gradient shrinking Ricci solitons arise naturally
from singularity analysis of the Ricci flow. Indeed, according to [6, 13, 31, 40], the blow-ups
around a type-I singularity point always converge to nontrivial gradient shrinking Ricci soli-
tons. It is thus a central issue in the study of the Ricci flow to understand and classify gradient
shrinking Ricci solitons. While the issue has been successfully resolved for dimension 2 and 3
(see [3, 15, 31, 34, 35]), it remains open for dimension 4, though recent work [12, 28, 30] has
shed some light on it. Presently, there is very limited information available concerning general
gradient shrinking Ricci solitons in higher dimensions.

The potential f and the scalar curvature S are related through the equation [15]

(1.1) jrf j2 C S D f
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with f normalized by adding a suitable constant. By [8], S > 0 unless .M; g/ is the Euclidean
space. Moreover, according to [5, 16], there exist a point p 2M and constants c1.n/, c2.n/
depending only on the dimension n of M such that

(1.2)
1

4
r2.x/ � c1.n/r.x/ � c2.n/ � f .x/ �

1

4
r2.x/C c1.n/r.x/C c2.n/

for all x 2M , where r.x/ D d.p; x/ is the distance from p to x, and the volume Vp.r/ of the
geodesic ball Bp.r/ centered at p of radius r satisfies

Vp.r/ � c.n/rn:

Perelman’s entropy is given by

�.g/ D ln
�

1

.4�/
n
2

Z
M

e�f
�
:

Set
˛ D lim sup

R!1

1

Vp.R/

Z
Bp.R/

.Sr2/
n�1
2 :

We have the following result.

Theorem 1.1. Let .M; g/ be a gradient shrinking Ricci soliton with ˛ <1. Then the
number of ends of M is bounded from above by �.n; ˛; �.g//, a constant depending only on
dimension n, �.g/ and ˛.

A gradient shrinking Ricci soliton M is said to be asymptotically conical if there exist
a closed Riemannian manifold .†; g†/ and diffeomorphism

ˆ W .R;1/ �†!M n�

such that ��2��
�
ˆ�g converges inC1loc as �!1 to the cone metric dr2Cr2g† on ŒR;1/�†,

where� is a compact smooth domain ofM . Clearly, an asymptotically conical shrinking Ricci
soliton must satisfy ˛ <1.

Recall that an end of a complete manifold M with respect to a compact smooth domain
� �M is simply an unbounded component of M n�. The number of ends e.M/ of M is
the maximal number obtained over all such �. The novelty of Theorem 1.1 is that only the
scalar curvature integral information at infinity is needed. Another feature is that the exponent
of S in the definition of ˛ is n�1

2
, not the commonly seen n

2
in analysis. We emphasize that the

estimate here is explicit. ThatM has finitely many ends follows readily by assuming the scalar
curvature of M is bounded. Indeed, as observed in [14], (1.1) and (1.2) imply that jrf j � 1
outside a compact subset of M and hence M must have finite topological type. We mention
here that in [29] it was shown that any complete shrinking Kähler Ricci soliton must have one
end. The proof uses Li–Tam’s theory and a fact special to the Kähler situation that the gradient
vector rf is real holomorphic.

For shrinking gradient Ricci solitons of dimension n � 3, by Li and Wang [26], the fol-
lowing Sobolev inequality holds:�Z

M

�
2n
n�2

�n�2
n

� C.n/e�
2�.g/
n

Z
M

�
jr�j2 C S�2

�
for � 2 C10 .M/. So Theorem 1.1 is a consequence of the following general result.
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Theorem 1.2. Let .M; g/ be a complete Riemannian manifold of dimension n � 3 sat-
isfying the Sobolev inequality�Z

M

�
2n
n�2

�n�2
n

� A

Z
M

�
jr�j2 C ��2

�
for any � 2 C10 .M/, where A > 0 is a constant and � � 0 a continuous function. Suppose

˛ D lim sup
R!1

1

Vp.R/

Z
Bp.R/

.r2�/
n�1
2 <1

and

V1 D lim sup
R!1

Vp.R/
Rn

<1:

Then the number of ends of M is bounded above by a constant � depending only on n, A, ˛
and V1.

The well-known Michael–Simon inequality [2, 27] for submanifolds in the Euclidean
space RN states that �Z

M

j�j
n
n�1

�n�1
n

� C.n/

Z
M

�
jr�j C jH jj�j

�
for any � 2 C10 .M/, where H is the mean curvature vector of M . In fact, this inequality
holds for submanifolds in Cartan-Hadamard manifolds as well [18]. These inequalities are par-
ticularly useful in studying minimal submanifolds. We refer to [4, 7, 33, 36] and the references
therein for some of the results. It is easy to see that�Z

M

�
2n
n�2

�n�2
n

� C.n/

Z
M

�
jr�j2 C jH j2�2

�
holds for n � 3. As a corollary of Theorem 1.2, we have the following result.

Corollary 1.3. Let M n be a complete submanifold of RN with n � 2. Suppose

˛ D lim sup
R!1

1

Vp.R/

Z
Bp.R/

.r jH j/n�1 <1

and

V1 D lim sup
R!1

Vp.R/
Rn

<1:

Then the number of ends of M is bounded above by a constant � depending only on the
dimension n, ˛ and V1.

Strictly speaking, for the case of dimension n D 2, the conclusion does not follow directly
from Theorem 1.2. Rather, it follows by a slight modification of its proof. Our proof of Theo-
rem 1.2 is very much motivated by the work of Topping [42,43], where the diameter of a com-
pact manifold M satisfying the Sobolev inequality is estimated in terms of the constant A
together with the integral

R
M �

n�1
2 . The argument there is adapted to show that for each
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large R, the volume of E \ Bp.R/ satisfies V.E \ Bp.R// � cRn for some constant c for
at least one half of the ends E of M . Note that for different R the choice of such set of ends E
may be different. Nonetheless, the desired estimate of the number of ends follows as the to-
tal volume of the ball Bp.R/ is at most of 2V1Rn. We emphasize that the argument strongly
depends on the fact that the Sobolev exponent is of n

n�2
with n being the dimension of the

manifold. For a Sobolev inequality with general exponent � > 1 of the form�Z
M

�2�
� 1
�

� A

Z
M

�
jr�j2 C ��2

�
for � 2 C10 .M/,

we instead develop a different approach of using positive solutions to a Schrödinger equation
to estimate the number of ends.

More specifically, the approach relies on a variant of Li–Tam theory. In [23], to each
end E of M , they associate a harmonic function fE on M . The resulting harmonic functions
are linearly independent. So the question of bounding the number of ends e.M/ is reduced to
estimating the dimension of the space spanned by those functions. The theory was successfully
applied to show that e.M/ is necessarily finite when the Ricci curvature of M is nonnegative
outside a compact set. We shall refer to [22] for more applications of this theory. Here, we
develop a variant of their theory by considering instead the Schrödinger operator

L D � � �

with � being a nonnegative but not identically zero smooth function on M .

Theorem 1.4. Let .M; g/ be a complete manifold and E1; E2; : : : ; El the ends of M
with respect to a geodesic ball Bp.r0/ of M with l � 2. Then for each end Ei , there exists
a positive solution ui to the equation �ui D �ui on M satisfying 0 < ui � 1 on M nEi and

sup
M

ui D lim sup
x!Ei .1/

ui .x/ > 1:

Moreover, the functions u1; : : : ; ul are linearly independent.

One nice feature here is that all the functions ui are positive, while in the case of harmonic
functions fE is positive if and only if M is nonparabolic, that is, it admits a positive Green’s
function. With this result in hand, we set out to bound the dimension of the space F spanned
by the functions u1; : : : ; ul . The work of [10, 11, 21] on the dimension of spaces of harmonic
functions with polynomial growth inspires us to consider the mean value property for positive
subsolutions to L. More precisely, assume that M admits a proper Lipschitz function � > 0
satisfying

(1.3)
1

2
� jr�j � 1 and �� �

m

�
;

in the weak sense for � � R0, a sufficiently large constant and some constant m > 0.
Denote the sublevel and level sets of � by

D.r/ D ¹x 2M W �.x/ < rº;

†.r/ D ¹x 2M W �.x/ D rº:

To simplify notation, we let V.r/ D Vol.D.r// and A.r/ D Area.†.r//.
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Definition 1.5. A manifold .M; g/ has the mean value property .M/ if there exist con-
stants A0 > 0 and � > 1 such that for any 0 < � � 1 and R � 4R0,

sup
†.R/

u �
A0

�2�
1

V..1C �/R/

Z
D..1C�/R/nD.R0/

u

holds true for any function u > 0 satisfying �u � �u on D.2R/ nD.R0/.

With this definition at hand, we can now state our main estimate on positive solutions to
the Schrödinger equation Lu D 0. For q � 1, define the quantity

˛ D lim sup
R!1

�
R2q

«
†.R/

�q
� 1
q

; where
«
†.R/

�q D
1

A.R/

Z
†.R/

�q:

Theorem 1.6. Assume that .M; g/ admits a proper function � satisfying (1.3) and has
the mean value property .M/. For a polynomially growing positive solution u of �u D �u on
M nD.R0/, if ˛ <1 for some q > � � 1

2
, then there exists a constant �.m;A0; �; ˛/ > 0

such that
u � ƒ.�� C 1/ on M nD.R0/;

whereƒ > 0 is a constant depending on u. In the critical case q D � � 1
2

, the same conclusion
holds true with � D �.m;A0; �/ provided that ˛ � ˛0.m;A0; �/, a sufficiently small positive
constant.

This result is reminiscent of Agmon-type estimates in [1, 24, 25], where a positive sub-
solution u to L is shown to decay at a certain rate if it does not grow too fast, provided that
a Poincaré-type inequality holds on M . Whether a positive solution u to Lu D 0, under the
assumptions in Theorem 1.6, is automatically of polynomial growth is unclear at this point.
But we do confirm this is the case under a pointwise assumption on � > 0 that

sup
M

.�2�/ <1:

If we let
Ld .M/ D ¹v W �v D �v; jvj � c�d on M º;

the space of polynomial growth solutions of degree at most d , then an argument verbatim
to [21] immediately gives the following estimate of the dimension.

Lemma 1.7. Assume that .M; g/ admits a proper function � satisfying (1.3) and has
mean value property .M/. Then dimLd .M/ � �.m;A0; �; d/.

Summarizing, we have the following conclusion, where P is the space spanned by all
positive solutions to the equation �u D �u on M .

Theorem 1.8. Assume that .M; g/ admits a proper function � satisfying (1.3) and has
mean value property .M/. Suppose that � decays quadratically. Then dim P � �.m;A0; �; ˛/

provided that ˛ <1 for some q > � � 1
2

. In the critical case q D � � 1
2

, the same conclu-
sion holds for some �.m;A0; �/ when ˛ � ˛0.m;A0; �/, a sufficiently small positive constant.
Consequently, the number of ends e.M/ of M satisfies the same estimate as well.
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It is well known that the mean value property .M/ is implied by the following scaling
invariant Sobolev inequality via a Moser iteration argument with the number � determined by
the Sobolev exponent � through the equation

1

�
C
1

�
D 1:

Definition 1.9. A Riemannian manifold .M; g/ is said to satisfy the Sobolev inequal-
ity .S/ if there exist constants � > 1 and A > 0 such that

(1.4)
�«

D.R/

�2�
� 1
�

� AR2
«
D.R/

�
jr�j2 C ��2

�
for � 2 C10 .D.R// and R � R0.

We have denoted with «
D.R/

u D
1

V.R/

Z
D.R/

u

for any integrable function u on D.R/. Consequently, Theorem 1.8 continues to hold if one
replaces the mean value property .M/ by the Sobolev inequality .S/.

We also establish a version of Theorem 1.6 localized to an end.
For an end E of M , define

˛E D lim sup
R!1

�
R2q

A.R/

Z
àE.R/

�q
� 1
q

;

where E.R/ D E \D.R/ and àE.R/ D E \†.R/.

Proposition 1.10. Assume that .M; g/ admits a proper function � satisfying (1.3) and
that the Sobolev inequality .S/ holds. Suppose that � decays quadratically alongE. Then there
exists �.m;A;�; ˛E / > 0 such that

u � ƒ.�� C 1/ on E

for positive solutions u to�u D �u onE, whereƒ > 0 is a constant depending on u, provided
that ˛E <1 for some q > � � 1

2
. In the case q D � � 1

2
, the same conclusion holds for some

�.m;A;�/ > 0 when ˛E � ˛0.m;A;�/, a sufficiently small positive constant.

Corresponding to an end E, let uE be the positive solution of �uE D �uE on M con-
structed in Theorem 1.4. Then 0 < uE � 1 on M nE. Proposition 1.10 implies that such uE
must be of polynomial growth onM with the given growth order. With this in hand and in view
of Lemma 1.7, for the case of critical q D � � 1

2
, one concludes that the number of ends with

small ˛E is bounded. For an asymptotically conical gradient shrinking Ricci soliton M , it is
not difficult to show that at least one half of the ends have small ˛E if the total number of ends
is large. Obviously, Theorem 1.1 follows, at least for asymptotically conical shrinking Ricci
solitons, from these facts as well.

Sobolev inequalities are prevalent in geometry. Other than the aforementioned ones for
gradient shrinking Ricci solitons and submanifolds in the Euclidean spaces, for manifolds with
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Ricci curvature bounded from below by a constant �K, K � 0, according to [37], the Sobolev
inequality (1.4) holds on any geodesic ball Bp.R/ with constant

A D ec.n/.1C
p
KR/

and � D 1
R2

. Finally, for a locally conformally flat manifold M , by [39], a suitable cover
ofM can be mapped conformally into Sn and satisfies a similar Sobolev inequality of gradient
shrinking Ricci solitons.

For a comprehensive study of Sobolev inequalities on manifolds and their applications,
we refer to [17, 38].

The paper is organized as follows. In Section 2, we present the proof of Theorem 1.2 and
derive some of its consequences. In Section 3 we focus on the proof of Theorem 1.4. We then
turn to estimates of positive solutions to �u D �u in Section 4 and prove Theorem 1.6. The
dimension estimate given in Lemma 1.7 is proved in Section 5. Section 6 is devoted to proving
the fact that the mean value property .M/ follows from the Sobolev inequality .S/.

2. Sobolev inequality and ends

In this section, we prove Theorem 1.2 following the ideas in [42, 43]. To include the
case n D 2, we consider more generally complete noncompact Riemannian manifolds .M; g/
satisfying the Sobolev inequality

(2.1)
�Z

M

j�j
qn
n�q

�n�q
n

� A

Z
M

.jr�jq C � j�jq/

for some q with 1 � q � n � 1 and any � 2 C10 .M/, where A > 0 is a constant and � � 0
a continuous function. Define

(2.2) ˛ D lim sup
R!1

1

Vp.R/

Z
Bp.R/

.rq�/
n�1
q

and

(2.3) V1 D lim sup
R!1

Vp.R/
Rn

;

where p 2M is a fixed point, r.x/ D d.p; x/ is the distance function to p, and

Vp.R/ D Vol.Bp.R//;

the volume of the geodesic ball Bp.R/ centered at p of radius R.
We restate Theorem 1.2 below under this more general Sobolev inequality.

Theorem 2.1. Let .M; g/ be an n-dimensional complete Riemannian manifold satisfy-
ing the Sobolev inequality (2.1). If both ˛ of (2.2) and V1 of (2.3) are finite, then the number
of ends of M is bounded from above by a constant � depending only on n, A, ˛ and V1.

Proof. For an end E ofM we denote E.R/ D Bp.R/ \E. Assume thatM has at least
k ends with k > 1 large, to be specified later. We may take R > 0 large enough such that

Bp.2R/ n Bp.R/ D

k[
iD1

Ei .2R/ nEi .R/:
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Moreover, we have from (2.3) that

(2.4)
Vp.t/
tn
� 2V1

for all t � R. Similarly, by (2.2) we have

kX
iD1

Z
Ei .3R/nEi .R/

.rq�/
n�1
q � 2˛Vp.3R/:

This implies that

(2.5)
kX
iD1

Z
Ei .3R/nEi .R/

�
n�1
q � C0

Vp.3R/
Rn�1

:

Here and below constants C0, C1, etc., depend only on n, A, ˛ and V1.
We may assume that the ends E1; : : : ; Ek are labeled so that²Z

Ei .3R/nEi .R/

�
n�1
q

³
iD1;:::;k

is an increasing sequence. Then (2.5) implies that

(2.6)
Z
Ei .3R/nEi .R/

�
n�1
q �

2C0

k

Vp.3R/
Rn�1

for all i D 1; 2; : : : ; Œk
2
�.

For i 2 ¹1; 2; : : : ; Œk
2
�º, pick

(2.7) zi 2 àEi .2R/:

By relabeling E1; : : : ; EŒk
2
� if necessary, we may assume that

¹Vzi .R/ºiD1;:::;Œk
2
�

is increasing.
Assume by contradiction that

(2.8) Vz1.R/ �
C1

k
Rn;

where C1 D 3nC2V1. Since

Bzi .R/ � Ei .3R/ nEi .R/

and ¹Bzi .R/º
Œk
2
�

iD1 are disjoint in Bp.3R/, it follows from (2.8) that

Vp.3R/ �
Œk
2
�X

iD1

Vzi .R/ �
�
k

2

�
C1

k
Rn �

C1

3
Rn D 3V1.3R/

n

as C1 D 3nC2V1. This contradicts (2.4). In conclusion, (2.8) does not hold and

Vz1.R/ <
C1

k
Rn:
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For convenience, from now on we simply write E D E1 and z D z1. Hence, z 2 àE.2R/ and

(2.9) Vz.R/ <
C1

k
Rn:

By (2.6) we also have

(2.10)
Z
E.3R/nE.R/

�
n�1
q �

C2

k

Vp.3R/
Rn�1

:

Let .t/ be a minimizing geodesic from p to z with 0� t � 2R. For t 2 Œ4
3
R; 5

3
R� and xD .t/,

since
d.x; z/ �

2

3
R;

the triangle inequality implies

(2.11) Bx

�
R

3

�
� Bz.R/:

Consequently, (2.9) yields

(2.12) Vx

�
R

3

�
<
C1

k
Rn

for all x D .t/ with t 2 Œ4
3
R; 5

3
R�.

Assume by contradiction that

(2.13)
Z
Bx.r/

� � ır
q
n�1 .Vx.r//

n�q�1
n�1

for all 0 < r < R
3

, where ı > 0 is small constant to be set later.
For 0 < r < R

3
fixed, we apply the Sobolev inequality to cut-off function � with support

in Bx.r/ such that � D 1 on Bx. r2/ and jr�j � 2
r

. Then (2.1) implies that�
Vx

�
r

2

��n�q
n

� A

�
2q

rq
Vx.r/C

Z
Bx.r/

�

�
:

Using (2.13) we obtain that

(2.14) .Vx.
r

2
//
n�q
n � A

�
2q

rq
Vx.r/C ır

q
n�1 .Vx.r//

n�q�1
n�1

�
for any 0 < r < R

3
. Let us assume there exists 0 < r < R

3
so that

(2.15) Vx.r/ � ı
n�1
q rn:

Then by (2.14) we have �
Vx

�
r

2

��n�q
n

� A.2q C 1/ı
n�1
q rn�q:

Hence,

(2.16) Vx

�
r

2

�
� 2n.A.2q C 1//

n
n�q ı

n�1
n�q ı

n�1
q

�
r

2

�n
:
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We now choose ı to be small enough so that

2n.A.2q C 1//
n
n�q ı

n�1
n�q < 1:

Then (2.16) implies

(2.17) Vx

�
r

2

�
� ı

n�1
q

�
r

2

�n
:

In conclusion, assuming that (2.13) holds for any 0 < r < R
3

, we have shown that (2.15)
implies (2.17).

By assuming k to be sufficiently large such that 3
nC1
k
� ı

n�1
q , inequality (2.12) says that

Vx

�
R

3

�
� ı

n�1
q

�
R

3

�n
;

that is, (2.15) holds for r D R
3

. Applying (2.15) and (2.17) inductively, we conclude that

Vx

�
R

3 � 2m

�
� ı

n�1
q

�
R

3 � 2m

�n
for all m � 0. Letting m!1, we reach a contradiction by further arranging ı to be suffi-
ciently small such that ı

n�1
q < !n, the volume of the unit ball in the Euclidean space Rn.

The contradiction implies that (2.13) does not hold. Therefore, for any x D .t/, where
t 2 Œ4

3
R; 5

3
R�, there exists 0 < rx < R

3
such that

(2.18)
Z
Bx.rx/

� > ı.rx/
q
n�1 .Vx.rx//

n�q�1
n�1 :

By the Hölder inequality we haveZ
Bx.rx/

� �

�Z
Bx.rx/

�
n�1
q

� q
n�1

.Vx.rx//
n�q�1
n�1 :

Thus, by (2.18) we get

(2.19)
Z
Bx.rx/

�
n�1
q �

1

C3
rx

for any x D .t/ and t 2 Œ4
3
R; 5

3
R�.

By a covering argument as in [42, 43], we may choose at most countably many dis-
joint balls ¹Bxm.rxm/ºm�1 with xm D .tm/, tm 2 Œ43R;

5
3
R�, each satisfying (2.19). More-

over, these balls cover at least one third of the geodesic .Œ4
3
R; 5

3
R�/. Therefore,X

m�1

rxm �
1

3

�
5

3
R �

4

3
R

�
D
1

9
R:

Together with (2.19) we have

1

9
R �

X
m�1

rxm � C3
X
m�1

Z
Bxm .rxm /

�
n�1
q � C3

Z
Bz.R/

�
n�1
q ;

where for the last inequality we have used (2.11) and that the balls ¹Bxm.rxm/ºm�1 are disjoint
in Bz.R/.
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Combining this with (2.10) and (2.7), we conclude that

1

9C3
R �

Z
E.3R/nE.R/

�
n�1
q �

C2

k

Vp.3R/
Rn�1

:

In other words,

Vp.3R/ �
k

C4
Rn;

which contradicts (2.4) if k > 2V1 C43n. This proves the theorem.

For a shrinking gradient Ricci soliton, the asymptotic volume ratio V1 is always finite.
By Li and Wang [26], the following Sobolev inequality holds for dimension n � 3:�Z

M

�
2n
n�2

�n�2
n

� C.n/e�
2�.g/
n

Z
M

�
jr�j2 C S�2

�
provided � 2 C10 .M/. This implies Theorem 1.1.

Corollary 2.2. Let .M; g/ be a gradient shrinking Ricci soliton with ˛ <1, where

˛ D lim sup
R!1

1

Vp.R/

Z
Bp.R/

.Sr2/
n�1
2 :

Then the number of ends of M is bounded from above by �.n; ˛; �.g//, a constant depending
only on dimension n, �.g/ and ˛.

For a submanifoldM in Euclidean space RN , the well-known Michael–Simon inequality
[2, 27] states that �Z

M

j�j
n
n�1

�n�1
n

� C.n/

Z
M

�
jr�j C jH jj�j

�
for any � 2 C10 .M/, where H is the mean curvature vector of M . By Theorem 2.1, we have
the following conclusion.

Corollary 2.3. Let M n be a complete submanifold of RN with n � 2. Suppose

Q̨ D lim sup
R!1

1

Vp.R/

Z
Bp.R/

.r jH j/n�1 <1

and

V1 D lim sup
R!1

Vp.R/
Rn

<1:

Then the number of ends of M is bounded above by a constant � depending only on the
dimension n, Q̨ and V1.

Recall that a hypersurface M � RnC1 is a self-shrinker of the mean curvature flow if it
satisfies the equation

H D
1

2
hx;ni;

where x is the position vector, H the mean curvature and n the unit normal vector. Self-
shrinkers arise naturally in the singularity analysis of mean curvature flow. In fact, it follows
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from the monotonicity formula of Huisken [19] that tangent flows at singularities of the mean
curvature flow are self-shrinkers. Many examples have been constructed by gluing methods by
Kapouleas, Kleene, and Möller in [20] and Nguyen in [32].

A self-shrinkerM is asymptotically conical if there exists a regular cone C � RnC1 with
vertex at the origin such that the rescaled submanifold �M converges to C locally smoothly
as �! 0. By a theorem of Wang [44], the limiting cone C uniquely determines the shrinkerM .

For an asymptotically conical shrinker, clearly both Q̨ and V1 are finite.

Corollary 2.4. Assume that M n � RnC1 is an asymptotically conical self-shrinker of
the mean curvature flow of dimension n � 2. Then the number of ends e.M/ � �.n;V1; Q̨ /,
where Q̨ is defined in Corollary 2.3.

We would also like mention a recent result of Sun and Wang [41] which bounds e.M/ in
terms of the entropy and genus when n D 2.

3. Ends and solutions to Schrödinger equations

In this section we prove Theorem 1.4. The standing assumption in this section is that M
is complete and that � is a nonnegative, but not identically zero, smooth function on M .

We first recall an interior gradient estimate for positive solution u of�uD �u established
by Cheng and Yau (see [9, Theorem 6]).

Lemma 3.1. Suppose that u > 0 is a solution to�u D �u on the geodesic ball Bp.2r/
centered at p 2M and of radius 2r . Then

jr lnuj � C.r/ on Bp.r/;

where C.r/ is a constant depending on r , � and the Ricci curvature lower bound of M
on Bp.2r/.

In particular, the lemma implies that on any compact subset K of Bp.r/, the Harnack
inequality u.x/ � C.K/u.y/ holds for x; y 2 K with a constant C.K/ independent of u.

We now construct nontrivial solutions of the equation �u D �u when M has more than
one end. In contrast to [23], there is no need to distinguish the two cases of M being parabolic
or nonparabolic.

Theorem 3.2. Let .M; g/ be a complete manifold and E1; E2; : : : ; El the ends of M
with respect to the geodesic ballBp.r0/with l � 2. Then for each endEi , there exists a positive
solution ui to the equation �ui D �ui on M satisfying 0 < ui � 1 on M nEi and

sup
M

ui D lim sup
x!Ei .1/

ui .x/ > 1:

Moreover, the functions u1; : : : ; ul are linearly independent.

Proof. We first construct the functions ui . To ease notation, let

E D Ei and F D Fi DM nEi :
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As l � 2, F must be unbounded. For R � r0, denote

E.R/ D E \ Bp.R/ and F.R/ D F \ Bp.R/:

Let vR W Bp.R/! R be the solution of the Dirichlet problem8̂<̂
:
�vR D �vR in Bp.R/;

vR D 0 on àF.R/;
vR D 1 on àE.R/:

Since � � 0 on M , by the strong maximum principle, it follows that 0 < vR < 1 in Bp.R/.
We now normalize vR by setting

uR D CRvR;

where
CR D

�
max
Bp.r0/

vR

��1
> 1:

Then uR is a solution of 8̂<̂
:
�uR D �uR in Bp.R/;

uR D 0 on àF.R/;
uR D CR on àE.R/:

In addition,

(3.1) max
Bp.r0/

uR D 1:

Hence, by Lemma 3.1 and the remark following it, we conclude from (3.1) that for any fixed
0 < r < R

2
,

sup
Bp.r/

uR � C.r/

and
sup
Bp.r/

jruRj � C.r/;

where C.r/ is a constant independent of R. It is now easy to see that a subsequence of uR
converges to a solution u > 0 of �u D �u on M . Note that u can not be a constant function
as � is not identically 0.

Since uR D 0 on àF.R/, the strong maximum principle implies that supàE.r/ uR is
strictly increasing in r and supàF.r/ uR decreasing in r . Therefore, the same holds true for
the function u. In particular, by the fact that

max
Bp.r0/

u D 1;

one concludes that 0 < u � 1 on F DM nE and

sup
M

u D lim sup
x!E.1/

u.x/ > 1:

This finishes our construction of the function ui .
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We now turn to prove that the functions u1; : : : ; ul are linearly independent. Assume that

(3.2)
lX

jD1

ajuj D 0

for some constants aj 2 R. For an arbitrary but fixed j , if uj is unbounded on Ej , then clearly
aj D 0 as ui is bounded on Ej for all i ¤ j .

So we may assume from here on that each uj is bounded on Ej . Let

Sj D sup
Ej

uj > 1:

Then there exists a sequence xj;k 2 Ej such that

(3.3) lim
k!1

.Sj � uj /.xj;k/ D 0:

Note that Sj � uj > 0 on M . In particular, there exists a constant Cj > 0 satisfying

Sj � uj >
1

Cj

on Bp.r0/. We now claim that for i ¤ j ,

(3.4) ui � Cj .Sj � uj /

on Ej .
Indeed, recall from the construction that ui is the limit of a subsequence of ui;R satisfying8̂<̂

:
�ui;R D �ui;R in Bp.R/;

ui;R D 0 on àFi .R/;
ui;R D Ci;R on àEi .R/;

where Fi DM nEi , together with

max
Bp.r0/

ui;R D 1:

Now the function
wi;R D ui;R � Cj .Sj � uj /

satisfies �wi;R � 0 on Fi .R/ n Fi .r0/ as � � 0. Also, wi;R < 0 on àFi .R/ [ àFi .r0/. By
the maximum principle, wi;R < 0 on Fi .R/ n Fi .r0/. After taking limit, one concludes that
ui � Cj .Sj � uj / on Fi n Fi .r0/. Since i ¤ j and Ej � Fi n Fi .r0/, the claim follows.

By (3.3) and (3.4) it follows that

lim
k!1

ui .xj;k/ D

´
0 if i ¤ j;

Sj if i D j:

Plugging this into (3.2), one infers that aj D 0. But j is arbitrary. This proves that u1; : : : ; ul
are linearly independent.
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4. Growth estimates

Our focus in this section is on growth rate estimates for positive solutions to �u D �u.
We fix a large enough positive constant R0 and assume that the manifold M admits a proper
function � satisfying

(4.1)
1

2
� jr�j � 1 and �� �

m

�

in the weak sense for � � R0, wherem is a positive constant. Denote the sublevel and level set
of � by

D.r/ D ¹x 2M W �.x/ < rº and †.r/ D ¹x 2M W �.x/ D rº;

respectively. They are compact as � is proper. Denote with V.r/ the volume of D.r/ and
with A.r/ the area of †.r/.

Definition 4.1. A manifold .M; g/ has the mean value property .M/ if there exist con-
stants A0 > 0 and � > 1 such that for any 0 < � � 1 and R � 4R0,

(4.2) sup
†.R/

u �
A0

�2�
1

V..1C �/R/

Z
D..1C�/R/nD.R0/

u

holds true for any function u > 0 satisfying �u � �u on D.2R/ nD.R0/.

We begin with a simple observation. Integrating by parts, one immediately sees that for
any C 1 function w and r � R0,Z

D.r/

w��C

Z
D.r/

hrw;r�i D

Z
†.r/

w
à�
à�
;

where � is the unit normal vector to †.r/ given by � D r�
jr�j

. Taking a derivative in r of this
identity yields the following formula:

(4.3)
d

dr

Z
†.r/

wjr�j D

Z
†.r/

hrw;r�i

jr�j
C

Z
†.r/

w��

jr�j
:

The following lemma provides volume and area estimates.

Lemma 4.2. Let A.r/ be the area of †.r/ and V.r/ the volume of D.r/. Then

A.r/ �
c.m/

r
V.r/;

V..1C �/r/ � .1C �/c.m/ V.r/;

V.r/ � r.m/ V.R0/

for all r � R0 and 0 < � � 1, where c.m/ and .m/ depend only on m.

Proof. By the co-area formula, there exists r
2
< t < r such that

(4.4) V.r/ � Vol
�
D.r/ nD

�
r

2

��
D
r

2

Z
†.t/

1

jr�j
:
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From (4.1) we have

�� �
4m

�
jr�j2

for all r � R0. Hence, applying (4.3) with w D 1 implies

d

dr

Z
†.r/

jr�j D

Z
†.r/

��

jr�j
�
4m

r

Z
†.r/

jr�j:

Integrating in r we conclude thatZ
†.r/

jr�j �

�
r

t

�4m Z
†.t/

jr�j �

�
r

t

�4m Z
†.t/

1

jr�j
:

Together with (4.4), this implies

(4.5)
Z
†.r/

jr�j �
c.m/

r
V.r/:

Now the area estimate follows from (4.1).
Note that (4.5) and (4.1) also imply

V0.r/ �
c.m/

r
V.r/:

Integrating in r , we obtain

V.R/ �
�
R

r

�c.m/
V.r/

for all R0 < r < R. Clearly, it gives both the volume doubling property and growth estimate.
This proves the result.

The next lemma is our starting point for establishing growth estimates for positive solu-
tions to �u D �u.

Lemma 4.3. A positive solution u of �u D �u on D.R/ nD.R0/ satisfies

d

dr

�
1

r4m

Z
†.r/

ujr�j

�
�

1

r4m

Z
D.r/nD.r0/

�uC
1

r4m

Z
†.r0/

hru;r�i

jr�j

for all R � r � r0 � R0.

Proof. Applying (4.3) to w D u and taking into account thatZ
†.r/

hru;r�i

jr�j
D

Z
D.r/nD.r0/

�uC

Z
†.r0/

hru;r�i

jr�j
;

we obtain

(4.6)
d

dr

Z
†.r/

ujr�j D

Z
D.r/nD.r0/

�uC

Z
†.r/

u
��

jr�j
C

Z
†.r0/

hru;r�i

jr�j
:

By (4.1) we have that Z
†.r/

u
��

jr�j
�
m

r

Z
†.r/

u

jr�j
�
4m

r

Z
†.r/

ujr�j
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for r � r0 � R0. Plugging this into (4.6) implies

d

dr

Z
†.r/

ujr�j �

Z
D.r/nD.r0/

�uC
4m

r

Z
†.r/

ujr�j C

Z
†.r0/

hru;r�i

jr�j
:

This proves the result.

We now prove a preliminary growth estimate by imposing a pointwise quadratic decay
assumption on � of the form

(4.7) � �
‡

�2
on M nD.r0/;

where r0 � 4R0 and ‡ > 0 is a constant.

Proposition 4.4. Assume that .M; g/ admits a proper function � satisfying (4.1) and has
the mean value property .M/. If � decays quadratically as in (4.7), then there exists a constant
C D C.m;‡/ > 0 such that

u � .�C 1/C sup
D.r0/nD.R0/

u on D
�
R

2

�
nD.R0/

for any positive solution of �u D �u on D.R/ nD.R0/ with R � r0.

Proof. The result is obvious if R � 2r0. Hence, we may assume from now on that
R > 2r0. By Lemma 3.1, it follows that there exists a constant C.r0/ > 0 such thatˇ̌̌̌Z

†.r0/

hru;r�i

jr�j

ˇ̌̌̌
� C.r0/ sup

†.r0/

u

with the constant C.r0/ independent of u.
By normalizing u if necessary, we may assume that

(4.8) sup
D.r0/nD.R0/

u D 1:

So we get

(4.9)
ˇ̌̌̌Z
†.r0/

hru;r�i

jr�j

ˇ̌̌̌
� C.r0/:

By Lemma 4.3 and (4.1) we have that

d

dr

�
1

r4m

Z
†.r/

ujr�j

�
�

1

r4m

Z
D.r/nD.r0/

�uC
1

r4m

Z
†.r0/

hru;r�i

jr�j
(4.10)

�
4

r4m

Z
D.r/nD.r0/

�ujr�j2 C
1

r4m

Z
†.r0/

hru;r�i

jr�j

for all r 2 Œr0; R�.
Combining (4.10), (4.9) and (4.7), we conclude

(4.11)
d

dr

�
1

r4m

Z
†.r/

ujr�j

�
�
4‡

r4m

Z
D.r/nD.r0/

u
jr�j2

�2
C
C.r0/

r4m
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for all r 2 Œr0; R�. If we set

(4.12) !.r/ D

Z
D.r/nD.r0/

u
jr�j2

�2
;

then the co-area formula gives

!0.r/ D
1

r2

Z
†.r/

ujr�j:

So (4.11) becomes
d

dr

�
1

r4m�2
!0.r/

�
�
4‡

r4m
!.r/C

C.r0/

r4m

or
r2!00.r/ � .4m � 2/r!0.r/ � 4‡!.r/ � C.r0/

for all r 2 Œr0; R�. Direct calculation then implies that the function

(4.13) �.r/ D ra!.r/

satisfies

(4.14) r� 00.r/ � .2aC 4m � 2/� 0.r/ � C.r0/r
a�1

for all r 2 Œr0; R�, where

(4.15) a D

p
.4m � 1/2 C 16‡ � .4m � 1/

2
:

Rewriting (4.14) into
d

dr

�
� 0.r/

r2aC4m�2

�
�
C.r0/

raC4m

and integrating from r0 to r , we get

(4.16) � 0.r/ �

�
r

r0

�2aC4m�2
� 0.r0/C C.r0/r

2aC4m�2

for all r 2 Œr0; R�.
According to (4.13) and (4.12) we have

� 0.r0/ D r
a�2
0

Z
†.r0/

ujr�j:

Hence, by (4.8),
� 0.r0/ � C.r0/:

Plugging into (4.16), we conclude that

� 0.r/ � C.r0/r
2aC4m�2

for all r 2 Œr0; R�. After integrating from r0 to r , this immediately leads to

!.r/ � C.r0/r
aC4m�1:
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In view of (4.12) and (4.15), we haveZ
D.r/nD.R0/

u � C.r0/r
C.m;‡/

for all r 2 Œr0; R�. Finally, the mean value property implies that

sup
†. 1

2
r/

u � C.A;�; r0/r
C.m;‡/

for all r 2 Œ2r0; R�. This proves the result.

We remark that the assumption of � being of quadratic decay is optimal in the sense
that any slower decay will render the result to fail. Indeed, on Euclidean space, the function
u.x/ D exp.r".x// satisfies the equation �u D �u with � decaying of order 2 � 2".

Our main result of this section is that the order of polynomial growth of u in fact only
depends on an integral quantity of the function � provided that u is a priori of polynomial
growth, namely,

juj � �C on M nD.R0/

for some constant C > 0.
In the following, we denote

˛ D lim sup
R!1

�
R2q

«
†.R/

�q
� 1
q

with q � 1 to be specified.

Theorem 4.5. Assume that .M; g/ admits a proper function � satisfying (4.1) and
has the mean value property .M/. For a positive function u of polynomial growth, satisfy-
ing �u D �u on M nD.R0/, if ˛ <1 for some q > � � 1

2
, then there exists a constant

�.m;A0; �; ˛/ > 0 such that

u � ƒ.�� C 1/ on M nD.R0/;

where ƒ > 0 is a constant depending on u. The same estimate for u holds true in the case
q D � � 1

2
with � D �.m;A0; �/ provided that ˛ � ˛0.m;A0; �/, a sufficiently small positive

constant.

Proof. By the Hölder inequality, ˛ is increasing in q. So we may restrict our attention
to those q that

0 � " <
1

2
;

where

(4.17) " D
2q C 1 � 2�

q
:

To treat both cases q > � � 1
2

and q D � � 1
2

at the same time, we let

˛ D min¹˛; 1º and �̨D max¹˛; 1º:

Note that ˛ D ˛ �̨. In the following,

C0 D C0.m;A0; �; �̨/ > 1
is a fixed large constant, depending only on m;A0; � and �̨, to be specified later.
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In view of the definition of ˛, there exists r0 � 4R0 such thatZ
†.r/

�q

jr�j
� 3˛qr�2qA.r/

for all r � r0. From Lemma 4.2 it follows that

(4.18)
Z
†.r/

�q

jr�j
� c.m/˛qr�2q�1 V.r/

for all r � r0.
Denote

�.r/ D

Z
D.r/nD.R0/

u
jr�j2

�4m
:

We claim that � satisfies the inequality

(4.19) r4m�00.r/ �
C0˛

�
2�
q

Z r

r0

�
1
q ..1C �/t/.�0.t//1�

1
q t4m�2�

1
q dt Cƒ0

for all r � r0 and 0 < � � 1, where

(4.20) ƒ0 D

Z
†.r0/

.uC jruj/:

We first prove (4.19) for q > 1. By the co-area formula,

(4.21) �0.r/ D
1

r4m

Z
†.r/

ujr�j:

Hence, using Lemma 4.3, we have

�00.r/ D
d

dr

�
1

r4m

Z
†.r/

ujr�j

�
(4.22)

�
1

r4m

Z
D.r/nD.r0/

�uC
1

r4m

Z
†.r0/

hru;r�i

jr�j
:

The first term can be estimated by the co-area formula and Hölder inequality asZ
D.r/nD.r0/

�u D

Z r

r0

�Z
†.t/

�u

jr�j

�
dt

�

Z r

r0

�Z
†.t/

�q

jr�j

� 1
q
�Z

†.t/

up

jr�j

� 1
p

dt;

where
1

p
C
1

q
D 1:

Invoking (4.18), we conclude

(4.23)
Z
D.r/nD.r0/

�u � c.m/˛

Z r

r0

�Z
†.t/

up

jr�j

� 1
p V.t/

1
q

t2C
1
q

dt:
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On the other hand, the mean value property (4.2) implies

sup
†.t/

u �
A0

�2�
1

V..1C �/t/

Z
D..1C�/t/nD.R0/

u

�
4A0

�2�
..1C �/t/4m

V.t/

Z
D..1C�/t/nD.R0/

u
jr�j2

�4m

�
c.m/A0

�2�
t4m

V.t/
�..1C �/t/

for all t � r0. Therefore,�Z
†.t/

up

jr�j

� 1
p

�

�
sup
†.t/

u
� 1
q

�Z
†.t/

u

jr�j

� 1
p

�
c.m/A

1
q

0

�
2�
q

t
4m
q

V.t/
1
q

�
1
q ..1C �/t/

�Z
†.t/

u

jr�j

� 1
p

�
c.m/A

1
q

0

�
2�
q

t4m

V.t/
1
q

�
1
q ..1C �/t/.�0.t//

1
p ;

where in the last line we have used (4.21).
Plugging this into (4.23), we conclude that

(4.24)
Z
D.r/nD.r0/

�u �
C0˛

�
2�
q

Z r

r0

�
1
q ..1C �/t/.�0.t//

1
p t4m�2�

1
q dt;

where C0 D c.m/A
1
q

0 �̨ for some c.m/ depending only on m.
By (4.22) and (4.24) it follows that

�00.r/ �
C0˛

�
2�
q r4m

Z r

r0

�
1
q ..1C �/t/.�0.t//

1
p t4m�2�

1
q dt C

1

r4m

Z
†.r0/

hru;r�i

jr�j
:

In view of (4.20), this can be rewritten into

r4m�00.r/ �
C0˛

�
2�
q

Z r

r0

�
1
q ..1C �/t/.�0.t//1�

1
q t4m�2�

1
q dt Cƒ0:

Hence, (4.19) holds for any q > 1.
To extend the result to q D 1, we simply let q ! 1 in (4.19) and note that both sides are

continuous as functions of q.
In conclusion, we have

(4.25) r4m�00.r/ �
C0˛

�
2�
q

Z r

r0

�
1
q ..1C �/t/.�0.t//1�

1
q t4m�2�

1
q dt Cƒ0

for all r � r0 and 0 < � � 1.
Since u is assumed to be of polynomial growth, there exist constants b > 0 and ƒ > 0

such that
u � ƒ�b on M nD.r0/:
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Together with Lemma 4.2 we get

�0.r/ D
1

r4m

Z
†.r/

ujr�j � c.m/ƒ rbC.m/ V.R0/:

Therefore, for r � r0,

(4.26) �0.r/ � ƒrb

for some constants b > 0 and ƒ > 0.
Obviously, the constant b in (4.26) can be chosen in such a way that (4.26) no longer

holds with b replaced by b � 1 for whatever constant ƒ. Also, the constant ƒ can be arranged
to satisfy that ƒ � ƒ0 and

(4.27) ƒ �

Z
D.r0/nD.R0/

.uC jruj/:

For " in (4.17) and C0 D C0.m;A0; �; �̨/ from (4.25) we assume by contradiction that

(4.28) min
²
b"

˛
; b

³
> .100C0/

2:

We now prove by induction on k � 0 that

(4.29) �0.r/ � ƒ

��
˛

b"

�k
2

rb C rb�1
�

for all r � r0.
Clearly, (4.29) holds for k D 0 in view of (4.26). We assume it is true for k and prove it

for k C 1. Integrating (4.29) we obtain that

�.r/ � ƒ

Z r

r0

��
˛

b"

�k
2

tb C tb�1
�
dt C �.r0/

�
ƒ

b

��
˛

b"

�k
2

rbC1 C rb
�
Cƒ;

where the last line follows from (4.27). Since

ƒ �
ƒ

b
rb;

this implies

�.r/ �
2ƒ

b

��
˛

b"

�k
2

rbC1 C rb
�

for all r � r0. Therefore,

(4.30) �..1C �/r/ �
2ƒ

b
.1C �/bC1

��
˛

b"

�k
2

rbC1 C rb
�

for all r � r0 and 0 < � � 1.
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By (4.29) and (4.30) we getZ r

r0

�
1
q ..1C �/t/.�0.t//1�

1
q t4m�2�

1
q dt

�
2ƒ

b
1
q

.1C �/
bC1
q

Z r

r0

��
˛

b"

�k
2

tb C tb�1
�
t4m�2 dt

�
2ƒ

b1C
1
q

.1C �/
bC1
q

��
˛

b"

�k
2

rbC4m�1 C rbC4m�2
�
:

Plugging into (4.25), we arrive at

�00.r/ �
2ƒC0˛

�
2�
q b1C

1
q

.1C �/
bC1
q

��
˛

b"

�k
2

rb�1 C rb�2
�
C
ƒ0

r4m

for all r � r0. Integrating in r then yields

(4.31) �0.r/ �
3ƒC0˛

�
2�
q b2C

1
q

.1C �/
bC1
q

��
˛

b"

�k
2

rb C rb�1
�
C
1

2
ƒ0 C �

0.r0/

for all r � r0 and 0 < � � 1. Note that by (4.20),

�0.r0/ D
1

r4m0

Z
†.r0/

ujr�j �
1

2
ƒ0:

Setting � D 1
b

in (4.31) and using (4.17), we obtain that

�0.r/ � 4eC0
˛

b"
ƒ

��
˛

b"

�k
2

rb C rb�1
�
Cƒ0:

In view of (4.28),

4eC0
˛

b"
�
1

2

�
˛

b"

� 1
2

:

Hence, the preceding inequality becomes

�0.r/ �
1

2
ƒ

��
˛

b"

�kC1
2

rb C rb�1
�
Cƒ0:

However,

ƒ0 � ƒ �
1

2
ƒrb�1

for r � r0. In conclusion,

�0.r/ � ƒ

��
˛

b"

�kC1
2

rb C rb�1
�

for all r � r0.
This completes the induction step and proves that (4.29) holds for all k � 0. We have

thus established that

(4.32) �0.r/ � ƒ

��
˛

b"

�k
2

rb C rb�1
�

for all k � 0 and all r � r0.
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By (4.28) we have ˛
b"
< 1. Hence, by letting k !1 in (4.32) one sees that

�0.r/ � ƒrb�1

for all r � r0. This clearly contradicts with the choice of b.
In conclusion, we must have

(4.33) min
²
b"

˛
; b

³
� .100C0/

2

for some constant C0 D C0.m;A0; �; �̨/:
Let us consider first the case q > � � 1

2
or " > 0. It is easy to see from (4.33) that

b � .100C0/
2
" :

Therefore, Z
†.r/

u

jr�j
� ƒr�"�1

for all r � r0, where �" D .100C0/
2
" C 4mC 1. Integrating in r and applying the mean value

inequality (4.2), we get

(4.34) u � �ƒ��" on M nD.r0/;

where �ƒ D 2�"ƒ
V.R0/

.
Assume now that q D � � 1

2
or " D 0. Then (4.33) implies

(4.35) min
²
1

˛
; b

³
� .100C0/

2:

So if ˛ < ˛0 with
1

˛0
D .100C0/

2;

then
1

˛
D
1

˛
> .100C0/

2

and (4.35) implies that
b � .100C0/

2:

As above, we conclude that

(4.36) u � �ƒ�� on M nD.r0/

for some �.m;A0; �/, where �ƒ D 2�ƒ
V.R0/

.
By (4.34) and (4.36), the theorem is proved.

Combining Proposition 4.4 with Theorem 4.5, we have the following corollary concern-
ing positive solutions u to �u D �u on M nD.R0/.

Corollary 4.6. Assume that .M; g/ admits a proper function � satisfying (4.1) and has
the mean value property .M/. Suppose that � decays quadratically. Then there exists a constant
�.m;A0; �; ˛/ > 0 such that

u � ƒ.�� C 1/ on M nD.R0/;

where ƒ > 0 is a constant depending on u, provided that ˛ <1 for some q > � � 1
2

. In the
case q D � � 1

2
, the same conclusion holds for some �.m;A0; �/ > 0 when ˛ � ˛0.m;A0; �/,

a sufficiently small positive constant.
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5. Dimension estimate

In this section, we establish a dimension estimate for the space P spanned by all positive
solutions to the equation �u D �u on M . We continue to assume that M admits a proper
function � satisfying (4.1) and has the mean value property .M/. Our argument closely follows
that in [21].

Define
Ld .M/ D

®
v W �v D �v; jvj � c �d on M

¯
;

the space of polynomial growth solutions of degree at most d .

Lemma 5.1. Assume that .M; g/ admits a proper function � satisfying (4.1) and has
the mean value property .M/. Then dimLd .M/ � �.m;A0; �; d/.

Proof. Let Wl be any l-dimensional subspace of Ld .M/, where l > 1. For R > 0,
define the inner product

AR.u; v/ D

Z
D.R/

u v

for u; v 2 Wl . We claim that there exists R > 4R0 large enough so that for ¹u1; : : : ; ulº, an
orthonormal basis of Wl with respect to A2R,

(5.1)
lX
iD1

Z
D.R/

u2i �
l

�
;

where � D 2.m/C2dC1 with .m/ being the same constant from Lemma 4.2.
Indeed, assume by contradiction that (5.1) fails for all R > 4R0. To simplify notation,

for R2 > R1, we denote by

trAR2 AR1 D
lX
iD1

Z
D.R1/

v2i

for orthonormal basis ¹v1; : : : ; vlº with respect to AR2 . Since (5.1) fails for all R > 4R0,
we have that

1

�
>

trA2R AR
l

� .detA2R AR/
1
l ;

where the last estimate follows from the arithmetic-geometric mean inequality. In other words,

(5.2) detA2R AR �
1

� l

for all R � 4R0. Iterating (5.2) and using that

.detAT AR/.detAR AS / D detAT AS ;

we get

detA
2jR

AR �
1

�
lj
:

Equivalently,

(5.3) detAR A2jR � �
lj

for all j > 0 and R � 4R0.
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On the other hand, Lemma 4.2 implies that V.2jR/ � .2jR/.m/ V.R0/. Together with
the fact that u 2 Wl is of polynomial growth of order at most d , we conclude

detAR A2jR � ƒ
2l.2jR/..m/C2d/l V.R0/l :

As � > 2.m/C2d , this contradicts (5.3) after letting j !1. This proves (5.1).
For x 2 †.R/ we note that there exists a subspace Wx of Wl , of codimension at most

one, such that u.x/ D 0 for all u 2 Wx . So one may choose an orthonormal basis in Wl with
u2; : : : ; ul 2 Wx . By the mean value property .M/ we get

lX
iD1

u2i .x/ D u
2
1.x/ �

C.A0; �/

V.2R/

Z
D.2R/

u21 D
C.A0; �/

V.2R/
:

The function

‰.x/ D

lX
iD1

u2i .x/

is subharmonic, therefore its maximum on D.R/ is achieved on †.R/. We have thus proved
that

lX
iD1

u2i .x/ �
C.A0; �/

V.2R/

for x 2 D.R/. Together with (5.1) we get

l

�
�

lX
iD1

Z
D.R/

u2i .x/ �
C.A0; �/

V.2R/
V.R/:

Therefore,
l � C.A0; �/�:

Since this holds true for any l-dimensional subspace Wl of Ld .M/, we conclude that

dimLd .M/ � C.A0; �/�

as well. This proves the result.

Summarizing, we have the following theorem. Recall P is the space spanned by all pos-
itive solutions to the equation �u D �u.

Theorem 5.2. Assume that .M; g/ admits a proper function � satisfying (4.1) and has
the mean value property .M/. Suppose that � decays quadratically. Then

dim P � �.m;A0; �; ˛/

provided that ˛ <1 for some q > � � 1
2

. In the case q D � � 1
2

, the same conclusion holds
for some �.m;A0; �/ when ˛ � ˛0.m;A0; �/, a sufficiently small positive constant. Conse-
quently, the number of ends e.M/ of M satisfies the same estimate as well.

Proof. According to Theorem 3.2, the number of ends e.M/ is at most the dimension
of P . However, Corollary 4.6 implies that P � Ld .M/ with d D �.m;A0; �; ˛/ in the case
q > � � 1

2
and d D �.m;A0; �/ in the case q D � � 1

2
, respectively. The conclusion on the

dimension estimate of P then follows from Lemma 5.1. This proves the theorem.
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6. Sobolev inequality

In this section, we show that a scaling invariant Sobolev inequality implies the mean
value property .M/, a classical fact proven by a well-known Moser iteration argument. For the
sake of completeness, we will spell out the details below. We continue to assume thatM admits
a proper Lipschitz function � > 0 satisfying (1.3), namely,

(6.1)
1

2
� jr�j � 1 and �� �

m

�

in the weak sense for � � R0. The sublevel and level sets of � are denoted by

D.r/ D ¹x 2M W �.x/ < rº;

†.r/ D ¹x 2M W �.x/ D rº;

respectively, and their volume and area by

V.r/ D Vol.D.r//;

A.r/ D Area.†.r//:

Recall that .M; g/ satisfies the Sobolev inequality .S/ if there exist constants � > 1
and A > 0 such that

(6.2)
�«

D.R/

�2�
� 1
�

� AR2
«
D.R/

�
jr�j2 C ��2

�
for � 2 C10 .D.R// and R � R0. Here and in the following,«

�

u D
1

Vol.�/

Z
�

u

for a compact subset� �M and an integrable function u on�. We denote � to be the number
determined by

1

�
C
1

�
D 1:

Proposition 6.1. Assume that .M; g/ admits a proper function � satisfying (6.1) and
that the Sobolev inequality .S/ holds. Then there exists a constant C.A;�/ > 0 such that

sup
†.R/

u �
C.A;�/

�2�V.2R/

Z
D..1C�/R/nD.R

4
/

u

for any 0 < � � 1 and a positive subsolution u of�u � �u onD.2R/nD.R0/ withR � 4R0.
In particular, M has the mean value property .M/.

Proof. The proof is by Moser iteration and can be found in [22, Chapter 19]. We may
assume 0 < � < 1

8
. For a function � with compact support in D.2R/ and a positive integer

k � 1, applying the Sobolev inequality (6.2) to �uk , we get

(6.3)
�Z

D.2R/

.uk�/2�
� 1
�

�
4AR2

V.2R/
1
�

Z
D.2R/

�
jr.uk�/j2 C �u2k�2

�
;
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where 1
�
D 1 � 1

�
. Integrating by parts and using �u � �u, we compute the first term of the

right side asZ
D.2R/

jr.uk�/j2 D k2
Z
D.2R/

jruj2u2k�2�2 C

Z
D.2R/

jr�j2u2k

C
1

2

Z
D.2R/

hru2k;r�2i

D �k.k � 1/

Z
D.2R/

jruj2u2k�2�2 � k

Z
D.2R/

.�u/u2k�1�2

C

Z
D.2R/

jr�j2u2k

� �

Z
D.2R/

�u2k�2 C

Z
D.2R/

jr�j2u2k :

Plugging into (6.3), we conclude

(6.4)
�Z

D.2R/

.uk�/2�
� 1
�

�
4AR2

V.2R/
1
�

Z
D.2R/

u2kjr�j2:

For fixed constants T1, T2, ı1 and ı2 with R
2
< T1 < T2 <

3R
2

and 0 < ı1; ı2 < 1
4
R, let

�.x/ D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

1 on D.T2/ nD.T1/;

1

ı2
.T2 C ı2 � �.x// on D.T2 C ı2/ nD.T2/;

1

ı1
.�.x/ � T1 C ı1/ on D.T1/ nD.T1 � ı1/;

0 otherwise.

Plugging into (6.4), we get

(6.5) kuk2k�;T1;T2 �

�
4AR2

V.2R/
1
� min¹ı1; ı2º2

� 1
2k

kuk2k;T1�ı1;T2Cı2 ;

where

kuka;T1;T2 D

�Z
D.T2/nD.T1/

ua
� 1
a

:

We now iterate the inequality. Fix 3R
8
< R1 < R2 <

5
4
R and 0 < "1; "2 < 1

8
. For each integer

i � 0; set

ki D �
i ;

ı1;i D
"1R1

2iC1
; ı2;i D

"2R2

2iC1

T1;i D .1 � "1/R1 C

iX
jD0

ı1;j ; T2;i D .1C "2/R2 �

iX
jD0

ı2;j :

Applying (6.5) with k D kj , ı1 D ı1;j , ı2 D ı2;j and T1 D T1;j and T2 D T2;j , and iterating
from j D 0 to j D i , one obtains

kuk2�iC1;T1;i ;T2;i �

iY
jD0

�
4AR2

V.2R/
1
� min¹ı1;j ; ı2;j º2

� 1

2�j

kuk2;.1�"1/R1;.1C"2/R2 :
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Letting i !1 yields

kuk1;R1;R2 �

�
C.�/A

V.2R/
1
� min¹"1; "2º2

��
2

kuk2;.1�"1/R1;.1C"2/R2

for 3R
8
< R1 < R2 <

5
4
R and 0 < "1; "2 < 1

8
.

So we have

kuk1;R1;R2 �
C.A;�/

V.2R/
1
2 min¹"1; "2º�

kuk2;.1�"1/R1;.1C"2/R2

�
C.A;�/

V.2R/
1
2 min¹"1; "2º�

kuk
1
2

1;.1�"1/R1;.1C"2/R2
kuk

1
2

1;.1�"1/R1;.1C"2/R2
:

Applying this estimate for each i with

R1 D R1;i D
R

2
�
�R

2

iX
jD1

1

2j
; "1 D "1;i D 1 �

R1;iC1

R1;i
;

R2 D R2;i D RC �R

iX
jD1

1

2j
; "2 D "2;i D

R2;iC1

R2;i
� 1

and iterating, we conclude that

kuk
1;R

2
;R �

C.A;�/

V.2R/�2�
kuk1;.1��/R

2
;.1C�/R:

This proves the result.

We note that only jr�j � 1 on M nD.R0/ from (6.1) was used in the proof of Proposi-
tion 6.1. The following corollary is immediate.

Corollary 6.2. Assume that .M; g/ admits a proper function � satisfying (6.1) and that
the Sobolev inequality .S/ holds. Then there exists a constant C.A;�/ > 0 such that

sup
D.R/

u �
C.A;�/

�2�

«
D..1C�/R/

u

for any 0 < � � 1 and positive subsolution u of �u � �u on D.2R/ with R � R0.

By combining Proposition 6.1 with Theorem 5.2, we have the following result.

Theorem 6.3. Assume that .M; g/ admits a proper function � satisfying (6.1) and that
the Sobolev inequality .S/ holds. Suppose that � decays quadratically. Then

dim P � �.m;A; �; ˛/

provided that ˛ <1 for some q > � � 1
2

. In the case q D � � 1
2

, the same conclusion holds
for some constant �.m;A; �/ when ˛ � ˛0.m;A; �/, a sufficiently small positive constant.
Consequently, the number of ends e.M/ of M satisfies the same estimate as well.
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We also remark that Proposition 6.1 can be localized to an end E of M as follows.
For r � R0, we denote

E.r/ D E \D.r/;

àE.r/ D E \†.r/:

Corollary 6.4. Assume that .M; g/ admits a proper function � satisfying (6.1) and that
the Sobolev inequality .S/ holds. Then there exists a constant C.A;�/ > 0 such that

sup
àE.R/

u �
C.A;�/

�2� V.2R/

Z
E..1C�/R/nE.R

4
/

u

for any 0 < � � 1 and positive subsolution u of �u � �u on E.2R/ nE.R0/ with R � 4R0.

Proof. In the proof of Proposition 6.1 one may choose the cut-off � with support in the
end E as follows:

�.x/ D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

1 on E.T2/ nD.T1/;

1

ı2
.T2 C ı2 � �.x// on E.T2 C ı2/ nD.T2/;

1

ı1
.�.x/ � T1 C ı1/ on E.T1/ nD.T1 � ı1/;

0 otherwise,

with R
2
< T1 < T2 <

3R
2

and 0 < ı1; ı2 < 1
4
R. The rest of the proof is verbatim.

It is perhaps worth pointing out that the normalization in Corollary 6.4 is by the volume
of D.2R/, not of its intersection with E. We now apply this localized version to improve
Corollary 4.6.

For an end E of M , define

˛E D lim sup
R!1

�
R2q

A.R/

Z
àE.R/

�q
� 1
q

:

Corollary 6.5. Assume that .M; g/ admits a proper function � satisfying (6.1) and that
the Sobolev inequality .S/ holds. Suppose that � decays quadratically along E. Then there
exists a constant �.m;A; �; ˛E / > 0 such that

u � ƒ.�� C 1/ on E

for any positive solution u to �u D �u on E, where ƒ > 0 is a constant depending on u,
provided that ˛E <1 for some q > � � 1

2
. In the case q D � � 1

2
, the same conclusion holds

for some �.m;A; �/ > 0 when ˛E � ˛0.m;A; �/, a sufficiently small positive constant.

Proof. First, Lemma 4.3 can be localized to the end E to yield

d

dr

�
1

r4m

Z
àE.r/

ujr�j

�
�

1

r4m

Z
E.r/nE.r0/

�uC
1

r4m

Z
àE.r0/

hru;r�i

jr�j

for any r0 � R0. Using the fact that � decays quadratically along E, one concludes that u is of
polynomial growth along E by adopting the same argument as in Proposition 4.4.
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Recall by Corollary 6.4 that

(6.6) sup
àE.R/

u �
C.A;�/

�2�
1

V.2R/

Z
E..1C�/R/nE.R0/

u

for R > 4R0 and 0 < � � 1. Following the proof of (4.19), we obtain that the function

�E .r/ D

Z
E.r/nE.R0/

u
jr�j2

�4m

satisfies the inequality

r4m�00E .r/ �
C0˛E

�
2�
q

Z r

r0

�E ..1C �/t/
1
q .�0E .t//

1� 1
q t4m�2�

1
q dt Cƒ0

for r � r0 and 0 < � � 1, where

ƒ0 D

Z
àE.r0/

.uC jruj/

and ˛E D min¹˛E ; 1º, with the constant C0 depending only on m;A;� and ˛E .
Using an induction argument as in Theorem 4.5, we arrive atZ

àE.r/
u � ƒrC.m;A;�;˛E/

for r � r0. Integrating in r and using (6.6), we conclude

u � �ƒ.��" C 1/
on end E. This proves the result.

Corresponding to an end E, let uE be the positive solution of �uE D �uE on M con-
structed in Theorem 3.2. Then 0 < uE � 1 on M nE. In particular, under the assumptions of
Corollary 6.5, uE must be of polynomial growth on M with the given growth order.
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