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ABSTRACT  

Understanding the basis of behavior requires dissecting the complex waves of gene expression 

that underlie how the brain processes stimuli and produces an appropriate response. In order to 

determine the dynamic nature of the neurogenomic network underlying mate choice, we use 

transcriptome sequencing to capture the female neurogenomic response in two brain regions 

involved in sensory processing and decision-making under different mating and social contexts. 

We use differential coexpression (DC) analysis to evaluate how gene networks in the brain are 

rewired when a female evaluates attractive and non-attractive males, greatly extending current 

single-gene approaches to assess changes in the broader gene regulatory network. We find the 

brain experiences a remarkable amount of network rewiring in the different mating and social 

contexts we tested. Further analysis indicates the network differences across contexts are 

associated with behaviorally relevant functions and pathways, particularly learning, memory and 

other cognitive functions. Finally, we identify the loci that display social context-dependent 

connections, revealing the basis of how relevant neurological and metabolic pathways are 

differentially recruited in distinct social contexts. More broadly, our findings contribute to our 

understanding of the genetics of mating and social behavior by identifying gene drivers behind 

behavioral neural processes, illustrating the utility of DC analysis in neurosciences and behavior.   
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INTRODUCTION 

Understanding how behaviors are encoded within the genome has been a long-standing and 

contentious question. Answering it requires determining how genes and gene expression are 

connected to behavior. In evolutionary biology, social and mating behaviors are of particular 

interest due to their central role in sexual selection and other core evolutionary processes.  

Studying differences in gene sequence and/or gene expression associated with different 

phenotypes and treatments has greatly contributed to our understanding of the genes encoding 

many behavioral traits, such as aggressive behavior 1,2, burrowing behavior 3, nurturing behavior4, 

response to song 5,6, response to intruders 7-9.  

In order to understand the molecular mechanisms behind the control of behavior, we need to 

determine how neurogenomic responses, rapid cascades of gene expression changes in the brain 
10, are related to different contexts and stimuli, and the behavioral responses they modulate 9,11-

14. Gene coexpression networks are a powerful method to analyze and visualize complex and large 

transcriptional datasets, providing a tool to understand the multidimensional nature of gene 

networks 15,16. Coexpression networks are constructed based on correlations between  expression 

levels of thousands of genes across different conditions, revealing clusters, or modules, of co-

regulated genes with similar transcription profiles 11,12,15. Genes that cluster together within 

coexpression networks have been shown to be part of the same regulatory pathways and/or 

possess similar biological functions 17-19, making these networks a particularly useful approach in 

non-model organisms for which knowledge of gene function may be limited. Coexpression 

networks have contributed to our understanding of the modular structure of brain transcriptional 

changes associated with many behaviors in diverse organisms, from honey bees to humans 
7,11,12,20-23. 

Capturing and understanding the plasticity that characterizes the neurogenomic responses that 

mediate behavior24 requires going beyond approaches that only allow us to visualize gene 
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networks. This is effectively done by quantifying how the connections and modularity of gene 

networks change under different conditions, i.e. how the network is rewired. Differential network 

analysis methods capture the dynamic nature of transcriptional responses, providing details on 

which modules of the network are most affected, and condition-specific changes in regulatory 

relationships between genes 17,25,26. Therefore, differential network analysis can be a powerful 

approach to identify genes with key regulatory roles. Differential network analysis has been 

previously used in cancer and disease biology to identify regulatory pathways at the basis of many 

diseases 26-32. The power of differential network approaches can be particularly useful in studies 

of behavior, which is often controlled by rapid waves of gene expression changes instead of 

changes in a handful of genes. Despite their potential, these approaches have rarely been applied 

to behavior research 20,29. 

Here, we focus on mating behavior in the Trinidadian guppy (Poecilia reticulata), a classic system 

for the study of mating behavior due to the repeated coevolution of female preference and male 

color across populations 33-36. We used laboratory wild-type and selection lines with strong and 

proven female preference for colorful males, recapitulating the female preference seen in wild 

populations 11,37. We compare the neurogenomic response across contrasting mating and social 

contexts by exposing females to i) a colorful (attractive) male that matches their preference, ii) to 

a dull (non-attractive) male or iii) another female in a general social interaction.  We used 

previously published RNA-seq data for the optic tectum, a brain region involved in sensory 

processing of visual signals, and the telencephalon, the region responsible for integrating those 

signals and mediating complex decision-making, including social and mating decisions 38-40. 

We previously identified genes that are differentially expressed in response to these behavioral 

treatments11. Our goal here, was to transcend differential expression analysis of each gene as an 

independent unit, by implementing differential network analysis to identify gene interactions that 

change in response to mating/social context. We use a series of analyses to estimate how much 
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coexpression networks change across social contexts, and to identify the biological pathways 

within the networks that are being differentially recruited across these social contexts, by 

determining which specific parts of the coexpression network undergo significant rewiring in the 

brain. We found that female brain coexpression networks undergo remarkable rewiring in 

response to mating and social context, with extraordinary flexibility associated with the evaluation 

of males with different levels of attractiveness. Interestingly, brain expression profiles are much 

less preserved across social contexts within one species, than between related species in the 

absence of social interactions41. We also identified specific modules and gene pairs associated with 

cognition, learning and memory which are flexibly utilized between networks. Moreover, these 

gene pairs can represent subnetworks/groups of genes that are differentially recruited according 

to the mating/social context.  

 

METHODS   

Study system and behavioral trials: We carried out behavioral trials with laboratory populations in 

which females have clear preference for colorful males. We used laboratory guppies derived from 

wild-type Trinidad populations and replicate laboratory selection lines selected for larger relative 

brain size 42. We focused on those guppy lines (wild-type and three separate brain-size selection 

lines) that share a clear preferences for colorful males 37, thus ensuring any patterns we detect are 

due to the neurogenomic processes associated with the studied social contexts. Moreover, we 

have recently shown that this preference is associated with a unique neurogenomic signature 11. 

Six month-old virgin females from both the wild-type and large-brain females were exposed to 

one of three experimental conditions: females were exposed to an attractive male, a dull male, or 

another female, the latter representing a control general social interaction. We created non-

overlapping pools from five individual females for each brain region in order to have sufficient RNA 

for sequencing, for a total of three pools per treatment per line. These 18 pools per brain region 
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encompass variation from 18x5 = 90 females. We allowed each focal female to observe the 

presented fish for 10 minutes before ending the experiment and dissecting the brain.  

Sequencing and assembly construction: We used RNAseq to quantify gene expression levels in two 

components of the brain, the optic tectum, associated with sensory processing of visual signals, 

and the telencephalon, responsible for decision-making, after exposure to each of the behavioral 

treatments. We had three replicate non-overlapping pools of five females each for each treatment 

and each tissue, see SI for more details. Samples were sequenced across 10 lanes on an Illumina 

HiSeq 4000 yielding on average 52 million 75bp paired-end reads per sample. Samples were 

filtered and trimmed based on quality before constructing a hybrid non-redundant reference 

transcriptome assembly (RefTrans) by merging a genome-guided assembly and a de novo assembly 

with the totality of the reads obtained as previously described 11 and in the SI methods. We then 

quantified gene expression by mapping paired reads for each sample separately to the Reference 

Transcriptome. After read mapping and filtering a total of 20,396 transcripts in the optic tectum 

and 19,571 in the telencephalon were maintained for all downstream analysis.  

Coexpression networks: We built gene coexpression networks with normalized read counts for 

each treatment in the optic tectum and telencephalon (n=18 for each tissue and n=12 for each 

pairwise comparison) using the Weighted gene correlation network analysis, WGCNA, package in 

R15,43 (See SI methods for additional details). This package allows us to build gene networks based 

on the pairwise correlations between gene expression values across treatments. Figs. S1C and S2C 

show details of the numbers of transcripts included in each coexpression network after filtering 

for genes with less than median levels of variance across all samples15,43. We then used the 

Dynamic Tree Cut method as implemented in WGCNA to detect gene modules within each 

network44. We further merged modules with highly correlated expression values by estimating 

module eigengenes as described in 15,43 (Fig. S4). 
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Measures of network preservation: We conducted a differential analysis of eigengene networks to 

evaluate overall preservation between treatment coexpression networks as in Langfelder & 

Horvath, (2007) 45. This procedure calculates an eigengene preservation measure for each module 

Cmod(Preservtreat1, treat2) relative to consensus modules, which can be averaged to estimate DPreserv 

between the two networks. DPreserv reflects the overall preservation between two networks, where 

higher values indicate a stronger preservation of correlation values between pairs of eigengenes 

in the two compared networks (see Equation 6 in 45). We evaluated whether our results were 

robust to the parameter combination used to estimate DPreserv by calculating this measure over 

multiple parameter combinations. More specifically, we changed the merging height (from 0.25 

to 0.4), the clustering method (tree vs hybrid) and hybrid tree cut height (from 0.98 to 0.999; 

Tables S2, S3 and S4). In all cases we report an average of DPreserv calculated over multiple 

combinations of module identification parameters.    

Module preservation: To evaluate network preservation in more detail, we used multiple measures 

of module preservation introduced by Langfelder et al. (2011) 46 to identify modules of interest 

that differ in gene connectivity between behavioral treatments. We focused on composite 

measures of module preservation, which aggregate multiple preservation statistics and offer a 

general measure of module preservation 46. We contrasted modules between networks following 

Oldham et al. (2006) 41, using the Attractive treatment network as reference. We initially estimated 

Zsummary for all modules, using reported thresholds in 46 to identify non-preserved modules 

between networks as detailed in the SI methods. Because Zsummary is sensitive to module size we 

also used the medianRank to identify non-preserved modules, which is less sensitive to module 

size. A module was considered to be be non-preserved between networks if it had low values of 

Zsummary AND high values of medianRank (using 200 permutations).  

Differentially coexpression analysis: We used Bayes approach for Differential Coexpression Analysis 

(BFDCA) 47, which identifies pairs of genes that have different correlation patterns in two 
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conditions 27,48-52. BFDCA is based on WGCNA and was shown to have very good performance 

compared to previous methods in accuracy and robustness using both simulation and 

experimental data 47. This untargeted approach to differential coexpression (DC) analysis uses a 

combined Bayes factor, a ratio of marginal likelihood of the data between the two alternative 

hypotheses, to evaluate which genes are differentially correlated in two conditions 47. After 

identifying DC gene pairs with BFDCA, we controlled for false positives and accounted for multiple 

testing, by integrating a random permutations approach 53. Using 1000 permuted datasets, a DC 

gene pair was considered significant if the Bayes factor for the actual expression data was larger 

than the 1% tail of the permutated data Bayes factor distribution.  

 

RESULTS  

Low coexpression network preservation across mating contexts 

We built coexpression networks by treatment for each brain tissue separately using weighted gene 

coexpression network analysis (WGCNA)15. The methods and parameters used in coexpression 

network construction are detailed in the SI methods. After building each coexpression network, 

we identified gene modules within each network, which are groups of genes with similar patterns 

of expression as determined by a topological overlap matrix 43,54.  

We initially quantified the overall preservation of the brain’s coexpression networks across 

different social contexts. The preservation of two networks is a measure of how much the topology 

of the network, and the connections between genes within the network, change across conditions, 

here mating and social contexts. We measured network preservation based on a differential 

analysis of eigengene network15,45, which are coexpression networks between module 

eigengenes. This analysis relies on estimating the conservation of module eigengenes in each 

treatment network relative to a consensus network. Eigengenes are calculated as the first principal 
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component of the gene expression data for each module46, reflecting the gene expression profile 

of each module. We included the variance in gene expression explained by each module’s 

eigengene in Table S1. This analysis integrates intramodule, as well as intermodular 

preservation45,46, and may thus reflect differential regulation of pathways and biological functions 

in the neurogenomic response triggered by different social contexts. 

We focused on DPreserv, an average measure of the preservation between all pairs of modules. 

Larger values of DPreserv reflect stronger preservation between these pairwise correlations across 

the two networks, and therefore little network rewiring. We first evaluated the preservation 

between the coexpression networks in the two male evaluation treatments (Attractive vs Dull 

mating contexts), and then between each of the male treatments and the social interaction, or 

female, treatment (Attractive vs Female, and Dull vs Female).  

Our analysis revealed overall low preservation values between Attractive and Dull treatment 

networks in both the optic tectum and the telencephalon. Average DPreserv
Att,Dull= 0.70, range = 

0.66-0.72 in the optic tectum (see further details below; Fig. S1), and average DPreserv
Att,Dull= 0.74, 

range = 0.69-0.81 in the telencephalon; Fig. S2). The reported range corresponds to the DPreserv 

values calculated over multiple combinations of module identification parameters (details below 

and in methods) to ensure our findings are not biased toward a local parameter space optimum 

(Table S2).  

The parameters used to construct the coexpression networks and identify network modules can 

affect both size and connectivity scores of identified gene modules, and therefore their 

preservation across networks. In order to ensure that our results are robust to the combination of 

parameters used, we tested a range of values for the following parameters: i) method for cluster 

identification, ii) sensitivity to split clusters (“DeepSplit”), iii) cutting height of dendrogram to 

identify modules and iv) the merging height when merging modules with similar expression values. 

We recalculated DPreserv using multiple value combinations for these parameters (26 combinations, 
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Tables S2, S3 and S4). Variation in DPreserv
Att,Dull  (Table 1, S2) confirms the low preservation values 

we find here are a robust to various parameter values. The same is the case for DPreserv
Att,Fem and 

DPreserv
Dull,Fem despite higher variability in some cases, particularly for DPreserv

Dull,Fem in the 

telencephalon (Table 1, S3 and S4). 

A previous cross-species study of neural gene expression rewiring based on the similar methods 
45 found far higher preservation values between human and chimpanzee (DPreserv

human, chimpazee= 

0.93). However, this study was based on expression data from roughly 4000 genes, far fewer than 

in our study. In order to ensure that the lower preservation values we observe are not a 

consequence of comparing much larger coexpression networks, we repeated the network 

construction and differential analysis of eigengene network using only the 5000 genes with the 

highest variance across samples (Table S2). Although the DPreserv
Att,Dull increases slightly in some 

parameter combinations, the effect was on average less than 1% of the value for the whole 

network. This suggests that the difference in the number of genes used to build these coexpression 

networks does not account for the far lower network preservation we observe across behavioral 

states, and that mating context produced a high degree of regulatory network rewiring within the 

female brain.  

We next evaluated network rewiring in response to social contexts beyond mating.  We calculated 

network preservation between each of the male treatments and the general social interaction 

(female) treatment. Average DPreserv scores were similar to those we observe between mating 

contexts, with average DPreserv
Att,Fem = 0.74 in the optic tectum and 0.70 in the telencephalon (range 

= 0.69 - 0.82 and 0.69 - 0.80 in the optic tectum and telencephalon respectively, depending on the 

network construction parameter combination; Table 1, S3). Similarly, average DPreserv
Dull,Fem = 0.73 

(range 0.68-0.86; Table 1, S4) in the optic tectum and 0.70 (0.55-0.92; Table S4) in the 

telencephalon. An ANOVA revealed significant differences across the pairwise comparisons (F-

ratio=4.85, P-value=0.011), driven by pairwise comparisons involving the attractive treatment 
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(Att-Dull and Att-Fem) in both brain tissues (post hoc Tukey test P-value=0.01 in both brain 

components, Fig. S3). Despite having overall low preservation in both tissues, DPreserv
Att,Dull had the 

lowest values in the optic tectum, but the highest in the telencephalon (Table 1; Fig. S3), likely a 

consequence of the differences in function between these two brain components.  

 

Module rewiring across social contexts 

In order to better understand the basis for the high level of network rewiring we observe, we 

identified those modules within the networks which differ most drastically across networks, thus 

driving the low preservation we observed in the previous analysis. These modules theoretically 

represent those biological processes and pathways that are flexibly recruited during exposure to 

contrasting social stimuli.  Here, we used two different measures of module preservation, 

Preservation Zsummary and Preservation medianRank46. Unlike differential analysis of eigengene 

network, which evaluates preservation of the entire network, these measures do not rely on 

identifying consensus modules, but rather focus on calculating the preservation of each module 

between two treatment networks46 (Fig. S4 illustrates differences in the identified modules across 

contexts and brain regions). Preservation statistics allow us to determine whether genes that are 

densely connected in the modules of one network remain equally connected in another treatment 

network.  

We first compared Attractive vs Dull, identifying three modules in the optic tectum and five in the 

telencephalon with Preservation Zsummary < 2 (modules OTAvsD1-3, TAvsD1-5), a threshold previously 

established to identify non-preserved modules between networks 46. Although Preservation 

Zsummary is sensitive to module size, these modules also had the highest Preservation medianRank, 

a measure far less sensitive to module size (Fig. S5, Table S5), confirming their lack of preservation 

between the Attractive and Dull coexpression networks. We then repeated this procedure to 
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identify non-preserved modules between the Attractive vs Female, and the Dull vs Female 

treatments. In both these pairwise comparisons, we identified 4- 6 non-preserved modules (Tables 

S6, S7). We determined gene overlap between all non-preserved modules to establish whether 

the same modules were being identified across all three pairwise comparisons. We found 

substantial overlap between modules TAvsF1 and TAvsF2 and modules TAvsD1 and TAvsD4 in the 

telencephalon (one tail Fisher test P-values <0.01; Table S8), suggesting we are indeed dealing 

with the same or very similar modules in the different analysis. These two modules represent gene 

biological pathways that could regulate processing of social stimuli in different contexts.  

In order to investigate what these biological functions are, we identified the Gene Ontology (GO) 

terms and KEGG pathways enriched within these non-preserved modules (Fig. S6, Table S9; Supp. 

Dataset 1, 2). Of particular note are GO terms associated with cognition as well as multiple terms 

highly relevant to neuronal processes of social behavior (i.e. regulation of NMDA & AMPA 

glutamate receptors, GABAergic synaptic transmission, Wnt signaling, JNK cascade). Moreover, we 

found enrichment for several KEGG pathways relevant to behavior. Amongst these, the GnRH and 

GnRHR signaling pathways, which have been linked to preferences for familiar males in medaka 

(Oryzias latipes) and social learning in swordtail fish (Xiphophorous hellerii) 55,56, and hormone 

signaling pathways that mediate the neuroendocrine changes related to mating decisions (i.e. 

Oxytocin and Estrogen signaling pathways, Progesterone-mediated oocyte maturation).  

 

Identification of differentially coexpressed gene pairs 

After evaluating overall network preservation and identifying non-preserved modules within the 

networks, we used a complementary analysis to determine which specific gene pairs within 

modules are differentially co-expressed (DC), driving the network rewiring we observe. These are 

pairs of genes that significantly change in correlation across social contexts (Fig. 1B), and may 

This article is protected by copyright. All rights reserved.



 

 

 

reflect differences in gene expression, mRNA stability or splicing41 and point to the biological 

pathways that change across social contexts. We used differential coexpression analysis in 

BFDCA47, a complementary approach to the more commonly used differential expression analysis, 

which identifies loci with different regulatory connections within the network independent of 

whether they are differentially expressed17,47,57. BFDCA uses gene expression levels to identify 

genes that have significantly different correlation values between two treatments, referred to as 

differentially coexpressed (DC) gene pairs (Fig. 1B). For more details see SI methods and Wang et 

al (2017).  

Comparing the two male treatments, we identified 567 DC gene pairs in the optic tectum and 30 

in the telencephalon (Supp. Dataset 3). These DC gene pairs passed permutation-based 

significance thresholds (see details in SI methods), and were thus classed as displaying significantly 

different correlations. Some of these genes have multiple significant DC connections with other 

genes, suggesting they may play an important role in modulating male evaluation (Table S10, Fig. 

S7). Our data indicates there is a more extensive rewiring of the coexpression network at the 

sensory-processing level, in the optic tectum, than at the decision-making level (telencephalon) 

when a female is evaluating the two different types of males (Fig. S7). This suggests that sensory 

processing of different social stimuli tested here involves a larger number of genes and thus 

portions of the network, while the early decision-making process generated by those stimuli is 

initiated by fewer genes of large effect.  

GO term and KEGG pathway enrichment tests confirm the functional relevance of the DC gene 

pairs we identified, revealing an overrepresentation of genes associated with multiple metabolic 

processes, as well as visual transduction and cognition among optic tectum DC gene pairs (Fig. S8). 

In the telencephalon, DC gene pairs were significantly enriched for terms associated with learning 

and memory, cognition, visual behavior and multiple terms related to synaptic transmission (Fig. 

S8, Supp. Dataset 3). Moreover, terms associated with pregnancy and control of hormone levels 
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suggest the differential regulation of pathways associated with the neuroendocrine and 

receptivity changes that occur in females with the decision to mate (Fig. S8). The DC gene pairs we 

identified are also part of genetic pathways highly relevant to behavior, including KEGG pathways 

associated with many neuropsychiatric disorders such as Alzheimer’s disease (summarized in 

Table S11).  

Next, we identified DC gene pairs in the two mating treatments relative to the social control 

condition in which females were exposed to another female. Surprisingly, we find no DC gene pairs 

common to all three pairwise treatment comparisons (Fig. 2). This suggests that there are no 

obligatory regulatory connections that need to be involved in all social contexts. It is worth 

highlighting that this result contrasts with our previous findings of a group of differentially 

expressed (DE) genes that are common to all three comparisons, suggesting they contribute to 

behavioral control by changing their expression level in a context-dependent manner11. However, 

we did identify genes in each brain region that belong to all non-preserved modules identified in 

all three pairwise treatment comparisons from our previous analysis (Table S8D and S8H). Finding 

no overlap with BFDCA might reflect limitations of the method, or it could be a consequence of 

the stringent permutation procedure we used to determine BFDCA gene pair significance. Taken 

together, our analysis suggests there are genes that change their expression and their network 

connections across all social contexts, while others are only recruited in response to specific social 

stimuli.  

Finally, we investigated the genes that could be regulating rewired modules. We used the human 

TransFac database58 of transcription factor motifs (TF motifs) to predict the transcription factor 

motifs that are significantly enriched in non-preserved modules, with the caveat that humans and 

guppies are distantly related species. We found each of the non-preserved modules is predicted 

to be regulated by a different combination of transcription factors, including multiple transcription 

factors relevant to behavior, cognition, memory and learning (see complete list in Supp. Dataset 

This article is protected by copyright. All rights reserved.



 

 

 

4). Importantly, many of the predicted TF motifs correspond to genes identified as DC gene pairs 

with BFDCA (Table S12), confirming their role as regulators of the differences in the neurogenomic 

response triggered by the different social stimuli we tested. Moreover, many of the DC gene pairs 

are also part of non-preserved modules suggesting these rewired connections are the basis of 

differences in expression within these modules. This is particularly striking in the optic tectum, 

where 132 genes that form DC gene pairs are found within non-preserved module OT1 (Table 

S12). Two genes, KLF5 and TCF12, are particularly noteworthy. These two genes are differentially 

coexpressed in the optic tectum, and were also identified in our previous study 11 as differentially 

expressed transcription factors, with a role modulating male evaluation in guppy females with and 

without female preferences. More details into the overlap between genes found to be 

differentially expressed in our previous study 11 and DC gene pairs can be found in Table S13.  

 

Subnetworks activated in a context-dependent manner 

In order to illustrate how these DC gene pairs could represent subnetworks that are differentially 

activated in response to different mating and social stimuli, we analyzed the subnetworks of genes 

GRIN1 and GLUL in more detail. These genes were identified among the genes with the highest 

number of DC connections in the optic tectum and telencephalon respectively (Table 2), and 

change their connections to other genes in a context-dependent manner (Fig. 3). GRIN1 and GLUL 

have known roles regulating synaptic processes involved in learning and memory, and have 

previously been associated with social behavior and neuropsychiatric disorders59-62. GRIN1 in 

particular, encodes the glutamate ionotropic receptor NMDA type subunit 1, which has previously 

been associate with mate preference in poecilids after pharmacological manipulation62. 

GRIN1 is differentially coexpressed with two genes, TUBB4b and CLCN6 (Fig. 3A), and is among the 

genes that belong to all the non-preserved modules identified across comparisons in the optic 
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tectum (Table S8D), providing additional evidence of its role in the processing of social stimuli. The 

GRIN1 subnetwork differs whether a female is evaluating an Attractive vs a Dull male. Remarkably, 

the connections between genes in the GRIN1 subnetwork are completely absent in a non-mating 

context, when a female is exposed to another female (Fig. 3B).  

We see a similar example of extensive rewiring with the GLUL subnetwork in the telencephalon. 

This gene has significant differential correlations with four other genes (Fig. 3C) that potentially 

trigger drastic rewiring (Fig. 3D). We see a very high number of connections in the telencephalon 

within this subnetwork when a female evaluates an attractive male that she would potentially 

chose to mate with. We can see the extent to which these connections change between mating 

contexts in Fig. 3D. Importantly, many gene connections are only present in mating contexts, and 

the GLUL subnetwork has very few connections in our social (Female) treatment, making this 

another example of gene connections that are only associated with mate evaluation (Fig. 3D). 

 

DISCUSSION 

Using systems biology methods novel to the study of behavior, we found remarkably low network 

preservation across social contexts which can be interpreted as an extraordinary degree of 

flexibility in the transcriptional state of the brain across various mating and social stimuli. Our 

preservation measures among different social contexts are far lower than similar analyses done 

between different species, which obtained values of brain network preservation between human 

and chimpanzee of DPreserv
human, chimpazee= 0.93 in the absence of any social interactions (data from 

41 also analyzed in 45). Our results suggest that the topology and gene connections of the optic 

tectum and the telencephalon coexpression networks change more dramatically in female guppies 

evaluating different types of males, than between humans and chimpanzees in the absence of 

social stimuli.  
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It is important to consider a few caveats when interpreting the low network preservation values 

we find relative to this previous human-chimpanzee study41. The first issue to note is that both 

studies are based on different gene expression quantification techniques. Here we use RNAseq, 

while Oldham et. al41 used microarrays, with predetermined transcripts, that could increase Dpreserv 

estimates compared to RNAseq. However, given the high correlation between these technologies 

in gene expression quantification across the majority of the expression spectrum63,64, it is unlikely 

that this accounts for the majority of the difference in Dpreserv values we observe.  Additionally, 

running the analysis under diverse conditions confirmed these results are robust to changes in the 

parameter combination used in the analysis. A similar differential eigengene network analysis 

revealed overall preservation values between the eigengene networks of multiple mouse tissues 

(liver, brain, muscle and adipose tissue) ranging between 0.85 and 0.93, and 0.94 between male 

and female livers45. Our surprising findings indicate greater intraspecific plasticity in neurogenomic 

response than the observed baseline differences between species. Moreover, these findings 

provide an estimate of how large the scale of gene coexpression network remodeling can be across 

the different neurogenomic states triggered by different social stimuli, and thus the complexity of 

the brain’s response to these various stimuli. 

Further analysis suggests the preservation between the coexpression networks of each 

mating/social context we tested is driven by a handful of modules. Two of these modules are 

identified as having low preservation in both pairwise comparisons involving the Attractive male 

treatment. This finding suggests these modules group the biological processes that differentiate 

the processing of an attractive male stimulus from the other stimuli we tested.  Gene Ontology 

(GO) and KEGG pathway analysis indicate that these modules are enriched in behaviorally relevant 

terms associated with learning and memory, mating behavior, cognition and multiple biological 

pathways highly relevant to neuronal processes relevant to social behavior (Fig. S6, Table S9 and 

Supp. Dataset 1 GO and 2 KEGG). These findings are mirrored by recent reports of a similar over-
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representation of learning and memory genes in a neurogenomic study of poecilid mate 

preference65. Our results are consistent with previous studies suggesting neurogenomic states at 

the basis of different behaviors involve specific modules within the brain coexpression network, 

rather than genes interspersed throughout the network 21,66,67. Although most of these studies 

rely on different methodologies, our findings contribute further evidence to this model and our 

understanding of the way social behavior is controlled in the brain.  

Although rare, the results of existing studies using differential coexpression in the study of 

behavior 20,29 are consistent with our findings in that specific network modules group genes with 

the most significant changes in connectivity. These studies find concordant changes in connectivity 

associated with the studied behaviors across various genetic lines, despite having found limited 

and/or inconsistent changes in the gene expression 11. Like ours, these results speak to the value 

of differential coexpression analysis in behavior, as a complementary approach to the more 

frequently employed differential expression methods. One of these studies 20,29, which focused on 

catalepsy behavior in mice, is promising as it links specific polymorphisms to the gene connectivity 

changes triggered by a specific behavior in the brain coexpression network. Aside from identifying 

potential regulators of the studied behavior, this work once more validates the biological 

significance of these differential coexpression methods and their potential in the study of 

behavior.  Here, a word of caution is appropriate since our sample size is on the lower range and 

could be limiting our power to detect all connectivity changes within these coexpression networks.  

Identifying genes that rewire their connections across mating conditions brings to light loci that 

are important in mediating mating behavior. These DC genes could potentially be the regulators 

of the pathways that are differentially activated when the brain produces different behaviors. 

Here, we found subnetworks that are only recruited in a mating context, not during a general 

social interaction, as we illustrated with the GRIN1 and GLUL examples. These are examples of 

gene pathways that are only recruited in a context dependent manner during different social 
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interactions. Moreover, identifying DC genes that are only connected to other genes in mating or 

non-mating contexts provides important insight into the mechanisms by which the brain mediates 

the response to different social stimuli, such as mating vs non-mating social encounters. Our study 

suggests an important role of gene connectivity changes in the brain’s neurogenomic response to 

social stimuli, and illustrates the power and potential of differential coexpression analysis in the 

study of behavior and evolutionary biology. These methods go beyond differential expression to 

show how the connections between genes change in different conditions and offers a view of 

important gene players that cannot be detected when studying differential expression11.  
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FIGURE LEGENDS 

Figure 1: Methodology overview. 

Using gene expression (RNAseq) data for each treatment, we investigated network rewiring 
between treatments by building coexpression networks for each treatment. We then performed 
two types of analysis. (A) We initially evaluated whole network and module preservation. Then, 
(B) we identified differentially co-expressed (DC) gene pairs using the BFDCA algorithm. (A) 
Example of co-expression network produced by calculating correlations between genes based on 
their expression. Each node corresponds to a gene and its size is proportional to the number of 
genes it is connected to. (B) We used the BFDCA algorithm 47 to identify DC gene pairs. Using the 
gene expression levels for all genes that vary between the two treatments, BFDCA calculates 
Bayes factors and identifies DC gene pairs. Significant DC pairs are selected by filtering out DC 
pairwise correlations between genes with Bayes factor values below a threshold, then calculating 
each DC pair’s weight to reflect its importance.  We used a permutation approach to select 
significant DC gene pairs. Significant DC gene pairs belong to several categories according to how 
the correlations of both genes differ between treatments. The original categories from Wang et 
al. (2017) were ‘re-wiring’, “cross” and “shift”; here we replaced “re-wiring” by “correlation loss” 
to avoid confusion with the more general use of rewiring we adopted thought the manuscript. 
For insets illustrating these categories, X and Y-axis represent expression levels for differentially 
coexpressed genes A and B respectively. 

 

Figure 2: Preservation statistics of Attractive modules in Dull treatment samples for (A) the optic 
tectum and (B) the telencephalon.  

Venn diagram showing the number of significant DC gene pairs determined to be significant after 
conducting permutations in each pairwise treatment comparison. In each case the top number 
in black corresponds to DC gene pairs in the optic tectum, and the lower number in blue 
corresponds to the number of telencephalon DC gene pairs. Arrows and text are used to 
facilitate the biological interpretations of each area of the Venn diagram.  
 

Figure 3: Examples of differential correlations (DC) for genes of interest (A-C) and corresponding 
network re-wiring (B-D) across social contexts in optic tectum and telencephalon networks.  

In the optic tectum we have highlighted differential correlations of gene GRIN1, found to be 
differentially correlated across treatments (A-B) and gene GLUL in the telencephalon (C-D). Panels 
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A and C represent correlations between genes of interested and other genes with which we found 
significant differential correlations between treatments. The axes represent expression levels for 
each gene, each point corresponds to a sample and the ellipses represent the 95% contours of the 
bivariate normal density estimated for each treatment color-coded according to legend. Asterisks 
of the appropriate color next to ellipses mark correlations higher than 0.65.  

B & D: To construct the subnetworks of each gene, its neighbors were selected on the global 
coexpression network build with all samples from all treatments. This way it is possible to 
identify all the neighbors for GRIN1 and GLUL that have significant correlation with these genes 
in any of the behavioral treatments. These sets of genes were then used to build subnetworks 
separately for each treatment (B-D). Only correlations higher than 0.65 are shown, with positive 
correlations represented by green edges and negative correlations by red edges. Genes 
highlighted in blue were found to have significant DC with the genes of interest in each tissue, 
and thus correspond to the genes in scatterplots A and C. Size of the gene nodes is proportional 
to the gene connections it has within the network (degree). 
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TABLES  

Table 1: 

Table of Dpreserv values 

 
OPTIC TECTUM TELENCEPHALON 

DPreserv estimates 
Pairwise comparison 

ANOVAδ 
DPreserv estimates 

Pairwise comparison 
ANOVAδ 

 Average 
DPreserv 

Variability* F-ratio P- value 
Average 
DPreserv 

Variability * F-ratio P- value 

Attractive-Dull 0.70 0.66-0.72 

4.85 0.01* 

0.74 0.69-0.81 

5.16 0.008** Attractive-Female 0.74 0.64-0.82 0.70 0.64-0.80 

Dull-Female 0.73 0.68-0.86 0.70 0.55-0.92 

* Variability when running the model over a wide range of module detection parameter 
combinations. 
δ ANOVA performed with the purpose of determining whether there are significant differences in 
our estimates of DPreserv across the three pairwise comparisons, Attractive vs Dull,  Attractive vs 
Female and Dull vs Female in both brain tissues (further details in Fig. S3).  
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