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Abstract

This thesis is a collection of work within the geometric framework for Painlevé equations.

This approach was initiated by the Japanese school, and is based on studying Painlevé equa-

tions (differential or discrete) via certain rational surfaces associated with affine root sys-

tems. Our work is grouped into two main themes: on the one hand making use of tools

and techniques from the geometric framework to study problems from applications where

Painlevé equations appear, and on the other hand developing and extending the geometric

framework itself.

Differential and discrete Painlevé equations arise in a wide range of areas of mathematics

and physics, and we present a general procedure for solving the identification problem for

Painlevé equations. That is, if a differential or discrete system is suspected to be equivalent

to one of Painlevé type, we outline a method, based on constructing the associated surfaces

explicitly, for identifying the system with a standard example, in which case known results

can be used, and demonstrate it in the case of equations appearing in the theory of orthogo-

nal polynomials.

Our results on the geometric framework itself begin with an observation of a new class of

discrete equations that can described through the geometric theory, beyond those originally

defined by Sakai in terms of translation symmetries of families of surfaces. To be precise,

we build on previous studies of equations corresponding to non-translation symmetries of

infinite order (so-called projective reductions, with fewer parameters than translations of the

same surface type) and show that Sakai’s theory allows for integrable discrete equations to

be constructed from any element of infinite order in the symmetry group and still have the

full parameter freedom for their surface type.

We then also make the first steps toward a geometric theory of delay-differential Painlevé

equations by giving a description of singularity confinement in this setting in terms of map-

pings between jet spaces.



Impact Statement

The work in this thesis has implications for both the general theory of Painlevé equations

and the applications in which they appear.

For the theory itself, the construction of equations from non-translation symmetries in Chap-

ter 4 has been published [Sto18] and is likely to give a description of some discrete systems

obtained recently independently of the geometric framework [GRT+14, GRT+16, RG17,

GRWS20]. These are claimed to constitute some fifty new discrete Painlevé equations, and

we hope that their geometric description in terms of non-translation symmetries will deter-

mine their relation to those originally defined by Sakai and how many are truly inequivalent.

The work in Chapter 5 is the first time a geometric approach has been taken to the study of

delay-differential Painlevé equations and will hopefully stimulate interest in this direction.

It also develops new techniques which overcome one of the central difficulties in their study,

namely the fact that they may admit infinite families of distinct singularity patterns. This

has the potential to widen the range of applications of the theory of Painlevé equations, since

delay-differential equations appear in areas such as mathematical biology and economics,

which are different from those where discrete and differential Painlevé equations are known

to commonly arise.

The method proposed in Chapter 3 for solving the identification problem represents a con-

siderable improvement on the ways in which this was done previously, namely either by

inspection or by brute force computation of the transformation to some choice of standard

example one is aiming for. Using the geometric approach, this can be done without prior

knowledge of which Painlevé equation the system is equivalent to, and is feasible regardless

of how complicated the form of the system from applications is. This method has already

been adopted by other researchers to study different examples from orthogonal polynomials

[CDH19]. Further, the method has led to new results on the orthogonal polynomials side,

which have the potential to be interpreted geometrically [DFS19a].
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Chapter 1

Introduction

Our main focus in this thesis is the geometric framework for the study of Painlevé equa-

tions, developed in particular by K. Okamoto in the differential case, and H. Sakai for

discrete Painlevé equations. Before our treatment of this theory in Chapter 2, we begin by

placing it in the context of previous developments with a historical overview of the Painlevé

equations. In particular, we give a brief overview of the differential Painlevé equations and

some reasons why they are considered in the context of integrable systems, namely their re-

lation with integrable partial differential equations (PDEs), their associated linear problems

from monodromy-preserving deformations, and their Bäcklund transformation symmetries.

We then recall how ideas were developed regarding discrete analogues of them, pointing

out the ways in which these inform Sakai’s theory of discrete Painlevé equations.

1.1 The Painlevé differential equations

1.1.1 The Painlevé property

The differential Painlevé equations are six nonlinear second-order ordinary differential

equations (ODEs) named after P. Painlevé, who originally studied them with a view to

defining new special functions. Many classical special functions satisfy linear second-order

ODEs, and can be defined in terms of their solutions. A natural idea, pursued by Painlevé,

Gambier and R. Fuchs, was to define special functions in terms of the solutions of ODEs

which are nonlinear. The main difficulty encountered when departing from the linear case

is related to the locations of singularities of solutions of nonlinear ODEs in the complex

plane. In the linear case, the equation dictates the only possible locations of singularities of

the solutions. Take a linear second-order ODE

d2y

dz2
+ p1(z)

dy

dz
+ p0(z)y = 0, (1.1)
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where p0(z), p1(z) are meromorphic on C. We extend the independent variable space to the

Riemann sphere C̃ = C∪{∞} in the natural way, by introducing Z = 1/z so that the point

at infinity is given by Z = 0 and the differential equation in this chart is

d2y

dZ2
+ p̃1(Z)

dy

dZ
+ p̃0(Z)y = 0, (1.2)

where

p̃1(Z) =
2Z3 − Z2p1(1/Z)

Z4
, p̃0(Z) =

p0(1/Z)

Z4
. (1.3)

We say z0 ∈ C is a singular point of the equation if it is a pole of either p1(z) or p0(z),

and z0 = ∞ is a singular point if Z = 0 is a pole of either p̃1(Z) or p̃0(Z). Importantly,

if a solution fails to be analytic at some z0 ∈ C ∪ {∞}, then z0 is a singular point of

the equation. Thus for a linear second-order ODE with meromorphic coefficients we can

obtain a Riemann surface on which the general solution defines an analytic function. We

remove the singular points of the equation from the Riemann sphere and consider a covering

space of this which allows for the branching about these singular points. Allowing regular

singular points, where each p2−i may have a pole of order at most i, the Frobenius method

applied to the equation near such a point still gives two independent solutions, possibly

with algebraic branching, so we again have a single Riemann surface on which the general

solution is a well-defined function.

The problem with nonlinear ODEs is that different solutions may have different singularity

structures. For example, if we take the first-order equation

dy

dz
+ y2 = 0, (1.4)

separation of variables allows us to obtain the general solution

y(z) =
1

z − C
, (1.5)

where C is a constant of integration. From this, we see that solutions given by different

values of C will have poles at different locations, and such singularities are called movable.

A more illustrative example is the equation

dy

dz
+

1

y
= 0. (1.6)



1.1. The Painlevé differential equations 13

Subject to the initial condition y(0) = y0 ∈ C\{0}, near z = 0 we have a unique analytic

solution

y(z) =
√

2z − y2
0, (1.7)

on the disc centred at the origin of radius y2
0/2. However, we have an algebraic branch point

at z = y2
0/2, so altering the initial conditions gives particular solutions with branching at

different points, and there is no single Riemann surface on which to place all solutions.

In the approach of Painlevé et. al., the way to avoid this problem is to require that second-

order nonlinear ODEs have a simple singularity structure in the sense of the following con-

dition, now known as the Painlevé property:

Definition 1.1.1. An ODE is said to have the Painlevé property if all solutions are single-

valued about all movable singularities.

Painlevé, Gambier and R. Fuchs [Pai02,Fuc07,Fuc11,Gam10] considered a large class

of second-order ODEs, namely those of the form

y′′ = F (y, y′, z), (1.8)

where ′ = d
dz and F is rational in y, y′ and locally analytic in z, and isolated those for which

the Painlevé property held. Up to equivalence by Möbius transformations of the depen-

dent variable and analytic changes of independent variable, fifty classes of equations were

obtained. Among these were six classes whose representatives are given by the Painlevé

equations:

PI : y′′ = 6y2 + z

PII : y′′ = 2y3 + zy + α

PIII : y′′ =
(y′)2

y
− y′

z
+ α

y2

z
+
β

z
+ γy3 +

δ

y

PIV : y′′ =
1

2y

(
y′
)2

+
3

2
y3 + 4zy2 + 2(z2 − α)y +

β

y

PV : y′′ =

(
1

2y
+

1

y − 1

)
(y′)2 − y′

z
+

(y − 1)2

z2

(
αy +

β

y

)
+ γ

y

z
+ δ

y(y + 1)

y − 1

PVI : y′′ =
1

2

(
1

y
+

1

y − 1
+

1

y − z

)
(y′)2 −

(
1

z
+

1

z − 1
+

1

y − z

)
y′

+
y(y − 1)(y − z)
z2(z − 1)2

(
α+ β

z

y2
+ γ

z − 1

(y − 1)2
+ δ

z(z − 1)

(y − z)2

)
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In each case y = y(z), ′ = d
dz and α, β, γ, δ are complex parameters. These cannot be

solved in general in terms of known functions, namely elliptic functions and classical special

functions solving linear ODEs. Their solutions are known as the Painlevé transcendents,

which together with known functions allow all fifty classes to be solved.

Removing the locations of fixed singularities of each equation PJ , we obtain a subset BJ ⊂

C̃, on whose covering space all solutions are meromorphic:

BI = C̃\{∞}, BII = C̃\{∞}, BIII = C̃\{0,∞},

BIV = C̃\{∞}, BV = C̃\{0,∞}, BVI = C̃\{0, 1,∞},
(1.9)

So we have each solution of PJ defining a single-valued function on a Riemann surface

covering BJ , and in this sense the Painlevé transcendents are regarded as new special func-

tions, which play a central role in modern nonlinear physics, see e.g. [GLS02, FIKN06,

Cla06, Cla10] and numerous references within.

1.1.2 Integrability

We now briefly mention some of the reasons that the study of Painlevé equations is placed

within the field of integrable systems. An important remark to make at this point is that

there is a consensus that there is no one definition of integrability, even in a single class

of equations, but rather a number of properties or features of systems that have come to

be associated with it. The Painlevé equations exhibit many such hallmarks of integrability,

which we outline now.

Firstly, we have a connection between Painlevé equations and integrable nonlinear partial

differential equations (PDEs), which possess infinitely many conserved quantities and have

a Lax representation as the compatibility condition for a pair of linear systems, which allows

certain initial value problems to be solved exactly. Each of the Painlevé equations can

be obtained as a kind of reduction of an integrable PDE, which means that they govern

solutions of the PDE satsifying a kind of similarity constraint. We illustrate this, following

[AC91], in the case of perhaps the most famous of all integrable PDEs, the Korteweg-de

Vries equation:

ut + 6uux + uxxx = 0. (1.10)
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Here u is a function of x and t, with partial derivatives denoted by subscripts. If we take the

following similarity reduction, i.e. assume a solution is of the form

u(x, t) =
w(z)

(3t)
2
3

, z =
x

(3t)
1
3

,

then the equation (1.10) implies that w(z) satisfies

w′′′ + 6w′w − zw′ − 2w = 0. (1.11)

If we take a solution y(z) of PII for arbitrary parameter α, it can be checked by direct

calculation that

w(z) = −(y′(z) + y(z)2) (1.12)

satisfies (1.11). Altenatively, one may make this substitution in the third-order equation

(1.11) and integrate once to obtain PII, with the parameter α appearing as the constant of

integration. Other such reductions applied to other well-known integrable PDEs such as the

sine-Gordon and Boussinesq equations have been shown to gives cases of the remaining

Painlevé equations [AS77, ARS80a, ARS80b, AC91, BCH96].

Another parallel with integrable PDEs is in the fact that the Painlevé equations admit a

kind of Lax representation, in that they arise as the compatibility condition for an as-

sociated pair of linear systems of differential equations. This comes from the theory

of monodromy-preserving deformations of linear systems, the details of which are not

important for the results of this thesis, but we will present the associated linear prob-

lem in the case of PII following [AC91], which was originally obtained by Flaschka and

Newell [FN80]. Consider the following coupled systems of linear differential equations for

w(z, t) = (w1(z, t), w2(z, t))T :

wt =

 −i(4t2 + 2y2 + z) 4ty + 2iy′ + α/t

4ty − 2iy′ + α/t i(4t2 + 2y2 + z)

w, (1.13a)

wz =

 −it y

y it

w, (1.13b)

where y = y(z) and α is a free complex parameter. The compatibility condition of this

pair of equations, i.e. wzt = wtz , is exactly that y(z) satisfies PII with parameter α. The
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connection with the theory of monodromy-preserving deformations is in the fact that if

we consider the monodromy of the system (1.13a), the equation (1.13b) is precisely the

condition on a deformation of the solution w in z to preserve the monodromy data for the

singular points at t = 0 and t =∞, see [AC91,FN80,FIKN06]. Each of the six differential

Painlevé equations arises in such a way, and in particular PVI was originally obtained by R.

Fuchs as the condition for monodromy-preserving deformation of a Fuchsian system with

four regular singular points [Fuc07,Fuc11]. This gives a powerful approach for studying the

Painlevé equations in terms of Riemann-Hilbert problems (see e.g. [FIKN06] and references

within), but beyond the conceptual link it provides with integrable PDEs it is not within the

scope of this thesis.

1.1.3 Bäcklund transformation symmetries

A defining feature of the Painlevé equations, also associated with integrability in general, is

the presence of symmetries. For each of the Painlevé equations involving one or more pa-

rameters (all but PI), there exist transformations that relate solutions for different parameter

values. These are known as Bäcklund transformations and they are a key motivation for the

geometric framework for both differential and discrete Painlevé equations. We will begin by

illustrating this in the example of PIV, following [Nou04]. This makes use of the so-called

symmetric form of PIV, which is a special case of a more general system first introduced by

Veselov and Shabat as a dressing chain related to Schrödinger operators [VS93]. This more

general system enjoys affine Weyl group symmetries generalising those from the PIV case,

which were first described geometrically by Adler [Adl93,Adl94], and was later studied by

Noumi and Yamada [NY98b].

Consider the system of differential equations

df0

dt
= f0(f1 − f2) + a0,

df1

dt
= f1(f2 − f0) + a1, a0 + a1 + a2 = 1,

df2

dt
= f2(f0 − f1) + a2,

(1.14)

where a0, a1, a2 are parameters subject to the constraint given above. We note that this

appears to be a third order autonomous system, but the condition on the parameters implies,

by summing the three equations, that f0 + f1 + f2 = t+ c for some consant of integration

c. We can use freedom of translation in the independent variable to set it, without loss of
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generality, to be zero so we have the normalisation f0 +f1 +f2 = t and indeed two degrees

of freedom.

This normalised system gives a second-order equation for f1 which is then equivalent, via

y(z) = −
√

2f1(t), t =
√

2z, to the fourth Painlevé equation PIV for y(z), where the

parameters are related by α = a0 − a2, β = −2a2
1. Now make the following change of

variables:

f̃0 = f0, f̃1 = f1 +
a0

f0
, f̃2 = f2 −

a0

f0
.

This leads to the same system, but with different parameters:

f̃ ′0 = f̃0(f̃1 − f̃2) + ã0 ã0 = −a0

f̃ ′1 = f̃1(f̃2 − f̃0) + ã1 ã1 = a1 + a0

f̃ ′2 = f̃2(f̃0 − f̃1) + ã2 ã2 = a2 + a0

(1.15)

Thus, if we have a solution of (1.14) for parameters a0, a1, a2, then we obtain one for

ã0, ã1, ã2 via this transformation, and the normalisation ã0 + ã1 + ã2 = 1 is preserved.

There are other such transformations and they form an action of the extended affine Weyl

group of type A
(1)
2 on the field of rational functions of the variables and parameters

C(f0, f1, f2; a0, a1, a2). This group is defined by the presentation

W̃ (A
(1)
2 ) =

〈
s0, s1, s2, π | s2

j = π3 = (sjsj+1)3 = 1, πsj = sj+1π
〉
, (1.16)

where j ∈ Z/3Z, and the action of each generator is given by a map (f0, f1, f2; a0, a1, a2) 7→

(f̃0, f̃1, f̃2; ã0, ã1, ã2), from the corresponding row of Table 1.1, with any composition of

such transformations providing a symmetry of the differential system in the same sense.

ã0 ã1 ã2 f̃0 f̃1 f̃2

s0 −a0 a1 + a0 a2 + a0 f0 f1 + a0
f0

f2 − a0
f0

s1 a0 + a1 −a1 a2 + a1 f0 − a1
f1

f1 f2 + a1
f1

s2 a0 + a2 a1 + a2 −a2 f0 + a2
f2

f1 − a2
f2

f2

π a1 a2 a0 f1 f2 f0

Table 1.1: Action of W̃ (A
(1)
2 ) on variables and parameters in symmetric PIV
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Extended affine Weyl groups will be treated in detail in Chapter 2, and each Painlevé

equation that involves parameters admits an action of such a group by Bäcklund transforma-

tion symmetries, which we list in Table 1.2. We note that PIII is usually considered as three

separate subcases corresponding to different constraints on the parameters, which lead to

different symmetry groups, but here we list only the type corresponding to the most general

case where no constraints are imposed on the parameters.

Equation PI PII PIII PIV PV PVI

Symmetry − A
(1)
1 (A1 +A1)(1) A

(1)
2 A

(1)
3 D

(1)
4

Table 1.2: Bäcklund transformation symmetry types of differential Painlevé equations

Here the extended affine Weyl groups are labeled by their associated Dynkin diagram

of affine type, sometimes called an extended Dynkin diagram. In Sakai’s theory, each of

these groups of Bäcklund transformations will be recast as an action on an associated family

of rational surfaces, which we will outline in Chapter 2.

1.1.4 Okamoto’s space

The connection between Painlevé equations and affine Weyl groups is deeper than their

actions as Bäcklund transformation symmetries. This was observed by K. Okamoto, and

forms one of the key ideas motivating Sakai’s theory. The differential Painlevé equations

admit a geometric description in terms of rational surfaces obtained by blowing up certain

singularities, which leads to a space on which the equation is, in a sense, regularised. Dis-

covered by Okamoto [Oka79], for each PJ this is a bundle over the independent variable

space BJ , as given in (1.9), whose fibres are rational surfaces with certain curves removed.

The bundle, known as Okamoto’s space, admits a foliation by solution curves of the ODE

system transverse to the fibres, and each fibre can be regarded as a space of initial condi-

tions for the system. The connection with affine Weyl groups is hinted at by the fact that

the curves removed from each fibre (the inaccessible divisors) have irreducible components

whose intersection configuration is given by another Dynkin diagram of affine type. We will

give a detailed treatment of the construction of Okamoto’s space in Chapter 2 but for now

we present the Dynkin diagrams associated with the symmetries and inaccessible divisors

for each of the differential Painlevé equations in Table 1.3. Again PIII is usually considered

according to three subcases because the intersection configuration can change depending
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on parameter constraints. Here we give the case where the parameters are generic, which

corresponds to the symmetry type for PIII in Table 1.2.

Equation PI PII PIII PIV PV PVI

Surface E
(1)
8 E

(1)
7 D

(1)
6 E

(1)
6 D

(1)
5 D

(1)
4

Symmetry − A
(1)
1 (A1 +A1)(1) A

(1)
2 A

(1)
3 D

(1)
4

Table 1.3: Surface and symmetry types for the differential Painlevé equations

Note that as we move from PI to PVI the subscript for the surface type decreases, while

that of the symmetry type increases. This is no coincidence, and there is a complementary

relationship between the two, which was one of Okamoto’s observations built on and for-

malised by Sakai, as we will illustrate in Chapter 2.

Studying Painlevé equations via Okamoto’s space leads to many novel results inaccessible

by working on the level of the equations themselves (see e.g. [JR19, JR18, DJ11, HJ14]),

and can be used to explain many of their properties (see [KNY17] and references within).

It was also shown that Okamoto’s space essentially determines the differential equation in

each case [ST97, MMT99, Mat97], so the study of Painlevé equations essentially reduces

to the geometry of the associated space. This is a key idea behind Sakai’s theory, where

the focus is on using special geometric objects to define discrete systems with integrability

properties.

1.2 Discrete Painlevé equations

The definitive framework for the study of discrete Painlevé equations was provided by H.

Sakai in a seminal paper [Sak01]. This generalised the results of Okamoto, and provides

the theoretical foundation for this thesis. Prior to this, equations had been proposed as

discrete Painlevé from a variety of perspectives, including as those which give one of PI-

PVI in a continuum limit [RGH91], via discrete versions of isomonodromy deformation

[JS96], from birational representations of affine Weyl groups [NY98a], as reductions of

discrete analogues of integrable PDEs [NP91, Hof99], to name a few. Our discussion here

will focus on the ideas that most directly inform Sakai’s theory, namely the singularity

confinement property for discrete equations, and deautonomisations of Quispel-Roberts-

Thompson (QRT) mappings based on this. Among the most significant positive reflections
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on Sakai’s work is that it has been consistently observed to cover examples proposed by

other means to be discrete Painlevé, examples of which we will see in later chapters.

1.2.1 Singularity confinement

In the 1990s, important steps were made towards defining and understanding discrete ana-

logues of the Painlevé equations through the proposal by Ramani and Grammaticos, to-

gether with Papageorgiou, of singularity confinement [GRP91] as the discrete counterpart

to the Painlevé property. This analogy comes from the idea of isolating nonlinear equations

with simple singularity structures. We will illustrate this in the example of the second-order

difference equation

fn+1 =
(fn − k)(fn + k)fn−1

k2 − f2
n + 2tfnfn−1

, (1.17)

with parameters k 6= 0,±1 and t 6= 0. The initial value problem for this equation requires

two values of the solution, say f0, f1, which in almost all cases will allow the values f2, f3

and so on to be determined recursively. The system (1.17) has singular values fn = ±k,

in the sense that if while iterating the solution takes one of these values, fn+1 is zero in-

dependent of the value of fn−1 (provided fn−1 6= 0). This is usually referred to as a loss

of a degree of freedom occurring while iterating the system. For generic (non-integrable)

discrete systems, the singularity will propagate, in the sense that the subsequent values

fn+2, fn+3, ... will all be determined independently of fn−1 and the lost degree of freedom

will never be recovered. In the case of equation (1.17), we may compute the next iterate

fn+2 = ∓k, but then, importantly, arrive at an indeterminacy of the rational function giving

fn+3, namely at (fn+1, fn+2) = (0,∓k). If, however, we consider a perturbation of the

singular value fn = ±k by introducing a small parameter ε, we may compute the following

in the small ε limit:
fn−1 6= 0,

fn = ±k +O(ε),

fn+1 = O(ε),

fn+2 = ∓k +O(ε),

fn+3 = fn−1 +O(ε).

(1.18)

If we define the values of the iterates as the limits of the above sequence as ε→ 0, the lost

degree of freedom is ‘recovered’ in the value of fn+3, and the singularity at fn = ±k is

said to be confined.
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1.2.2 QRT mappings and rational elliptic surfaces

The singularity confinement property for second-order discrete systems can be understood

as the existence of a space of initial conditions for the system: a family of rational surfaces

to which the birational iteration mappings lift to isomorphisms, which we illustrate now.

The example (1.17) in fact belongs to the family of QRT mappings [QRT88, QRT89], the

definition of which ensures they have a space of initial conditions given by a rational elliptic

surface (see [Tsu04, Dui10, Ves91]). The equation (1.17) can be considered as a birational

mapping on P1 × P1, where P1 = P1(C). Letting fn−1 = y, fn = x = ȳ, fn+1 = x̄,

the iteration (fn, fn−1) 7→ (fn+1, fn) gives a birational map (x, y) 7→ (x̄, ȳ). At this point

we emphasise that the bar notation used here should not be confused with complex conju-

gation, and will continue to be employed for iterates of discrete systems for the remainder

of the thesis. We consider this on P1 × P1 by regarding x, y as affine coordinates in the

P1 factors, and introduce X = 1/x, Y = 1/y, so P1 × P1 is covered by the four charts

(x, y), (X, y), (x, Y ), (X,Y ), and we have a mapping defined by

ϕ : P1 × P1 → P1 × P1

(x, y) 7→ (x̄, ȳ) =

(
(x− k)(x+ k)y

k2 − x2 + 2txy
, x

)
,

(1.19)

where we have used The mapping (1.19) preserves each member of a pencil of elliptic

curves on P1×P1, and the space of initial conditions is obtained from P1×P1 by resolving

its basepoints through a number of blow-ups. This is ensured by the definition of the QRT

map in terms of this pencil, which we outline now. Consider the matrices

A =


0 0 −1

2t

0 1 0

−1
2t 0 k2

2t

 , B =


1 0 0

0 0 0

0 0 0

 , (1.20)

where again k 6= 0,±1 and t 6= 0, which define a pencil of biquadratic curves{
Γ[α:β] | [α : β] ∈ P1

}
on P1 × P1, written in the affine coordinates (x, y) as

Γ[α:β] : αxTAy + βxTBy =
α

2t
(k2 − x2 − y2 + 2txy) + βx2y2 = 0, (1.21)

where xT =
(
x2 x 1

)
,yT =

(
y2 y 1

)
. The QRT mapping is defined as fol-

lows. A generic point, say given by (x, y), lies on exactly one curve Γ[α:β] in the pencil.
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There is then exactly one other point (x̄, y) on Γ[α:β] with the same y-coordinate, from

which we can define the involution rx : (x, y) 7→ (x̄, y). Similarly we have another involu-

tion ry : (x, y) 7→ (x, ȳ), and their composition rx ◦ ry is the QRT mapping.

Following [CDT17] we introduce the involution σxy : (x, y) 7→ (y, x) and work with the

map ϕ = σxy · ry, which for the pencil (1.21) is precisely (1.19), and can be thought of as

a ‘half QRT mapping’ due to the fact that ϕ2 = rx ◦ ry. The pencil (1.21) has four double

basepoints, given in coordinates by

p1 : (x, y) = (k, 0), p2 : (x, y) = (−k, 0),

p3 : (x, y) = (0, k), p4 : (x, y) = (0,−k).
(1.22)

Blowing these up, we denote the blow-up projection by

π1 : Blp1,p2,p3,p4(P1 × P1)→ P1 × P1, (1.23)

and denote the exceptional curves by π−1
1 (pi) = Ei for i = 1, 2, 3, 4. The proper transform

of the pencil under π1 still has four basepoints p5 ∈ E1, p6 ∈ E2, p7 ∈ E3, p8 ∈ E4. After

the blow-ups of these, the proper transform of the pencil is basepoint-free and we obtain a

rational elliptic surface X . Denote the projection under the second four blow-ups by

π2 : X → Blp1,p2,p3,p4(P1 × P1), (1.24)

and the exceptional curves by π−1
2 (pi) = Ei for i = 5, 6, 7, 8. Composing the projections

we obtain

π = π1 ◦ π2 : X → P1 × P1, (1.25)

and X is a rational surface fibred by the proper transform of the pencil. Under π, we have

the preimage of each basepoint p1, . . . , p4 given by the union of two irreducible curves:

π−1(p1) = (E1 − E5) ∪ E5, π−1(p2) = (E2 − E6) ∪ E6,

π−1(p1) = (E3 − E7) ∪ E7, π−1(p4) = (E4 − E8) ∪ E8,
(1.26)

where we have used the usual notation for divisors to denote byE1−E5 the proper transform

of E1 under π2, and so on, which we illustrate in Figure 1.1.
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y = 0

E1 − E5 E2 − E6

E5 E6

π
p1 p2

x = 0

E3 − E7

E4 − E8

E8

E7

p3

p4

π

Figure 1.1: Configuration of curves in the space of initial conditions for the QRT mapping (1.19)

The iteration mapping (1.19) lifts uniquely under the blow-ups to give a birational map

ϕ̃ : X → X , (1.27)

which is in fact a true isomorphism. At this point we omit the calculations necessary to

establish this, as methods for lifting mappings under blow-ups explicitly will be outlined

in detail in later chapters. The singularity confinement behaviour observed earlier can be

understood in terms of this space of initial conditions as follows. Lifted under the blow-

ups, the initial data fn−1 6= 0, fn = k correspond to a point on the proper transform of the

line {x = k} on P1 × P1, while the pairs (fn, fn+1) = (k, 0), (fn+1, fn+2) = (0,−k)

correspond to the basepoints p3, p2 respectively. Further, the recovery of the degree of

freedom (fn+2, fn+3) = (−k, fn−1) corresponds to a one-to-one correspondence between

the proper transforms of the lines {x = k} and {y = −k} under the iterated mapping ϕ̃3,

as we illustrate in Figure 1.2.

X

E7 E6

x = k

P1 × P1

y = −k
p3 p2

ϕ̃ ϕ̃ ϕ̃

π π

Figure 1.2: Confinement of a singularity as an isomorphism between exceptional curves
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The loss of a degree of freedom when fn = ±k can now be understood in terms of

curves in P1 × P1 being blown down to points under the mapping ϕ. The recovery of the

lost degree of freedom occurs precisely when, while iterating after a blow-down, we arrive

at an indeterminacy of the forward iteration map ϕ (in the case of the singularity fn = k,

this is p2), so the point is blown back up to a curve. For generic (non-integrable) systems,

after a blow-down we will not arrive at an indeterminacy of the forward mapping and the

lost degree of freedom will never be recovered. In other words, we cannot lift the mapping

to an isomorphism through a finite number of blow-ups.

1.2.3 Deautonomisation by singularity confinement

Ramani, Grammaticos and Hietarinta [RGH91] obtained a plethora of discrete Painlevé

equations via the process of ‘deautonomisation by singularity confinement’ applied to mem-

bers of the QRT family. This involves considering nonautonomous generalisations of a

given QRT map by introducing n-dependence into the coefficients of the mapping, then

isolating examples for which the singularity confinement behaviour persists. We will il-

lustrate this in the example of the QRT mapping (1.17), by considering a nonautonomous

generalisation

fn+1 =
(fn − kn)(fn + kn)fn−1

k2
n − f2

n + 2tnfnfn−1
, (1.28)

where for now kn, tn are arbitrary sequences of complex numbers again with kn 6=

0,±1, tn 6= 0 for all n. Calculating as before, initial data given by a small perturbation

about the singular values fn = ±kn leads to the following:

fn−1 6= 0,

fn = ±kn +O(ε),

fn+1 = O(ε),

fn+2 = ∓kn +O(ε),

fn+3 = ± W

f5
n−1k

5
nk

2
n+1t

4
n

(
k2
n+1tn − 2k2

ntn+1 + k2
n+1tn+2

)ε+O(ε2),

(1.29)

where we assume that the denominator of the leading term in fn+3 is nonzero. Here W

is a known polynomial function of fn−1 and the parameter sequences, which we omit for

conciseness as it plays no role in what follows. Under this assumption, the values of iterates

will continue to cycle through the pattern (±kn, 0,∓kn, 0,±kn), and the lost degree of
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freedom will never be recovered. Deautonomisation by singularity confinement in this case

means imposing conditions such that this behaviour is avoided, and the degree of freedom

is recovered. Here the denominator of the term in ε from fn+3 being nonzero causes the

singularity to propagate indefinitely, so to avoid this we require the following condition for

all n ∈ Z:

k2
n+1tn − 2k2

ntn+1 + k2
n+1tn+2 = 0, (1.30)

so that if fn takes the singular values ±k then fn+3 might avoid a zero. For simplicity, we

assume kn is a constant sequence with value k, so it suffices to solve the linear recurrence

tn+2 − 2tn+1 + tn = 0. (1.31)

Indeed, the general solution is tn = αn+β, so we have a nonautonomous generalisation of

equation (1.17), which we hope shows the same kind of singularity confinement behaviour:

fn+1 =
(fn − k)(fn + k)fn−1

k2 − f2
n + 2(αn+ β)fnfn−1

, (1.32)

Indeed, computing as before we find the following:

fn−1 6= 0,

fn = ±k +O(ε),

fn+1 = O(ε),

fn+2 = ∓k +O(ε),

fn+3 =
k ((n+ 2)α+ β) fn−1

2α ((n+ 1)α+ β) fn−1 ± k(αn+ β)
+O(ε),

(1.33)

and we have avoided fn+3 developing a zero if fn takes one of the singular values. Further,

the lost degree of freedom is recovered in the appearance of fn−1 in fn+3. Similarly to

the QRT mapping it generalises, the equation (1.32) admits a space of conditions, but this

will be given by a family of surfaces indexed by n, as opposed to the single elliptic surface

X . To be precise, we recast the equation as a family of mappings {ϕn : n ∈ Z}, by letting

(xn, yn) = (fn, fn−1) or each n, and using these to define mappings on P1 × P1 via the

same charts(x, y), (X,Y ) etc. via (xn, yn) = (x, y) for the domain copy of P1 × P1, and
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(x̄, ȳ) etc. for the target, via (xn+1, yn+1) = (x̄, ȳ):

ϕn : P1 × P1 → P1 × P1

(x, y) 7→ (x̄, ȳ) =

(
(x− k)(x+ k)y

k2 − x2 + 2(αn+ β)xy
, x

)
.

(1.34)

Again, we can lift these mappings to isomorphisms under eight blow-ups, but in this cases

the locations of the basepoints depend on n, so instead of a single surface we obtain a

family of rational surfaces Xn, between which the mappings lift to isomorphisms. This

deatunomisation procedure can be understood geometrically; the surfaces belong to the

family defined by Sakai and the resulting equations can be placed in Sakai’s framework for

discrete Painlevé equations, following [CDT17].

1.2.4 Integrability

We now make some remarks about some notions of integrability of discrete Painlevé equa-

tions and their relation to the geometric framework. Firstly, we will see in Chapter 2 that

Sakai’s definition of discrete Painlevé equations ensures that any example involving one

or more parameters will admit Bäcklund transformation symmetries. For the most general

form of a given discrete Painlevé equation, i.e. one arising from the most general form of a

family of surfaces of its type, these symmetries will correspond to an action of an extended

affine Weyl group in the same way as was observed for the differential Painlevé equations.

Secondly, many examples admit Lax representations as compatibility conditions of associ-

ated linear systems. One of the most famous discrete Painlevé equations, usually referred to

as q-PVI due to it being a q-difference equation with a continuum limit to PVI, was obtained

by Jimbo and Sakai as a kind of connection-preserving deformation of a linear q-difference

equation [JS96]. A method for obtaining Lax representations for Sakai’s discrete Painlevé

equations from the associated surfaces is outlined in [KNY17], which built on earlier re-

sults, e.g. [Yam09, Yam11].

Sakai’s discrete Painlevé equations also satisfy the most accepted definition of integrability

in discrete systems corresponding to birational mappings, namely that they have vanishing

algebraic entropy. This property was proposed by Bellon and Viallet [BV99], and continues

the paradigm in which integrability is characterised by a kind of slow growth in complex-

ity under the dynamics, which goes back to the ideas of topological entropy of Arnol’d

[Arn90a, Arn90b] and growth of complexity in discrete systems of Veselov [Ves92]. We
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remark that algebraic entropy is closely related to the notions of entropy considered by

Friedland [Fri91] following from his work with Milnor [FM89], which have led to a range

of studies which should be of interest to researchers working on discrete integrable systems

(see [Fri07] and references within). We recall the definition of algebraic entropy in the case

of second-order equations. Consider a system of two first-order discrete equations

fn+1 = P (fn, gn), (1.35a)

gn+1 = Q(fn, gn), (1.35b)

where P,Q are rational functions in their arguments (with coefficients possibly depending

on n), and there exists a rational inverse giving (fn, gn) in terms of (fn+1, gn+1). We

then have a birational map defined, as outlined in our treatment of the QRT mappings, in

inhomogeneous coordinates (f, g) = (fn, gn) for P1 × P1 by

η : P1 × P1 → P1 × P1,

(f, g) 7→ (P (f, g), Q(f, g)) ,
(1.36)

and define its degree to be

deg(η) = max {degP (f, g),degQ(f, g)} , (1.37)

where the degree of a rational function P (f, g) is defined as the maximum of the degrees of

its numerator and denominator as bivariate polynomials, after any cancellations. Letting the

maps induced by iteration of the system (1.35) be ηn : (fn, gn) 7→ (fn+1, gn+1), we write

the map giving the n-th iterate as a function of arbitrary initial conditions (f0, g0) = (f, g)

as
η(n) : P1 × P1 → P1 × P1,

η(n) = ηn−1◦ · · · ◦ η1 ◦ η0 : (f, g) 7→ (Pn(f, g), Qn(f, g)) ,
(1.38)

where Pn, Qn are rational functions obtained by composing the ones in (1.35). The se-

quence of degrees of iterates of the system is then given by dn = deg η(n), and its algebraic

entropy is defined as

ε = lim
n→∞

1

n
log dn, (1.39)
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in the cases where the limit exists. If the system is nonlinear, generically no cancellations

will occur in the computation of Pn, Qn, and the degrees will grow exponentially. However,

the system is said to be integrable in the sense of vanishing algebraic entropy if ε = 0, or in

other words if sufficient cancellations occur and the growth of the degrees is polynomial.

In [Tak01a], T. Takenawa gave a method for computing the sequence of degrees explicitly

in the case when the system admits a space of initial conditions, and showed that Sakai’s

definition of discrete Painlevé equations ensured that they are integrable in the sense of

vanishing algebraic entropy. Sakai’s construction recovers many of the examples obtained

by singularity confinement methods, but we make an important remark here that lifting to

isomorphisms under a finite number of blow-ups is not sufficient for integrability, and the

geometry of the space of initial conditions plays a defining role. In particular, an example

given by Hietarinta and Viallet [HV98] admits a space of initial conditions but exhibits

chaotic behaviour in the sense of exponential degree growth, which was explained in terms

of its geometry by Takenawa [Tak01b]. It has since been shown by Mase [Mas18] that if

a second-order discrete system with the singularity confinement property (in the sense that

it admits a space of initial conditions) is nontrivially integrable (in the sense of quadratic

degree growth), then it must arise from the surfaces defined by Sakai.



Chapter 2

Geometric framework for differential and

discrete Painlevé equations

Sakai’s theory formalises and builds on Okamoto’s observations of complementary affine

Weyl group structures associated with the Bäcklund transformation symmetries and the

intersection configuration of inaccessible divisors for each of the differential Painlevé equa-

tions. The central idea of our presentation of this theory is the construction of rational

surfaces associated with affine Weyl groups and their associated root systems. We remark

that Sakai’s work is not the only one to pursue generalisations of Okamoto’s space. The

inaccessible divisors in each fibre were observed to give a decomposition into irreducible

components of an anticanonical divisor of the surface, which led to the idea of classifying

rational surfaces with such a configuration of curves via the notion of an Okamoto-Painlevé

pair [ST02,STT02]. This is a pair (S,D) of a smooth rational surface S and a representative

D of its anticanonical divisor class which is of canonical type, which is a notion considered

by Sakai and which we will define in the coming sections.

Sakai’s theory employs a similar approach, but additionally focuses on the construction of

discrete equations for which the surfaces provide spaces of initial conditions, and the way

in which symmetries of these equations come from the geometry of the surfaces. This chap-

ter establishes this theory as the foundation for the thesis, following both Sakai’s original

paper [Sak01] and the important survey of Kajiwara, Noumi and Yamada [KNY17]. It both

equips us with a suite of tools for the study of Painlevé equations appearing in applications,

as in Chapter 3, and is our starting point for extensions of the geometric approach to wider

classes of equations, as in Chapter 4 and Chapter 5.

We first review background material on the affine root systems and Weyl groups relevant
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to Painlevé equations, following Kac [Kac90], before presenting Sakai’s theory in general-

ity. We then finish this chapter by illustrating this theory in detail with a family of surfaces

associated with both the sixth differential Painlevé equation and a discrete analogue of PV,

which will be relevant to our work in later chapters.

2.1 Preliminaries on affine Weyl groups

The root systems and Weyl groups we are interested in arise in the theory of certain infinite-

dimensional Lie algebras. We follow [Kac90], by first making the following definition:

Definition 2.1.1. A generalised Cartan matrix is an n× n matrix A = (Aij)
n
i,j=1 with:

• Aii = 2, for i = 1, . . . n;

• Aij nonpositive integers for i 6= j;

• Aij = 0 ⇐⇒ Aji = 0.

Generalised Cartan matrices can be used to define a class of Lie algebras generalising

the classical finite-dimensional semi-simple ones, and much of what follows is motivated

by the study of these Kac-Moody algebras, including the associated Weyl groups. We first

introduce the Weyl group associated with a generalised Cartan matrix purely as an abstract

Coxeter group defined by the following presentation:

Definition 2.1.2. The Weyl group of a generalised Cartan matrix A, denoted W (A) is

generated by ri, i = 1, . . . , n, subject to the relations

• r2
i = e for i = 1, . . . , n.

• (rirj)
mij = e for i 6= j, where mij =



2 if AijAji = 0,

3 if AijAji = 1,

4 if AijAji = 2,

6 if AijAji = 3,

∞ if AijAji ≥ 4.

The generators ri are called simple reflections and here, following [Kac90], we use the

convention that x∞ = e for any x, so in particular when AijAji ≥ 4 there are no relations

between ri and rj .
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This group W (A) arises naturally in the study of the Kac-Moody algebra associated

to A, but for our purposes it will be sufficient to understand it in terms of reflections about

hyperplanes in a complex vector space, which can be established without introducing the

algebra itself. Make the following definition:

Definition 2.1.3. A realisation of A is a triple (h,Π,Π∨), where

• h is a vector space over C,

• Π = {α1, . . . , αn} ⊂ h∗ = HomC(h,C) is a linearly independent set of simple

roots.

• Π∨ = {α∨1 , . . . , α∨n} ⊂ h is a linearly independent set of simple coroots,

subject to the conditions

• 〈α∨i , αj〉 = Aij , for i, j = 1, . . . n,

• n− rankA = dim h− n,

where 〈 , 〉 : h× h∗ → C is the evaluation pairing.

For a realisation (h,Π,Π∨) ofA, define the simple reflection ri ∈ GL(h∗) correspond-

ing to αi by

ri(λ) = λ−
〈
α∨i , λ

〉
αi. (2.1)

It can be quickly checked this gives a faithful representation of the Weyl group W (A)

introduced in Definition 2.1.2.

If we have two matrices A1, A2 with realisations (h1,Π1,Π
∨
1 ), (h2,Π2,Π

∨
2 ) respectively,

we obtain a realisation of the direct sum of the two matrices A1 0

0 A2

 , (2.2)

given by

(
h1 ⊕ h2, (Π1 × {0}) ∪ ({0} ×Π2), (Π∨1 × {0}) ∪ ({0} ×Π∨2 )

)
. (2.3)

If a generalised Cartan matrix and its realisation can be written as a nontrivial direct sum

as above after a reordering of indices, then it is called decomposable. Kac showed that
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any indecomposable generalised Cartan matrix A belongs to one of three classes, which we

quote here from [Kac90]. These are defined as follows, where the matrix A is of size n× n

and we use notation to refer to the signs of vectors according to those of their entries, for

example u > 0 to indicate that a vector u ∈ Rn has all entries positive.

(Fin) detA 6= 0; there exists u > 0 such that Au > 0; Av ≥ 0 implies v > 0 or v = 0.

(Aff) corankA = 1; there exists u > 0 such that Au = 0; Av ≥ 0 implies Av = 0.

(Ind) there exists u > 0 such that Au < 0; Av ≥ 0, v ≥ 0 imply Av = 0.

Generalised Cartan matrices from these classes are referred to as of Finite, Affine and In-

definite type respectively. The indecomposable matrices from the class (Fin) account for

all Cartan matrices associated with finite-dimensional simple complex Lie algebras. Each

of these matrices can be encoded in a Dynkin diagram, which consists of a node for each

index i ∈ {1, . . . , n}, with nodes corresponding to i and j connected by |AijAji| edges,

with an arrow pointing towards i if |Aij | > |Aji|. The Dynkin diagrams for the class (Fin)

are given in Figure 2.1.

An E6

Bn E7 F4

Cn E8 G2

Dn

Figure 2.1: Dynkin diagrams for indecomposable generalised Cartan matrices of finite type

In the theory of Painevé equations, we will be interested in the matrices of affine type,

and in particular those which are symmetric and whose affine Dynkin diagrams (sometimes

known as extended Dynkin diagrams) are simply laced (meaning they only have single

edges), which we present in Figure 2.2.

A
(1)
n D

(1)
n

E
(1)
6 E

(1)
7 E

(1)
8

Figure 2.2: Dynkin diagrams for symmetric generalised Cartan matrices of affine type
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We now describe in detail the properties of a realisation of a generalised Cartan matrix

A, which in what follows will be assumed to be symmetric and of affine type, with simply

laced Dynkin diagram. We take A to be of size n + 1 with enumeration A = (Aij)
n
i,j=0,

Π = {α0, . . . , αn},Π∨ = {α∨0 , . . . , α∨n}. Firstly, as A is of affine type, the matrix is of

corank 1, so we have the null root in h∗

δ =

n∑
i=0

miαi, m0 = 1, (2.4)

such that 〈α∨i , δ〉 = 0 for i = 0, . . . , n, which is determined uniquely by imposing m0 = 1.

The values of mi for all symmetric A of affine type can be computed directly using its null

space and are listed in [Kac90]. Similarly we have a unique element K ∈ h given by a

positive integer combination of simple coroots

K =

n∑
i=0

m∨i α
∨
i , m∨0 = 1 (2.5)

such that 〈K,αi〉 = 0 for i = 0, . . . , n. This is called the canonical central element, be-

cause when h is considered as part of the Kac-Moody algebra associated with A it spans the

centre. As we are considering symmetric matrices, we have m∨i = mi for all i.

To describe the spaces h, h∗, we recall that the condition from the realisation with our enu-

meration determines the dimension of h to be n+2, so we extend Π,Π∨ to bases as follows.

Fix a scaling element d ∈ h satisfying

〈d, αi〉 = δi0 for i = 0, . . . , n, (2.6)

where δij is the Kronecker delta. Such an element is determined up to addition of a constant

multiple ofK, and is linearly independent from Π∨, so we have a basis {d, α∨0 , . . . , α∨n} for

h. Similarly, we define an element Λ0 ∈ h∗ uniquely by the conditions

〈
α∨i ,Λ0

〉
= δi0 for i = 0, . . . , n, 〈d,Λ0〉 = 0, (2.7)

and we have a basis {Λ0, α0, . . . , αn} for h∗. We may now define a symmetric bilinear

form ( | ) on h∗, in terms of which we can describe the reflections and Weyl group. For the
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symmetric matrices this can be introduced directly on h∗ by the formulae

(αi|αj) = Aij , for i, j,= 0, . . . , n,

(αi|Λ0) = 0, for i = 1, . . . , n,

(α0|Λ0) = 1, (Λ0|Λ0) = 0,

(2.8)

so in particular we have

(δ|δ) = 0. (2.9)

The action of the Weyl group W = W (A) on h∗ can now be written in terms of this

symmetric bilinear form, with the simple reflection ri acting on λ ∈ h∗ by

ri(λ) = λ− (λ|αi)αi. (2.10)

In particular, we have that the null root δ is fixed by all w ∈ W , as (αi|δ) = 0 for

all i, and it can be verified by direct calculation that the bilinear form is W -invariant:

(w(λ1)|w(λ2)) = (λ1|λ2) for all w ∈ W, λ1, λ2 ∈ h∗. The symmetric bilinear form

(2.8) defines an isomorphism ν : h→ h∗ via 〈h1, ν(h2)〉 = (h1|h2), which is given by

ν(α∨i ) = αi, ν(K) = δ, ν(d) = Λ0, (2.11)

so we have a symmetric bilinear form on h induced by ν, which we also denote ( | ), i.e.

(h1|h2) = (ν(h1)|ν(h2)) for h1, h2 ∈ h, so

(α∨i |α∨j ) = Aij , for i, j,= 0, . . . , n,

(α∨i |d) = 0, for i = 1, . . . , n,

(α∨0 |d) = 1, (d|d) = 0.

(2.12)

We introduce the root lattice

Q =
n∑
i=0

Zαi ⊂ h∗, (2.13)

and the coroot lattice

Q∨ =

n∑
i=0

Zα∨i ⊂ h. (2.14)

These are true lattices: free Z-modules with symmetric bilinear form, and are isomorphic
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since we are considering symmetric matrices.

In the thesis, the property of most interest to us of the Weyl groups associated with matrices

of affine type is that they are of infinite order and each contains a subgroup of translations,

which corresponds to a sublattice associated with an underlying finite root system. This al-

lows Kac’s theory to recover the classical definition of an affine Weyl group as an extension

of that of a finite root system to include reflections about affine hyperplanes in a Euclidean

space [Hum90], which we now explain. Taking A as above, the matrix
◦
A = (Aij)

l
i,j=1

obtained by deleting the 0-th row and column is a generalised Cartan matrix of finite

type. From the realisation of A, we obtain one for the finite type matrix
◦
A, denoted by(◦

h,
◦
Π,

◦
Π∨
)

, where

◦
Π = {α1, . . . , αn} ,

◦
h∗ = spanC {α1, . . . , αn}

◦
Π∨ =

{
α∨1 , . . . , α

∨
n

}
,

◦
h = spanC

{
α∨1 , . . . , α

∨
n

}
.

(2.15)

We denote the root and coroot lattices associated with this realisation by
◦
Q =

∑n
i=1 Zαi

and
◦
Q∨ =

∑n
i=1 Zα∨i respecively. The subgroup

◦
W = W (

◦
A) ⊂ W generated by the

simple reflections r1, . . . , rn is the underlying finite Weyl group, the action of which on h∗

restricts to a faithful action on
◦
h∗. All nontrivial elements of

◦
W correspond to reflections

associated with roots in the finite root system, which here it is sufficient to define as the

orbit of the set of simple roots
◦
Φ =

◦
W (

◦
Π). For α ∈

◦
Φ, we have an element rα ∈

◦
W , which

acts on h∗ by the formula

rα(λ) = λ− (λ|α)α, (2.16)

so in particular ri = rαi . Consider the element

θ = δ − α0 =
l∑

i=1

miαi, (2.17)

where mi are the same as in the expression (2.4) for the null root. This element θ is the

unique highest root in the finite root system with respect to the partial order induced by

writing roots as Z-linear combinations of simple roots. Composing reflections associated

with θ and α0, by direct calculation we obtain

r0rθ(λ) = λ+ (λ|δ)θ − [(λ|θ) + (λ|δ)] δ, (2.18)
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where we have used the fact that for symmetric matrices we have (θ|θ) = 2.

Motivated by this formula, Kac introduces for v ∈
◦
h∗ the element Tv ∈ GL(h∗) according

to

Tv(λ) = λ+ (λ|δ)v −
[
(λ|v) + (λ|δ)(v|v)

2

]
δ. (2.19)

We refer to this as the Kac translation formula, and the Kac translation Tv has the following

properties:

TuTv = Tu+v, Tw(v) = wTvw
−1 for all u, v ∈

◦
h∗, w ∈

◦
W. (2.20)

For β ∈ h∗ such that (β|δ) = 0, we have

Tv(β) = β − (β|v)δ, (2.21)

so the properties (2.20) can be deduced on this part of h∗ using the W -invariance of the

bilinear form and the fact that δ is fixed by all w ∈ W . The extra terms in the formula

(2.19) ensure these properties hold on the rest of h∗, which is spanned by Λ0. Indeed, for

v ∈
◦
h∗ we may compute the following, using the formula (2.19):

Tv(Λ0) = Λ0 + v − (v|v)

2
δ, (2.22)

where we have used (v|Λ0) = 0 as v ∈
◦
h∗, and (Λ0|δ) = 1. The properties (2.20) can be

verified by direct calculation.

Recall the root lattice
◦
Q ⊂ h∗ associated with the underlying finite root system, which

because of the properties (2.20) defines a normal subgroup

T ◦
Q

= {Tv | v ∈
◦
Q}. (2.23)

The Kac translation formula then gives the following isomorphism:

W ∼=
◦
W n T ◦

Q
,

r0 7→ rθT−θ,

(2.24)

The group W can be identified with the usual affine Weyl group associated with the finite
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root system
◦
Φ by considering an action of W induced on

h∗1 modRδ, where h∗1 := {λ ∈ spanR{α0, . . . , αn} | (λ|δ) = 1}, (2.25)

but we will continue to work with the action of the Weyl group on h∗, and in particular on

the root lattice Q.

From the fact thatQ is orthogonal to δ, the action of T ◦
Q

onQ is given by the formula (2.21),

and we can deduce that the action preserves the root lattice. However, forQ to be preserved,

we may choose a lattice finer than
◦
Q to act by Kac translation. Let ω1, . . . , ωn ∈

◦
h∗ be the

basis of fundamental weights dual to
◦
Π∨, so

〈
ωi, α

∨
j

〉
= δij for i, j = 1, . . . n and we have

the weight lattice of the underlying finite root system given by

◦
P =

n∑
i=1

Zωi. (2.26)

The weight lattice is the maximal set of elements v in the span of
◦
Π with integer pairing

(β|v) ∈ Z for all β ∈ Q, so the subgroup

T ◦
P

= {Tv | v ∈
◦
P}, (2.27)

preserves the root lattice. The extended affine Weyl group associated with a symmetric

generalised Cartan matrix of affine type is defined as

W̃ =
◦
W n T ◦

P
. (2.28)

This is an extension of the regular affine Weyl group in the sense that we have

W̃ ∼= W o Σ, (2.29)

where Σ ∼=
◦
P/

◦
Q is a finite group which acts by special automorphisms of the affine Dynkin

diagram. We list the group Σ for the cases we are interested in in Figure 2.3.
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A
(1)
n D

(1)
2n D

(1)
2n+1 E

(1)
6 E

(1)
7 E

(1)
8

Σ Zn+1 Z2 × Z2 Z4 Z3 Z2 −

Figure 2.3: Special automorphism groups for symmetric generalised Cartan matrices of affine type.

The group of Bäcklund transformation symmetries for PIV defined in Subsection 1.1.3

by the presentation (1.16) is precisely the extended affine Weyl group associated with the

generalised Cartan matrix

A =


2 −1 −1

−1 2 −1

−1 −1 2

 (2.30)

with Dynkin diagram A
(1)
2 . The generators s0, s1, s2 are the simple reflections and the

Dynkin diagram automorphism π generates the group Σ ∼= Z3.

2.2 Sakai theory and generalised Halphen surfaces

We now follow Sakai’s construction of rational surfaces associated with the affine root sys-

tem structures reviewed in the previous section. We will begin by identifying a natural way

for a root lattice of type E(1)
8 to appear in the Picard group of a smooth rational surface.

2.2.1 Root lattice of type E
(1)
8 in the Picard group

Consider a smooth projective rational surface X obtained from P1×P1 by eight successive

blow-ups. We denote by Pic(X ) the Picard group, whose elements are line bundles on X ,

with the group operation being the tensor product. As X is smooth, Pic(X ) is isomorphic

to the divisor class group, which is the quotient of the group Div(X ) of Weil divisors

(formal Z-linear combinations of closed codimension one subvarieties) by the subgroup

of principal divisors (those which are divisors of rational functions on X ). Thus Pic(X )

can be identified with the group of divisors up to linear equivalance, which we denote ∼ so

divisors D1, D2 ∈ Div(X ) are linearly equivalent D1 ∼ D2 if D1−D2 = div(f) for some

rational function f on X .

Writing operations additively, Pic(X ) is a free Z-module of rank 10 given by the direct sum

Pic(X ) = ZH1 ⊕ ZH2 ⊕ ZE1 ⊕ · · · ⊕ ZE8, (2.31)
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where H1 and H2 are the total transforms (or pullbacks) of divisor classes of hyperplanes

in each P1 factor, while Ei, i = 1, . . . , 8 are the exceptional classes arising from the eight

blow-ups. In particular, if f, g are inhomogenous coordinates for each of the P1 factors,

H1,H2 are classes of total transforms of curves on P1 × P1 of constant f, g respectively.

The intersection product on Pic(X ) is the symmetric bilinear pairing defined by

H1 · H1 = H2 · H2 = H1 · Ei = H2 · Ej = 0, H1 · H2 = 1, Ei · Ej = −δij , (2.32)

where i, j ∈ {1, . . . , 8} and δij is the Kronecker delta. The top wedge product of the

(holomorphic) cotangent bundle onX is the canonical bundle, which here is given byKX =

−2H1 − 2H2 + E1 + · · ·+ E8 ∈ Pic(X ). The dual of this is the anticanonical bundle

−KX = 2H1 + 2H2 − E1 − E2 − E3 − E4 − E5 − E6 − E7 − E8, (2.33)

which corresponds to the equivalence class of pole divisors of rational 2-forms on X . We

quote the following observation of Sakai [Sak01]:

Proposition 2.2.1. For X as above, Pic(X ) equipped with the negative of the intersection

pairing is isomorphic, as a free Z-module with symmetric bilinear product, to the rank 10

Lorentzian lattice given as an orthogonal direct sum by Λ10 = Zv0⊕Zv1⊕ · · · ⊕Zv9 with

the symmetric bilinear form (· | ·) given by

∣∣∣∣∣
9∑
i=0

aivi

∣∣∣∣∣
2

= −a2
0 + a2

1 + · · ·+ a2
9, (2.34)

where |v|2 = (v|v). Further, the orthogonal complement in Pic(X ) of the canonical class

KX is isomorphic to the root lattice Q(E
(1)
8 ), with the null root δ ∈ Q(E

(1)
8 ) identified with

the anticanonical class −KX .

2.2.2 Generalised Halphen surfaces

Sakai defined a class of complex projective surfaces generalising both the surfaces asso-

ciated with Okamoto’s space and the rational elliptic surfaces associated with QRT maps.

This generalisation is based not just on the E(1)
8 root lattice in the Picard group outlined

above, but the existence of two complementary sublattices associated with affine root sys-

tems, which captures the observations made by Okamoto of surface and symmetry types of
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differential Painlevé equations.

Sakai defined a generalised Halphen surface to be a smooth projective rational surface

whose anticanonical class is effective, with any representative D ∈ |−KX | being of canon-

ical type. That is, its decomposition into irreducible components

D =
∑
i

miDi, (2.35)

is such that −KX · δi = 0 for all i, where δi = [Di] ∈ Pic(X ) are the divisor classes of the

irreducible components. Such a surface then has dim | − KX | being either zero or one. If

a generalised Halphen surface has dim | − KX | = 1, then it is a Halphen surface of index

one, which is the kind of rational elliptic surface associated with QRT mappings. Sakai

classified generalised Halphen surfaces with dim | −KX | = 0, i.e. those that have a unique

anticanonical divisor, which we call Sakai surfaces:

Definition 2.2.2. A Sakai surface is a smooth projective rational surface with unique anti-

canonical divisor of canonical type.

This definition leads to two important complementary root sublattices of Q(E
(1)
8 ) ⊂

Pic(X ), as shown by the following result of Sakai [Sak01].

Proposition 2.2.3. For a Sakai surface X , the classes of irreducible components of the

anticanonical divisor define a basis of simple roots δi for an indecomposable root system in

Pic(X ), with generalised Cartan matrix A = (Aij) given by

Aij = −δi · δj . (2.36)

This root system is of affine type, with null root identified with the anticanonical class:

δ = −KX =
∑
i

miδi. (2.37)

Further, if we denote the associated root lattice by Q(R) =
∑

i Zδi ⊂ Q(E
(1)
8 ), the or-

thogonal complement inQ(E
(1)
8 ) is another root latticeQ(R⊥), which is also of affine type.

The possible pairs of complementary root systems R,R⊥ are classified according to root

sublattices of the E(1)
8 lattice.

The possible surface root system types R are shown in Figure 2.4, where arrows in-
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dicate inclusion of root lattices as in [Rai13]. We use, following Sakai, A(1)
7 and A(1)′

7 to

differentiate between two different emdeddings of the A(1)
7 root lattice into Q(E

(1)
8 ). We

also use A(1)
0 to indicate when the anticanonical divisor is irreducible, so Q(A

(1)
0 ) = ZKX .

A
(1)′

7

A
(1)
0 A

(1)
1 A

(1)
2 A

(1)
3 A

(1)
4 A

(1)
5 A

(1)
6 A

(1)
7 A

(1)
8

D
(1)
4 D

(1)
5 D

(1)
6 D

(1)
7 D

(1)
8

E
(1)
6 E

(1)
7 E

(1)
8

Figure 2.4: Surface root system type R for Sakai surfaces

The classification given in Sakai’s paper [Sak01] is finer than the type R of the root

system defined by the components ofD. By further classifyingX with unique anticanonical

divisor D =
∑

imiDi according to rankH1 (Dred;Z), where Dred =
⋃
iDi, we differen-

tiate between families of surfaces from which the discrete Painlevé equations constructed

are of elliptic, multiplicative and additive type. By this, we mean those where the inde-

pendent variable appearing in the coefficients of the mapping in either an affine-linear way

(additive type), as exponents of a parameter q (multiplicative type) or in an affine-linear

way in the arguments of elliptic functions (elliptic type). This is essentially due to how

the root variables (to be introduced in the following subsection) are related to the locations

of basepoints giving the surfaces. We will see this explicitly when we construct a discrete

Painlevé equation from a family of additive surfaces in Subsection 2.3.4, and when we con-

sider equations associated with multiplicative surfaces in Section 4.1, but we refer the reader

to [Sak01] for more details. The 22 possible surface types are shown in Table 1, and we

refer to them by type asR-surfaces.

Elliptic type ell-A(1)
0

Multiplicative type q-A(1)
0 , q-A(1)

1 , q-A(1)
2 , A

(1)
3 , . . . , A

(1)
7 , A

(1)′

7 , A
(1)
8

Additive type d-A(1)
0 , d-A(1)

1 , d-A(1)
2 , D

(1)
4 , . . . , D

(1)
8

E
(1)
6 , E

(1)
7 , E

(1)
8

Table 2.1: Classification of Sakai surfaces by surface typeR
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In the cases where multiple surface types R share the root system type R, we differen-

tiate between them according to whether they are elliptic, multiplicative or additive, e.g.

ell-A(1)
0 , q-A(1)

0 , d-A(1)
0 correspond to surfaces with irreducible anticanonical divisor and

for which rankH1 (Dred;Z) = 2, 1, 0 respectively. When there is only one surface type

associated with a root system we omit such notation, e.g. R = D
(1)
4 corresponds to the only

surface type with root system type R = D
(1)
4 , which is of additive type.

2.2.3 Families of surfaces and root variable parametrisation

Surface types can be described in terms of configurations of eight (possibly infinitely near)

points in P1 × P1, the blow-ups of which will lead to an anticanonical divisor with the

required decomposition. We remark at this point that in order to obtain Sakai surfaces of

each type directly through blowups we should consider configurations of nine points in P2,

but all the surfaces that give rise to discrete Painlevé equations can be obtained directly

from P1 × P1 through a sequence of eight blowups, and this approach is more suited to the

kind of calculations performed in this thesis. The surface type R = E
(1)
8 is the only one

which cannot be obtained from P1 × P1 directly through blowups, and in fact requires nine

blowups of P1 × P1 followed by one blowdown.

Sakai gave a parametrisation of the set of isomorphism classes of surfaces of each type,

and in particular isolated the number of free parameters from a basepoint configuration that

can be varied while preserving the surface type. The set of isomorphism classes of surfaces

of each type can be parametrised in a way that naturally corresponds to the symmetry root

system R⊥. This is done by making use of a kind of period mapping, which we outline

now.

Definition 2.2.4. Consider a Sakai surface X with anticanonical divisor D =
∑

imiDi,

Dred =
⋃
iDi, and with surface and symmetry root systems of type R and R⊥ respectively.

Let ω be a rational 2-form on X such that div(ω) = −D. Then from relative homology of

the pair (X,X −Dred) and Poincaré duality on Dred we have a short exact sequence:

0 −→ H1(Dred;Z) −→ H2(X −Dred;Z) −→ Q(R⊥) −→ 0. (2.38)
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The isomorphism given by this sequence, together with the map

χ̂ : H2(X −Dred;Z)→ C,

Γ 7→
∫

Γ
ω,

(2.39)

defines the period mapping

χ : Q(R⊥)→ C mod χ̂(H1(Dred;Z)). (2.40)

This mapping depends on the choice of the rational 2-form ω, and in practice we may

choose this according to a normalisation such that the period mapping defines a C-valued

function. The kind of normalisation required depends on the rank of H1(Dred;Z), and

therefore whether the R-surface is of elliptic, multiplicative or additive type. We will see

this normalisation in practice when we present the standard model of surfaces of type D(1)
4

later in this chapter. If a family of R-surfaces gives the whole set of isomorphism classes

we call it a family of genericR-surfaces.

The period mapping allows us to construct the root variable parametrisation of a family of

generic R-surfaces. Pick a basis of simple roots {α0, . . . , αn} for Q(R⊥) and define the

associated root variables as

aj = χ(αj). (2.41)

Together with the ‘extra parameter’ corresponding to the independent variable of the contin-

uous Painlevé equation in the (additive) casesR = D
(1)
4 , D

(1)
5 , D

(1)
6 , D

(1)
7 , D

(1)
8 , E

(1)
6 , E

(1)
7

and E(1)
8 , the root variables allow us to parametrise the family of generic R-surfaces. The

extra parameter ζ for the case corresponding to the Painlevé equation PJ takes values pre-

cisely in the independent variable space BJ introduced in Section 1.1, which we recall in

Table 2.2

PJ PI PII PIII PIV PV PVI

R E
(1)
8 E

(1)
7 D

(1)
8 /D

(1)
7 /D

(1)
6 E

(1)
6 D

(1)
5 D

(1)
4

BJ C C C\{0} C\{0} C\{0} C\{0, 1}

Table 2.2: Extra parameter for surface types associated with differential Painlevé equations

In particular, a family of R-surfaces gives the whole set of isomorphism classes if it

has the same number of free parameters as the rank of the generalised Cartan matrix for
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its symmetry type R⊥, as well as the extra parameter in the types noted above. This is

ensured by Theorem 25 of [Sak01], which we do not recall explicitly, but for our purposes

is sufficient to understand as follows. If X and X̃ are twoR-surfaces for which we have an

isometry φ : Pic(X )→ Pic(X̃ ) that identifies the classes of components of the anticanoni-

cal divisors on X , X̃ , the rational 2-forms and the period mappings, the bases of symmetry

roots and the extra parameter whenR is a type associated with a differential Painlevé equa-

tion, then φ is realised by a unique isomorphism between X and X̃ .

For a family XA = {Xa : a ∈ A} ofR-surfaces indexed by some list a ∈ A of parameters,

we may naturally identify their Picard groups to form a single Z-module, which we also

denote Pic(X ). Special automorphisms [Dol83, Loo81] of this Z-module will correspond

to symmetries of the family of surfaces, which we now describe.

Definition 2.2.5. Let XA be a family of R-surfaces, and let Pic(X ) be the identification

of the Picard groups Pic(Xa) as above. A Z-module automorphism of Pic(X ) is called a

Cremona isometry of the family ofR-surfaces if it:

1. preserves the intersection form on Pic(X ),

2. leaves the canonical class KX fixed,

3. preserves effectiveness of divisor classes.

For each surface typeR, Sakai described the group Cr(X (R)) of Cremona isometries

of a family of R-surfaces. We quote the result most relevant to this thesis, but the results

for the other typesR can be found in [Sak01], where the Cremona isometries are described

in terms of the Weyl group of the root system of type R⊥.

Theorem 2.2.6. For R 6= A
(1)
6 , A

(1)
7 , A

(1)′

7 , A
(1)
8 , D

(1)
7 or D(1)

8 , the group of Dynkin dia-

gram automorphisms Aut(R⊥) acts on Pic(X ), and

Cr(X (R)) ∼=
(
W (R⊥) o Aut(R⊥)

)
∆nod

. (2.42)

Here the right-hand side is the part of the extension by Dynkin diagram automorphisms of

the affine Weyl group of R⊥ which stabilises the set ∆nod ⊂ Pic(X ) of classes of nodal

curves (i.e. effective classes of self-intersection −2) disjoint from the irreducible compo-

nents of the anticanonical divisor. For a family of generic R-surfaces the set ∆nod will be

empty.
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Thus we have an action of W̃ (R⊥) = W (R⊥) o Aut(R⊥) on Pic(X ) defined as the

extension of the usual one on the root lattice Q(R⊥), where the reflection associated to the

simple root αi is given by

rαi(λ) = λ+ (λ · αi)αi, (2.43)

where λ ∈ Pic(X ), and we have actions on Pic(X ) of the Dynkin diagram automorphisms

that induce the natural actions on Q(R⊥), Q(R) according to the permutation of simple

roots. We note here that this group W̃ (R⊥) is larger than the extended affine Weyl group

defined in Section 2.1, because it includes all Dynkin diagram automorphisms and not just

those associated to the finite group Σ obtained as the quotient of the weight lattice by the

root lattice, but still includes the translation part.

2.2.4 Cremona action

In Sakai’s theory, discrete Painlevé equations are constructed through the Cremona action

of the symmetry group, which realises the Cremona isometries as an action on a family of

generic R-surfaces by birational maps. This action of Cr(XA) on the family XA is most

easily described by two actions: one on the parameter space A via maps a 7→ w · a and an-

other on the surfaces by birational mappings Xa → Xw·a. The fact that the action permutes

the family in a non-trivial way leads to the equations being nonautonomous, as opposed to

those associated with QRT mappings, which are given by automorphisms of rational elliptic

surfaces.

The Cremona action is known for standard models of each surface type [Sak01, KNY17],

and the action on parameters is most conveniently described in terms of the root variables.

This is because the birational maps are constructed from changes of blowing-down struc-

tures, which naturally induce changes in the root variables. Take a parametrisation of a

family of genericR-surfaces by a tuple of root variables a = (a0, . . . , an)T ∈ A associated

with a choice of simple roots {α0, . . . , αn} for the symmetry root systemR⊥, where we also

include in a the extra parameter ζ if R = D
(1)
l , E

(1)
l . Consider the action of w ∈ Cr(XA)

as a birational map

φw : Xa → Xw·a,

(f, g) 7→ (w · f, w · g),
(2.44)

such that φ∗w : Pic(Xw·a) → Pic(Xa) induces w via the natural identification of the Picard

groups of the members of the family XA. That is, if we take α = (α0, . . . , αn)T and ᾱ =
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(ᾱ0, . . . , ᾱn)T as the tuples of elements in Pic(Xa),Pic(Xw·a) respectively corresponding

to our choice of symmetry roots, we have the Cremona isometry induced by the linear map

φ∗w : ᾱ 7→Mα, (2.45)

where M is some matrix with integer entries. In particular, φ∗w identifies the rational 2-

forms defining the period mappings χ, χ̄ on Xa,Xw·a respectively, and the definition of the

period mapping ensures we have the following correspondence between actions on A and

Pic(X ):

w · a = χX̄ (ᾱ) = χX (φ∗w(α)) = Ma. (2.46)

This will be illustrated in practice in Section 2.3 when we outline the methods for computing

root variables using the period mapping explicitly. In later chapters, we will often compute

actions on Pic(X ) induced by isomorphisms as their pushforwards, but it is important to

keep in mind that this is inverse to the action on parameters.

2.2.5 Discrete Painlevé equations from translation symmetries

We are now ready to formally define Sakai’s discrete Painlevé equations associated with a

family of R-surfaces, which arise from translation elements of Cr(X (R)) and correspond

to a weight lattice via the Kac translation formula. As the symmetry type R⊥ is affine,

denote the type of the underlying finite root system by
◦
R⊥. The group of Cremona isome-

tries includes the translations associated with the weight lattice P (
◦
R⊥), and we have the

following definition:

Definition 2.2.7. A discrete Painlevé equation of surface type R is a second-order differ-

ence equation whose iteration mapping is given by the Cremona action of a translation

element of Cr(X (R) on a family ofR-surfaces.

In other words, we call a second-order difference equation a discrete Painlevé equation

if its birational iteration mappings lift to a family of isomorphisms between R-surfaces,

inducing a translational Cremona isometry. The Cremona action provides Bäcklund trans-

formation symmetries for any discrete Painlevé equation arising from the family of surfaces.

While discrete Painlevé equations are classified according to their surface typeR in Sakai’s

scheme, we make the important remark that there are still infinitely many inequivalent dis-

crete Painlevé equations for each surface type. This is because equivalence on the level
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of equations corresponds to conjugacy of translations in the symmetry group, and in gen-

eral the weight lattice corresponds to infinitely many non-conjugate translations. Further

describing or classifying the discrete Painlevé equations associated with each surface type

remains an open problem, and will not be discussed in this thesis.

At this point, it will be illustrative to present the list of some pairs of root system types

R and R⊥, which represent the surfaces associated with some standard and well-studied

examples of discrete Painlevé equations [KNY17], as well as PI-PVI. In Table 2.3, R is the

surface root system andR⊥ is the symmetry type, in terms of which the Cremona isometries

of a generic family of surfaces can be described.

2.3 Standard model of D(1)
4 -surfaces

In this section we demonstrate the theory from this chapter in practice, by reviewing the

standard model of surfaces of type D(1)
4 , and in particular a well-known example of a dis-

crete Painlevé equation of this type. These surfaces also provide Okamoto’s space for PVI,

and the Cremona action gives Bäcklund transformation symmetries for both of these equa-

tions. This section is adapted from the appendix of [DFS19b], and we follow the standard

reference [KNY17] for the choice of root bases and the forms of the equations. We make

the important remark at this point that the construction of spaces of initial conditions for

Painlevé equations usually involve calculations that are not feasible to be performed by

hand, and a computer algebra system becomes essential. For the calculations in this thesis

we have used Mathematicar.

2.3.1 The point configuration

Here we will work, as before, with P1 × P1 with affine charts (f, g), (F, g), (f,G), (F,G)

where F = 1/f,G = 1/g, and present a configuration of eight points p1, . . . , p8 to be

blown-up to arrive at a generic family of D(1)
4 -surfaces. We start with the basis of simple

roots for the surface root lattice Q(D
(1)
4 ), which will be given by the classes δi = [Di]

of the irreducible components of the anti-canonical divisor. The expressions of these in

terms of generators of the Picard group and the associated Dynkin diagram of type D(1)
4 are

given in Figure 2.5, where we have used Hf ,Hg to denote pullbacks of divisor classes of

hyperplanes of constant f, g respectively, and E1, . . . , E8 to denote the exceptional classes

arising from the eight blow-ups.
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δ0

δ1

δ2

δ3

δ4

δ0 = E3 − E4, δ3 = E7 − E8,

δ1 = Hf − E1 − E2, δ4 = Hf − E5 − E6.

δ2 = Hg − E3 − E7,

δ = δ0 + δ1 + 2δ2 + δ3 + δ4.

Figure 2.5: The surface root basis for the standard model of D(1)
4 -surfaces

To realise these as classes of irreducible curves and obtain a unique anticanonical divi-

sor with them as components, we will impose conditions on the configuration of points,

for example that p1, p2 are such that there exists a unique representative of the class

δ1 = Hf − E1 − E2, given by the proper transform of a line of constant f passing through

p1 and p2. The decomposition of the anticanonical class that we will arrive at is

δ = −KX = δ0 + δ1 + 2δ2 + δ3 + δ4. (2.47)

To obtain the point configuration explicitly, we first use the action of PGL2(C)×PGL2(C)

on P1×P1 (i.e., the action of a Möbius group on each of the P1 factors), to put without loss

of generality Di, with δi = [Di] as follows:

D1 = {F = 0}′, D2 = {G = 0}′ D4 = {f = 0}′, (2.48)

where we have used C′ to denote the proper transform on X of the curve C on P1×P1 under

the eight blow-ups. We then still have a gauge group action of a three-parameter subgroup,

(f, g) 7→ (λf, µg + ν). The point configuration giving the D(1)
4 surface type can then be

parameterised by b1, . . . , b8 as follows: First take the following six points in P1×P1, which

we define in coordinates by

p1 : (F, g) = (0, b1), p2 : (F, g) = (0, b2), p3 : (f,G) = (b3, 0),

p5 : (f, g) = (0, b5), p6 : (f, g) = (0, b6), p7 : (f,G) = (b7, 0).
(2.49)

We blow up each of these points, introducing affine coordinates to cover the exceptional

divisor Ei replacing pi in the following way, which we will maintain for the rest of the

thesis. For a point in an algebraic surface given in some local affine coordinates (x, y) by

pi : (x, y) = (xi, yi), we introduce the two affine coordinate charts (ui, vi), (Ui, Vi) for the



2.3. Standard model of D(1)
4 -surfaces 49

blown-up surface given by

(uivi, vi) = (Vi, UiVi) = (x− xi, y − yi), (2.50)

in which the part of the exceptional divisor Ei visible in the charts (ui, vi), (Ui, Vi) is given

by vi = 0, Vi = 0, parametrised by ui, Ui respectively. We then consider two points

p4 ∈ E3, p8 ∈ E7, given in coordinates by

p4 : (u3, v3) =

(
f − b3
G

,G

)
= (b4, 0),

p8 : (u7, v7) =

(
f − b7
G

,G

)
= (b8, 0),

(2.51)

and blow them up to arrive at a family of surfacesXB parametrised by b = (b1, . . . , b8) ∈ B,

which we give a schematic representation of in Figure 2.6.

G = 0

f = 0 F = 0

p1

p2

p3

p4

p5

p6

p7

p8 Blp1···p8

Hg − E3 − E7

Hf − E5 − E6 Hf − E1 − E2

E1

E2

E5

E6

E3 − E4E7 − E8

E4E8

Figure 2.6: Point configuration for standard model of Sakai surfaces of type D(1)
4

Here we have indicated the curves Di giving irreducible components of the anticanon-

ical divisor in blue, with certain exceptional curves in red. We use the usual notation for

proper transforms of curves passing through points which are blown up, so for example

D2 = Hg −E3−E7 is the proper transform of the line {G = 0} under the blow-ups, since

here everything is smooth and it passes through p3 and p7 each with multiplicity one. The

three-parameter gauge group above acts on this configuration of points via

b1 b2 b3 b4

b5 b6 b7 b8
;
f

g

 ∼
µb1 + ν µb2 + ν λb3 λµb4

µb5 + ν µb6 + ν λb7 λµb8
;
λf

µg + ν

 , λ, µ 6= 0, (2.52)

and so the true number of parameters is five, which corresponds exactly to the parametri-

sation of the set of isomorphism classes of D(1)
4 -surfaces by root variables, which we now
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describe explicitly.

2.3.2 The period map and the root variables

To obtain the root variables we begin by choosing a basis of simple roots for the symmetry

root lattice Q(R⊥) = Q(D
(1)
4 ) ⊂ Pic(X ) and a rational 2-form ω whose pole divisor is the

anticanonical divisor, decomposed into the −2-curves shown on Figure 2.6. We make the

same choice as in [KNY17], which we present in Figure 2.7.

α0

α1

α2

α3

α4

α0 = Hf − E3 − E4, α3 = Hf − E7 − E8,

α1 = E1 − E2, α4 = E5 − E6.

α2 = Hg − E1 − E5,

δ = α0 + α1 + 2α2 + α3 + α4.

Figure 2.7: The symmetry root basis for the standard model of D(1)
4 -surfaces

Any such rational 2-form ω is given in charts by

ω = k
df ∧ dg
f

= −kdF ∧ dg
F

= −kdf ∧ dG
fG2

= k
dF ∧ dG
FG2

= −k du3 ∧ dv3

(b3 + u3v3)v3
= −k du7 ∧ dv7

(b7 + u7v7)v7
,

(2.53)

where k is a non-zero constant that we will normalise later . We outline in the following

Lemma the standard method for computing root variables, which was given by Sakai in

[Sak01]. For further exposition of these calculation methods we refer the reader to [DT18].

Lemma 2.3.1.

(a) The residues of ω along the irreducible components of the anticanonical divisor are

given in charts by

resD0 ω = k
du3

b3
, resD1 ω = −kdg, resD2 ω = 0,

resD3 ω = k
du7

b7
, resD4 ω = kdf.

(2.54)

(b) The period mapping χ : Q(R⊥)→ C defined by ω with k fixed gives the root variables
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ai = χ(αi) as

a0 = −kb4
b3
, a1 = k(b2 − b1), a2 = k(b1 − b5),

a3 = −kb8
b7
, a4 = k(b5 − b6).

(2.55)

It is convenient to take our normalisation such that k = −1. We can then use the gauge

action (2.52) to normalize b5 = 0, b7 = 1, and χ(δ) = a0 + a1 + 2a2 + a3 + a4 = 1.

After this normalisation, in this model the role of the extra parameter (the independent

variable for PVI) will be played by b3, so we denote it by t. We then have the parameters

bi, after imposing the normalisation above, given in terms of root variables for the

surface Xb as follows:

b1 = −a2, b2 = −a1 − a2, b3 = t, b4 = ta0,

b5 = 0, b6 = a4, b7 = 1, b8 = a3.
(2.56)

Proof. Part (a) is a standard computation in local charts. For example, we have D0 =

E3 − E4 being given in the chart (u3, v3) by v3 = 0, so we obtain

resD0 ω = resv3=0

(
−k du3 ∧ dv3

(b3 + u3v3)v3

)
= k

du3

b3
. (2.57)

Other computations in part (a) are similar. For part (b), we recall from [Sak01] the following

method for computing the root variables ai = χ(αi):

First, represent αi as a difference of two effective divisor classes, αi = [C1
i ]− [C0

1 ], where

C1
i , C

0
i are curves on Xb. Second, note that there exists a unique component Dk of the

anticanonical divisor such thatDk ·C1
i = Dk ·C0

i = 1, and denote the points of intersection

by Pi = Dk ∩ C0
i and Qi = Dk ∩ C1

i . Then we have

χ(αi) = χ
(
[C1
i ]− [C0

i ]
)

=

∫ Qi

Pi

1

2πi

∮
Dk

ω =

∫ Qi

Pi

resDk
ω, (2.58)

so the computation reduces to an integration along a contour in Dk.
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Pi Qi
Dk

C0
i C1

i

Figure 2.8: Configuration of curves in root variable computation

We illustrate this procedure by computing the root variable a0. First represent

α0 = Hf − E3 − E4 = [Hf − E3]− [E4], (2.59)

where Hf − E3 = {f = b3}′ is the proper transform of the line of constant f passing

through p3, and E4 is the exceptional curve arising from the blow-up of p4. The unique

component of the anticanonical divisor which these curves intersect is D0, and we show the

coordinate systems relevant to the computation in Figure 2.9.

Hg − E3 − E7

D0 = E3 − E4

V3 = f − b3

U3

C1
0 = Hf − E3

C0
0 = E4

v3 = G
u3

P0 : (u3, v3) = (b4, 0)

Q0 : (u3, v3) = (0, 0)

Figure 2.9: Coordinate systems for computation of a0

We evaluate the integral to obtain

a0 = χ(α0) =

∫ Q0

P0

resD0 ω = k

∫ 0

b4

dU3

b3
= −kb4

b3
, (2.60)

and the computations of the remaining root variables are similar.

2.3.3 Cremona action

We now give the Cremona action of the extended affine Weyl symmetry group W̃
(
D

(1)
4

)
=

Aut
(
D

(1)
4

)
nW

(
D

(1)
4

)
. We recall the presentation of the affine Weyl groupW

(
D

(1)
4

)
is

in terms of generators ri = rαi and relations that can be read off the affine Dynkin diagram
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for the symmetry roots in Figure 2.7,

W
(
D

(1)
4

)
=

〈
w0, . . . , w4

∣∣∣∣∣∣∣
r2
i = e, rirj = rjri when αi αj

rirjri = rjrirj when
αi αj

〉
. (2.61)

Reflections ri on Pic(X ) are induced by induced by isomorphisms

φri : Xb → Xb̄,

(f, g) 7→ (f̄, ḡ),
(2.62)

where b̄ = ri · b, and the maps φri are the birational maps (f, g) 7→ (f̄, ḡ) extended to

P1 × P1 as before and then lifted under the blow-ups. Though it is sufficient to consider

the parametrisation of the family by root variables, we can also maintain the gauge freedom

and work with point configuration in terms of bi by requiring that each map preserves our

normalisationb1 b2 b3 b4

b5 b6 b7 b8

 =

b1 b2 t b4

0 b6 1 b8

 =

−a2 −a1 − a2 t ta0

0 a4 1 a3

 . (2.63)

Therefore we give the action of the mappings on parameters bi parametrising point config-

urations as well as on the root variables, together with the extra parameter t. We take the

surface Xb with parameters and coordinates

b1 b2 t b4

0 b6 1 b8
;
f

g

 ∼
a0 a1 a2

a3 a4 t
;
f

g

 , (2.64)

and for each ri, we give the Cremona action as in (2.62) by specifying the parameters

b̄ = ri · b as well f̄, ḡ defining the map φri . In the following we write this in terms of the

parameters b̄i subject to our normalisation as well as in terms of the root variables āi, in the

format

ri :

b̄1 b̄2 t̄ b̄4

0 b̄6 1 b̄8
;
f̄

ḡ

 ∼
ā0 ā1 ā2

ā3 ā4 t̄
;
f̄

ḡ

 , (2.65)
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so for each ri we have a row of the following array in which we give the values of b̄i, āi, f̄, ḡ

required to define the Cremona action (2.62) in the same format as (2.65):

r0 :

b1 − b4
t b2 − b4

t t −b4

0 b6 1 b8
;

f

g − b4f
t(f−t)

 ∼

−a0 a1 a0 + a2

a3 a4 t
;

f

g − a0f
f−t

 ,

r1 :

b2 b1 t b4

0 b6 1 b8
;
f

g

 ∼

a0 −a1 a1 + a2

a3 a4 t
;
f

g

 ,

r2 :

−b1 b2 − b1 t b4 − tb1

0 b6 − b1 1 b8 − b1
;
f − b1f

g

g − b1

 ∼

a0 + a2 a1 + a2 −a2

a2 + a3 a2 + a4 t
;
f + a2f

g

g + a2

 ,

r3 :

b1 − b8 b2 − b8 t b4

0 b6 1 −b8
;

f

g − b8f
f−1

 ∼

 a0 a1 a2 + a3

−a3 a4 t
;

f

g − a3f
f−1

 ,

r4 :

b1 − b6 b2 − b6 t b4

0 −b6 1 b8
;

f

g − b6

 ∼

a0 a1 a2 + a4

a3 −a4 t
;

f

g − a4

 .

Verifying that each of these defines an isomorphism is done according to standard methods

of calculation in charts, which we will give detailed expositions of in later chapters.

We now turn to the Dynkin diagram automorphisms. It is clear that Aut
(
D

(1)
4

)
' S4, so

we only describe three transpositions that generate the whole group. Consider the following

generators σ1, σ2, σ3 of Aut
(
D

(1)
4

)
that act on the symmetry and the surface root bases as

follows (here we use the standard cycle notations for permutations):

σ1 = (α3α4) = (δ3δ4), σ2 = (α0α3) = (δ0δ3), σ3 = (α1α4) = (δ1δ4). (2.66)

These σi correspond to the following Cremona isometries of Pic(X ):

σ1 = (E6E8)wρ, σ2 = (E3E7)(E4E8), σ3 = (E1E5)(E2E6), (2.67)

where wρ is a reflection in the root ρ = Hf − E5 − E7 (note also that a transposition (EiEj)

is induced by a reflection in the root Ei − Ej). The semi-direct product structure is defined

by the action of σ ∈ Aut
(
D

(1)
4

)
on W

(
D

(1)
4

)
via rσ(αi) = σrαiσ

−1.

We now give the birational maps and actions on parameter realising these in the same format
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as we did for the reflections:

σ1 :

b1 b2 1− t (1−t)b4
t

0 b8 1 b6
;

1− f
(f−1)g
f

 =

a0 a1 a2

a4 a3 1− t
;

1− f
(f−1)g
f

 ,

σ2 :

b1 b2
1
t

b8
t

0 b6 1 b4
t

;

f
t

g

 =

a3 a1 a2

a0 a4
1
t

;

f
t

g

 ,

σ3 :

b1 b1 − b6 1
t

b4
t2

0 b1 − b2 1 b8
;

1
f

b1 − g

 =

a0 a4 a2

a3 a1
1
t

;
1
f

−g − a2

 .

2.3.4 The standard discrete d-PV Painlevé equation

As mentioned previously, there are infinitely many different discrete Painlevé equations of

the same surface type, but some of these equations provide model examples since they either

appear in applications, have a particularly nice form, or have degenerations to other known

equations. In the family of equations with surface type D(1)
4 , one such equation is known as

a d-PV equation, since it has a continuous limit to the fifth differential Painlevé equation.

In [KNY17] this equation is given in the following form,

f̄f =
tg(g − a4)

(g + a2)(g + a1 + a2)
, g +

¯
g = a0 + a3 + a4 +

a3

f − 1
+

ta0

f − t
, (2.68)

with the root variable evolution and normalization given by

ā0 = a0 − 1, ā1 = a1, ā2 = a2 + 1, ā3 = a3 − 1, ā4 = a4,

a0 + a1 + 2a2 + a3 + a4 = 1.
(2.69)

Though writing the nonautonomous nature of discrete Painlevé equations via evolution of

parameters is the norm in much of the literature [Sak01, KNY17] we should show at this

point how we may rewrite them as system of difference equations with the independent

variable appearing explicitly. We note that the evolution of the root variables (2.69) can be

used to deduce that

a0 = â0 − n, a1 = â1, a2 = â2 + n, a3 = â3 − n, a4 = â4, (2.70)
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where âi are now arbitrary parameters independent of n, so we can let f = fn, g = gn, f̄ =

fn+1,
¯
g = gn−1 and rewrite (2.68) as

fn+1fn =
tgn(gn − a4)

(gn + a2 + n)(gn + a1 + a2 + n)
,

gn + gn−1 = a0 + a3 + a4 − 2n+
a3 − n
fn − 1

+
t(a0 − n)

fn − t
,

(2.71)

where we have omitted the hats and ai play the role of parameters.

Returning to the form of this equation with parameter evolution, we have a map

ϕ : Xb → Xb̄,

(f, g) 7→ (f̄, ḡ),
(2.72)

which is in fact an isomorphism, with b̄ being the root variables after evolution according

to (2.69). To compute the induced Cremona isometry, we consider the identification of the

Picard groups of the family of surfaces to form the single Z-module Pic(X ). To be precise,

consider two surfaces Xb and Xb̄ in the family, and take Hf ,Hg, Ei to be the generators

of Pic(Xb), with Ei arising from the blow-up of the point pi given in coordinates in terms

of b. Similarly take H̄f , H̄g, Ēi to be the generators of Pic(Xb̄), with Ēi arising from the

blow-up of the point p̄i given in coordinates in terms of b̄. Then we identify Ei with Ēi,Hf
with H̄f and so on, and denote the resulting Z-module by

Pic(X ) = ZHf ⊕ ZHg ⊕ ZE1 ⊕ · · · ⊕ ZE8. (2.73)

The isomorphism (2.72) induces a Cremona isometry w via its pullback, which acts on the

symmetry roots according to

w : α = 〈α0, α1, α2, α3, α4〉 7→ α + 〈−1, 0, 1,−1, 0〉δ, (2.74)

and indeed corresponds to a translation element of W̃ (D
(1)
4 ) in the sense of Kac. Using

standard techniques for obtaining expressions for Weyl group elements in terms of gener-

ators, which are based on results of [Kac90] and can be seen applied to discrete Painlevé

equations e.g. in [DT18], we obtain the following decomposition of w ∈ W̃ (D
(1)
4 ):

w = r2r1r4r2r0r3σ2σ3 = σ2σ3r2r4r1r2r3r0. (2.75)
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Indeed, composing the actions on surfaces and parameters using the data from Subsec-

tion 2.3.3 we obtain precisely the equation (2.68) with parameter evolution (2.69). Further,

we may identify the elementw as the translation Tv for a weight v ∈
◦
P = P (D4) as follows,

working purely on the level of the symmetry root lattice without reference to the embedding

into Pic(X ). The fundamental weights ω1, . . . , ω4 dual to α1, . . . , α4, so αi · ωj = −δij ,

are given by

ω1 = α1 + α2 +
1

2
α3 +

1

2
α4, ω2 = α1 + 2α2 + α3 + α4,

ω3 =
1

2
α1 + α2 + α3 +

1

2
α4, ω4 =

1

2
α1 + α2 +

1

2
α3 + α4.

(2.76)

The Kac translation formula for an element v ∈ spanC{α1, . . . , α4} gives the action of Tv

on the symmetry roots as

Tv(αi) = αi + (v · αi)δ, (2.77)

so to find v =
∑4

i=1 ciωi such that Tv gives the action (2.74) on the symmetry roots, we

must have
v · α1 = −c1 = 0, v · α2 = −c2 = 1,

v · α3 = −c3 = −1, v · α4 = −c4 = 0,
(2.78)

so the element w in (2.75) is indeed a translation element of W̃ (D
(1)
4 ), associated to the

weight

v = ω3 − ω2 = −1

2
α1 − α2 −

1

2
α4. (2.79)

2.4 Okamoto’s space

As we are now equipped with the theory of Sakai surfaces, we can illustrate how this frame-

work recovers Okamoto’s space. For each differential Painlevé equation PJ , this will be a

bundle over the independent variable space BJ (given in (1.9)), obtained from the product

C2×BVI by first compactifying the C2-fibres to P1×P1 then blowing up each fibre at points

whose locations depend on t ∈ BVI, then removing inaccessible divisors. This will give

Okamoto’s space with fibre being a Sakai surface with the supportDred of the anticanonical

divisor removed.

2.4.1 Construction for PVI

We will first demonstrate how the family of D(1)
4 -surfaces outlined in this section can be

used to construct Okamoto’s space for the sixth differential Painlevé equation. We begin by
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rewriting PVI for y(t) with parameters α, β, γ, δ as a (nonautonomous) Hamiltonian system

for q(t), p(t) as

q′ =
∂H

∂p
, p′ = −∂H

∂q
,

H =
q(q − 1)(q − t)

t(t− 1)

{
p2 − p

(
a0 − 1

q − t
+

a3

q − 1
+
a4

q

)
+
a2(a1 + a2)

q(q − 1)

}
.

(2.80)

The equivalence to PVI is via q(t) = y(t), where the root variables (which in this situation

do not have any discrete evolution) are related to the parameters from PVI by

α =
a2

1

2
, β = −a

2
4

2
, γ =

α2
3

2
, δ =

1− a2
0

2
,

a0 + a1 + 2a2 + a3 + a4 = 1.

(2.81)

Make the change of variables (f, g) = (q, qp) so we have the following system of differen-

tial equations equivalent to PVI:

f ′ =
f(f − 1)(f − t)

t(t− 1)

(
2g

f
− a0 − 1

f − t
− a3

f − 1
− a4

f

)
,

g′ =
tg(g − a4)− f2(g + a2)(g + a1 + a2)

t(t− 1)f
.

(2.82)

We consider this system (2.82) on the product bundle (P1×P1)×BVI → BVI = C\{0, 1}

with fibre over t being P1×P1. We do this in the same way as in the discrete case, with the

differential equation being interpreted as the flow of a vector field on a part of the bundle

visible in a C2-chart (f, g), extended to P1×P1 via F = 1/f,G = 1/g. We first note, from

(2.82), that the vector field is regular on the part of the bundle visible in the (f, g)-chart

where f 6= 0. Extended to P1 × P1, the vector field in the (F, g)-chart is computed directly

from (2.82) to be

F ′ =
a0(1− F ) + a3(1− tF ) + (1− F ) [a4(1− tF )− 1 + 2g(1− tF )]

t(t− 1)
,

g′ =
g2(tF 2 − 1)− (a1 + 2a2 + ta4F

2)g − a2(a1 + a2)

t(t− 1)F
.

(2.83)

Like the discrete case, we encounter singularities in the form of indeterminacies of rational

functions, in this case those giving the components of the vector field. We note that in

(2.82), the rational function g′ has indeterminacies at p1, p2 (as in previous section), but F ′
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stays finite. These are given in the root variable parametrisation by

p1 : (F, g) = (0,−a2), p2 : (F, g) = (0,−a1 − a2), (2.84)

and represent the only indeterminacies of the vector field in this chart. Further, we see that

the vector field on the part of the bundle given by F = 0 away from p1, p2 diverges, with

the denominators of both components vanishing while the numerators remain non-zero.

On the level of solutions to the differential system, these observations correspond to the

fact that there are infinite families of solution curves passing through each of the points

p1, p2, while there are none passing through any other points with F = 0. This can be

seen via classical Painlevé analysis, which involves considering Laurent series expansions

of solutions about movable poles. Suppose a solution to the system (2.83) is given locally

about some t0 ∈ BJ by the series expansions

f = F1(t− t0) + F2(t− t0)2 + . . .

G = g0 + g1(t− t0) + g2(t− t0)2 + . . .
(2.85)

so (F (t0), g(t0)) = (0, g0), and the corresponding solution y = q = f of PVI has a pole.

Substituting these into the differential equation, we obtain asymptotic identities which must

hold as t→ t0. We let τ = t− t0, and in particular the equation for g′ gives

0 = (a2 + g0)(a1 + a2 + g0) + g1

(
a1 + 2a2 + F1t

2
0 − F1t0 + 2g0

)
τ +O(τ2), (2.86)

in the limit as τ → 0, where for now we have only kept track of the first two terms. From

this, we see that g0 must take one of the values−a2,−a1−a2, so indeed any solution given

by (2.85) must pass through either p1 or p2 when t = t0, which corresponds to the fact that

the vector field has indeterminacies there but diverges on the rest of the part of the bundle

where F = 0.

Considering the case g0 = −a2, with the solution passing through p1, the asymptotic iden-

tities become
0 = (a1 + (t0 − 1)t0F1) +O(τ),

0 = g1(a1 + (t0 − 1)t0F1)τ +O(τ2),
(2.87)
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where we have again only kept track of the minimal number of coefficients necessary at this

stage, so we must have

F1 =
a1

t0(1− t0)
. (2.88)

Again refining the expansions (2.85) and inserting them into the differential equations we

have from the equation for F ′ the following:

0 =
[
a1 (1 + a1 + a3 + t0(a0 + a1 − 3)) + 2g1(t0 − 1)t0 + 2F2(t0 − 1)2t20

]
τ

+O(τ2),
(2.89)

from which we deduce the following expression for F2 in terms of g1:

F2 = −a1 (a0t0 + a1(t0 + 1) + a3 − 3t0 + 1) + 2g1(t0 − 1)t0
2(t0 − 1)2t20

. (2.90)

After this, we find from the equation for g′ that

g2 =
g1(t0 − 1) (2a2t0 + a4t0 + a3(t0 − 1)− a1 − 2t0 + 1)− 2a1a2 (a2 + a4)

2(t0 − 1)2t0
, (2.91)

in which g1 is still arbitrary. In fact, proceeding in this way all coefficients in (2.85) are

determined recursively in terms of g1, in addition to the location t0 of the pole and the

parameters ai, so we have a one-parameter family of solutions passing through p1 for any

given value of t0 ∈ BJ , parametrised by the free coefficient g1.

This can be understood in terms of the differential system lifted under the blow-ups as

follows. Blowing up p1, we introduce the standard pairs of coordinate charts according to

(2.50), namely (u1, v1), (U1, V1) for the neighbourhood of the exceptional divisor E1 given

by

(u1v1, v1) = (V1, U1V1) = (F, g + a2). (2.92)

The differential system in the chart (u1, v1) then becomes

u′1 =
−1 +Au1 +Bu2

1 + 2(t+ 1)u1v1 + Cu2
1v1 − 3tu2

1v
2
1

t(t− 1)
,

v′1 =
v1

(
tu2

1 (a2 − v1) (a2 + a4 − v1)− 1
)
− a1

(t− 1)tu1
,

A = a1 − 2ta2+(1− t)a3 − ta4, B = −ta2(a2 + a4), C = 2t(2a2 + a4),

(2.93)
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and the vector field is regular on the part of the exceptional line given by v1 = 0, u1 6= 0,

and we can obtain it explicitly as

u′1 =
−1 + (a1 + a3 − t(1− a0 − a1))u1 − a2(a2 + a4)u2

1

t(t− 1)
,

v′1 =
a1

(1− t)tu1
,

(2.94)

and from calculation of the differential system in the other chart (U1, V1) we see that the

vector field is regular everywhere on the exceptional divisor except for at the point given

by (u1, v1) = (0, 0) where it diverges, which corresponds to the intersection of E1 with

the proper transform of the line defined by F = 0. The family of series solutions passing

through p1 lifts under the blow-ups to a family of disjoint solution curves parametrised

by where they cross the exceptional divisor E1. Indeed, if we take the series solutions with

coefficients determined in terms of g1, t0 and the parameters ai and compute the expressions

for these lifted under the blow-up of p1, we find in the (U1, V1)-chart that

U1(t) =
t0(1− t0)g1

a1
+O(τ),

V1(t) =
a1

t0(1− t0)
τ +O(τ2),

(2.95)

where again τ = t − t0. We see from this that parametrisation of the family of solutions

by g1 ∈ C corresponds exactly to where on the part of the exceptional line visible in the

(U1, V1)-chart (all but (u1, v1) = (0, 0)) they cross, namely

(U1(t0), V1(t0)) =

(
t0(1− t0)g1

a1
, 0

)
. (2.96)

Calculations in the pairs of charts for the neighbourhoods of E2, E5, E6 show that the sin-

gularities p2, p5, p6 are resolved similarly, with each family of solutions passing through

the point separated after being lifted under a single blow-up, parametetrised by where they

cross the exceptional divisor. Through these calculations in charts we see that the vector

field diverges on the proper transforms Hf − E1 − E2 and Hf − E5 − E6 of the lines

{F = 0} and {f = 0} respectively, and these inaccessible divisors will be removed from

each fibre when we construct Okamoto’s space.

After this, it remains only to consider the part of the bundle where G = 0. The system in
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the chart (f,G) is given by

f ′ =

 2(f − 1)(t− f)

−G
(
ta4 − f(a0 + a4 + t(a3 + a4)− 1)− (a1 + 2a2)f2

)


t(t− 1)G
,

G′ =
f2(1 + a2G)(1 + (a1 + a2)G) + t(a4G− 1)

t(t− 1)f
.

(2.97)

and we find three points where components are indeterminate, one of which is just p6 given

in this chart, namely by (f,G) = (0, a−1
4 ). The other two are precisely p3, p7 from our

point configuration, given with our normalisation by

p3 : (f,G) = (t, 0), p7 : (f,G) = (1, 0). (2.98)

At both p3 and p7, the component f ′ is indeterminate, while G′ is regular. The vector field

diverges on {G = 0} away from these two points, and we have no solution curves passing

through this part of the bundle. After the blow-ups of p3, p7, we lift the system using the

usual charts, for example in the chart (u3, v3) = ((f − t)/G,G) obtaining

u′3 =
t(t− 1)(a0t− u3) + v3P (u3, v3)

t(1− t)(t+ u3v3)v3
,

v′3 =
t(t− 1) + v3Q(u3, v3)

t(1− t)(t+ u3v3)
,

(2.99)

where P,Q are polynomial in their arguments, which we omit for conciseness. In contrast to

the singularities at p1, p2, p5, p6, the vector field (or more precisely u′3) diverges everywhere

on the exceptional divisor except for at p4 : (u3, v3) = (a0t, 0), where u′3 is indeterminate

while v′4 is regular. After blowing this up, we have the system in the chart (u4, v4), which

is regular on the exceptional line where v4 = 0, given by

u′4 =
ta0

(
a2

0 − ta1a2 − ta2
2 + a0a4

)
− (1− t+ 2a0 + ta1 + 2ta2 + a4)u4

t(1− t)
,

v′4 =
1

t
.

(2.100)

Together with a similar calculation in the (U4, V4)-chart, this allows us to deduce that the

vector field is regular on the part of E4 away from its intersection with the proper transform

E3 −E4. Again, the regularity of the vector field on this part of the exceptional divisor en-
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sures we have separated the infinite family of solution curves passing through p3 according

to where they cross E4, and the proper transform E3 − E4 is an inaccessible divisor.

We may again see this separation of the family of solution curves by lifting the series ex-

pansions under the blow-ups, and these methods can in fact be used to identify the points to

be blown up to regularise the vector field as an alternative to rewriting the differential equa-

tions in charts. This method can often bypass tedious calculations of the differential system

in different charts, and we will demonstrate it applied to the singularity at p7. Consider a

series expansion giving a solution to (2.97) locally about some t0 ∈ BJ :

f = f0 + f1(t− t0) + f2(t− t0)2 + . . .

G = G1(t− t0) +G2(t− t0)2 + . . .
(2.101)

so (f(t0), G(t0)) = (f0, 0). Inserting this into the equation we obtain

0 = 2(1− f0)(f0 − t0) +O(τ),

0 =
(
t0 − f2

0 + t0(t0 − 1)f0G1

)
+O(τ),

(2.102)

so again we see that f0 is forced to take one of two values, corresponding to p3 and p7.

Considering p7, we take f0 = 1, and see immediately from the leading term in the second

line of (2.102) that must have G1 = −t−1
0 . Proceeding as before, we arrive at the following

family of solutions passing through p7 parametrised by the free coefficient f2:

f = 1− a3

t0
τ + f2τ

2 +O(τ3),

G = − 1

t0
τ +

(
a0 + a4 + t0 − 2− (a3 + a4) t0

2(t0 − 1)t20

)
τ2

+

(
P

6t30(1− t0)2
+

t0 + 1

3t0(t0 − 1)
f2

)
τ3 +O(τ4).

(2.103)

Here P is a polynomial in t0, ai, which we omit for conciseness, τ = t− t0 as before, and

the rest of the coefficients are determined recursively in terms of f2, but we only keep track

of the ones necessary for what follows.

We now use the expansions (2.103) to identify the sequence of blow-ups required to resolve

the singularity at p7, without rewriting the differential system. As t→ t0, all solutions from

this family pass through p7, so we lift them under the blow-up of p7, after which they are
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written in coordinates as

u7(t) = a3 +O(τ), v7(t) = O(τ), (2.104)

and the whole family passes through (u7(t0), v7(t0)) = (a3, 0), which is precisely p8 in the

fibre over t0, so we must blow this up. Again lifting the solution curves under the blow-ups

via the usual charts, we find

u8(t) = t20f2 +
a3

2(t0 − 1)
(2− a0 − a4 + t0(a3 − a4 − 1)) +O(τ),

v8(t) = O(τ),

(2.105)

and the family of solution curves are separated, with the free coefficient f2 controlling where

they cross the affine part of the exceptional line visible in the (u8, v8)-chart. In particular,

there are no solution curves passing through the proper transform E7 −E8 in the fibre over

t0, so this represents another inaccessible divisor.

So, after all of the blow-ups, we have in each fibre a number of inaccessible divisors, which

are precisely the components Di of the anticanonical divisor of Xb as given in the previous

section. We remove their support Dred = ∪iDi and obtain a bundle

E → BJ

Xb\Dred 7→ t
(2.106)

where b includes t varying over BJ , but the rest of the root variables ai are fixed. Our cal-

culations above (with the assumption of the Painlevé property, so the only solutions passing

through anywhere over {f = 0}, {F = 0} or {G = 0} are given by series expansions as

considered above) allow us to deduce that the vector field is regular on E, and that E is

foliated by solution curves transverse to the fibres.

2.4.2 Hamiltonian structure and uniqueness

We now outline the sense in which Painlevé equations are determined uniquely by

Okamoto’s space, as shown in a series of papers by Takano, Shioda, Matumiya and Matano

[MMT99, Mat97, ST97]. Okamoto’s construction of the spaces of initial conditions for the

Painlevé equations was done via equivalent nonautonomous Hamiltonian systems. For PJ ,
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the system is of the form

q′ =
∂HJ

∂p
, p′ = −∂HJ

∂q
, (2.107)

where HJ are Okamoto’s Hamiltonians, which we present now, where the parameters ai in

different Hamiltonians are unrelated, and arise as root variables for each associated family

of Sakai surfaces:

HI =
p2

2
− 2q3 − tq,

HII =
p2

2
−
(
q2 +

t

2

)
p− a1q,

HIII =
1

t

{
p(p− 1)q2 + (a1 + a2)qp+ tp− a2q

}
,

HIV = pq(p− q − t)− a1p− a2q,

HV =
1

t
{q(q − 1)p(p+ t)− (a1 + a3)qp+ a1p+ a2tq} ,

HVI =
q(q − 1)(q − t)

t(t− 1)

{
p2 − p

(
a0 − 1

q − t
+

a3

q − 1
+
a4

q

)
+
a2(a1 + a2)

q(q − 1)

}
.

(2.108)

We consider each system firstly on the trivial bundle C2 × BJ → BJ , where the system

is Hamiltonian with respect to the usual symplectic form dq ∧ dp on the fibre, and the

Hamiltonian HJ is holomorphic on C2 × BJ , as can be seen from the fact that each listed

in (2.108) is polynomial in q, p and holomorphic in t on the corresponding BJ .

Okamoto’s space is a bundle EJ → BJ which includes the product C2 × BJ in such a

way that the C2 fibre over t ∈ BJ is emdedded into that of EJ . The fibre of EJ over t is

Xt\Dred, where Xt is a Sakai surface of one of the types with extra parameter t, and we

include only t in the subscript as the rest of the root variables are fixed. The symplectic

form on the C2 fibre over t extends uniquely to a rational 2-form on Xt, whose pole divisor

is Dred. The differential system on the bundle C2×BJ → BJ extends to one on EJ , which

is Hamiltonian with respect to the symplectic form extended to Xt\Dred in the following

sense:

Suppose we have the Hamiltonian HJ(q, p) defined in the (q, p)-chart, where the 2-form

is given by dq ∧ dp. Suppose we have another chart (x, y) in which the 2-form is written

as R(x, y, t)dx ∧ dy for R rational in x, y and t. Then the Hamiltonian system (2.107) is

transformed into a Hamiltonian system in the (x, y)-chart with respect to this 2-form:

R(x, y, t)x′ =
∂K

∂y
, R(x, y, t)y′ = −∂K

∂x
, (2.109)
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where on the overlap of the two coordinate patches the Hamiltonian K satisfies

dq ∧ dp− dHJ ∧ dt = R(x, y, t)dx ∧ dy − dK ∧ dt. (2.110)

Here we note that the Hamiltonian K is determined by H modulo functions of the indepen-

dent variable t. We say that the system on EJ is Hamiltonian if it is given in charts by a

collection {Ki} of such Hamiltonians, with

Ki : C2 ×BJ → C,

(xi, yi, t) 7→ Ki(xi, yi, t),
(2.111)

on a collection of charts {(xi, yi, t)} covering EJ . The Hamiltonians {Ki} are equivalent

under the transition functions modulo functions of t. If each Ki is holomorphic on the cor-

responding coordinate patch ofEJ , then we say that the Hamiltonian system is holomorphic

on EJ . We say that the system extends meromorphically to the bundle EJ of Sakai surfaces

(without Dred removed) if the Hamiltonians extend to the closures of their C2-coordinate

patches corresponding to the extension of EJ to EJ .

We have the following result, which was shown for PVI by Shioda and Takano in [ST97]

then for PII-PV by Matumiya in [Mat97], using the results of Matano, Matumiya and Takano

[MMT99].

Theorem 2.4.1. Any Hamiltonian system holomorphic on EJ and extending meromorphi-

cally to the associated bundle of Sakai surfaces is equivalent to the Okamoto Hamiltonian

form of PJ .

This result is important for studying differential Painlevé equations appearing in ap-

plications for the following reason. If a system of differential equations can be regularised

on a bundle isomorphic to Okamoto’s space (in the sense that it is realised by an isomor-

phism between the associated Sakai surfaces which identifies their anticanonical divisors),

then if we can show that the system is Hamiltonian with respect to the symplectic form

corresponding to the anticanonical divisor and that the Hamiltonians are holomorphic on

the complement of Dred, then it must coincide with the Okamoto Hamiltonian form of the

relevant Painlevé equation.
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R R⊥

Elliptic A
(1)
0 E

(1)
8

Multiplicative A
(1)
0 E

(1)
8

A
(1)
1 E

(1)
7

A
(1)
2 E

(1)
6

A
(1)
3 D

(1)
5

A
(1)
4 A

(1)
4

A
(1)
7 A

(1)
1

Additive A
(1)
0 E

(1)
8

A
(1)
1 E

(1)
7

A
(1)
2 E

(1)
6

D
(1)
4 D

(1)
4 PVI

D
(1)
5 A

(1)
3 PV

D
(1)
6 2A

(1)
1 PD

(1)
6

III

E
(1)
6 A

(1)
2 PIV

D
(1)
7 A

(1)
1

|α|2=14

PD
(1)
7

III

E
(1)
7 A

(1)
1 PII

D
(1)
8 A

(1)
0 PD

(1)
8

III

E
(1)
8 A

(1)
0 PI

Table 2.3: Root system types for some families of Sakai surfaces



Chapter 3

Painlevé equations in applications - the

identification problem

We now turn to applications of the geometric framework outlined in Chapter 2, and further

illustrate how it works in practice. Over the last decade it has become clear that discrete

Painlevé equations, like their differential counterparts, appear in a wide range of important

mathematical and physical problems. These include the computations of gap probabili-

ties [Bor03] of various ensembles in the emerging field of integrable probability [BG16], as

well as describing recurrence coefficients of semi-classical orthogonal polynomials [VA18].

Thus, the ability to recognise a given nonautonomous recurrence as a discrete Painlevé equa-

tion is crucial to the application of the wealth of knowledge of their properties to problems

arising in other areas. In particular, a method for determining the type of a discrete Painlevé

equation according to Sakai’s classification scheme, understanding whether it is equivalent

to some well-studied example, and especially finding an explicit change of variables trans-

forming it to such an example becomes desirable. Fortunately, Sakai’s geometric theory

provides an almost algorithmic procedure for identifying a given recurrence as a discrete

Painlevé equation. In this chapter, adapted from [DFS19b], we illustrate this procedure by

studying an example coming from the theory of discrete orthogonal polynomials. There are

many connections between orthogonal polynomials and Painlevé equations, both differen-

tial and discrete. In particular, often the coefficients of three-term recurrence relations for

orthogonal polynomials can be expressed in terms of solutions of discrete and differential

Painlevé equations. In this work we study the so-called discrete orthogonal polynomials

with hypergeometric weight and show that the difference equations satisfied by their recur-

rence coefficients are equivalent to the standard d-PV equation from Chapter 2. The equiv-
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alence is obtained by first constructing a space of initial conditions for the given system

and identifying it as a family of D(1)
4 -surfaces, with the discrete dynamics corresponding

to a translational Cremona isometry. The change of variables is given by an isomorphism

between this family of surfaces and the standard model from Chapter 2, which identifies the

translation with that corresponding to d-PV.

The purpose of this chapter is to illustrate this procedure for solving the identification prob-

lem in detail using one concrete example, which can be easily adapted to other cases. We

also consider a second-order ODE satisfied by the same recurrence coefficients, and outline

a similar method which identifies it with PVI, by constructing a space of initial conditions

explicitly and a transformation from this to the standard model of Okamoto’s space for PVI.

3.1 Painlevé equations from orthogonal polynomials

The problem that we consider comes from the theory of orthogonal polynomials. In fact,

the relationship between discrete Painlevé equations and orthogonal polynomials is much

older than the actual definition of a discrete Painlevé equation — the first example of a

discrete analogue of PI originally appeared in the work of Shohat [Sho39]. There are many

connections between recurrence coefficients of orthogonal polynomials and solutions of

Painlevé equations, both discrete and differential (see, for instance, [VA18] and numerous

references therein).

We are interested in the difference equations themselves, but at this point we give a brief

outline of how they are obtained in this case. Let {pn(x) = γnx
n + · · · } be the collection

of polynomials that are orthonormal on the set N = {0, 1, 2, . . .} of non-negative integers

with respect to the hypergeometric weight wk, so

∞∑
k=0

pn(k)pm(k)wk = δmn, wk =
(α)k(β)k
(γ)kk!

ck, α, β, γ > 0, 0 < c < 1, (3.1)

where ( · )k is the usual Pochhammer symbol and δmn is the Kronecker delta. This collec-

tion is known as the discrete orthogonal polynomials with hypergeometric weights, since

the moments of this weight function are given in terms of the Gauss hypergeometric func-

tion 2F1(α, β; γ; c) and its derivatives; it has been studied in [FVA18]. These polynomials

satisfy a three-term recurrence relation

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x), (3.2)
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where a0 = 0. The coefficients an and bn are called the recurrence coefficients [Chi78,

Ism05, Sze75]. Note that the corresponding monic orthogonal polynomials Pn = pn/γn

satisfy a similar three-term recurrence relation

xPn(x) = Pn+1(x) + bnPn(x) + a2
nPn−1(x). (3.3)

In [FVA18] it was shown that as functions of the discrete variable n these recurrence co-

efficients {an, bn} satisfy, after some change of variables, a system of nonlinear difference

equations. As functions of the continuous parameter c of the hypergeometric weight, they

satisfy a system of differential-difference equations which are equivalent to the Toda lat-

tice. From these two systems one can obtain a differential equation, which we study in

Section 3.3. In [HFC19], using a direct computation, it was shown that the discrete system

is a composition of Bäcklund transformations of the sixth Painlevé equation. In this chapter

we give a geometric explanation of this result, show that the discrete system is in fact equiv-

alent to the standard d-PV equation, and provide an explicit change of variables realising

this.

To give the discrete system explicitly, let us introduce two new variables xn and yn

parametrising the recurrence coefficients a2
n and bn via

a2
n

1− c
c

= yn +
n−1∑
k=0

xk +
n(n+ α+ β − γ − 1)

1− c
,

bn = xn +
n+ (n+ α+ β)c− γ

1− c
.

(3.4)

It was shown in [FVA18, Theorem 3.1] that xn, yn, n ∈ N, satisfy the first-order system of

nonlinear nonautonomous difference equations

(yn−αβ + (α+ β + n)xn − x2
n)(yn+1 − αβ + (α+ β + n+ 1)xn − x2

n)

=
1

c
(xn − 1)(xn − α)(xn − β)(xn − γ),

(3.5a)

(xn+Yn)(xn−1 + Yn)

=
(yn + nα)(yn + nβ) [yn + nγ − (γ − α)(γ − β)] [yn + n− (1− α)(1− β)]

[yn(2n+ α+ β − γ − 1) + n((n+ α+ β)(n+ α+ β − γ − 1)− αβ + γ)]2
,

(3.5b)
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where α, β, γ, c are the parameters of the hypergeometric weight wk in (3.1) and

Yn =
y2
n + yn(n(n+ α+ β − γ − 1)− αβ + γ)− αβn(n+ α+ β − γ − 1)

yn(2n+ α+ β − γ − 1) + n((n+ α+ β)(n+ α+ β − γ − 1)− αβ + γ)
.

We call this discrete system (3.5a-3.5b) the hypergeometric weight recurrence, and its initial

conditions are given by

x0 =
αβc

γ
2F1(α+ 1, β + 1; γ + 1; c)

2F1(α, β; γ; c)
+

(α+ β)c− γ
c− 1

, y0 = 0. (3.6)

For the hypergeometric weights the connection with a certain form of the sixth Painlevé

equation (with independent variable c) is known (see [FVA18, Theorem 5.1]). The essential

role is played by the Toda differential-difference system for the recurrence coefficients (see,

e.g., [Ism05, §2.8] or [VA18, §3.2.2]). For the hypergeometric weight, it is given by

c
d

dc
a2
n = a2

n(bn − bn−1), n ≥ 1,

c
d

dc
bn = a2

n+1 − a2
n, n ≥ 0.

(3.7)

It is proved in [FVA18, Theorem 5.1] that a simple linear change of variables transforms

Sn =
∑n−1

k=0 xk into the solutions of the so-called σ-form of PVI [JMU81, JM81a, JM81b].

Knowing Sn one can find xn, yn and, hence, the recurrence coefficients a2
n, bn in terms

of Sn and its derivatives. Moreover, it is shown in [HFC19] that the differential equation

for xn can be directly reduced to the sixth Painlevé equation, which we give a geometric

explanation of in Section 3.3.

3.2 The identification procedure for discrete equations

The main objective of this chapter is to illustrate a general procedure for identifying a given

discrete system as a discrete Painlevé equation and explicitly rewriting it in some standard

form, using the system (3.5a–3.5b) as an example. This process consists of the following

steps, where we assume that we indeed have some discrete Painevé equation, otherwise the

process will terminate before the final result.

(Step 1) Lift the given system to a family of isomorphisms. For that, if necessary,

rewrite the recurrence as a system of two first-order recurrences, (xn+1, yn+1) =

ψ(n)(xn, yn). The mapping ψ(n) : C2 → C2 should be a birational mapping that
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may depend on various parameters, including the iteration step n that we consider

to be generic. Then extend ψ(n) to P1×P1 in the same way as in previous chapters.

Find the indeterminacies of the mapping and its inverse, and resolve them using

the blow-up procedure (for discrete Painlevé equations this will require finitely

many blow-ups) until the mapping lifts to an isomorphism of rational surfaces

ψ(n) : Xn
∼−→ Xn+1.

(Step 2) Find the induced mapping on Pic(X ). With the natural identification of Picard

groups of the family {Xn} of surfaces, compute the induced Cremona isometry.

(Step 3) Determine the surface type. Determine whether the family {Xn} are Sakai sur-

faces and, if so, their type. If the resolution of indeterminacies performed in Step

1 led directly to a family of Sakai surfaces, there would have been eight blow-ups

performed, but it is also possible that this initial procedure leads to more. In this

case, if we can find sufficiently many (−1)-curves that are fixed by the dynamics,

we can blow them down to arrive at a family of Sakai surfaces between which the

system still gives isomorphisms. In the case of the hypergeometric weight recur-

rence we arrive directly at a family of Sakai surfaces, but see [DST13] and [DK19]

for examples requiring blow-downs.

(Step 4) Find a preliminary identification of Pic(X ) with the standard model. The aim

is to find a transformation from the given system to the standard example via iso-

morphisms identifying the families of Sakai surfaces. This will be most efficiently

obtained by first finding an identification of the Picard lattices associated with the

two families. At this step, we only need to ensure that this identifies the surface

roots with the standard example.

(Step 5) Find the translational Cremona isometry and compare it with that of the stan-

dard discrete Painlevé equation. Using this preliminary change of basis we can

choose symmetry roots for our family of surfaces that match the standard exam-

ple. We can then examine the induced action of the mapping on the symmetry

root lattice and whether this corresponds to a translation. If so, we compare this

with the translation giving the standard example, and if they are the same we do

not need to adjust our identification on the level of Pic(X ). If the translations are

different, the equations will still be equivalent if the translations are conjugate in
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the group of Cremona isometries. To find out whether this is the case, we may

either represent each translation as a word in the generators of the extended affine

Weyl group and solve the conjugacy problem for words in groups, or determine

whether the weights associated with the translations are in the same orbit. If they

are conjugate, the conjugation element is the necessary adjustment to our prelim-

inary change of basis, so we arrive at a final identification on the level of Picard

groups which matches the translations, and which we will use to construct the

transformation between discrete systems.

(Step 6) Find the change of variables reducing the given system to the standard exam-

ple. We now obtain an isomorphism between the family of Sakai surfaces from the

given system and that of the standard model, which induces the final identification

we obtained on the level of Picard groups. An important part of this computation

is the identification of the parameters from the given system with the root variables

for the standard model of surfaces. This can be done by computing the root vari-

ables for Xn with our choice of symmetry roots using the period mapping. Once

we have this isomorphism between the families of surfaces that matches the trans-

lations, we verify that this gives a change of variables reducing the given system

to the standard example.

In what follows, we will illustrate the calculations at each step of this procedure using

equations (3.5a–3.5b) as an example of a given system. Our main result is the following

Theorem.

Theorem 3.2.1. Recurrences (3.5a–3.5b) are equivalent to the standard d-PV equation

(2.68). This equivalence is achieved via the following change of variables:

f(x, y) =
t(x− β)(x− γ)

((x− α)(x− β)− nx− y)
,

g(x, y) = −(x− γ)(((x− α)(x− β)− nx− y)− t(x− β)(x− γ + β + n))

((x− α)(x− β)− nx− y)− t(x− β)(x− γ)
,

(3.8)

where we have written x = xn, y = yn for conciseness. Note that the parameters c and t

are related by ct = 1, and the root variable parameters in d-PV are related to those from
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the system (3.5a–3.5b) by

a0 = γ − n− α, a1 = α− 1, a2 = 1 + n+ β − γ,

a3 = −n− β, a4 = γ − β.
(3.9)

3.2.1 Lifting the system to isomorphisms

For the hypergeometric weight recurrence, we have the iteration mapping ψ(n) : (xn, yn) 7→

(xn+1, yn+1) expressed in terms of a forward mapping ψ(n)
1 : (xn, yn) 7→ (xn, yn+1) de-

fined by equation (3.5a) and a backward mapping ψ(n)
2 : (xn, yn) 7→ (xn−1, yn) defined

by equation (3.5b). From this we have a decomposition ψ(n) = ψ
(n)
1 ◦ (ψ

(n+1)
2 )−1, which

this is fairly typical of discrete Painlevé equations obtained as deautonomisations of QRT

mappings, see [CDT17].

First, we extend the mappings from C2 to P1×P1 in the same way as throughout the thesis

by introducing homogeneous coordinates [x0 : x1] and [y0 : y1] with x = x0/x1 in the

affine chart x1 6= 0, X = 1/x = x1/x0 in the affine chart x0 6= 0, and y, Y = 1/y de-

fined similarly. The fact that we have the decomposition in terms of forward and backward

mappings means that to lift the system to isomorphisms it will be sufficient to resolve the

indeterminacies of the birational maps ψ(n)
1 and ψ(n)

2 on P1 × P1.

3.2.1.1 The Forward Mapping

We begin by considering the forward mapping. We put x̄ = x := xn, y := yn, ȳ := yn+1

and omit the index n in the mapping notation. The map ψ1 : (x, y) 7→ (x̄, ȳ) then becomes

(x̄, ȳ) =

(
x,

(x− 1)(x− α)(x− β)(x− γ)

c(y − (x− α)(x− β) + nx)
+ (x− α)(x− β)− (n+ 1)x

)
, (3.10)

and we immediately see the following indeterminacies in the (x, y)-chart

q1 : (x, y) = (1, (1− α)(1− β)− n), q2 : (x, y) = (α,−nα),

q3 : (x, y) = (β,−nβ), q4 : (x, y) = (γ, (γ − α)(γ − β)− nγ),
(3.11)
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which we sometimes refer to as basepoints in analogy with the case of linear systems of

divisors. Rewriting the rational function giving ȳ in the (X,Y )-chart, we get

ȳ =

Y (1−X)(1− αX)(1− βX)(1− γX)

+ c
(
X2 − Y ((1− αX)(1− βX)− nX)

)(
(1− αX)(1− βX)− (n+ 1)X

)


cX2
(
X2 − Y ((1− αX)(1− βX)− nX)

) ,

and we see that we have a new basepoint q5 : (X,Y ) = (0, 0). By calculation in the other

two charts we see that these points are the only indeterminacies in P1 × P1 for the forward

mapping.

We now illustrate some methods of calculation for resolving singularities of discrete

systems, which are best performed using a computer algebra software. Here we use

Mathematicar. We introduce coordinates for the neighbourhoods of the exceptional divi-

sors Fi arising from the blow-ups of qi, i = 1, . . . , 4 according to the convention established

in Section 2.3. For example, for q1 we have two affine charts (u1, v1), (U1, V1) defined by

x = 1 + u1v1 = 1 + V1,

y = (1− α)(1− β)− n+ v1 = (1− α)(1− β)− n+ U1V1.
(3.12)

In the coordinates (U1, V1) we have

x̄ = 1 + V1,

ȳ =
(1− α+ V1)(1− β + V1)(1− γ + V1)

c(U1 − (2− α− β + V1) + n)

+ (1− α+ V1)(1− β + V1)− (n+ 1)(1 + V1),

(3.13)

where the cancellation of V1 in the rational function ȳ has resolved the indeterminacy, so

the mapping lifts to the exceptional divisor F1, which is given in this chart by V1 = 0.

Rewriting the mapping in the (u1, v1)-chart does not reveal any other basepoints.

The computation is similar for the points q2, . . . , q4, and these indeterminacies are each

resolved through a single blow-up, with the mapping lifting to be well-defined on the ex-

ceptional divisors Fi, i = 1, . . . , 4.

The situation at the point q5 : (X,Y ) = (0, 0) is less trivial. Introducing blow-up coordi-
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nates at this point via

X = V5 = u5v5, Y = U5V5 = v5, (3.14)

and considering the mapping in the (u5, v5)-chart, we get, after cancelling the factor of V5

in the numerator and denominator,

ȳ =

U5(1− V5)(1− αV5)(1− βV5)(1− γV5)

+ c
(
V5 − U5 ((1− αV5)(1− βV5)− nV5)

)(
(1− αV5)(1− βV5)− (n+ 1)V5

)


cV 2
5

(
V5 − U5 ((1− αV5)(1− βV5)− nV5)

) .

We see that this mapping has a new indeterminacy at q6 : (U5, V5) = (Y/X,X) = (0, 0)

(note that this point is not visible in the (u5, v5)-chart). Continuing in this way, we get the

following sequence of “infinitely near” basepoints for the forward mapping:

q5 : (X,Y ) = (0, 0)

q6 : (U5, V5) = (Y/X,X) = (0, 0)

q7 : (u6, v6) =

(
U5

V5
, V5

)
=

(
c

c− 1
, 0

)

q8 : (u7, v7) =

(
(c− 1)u6 − c

(c− 1)v6
, v6

)
=

c
(
c(α+ β + n) + n− γ

)
(c− 1)2

, 0

 .

(3.15)

Writing the lifted map in both charts (u8, v8) and (U8, V8), we see that we have no more

basepoints on the exceptional line F8, so all indeterminacies of the forward mapping are

resolved.

3.2.1.2 The Backward Mapping

Consider now the backward mapping. We put x := xn,
¯
x = xn−1,

¯
y = y := yn, so the

backward mapping ψ2 : (x, y) 7→ (
¯
x,

¯
y) is given by

¯
x =

(y + nα)(y + nβ)(y + nγ − (γ − α)(γ − β))(y − n− (1− α)(1− β))

(x+ Y)Z2
−Y,

¯
y = y,

(3.16)
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where Y is given by (3.1) (we omit the index n) and

Z = y(2n+ α+ β − γ − 1) + n ((n+ α+ β)(n+ α+ β − γ − 1)− αβ + γ) . (3.17)

The same standard computation shows that the only indeterminacies of the backward map-

ping are the same points q1, . . . , q4 as for the forward one, but q5 is not present. Calculations

in the same coordinates (ui, vi) and (Ui, Vi) for i = 1, . . . , 4 shows that these indetermina-

cies are all resolved after a single blow-up, as was the case for the forward mapping.

We now have a family of surfaces to which the iteration mappings ψ(n) lift to isomorphisms.

Take the points q1, . . . , q8 in the surface with coordinates (x, y) = (xn, yn), and denote by

Xn := Blq1···q8(P1 × P1) the surface obtained after the blow-ups of these, with projection

ηn : Xn → P1 × P1. For each n, we have an isomorphism

ψ(n) : Xn → Xn+1. (3.18)

3.2.2 The mapping on Pic(X )

We now compute the Cremona isometry induced by the iteration mapping ψ(n). We

do this by considering those induced by isomorphisms ψ1 and ψ2 between X̄ ,X and

X̄ obtained from P1 × P1 with coordinates (
¯
x,

¯
y) = (xn−1, yn), (x, y) = (xn, yn) and

(x̄, ȳ) = (xn, yn+1) respectively, as in the previous section. The basepoints
¯
qi and q̄i, to be

blown up to arrive at the surfaces X̄ and X̄ will be given in what follows, and we will use

F̄i to denote the exceptional divisor arising from the blow-up of the point q̄i, H̄x to denote

the class of the total transform of a line of constant x̄, etc., and similarly for divisor classes.

We will also use (ūi, v̄i), (Ūi, V̄i) for the charts introduced for the blow-up of q̄i according

to the convention established in Section 2.3. Notations for divisors on X̄ and their classes

are similar. The result for the forward and backward mappings is given by the following

Lemma, where we use the notation Fij = Fi + Fj and so on.

Lemma 3.2.2.

(a) The forward mapping gives an isomorphism ψ1 : X → X̄ with pushforward action
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(ψ1)∗ : Pic(X )→ Pic(X̄ ) given by

Hx 7→ H̄x, Hy 7→ 4H̄x + H̄y − F̄12345678,

F1 7→ H̄x − F̄1, F2 7→ H̄x − F̄2,

F3 7→ H̄x − F̄3, F4 7→ H̄x − F̄4,

F5 7→ H̄x − F̄8, F6 7→ H̄x − F̄7,

F7 7→ H̄x − F̄6, F8 7→ H̄x − F̄5.

(3.19)

The base points q̄i for the (x̄, ȳ)-surface X̄ are given by

q̄1 : (x̄, ȳ) = (1, (1− α)(1− β)− (n+ 1)),

q̄2 : (x̄, ȳ) = (α,−(n+ 1)α),

q̄3 : (x̄, ȳ) = (β,−(n+ 1)β),

q̄4 : (x̄, ȳ) = (γ, (γ − α)(γ − β)− (n+ 1)γ),

(3.20)

for the first four, and for the infinitely near points by

q̄5 : (X̄, Ȳ ) = (0, 0),

q̄6 : (Ū5, V̄5) = (Ȳ/X̄, X̄) = (0, 0),

q̄7 : (ū6, v̄6) =

(
Ū5

V̄5
, V̄5

)
=

(
c

c− 1
, 0

)
,

q̄8 : (ū7, v̄7) =

(
(c− 1)ū6 − c

(c− 1)v̄6
, v̄6

)

=

c
(
c(α+ β + n+ 1) + n− γ − 1

)
(c− 1)2

, 0

 .

(3.21)

(b) The backward mapping gives an isomorphism ψ2 : X → X̄ with pushforward action

(ψ2)∗ : Pic(X )→ Pic(X̄ ) given by

Hx 7→ H̄x + 2H̄y − F̄1234, Hy 7→ H̄y,

F1 7→ H̄y − F̄1, F2 7→ H̄y − F̄2,

F3 7→ H̄y − F̄3, F4 7→ H̄y − F̄4,

F5 7→ F̄5, F6 7→ F̄6,

F7 7→ F̄7, F8 7→ F̄8.

(3.22)
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The basepoints
¯
qi are given by

¯
q1 : (

¯
x,

¯
y) = (1, (1− α)(1− β)− n),

¯
q2 : (

¯
x,

¯
y) = (α,−nα),

¯
q3 : (

¯
x,

¯
y) = (β,−nβ),

¯
q4 : (

¯
x,

¯
y) = (γ, (γ − α)(γ − β)− nγ),

(3.23)

as well as

¯
q5 : (

¯
X,

¯
Y ) = (0, 0),

¯
q6 : (

¯
U5,

¯
V5) = (

¯
Y/

¯
X,

¯
X) = (0, 0),

¯
q7 : (

¯
u6,

¯
v6) =

(
¯
U5

¯
V5
,
¯
V5

)
=

(
c

c− 1
, 0

)
,

¯
q8 : (

¯
u7,

¯
v7) =

(
(c− 1)

¯
u6 − c

(c− 1)
¯
v6

,
¯
v6

)

=

c
(
c(α+ β + n) + n− γ − 2

)
(c− 1)2

, 0

 .

(3.24)

Proof. This is a standard computation in charts that we illustrate through a few examples

for the forward mapping ψ1. First, since x̄ = x, we see that (ψ1)∗(Hx) = H̄x. To find

(ψ1)∗(F1) we take the mapping (3.13) and restrict to the part of the exceptional divisor

given by V1 = 0 to obtain

(x̄, ȳ) =

(
1,

(1− α)(1− β)(1− γ)

c(U1 + α+ β + n− 2)
+ (1− α)(1− β)− (n+ 1)

)
, (3.25)

so ȳ is just a fractional linear transformation of the coordinate U1 parametrising the affine

part of the exceptional divisor, and thus F1 maps bijectively to the proper transform H̄x−F̄1

of the line x̄ = 1. After passing to divisor classes, this gives (ψ1)∗(F1) = H̄x − F1 as

required. The computations for F2, . . . , F4 are similar.

The computation gets slightly more complicated over the point q5. For example, to find

(ψ1)∗(F5) we compute ψ1 in the chart (U5, V5) and restrict to V5 = 0. However, since there

is a single base point q6 on F5, writing the mapping in the chart and setting V5 = 0 gives

the mapping from the proper transform F5 − F6 of F5 on X . Writing the mapping in the

charts (U5, V5) for the domain and (X̄, Ȳ ) for the target, we find that when V5 = 0 we have
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(X̄, Ȳ ) = (0, 0), so F5 − F6 maps somewhere over the point q̄5. Switching to coordinates

(Ū5, V̄5) in the range, we set V5 = 0 and find (Ū5, V̄5) = (0, 0). Thus, F5 − F6 is still

mapped somewhere over q̄6, and we need to compute in the chart (ū6, v̄6). We see similarly

that F5 − F6 is sent somewhere over q̄7, but setting V5 = 0 in the mapping written in the

chart (ū7, v̄7) gives

(ū7, v̄7) =

(
c+ c(−1 + n+ c(1 + n+ α+ β)− γ)U5

(c− 1)2U5
, 0

)
, (3.26)

and so (ψ1)∗(F5 − F6) = F̄7 − F̄8. Other computations for curves over q5 are similar and

result in
(ψ1)∗(F6 − F7) = F̄6 − F̄7,

(ψ1)∗(F7 − F8) = F̄5 − F̄6,

(ψ1)∗(F8) = H̄x − F̄5.

(3.27)

Passing to classes, these allow us to deduce by linearity that

(ψ1)∗(F7) = (ψ1)∗(F7 −F8) + (ψ1)∗(F8)

= (F̄5 − F̄6) + (H̄x − F̄5)

= H̄x − F̄6,

(3.28)

and similarly for F5 and F6. For the forward mapping it remains only to find (ψ1)∗(Hy),

and for this calculation it is convenient to compute the mapping on the proper transform

of some line of constant y or Y passing through one or more basepoints. For example

Hy − F5 − F6 is the proper transform of the line {Y = 0}, and we can set Y = 0 in the

mapping to obtain

(x̄, ȳ) = (x, x2 + αβ − x(n+ 1 + α+ β)), (3.29)

soHy−F5−F6 is mapped to the proper transform of the bi-degree (2, 1)-curve in the range

given by the equation

x̄2 + αβ − x̄(n+ 1 + α+ β)− ȳ = 0. (3.30)

To compute the class in Pic(X̄ ) of the proper transform, we can check by calculation in

charts that it passes through q̄1, . . . , q̄6, each with multiplicity one. For example, substitut-
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ing

(x̄, ȳ) = (ū2v̄2 + α, v̄2 − (n+ 1)α) (3.31)

into the equation (3.30) we obtain

v̄2

(
ū2

2v̄2 − (n+ 1− α+ β)ū2 − 1
)

= 0, (3.32)

so the total transform of the curve defined by (3.30) has F2 as a component. Through similar

calculations using charts covering the other exceptional divisors we obtain

(ψ1)∗(Hy − F5 − F6) = 2H̄x + H̄y − F̄123456, (3.33)

and deduce

(ψ1)∗(Hy) = (ψ1)∗(Hy −F5 −F6) + (ψ1)∗(F5) + (ψ1)∗(F6)

= (2H̄x + H̄y − F̄123456) + (H̄x − F̄8) + (H̄x − F̄7)

= 4H̄x + H̄y − F̄12345678.

(3.34)

This completes the computation for the forward mapping ψ1, and the backward mapping

ψ2 follows along the same lines.

We now deduce the Cremona isometry induced by ψ(n) through its pushforward

ψ
(n)
∗ = (ψ2)−1

∗ ◦ (ψ1)∗ : Pic(Xn) → Pic(Xn+1), where Xn is obtained through the blow-

ups of qi as given in Subsection 3.2.1, and Xn+1 is obtained through the blow-ups of the

same points with n replaced with n + 1, which we denote ¯̄qi. The Cremona isometry is

induced by this pushforward under the natural identification of the Picard groups, where we

identify the class of the exceptional divisor arising from the blow-up of qi in Xn with that

on Xn+1 corresponding to ¯̄qi, and similarly the class of the total transform of a curve of

constant xn on Xn with that of constant xn+1 on Xn+1, etc. The Cremona isometry induced

by ψ(n)
∗ is computed by composing (ψ1)∗ and (ψ2)−1

∗ then imposing the identification, so
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we arrive at

Hx 7→ Hx + 2Hy −F1234, Hy 7→ 4Hx + 5Hy − 3F1234 −F5678,

F1 7→ Hx +Hy −F234, F5 7→ Hx + 2Hy −F12348

F2 7→ Hx +Hy −F134, F6 7→ Hx + 2Hy −F12347,

F3 7→ Hx +Hy −F124, F7 7→ Hx + 2Hy −F12346,

F4 7→ Hx +Hy −F123, F8 7→ Hx + 2Hy −F12345.

(3.35)

We remark briefly that this is in line with what we expect, in particular that it preserves

the intersection product on Pic(X ) as well as the canonical class. This is of course guar-

anteed by the fact that it is induced by an isomorphism, which means that it also preserves

effectiveness of divisor classes.

3.2.3 The surface type

We now confirm that each Xn is a Sakai surface, and determine their type. In order to do

this, we must identify the unique anticanonical divisor, which for a surface obtained as in

this case through eight blow-ups of P1×P1 can be done by identifying a unique biquadratic

curve passing through the eight points q1, . . . , q8.

Consider such a curve Γ on P1 × P1 defined in the (X,Y )-chart by

(a22X
2 +a12X+a02)Y 2 +(a21X

2 +a11X+a01)Y +(a20X
2 +a10X+a00) = 0. (3.36)

From the condition q5 ∈ Γ we see that a00 = 0. To impose the condition that the first

infinitely near point q6 lies on the proper transform of Γ under the blow-up of q5, we rewrite

this equation in the (U5, V5)-chart (we should also include the (u5, v5)-chart, but unless

it gives any new information, we omit those computations) via the substitution X = V5,

Y = U5V5. The resulting equation factorises,

V5

(
(a22V

2
5 +a12V5 +a02)V5U

2
5 + (a21V

2
5 +a11V5 +a01)U5 +a20V5 +a10

)
= 0. (3.37)

This factorisation corresponds, like we saw in the previous section, to the decomposition of

the total transform of Γ under the blow-up of q5 Blq5 : Xq5 → P1 × P1 into the irreducible

components

Bl−1
q5 (Γ) = F5 + (Γ− F5), (3.38)
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where F5 is the exceptional divisor arising from the blow-up, and Γ − F5 is the proper

transform. We note that on the right-hand side of equation (3.38), Γ refers to the total

transform of Γ, which is a divisor on Xq5 , and we will continue to use such notation in cases

when the meaning is clear from the context. We then see that the condition q6 ∈ Γ − F5

implies a10 = 0. Continuing in this way for the rest of the points over q5, as well as

imposing the conditions qi ∈ Γ for i = 1, . . . , 4, we get the following equation for Γ in the

(X,Y )-chart, which is sufficient to define it on the whole of P1 × P!:

Γ : Y s(X,Y ) = 0,

s(X,Y ) = X2 − αβX2Y + (n+ α+ β)XY − Y.
(3.39)

The proper transform Γ′ of Γ has the following decomposition into irreducible components:

Γ′ = D0 +D1 + 2D2 +D3 +D4, (3.40)

where
D0 = F5 − F6, D1 = 2Hx −Hy − F123456, D2 = F6 − F7,

D3 = F7 − F8, D4 = Hy − F56.
(3.41)

The proper transform Γ′ is in fact the pole divisor of a rational 2-form ω on X = Xn, and

is therefore a representative of the anticanonical class −KX . This 2-form ω in the affine

(X,Y )-chart is given uniquely up to some nonzero constant k by

ω = k
dX ∧ dY
s(X,Y )Y

= k
dX ∧ ds
s(s−X2)

, (3.42)

since

ds = (2X − 2αβXY + (n+ α+ β)Y ) dX − (αβX2 − (n+ α+ β)X + 1) dY, (3.43)

and
X2 − s(X,Y )

Y
= αβX2 − (n+ α+ β)X + 1. (3.44)

The fact that the pole divisor of ω gives a unique representative of the anticanonical class

follows from the fact that Γ is the unique biquadratic curve passing through q1, . . . , q8, and

it can be seen to be of canonical type by calculating the intersection product of the class
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of each component with KX . A schematic representation of the point configuration, the

blow-ups, and the components of the anticanonical divisor are shown on Figure 3.1.

y = 0

Y = 0

x = 0 X = 0

q1

q2

q3

q4

q5

q6q7q8

Blq1q2q3q4q5

Hy − F5

Hx − F5

F5

F1

F2

F3

F4

q6

q7q8

Blq6

Hx − F5

2Hx +Hy − F123456

F1

F2

F3

F4

F6

F5 − F6

q7
q8

Blq7q8

Hy − F56

Hx − F5

2Hx +Hy − F123456

F1

F2

F3

F4

F6 − F7

F5 − F6

F7 − F8F8

Blq1···q8

Figure 3.1: The Sakai surface for the hypergeometric weight recurrence

Thus, we see that the anticanonical divisor class −KX can be written as

−KX = δ0 + δ1 + 2δ2 + δ3 + δ4, (3.45)

where δi = [Di] are classes of the irreducible components, whose intersection configuration

is given by the D(1)
4 affine Dynkin diagram shown in Figure 3.2.

δ0

δ1

δ2

δ3

δ4

δ0 = F5 −F6, δ3 = F7 −F8,

δ1 = 2Hx +Hy −F123456, δ4 = Hy −F56.

δ2 = F6 −F7,

Figure 3.2: The surface root basis for the hypergeometric weight recurrence
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Therefore we have Xn being a Sakai surface of type D(1)
4 , and to see whether our

recurrence is equivalent to d-PV we need to determine whether the Cremona isometry (3.35)

is a translation, and if so compare it with that corresponding to d-PV.

3.2.4 Initial identification on the level of Picard lattices

To compare the Cremona isometries, we need to find a choice of symmetry roots in Pic(X )

that matches the one in terms of which d-PV is described. Thus, we begin by finding some

identification of Pic(X ) with that from the standard model that will identify the surface

roots between our recurrence and the standard example, and then use this to choose symme-

try roots and compare the translations. Recall that the Picard lattice for the standard model

in Section 2.3 is generated by Hf ,Hg, E1, . . . , E8; we now denote it by Pic(XKNY) with

reference to the survey by Kajiwara, Noumi and Yamada [KNY17] in which this standard

model is given.

Lemma 3.2.3. The following identification of Pic(X ) with Pic(XKNY) identifies our sur-

face root basis with that from the standard model of D(1)
4 -surfaces:

Hx = Hg, Hf = 2Hx +Hy −F3 −F4 −F5 −F6,

Hy = Hf + 2Hg − E3 − E4 − E5 − E6, Hg = Hx,

F1 = E1, E1 = F1,

F2 = E2, E2 = F2,

F3 = Hg − E6, E3 = Hx −F6,

F4 = Hg − E5, E4 = Hx −F5,

F5 = Hg − E4, E5 = Hx −F4,

F6 = Hg − E3, E6 = Hx −F3,

F7 = E7, E7 = F7,

F8 = E8, E8 = F8.

Proof. Consider the surface root basis in Figure 3.2 and compare it with the standard one

in Figure 2.5. Since the D(1)
4 affine Dynkin diagram has the distinguished node δ2, we must

have

δ2 = F6 −F7 = Hg − E3 − E7.
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Thus, we can put F6 = Hg − E3 and F7 = E7, and then, matching F7 −F8 = E7 − E8, we

see that we can putF8 = E8. Next, matchingF5−F6 = E3−E4, we see thatF5 = Hg−E4.

Matching Hy − F5 − F6 = Hf − E5 − E6 we get Hy. The final node matching gives us

the equation 2Hx − F1234 = E5 + E6 − E1 − E2. Thus, we can put (again, at this point

we do not worry about making the right choice) F1 = E1, F2 = E2, E5 = Hx − F4 and

E6 = Hx −F3, so thatHx = E6 + F3 = Hg.

3.2.5 The symmetry roots and the translations

We are now in a position to compare the dynamics. We choose a symmetry root ba-

sis in Pic(X ) by mapping the standard choice in Figure 2.7 under the identification in

Lemma 3.2.3. This leads to the choice given in Figure 3.3.

α0

α1

α2

α3

α4

α0 = Hy −F34, α3 = 2Hx +Hy −F345678,

α1 = F1 −F2, α4 = F3 −F4.

α2 = F4 −F1,

Figure 3.3: The symmetry root basis for the hypergeometric weight recurrence (preliminary choice)

From the formulae given in Lemma 3.2.2 we immediately see that the Cremona isom-

etry induced by ψ(n) through pushforwards, which we denote by ψ∗, acts by translation on

the symmetry root lattice:

ψ∗ : α = 〈α0, α1, α2, α3, α4〉 7→ ψ∗(α) = α + 〈1, 0, 0,−1, 0〉δ. (3.46)

Recall that in (2.69) we considered the d-PV mapping ϕ and the Cremona isometry induced

by its pullback, here it will be convenient to consider the one induced by its pushforward,

which here we denote by ϕ∗:

ϕ∗ : α 7→ α + 〈1, 0,−1, 1, 0〉δ, (3.47)

We see immediately that ψ∗ and ϕ∗ are different, but decomposing both in terms of gener-

ators of the extended affine Weyl symmetry group (as in Subsection 2.3.3), we obtain

ψ∗ = σ3σ2r3r2r4r1r2r3, ϕ∗ = σ3σ2r3r0r2r4r1r2, (3.48)
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and we immediately see that ψ∗ = r3 ◦ϕ∗ ◦ r−1
3 (recall that r3σ3σ2 = σ3σ2r0 and that r3 is

an involution, r−1
3 = r3). Thus if we adjust the identification in Lemma 3.2.3 by acting by

r3, the Cremona isometry for the hypergeometric weight recurrence will be identified with

that corresponding to the standard d-PV equation.

3.2.6 Final identification on the level of Picard lattices

We will now adjust our identification of Pic(X ) and Pic(XKNY) such that the translations

corresponding to our recurrence and d-PV are matched. We will realise this as an isomor-

phism between the families of surfaces themselves, under which the Cremona actions giving

the systems coincide, so will provide an explicit change of variables relating the equations.

Lemma 3.2.4. The identification of Pic(X ) and Pic(XKNY) given by

Hx = Hf +Hg − E7 − E8,

Hy = 3Hf + 2Hg − E3 − E4 − E5 − E6 − 2E7 − 2E8,

F1 = E1, F2 = E2,

F3 = Hf +Hg − E6 − E7 − E8,

F4 = Hf +Hg − E5 − E7 − E8,

F5 = Hf +Hg − E4 − E7 − E8,

F6 = Hf +Hg − E3 − E7 − E8,

F7 = Hf − E8, F8 = Hf − E7,

or equivalently

Hf = 2Hx +Hy −F3 −F4 −F5 −F6,

Hg = 3Hx +Hy −F3 −F4 −F5 −F6 −F7 −F8,

E1 = F1, E2 = F2,

E3 = Hx −F6, E4 = Hx −F5,

E5 = Hx −F4, E6 = Hx −F3,

E7 = 2Hx +Hy −F3 −F4 −F5 −F6 −F8,

E8 = 2Hx +Hy −F3 −F4 −F5 −F6 −F7,

leads to the identification of the symmetry root bases shown in Figure 3.4. With this identi-
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fication we have a map from the group of of Cremona isometries for the family X we have

constructed from the hypergeometric weight recurrence to that of the standard model, via

reflections ri being identified according to that of the associated roots αi. Further, this map

identifies the Cremona isometries ψ∗ and ϕ∗

α0

α1

α2

α3

α4

α0 = Hy −F34, α3 = −2Hx −Hy + F345678,

α1 = F1 −F2, α4 = F3 −F4.

α2 = 2Hx +Hy −F135678,

Figure 3.4: The symmetry root basis for the hypergeometric weight recurrence (final choice)

In order to find an isomorphism realising this identification, we will need to find a

correspondence of parameters between the application family of surfaces and the standard

one, which will be done using the period map.

3.2.7 The period map and the identification of parameters

The computation is similar to that performed for the standard model in Subsection 2.3.2,

where the residues of the symplectic form along components of the anticanonical divisor

are used to evaluate integrals defining the root variables. Thus, we only state the results.

Lemma 3.2.5.

(i) The residue of the symplectic form ω = k dX∧dY
s(X,Y )Y = k dX∧ds

s(s−X2)
defined in (3.42) along

the irreducible components Di of the anticanonical divisor is given by

resD0 ω = −kdU5

U2
5

, resD1 ω = k
dX

X2
,

resD2 ω = −k (n+ α+ β)du6

(u6 − 1)2
, resD3 ω = −k (c− 1)2du7

c
,

resD4 ω = −kdX
X2

.

(3.49)

(ii) The root variables for the surface Xn for our final choice of symmetry roots are given

by

a0 = k(γ − n− α), a1 = k(α− 1), a2 = k(1 + n+ β − γ),

a3 = −k(n+ β), a4 = k(γ − β).
(3.50)
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We require the same normalisation a0 + a1 + 2a2 + a3 + a4 = 1 as for the standard

model, so we set k = 1 and obtain the following relations between our parameters for

the surface Xn and the root variables for a D(1)
4 -surface in the standard form:

α = a1 + 1, β = a0 + a1 + a2, γ = 1− a2 − a3, n = a2 + a4 − 1. (3.51)

Note that if we consider the evolution of the root variables under the d-PV dynamic as

given in (2.69), this corresponds to the evolution of parameters from Xn to Xn+1 under our

dynamics: α, β, γ staying constant while n 7→ n + 1, which is ensured by our final iden-

tification matching the translations. Also observe that we can not yet see the relationship

between parameters t and c in this identification. This is because they each play the role of

the ‘extra parameter’ forD(1)
4 -surfaces, and we will see when we construct the isomorphism

that they must be related by ct = 1.

3.2.8 The change of variables

We are now ready to prove Theorem 3.2.1. The idea is to find an isomorphism ι : Xn → Xb

from our surface to the one in Section 2.3 which realises our final identification on the

level of Picard lattices in Lemma 3.2.4. Here the parameters in the surfaces are matched

according to the results of the previous section, so the evolution of the parameters b 7→ b̄

for d-PV corresponds to shifting n 7→ n+ 1 in the point configuration giving Xn, and ι also

provides an isomorphism from Xn+1 to Xb̄. If ι induces the identification of Pic(X ) and

Pic(XKNY) through its pushforward, then we have the following commutative diagram:

Pic(X ) Pic(X )

Pic(XKNY) Pic(XKNY)

ψ∗

ι∗ ι∗

ϕ∗

(3.52)

This descends to the Cremona action, so we have the following commutative diagram of

isomorphisms between D(1)
4 -surfaces:

Xn Xn+1

Xb Xb̄

ψ(n)

ι ι

ϕ

(3.53)
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Therefore the iteration mappings of the two discrete Painlevé equations are conjugate un-

der ι, so this isomorphism provides a change of variables under which the equations are

equivalent with our parameter identification.

Proof. (Theorem 3.2.1)

We will form an ansatz for the map in terms of coordinates forXn andXb, then successively

refine it by imposing conditions such that the pushforward induces the identification until

we have determined the birational map, then verify it gives the required isomorphism. First,

we require

Hf = 2Hx +Hy −F3 −F4 −F5 −F6,

Hg = 3Hx +Hy −F3 −F4 −F5 −F6 −F7 −F8,
(3.54)

so we form an ansatz in coordinates (here for convenience we use (X,Y ), (f, g)) of the

form

ι : (X,Y ) 7→ (f(X,Y ), g(X,Y )) ,

f(X,Y ) =
a00 + a10X + a20X

2 + a01Y + a11XY + a21X
2Y

b00 + b10X + b20X2 + b01Y + b11XY + b21X2Y
,

g(X,Y ) =
c00 + c10X + c20X

2 + c30X
2 + c01Y + c11XY + c21X

2Y + c31X
3Y

d00 + d10X + d20X2 + d30X2 + d01Y + d11XY + d21X2Y + d31X3Y
,

so the class of a line of constant f corresponds to a curve of bi-degree (2, 1) in (x, y), and

one of constant g corresponds to a curve of bi-degree (3, 1).

We require f taking any constant value to give a curve in (X,Y ) coordinates passing

through q5 : (X,Y ) = (0, 0), so a00 = b00 = 0. This can also be thought of as f providing

a coordinate for a pencil of bi-degree (2, 1)-curves which all pass through q5. Similarly,

we may pass to coordinates (U5, V5) and impose the condition that the proper transform

of any curve in the pencil passes through q6, which leads to a10 = b10 = 0. Proceeding

similarly for q3, q4 we determine more coefficients, and we arrive at the following form of

the coordinate f on the pencil when written in the (x, y)-chart:

f(x, y) =
A(x− β)(x− γ) +B

(
x2(n+ α− γ) + y(β + γ)− β(αβ − βγ − nγ)

)
C(x− β)(x− γ) +D

(
x2(n+ α− γ) + y(β + γ)− β(αβ − βγ − nγ)

) ,
where the coefficientsA,B,C,D are still to be determined. To do that, we use the informa-

tion about the correspondence between exceptional divisors in Lemma 3.2.4. For example,

the condition E2 = F2 means that q2 should be mapped to p2, and in particular inserting the
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coordinates of q2 : (x, y) = (α,−nα) into our refined ansatz for f (or rewritten for F in

this case) should give the F -coordinate for p2, namely F = 0. Indeed, we compute

F (α,−nα) =
C +D(n+ α+ β)

A+B(n+ α+ β)
= 0, and so C = −D(n+ α+ β).

The condition E6 = Hx − F3 means that f(β, y) = B/D = 0, and so B = 0. As a result,

after some simplifications, we get

f(x, y) =
Ã(x− β)(x− γ)

(x− α)(x− β)− nx− y
, (3.55)

where Ã is some non-zero constant. To find Ã, we use the condition E3 − E4 = F5 − F6,

which means that, after doing a sequence of substitutions to express f in the (u5, v5)-chart

and then restricting to v5 = 0, the image of the proper transform F5−F6 of the exceptional

divisor F5 should be sent to the point p3 : (f,G) = (t, 0). This results in Ã = 1. Similarly,

the condition E7 − E8 = F7 −F8 results in the relationship between c and t, ct = 1, which

is to be expected given that we are dealing with surfaces which are of a type with extra

parameter, so even after matching root variables, rational 2-forms and period mappings

an isomorphism between them will require a relation between the extra parameters, as in

Sakai’s theorem [Sak01, Theorem 25] explained in Subsection 2.2.3. Computing g(x, y)

is done exactly along the same lines but the calculation is longer since the basis curves in

the Hg pencil are of higher degree. It does not illustrate anything beyond what was seen

for the Hf pencil so this computation is omitted. The final step is to verify that this map

between the surfaces is indeed an isomorphism, which is done using similar techniques as

when we lift iteration mappings, but in this case we rewrite the mapping in charts for Xn as

introduced in this chapter and Xb as provided in Section 2.3.

3.3 The identification procedure for differential equations

The procedure outlined above can be adapted to provide a method for determining whether

a given second-order nonlinear nonautonomous differential equation is equivalent to one

of the Painlevé equations. Again this involves constructing Sakai surfaces which provide a

space of initial conditions for the system, but this time it is in the sense of Okamoto, as a

bundle over the independent variable space foliated by solution curves. After the construc-

tion of this bundle, whose fibres are Sakai surfaces with anticanonical divisor removed, the
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method then mimics the discrete case, where an isomorphism between Sakai surfaces is

obtained from an identification on the level of their Picard groups. However, the differential

case is in a sense more straightforward since there are no translations to match, and we can

use the initial identification which is only required to identify the surface roots. At this point

we repeat our remark from Chapter 2 that in order to allow for all surface types associated

with differential Painlevé equations we should be considering P2 blown up nine times. To

be consistent with the rest of the chapter we will outline the procedure as follows using

P1 × P1, which is sufficient to describe all but PI, and is sufficient for discrete Painlevé

equations of any type.

(Step 1) Construct a space of initial conditions. Begin by considering the system on a

trivial bundle over the independent variable space with fibre P1 × P1 by intro-

ducing charts in the usual way. Consider the differential equation as the flow of

a rational vector field on this bundle, and find the points in each fibre where its

components have indeterminacies. Here we run into a subtle point that is specific

to the differential case, namely that we must determine whether these indetermi-

nacies correspond to singular points which are accessible (in the sense that they

can be reached by solutions with initial data where the vector field is regular).

Resolve all such accessible singular points using the blow-up procedure, until we

have a bundle on which the vector field has no more accessible singularities (we

will address the question of when an indeterminacy of the vector field represents

an accessible singularity in what follows). Identify the inaccessible divisors where

the vector field diverges and remove them from each fibre so we have a foliation

of the resulting bundle by solution curves transverse to the fibres.

(Step 2) Determine the surface type. The fibres should be Sakai surfaces with anticanon-

ical divisor removed. Determine their type, which will be one of those associated

with differential Painlevé equations involving an ‘extra parameter’. Again there

is the possibility that the procedure in Step 1 results in (−1)-curves that must be

blown down, but we will not see this in our example.

(Step 3) Find an identification of Pic(X ) with the standard model. This step is the same

as the preliminary identification in the discrete case, and we only require that the

surface roots are identified.
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(Step 4) Find the change of variables to the standard form. Since we do not need to

match translations, we proceed directly to find the isomorphism of Sakai surfaces

realising the identification of Picard groups obtained in the previous step. The pa-

rameter correspondence is again computed using the period mapping and in the

process of finding this isomorphism we obtain a relation between the independent

variables. From this, we have an isomorphism between the bundles providing the

two spaces of initial conditions. If the applied system can be shown to be Hamil-

tonian in the sense required by the uniqueness results of Subsection 2.4.2, then the

isomorphism provides a change of variables identifying the applied system with

the Painlevé equation in standard form.

We will illustrate this procedure for a system of differential equations satisfied by the same

recurrence coefficients as considered earlier in the chapter, namely those of the discrete

orthogonal polynomials with hypergeometric weight. The system of differential equations

for xn(c) and yn(c) follows from the discrete system (3.5a-3.5b) and the Toda differential-

difference system (3.7). Essentially, we rewrite the Toda system for a2
n, bn in terms of the

quantities xn, yn according to the relation (3.4), then use the discrete system to replace

yn+1 and xn−1 in the resulting equations with xn, yn and their derivatives with respect to

c. This gives us a system of two first-order differential equations for x(c) = xn(c) and

y(c) = yn(c) of the following form, where we write x, y without subscripts because n in

this case plays the role of a parameter:

x′(c) =
P1(x(c), y(c), c)

c(c− 1)S(x(c), y(c))
,

y′(c) =
P2(x(c), y(c), c)

c(c− 1)S(x(c), y(c))
,

(3.56)
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where S(x, y) = αβ−(n+α+β)x+x2−y, and P1, P2 are polynomials in their arguments,

which can be written explicitly, with x = x(c), y = y(c), as

P1(x, y, c) = (1− c)x4 + (−α− β + 2c(α+ β + n)− γ − 1)x3

+
(
α(β + γ + 1) + βγ + β − c

(
β2 + 2β(2α+ n) + (α+ n)2

)
+ γ
)
x2

+ (αβ(2c(α+ β + n)− 1)− γ(αβ + α+ β))x+ αβ(γ − αβc)

+ 2cy
[
x2 − (α+ β + n)x+ αβ

]
− cy2,

P2(x, y, c) = n
(
α2 + αβ − α+ β2 − β + γ + n2 − γ(α+ β + n) + 2αn+ 2βn− n

)
x2

− 2αβn (α+ β − γ + n− 1)x+ nαβ(αβ − γ)

+ y
[

(α+ β − γ + 2n− 1)x2 + 2
(
−αβ + γ + n2 + n(α+ β − γ − 1)

)
x

− αγ − βγ + αβ(γ − 2n+ 1)
]

+ y2 [2x− γ + n− 1] .

Similarly to in Subsection 2.4.1, we first consider this system on the trivial bundle over

B := C\{0, 1} with fibre over c being P1 × P1, for which we use the same charts as in the

previous sections with X = 1/x, Y = 1/y. Our choice of the independent variable space

B here comes from the fact that both x′(c), y′(c) have singularities at c = 0, 1, so if this

system is to be identified with one of the Painlevé equations these will play the role of fixed

singularities and are removed from the base space.

3.3.1 Space of initial conditions and inaccessible singularities

The construction of the space of initial conditions for the differential system (3.56) is done

mostly according to the same methods as were illustrated in Subsection 2.4.1 for PVI. How-

ever with this system we run into a subtle point that sets this step of the procedure apart

from the discrete version, namely the necessity to distinguish between indeterminacies of

the vector field that require blow-ups and those that do not.

In the (x, y)-chart we find the following points at which one or both of x′, y′ have indeter-

minacies:
q1 :(x, y) = (1, (1− α)(1− β)− n),

q2 :(x, y) = (α,−nα),

q3 :(x, y) = (β,−nβ),

q4 :(x, y) = (γ, (γ − α)(γ − β)− nγ),

q̂1 :(x, y) =

(
1

2
(α+ β + n), αβ − 1

4
(α+ β + n)2

)
.

(3.57)
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We note that q1, . . . , q4 are the same as those identified for the discrete case, but we have

the extra point q̂1 giving an indeterminacy of y′. Inspecting the vector field at each of these

points we find that at q1, . . . , q4, both components x′ and y′ are indeterminate, whereas at

q̂1, we have an indeterminacy of y′ while x′ diverges, with its denominator vanishing but

numerator non-zero. This corresponds to the fact that we have infinite families of solution

curves passing through each of q1, . . . q4, but none through q̂1.

This can be seen by looking for solutions given by Taylor series expansions about some

c0 ∈ B passing through a point on the curve γ in the P1 × P1-fibre over c0 defined in the

(x, y)-chart by

γ : S(x, y) = x2 − (α+ β + n)x− y + αβ = 0. (3.58)

We note that this curve is the same as the one defined in the (X,Y )-chart by s(X,Y ) =

0 in Subsection 3.2.3 and whose proper transform formed one of the components of the

anticanonical divisor. From the system (3.56) we see that the denominators of both x′ and

y′ in the (x, y)-chart vanish on γ, and so the points q1, . . . , q4, q̂1 lie on this curve. Similarly

to in Subsection 2.4.1, consider a solution given as an expansion about c0 by

x(c) = x0 + x1(c− c0) + x2(c− c0)2 + . . . ,

y(c) = y0 + y1(c− c0) + y2(c− c0)2 + . . . ,
(3.59)

and assume that this passes through γ in the fibre over c0, so

S(x0, y0) = x2
0 − (α+ β + n)x0 − y0 + αβ = 0. (3.60)

Assuming that this system is equivalent by some birational transformation to a Painlevé

equation (whose only movable singularities are poles) then these are the only solutions that

could take a value on this curve at c0. Substituting (3.59) subject to (3.60) into the differen-

tial equations, we obtain the asymptotic identities from the equations for x′, y′ respectively,

which must hold as c→ c0:

0 = (x0 − 1)(x0 − α)(x0 − β)(x0 − γ) +O(c− c0),

0 = (x0 − 1)(x0 − α)(x0 − β)(x0 − γ)(2x0 − α− β − n) +O(c− c0).
(3.61)
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From this, we see that x0 must take one of the values 1, α, β, γ, so the solution must pass

through one of q1, . . . , q4. In particular we see that while the value of x0 corresponding to

the extra point q̂1 would be compatible with the second line of (3.61), the other equation

would fail to balance, which corresponds to q̂1 being a root of the denominator but not

numerator of x′. Thus we see that even though q̂1 was identified as an indeterminacy of one

of the rational functions giving the vector field, there are no solution curves passing through

it. We say q̂1 is an inaccessible singular point, and we do not need to blow it up to achieve

a foliation by solution curves.

Blowing up each of q1, . . . , q4 and calculating the lifted vector field as in Subsection 2.4.1

we see that it is regular on each of F1, . . . , F4, away from their intersections with the proper

transform of the curve γ. Carrying out the standard procedure in the rest of the charts we

find q5 to be a singular point, with an infinite family of solution curves passing through it.

Lifting under the blow-up of q5 we see q6 as the only indeterminacy on F5, but then when

we lift under the blow-up of q6 we see the following points where one or both components

of the vector field are indeterminate:

q7 : (u6, v6) =

(
c

c− 1
, 0

)
, , q̂2 : (u6, v6) = (1, 0). (3.62)

Again the vector field at q̂2 has one component indeterminate but the other divergent. We

can confirm through calculating series representations of solutions through q5 in the same

way as above that this extra point q̂2 is another inaccessible singularity, so we do not blow

it up. After lifting under the blow-up of q7, we find the only singularity on F7 to be q8, after

the blow-up of which we confirm by calculation that the vector field is regular on F8 away

from the proper transform of F7. Thus through this process we have arrived at the same

Sakai surface as in the discrete case, which form the fibres of a bundle as c varies while n is

constant so we denote them Xc. In the process of the calculations above we have seen that

the part of each fibre where the vector field diverges and so no solution curves pass through

is precisely the support Dred = ∪iDi of the anticanonical divisor, so we remove this from

each fibre Xc to arrive at a space of initial conditions. We remark here that the inaccessible

singularities q̂1, q̂2 lie on Dred and are removed as part of the inaccessible divisors.
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3.3.2 Change of variables from initial identification

We now find an isomorphism between the Sakai surfaces which will provide a change of

variables to the standard form of PVI. In this case we can use our initial geometry identifi-

cation, because if the system is indeed equivalent to the Okamoto Hamiltonian form of PVI,

then different choices of identification with the correct matching of surface roots will only

differ by a Cremona isometry, and the isomorphisms will be conjugate under its Cremona

action. This means that if we map the original system to the standard model ofD(1)
4 -surfaces

using two different identifications, then the resulting differential equations will be equiva-

lent under some Bäcklund transformation.

Recall our initial identification of Picard groups between the surface Xn from the given sys-

tem andXb from the standard model ofD(1)
4 -surfaces in Lemma 3.2.3. This gives the choice

of symmetry roots in Figure 3.3, and proceeding along the same lines as in Lemma 3.2.5,

we compute the root variables for this choice of symmetry roots to be as follows:

a0 = −α+ γ − n, a1 = α− 1, a2 = 1− γ,

a3 = β + n, a4 = γ − β,
(3.63)

We obtain the isomorphism realising the initial identification explicitly by the same tech-

niques as in Subsection 3.2.8, arriving at the following result, which can be checked by

direct computation:

Theorem 3.3.1. The system of differential equations (3.56) is equivalent to the Okamoto

Hamiltonian form (2.82) of PVI for (f, g) = (f(t), g(t)). This equivalence is achieved via

the following change of variables:

f =
t(x− β)(x− γ)

αβ − (n+ α+ β)x+ x2 − y
,

g = γ − x,
(3.64)

where the independent variables are related by ct = 1, and the root variable parameters ai

from the standard form (2.82) are related to α, β, γ, n by (3.63).

3.3.3 Hamiltonian structure and justification of equivalence

While the change of variables in Theorem 3.3.1 can be checked by direct calculation, we

make some remarks about why the isomorphism of Sakai surfaces should provide an iden-

tification of the two differential systems. In the discrete case, such an isomorphism is guar-
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anteed to identify the discrete systems because by design it provides a conjugation of the

Cremona actions giving their iterations as in the definition of discrete Painlevé equations.

However in the differential case, it is natural to ask why the systems should be equiva-

lent under an isomorphism that identifies their spaces of initial conditions, and in particular

whether there could be two inequivalent systems associated with the same Okamoto’s space.

A partial answer to this question is provided by the uniqueness results explained in Subsec-

tion 2.4.2, because if we can demonstrate that the given system is Hamiltonian with respect

to the symplectic form ω associated with the anticanonical divisor, and the Hamiltonians

have the appropriate holomorphicity properties, then the given system mapped to the stan-

dard model under the isomorphism of bundles must coincide with the Okamoto Hamiltonian

system.

Denote the bundle obtained as a space of initial conditions for the system (3.56) by

E → B,

Xc\Dred 7→ c,
(3.65)

and the one for the standard model in terms of the surfaces Xb (where b includes the extra

parameter t) by

EVI → BVI,

Xb\DKNY
red 7→ t,

(3.66)

where we have used DKNY
red to distinguish support of the anticanonical divisor of the surface

Xb from that of Xc. The isomorphism of Sakai surfaces ι : Xc → Xb defined by (3.64) with

parameters identified according to (3.63) together with ct = 1 provides an isomorphism of

bundles, as it maps Dred to DKNY
red and the correspondence c 7→ t = 1/c maps B to BVI

bijectively. The system (2.82) is Hamiltonian with respect to the symplectic form

η =
df ∧ dg
f

(3.67)

on each fibre Xb, obtained by the pull back of the standard one dq ∧ dp for the Okamoto

Hamiltonian form of PVI via (q, p) = (f, g/f). The Hamiltonian is

HVI =
a2(a1 + a2)(f − t)

t(t− 1)

+
f(f − 1)(f − t)

t(t− 1)

{
g2

f
−
(
a4

f
+

a3

f − 1
+
a0 − 1

f − t

)} (3.68)
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and the system (2.82) can be rewritten in the form

f ′

f
=
∂HVI

∂g
,
g′

f
= −∂HVI

∂f
. (3.69)

The symplectic form ω = ι∗η on Xc has the anticanonical divisor on Xc as its pole divisor,

and our aim is to show that the system (3.56) is Hamiltonian with respect to this. In the

(x, y)-chart, this symplectic form is given by

ω =
dx ∧ dy
S(x, y)

=
dx ∧ dy

αβ − (n+ α+ β)x+ x2 − y
, (3.70)

so we aim to find a function K(x, y, c) such that the system of differential equations (3.56)

is of the form
x′

S
=
∂K

∂y
,
y′

S
= −∂K

∂x
. (3.71)

Theorem 3.3.2. The system (3.56) can be written as the following nonautonomous Hamil-

tonian system with respect to the symplectic form ω given in (3.70), with the Hamiltonian

K(x, y, c) =
P (x, y, c)

c(c− 1) (αβ − (n+ α+ β)x+ x2 − y)
, (3.72)

where
P (x, y, c) = x2 (n(α+ β − γ + n− 1)− (c− 1)y)

+ x (y(c(α+ β) + (c+ 1)n− γ − 1)

+ n(γ − αβ) + y(cy − cαβ + γ).

(3.73)

The Hamiltonian K in the (x, y)-chart is unique modulo functions of c independent of x, y.

Moreover, we have

η + dHVI ∧ dt = ω + dK ∧ dc (3.74)

with parameters identified according to (3.63), and t = 1/c.

We immediately see that K is holomorphic on the part of the bundle E visible in the

(x, y)-chart, away from the curve γ : S(x, y) = 0. We can verify that via our charts for

the rest of the surface Xc we can extend K to a collection of Hamiltonians holomorphic

on E, adding functions of c when necessary. This is done by direct calculation in charts.

For example, in the (u1, v1)-chart covering F1, we can substitute directly and obtain the

Hamiltonian K1(u1, v1, c) in this chart, which does not require functions of c to be added.
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When restricted to F1 this is given by an expression of the form

K1(u1, v1 = 0, c) =
A+Bu1

c(c− 1) (1 + (α+ β + n− 2)u1)
, (3.75)

where A,B are polynomials in α, β, γ, n and c. From this we see that K1 is holomorphic

in this chart except for at (u1, v1) = (1/(α+β+n− 2), 0), which is the intersection of F1

with the proper transform of the curve γ, so corresponds to part of Dred. Proceeding in this

way, we can extend K to a collection of Hamiltonians holomorphic on E and extending

meromorphically to the bundle of surfaces Ē. Therefore Theorem 2.4.1 (which for PVI

was given by Shioda and Takano [ST97]) ensures that the differential system mapped to the

bundle EVI must coincide with the standard form of PVI (2.82) for f, g. This provides a

justification of the result of Theorem 3.3.1.



Chapter 4

Full-parameter discrete Painlevé systems

from non-translational Cremona isometries

It is now widely appreciated among researchers studying discrete Painlevé equations that

Sakai’s scheme classifies surfaces into a finite number of types, but does not further clas-

sify the equations belonging to each. Recently, much research has sought to understand the

range of inequivalent discrete systems which can arise from each of the surface types in

Sakai’s list. In particular, systems proposed to be of discrete Painlevé type independently

of Sakai’s scheme being studied via the geometric framework has shed much light on the

infinite number of discrete integrable systems associated with each surface type. Examples

include equations which share the same space of initial conditions but correspond to non-

conjugate translations, such as those associated with surfaces of elliptic type R = ell-A(1)
0

identified and studied in [JN17, RG09]. There are also examples of symmetries of infinite

order, though not translations, giving rise to difference equations with finer time evolution

and fewer free parameters than those associated with translations, known in the literature

as projective reductions [AHJN16, HHNS15, KNT11, Tak03, KN15], which we explain in

Section 4.1.

Our work in this chapter continues along these lines, in that we begin with a difference

equation previously proposed as a discrete analogue of a special case of the third Painlevé

equation, and by placing it within the geometric framework reveal more features of Sakai’s

scheme.

The equation we consider was constructed by T. Hoffmann in [Hof99], through a dis-

crete version of the process by which Amsler surfaces (surfaces of constant negative Gaus-

sian curvature with two straight asymptotic lines, studied by Bianchi [Bia10] then Amsler
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[Ams55]) are controlled by a reduction of the sine-Gordon equation to a special case of

PIII, similar to the example of PII coming from the KdV equation in Subsection 1.1.2. The

discrete analogues of this class are known as discrete Amsler surfaces [Hof99, BP96], and

are related to solutions of the discrete sine-Gordon equation [Hir77]

Ql+1,m+1Ql,m = F (Ql+1,m)F (Ql,m+1), (4.1)

which is a partial difference equation for Ql,m with two discrete independent variables

l,m ∈ Z, where F (x) = 1−kx
k−x , with free complex parameter k 6∈ {0,±1}. Solutions

of equation (4.1) corresponding to discrete Amsler surfaces satisfy an additional condi-

tion, which may be interpreted as invariance under Lorentz rotations of the frame (see

[Hof99, BP96] for details, but these are not important for our analysis of the difference

equations). The way in which an ordinary difference is obtained from (4.1) is analogous to

the continuous case, which involves considering solutions of the PDE in terms of some func-

tion z of the independent variables x and t. Equation (4.1), after imposing the additional

condition, gives a system which may be iterated along a zigzag path in the (l,m)-lattice

parametrised by an integer n, which leads to the following system of ordinary difference

equations:

Q2n+1 =

1
F (Q2n) −

Q2n−1

2n+1

Q2n−1F (Q2n)− 1
2n+1

, (4.2a)

Q2n+2 =
1

Q2n(F (Q2n+1))2
. (4.2b)

We rewrite this in terms of the variables (xn, yn) = (Q2n, Q2n−1) (of no relation to the

variables for the hypergeometric weight recurrence in Chapter 3), which gives

x̄ =
(k − ȳ)2

f(kȳ − 1)2
, (4.3a)

ȳ =
(k − x) (kxy − (2n+ 1)x− y + k(2n+ 1))

(kx− 1) (k(2n+ 1)xy − x− (2n+ 1)y + k)
, (4.3b)

where (x, y) = (xn, yn) and (x̄, ȳ) = (xn+1, yn+1).

In what follows, we construct the space of initial values for the system (4.3), which is a

family of D(1)
4 -surfaces with one free parameter, rather than five in the generic case in Sec-

tion 2.3. The Cremona isometry induced by the iteration maps of the system is a ‘twisted
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translation’: the composition of a translation with a Dynkin diagram automorphism which

preserves the translation direction. The parameter specialisation causes the action on pa-

rameter space to coincide with that of the untwisted translation, so the system is in a sense

similar to the projective reductions we define in Section 4.1, and we compare it to previously

studied examples [KNT11, HHNS15, AHJN16, Tak03, JN17]. This prompts us to construct

a generic version of the equation from the Cremona action of the same twisted translation on

a generic family of D(1)
4 -surfaces, for which the action on parameter space is translational

except for a permutation of parameters. We express this explicitly, and show that it is inte-

grable in the sense of vanishing algebraic entropy [BV99] as in Subsection 1.2.4. We then

show how full-parameter discrete integrable systems can be obtained in this way from the

Cremona action of elements of infinite order on a family of generic surfaces, though they

will not necessarily be difference equations of purely additive, multiplicative or elliptic type.

4.1 Background: projective reductions

In the years since the publication of Sakai’s paper [Sak01], many known discrete analogues

of the Painlevé equations have been found to fit naturally into the geometric framework

even if they do not fit Sakai’s definition of a discrete Painlevé equation as arising from a

translational Cremona isometry. For example, the degeneration from a q-discrete analogue

of PIII [KTGR00] to a q-discrete PII [RG96] was formulated as the process of projective

reduction [KNT11], which in the geometric framework corresponds to difference equations

being obtained from elements of infinite order which are not translations in the affine Weyl

group sense, by projecting onto an appropriate parameter subspace.

Here we will briefly recount this important example, following [KNT11], as it will give

context for the results of the rest of this chapter. Consider the extended affine Weyl group

W̃
(

(A2 +A1)(1)
)

= W
(

(A2 +A1)(1)
)
o Aut

(
(A2 +A1)(1)

)
= 〈s0, s1, s2, π, w0, w1, r〉 ,

(4.4)

defined as in [KNY01, KNT11] by the fundamental relations

s2
i = (sisi+1)3 = π3 = 1, w2

0 = w2
1 = r2 = 1, (siwj)

2 = 1,

πsi = si+1π, w0r = rw1,
(4.5)
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where i ∈ Z/3Z, j ∈ Z/2Z. Here si, wi are simple reflections, while π, r generate

Aut
(
(A2 +A1)(1)

)
. In [KNT11], Kajiwara, Nakazono and Tsuda considered an action

of this group on the field of rational functions of parameters a0, a1, a2, c, and variables

f0, f1, f2 subject to the constraint

f0f1f2 = a0a1a2c
2, (4.6)

which corresponds to the Cremona action of the symmetry group W̃
(
(A2 +A1)(1)

)
on a

family of generic A(1)
5 -surfaces. Letting q = a0a1a2, the action of the element T1 = πs2s1

on the parameters is given by

T1 · (a0, a1, a2, c) =
(
qa0, q

−1a1, a2, c
)
. (4.7)

The element T1 is a translation by a weight of the root system (A2+A1), and its action on the

variables leads to a system of first-order q-difference equations since this is a multiplicative

surface type. To be precise, this is given by repeated iteration of its action

T1 :

 a0, a1, a2

c
; f0, f1, f2

 7→
 qa0, q

−1a1, a2

c
;T · f0 , T · f1 , T · f2

 , (4.8)

where by letting Fn = Tn1 · f0 and Gn = Tn1 · f1, we obtain

Gn+1Gn =
qc2

Fn

1 + qna0Fn
qna0 + Fn

, Fn+1Fn =
qc2

Gn+1

1 + qna0a2Gn+1

qna0a2 +Gn+1
, (4.9)

which is a previously known q-discrete analogue of PIII [KTGR00], in the sense that it

gives PIII in a continuous limit. We note that this equation fits Sakai’s definition of a dis-

crete Painlevé equation associated with a family of generic A(1)
5 -surfaces (which are of

multiplicative type), and indeed this is a system of ‘multiplicative’ difference equations in

the sense mentioned in Chapter 2. We recall that by this we mean that, when written ex-

plicitly as a nonautonomous system, the independent variable n enters into the coefficients

of the rational functions as the exponent of a parameter q. The reason such examples are

sometimes referred to as q-Painlevé is that they may be naturally written as q-difference

equations in a way which we now illustrate. While we have written the system (4.9) with

dependent variables Fn, Gn depending on n so the nonautonomous nature manifests in the
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explicit appearance of n in the equation, we could alternatively take these as functions of

a continuous independent variable t, and have the action of T1 define a relation between

values of the solution at t, qt, with the parameter evolution reflected in the way in which t

appears in the equations:

G(qt)G(t) =
qc2

F (t)

1 + a0tF (t)

a0t+ F (t)
, F (qt)F (t) =

qc2

G(qt)

1 + a0a2tG(qt)

a0a2t+G(qt)
. (4.10)

Returning to this system written as in (4.9), a related equation, obtained as a q-discrete

analogue of PII [RG96], is given by

Xk+1Xk−1 =
p2c2

Xk

1 + pka0Xk

pka0 +Xk
, (4.11)

where a0, c are free parameters and p is not a root of unity. The equation (4.9) can be

obtained from (4.11) by introducing Xk, k ∈ Z according to

Fn = X2n, Gn = X2n−1, (4.12)

and imposing the parameter constraint a2 = q1/2, after which from (4.9) we obtain

X2n+1X2n−1 =
qc2

X2n

1 + qna0X2n

qna0 +X2n
,

X2n+2X2n =
qc2

X2n+1

1 + qn−1/2a0X2n+1

qn−1/2a0 +X2n+1
.

(4.13)

With the parameter constraint, the forms of the two equations are such that we can set

p = q1/2 and write this as a single difference equation for the sequence Xk, which is pre-

cisely (4.11).

This relationship between equations (4.9) and (4.11) was found to correspond in the geomet-

ric setting to features of the affine Weyl group and its birational representation [KNT11], in

a way which we now recall. With the same birational representation of W̃
(
(A2 +A1)(1)

)
,

consider the element R = π2s1, which is regarded as a half-translation because of the

identity

R2 = T1. (4.14)
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The action of R on the parameters is given by

R · (a0, a1, a2, c) = (a2a0, q
−1a2a1, qa

−1
2 , c), (4.15)

which is not translational, meaning that the action on variables does not directly give a q-

difference equation as in the case of T1. However, restricting to the parameter subspace on

which a2 = q1/2, the action becomes

R · (a0, a1, c) = (q1/2a0, q
−1/2a1, c). (4.16)

With the parameter specialisation, the action of R on the variables f0, f1 is given by

R · f1 = f0, R · f0 =
qc2

f0f1

1 + a0f0

a0 + f0
, (4.17)

which, because of the translational motion in parameter space, induces the q-difference

equation (4.11), where Xk = Rk · f0, which is said to be a projective reduction of equation

(4.9).

We now make some remarks about the equations (4.9) and equation (4.11), as well as the

restriction to the parameter subspace. In the language of Sakai’s theory established in Chap-

ter 2, the birational representation of W̃
(
(A2 +A1)(1)

)
is the Cremona action on a family

{Xa | a ∈ A} of generic A(1)
5 -surfaces, where the parameters a = (a0, a1, a2, c) are the

root variables associated with a basis of the symmetry root lattice of the family. In particu-

lar, this means that the action of the symmetry group W̃
(
(A2 +A1)(1)

)
on the parameters

will correspond in a natural way to its action by Cremona isometries on the basis of simple

roots for the symmetry lattice Q((A2 + A1)(1)). This guarantees that a translation element

of the symmetry group will give a translational motion in parameter space with root vari-

ables as coordinates, and its action on the variables will give a q-difference equation, as in

the case of T1 giving equation (4.9).

The system (4.11), on the other hand, was constructed from the non-translation element R

acting on the subfamily of surfaces with a2 = q1/2. In the geometric framework, projective

reduction refers to the process by which a difference equation is obtained from the Cremona

action of a non-translation element on a proper subfamily of a family of generic surfaces of

one of the types in Sakai’s list, with the subfamily corresponding to a parameter subspace
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on which the non-translation element in question acts by translation. In keeping with the

literature [KNT11, JNS1608, JN17, AHJN16], we use the term projective reduction to refer

to both this process, and the resulting equations. Further, as in the case above, when some

power of the non-translation element ϕ is a translation, say ϕm = T , we say the equation

given by ϕ with the parameter restriction is a projective reduction of the full-parameter dis-

crete Painlevé equation associated to T .

We note that without the restriction to the parameter subspace, the birational action of R

on parameters and variables still defines a discrete dynamical system which is non-trivial

in the sense that R is of infinite order. The fact that the motion in parameter space is not

translational for general a means that without the parameter constraint the system will not

be given directly by a difference equation of purely multiplicative type using these param-

eters, as we will illustrate when we construct it explicitly in Section 4.4. Here we mean

‘multiplicative type’ in the same sense as in Chapter 2, related to the fact that translation

symmetries of surfaces of multiplicative type lead to nonautonomous discrete equations in

which the independent variable appears in the exponents of a parameter q.

The fact that the Cremona actions of non-translation elements of infinite order still give

discrete integrable systems with the full number of parameters for their surface type is the

central idea of this chapter.

4.1.1 Outline of the chapter

The chapter is structured as follows. In Section 4.2 we proceed along similar lines to in

Chapter 2, first constructing the space of initial values for the system (4.3), finding bases

for the surface and symmetry root lattices and computing the induced Cremona isometry.

We then express this Cremona isometry in terms of generators of the extended affine Weyl

group, and show that it is the composition of a Kac translation and a Dynkin diagram au-

tomorphism. The main result of Section 4.3 is the construction of a generic (5-parameter)

version of equation (4.3). To do this, we first introduce a 5-parameter family of D(1)
4 -

surfaces generalising the space of initial values for equation (4.3), and obtain the Cremona

action of the extended affine Weyl group W̃ (D
(1)
4 ) on this family, from which we recover

(4.3) as a special case of a projective reduction. Next we obtain the parametrisation of this

family by root variables, through a transformation to the standard form of D(1)
4 -surfaces

as in Section 2.3. With the root variable parametrisation, we use the Cremona action to

construct a generic version of equation (4.3), and demonstrate that it has vanishing alge-
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braic entropy. In Section 4.4, we construct more examples of difference equations with the

maximal number of free parameters for their surface type from non-translation elements of

infinite order in the symmetry group, which are shown to be integrable but not directly of

additive, multiplicative or elliptic type. We then discuss examples from the literature which

have been obtained via deautonomisation by singularity confinement, which are likely to

belong to the class of full-parameter discrete Painlevé systems from non-translational Cre-

mona isometries.

4.2 Geometry of Hoffmann’s discrete PIII

We now give a geometric treatment of equation (4.3), beginning with the construction of its

space of initial values.

4.2.1 Space of initial conditions

As usual, we consider the system (4.3) on P1 × P1 via the charts (x, y), (X, y), (x, Y ) and

(X,Y ) for the domain space, where X = 1/x, Y = 1/y, and the same charts with the

overline notation for the target space.

Proposition 4.2.1. The birational iteration mapping (x, y) 7→ (x̄, ȳ) of the system (4.3) lifts

to a family of isomorphisms

ψn : Xk,n −→ Xk,n+1, (4.18)

where for each n ∈ Z the surface Xk,n is obtained from P1 × P1 by blowing up the points

q1, . . . , q8 given in coordinates by

q1 : (x, y) = (k, 0), p5 : (u1, v1) =

(
x− k
y

, y

)
=
(
(k2 − 1)(2n+ 1), 0

)
, (4.19a)

q2 : (X,Y ) = (k, 0), p6 : (u2, v2) =

(
X − k
Y

, Y

)
=
(
(k2 − 1)(2n+ 1), 0

)
,

(4.19b)

q3 : (x, y) = (0, k), p7 : (u3, v3) =

(
x

y − k
, y − k

)
= (0, 0) , (4.19c)

q4 : (X,Y ) = (0, k), p8 : (u4, v4) =

(
X

Y − k
, Y − k

)
= (0, 0) . (4.19d)

Again the points qi, mapping ψn and, in what follows, the charts (ui, vi) are of no relation

to those in Chapter 2, and we have recycled them purely for economy of notation.

Proof. This is a standard computation in charts, much like that in Subsection 3.2.1, but
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here we illustrate a slightly different approach as we deal with the iteration (x, y) 7→ (x̄, ȳ)

directly rather than a decomposition into forward and backward half-mappings.

Recall that in the (x, y)-chart, we have the forward iteration of the system given by (x, y) 7→

(x̄, ȳ), which here we call the forward mapping:

x̄ =
(k − ȳ)2

f(kȳ − 1)2
, ȳ =

(k − x) (kxy − (2n+ 1)x− y + k(2n+ 1))

(kx− 1) (k(2n+ 1)xy − x− (2n+ 1)y + k)
. (4.20)

We also have its inverse, which we call the backward mapping, given by

f =
(k − ȳ)2

s̄(kȳ − 1)2
, y =

(x− k) (kxȳ + (2n+ 1)x− ȳ − k(2n+ 1))

(kx− 1) (k(2n+ 1)xȳ + x− (2n+ 1)ȳ − k)
. (4.21)

Direct calculation shows that the only indeterminacies of the forward mapping are

q1 : (x, y) = (k, 0), q2 : (X,Y ) = (k, 0), (4.22)

while the indeterminacies of the backward mapping are given in coordinates by

q̄3 : (x̄, ȳ) = (0, k), q̄4 : (X̄, Ȳ ) = (0, k). (4.23)

We blow up these points in both the domain and target copies of P1 × P1 using the same

convention as throughout the thesis, namely that for each j = 1, . . . , 4, the exceptional

divisor Fj replacing qj in the domain space is covered by the pair of local affine coordinate

charts (uj , vj) and (Uj , Vj), with the part of the line visible in the first chart parametrised by

uj when vj = 0, and similarly in the second chart by Uj when Vj = 0. After the blow-ups

of the points q̄i in the target space we use the same charts with overline notation to cover

the exceptional divisors F̄i.

In order to examine the image of F1 under the forward mapping after these blow-ups, we

rewrite (4.20) using the chart (u1, v1) for the domain, and (x̄, ȳ) for the target. Direct

calculation reveals another basepoint on the exceptional line F1, with the lifted forward

mapping becoming indeterminate at

q5 : (u1, v1) =

(
x− k
y

, y

)
=
(
(k2 − 1)(2n+ 1), 0

)
. (4.24)

The corresponding point q̄5 in the target space is also an indeterminacy of the backward
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iteration, which is evidenced by the following. Writing the mapping (4.20) in charts (x, y)

and (ū1, v̄1), we see that x = k, y 6= 0 implies

ū1 = (k2 − 1)(2n+ 3), v̄1 = 0, (4.25)

so the forward mapping sends the line x = k (excluding p1) to the single point p̄5 on Ē1.

We blow up this point in both the domain and target spaces too, covering the exceptional

line F5 with the affine charts (u5, v5) and (U5, V5) defined by

u5 =
u1 − (k2 − 1)(2n+ 1)

v1
, v5 = v1,

U5 =
v1

u1 − (k2 − 1)(2n+ 1)
, V5 = u1 − (k2 − 1)(2n+ 1),

(4.26)

and similar for F̄5. Writing (4.20) in charts (x, y) and (ū5, v̄5), we see that x = k with

y 6= 0 implies that

ū5 =
(k2 − 1)

(
(k2(4n+ 5)− 4(n+ 1)2)y − 4n(2n2 + 3n+ 1)k

)
ky

, v̄5 = 0, (4.27)

and as ū5 here is a fractional-linear function of y we have a one-to-one correspondence

under the forward mapping between the proper transform of the line x = k in the domain

surface and the exceptional line F̄5 in the target surface.

Since we have now blown up q5 on F1 we next compute the image of the proper transform

F1−F5 under the forward mapping. Using the charts (u1, v1) and (ū1, v̄1) we see that when

v1 = 0 and u1 6= (k2 − 1)(2n+ 1), we have

ū1 =
(k2 − 1)

(
(k2 − 1)(2n+ 3)− (4n+ 3)u1

)
k2 − 1− (2n+ 1)u1

, v̄1 = 0. (4.28)

With similar results in the charts (U1, V1), we see that the forward mapping injects F1

(excluding q5) into F̄1. We now examine the image of the exceptional line F5 under the

forward mapping, writing (4.20) in charts (u5, v5) and (x̄, ȳ) then setting v5 = 0, we see that

the exceptional line F5 is mapped bijectively to the proper transform of the curve defined in

the (x̄, ȳ)-chart by

kx̄(kȳ − 1)2 − (k − ȳ)2 = 0. (4.29)

We also deduce from (4.28) that the proper transformsF1−F5 and F̄1−F̄5 of the exceptional
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lines arising from q1, q̄1 are in bijective correspondence under the mapping. Further, (4.27)

shows that the exceptional line F̄5 is in bijective correspondence with the proper transform

Hx − F1 of the line x = k, so we have lifted the mapping to an isomorphism in the

neighbourhood of q1. Calculations in the neighbourhoods of the exceptional lines F2, F3

and F4 are similar, for example with Hx − F2 being blown down by the forward mapping

to the single point q6 ∈ F2, while under the backward mapping Hȳ − F̄3 and Hȳ − F̄4

are blown down to q7 ∈ F3 and q8 ∈ F4 respectively. After blowing up these points q6, q7

and q8 in both domain and target surfaces, calculations in local coordinates similar to those

above show that we have the isomorphism ψn as claimed.

4.2.2 Surface type

We next show that the surfaces Xk,n are a family of Sakai surfaces and determine their type.

Proposition 4.2.2. Each surfaceXk,n has a unique representative of its anticanonical class,

given by

D = D0 +D1 + 2D2 +D3 +D4, (4.30)

where

D0 = F1 − F5 D1 = F2 − F6 D3 = F3 − F7, D4 = F4 − F8, (4.31)

are the proper transforms of the exceptional divisors F1, F2, F3, F4 under the blow-ups of

q5, q6, q7, q8 respectively, and D2 is the proper transform of the unique curve of bi-degree

(1, 1) passing through q1, q2, q3, q4, which is defined in the (x, y)-chart by

kxy − x− y − k = 0. (4.32)

The divisor D is of canonical type, and Xk,n form a family ofR-surfaces withR = D
(1)
4 . A

schematic representation of the point configuration and the curvesDi is given in Figure 4.1.

The surface roots δj = [Dj ] and our choice of symmetry roots α0, . . . , α4 are given in

Figure 4.2.
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Figure 4.1: Point configuration for D(1)
4 -surfaces from Hoffmann’s d-PIII

δ0

δ1

δ2

δ3

δ4

δ0 = F1 −F5, δ3 = F3 −F7

δ1 = F2 −F6, δ4 = F4 −F8.

δ2 = Hx +Hy −F1 −F2 −F3 −F4,

α0

α1

α2

α3

α4

α0 = Hy −F1 −F5, α3 = Hy −F3 −F7,

α1 = Hy −F2 −F6, α4 = Hy −F4 −F8.

α2 = Hx −Hy,

Figure 4.2: Root data for D(1)
4 -surfaces from Hoffmann’s d-PIII

Proof. The divisors D0, D1, D3, D4 in (4.31) all have self-intersection −2 and are irre-

ducible. The proper transform of the curve defined in the (x, y)-chart by

kxy − x− y − k = 0, (4.33)

gives a representative of the divisor classHx+Hy−E1−E2−E3−E4. This can be verified

by noting that the polynomial defining the curve is of bi-degree (1, 1) in (x, y), and the

curve passes through the points q1, . . . , q4 with multiplicity 1, but its proper transform under

their blow-ups does not intersect q5, . . . , q8, which can be checked by direct calculation. We

immediately see thatD = D0+D1+2D2+D3+D4 is a representative of the anticanonical

class of Xk,n, as

[D] = [D0] + [D1] + 2[D2] + [D3] + [D4] = 2Hx + 2Hy −F1 − · · · − F8. (4.34)
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With regards to D being a unique anticanonical divisor, we note that each of the divisors

D0, D1, D3 and D4 defined as proper transforms of exceptional lines give unique repre-

sentatives of their classes in Pic(Xk,n). Further, it can be shown by direct calculation that

(4.33) defines the unique curve of bi-degree (1, 1) passing through q1, . . . , q4, which means

the divisor D2 is also a unique representative of its class. Direct computation shows that

[Di] · KXk,n
= 0 for i = 0, . . . , 4, so D is of canonical type.

Computing the pairwise intersections of the classes δi = [Di], for i = 0, . . . , 4, we obtain

− (δi · δj) =



2 0 −1 0 0

0 2 −1 0 0

−1 −1 2 −1 −1

0 0 −1 2 0

0 0 −1 0 2


, (4.35)

which is the generalised Cartan matrix of type D(1)
4 , meaning that each Xk,n is a D(1)

4 -

surface as claimed, with surface root lattice Q(R) =Z {δ0, . . . , δ4}, R = D
(1)
4 . The root

lattice given by the orthogonal complement Q(R)⊥ ⊂ δ⊥ ⊂ Pic(X) is by Sakai’s results

of type R⊥ = D
(1)
4 . We find a basis of simple roots for Q(R⊥) by looking for a set of

five linearly independent elements α0, . . . , α4 orthogonal to all δi, with the required D(1)
4

intersection matrix −(αi · αj). This yields a system of linear equations for the coefficients

of the generators Hx,Hy,Fi in each of the simple roots, from which we obtain the choice

of basis in Figure 4.2.

4.2.3 Cremona isometry

We now identify the Cremona isometry induced by the isomorphism ψn, which determines

whether the system is a discrete Painlevé equation according to Definition 2.2.7.

Proposition 4.2.3. The family of isomorphisms ψn lifted from the birational iteration map-
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ping of system (4.3) have pullbacks (ψn)∗ : Pic(Xk,n+1)→ Pic(Xk,n) given by

H̄x 7→ 5Hx + 2Hy − 2F1 − 2F2 −F3 −F4 − 2F5 − 2F6 −F7 −F8,

H̄y 7→ 2Hx +Hy −F1 −F2 −F5 −F6,

F̄1 7→ Hx −F5,

F̄2 7→ Hx −F6,

F̄3 7→ 2Hx +Hy −F1 −F2 −F5 −F6 −F7,

F̄4 7→ 2Hx +Hy −F1 −F2 −F5 −F6 −F8,

F̄5 7→ Hx −F1,

F̄6 7→ Hx −F2,

F̄7 7→ 2Hx +Hy −F1 −F2 −F3 −F5 −F6,

F̄8 7→ 2Hx +Hy −F1 −F2 −F4 −F5 −F6.

(4.36)

Proof. This is a standard computation, most of which we have already performed in our

lifting of the maps to isomorphisms. We note that there are many equivalent sequences

of calculations by which the map (4.36) may be deduced, but the basic idea is to choose

effective classes in Pic(Xk,n) such that computing the images of their representatives under

the mapping ψn is as simple as possible, and gives enough conditions to deduce (ψn)∗ (or

equivalently the pushforward (ψn)∗) on divisor classes. The calculations we outline here

are based on those from the proof of Proposition 4.2.1.

First recall that by considering the forward mapping in charts (u1, v1) and (ū1, v̄1), we

obtained (4.28), from which we deduce that on divisors we have (ψn)∗(F1−F5) = F̄1−F̄5,

so passing to divisor classes where we also denote the pushforward by (ψn)∗ we have

(ψn)∗(F1 −F5) = F̄1 − F̄5 (4.37)

Similarly, our calculation of the image under ψn of the line f = k led to (4.27), which

shows that (on divisors) (ψn)∗(Hx − F1) = F̄5 and therefore on classes we have

(ψn)∗(Hx −F1) = F̄5. (4.38)

By linearity of the map (ψn)∗ on Pic(Xk,n), if we obtain (ψn)∗(F5), we may deduce

(ψn)∗(Hx) and (ψn)∗(F1) from (4.37) and (4.38). In order to do this, we consider the

mapping in charts (u5, v5) and (x̄, ȳ) and obtain the image of E5 to be the proper transform
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of the curve defined by (4.29). To determine its class in Pic(Xk,n+1), we check its intersec-

tion with the exceptional divisors F̄1, . . . F̄8. For example, to check intersections with F̄1

and F̄5, we substitute x̄ = ū1v̄1 + k and ȳ = v̄1 into the equation of the curve (4.29), which

gives the equation of the total transform in the chart (ū1, v̄1) as

v̄1

(
k(kv̄1 − 1)2ū1 + (k4 − 1)v̄1 − 2k(k2 − 1)

)
= 0. (4.39)

The factor v̄1 appearing here with exponent one indicates that the proper transform of the

curve intersects F̄1 with multiplicity one, so (ψn)∗(F5) · F̄1 = 1. Further, the proper

transform of the curve (4.29) is given in the (ū1, v̄1)-chart by

k(kv̄1 − 1)2ū1 + (k4 − 1)v̄1 − 2k(k2 − 1) = 0. (4.40)

The coordinates of the point q̄5 do not satisfy this equation, so we deduce that

(ψn)∗(F5) · F̄5 = 0, (4.41)

so the coefficient of F̄5 in (ψn)∗(F5) is zero. Similar calculations in charts covering the rest

of the exceptional lines, and the observation of the bi-degree of the polynomial defining the

curve allow us to deduce the coefficients, and we arrive at

(ψn)∗(F5) = H̄x + 2H̄y − F̄1 − F̄3 − F̄4 − F̄7 − F̄8. (4.42)

By similar calculations we obtain more conditions on ϕ:

(ψn)∗(F2 −F6) = F̄2 − F̄6,

(ψn)∗(F3 −F7) = F̄3 − F̄7,

(ψn)∗(F4 −F8) = F̄4 − F̄8,

(ψn)∗(Hy −F1) = H̄x + 3H̄y − F̄1 − F̄2 − F̄3 − F̄4 − F̄6 − F̄7 − F̄8,

(ψn)∗(Hy −F2) = H̄x + 3H̄y − F̄1 − F̄2 − F̄3 − F̄4 − F̄5 − F̄7 − F̄8,

(ψn)∗(F6) = H̄x + 2H̄y − F̄2 − F̄3 − F̄4 − F̄7 − F̄8,

(ψn)∗(F7) = H̄y − F̄3,

(ψn)∗(F8) = H̄y − F̄4.

(4.43)



4.2. Geometry of Hoffmann’s discrete PIII 116

These are sufficient to deduce the pushforward (ψn)∗ on all generators of Pic(Xk,n), and

the pullback is deduced directly as its inverse.

In order to deduce the Cremona isometry induced by the pullbacks (ψn)∗, we recall

how the identification of the Picard groups of a family of R-surfaces works in practice for

the family

X = {Xk,n | k ∈ C\{0,±1}, n ∈ Z} . (4.44)

As before we have Hx,Hy being the divisor classes in Pic(Xk,n) of total transforms of

hyperplanes in P1×P1 of constant x, y respectively. We also have Fi being the class of the

total transform of the exceptional divisor Fi arising from the blow-up of qi(k, n), where we

have emphasised the dependence of the location of these points on k and n. In Pic(Xk,n+1),

where Xk,n+1 is obtained from P1 × P1 extended from C2 with coordinates (x̄, ȳ), we

have H̄x, H̄y similarly being classes of total transforms of hyperplanes of constant x̄, ȳ

respectively. The generators F̄i correspond to classes of total transforms of exceptional

divisors F̄i arising from the blow-ups of qi(k, n + 1). The identification is of Hx with

H̄x, Hy with H̄y and Fi with F̄i, and we denote the resulting Z-module by Pic(X ), of

which (ψn)∗ induces a Z-module automorphism, denoted ψ, according to the following

commutative diagram, where the vertical arrows indicate this identification.

Pic(Xk,n+1) Pic(Xk,n)

Pic(X ) Pic(X )

(ψn)∗

∼ ∼

ψ

(4.45)

According to Theorem 2.2.6, the Cremona isometries of a family of generic D(1)
4 -surfaces

form the group

W̃ (D
(1)
4 ) =

〈
r0, r1, r2, r3, r4, π(01), π(34), π(14)

〉
, (4.46)

subject to the relations

r2
i = 1, (rirj)

mij (i 6= j), rσ(i)πσ = πσri, πσπτ = πστ , (4.47)

where i, j ∈ Z/5Z, (aij)
4
i,j=0 is the generalised Cartan matrix D(1)

4 , mij are as in Defini-

tion 2.1.2, and σ, τ are permutations of the indices {0, 1, 2, 3, 4} of the simple roots. We
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remark here that ri is the simple reflection associated to αi from our basis of symmetry

roots in Figure 4.2, which we recall gives a Cremona isometry

rj(λ) = λ+ (αj · λ)αj , (4.48)

for λ ∈ Pic(X ), but we have chosen slightly different generators for Aut(D
(1)
4 ) than we

did in the standard model in Section 2.3 and used notation to emphasise the permutations

of simple roots which they induce.

Proposition 4.2.4. The mapping ψ is a Cremona isometry for the familyX ofD(1)
4 -surfaces

and acts on the symmetry roots according to

ψ :



α0 7→ α1

α1 7→ α0

α2 7→ α2 + δ

α3 7→ α4 − δ

α4 7→ α3 − δ.

(4.49)

Here δ = −KX = 2Hx + 2Hy − F1 − · · · F8. Further, ψ can be written in terms of

generators of W̃ (D
(1)
4 ) as

ψ = r2r0r1r2r3r4 = π(01)(34)Tv, (4.50)

where Tv is the Kac translation associated to the weight v = 1
2(α3 + α4) ∈

◦
P (R⊥) =

P (D4), and π(01)(34) = π(01)π(34) is the Dynkin diagram automorphism corresponding to

the permutation (01)(34) of indices of simple roots.

Proof. To verify that ψ is a Cremona isometry, we check directly from (4.36) that ψ fixes

each of δ0, δ1, δ2, δ3 and δ4 and therefore the canonical class in Pic(X), and that ψ preserves

the intersection product. We also note that as ψ is induced by the pullbacks of isomorphisms

it must preserve effectiveness of classes in Pic(X ). The action of the element ψ on the

symmetry root lattice Q(R⊥) is found to be given by (4.49) by direct calculation. By

standard techniques [Kac90, KNY17, DT18], we obtain the expression

ψ = r2r0r1r2r3r4 = r201234, (4.51)
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where for conciseness we have used the subscript notation to indicate the composition of a

sequence of simple reflections. We note that ψ is not itself a translation, otherwise it would

act on the simple roots by adding multiples of the null root δ. Consider the Dynkin diagram

automorphism π(01)(34) which acts on the simple roots by permutation (01)(34) of their

indices, and is realised by the following action on Pic(X ):

π(01)(34) : F1 ↔ F2, F3 ↔ F4, F5 ↔ F6, F7 ↔ F8. (4.52)

The composition of this with ψ acts on the symmetry root lattice according to

π(01)(34)ψ : 〈α0, α1, α2, α3, α4〉 7→ 〈α0, α1, α2, α3, α4〉+ 〈0, 0, 1,−1,−1〉 δ, (4.53)

which is translational, as we now demonstrate. To determine the weight vector v ∈

P (
◦
R⊥) = P (D4) giving this action via the Kac translation Tv, we form an ansatz

v =
∑4

j=1 cjαj , and determine rational coefficients cj such that

(v · α0, v · α1, v · α2, v · α3, v · α4) = (0, 0, 1,−1,−1), (4.54)

which ensures Tv gives the action (4.53) according to the Kac translation formula

(2.19). By direct calculation in this case we obtain the unique solution (c1, c2, c3, c4) =

(0, 0, 1/2, 1/2), so we have the translation weight

v =
1

2
(α3 + α4) , (4.55)

and the proof is complete.

Remark 4.2.5. The weight vector v has squared length ||v||2 = −(v ·v) = 1, which is min-

imal among all nonzero elements of P (D4), so we may think of v as a ‘nearest-neighbour

connecting vector’ in the D4 weight lattice, in the same sense as in the work of Ramani,

Grammaticos and Ohta on inequivalent discrete Painlevé equations from non-conjugate

translations [ORG01], which was built on by Joshi and Nakazono [JN17]. Further, we have

that

ψ2 = T 2
v = T2v, (4.56)

so in particular the element ψ = π(01)(34)Tv is of infinite order in W̃ (D
(1)
4 ). Further, if we
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are to regard (4.3) as a projective reduction of a discrete Painlevé equation, it is the one

given by the translation T2v. This contrasts with the projective reduction (4.11) introduced

in the introduction, in the sense that the element R ∈ W̃
(
(A2 +A1)(1)

)
squared to give a

translation by a nearest-neighbour connecting vector, which T2v is not.

4.3 Generic version of the equation

We have found that the system (4.3) is associated with a family of D(1)
4 -surfaces with less

than the full number of parameters, and corresponds to a non-translation element of infinite

order in W̃ (D
(1)
4 ). In this section, we demonstrate first how the equation may be recov-

ered as a projective reduction using a birational representation of the symmetry group on

a family of generic D(1)
4 -surfaces generalising that obtained above. Unlike previous stud-

ies of projective reductions, we proceed to show that although the action of the element of

the symmetry group is not translational on the full parameter space, it still defines a dis-

crete equation with the full number of parameters, which we construct explicitly from the

Cremona action on the generic family of surfaces.

4.3.1 Family of D(1)
4 -surfaces and Cremona action

The first step in our construction of a full-parameter version of the system (4.3) is to de-

fine a family of generic D(1)
4 -surfaces through a point configuration generalising that which

gave Xk,n in Subsection 4.2.1. We introduce extra parameters controlling basepoint loca-

tions first in a naive way, and give a birational representation of W̃ (D
(1)
4 ) on this family,

with the system (4.3) recovered as a projective reduction. We then obtain the root vari-

able parametrisation in Subsection 4.3.2, which allows our full-parameter version to be

constructed explicitly.

Proposition 4.3.1. Consider the surface Xb = X(k,b1,b2,b3,b4) obtained from P1 × P1 by

blowing up points q1, . . . , q8 given in coordinates by

q1 : (x, y) = (k, 0), q5 : (u1, v1) =

(
x− k
y

, y

)
= (b1, 0) ,

q2 : (X,Y ) = (k, 0), q6 : (u2, v2) =

(
X − k
Y

, Y

)
= (b2, 0) ,

q3 : (x, y) = (0, k), q7 : (u3, v3) =

(
x

y − k
, y − k

)
= (b3, 0) ,

q4 : (X,Y ) = (0, k), q8 : (u4, v4) =

(
X

Y − k
, Y − k

)
= (b4, 0) .

(4.57)
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Then Xb form a family of generic D(1)
4 -surfaces, with surface and symmetry root bases in

Pic(X ) given as in Figure 4.2. Further, we have a Cremona action of the symmetry group

W̃ (D
(1)
4 ), with generators as in (4.46). We give this as in Subsection 2.2.4, namely as maps

φw : Xb → Xw·b,

(x, y) 7→ (w · x,w · y),
(4.58)

such that φ∗w : Pic(Xw·b) → Pic(Xb) induces the Cremona isometry w ∈W̃ (D
(1)
4 ). We

specify the action below in the following format:

w :

w · b1 w · b2

w · b3 w · b4
w · k ;

w · x

w · y

 (4.59)

For the simple reflections we have the following:

r0 :

k2 − 1− b1 (k2−1)2−b1b2
k2−1−b1

1−b1b3
k2−1−b1

1−b1b4
k2−1−b1

k ;

(b1+1)xy−kx−ky+k2

kxy−x+(b1−k2)y+k

y


r1 :

 (k2−1)2−b1b2
k2−1−b2 k2 − 1− b2
1−b2b3
k2−1−b2

1−b2b4
k2−1−b2

k ;

kxy+(b2−k2)x−ky+k
k2xy−kx−ky+(b2+1)

y


r2 :

 (k2−1)2

b1

(k2−1)2

b2

1
b3(k2−1)2

1
b4(k2−1)2

k ;

y−k
ky−1

x−k
kx−1


r3 :

 (k2−1)(b1b3−1)
(k2−1)b3−1

(k2−1)(b2b3−1)
(k2−1)b3−1

(k2 − 1)−1 − b3 (k2−1)2b3b4−1
(k2−1)2b3−k2+1

k ;

x(k−y)((k2−1)b3−1)
x(ky−1)−b3(k2−1)(y−k)

y


r4 :

 (k2−1)2(1−b1b4)
(k2−1)b4−1

(k2−1)2(1−b2b4)
(k2−1)b4−1

(k2−1)2b3b4−1
1−k2−b4(k2−1)2

(k2 − 1)−1 − b4
k ;

b4(k2−1)x(ky−1)−y+k
(ky−1)(b4(k2−1)−1)

y


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For our chosen generators of Aut(D
(1)
4 ) we have the following:

π(10) :

−b2/k2 −b1/k2

−k2b3 −k2b4
k ;

x

1
y


π(34) :

−b1/k2 −b2/k2

−k2b4 −k2b3

1

k
;

1
x

y


π(14) :

b1/(k2 − 1)2 b4

(k2 − 1)2b3 b2

k

(k2 − 1)2
;

x(k2−1)1/2

kx−1

y(k2−1)1/2

ky−1



Proof. We first note that the point configuration given in (4.57) generalises the one leading

to Xk,n, and clearly leads to a unique anticanonical divisor with the same D(1)
4 intersection

configuration of irreducible components. The fact that this configuration leads to a family

of generic D(1)
4 -surfaces will be established when we compute the root variables for Xb

in Subsection 4.3.2. The birational mapping defined by the action of each generator may

be verified to give an isomorphism with required pullback by the same methods as used

throughout the thesis to lift mappings to isomorphisms and deduce their pullbacks. The

methods for constructing the Cremona action are the same as those used in Subsection 3.2.8

and Subsection 3.3.2 to obtain isomorphisms of Sakai surfaces from a required action on

the level of Picard lattices. For more examples of this kind of calculation we refer the reader

to, for example, one of [Sak01, MSY03, DT18, JNS1608, KNY17].

Before we construct the generic version of the system (4.3), we illustrate how to re-

cover it from the Cremona action action of ψ. To reconstruct the equation, we compute the

action of the element ψ = r201234 on the variables and parameters. Using the formulae

given in Proposition 4.3.1, we compute ψ · f and ψ · g, which are complicated rational

functions of the variables and parameters, which we omit for the moment for conciseness.
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We also find that ψ · b = (ψ · k, ψ · b1, ψ · b2, ψ · b3, ψ · b4) is given by

ψ · k = k, (4.60a)

ψ · b1 = b2 +
b2b3 − 1

b3 + t
+
b2b4 − 1

b4 + t
+
b1 − b2
1 + b1t

, (4.60b)

ψ · b2 = b1 +
b1b3 − 1

b3 + t
+
b1b4 − 1

b4 + t
+
b2 − b1
1 + b2t

, (4.60c)

ψ · b3 =
(1 + b1t)(1 + b2t)(b3 + t)b4

(b4 + t) (2b1b2b3t+ b1b2t2 + (b1 + b2)b3 − 1)
, (4.60d)

ψ · b4 =
(1 + b1t)(1 + b2t)(b4 + t)b3

(b3 + t) (2b1b2b4t+ b1b2t2 + (b1 + b2)b4 − 1)
, (4.60e)

where we have denoted t = 1/(1−k2). We note that this is not a translational motion in the

parameter space, but if we restrict to the case when b = (k, b1, b1, 0, 0), then ψ acts on this

parameter subspace by translation, with ψ · (k, b1, b1, 0, 0) = (k, b1 − 2/t, b1 − 2/t, 0, 0).

Therefore the result of iterating the action on parameters n times is given by

ψn · (k, b1, b1, 0, 0) = (k, b1 − 2n/t, b1 − 2n/t, 0, 0)

= (k, b1 − 2n(1− k2), b1 − 2n(1− k2), 0, 0).
(4.61)

With this restriction of parameters the rational functions giving the action of ψ on x and y

simplify considerably, and letting xn = ψn · x, yn = ψn · y we obtain the following system

of difference equations.:

x̄ =
(ȳ − k)2

x(kȳ − 1)2
, (4.62a)

ȳ =
(x− k)

(kx− 1)

k(1− k2)xy + (b1 + 2n(k2 − 1))x+ (k2 − 1)y − k(b1 + 2n(k2 − 1))

(k(b1 + 2n(k2 − 1))xy + (1− k2)x− (b1 + 2n(k2 − 1))y + k(k2 − 1)
,

(4.62b)

where (x, y) = (xn, yn), (x̄, ȳ) = (xn+1, yn+1). Setting the initial value of the parameter to

be b1 = k2−1 = −1/t, we recover (4.3), as well as the family of surfaces Xk,n constructed

in Subsection 4.2.1.

Remark 4.3.2. We note that the process by which we recovered the system (4.3) from the

birational representation is a projective reduction as described in Section 4.1. However,

with the root variable parametrisation, the action of ψ becomes translational on a larger

parameter subspace than the one on which b = (k, b1, b1, 0, 0). This involves four free

parameters, and is given by a1 = a2, a3 = a4 in the root variable parametrisation to be ob-
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tained in the next subsection. Thus the system (4.3) differs from the example from [KNT11]

described in the introduction, in which the projection was onto the maximal parameter sub-

space on which the element R ∈ W̃ ((A2 + A1)(1)) gave translational motion. The way

in which (4.3) was obtained from ψ above corresponds to restricting to the parameter sub-

space defined in terms of root variables by a1 = a2, a3 = a4, so in this sense equation

(4.3) is not the most general projective reduction associated with the Cremona isometry ψ.

At the end of Subsection 4.3.3 we will explain how to recover the most general projective

reduction arising from ψ from our full-parameter generalisation.

4.3.2 Root variables and transformation to the standard model

To write down an equation from the Cremona action of ψ on the full family of generic

D
(1)
4 -surfaces, we let (xn, yn) = ψn · (x, y) be the result of acting by ψ on the variables

n times, and seek an explicit form of ψn · b as a function of n. Obtaining this expression

amounts to solving the system of difference equations (4.60), which are nonlinear in their

present form. However, if we change our parametrisation of the family of surfaces to that

given by root variables, the transformation of parameters will linearise the system (4.60)

and it will be explicitly solvable by elementary methods. This will be the case for the action

of any element of infinite order on the root variables, so difference equations can always be

explicitly constructed from these elements, as we will demonstrate.

Rather than obtaining the root variable parametrisation from the period map by directly

computing integrals as in Subsection 2.3.2 and Subsection 3.2.7, we will obtain it via a

transformation to the standard model of D(1)
4 surfaces from Section 2.3, which also reveals

(4.3) as a Bäcklund transformation for a special case of PVI. The method will be similar to

that in Subsection 3.2.8, though here it is not used to identify some equation with a standard

example, but rather to provide a shortcut for obtaining the root variables.

We denote the family of surfaces from the standard model again by XKNY, but de-

note the individual surfaces by XKNY
a with parameters given by root variables a =

(t, a0, a1, a2, a3, a4), to distinguish them from our surfaces Xb. Again we begin with an

identification on the level of Picard lattices, then find an isomorphism of the surfaces real-

ising this.
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Proposition 4.3.3. The identification of Pic(X ) and Pic(XKNY) given by

Hx = Hf +Hg − E1 − E5, Hy = Hf ,

F1 = E3, F5 = E4,

F2 = Hf − E1, F6 = E2,

F3 = E7, F7 = E8,

F4 = Hf − E5, F8 = E6.

(4.63)

preserves the intersection product and identifies the surface and symmetry root bases from

the standard model with those in Figure 4.2 for our family of surfaces.

Proposition 4.3.4. We have an isomorphism inducing the identification above, defined by

η : Xb → XKNY
a ,

(x, y) 7→ (f(x, y), g(x, y))
(4.64)

where

f =
ky − 1

k2 − 1
, g =

a2

k

(1− kx)(ky − 1)

k(kxy − x− y + k)
, (4.65)

and the parameters a and b are related according to

b1 = −a0 + a2

ta0
, b2 = −a1 + a2

ta1
, b3 = − t(a2 + a3)

a3
,

b4 = − t(a2 + a4)

a4
, t =

1

1− k2
.

(4.66)

Proof. This is once again a standard computation, but we will give some details to comple-

ment those given for the similar calculation in Subsection 3.2.8. Again we begin with an

ansatz for the map in coordinates. As our identification requires η∗(Hf ) = Hy, we take

f =
λ1y + λ2

λ3y + λ4
, (4.67)

with λ1, . . . , λ4 to be determined. Similarly we require η∗(Hg) = Hx+Hy−F2−F4, so a

generic line of constant g should correspond to a (1, 1)-curve in (x, y) coordinates passing

through q2 and q4, each with multiplicity one, and we take

g =
µ1xy + µ2x+ µ3y + µ4

µ5xy + µ6x+ µ7y + µ8
, (4.68)
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where µ1, . . . , µ8 are also to be determined. Indeed, letting c ∈ C be arbitrary and setting

y = c in (4.68) we obtain a (1, 1)-curve, which we rewrite in the chart (X,Y ), in which

q2, q4 are visible, as

c (µ5 + µ6Y + µ7X + µ8XY ) = µ1 + µ2Y + µ3X + µ4XY. (4.69)

If q2 : (X,Y ) = (k, 0) lies on this curve, we must have

c(µ5 + kµ7) = µ1 + kµ3. (4.70)

This must be true independent of the value of the constant c, so that g is a coordinate on a

pencil of curves with q2 as a basepoint, so we require

µ1 = −kµ3, µ5 = −kµ7. (4.71)

Similarly, the requirement that q4 : (X,Y ) = (0, k) is also a basepoint of the pencil leads

to the conditions

µ6 = µ7, µ3 = µ2, (4.72)

after which our ansatz reads

g =
µ4(kxy − x− y) + kµ1

k(kxy − x− y + k)
. (4.73)

Before finding the coefficients µ1, µ4, it will be convenient to first determine the fractional

linear transformation (4.67) relating f and y. It is convenient to consider hyperplanes of

certain constant values of f and y, whose proper transforms give unique representatives of

their divisor classes. For example, we require η∗(Hy −F3) = Hf −E7, so setting y = k in

(4.67) should lead to f = 1 and we obtain

λ4 = k(λ1 − λ3) + λ2. (4.74)

Similarly, η∗(Hy − F1) = Hf − E3 so when y = k we should have f = t, which gives λ2

in terms of the other coefficients and parameters, and our ansatz is refined:

f =
λ1(t− 1)y + kt(λ3 − λ1)

λ3(t− 1)y + k(λ1 − λ3)
. (4.75)
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A third condition may be deduced from the requirement that η∗(Hy − F2) = E1, so the

proper transform of the line Y = 0 should be mapped to the exceptional divisor E1, and

in particular rewriting (4.75) in terms of Y = 1/y and setting Y = 0 should recover the

f -coordinate of p1. Direct calculation yields λ3 = 0, and therefore

f =
(1− t)y + kt

k
. (4.76)

The parameters k and t each correspond to the ‘extra parameter’ playing the role of the

independent variable of PVI in their respective families of D(1)
4 -surfaces, and their relation-

ship can be deduced as follows. We have already found the unknown coefficients in the

relation between y and f , by considering (−1)-curves given by proper transforms of lines

of constant y passing through basepoints q1, q2, q3. However, there is one more such excep-

tional class which we have not considered, and we must verify that (4.76) is consistent with

the required image of the corresponding divisor class under η∗. To be precise, we should

have η∗(Hy − F4) = E5, so setting Y = k in (4.76) should recover the f -coordinate of p5,

namely f = 0. This condition is computed to be equivalent to

t =
1

1− k2
, (4.77)

so we have obtained a necessary correspondence between the parameters k and t such that

η realises the identification.

We now return to our expression (4.73) for g, and use similar calculations to determine the

remaining unknown coefficients. For instance, in order to satisfy the condition η∗(Hy −

F2) = E1, we require that setting Y = 0 with X 6= k in (4.73) and (4.76) gives the

(x, y)-coordinates of p1. We have already imposed this condition on the expression for x,

so substitute in to (4.73) to obtain

µ4 = −ka2. (4.78)

A similar calculation based on η∗(Hy −F4) = E5 leads to the condition

µ1 = −(a1 + a2)/k, (4.79)

and we have determined all unknown coefficients and obtained the birational map (x, y) 7→

(f, g) as in (4.65).
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We now demonstrate how to obtain the correspondences between the remaining parameters.

We require that η∗(F5) = E4, so the basepoint q5 on the exceptional line F1 in Xb should be

mapped under η to somewhere over p4 on the line E3. To compute this condition, we will

use the same notation for the chart (u1, v1) in the neighbourhood of the exceptional line F1

on Xb, but relabel the one defined in Section 2.3 covering an affine part of E3 from (u3, v3)

to (ũ3, ṽ3) to distinguish between the surfaces Xb and XKNY
a . We recall that this chart is

given by

ũ3 =
f − t
G

, ṽ3 = G. (4.80)

Substituting these coordinates in our expressions (4.65) for f, g in terms of x, y, we obtain

ũ3 =
a2(kv1 − 1)(1− k2 − ku1v1)

(k2 − 1)(k2 − 1− u1 + ku1v1)
, ṽ3 =

kv1(k2 − 1− u1 + ku1v1)

a2(kv1 − 1)(1− k2 − ku1v1)
, (4.81)

in which setting v1 = 0 leads to

ũ3 =
a2

k2 − 1− u1
, ṽ3 = 0, (4.82)

which demonstrates that η indeed gives a one-to-one correspondence between the excep-

tional lines F1 and E3. Requiring that q5 : (u1, v1) = (b1, 0) is mapped to p4 : (ũ3, ṽ3) =

(ta0, 0), we obtain the condition

b1 = −a0 + a2

ta0
. (4.83)

Similar calculations based on the requirements η∗(F7) = E8, η∗(F6) = E2, η∗(F8) = E6

yield the rest of the correspondences (4.66). The proof is completed by checking, using the

same calculation methods as throughout the thesis, that the birational map (x, y) 7→ (f, g)

we have obtained does indeed induce the required identification when parameters are related

according to (4.66).

We note that this transformation, and in particular the parameter correspondence, re-

covers the root variables for the surface Xb for with the symmetry roots given in Figure 4.2.

This is for the same reason, as was given in Subsection 2.2.4, for the correspondence be-

tween the Cremona isometry induced by a discrete Painlevé equation and the evolution of

the root variables. Because the isomorphism η has been chosen such that it identifies the

surface and symmetry roots, in choosing the rational 2-form defining the period mapping
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on Xb we can choose the normalisation such that it coincides with the pullback η∗ω of the

one on XKNY
a . As in Lemma 2.3.1, take the (normalised) rational 2-form ω on XKNY

a and

use it to define the period mapping χ, so the root variables associated with αi ∈ Pic(Xa)

are

ai = χ(αi). (4.84)

To find the root variables for Xb we take the symmetry roots for Xb from Figure 4.2, which

we now write as ᾱi = η∗(αi) to make the identification via η explicit. Using the 2-form

η∗ω we define the period mapping χ̄ on Xb, so the root variables are χ̄(ᾱi).

As in the computation of root variables in Subsection 2.3.2, write each symmetry root as

the difference of two classes of curves

ᾱi = [C̄1
i ]− [C̄0

i ] = η∗[C1
i ]− η∗[C0

i ], (4.85)

where we have used the fact that η is an isomorphism to pull back C̄1
i , C̄

0
i . We then have a

unique component Dk of the anticanonical divisor of Xb such that

Dk · C1
i = Dk · C0

i = η∗(Dk) · η∗(C1
i ) = η∗(Dk) · η∗(C0

i ) = 1, (4.86)

and we have the points of intersection Pi, Qi ∈ Xb, P̄i, Q̄i ∈ XKNY
a given by:

Pi = Dk ∩ C0
i , P̄i = η∗(Dk) ∩ η∗(C0

i ),

Qi = Dk ∩ C1
i , Q̄i = η∗(Dk) ∩ η∗(C1

i ).
(4.87)

We can then compute the root variables, with the isomorphism η essentially giving a change

of variables in the integral::

χ̄(ᾱi) = χ̄
(
[C̄1
i ]− [C̄0

i ]
)

= χ̄
(
η∗[C1

i ]− η∗[C0
i ]
)

=

∫ Q̄i

P̄i

1

2πi

∮
η∗(Dk)

η∗ω =

∫ Qi

Pi

1

2πi

∮
Dk

ω = χ(αi) = ai.
(4.88)

Remark 4.3.5. The process of constructing the isomorphism η has given us the root vari-

able parametrisation of the family Xb. Solving the system (4.66) for the root variables

a0, . . . , a4, we see that they are given by rational functions of degree three in the param-

eters b1, . . . , b4, which suggests that if we were to compute them directly using the period
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mapping it would have involved evaluating complicated integrals, which this transformation

has allowed us to avoid.

4.3.3 Full-parameter generalisation of Hoffmann’s discrete PIII

We are now in a position to construct the full-parameter version of (4.3) using our Cre-

mona action of W̃ (D
(1)
4 ) on the family of generic D(1)

4 -surfaces. We begin by taking the

parametrisation of this family by root variables, so the surface Xb is now written as Xa,

where a = (t, a0, a1, a2, a3, a4) are the root variables as computed in the previous section.

We emphasise again that the key to writing down an explicit form of the discrete system de-

fined by the Cremona action of an element of the symmetry group is to obtain the parameter

evolution as a function of n. In our case, we are able to do this as the system (4.60) giving

the action of the element ψ = r201234 on the parameters is linearised by the transformation

to root variables, and we now have

ψ · (t, a0, a1, a2, a3, a4) = (t, a1, a0, a2 + 1, a4 − 1, a3 − 1). (4.89)

This leads to a linear difference equation for ψn · a, which we may solve explicitly by

elementary methods to arrive at the following formulae:

ψn · t = t, ψn · k = k, (4.90a)

ψn · a0 =
1

2
((1 + (−1)n)a0 + (1− (−1)n)a1) =


a0 for n even,

a1 for n odd,
(4.90b)

ψn · a1 =
1

2
((1− (−1)n)a0 + (1 + (−1)n)a1) =


a1 for n even,

a0 for n odd,
(4.90c)

ψn · a2 = a2 + n, (4.90d)

ψn · a3 =
1

2
((1 + (−1)n)a3 + (1− (−1)n)a4 − 2n) =


a3 − n for n even,

a4 − n for n odd,
(4.90e)

ψn · a4 =
1

2
((1− (−1)n)a3 + (1 + (−1)n)a4 − 2n) =


a4 − n for n even,

a3 − n for n odd.
(4.90f)
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Therefore by setting xn = ψn · x and yn = ψn · y with the Cremona action of ψ, we

obtain the explicit form of our full-parameter version of equation (4.3), which we write

with (x, y) = (xn, yn) and (x̄, ȳ) = (xn+1, yn+1) as follows, where ai are now parameters

and we have written the n-dependence explicitly:

x̄ =
(ȳ − k)

(kȳ − 1)

(
(a2 + a

(n+1)
34 )x(kȳ − 1) + (ȳ − k)(a

(n)
34 − n− 1)

)
(

(a2 + a
(n)
34 )(ȳ − k) + x(kȳ − 1)(a

(n+1)
34 − n− 1)

) , (4.91a)

ȳ =
(x− k)

(kx− 1)

(
(x− k)(a2 + n)− a(n+1)

01 (kxy − x− y + k)
)

(
y(kx− 1)(a2 + n) + a

(n)
01 (kxy − x− y + k)

) , (4.91b)

where a
(n)
01 =


a0 for n even,

a1 for n odd,
a

(n)
34 =


a3 for n even,

a4 for n odd,

and a0 + a1 + 2a2 + a3 + a4 = 1. The parameter specialisation (b1, b2, b3, b4) =

(k2 − 1, k2 − 1, 0, 0) by which we recovered (4.3) in subsection 4.1 is given in terms of

the parameters in (4.91) as (a0, a1, a2, a3, a4) = (1/2, 1/2, 0, 0, 0), substitution of which

again recovers the original system (4.3).

More generally, the root variable parametrisation of a generic family ofR-surfaces ensures

that the parameter evolution associated with any Cremona isometry leads to a system of

linear equations. For multiplicative surface types this will be a linear system for the loga-

rithms of the root variables, and for the elliptic surface type this will be a system of linear

difference equations for the arguments of elliptic functions appearing in the coefficients. In

any case this can be solved so write the system explicitly with the independent variable n

appearing the coefficients, as we illustrate in the following section.

4.4 Integrability and other full-parameter systems from non-

translation symmetries
We now discuss the integrability of the full-parameter system (4.91), and give more systems

obtained explicitly from the Cremona action of non-translation symmetries of families of

R-surfaces without the need for parameter restrictions.

4.4.1 Algebraic entropy

Firstly, we note that system (4.91) in integrable in the sense of vanishing algebraic entropy,

which follows from the same result of Takenawa [Tak01a] guaranteeing this property for the
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discrete Painlevé equations defined by Sakai in terms of translations. To study the degree

growth of the system (4.91), we first compute the degrees of the iterates as rational functions

of initial conditions as in Subsection 1.2.4. That is, we consider the iteration mappings of

(4.91) purely as birational maps of P1 × P1 defined by

Ψn : (xn, yn) 7→ (xn+1, yn+1), (4.92)

and compute the degrees of the maps

Ψ(n) = Ψm+n−1◦ · · · ◦Ψm+1 ◦Ψm : P1 × P1 → P1 × P1,

(xm, ym) 7→ (Pn(xm, ym), Qn(xm, ym)),
(4.93)

as rational functions of initial conditions (xm, ym) at some generic iteration step m. Com-

puting the first few iterates of the system (4.91) in this way, we obtain the following:

degPn(xm, ym) = 1, 7, 21, 43, 73, . . .

degQn(xm, ym) = 1, 3, 13, 31, 57, . . .
(4.94)

This appears to be quadratic, and certainly not exponential, which we may confirm by com-

puting explicit expressions for degPn and degQn using the following method of Takenawa

[Tak01a], which is applicable to any second-order discrete system with birational iteration

mappings on P1 × P1 which lift to isomorphisms.

Consider a discrete system given by the Cremona action of some element w ∈ Cr(X (R))

on a family of R-surfaces, where we write the family of isomorphisms lifted from the iter-

ation mappings as

φn : Xwn·a → Xwn+1·a,

(xn, yn) = (x, y) 7→ (w · x,w · y) = (xn+1, yn+1).
(4.95)

We then denote the system considered as a birational mapping of P1 × P1 by

Φn : P1 × P1 → P1 × P1,

(xn, yn) 7→ (xn+1, yn+1),
(4.96)
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and the following diagram commutes, where the vertical arrows indicate blow-up projec-

tions :
Xwn·a Xwn+1·a

P1 × P1 P1 × P1

φn

Φn

(4.97)

In terms of the Cremona isometry w induced by the maps ψn via their pullbacks, we have

the following formulae due to Takenawa [Tak01a]:

degPn = w−n(Hx +Hy) · Hx = wn(Hx) · (Hx +Hy),

degQn = w−n(Hx +Hy) · Hy = wn(Hy) · (Hx +Hy).
(4.98)

To apply this to the Cremona isometry ψ corresponding to the system (4.91), we obtain an

expression for w−n(Hx +Hy) in terms ofHf ,Hg, E1, . . . , E8. Letting this be

w−n(Hx +Hy) = ax(n)Hx + ay(n)Hy +

8∑
i=1

bi(n)Fi, (4.99)

we use the expression for w in Proposition 4.2.3 to obtain a system of recurrences with

respect to n for the functions ax(n), ay(n), bi(n), which is guaranteed to be linear as w is

a Z-module automorphism. We solve this using elementary elements subject to the initial

conditions ax(0) = ay(0) = 1, bi(0) = 0 for i = 1, . . . , 8 and obtain

ax(n) = 4n2 − 2n− 1,

ay(n) = 4n2 + 2n+ 1,

b1(n) = −n
2

(2n− 1),

b2(n) = b5(n) = b6(n) = −n(2n− 1),

b3(n) = b4(n) = b7(n) = b8(n) = −n(2n+ 1).

(4.100)

We can then compute intersection numbers to obtain the degrees exactly as

degPn(f, g) = 4n2 + 2n+ 1, degQn(f, g) = 4n2 − 2n+ 1. (4.101)

These formulae recover the observations of the first few degrees in (4.94) and we have

proven that the degree growth is quadratic and the algebraic entropy of the system (4.91) is

zero. Takenawa’s proof [Tak01a] that the discrete Painlevé equations defined by Sakai have
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at most quadratic degree growth also applies to any system obtained as the Cremona action

of an element of the symmetry group of a family of R-surfaces, so full-parameter systems

from non-translational Cremona isometries are guaranteed to be integrable in this sense too.

4.4.2 More examples

We have seen that with the root variable parametrisation, we can always obtain discrete

equations explicitly from the Cremona action of non-translation elements of the symmetry

group of a generic family of Sakai surfaces of a given type. We will now demonstrate this

in the case of the Cremona action of W̃ ((A2 +A1)(1)) on a family of genericA(1)
5 -surfaces,

related to the example of projective reduction in Section 4.1.

Consider again the element R = π2s1, which we recall acts on the root variables according

to

R · (a0, a1, a2, c) = (a2a0, q
−1a2a1, qa

−1
2 , c). (4.102)

Without imposing the parameter constraint a1 = q1/2 which led to equation (4.11), this

gives a linear system of equations, this time of multiplicative type, for Rn · (a0, a1, a2, c),

which we may solve explicitly to obtain

Rn · a0 = q
1
4

(3+(−1)n+2n)a−1
1 a

− 1
2

(1+(−1)n)

2 =

 a0q
n/2

a1q
1/2+n/2

for n even,

for n odd
,

Rn · a1 = q
1
4

(−1+(−1)n−2n)a1a
1
2

(1+(−1)n)

2 =

 a1q
−n/2

a1a2q
−1/2−n/2

for n even,

for n odd,

Rn · a2 = q
1
2

(1+(−1)n+1)a
(−1)n

2 =

 a2

qa−1
2

for n even,

for n odd,

Rn · c = c.

With this, we can write down an explicit form of the discrete system induced by the action

of R on the variables by setting Fn = Rn.f0, and therefore obtain the following generic
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version of (4.11):

Fn+1Fn−1 =

qc2

(
a

1
2

((−1)n−1)

0 + a0q
n
2 q

1
4

((−1)n−1)Fn

)
Fn

(
a0q

n
2 q

1
4

((−1)n−1) + a
1
2

((−1)n−1)

0 Fn

) . (4.103)

Computing the first few iterates of this system directly as rational functions of initial data,

we see this degree growth identical to that of the projective reduction (4.11), which is to

be expected given that they correspond to the same Cremona isometry. We now consider

an element of W̃ ((A2 +A1)(1)) which may be regarded as a ‘twisted translation’ similarly

to the element of W̃ (D
(1)
4 ) associated with the systems (4.3) and (4.91), and construct

another integrable full-parameter system from its Cremona action. Keeping the notation of

[KNT11], we consider the translation T4 = rw0, whose action on the parameters is given

by

T4 · (a0, a1, a2, c) = (a0, a1, a2, qc). (4.104)

It can be shown that the Dynkin diagram automorphism π preserves the weight in P (A2 +

A1) corresponding to T4, and the element T̃4 = πT4 is of infinite order, and satisfies T̃ 3
4 =

T 3
4 . Its action on the parameters is given by

T̃4 · (a0, a1, a2, c) = (a1, a2, a0, qc), (4.105)

from which we may deduce, by solving a linear system of difference equations as above,

that the result of acting on the parameters n times has the explicit form

T̃n4 · c = qnc, T̃n4 · (a0, a1, a2) =


(a0, a1, a2) for n ≡ 0 mod 3,

(a1, a2, a0) for n ≡ 1 mod 3,

(a2, a0, a1) for n ≡ 2 mod 3.

(4.106)

From this, take the action of T̃4 on the variables f0, f1, f2 subject to f0f1f2 = a0a1a2c
2 as

in Section 4.1, letting (Fn, Gn, Hn) = T̃n4 .(f0, f1, f2) to obtain the following second-order
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system:

Fn+1 = a(n+1)a(n−1)Hn

1 + a(n)Fn(1 + a(n+1)Gn)

1 + a(n+1)Gn(1 + a(n−1)Hn)
, (4.107a)

Gn+1 = a(n−1)a(n)Fn
1 + a(n+1)Gn(1 + a(n−1)Hn)

1 + a(n−1)Hn(1 + a(n)Fn)
, (4.107b)

Hn+1 = a(n)a(n+1)Gn
1 + a(n−1)Hn(1 + a(n)Fn)

1 + a(n)Fn(1 + a(n+1)Gn)
, (4.107c)

where

FnGnHn = q2n+1c2, a(m) =


a0 for m ≡ 0 mod 3,

a1 for m ≡ 1 mod 3,

a2 for m ≡ 2 mod 3.

We emphasise again that the method we have outlined for obtaining full-parameter systems

from elements of infinite order works for any of the surface types in Sakai’s list which admit

non-translation elements of infinite order in their symmetry groups. The equations (4.103),

(4.107), and more generally any system given by the Cremona action on a family of generic

R-surfaces of a non-translation element will contain the maximum number of free param-

eters for their surface type. Moreover, they will be integrable in the sense of vanishing

algebraic entropy for the same reason that Sakai’s discrete Painlevé equations are.

We conclude this chapter with a remark on how such full-parameter non-translation systems

may play a role in understanding recent developments in the theory of discrete Painlevé

equations made independently of the geometric framework. There exist systems proposed

to be of discrete Painlevé type, obtained via deautonomisation by singularity confinement

of QRT mappings, in which the independent variable enters in a similar way to our full-

parameter non-translation equations. These include the so-called strongly asymmetric dis-

crete Painlevé equations [GRT+14, GRT+16], as well as those obtained recently by Gram-

maticos, Ramani and collaborators [RG17, GRWS20] which are claimed to include fifty

new classes of discrete Painlevé equations. It is natural to ask whether they correspond to

the Cremona actions of non-translation symmetries on families of generic R-surfaces, and

if so whether this perspective allows us to better understand their relation to Sakai’s discrete

Painlevé equations and how many of them are truly inequivalent.



Chapter 5

Singularity confinement in delay-differential

Painlevé equations

We now present work developing the geometric framework beyond the classes of second-

order discrete and differential Painlevé equations, namely to that of delay-differential equa-

tions, which involve shifts and derivatives with respect to a single independent variable.

Similarly to the discrete case, these have been studied from the point of view of a kind

of singularity confinement property, and tests based on this have been used to isolate in-

tegrability candidates and obtain delay-differential analogues of the Painlevé equations

[GRM93, RGT93]. These so-called delay Painlevé equations possess analogues of many

integrability properties of their discrete and differential counterparts, and it is natural to ask

whether a geometric theory may be developed for them.

Though the examples we consider have been shown to exhibit singularity confinement-type

behaviour associated with certain simple singularities, compared to the discrete case the sit-

uation is significantly complicated by the fact that a given delay-differential equation may

admit infinitely many different singularity patterns. In this chapter, we propose a geometric

definition of singularity confinement for three-point birational delay-differential equations

in terms of iteration mappings between jet spaces, and prove it for three delay Painlevé

equations by studying infinite families of singularity patterns.

5.1 Introduction

Compared to the discrete case, the understanding of singularity confinement in delay-

differential equations is limited for the following reasons. Firstly, the possible singularity

structures are significantly more complicated than for second-order discrete systems given

by birational mappings. For these discrete systems, there are only a finite number of sin-
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gularities to check, which correspond to curves that are blown down under the iteration

mapping. For delay-differential equations, however, the presence of derivatives means that

there may be infinitely many different singularity behaviours corresponding to solutions

taking singular values with different multiplicities. Secondly, we do not have available to us

the geometric picture of singularity confinement for second-order discrete systems, namely

its relation with the iteration maps of the system lifting to isomorphisms between rational

surfaces.

For the purpose of isolating integrability candidates in the class of delay-differential equa-

tions, it has so far been sufficient to require only that the simplest singularities are confined,

but if singularity confinement is to lead to a geometric theory in this case, a more detailed

analysis is required. Taking the first steps in this direction is the aim of this chapter.

We consider the following three examples of delay-differential analogues of the Painlevé

equations

u(ū−
¯
u) = au− bu′, (5.1)

v2(v̄ −
¯
v) = pv + qv′, (5.2)

w̄w =
¯
w
(
λzw + αw′

)
(5.3)

where u, v and w are functions of the complex independent variable z, we take p, q, a, b, λ

to be complex parameters independent of z, and we denote up- and down-shifts by ū(z) =

u(z + 1),
¯
u(z) = u(z − 1) etc. The equation (5.1) was obtained by Quispel, Capel and Sa-

hadevan [QCS92] as a similarity reduction of the Kac-van Moerbeke differential-difference

equation, also known as the Manakov equation or Volterra lattice. They also showed that it

has a continuum limit to PI and that it exhibits some singularity confinement-type behaviour,

which will be recalled in Section 5.2. The equation (5.2) is a symmetry reduction of a known

integrable differential-difference modified Korteweg-de Vries equation, and extensions of

it have been studied by Halburd and Korhonen from the point of view of Nevanlinna the-

ory [HK17]. Further, it has a continuum limit to PI and may be obtained from Bäcklund

transformations of PIII [Ber17], or using singularity confinement tests adapted from those in

[TRGO99]. The third equation (5.3) was isolated as an integrability candidate by Ramani,

Grammaticos and Moreira [GRM93] using a kind of singularity confinement test (which

also recovered equation (5.1)), and also has a continuum limit to PI. We also note that other

integrability properties analogous to those of differential and discrete Painlevé equations
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have been studied in equations (5.1 - 5.3), for example the fact that they may be rewritten in

bilinear forms [Car11] and that degenerate cases admit elliptic function solutions [Ber17], in

parallel with the discrete case where autonomous degenerations of discrete Painlevé equa-

tions are Quispel-Roberts-Thompson (QRT) mappings [QRT88, QRT89], solved by elliptic

functions.

We remark that we are considering examples of so-called three-point delay differential equa-

tions, which are of the form

ū =
f1(u, u′, ...) + f2(u, u′, ...)

¯
u

f3(u, u′, ...) + f4(u, u′, ...)
¯
u
, (5.4)

where fi are polynomials in u and its derivatives. There are known integrable delay-

differential equations of other forms, for example the so-called bi-Riccati equations

[GRM93, Ber17, Ber18], but studies of singularity confinement in these more closely re-

sembles classical Painlevé analysis than birational geometry, and will not be discussed here.

The class of three-point equations is the one considered by Halburd and Korhonen through

the Nevanlinna theoretic approach [HK17], and fits into the family for which Viallet defined

algebraic entropy in the delay-differential setting [Via14].

There are known transformations between the equations we consider, which will be use-

ful later in the chapter. Firstly, we have the following relation between equation (5.1) and

equation (5.2), which may be easily detected given the well-known transformation between

the differential-difference systems that give these equations as similarity reductions, and is

proved by direct calculation:

Lemma 5.1.1. If v solves (5.2) with parameters p, q, then v =
¯
uu solves (5.1) with param-

eters a = 2p, b = −q.

Secondly, we have a transformation between equation (5.1) and equation (5.3), which

was pointed out in [GRM93]:

Lemma 5.1.2. If w solves (5.3) with parameters λ, α, then u = w̄/
¯
w solves (5.1) with

parameters a = 2λ, b = −α.

5.1.1 Outline of the chapter

We will begin our analysis working on the level of equations, without invoking geomet-

ric language. In Section 5.2 we recall previous observations of singularity confinement
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behaviour in the three equations, and extend them to include infinite families of confined

singularity patterns in each case. The proofs of these are deferred to Section 5.5. In Sec-

tion 5.3 we shift to the geometric setting, first recasting our equations as mappings between

jet spaces and defining ‘blow-down type’ singularities, and propose a notion of confinement

for them. Rephrased in these geometric terms, we use the results of Section 5.2 to show that

in the three examples, all such singularities are, in the sense of our definition, confined. We

conclude with a discussion of how the geometric framework and the techniques developed

for proving the singularity confinement property may be utilised and built upon in the study

of other examples, as well as some open questions that arise from our work.

5.2 Singularity analysis of delay-differential equations

We begin by recalling previous observations of singularity confinement phenomena in the

three examples we consider. Beginning with equation (5.2), the forward iteration, which

gives v̄ in terms of v, v′ and
¯
v, is given by

v̄ =
¯
v + p

1

v
+ q

v′

v2
, (5.5)

so if we take, as initial data, a pair of Laurent series expansions of v,
¯
v about z = z0, then

(5.5) and its upshifts determine all subsequent iterates v̄, ¯̄v, . . . as Laurent series about z0.

If we only wish to iterate a finite number of steps forward from generic initial data, we need

only finitely many coefficients. For example, we could begin by giving initial
¯
v, v as Taylor

expansions in ζ = z − z0 about some z = z0:

¯
v =

¯
a0 +

¯
a1ζ +

¯
a2ζ

2 + . . . , (5.6a)

v = a0 + a1ζ + a2ζ
2 + . . . . (5.6b)

If we assume that the iterates v̄(z) = v(z + 1), ¯̄v(z) = v(z + 2), . . . , v(k)(z) = v(z + k)

are all regular and nonzero at z0, it is clear from the form of the equation (5.5) that the value

v(z0 + k) depends only on the following coefficients from the expansions (5.6a-5.6b):

 ¯
a0

¯
a1 . . .

¯
ak−1

a0 a1 . . . ak−1 ak

 . (5.7)
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We will be iterating systems arbitrarily many times forward, so we will use this kind of

notation for the iterates, i.e. v(k)(z) = v(z + k), throughout the chapter. Further, the form

of the right-hand side of the forward iteration (5.5) ensures that if we start from
¯
v, v given

by Taylor series, the only way that a pole may develop is through some iterate having a zero

first. If while iterating, some iterate v develops a zero of order one, say at ζ = z − z0 = 0,

with

¯
v =

¯
a0 +

¯
a1ζ + . . . , (5.8a)

v = a1ζ + a2ζ
2 + . . . , (5.8b)

where a1 6= 0, then we have by direct calculation that

v̄ =
q

a1
ζ−2 +O(ζ−1), (5.9a)

¯̄v = −a1ζ
1 +O(ζ2), (5.9b)

¯̄̄v =

(
5
¯
a0 +

7p2

qa1
+

2pa2

a2
1

− 4qa2
2

a3
1

+
6qa3

a2
1

)
+O(ζ). (5.9c)

We summarise the observations above by saying that the equation (5.2) admits the singular-

ity pattern (
rg, 01,∞2, 01, rg

)
,

where rg indicates a regular iterate with generic coefficients. We note here that this be-

haviour is exceptional for the following reason. In the computation of ¯̄v here, it is natural

to expect a zero of order one, as this is what happens generically when v and v̄ are of order

ζ, ζ−2 respectively. However, while v̄, ¯̄v having orders ζ−2, ζ1 respectively would generi-

cally lead to ¯̄̄v having another pole of order 2, in this singularity pattern we note that two

terms have vanished as ¯̄̄v regains regularity. In the language of previous studies of singular-

ity confinement behaviour, the information lost when entering the singularity is recovered

in the iterate ¯̄̄v, in the form of the coefficient
¯
a0 from the initial data. Though this behaviour

has not, to our knowledge, been reported explicitly, we note that the equation (5.2) may be

obtained by singularity confinement tests along the lines of [GRM93, TRGO99].

We next consider equation (5.1), which was first observed in [QCS92] to exhibit the follow-
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ing singularity confinement behaviour. The forward iteration is given by

ū =
¯
u+ a− bu

′

u
, (5.10)

so again it is clear that the only way that a pole may develop while iterating from formal

Taylor series is following a zero. Suppose that while iterating, the solution u develops a

zero of order one at ζ = z − z0 = 0, so

¯
u =

¯
c0 +

¯
c1ζ + . . . , (5.11a)

u = c1ζ + c2ζ
2 + . . . , (5.11b)

where c1 6= 0. Then direct calculation shows that

u(1) = − b
ζ

+

(
a+

¯
c0 − b

c2

c1

)
+O(ζ), (5.12a)

u(2) =
b

ζ
+

(
2a+

¯
c0 − b

c2

c1

)
+O(ζ), (5.12b)

u(3) =

(
2a2

b
− ¯
c2

0

b
+

2c2
¯
c0

c1
− 3

¯
c1 +

2b
(
3c1c3 − 2c2

2

)
c2

1

− 2c1

)
ζ +O(ζ2), (5.12c)

u(4) = F (
¯
c0,

¯
c1,

¯
c2, c1, c2, c3, c4) +O(ζ), (5.12d)

where F is a known rational function of the generic initial data, which we omit for con-

ciseness. Again, this behaviour is exceptional as u(1), u(2) both having simple poles would

generically lead to u(3) also having a simple pole, but here two terms have vanished as u(3)

instead has a zero of order one, so equation (5.1) admits the singularity pattern

(
rg, 01,∞1,∞1, 01, rg

)
.

We next turn to equation (5.3), which was obtained in [GRM93] by singularity confinement

methods, though details were not given explicitly. The forward iteration mapping is given

by

w̄ =
¯
w

(
λz + α

w′

w

)
. (5.13)
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Say, while iterating, we arrive at a pair
¯̄
w,

¯
w given by expansions in ζ = z − z0 by

¯̄
w =

¯̄
c0 +

¯̄
c1ζ +

¯̄
c2ζ

2 + . . . , (5.14a)

¯
w =

¯
c0 +

¯
c1ζ +

¯
c2ζ

2 + . . . , (5.14b)

with

α
¯
c1 + λ(z0 − 1)

¯
c0 = 0, 2α

¯
c2 + λ

¯
c1(z0 − 1) 6= 0,

¯
c1 6= 0,

¯̄
c0 6= 0. (5.15)

This means that w will have a simple zero at z = z0, and by direct calculation we find the

following:

w =
λ
¯̄
c0(1− z0) (2α

¯
c2 + λ

¯
c1(z0 − 1))

α
¯
c1

ζ +O(ζ2), (5.16a)

w̄ =
α2

¯
c1

λ(1− z0)
ζ−1 +O(ζ0) (5.16b)

¯̄w =
λ
¯̄
c0(z0 − 1) (2α

¯
c2 + λ

¯
c1(z0 − 1))

¯
c1

+O(ζ1), (5.16c)

¯̄̄w =
G(

¯̄
c0,

¯̄
c1,

¯̄
c2,

¯
c1,

¯
c2,

¯
c3)

¯̄
c2

0 (2α
¯
c2 + λ

¯
c1(z0 − 1))2 +O(ζ1), (5.16d)

where G is a polynomial function of the generic initial data as well as z0. Again, this

behaviour is exceptional as a simple pole of w̄ with ¯̄w regular and nonzero would generically

lead to ¯̄̄w having another simple pole, whereas in this case a term has vanished and the iterate

¯̄̄w is regular. Again, we summarise this observation by saying that the equation (5.3) admits

the singularity pattern (
rg,

¯
ζ1

0 , 0
1,∞1, ¯̄ζ1

0 , rg
)
,

where
¯
ζ

(1)
0 indicates that the iterate

¯
w satisfies the condition for w to develop a simple zero,

namely α
¯
c1 + λ(z0 − 1)

¯
c0 = 0, 2α

¯
c2 + λ

¯
c1(z0 − 1) 6= 0, and ¯̄ζ1

0 indicates the iterate

¯̄w = ¯̄c0 + ¯̄c1ζ + ¯̄c2ζ
2 + . . . satisfies α¯̄c1 + λ(z0 + 2)¯̄c0 = 0.

5.2.1 Infinite families of singularity patterns

In the previous section, we outlined certain singularity patterns admitted by the equations

(5.1), (5.2) and (5.3) which involved zeroes of order one developing while iterating the

systems. We now extend these observations to higher order zeroes, and show that each

of the equations admits an infinite family of singularity patterns with similar confinement
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behaviour.

For equation (5.2), we have observed the singularity pattern
(
rg, 01,∞−2, 01, rg

)
, which

corresponds to v being regular and v having a zero of order one at z = z0. Similarly, if

v has a zero of order two, then we pass through the following sequence of orders, which

is generic until three terms vanish as v(5) becomes regular instead of a pole (with leading

coefficient depending on data from
¯
v):

¯
v = O(ζ0), v ∼ ζ2, v(1) ∼ ζ−3, v(2) ∼ ζ2, v(3) ∼ ζ−3, v(4) ∼ ζ2, v(5) = O(ζ0).

From above, we see that equation (5.2) admits the singularity pattern

(
rg, 02,∞3, 02,∞3, 02, rg

)
,

and because of the return to regularity and the iterate v(5) depending on the generic initial

data from
¯
v, the singularity is confined in a similar sense to that which we observed in the

case of a zero of order one. More generally, if v has a zero of order m > 1, and
¯
v is regular,

say v = cmζ
m + O(ζm+1), with cm 6= 0, and

¯
v = O(1), then it can be seen from the

equation (5.2) that

v(1) = −mq
cm

ζ−m−1 +O(ζ−m), (5.17a)

v(2) = −cm
m
ζm +O(ζm+1), (5.17b)

v(3) =
m(m− 1)q

cm
ζ−m−1 +O(ζ−m), (5.17c)

and more generally, it can be shown by induction that for k ≤ m,

v(2k) =
(−1)kk!∏k−1
i=0 (m− i)

cmζ
m +O(ζm+1), (5.18a)

v(2k+1) =
(−1)k

∏k
i=0(m− i)
k!

q

cm
ζ−m−1 +O(ζ−m). (5.18b)

What we deduce from this is that a singularity sequence beginning with
¯
v regular and v

with a zero order m will contain m+ 1 zeroes of order m alternating with m poles of order

m+ 1. We know that the coefficient of ζ−m−1 in the iterate v(2m+1) will vanish according

to the formulae (5.18), but it turns out that the entire singular part of the expansion vanishes,
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so regularity is regained at the iterate v(2m+1).

Theorem 5.2.1. For each integer m > 0, equation (5.2) admits the singularity pattern

(
rg, 0m,∞m+1, 0m,∞m+1, . . . ,∞m+1, 0m,∞m+1, 0m, rg

)
,

which includes m+ 1 zeroes of order m alternating with m poles of order m+ 1.

The proof of this theorem is provided in Section 5.5, along with those of similar results

for the equations (5.1) and (5.3):

Theorem 5.2.2. For each integer m > 0, equation (5.1) admits the singularity pattern

(
rg, 0m,∞1

−m,∞1
1,∞1

1−m, . . . ,∞1
k,∞1

k−m, . . . ,∞1
−1,∞1

m, 0
m, rg

)
,

which includes 2m simple poles with residues alternating between positive and negative

multiples of β, which we denote

∞1
j =

jβ

z − z0
+O(1).

Theorem 5.2.3. Equation (5.3) admits the singularity pattern

(
rg, ζ0(−1)m, 0m,∞1, 0m−1, . . . ,∞j , 0m−j , . . . ,∞m−1, 01,∞m, ζ0(2m)m, rg

)
,

where ζ0(−1)m indicates that the iterate
¯
w = w(−1) satisfies dk

dzk
(λz

¯
w + α

¯
w′) = 0 at

z = z0 for k = 0, ...,m− 1, and ζ0(2m)m indicates that the iterate w(2m) satisfies

dk

dzk

(
λ(z +m)w(2m) + αw(2m)′

)
= 0,

at z = z0 for k = 0, ...,m− 1.

5.3 Geometric description of singularity confinement
We now rephrase the results of the previous section geometrically, and propose a character-

isation of singularity confinement in the delay-differential setting in terms of the birational

geometry of jet spaces. Our guiding principle in developing the theory in parallel with the

discrete setting will be that of generic information loss, in particular the ways in which it-

erating a delay-differential equation may result in a departure from this, and in what sense
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it is recovered. To explain the motivations for this analogy, we first note that a birational

mapping between smooth projective algebraic surfaces is an isomorphism between Zariski

open subsets given by the complement of subvarieties that are blown down by either the

mapping or its inverse. Almost all curves are mapped bijectively to curves, and in this sense

no information loss occurs generically while iterating the corresponding discrete system.

Singularities of a second-order discrete system occuring when curves are blown down to

points may be interpreted as more information loss occurring than normal. The system

having the singularity confinement property means that, in such a case when iterating the

system results in more than the generic amount of information loss, we may compose the

mapping a finite number of times to recover the generic behaviour: an isomorphism from a

curve to a curve.

We will formulate a concept of generic information loss for our delay-differential equations.

In terms of this we will define singularity confinement as being able to, in the case when

iterating the system results in more than generic levels of information loss, compose the

iteration mapping of the system a finite number of times to recover the generic amount.

This concept of generic information loss has two elements: first is the amount of initial

data required generically to iterate the system forward a given number of times, which we

will phrase in Subsection 5.3.1 in terms of the orders of jet spaces on which the systems

give well-defined mappings. Second is the behaviour of subspaces under the these map-

pings in terms of their codimension, which will be used to describe phenomena analogous

to degrees of freedom being lost, which we define as ‘blow-down type’ singularities in Sub-

section 5.3.2. We then outline what it means for such a singularity to be confined, and

finally verify that this geometric description fits with our analysis of the three examples,

and that they confine all singularities in this sense.

5.3.1 Delay-differential equations as mapping between jet spaces

Similarly to how second-order discrete systems are described by birational mappings be-

tween algebraic surfaces, we will recast our delay-differential equations as mappings be-

tween jet spaces. We consider jets associated with the trivial bundle over C with fibre

P1 × P1. We use the same coordinate charts for P1 × P1 as in the discrete case, namely

(x, y), (X, y), (x, Y ), (X,Y ) where X = 1/x, Y = 1/y. The space Jrz0 of r-jets about z0

is the set of equivalence classes of local holomorphic sections about some z0 ∈ C under the

following equivalence relation. The sections σ1, σ2 define the same r-jet if, when written in
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coordinates, their derivatives at z0 coincide up to and including order r.

We will be always considering jets at z0, so we omit the subscript. We will use coordinates

for Jr induced by writing sections as expansions in our coordinates for P1 × P1. For ex-

ample, if a section about z0 is visible in the (x, y)-chart, it may be written in coordinates

as  x(z)

y(z)

 =

 x0 + x1ζ + x2ζ
2 + . . .

y0 + y1ζ + y2ζ
2 + . . .

 , (5.19)

where ζ = z−z0 as before, so we have one part of Jr covered by the chart with coordinates

 x0 x1 x2 . . . xr

y0 y1 y2 . . . yr

 , (5.20)

and Jr can be thought of as four copies of C2r+2 with coordinates being coefficients from

expansions of sections in the four charts for P1 × P1, with gluing determined by that of

P1 × P1 itself, namely X = 1/x, Y = 1/y.

Consider a three-point delay-differential equation of the form (5.4), with l being the highest

order of derivative that appears. Similarly to how the scalar difference equation (1.17) is

recast as a QRT mapping on P1 × P1, we let (x, y) = (u,
¯
u) and (x̄, ȳ) = (ū, u) given

by series expansions about z0, so we have a mapping on sections near z0, which in the

(x, y)-charts for both domain and target copies of P1 × P1 is written as:

 x(z)

y(z)

 7→
 x̄(z)

ȳ(z)

 ,

x̄ =
f1(x, x′, . . . , ∂lx/∂zl) + f2(x, x′, . . . , ∂lx/∂zl)y

f3(x, x′, . . . , ∂lx/∂zl) + f4(x, x′, . . . , ∂lx/∂zl)y
, ȳ = x.

(5.21)

We now introduce a space of jets on which we consider this, corresponding to generic initial

data. Consider a section written as a series expansion in one of the four coordinate charts

for P1 × P1, for example (5.19) in the (x, y)-chart. Denote the numerator and denominator

of the function giving x̄(z) in this chart by P (z), Q(z), so for example in the (x, y)-chart

we use (5.21) and consider

P = f1(x, x′, . . . , ∂lx/∂zl) + f2(x, x′, . . . , ∂lx/∂zl)y,

Q = f3(x, x′, . . . , ∂lx/∂zl) + f4(x, x′, . . . , ∂lx/∂zl)y.
(5.22)
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Substitute expansions giving (x(z), y(z)) into these, to obtain formal expansions of

P (z), Q(z) about z0, which we denote

P (z) = P0 + P1ζ + P2ζ
2 + . . . , Q(z) = Q0 +Q1ζ +Q2ζ

2 + . . . , (5.23)

where P0, Q0 are polynomials in x0, . . . , xl, y0 because of the highest order derivative ap-

pearing in the equation (or the equivalent for an expansion of a section in another coordi-

nate chart). Consider the rational function P0/Q0 on Jr+l, using the transition functions

between xi, Xi etc. being defined by the P1×P1 gluing as before, and denote its indetermi-

nacy locus (where the numerator and denominator simultaneously vanish) by I1. We then

have a well-defined map

ϕr : Jr+l\I1 → Jr. (5.24)

The reason we do not have to worry about indeterminacies of rational functions giving later

coefficients in the expansion of P/Q to obtain a well-defined map is the following: all of

the rational functions giving expansions of P/Q have denominator being a power of Q0.

Similarly, all rational functions giving coefficients in the expansion of Q/P are powers

of P0. Thus if Q0 = 0 but P0 6= 0, we get a well-defined expansion of Q/P , in which

none of the coefficients have indeterminacies (their denominators cannot vanish as P0 6= 0)

so we have a well-defined a section visible in the (X̄, ȳ)-chart. Similarly, if P0 = 0 but

Q0 6= 0, we get a well-defined expansion of Q/P , in which none of the coefficients have

indeterminacies (their denominators cannot vanish, as P0 6= 0).

Example 5.3.1. If we consider the mapping induced by equation (5.1) applied to a section

visible in the (x, y)-chart, written as an expansion (5.19), direct substitution yields

x̄0 =
ax0 − bx1 + x0y0

x0
, x̄1 =

bx2
1 − 2x0x2 + x2

0y1

x2
0

, . . .

ȳ0 = x0, ȳ1 = x1, . . .

(5.25)

so when x0 6= 0 we have a section visible in the (x̄, ȳ)-chart for the target bundle. Similarly,

if we have a section written in the (x, y)-chart as an expansion with coefficients Xi, Yi, we
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may use the chart (x̄, Ȳ ) and calculate

x̄0 =
aX0Y0 + bX1Y0 +X0

X0Y0
, x̄1 =

2bX2X0Y
2

0 − bX2
1Y

2
0 −X2

0Y1

X2
0Y

2
0

, . . .

Ȳ0 = X0, Ȳ1 = X1, . . .

(5.26)

so when X0Y0 6= 0 we have a section visible in the (x̄, Ȳ )-chart for the target bundle.

Calculating in the other charts, we find the subset I1 ⊂ Jr+1 is defined by

I1 = {(x0, x1) = (0, 0)} ∪ {(X0, X1) = (0, 0)}

∪ {(x0, Y0) = (0, 0)} ∪ {(X0, Y0) = (0, 0)} .
(5.27)

So we have, for each r ≥ 0, a map

ϕr : Jr+1\I1 → Jr. (5.28)

We note that the domain Jr+1 corresponds to the lowest order of jets to which the equation

(5.1) gives a well-defined map from Jr+1\I1 to Jr.

Returning to the general case, we also have, for each r ≥ 0, a map

ϕ(k)
r = ϕr ◦ ϕr+1 · · · ◦ ϕr+k−1 : Jr+kl\Ik → Jr, (5.29)

defined on the Zariski open subset of J (r+kl) where the numerators and denominators of the

rational functions giving leading coefficients of successive iterates do not simultaneously

vanish.

Example 5.3.2. To illustrate this in the case of equation (5.1) being iterated twice, we

obtain in the (x, y)-chart rational functions giving (¯̄x0, ¯̄y0) as

¯̄x0 =
a2x2

0 − abx1x0 + ax2
0y0 + ax3

0 + 2b2x2x0 − b2x2
1 − bx2

0y1 − bx1x
2
0 + x3

0y0

x0 (ax0 − bx1 + x0y0)
,

¯̄y0 =
ax0 − bx1 + x0y0

x0
.

(5.30)

Computing the indeterminacy loci of these rational functions in all charts and taking its
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union with I1, we obtain

I2 = {(x0, x1) = (0, 0)} ∪ {(X0, X1) = (0, 0)}

∪ {(x0, Y0) = (0, 0)} ∪ {(X0, Y0) = (0, 0)}

∪
{
ax0 − bx1 + x0y0 = bx2

1 − 2bx0x2 + x2
0y1 = 0

}
∪ {X0 = 0, X1 = −1/b} ∪ {Y0 = Y1 = 0} ,

(5.31)

and we have a well-defined map

ϕ(2)
r = ϕr ◦ ϕr+1 : Jr+2\I2 → Jr. (5.32)

We interpret this map ϕ(k)
r in (5.29) on the set specified above as the generic behaviour

of the system, and in particular the initial data that is required to iterate the system k times

in almost all cases. We now consider the parts of the jet spaces where the rational functions

we have considered above have indeterminacies. For example, if we consider a jet in the

charts coming from (X,Y ), (X̄, Ȳ ), if (X0, Y0) = (0, 0) then we have

X̄0 = 0, X̄1 =
Y1

1 + bY1
, X̄2 =

X1

(
Y2 − aY 2

1

)
− bX2Y

2
1

X1 (1 + bY1)2 , . . .

Ȳ0 = 0, Ȳ1 = X1, Ȳ2 = X2, . . .

(5.33)

and so on. By direct calculation using formal series expansions, it can be seen that as long

as X1 6= 0, 1 + bY1 6= 0, the jet in (X̄, Ȳ ) coordinates is determined up to the same order as

the one in (X,Y ) coordinates. Thus, on the part of Jr(r ≥ 1) where (X0, Y0) = (0, 0) but

X1 6= 0, 1+bY1 6= 0, the system induces a mapping Jr → Jr and we have less information

loss than in the generic case. Comparing this to the discrete case, we see a parallel to the

fact that indeterminacies of the iteration mappings are blown up to curves.

5.3.2 Blow-down type singularities

After considering a concept of generic information loss in terms of the amount of initial

data generically required to iterate k times, we turn to parts of jet spaces on which the sys-

tem induces maps with more information loss. We will refer to these as blow-down type

singularities, in parallel with the discrete case where information loss corresponds to curves

being blown down under iteration mappings.

Consider the mapping ϕr : Jr+1\I1 → Jr induced by equation (5.1) derived above. We
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will be interested in the behaviour under this mapping of subvarieties defined locally by

a finite number of algebraic constraints. For most codimension m subsets of this part of

Jr+1 (where r is chosen large enough such that it includes all the variables appearing in the

constraints defining the subset), the image under ϕr will be of codimension ≤ m in Jr.

For example, we can see a variety of behaviours of subspaces as follows. The subspace

defined in the (xi, yi)-chart by the single algebraic constraint yi = c, where i ≤ r + 1 and

c 6= 0 is some constant, is of codimension one, and its image under ϕr is of codimension

zero. Another subspace defined by xi = c, for some i ≤ r and c again a nonzero con-

stant, will have image under ϕr of codimension one. The codimension two subspace where

(X0, Y0) = (0, 0) with the rest of the coefficients Xi, Yi generic can be quickly seen from

(5.33) to have image again of codimension two.

Definition 5.3.3. A blow-down type singularity of a delay differential equation of the form

(5.4) is a codimension m subvariety of Jr+l , for some r ≥ 0, (locally defined as the

vanishing locus of a number of polynomials in coordinates introduced above) whose image

under the induced map ϕr is of codimension greater than m.

We emphasise again that this is in analogy with the discrete setting, where singularities

are defined in the sense of an increase in codimension, namely where curves are blown

down to points under the iteration mappings. Again we note that in the following examples,

r is taken large enough such that Jr+1 includes all variables appearing in the algebraic

constraints defining the blow-down singularities, and all other variables are generic.

Example 5.3.4. The equation (5.1) has a blow-down singularity in Jr+1\I1 given in coor-

dinates by x0 = 0 which is of codimension one (with all other xi, yi generic) but has image

of codimension three in Jr, given in coordinates as follows:

{x0 = 0} →
{
X̄0 = 0, X̄1 = −1/b, ȳ0 = 0

}
codim 1 → codim 3

Similarly, we see that the development of double and triple zeroes correspond to the follow-
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ing blow-down singularities:

{x0 = 0, x1 = 0} →

 X̄0 = 0, X̄1 = −1/2b,

ȳ0 = 0, ȳ1 = 0


codim 2 → codim 4

{x0 = 0, x1 = 0, x2 = 0} →

 X̄0 = 0, X̄1 = −1/3b,

ȳ0 = 0, ȳ1 = 0, ȳ2 = 0


codim 3 → codim 5

and more generally the development of a zero of order m corresponds to the following

blow-down singularity:

{xi = 0, ∀i = 0, . . . ,m− 1} →

 X̄0 = 0, X̄1 = −1/mb,

ȳi = 0, ∀i = 0, . . . ,m− 1


codimm → codim (m+ 2)

Example 5.3.5. The equation (5.2) has a blow-down singularity given in coordinates by

x0 = 0 which is of codimension one (with all other xi, yi generic) but has image of codi-

mension five given in coordinates as follows:

{x0 = 0} →
{
X̄0 = 0, X̄1 = 0, ȳ0 = 0, ȳ1 = qX̄2, pȳ1 = −q2X̄3

}
codim 1 → codim 5

We also have a blow-down singularity corresponding to the development of a double zero

{x0 = 0, x1 = 0} →


X̄0 = 0, X̄1 = 0, X̄2 = 0, ȳ0 = 0, ȳ1 = 0

ȳ2 − 2qX̄3 = 0, ȳ3 − 2pX̄3 − 4qX̄4 = 0,

p2X̄2
3 + 2pqX̄3X̄4 + 2q2X̄2

4 − 2q2X̄3X̄5 = 0


codim 2 → codim 8

and more generally the development of a zero of order m corresponds to the following
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blow-down singularity:

{xi = 0, ∀i = 0, . . . ,m− 1} →



X̄i = 0 ∀i = 0, . . . ,m,

ȳi = 0, ∀i = 0, . . . ,m− 1

Fi(X̄m+1, X̄m+2, . . . , ȳm, ȳm+1, . . . ) = 0

∀i = m+ 1, . . . , 2m+ 1


codimm → codim (3m+ 2)

Here Fi are polynomial in their variables that givem+1 independent algebraic constraints,

which may be identified by substituting series expansions for x(z), y(z) and noting that

X̄2m+2 is the first coefficient in which any yi appears.

Example 5.3.6. The equation (5.3) has a blow-down singularity in (
¯
xi,

¯
yj coordinates)

corresponding to x(z) developing a zero of order one. This is given by

{(z0 − 1)λ
¯
x0 + α

¯
x1 = 0} → {x0 = 0, (z0 − 1)λy0 + αy1 = 0}

codim 1 → codim 2

and more generally the development of a zero of orderm corresponds to the following blow-

down singularity, which for conciseness we write in terms of derivatives of the sections, as

opposed to explicitly in terms of coefficients:

 di

dzi
(λz

¯
x(z) + α

¯
x′(z)) |z=z0 = 0

∀i = 0, . . . ,m− 1

 →


xi = 0 ∀i = 0, . . . ,m− 1

di

dzi
|z=z0 (λzy(z) + αy′(z)) = 0

∀i = 0, . . . ,m− 1


codimm → codim 2m

5.3.3 Singularity confinement in equations (1.1-1.3)

We now formulate a geometric description of the confinement type behaviour we observed

in our three examples. Again, the analogy with the discrete case is that if, when iterating the

system, we arrive at a blow-down type singularity we only need to iterate a finite number of

times further to recover the generic level of information loss, both in terms of orders of jet

spaces between which the system induces maps, and the behaviour of the singularity under

these in terms of codimension.
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Definition 5.3.7. Consider a three-point delay differential equation of the form (5.4) with

iteration mappings ϕr, which has a blow-down type singularity Bm of codimension m. We

say the singularity Bm is confined if there exists some k > 0 such that iterating the system

k times induces a map from Bm ⊂ Jr+kl whose image is of codimension ≤ m in Jr.

We note that this definition captures both the recovery from the increase in codi-

mension of Bm as well as the amount of initial data required to iterate k times generi-

cally. Take Bm as a subset of the same order jet space Jr+kl as for the generic behaviour

ϕ
(k)
r : Jr+kl\Ik → Jr. We consider accessible blow-down singularities: those that may

arise when iterating the system from regular nonzero initial data. For the three equations we

consider, we first describe the set of all such singularities and then use our results concern-

ing infinite families of singularity patterns to deduce that they are all confined in the above

sense.

5.3.3.1 Equation (5.1)

Lemma 5.3.8. The only accessible blow-down type singularities of equation (5.1) are

Bm = {xi = 0 ∀i = 0, . . . ,m− 1} ,

with all other coefficients generic, so in particular we assume xm 6= 0 in Bm.

Proof. We will first show that the only blow-down singularities visible in the xi, yj chart

are contained in {x0 = 0}. Suppose B ⊂ Jr+1 is of codimension m, so dimension

d = 2(r + 1) − m, defined locally by F1 = · · · = Fl = 0, where Fi are polynomial

in x0, . . . , xm, y0, . . . , ym, and that x0 6= 0 on B. Then near p ∈ B (at which B is nonsin-

gular) given in coordinates by p : (xi, yj) = (x∗i , y
∗
j ), we have a parametrisation of B by d

free parameters. That is, there exist i1, . . . , ip, j1, . . . jd−p ⊂ {0, . . . , r + 1} such that we

have a parametrisation 

s1

...

sp

t1
...

td−p


7→

xi1 = x∗i1 + s1

...

xip = x∗ip + sp

yj1 = y∗j1 + t1
...

yjd−p
= y∗jd−p

+ td−p

(5.34)
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with the rest of the variables xi, yj given by analytic functions of s1, . . . , sp, t1, . . . , td−p:

xi = x∗i + Fi(s1, . . . , sp, t1, . . . , td−p),

yj = y∗j +Gj(s1, . . . , sp, t1, . . . , td−p),
(5.35)

for i 6∈ {i1, . . . , ip}, j 6∈ {j1, . . . , jd−p}, with Fi, Gj anaytic and zero when all si, tj are

zero, and the Jacobian of this parametrisation at p is of rank d. We now show, using this

parametrisation, that the image of B in Jr under ϕr is of dimension ≥ 2r −m as long as

x0 6= 0 on B. In coordinates, the mapping is of the form

ȳn = xn, x̄n = yn −
Pn(x0, . . . , xn+1)

xn+1
0

. (5.36)

Here Pn is a homogeneous polynomial of degree n + 1, which follows from the repeated

application of the quotient rule in computing expressions for derivatives of x̄ = y+ ax−bx′
x .

We obtain a local parametrisation of the image of B:

ȳi1 = x∗i1 + s1

...

ȳip = x∗ip + sp

x̄j1 = y∗j1 + t1 +H1

...

x̄jd−p
= y∗jd−p

+ td−p +Hd−p

(5.37)

where H1, . . . Hd−p are analytic in s1, . . . , sp (as x0 6= 0 on B), with the rest of the coordi-

nates ȳi, x̄j being analytic functions of the parameters. The Jacobian of this parametrisation

can be seen to have rank at least d− 2, with linearly independent columns corresponding to

partial derivatives with respect to s1, . . . sp, t1, . . . , td−p−1 (td−p will not contribute to the

rank if d − p = r + 1, i.e. if yr+1 is one of the free variables in the parametrisation of B).

The possibility that the image is of codimension less than m has already been illustrated

at the start of subsection 3.2, where constraints on yj may not induce constraints on the

image.

Similarly, if we consider a subvariety of codimension m in the chart (X, y) away from

{X0 = 0}, we see that its image under ϕr must be again of codimension≤ m. This is done

in exactly the same way as above, noting that the mapping in charts is of the form

Ȳn = Xn, x̄n = yn −
Pn(X0, . . . , Xn+1)

Xn+1
0

, (5.38)
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where again Pn is a homogeneous polynomial of degree n + 1. Regarding the part of the

jet space with X0 = 0, we remark that X0 = 0 with y0 6= 0 is not an accessible singularity,

as for a pole to develop while iterating, it must follow a zero. Further, the only parts of

{X0 = 0, y0 = 0} accessible from regular and nonzero initial data are those coming from

one of the blow-down singularitiesBm. Similar calculations in the charts (x, Y ) and (X,Y )

show that it suffices to consider blow-down singularities visible in the (x, y)-chart where at

least x0 = 0. If we take x(z) = xmζ
m+xm+1ζ

m+1+. . . form > 0 and y = y0+y1ζ+. . . ,

then direct calculation shows that we have

X̄0 = 0, X̄1 = − 1

bm
, X̄2 =

bxm+1 − axm
b2m2xm

− y0

b2m2
, . . . (5.39)

and more generally that

X̄n =
Pn(xm, . . . , xm+n, y0, . . . , yn−1)

bnmnxn−1
m

− yn−2

b2m2
,

ȳn = 0 for n < m, ȳn = xm for n ≥ m,
(5.40)

where Pn is polynomial in its arguments. By again considering parametrisations and their

Jacobians, it is straightforward to show that we cannot have blow-down singularities away

from xm = 0. Applying this argument inductively completes the proof that the only acces-

sible blow-down singularities are as claimed.

We now show how the singularity patterns pointed out in Subsection 5.2.1 correspond

to confinement of blow-down singularities for equation (5.1).

Example 5.3.9. The singularity B1, which corresponds to the beginning of the singularity

pattern

(rg, 01,∞1,∞1, 01, rg),

is confined after five iterations. We calculate as we did in Section 5.2 but keep track of

orders of jets and codimensions to find that composing the iteration on sections gives maps
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as follows:

B1 ⊂ Jr+5 codim(B1) = 1 (x(0), y(0)) = (01, rg)

ϕ(1) : B1 → Jr+5 codim(ϕ(1)(B1)) = 3 (x(1), y(1)) = (∞1, 01)

ϕ(2) : B1 → Jr+5 codim(ϕ(2)(B1)) = 5 (x(2), y(2)) = (∞1,∞1)

ϕ(3) : B1 → Jr+3 codim(ϕ(3)(B1)) = 3 (x(3), y(3)) = (01,∞1)

ϕ(4) : B1 → Jr+1 codim(ϕ(4)(B1)) = 1 (x(4), y(4)) = (rg, 01)

ϕ(5) : B1 → Jr codim(ϕ(5)(B1)) = 0 (x(5), y(5)) = (rg, rg)

For each iteration, we have indicated the order of jet space to which we have well-defined

mappings from B1, as well as codimensions of the images of B1 and the corresponding

parts of the singularity pattern. We note that the exceptional behaviour we observed in the

singularity pattern, namely that when computing x(3), three terms vanished as it developed

a zero rather than a pole, is reflected in the codimension falling from 5 to 3.

More generally, if we take the blow-down singularities Bm as in Lemma 5.3.8 as sub-

sets of J2m+3+r with the rest of the coefficients generic, from Theorem 5.2.2 we see that

iterating the system (5.1) induces a map ϕ(2m+3) : Bm → Jr, where the image of Bm is a

jet visible in the (x, y)-chart. To see that this image is of codimension zero, we must make

some observations of how the initial data from the section (x(0), y(0)) enters into the subse-

quent iterates, and in particular how it is recovered in (x(2m+3), y(2m+3)). This will require

detailed but straightforward analysis of the mapping on jets in three cases, corresponding to

different parts of the singularity pattern. These are firstly when the first pole develops and

how the coefficients from (x(0), y(0)) enter into X(1), X(2), secondly, how the initial data

is propagated through the sequence of simple poles X(1), . . . , X(2m), then how it reenters

x(2m+2), x(2m+3) after the zero develops at x(2m+1). The key technique for our analysis

here is essentially identifying and counting free variables, which we illustrate in detail in

this example.

We first consider the map from (x(0), y(0)) to (X(1), y(1)) corresponding to the develop-

ment of the first simple pole in the sequence. Here we omit the superscripts for conciseness,

working with the mapping in the charts (x, y) and (X̄, ȳ). Beginning with initial data cor-

responding to Bm, namely sections in the (x, y)-chart with x0 = x1 = . . . xm−1 = 0, with
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the rest of the coefficients xi, yj generic, by direct calculation we have

X̄0 = 0, X̄1 = − 1

mb
, X̄n = − yn−2

m2b2
+
Pn(xm, . . . , xm+n−1, y0, . . . , yn−3)

xn−1
m

,

for n ≥ 2

ȳ0 = · · · = ȳm−1 = 0, ȳn = xn,

for n ≥ m,

where Pn is polynomial in its arguments. From this, we see that the coefficients X̄i≥2, ȳj≥m

are algebraically independent functions of the initial data, which follows from the way in

which the free variable yn−2 (n ≥ 2) appears linearly in X̄n but not at all in X̄n−1 and so

on. In particular we have the image of Bm under a single iteration being of codimension

m + 2, as noted in Example 5.3.4. Similarly, we see that the next iterate is obtained from

X̄i, ȳj above as

¯̄X0 = 0, ¯̄X1 =
1

b
, ¯̄Xj = Pj(X̄0, . . . , X̄j), for 2 ≤ j ≤ m+ 1,

¯̄Xn = − ȳn−2

b2
+Qn(X̄0, . . . , X̄n, ȳm . . . ȳn−3), for n ≥ m+ 2,

¯̄Y0 = 0, ¯̄Y1 = − 1

mb
, ¯̄Yn = X̄n, for n ≥ 2.

Here Pj is again polynomial (linear in X̄j) and Qn is polynomial in its arguments. From

this, we see that the image ofBm is of codimensionm+4, with ¯̄Xi,
¯̄Yj having the following

dependence on the initial data xi, yj :

¯̄X0 = 0, ¯̄X1 =
1

b
, ¯̄Xn = Fn(y0, . . . , yn−2, xm, . . . , xm+n−1) for n ≥ m+ 2,

¯̄Y0 = 0, ¯̄Y1 = − 1

mb
, ¯̄Yn = Gn(y0, . . . , yn−2, xm, . . . , xm+n−1) for n ≥ m+ 2,

where, importantly, Fn is linear in yn−2 with constant coefficient, and also linear in xm+n−1

with coefficient being a constant multiple of 1/xm.

We now consider the iteratesX(3), . . . , X(2m), which correspond to simple poles, and show

that we have the same kind of dependence of coefficients on the initial data. Building on our

calculation (5.33) in the charts (X,Y ), (X̄, Ȳ ), we see that sections with (X0, Y0) = (0, 0)
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have images under the iteration mapping given by

X̄0 = 0, X̄1 =
Y1

1 + bY1
,

X̄n =
Yn

(1 + bY1)2
+
Pn(X1, . . . , Xn, Y1, . . . Yn−1)

Xn−1
1 (1 + bY1)n

,

Ȳ0 = 0, Ȳ1 = X1,

Ȳn = Xn, for n ≥ 2,

(5.41)

where Pn is polynomial in its arguments, and we note that these expansions are valid for de-

termining all iterates (X(2), Y (2)), . . . , (X(2m), Y (2m)), as we have X(k)
1 6= 0, 1 + bY

(k)
1 6=

0, for k = 0, . . . , 2m − 1, which we know from our explicit expressions of the residues of

the simple poles in the singularity pattern, given in Theorem 5.2.2 . Iterating through this

sequence of simple poles, we have well-defined maps J2m+3+r\ {X1(1 + bY1) = 0} →

J2m+3+r, and a simple calculation using the Jacobian as in the proof of Lemma 5.3.8 shows

that the image of Bm cannot change codimension in J2m+3+r under this sequence of maps,

so we have the images of Bm under ϕ(2), . . . , ϕ(2m) are all of codimension m+ 4.

Further, from (5.41) and our observations of ( ¯̄X, ¯̄Y ) we see that for k = 2, . . . , 2m, the co-

efficients X(k)
n , Y

(k)
n have the same kind of dependence on the initial data, and in particular

the last iterate before the zero develops is of the form

X
(2m)
0 = 0, X

(2m)
1 =

1

mb
,

X(2m)
n = F (2m)

n (y0, . . . , yn−2, xm, . . . , xm+n−1) for n ≥ m+ 2,

Y
(2m)

0 = 0, Y
(2m)

1 = −1

b
,

Y (2m)
n = G(2m)

n (y0, . . . , yn−2, xm, . . . , xm+n−1) for n ≥ m+ 2,

(5.42)

where again F (2m)
n , G

(2m)
n are linear in yn−2 with constant coefficient, and also linear in

xm+n−1 with coefficient being a constant multiple of 1/xm.

We now consider the final step, when the map (X(2m), Y (2m)) 7→ (x(2m+1), Y (2m+1))

shows a drop in codimension of the image of Bm, with the development of a zero of order

m. Omiting the superscripts for conciseness and writing

(X(2m), Y (2m)) = (X0 +X1ζ + . . . , Y0 + Y1ζ + . . . ), (5.43)
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we know that the coefficients for the image of Bm under the iterations up to this point in

the singularity pattern must satisfy at least

Y0 = 0, Y1 = −b−1, X0 = 0, X1 = (mb)−1. (5.44)

Similarly writing (x(2m+1), Y (2m+1)) = (x̄0 + x̄1ζ + . . . , Ȳ0 + Ȳ1ζ + . . . ), we see the

mapping on coefficients from jets satisfying (5.44) gives

x̄0 = 0, x̄1 = a+ b2mX2 − b2Y2,

x̄2 = −b2
(
bm2X2

2 + bY 2
2 − 2mX3 + Y3

)
,

x̄n = b2(nmXn+1 − Yn+1) + Pn(X2, . . . , Xn, Y2, . . . , Yn), for n ≥ 1,

Ȳ0 = 0, Ȳ1 =
1

mb
, Ȳj = Xj , for j ≥ 2,

(5.45)

where we have again used Pn to denote a polynomial in its arguments. We know from The-

orem 5.2.2 that if (X(2m), Y (2m)) are obtained by iterating from Bm, then the coefficients

Xi, Yj must satisfy the algebraic conditions for x̄0, . . . , x̄m−1 given by (5.45) to all vanish,

and we know exactly what relations must exist between the coefficients (X
(2m)
i , Y

(2m)
j ),

which have evolved through the singularity pattern from those defining Bm. Further, from

the dependence ofX(2m)
i , Y

(2m)
j on the initial data, and the way in whichX(2m)

i , Y
(2m)
j en-

ter into x(2m+1)
i , Y

(2m+1)
j according to (5.45), we see that the image of Bm under ϕ(2m+1)

is of codimension m+ 3 in the jet space corresponding to (x(2m+1), Y (2m+1)). Finally, an-

other calculation on the exact same lines shows that after one more step, we have the image

of Bm under ϕ(2m+2) being of codimension zero.

5.3.3.2 Equation (1.2)

The analysis in this case proceeds in exactly the same way as the previous one, so we

omit details for conciseness. In particular, the following may be proved using the same

techniques and approach as for Lemma 5.3.8:

Lemma 5.3.10. The only accessible blow-down type singularities of equation (5.1) are

Bm = {xi = 0 ∀i = 0, . . . ,m− 1} ,

with all other coefficients generic.

We may also use the same techniques to examine the behaviour of blow-down singu-
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larities in terms of codimension, beginning with that associated with a simple zero:

Example 5.3.11. The singularityB1 of equation (5.2), which corresponds to the start of the

singularity pattern

(rg, 01,∞2, 01, rg),

is confined after four iterations, with the following behaviour under compositions of the

iteration maps:

B1 ⊂ Jr+4 codim(B1) = 1 (x(0), y(0)) = (01, rg)

ϕ(1) : B1 → Jr+4 codim(ϕ(1)(B1)) = 5 (x(1), y(1)) = (∞2, 01)

ϕ(2) : B1 → Jr+4 codim(ϕ(2)(B1)) = 5 (x(2), y(2)) = (01,∞2)

ϕ(3) : B1 → Jr+1 codim(ϕ(3)(B1)) = 1 (x(3), y(3)) = (rg, 01)

ϕ(4) : B1 → Jr codim(ϕ(4)(B1)) = 0 (x(4), y(4)) = (rg, rg)

We note here again that the drop in codimension occurs when two terms vanish in the

expansion for x(3) as it regains regularity as opposed to having a double pole.

Again, considering the blow-down singularities Bm from Lemma 5.3.10 as subsets of

J2m+2+r, Theorem 5.2.1 and tracing the dependence on initial data of the iterates through

the sequence using exactly the same techniques as in the previous example, we see that we

have ϕ(2m+2) : Bm → Jr under which the image of Bm is of codimension zero, so all

accessible blow-down singularities of equation (5.2) are confined.

5.3.3.3 Equation (1.3)

In this case we begin with an example, as the blow-down singularities for equation (5.3)

occur not after x develops a zero at z0, but under the mapping applied to the jets in
¯
x,

¯
y

coordinates satisfying the condition for a zero to develop.

Example 5.3.12. The condition on (x, y) for a simple zero to develop while iterating equa-

tion (5.3), namely

B1 = {α
¯
x1 + λ(z0 − 1)

¯
x0 = 0} ,

with the rest of the coefficients generic, corresponds to the start of the singularity pattern

which we denoted in Section 5.2 by

(
rg,

¯
ζ1

0 , 0
1,∞1, ¯̄ζ1

0 , rg
)
.
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We observe a jump in codimension not from (x(0), y(0)) to (x(1), y(1)), but one step earlier,

and we observe the following behaviour under compositions of the iteration maps:

B1 ⊂ Jr+5 codim(B1) = 1 (x(−1), y(−1)) = (
¯
ζ1

0 , rg)

ϕ(1) : B1 → Jr+4 codim(ϕ(1)(B1)) = 2 (x(0), y(0)) = (01,
¯
ζ1

0 )

ϕ(2) : B1 → Jr+4 codim(ϕ(2)(B1)) = 2 (x(1), y(1)) = (∞1, 01)

ϕ(3) : B1 → Jr+3 codim(ϕ(3)(B1)) = 2 (x(2), y(2)) = (¯̄ζ1
0 ,∞1)

ϕ(4) : B1 → Jr+1 codim(ϕ(4)(B1)) = 1 (x(3), y(3)) = (rg, ¯̄ζ1
0 )

ϕ(5) : B1 → Jr codim(ϕ(5)(B1)) = 0 (x(4), y(4)) = (rg, rg)

We note here again that a drop in codimension occurs when x(3) regains regularity as op-

posed to a simple zero.

Again by the same approach, the following may be proved by local calculations in

charts:

Lemma 5.3.13. The only accessible blow-down type singularities of equation (5.3) are

Bm =

{
di

dzi
(
λz

¯
x(z) + α

¯
x′(z)

)∣∣
z=z0

= 0, ∀i = 0, . . . ,m− 1

}
,

with all other coefficients generic.

In the same way as the other two examples, we see from Theorem 5.2.3 that for regard-

ing Bm as a subset of J (2m+2), iterating the system gives a map ϕ(2m+3) : J (2m+3+r) →

J (r), under which the image of Bm is of codimension zero.

5.4 Conclusions
We now summarise our work in this chapter and discuss questions that follow it naturally,

again organised into two parts: firstly singularity analysis on the level of equations and sec-

ondly its geometric interpretation. On this first level, we have significantly extended pre-

vious studies of delay Painlevé equations and discovered new confinement type behaviour,

which we believe is interesting in its own right. In the process we have developed techniques

for the analysis of singularity patterns of arbitrary length and proving confinement, which

we hope will be useful in tackling one of the main difficulties in the singularity analysis of

delay-differential equations. It would be interesting to adapt our methods to other integrable
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delay-differential equations, for example extensions of the examples considered in this pa-

per such as the families generalising equation (5.2) isolated by Halburd and Korhonen by

imposing Nevanlinna-theoretic integrability criteria [HK17]. Though preliminary calcula-

tions show that these equations admit some of the same confined singularity patterns as

equation (5.2) (namely those associated with single, double and triple zeroes) it is a natural

next step to determine whether these admit the same infinite families and whether this be-

haviour fits into our geometric framework. Further, the complete description of singularity

patterns associated with zeroes has the potential to allow methods developed by Halburd

[Hal17] for computing degree growth in systems from singularity analysis to be adapted for

application to our three examples.

Another question that arises from our work on the level of equations relates to the use of

singularity analysis techniques to isolate integrability candidates. The fact that each of these

three examples may be obtained by requiring confinement of only the simplest singularity

in the family associated with zeroes of different orders prompts the question of whether and

how this could ensure confinement of all singularities in the family. Further, there may be

applications of our results to the search for elliptic function solutions of degenerate cases of

delay Painlevé equations. For example, the a = 0 and p = 0 cases of equations (5.1) and

(5.2) respectively are known to admit elliptic function solutions [Ber17]. Degree 2 elliptic

function solutions were identified with the help of singularity analysis, and in particular that

these degenerate cases admit the singularity patterns associated with simple zeroes outlined

in Section 5.2. These patterns are compatible with elliptic function solutions in the sense

that the numbers of poles and zeroes in a pattern are equal (counted with multiplicity), and

also that the residues of poles in the sequence sum to zero. We note that our proofs of

the infinite families of singularity patterns are also valid for the degenerate cases, and we

observe the same kind of compatibility with elliptic function solutions in all of them, so it

would be interesting to determine whether they may be used to isolate higher degree elliptic

function solutions.

The other aim of this work was to initiate the geometric study of delay Painlevé equations.

The possibility of a geometric framework for Painlevé equations in the delay-differential

class is an exciting prospect not only for the general theory of Painlevé equations, but for

widening the range of equations whose integrability can be exploited in applications. Delay-

differential equations of the kind we consider arise in a range of fields of applied mathe-



5.5. Proofs of infinite families of singularity patterns 163

matics, most notably in mathematical biology, for example as equations for steady states of

systems of partial differential equations with a spatial delay [FBM19]. We have put forward

a geometric description of singularity confinement in these three examples, and we hope to

have worked in convincing parallel with the discrete case, and in particular captured in our

description the exceptional nature of these equations in terms of the recovery of initial data

when a singularity is confined. By no means, however, is this geometric framework com-

plete or definitive, and we hope that our ideas are refined and built upon through singularity

analysis in more examples.

5.5 Proofs of infinite families of singularity patterns

We now give proofs of the results of Subsection 5.2.1 relating to infinite families of singu-

larity patterns.

5.5.1 Proof of Theorem 2.2

For equation (5.1), our strategy is to consider a singularity pattern beginning with (rg, 0m),

then derive and analyse recurrences for the coefficients in the expansions of the next (2m+

1) iterates, to deduce that the singularity pattern is as claimed.

Because the equation (5.1) is autonomous we can take without loss of generality the zero of

order m to be at the origin, and start with the formal expansions

¯
u =

∞∑
j=0

¯
ujz

j , (5.46a)

u =
∞∑
j=m

ujz
j , um 6= 0. (5.46b)

Inserting these into the equation, we immediately see that ū has a simple pole:

ū = −mβ
z

+O(1). (5.47)

The iterates of interest to us are u = u(0), ū = u(1), u(2), . . . , u(2m), u(2m+1). By inspection

of the terms on the right-hand side of the forward iteration (5.10), these will be either regular

or poles of order at most one, so we introduce the notation

u(i) =
∞∑

n=−1

u(i)
n z

n, (5.48)
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for i = 0, . . . , 2m+ 1, where any number of the u(i)
n may be zero.

By deriving recurrences for the coefficients u(i)
n , we will show firstly that u(i)

−1 6= 0 for

i = 1, . . . , 2m, then that u(2m+1)
−1 = u

(2m+1)
0 = · · · = u

(2m+1)
m−1 = 0, from which we will

deduce that u(2m+1) = O(zm), and in particular has a zero of order m if the rest of the

initial data is generic.

It will be helpful to introduce some notation to deal with the logarithmic derivative u′/u in

the forward iteration map.

Lemma 5.5.1. Let r be a nonzero integer. If u =
∑∞

j=r ujz
j with ur nonzero, then

u′

u
=

∞∑
n=−1

Unz
n, (5.49)

where the coefficients Un are given by U−1 = r, U0 = ur+1/ur, and so on according to

the recurrence

Un =
1

ur

(n+ 1)ur+n+1 −
n∑
j=1

ur+jUn−j

 . (5.50)

We first deduce from the recurrence that following the zero of order m, the next 2m

iterates have simple poles:

Proposition 5.5.2. The iterates u(i) have simple poles at z = 0 for all i = 1, . . . , 2m, and

we have

u
(2k)
−1 = kβ, for k = 1, . . . ,m, (5.51a)

u
(2k+1)
−1 = (k −m)β for k = 0, . . . ,m. (5.51b)

Proof. We already have that u(0)
−1 = 0 and u(1)

−1 = −mβ. We then insert the expansions

(5.48) for the iterates u(i) into the relevant upshifts of the equation, making use of Lemma

5.5.1 with r = −1, which gives

u
(i+1)
−1 = u

(i−1)
−1 + β, (5.52)

for all i such that u(i) has a simple pole. Iterating this from i = 1 from the initial values

for u(0)
−1, u

(1)
−1, we see that u(i) have simple poles for all i = 1, . . . , 2m, and we obtain the

formulae (5.51).
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It will now be helpful to introduce the following notation for the iterates:

u(2k) = f (k) =

∞∑
n=−1

f (k)
n zn, f (k)

n = u(2k)
n ,

u(2k+1) = g(k) =
∞∑

n=−1

g(k)
n zn, g(k)

n = u(2k+1)
n ,

(5.53)

for k = 0, . . . ,m. As we now know that u(1), . . . , u(2m) have simple poles at z = 0, we

use Lemma 5.5.1 to write the logarithmic derivatives of f (k), g(k−1), for k = 1, . . .m as

f (k)′

f (k)
=

∞∑
n=−1

F (k)
n zn,

g(k)′

g(k)
=

∞∑
n=−1

G(k)
n zn. (5.54)

Further, we have from (5.51) that for k = 0, . . . ,m that F (k)
−1 = kβ, G

(k)
−1 = (m− k)β, so

we have the following recursive formulae for F (k)
n , G

(k)
n :

F (k)
n =

1

kβ

(n+ 1)f (k)
n −

n∑
j=1

f
(k)
j−1F

(k)
n−j

 , (5.55a)

G(k)
n =

1

(k −m)β

(n+ 1)g(k)
n −

n∑
j=1

g
(k)
j−1G

(k)
n−j

 , (5.55b)

valid for all k such that f (k), g(k) have simple poles. Using this notation, the forward itera-

tion then leads to the recurrences,

f
(k)
0 = f

(k−1)
0 + α− βG(k−1)

0 , (5.56a)

g
(k)
0 = g

(k−1)
0 + α− βF (k)

0 , (5.56b)

and

f (k)
n = f (k−1)

n − βG(k−1)
n , (5.57a)

g(k)
n = g(k−1)

n − βF (k)
n , (5.57b)

for n ≥ 1, and k = 1, . . . ,m. Using (5.55) with n = 0, we see that the recurrences (5.56)
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are a linear system of difference equations for f (k)
0 , g

(k)
0 :

f
(k)
0 = f

(k−1)
0 + α− 1

(k − 1−m)
g

(k−1)
0 , (5.58a)

g
(k)
0 = g

(k−1)
0 + α− 1

k
f

(k)
0 , (5.58b)

subject to the initial conditions f (0)
0 = 0 and g(0)

0 = u
(1)
0 = α +

¯
u0 − βu1/u0 determined

by the initial data
¯
u, u. The unique solution of (5.58) subject to these initial conditions is

given by

f
(k)
0 = k(α+ C), (5.59a)

g
(k)
0 = (m− k)C, (5.59b)

whereC = u
(1)
0 /m. Similarly, after using the formula (5.55), the recurrences (5.57) become

f (k)
n = f (k−1)

n − 1

(k − 1−m)

(n+ 1)g(k−1)
n −

n∑
j=1

g
(k−1)
j−1 G

(k−1)
n−j

 , (5.60a)

g(k)
n = g(k−1)

n − 1

k

(n+ 1)f (k)
n −

n∑
j=1

f
(k)
j−1F

(k)
n−j

 , (5.60b)

subject to the initial conditions f (0)
n = 0 for n = 0, . . . ,m− 1, and g(0)

n fixed by the initial

data
¯
u, u. Given the solution (5.59), the n = 1 case is then a linear system of recurrences in

k for f (k)
1 , g

(k)
1 , which may be solved by elementary methods. With both n = 0, 1 solutions

in hand the system for f (k)
2 , g

(k)
2 can be solved, and so on. Observations of these solutions

lead us to the following proposition:

Proposition 5.5.3. The unique solution to (5.60) subject to the initial conditions is given by

(f
(k)
n , g

(k)
n ), n = 0, . . . ,m− 1, k = 0, . . . ,m of the form

f (k)
n = kP (k)

n (5.61a)

g(k)
n = (k −m)Q(k)

n , (5.61b)

where P (k)
n , Q

(k)
n are polynomial in k of degree at most n.

Proof. We have from formulae (5.59) that the statement is true for n = 0, so we proceed
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by induction. Suppose that f (k)
0 , . . . , f

(k)
n−1 and g(k)

0 , . . . , g
(k)
n−1 are of the form (5.61). The

recursive formulae (5.55) then imply that F (k
0 , . . . , F

(k)
n−1 and G(k)

0 , . . . , G
(k)
n−1 are polyno-

mial in k, of degree at most n − 1. We then see that the following terms from (5.60) are

polynomial in k of degree at most n− 1:

1

k

n∑
j=1

f
(k)
j−1F

(k)
n−j =

n∑
j=1

P
(k)
j−1F

(k)
n−j =

n−1∑
j=0

λjk
j , (5.62a)

1

(k −m)

n∑
j=1

g
(k)
j−1G

(k)
n−j =

n∑
j=1

Q
(k)
j−1G

(k)
n−j =

n−1∑
j=0

µjk
j , (5.62b)

so we have

f (k+1)
n = f (k)

n − n+ 1

k −m
g(k)
n +

n−1∑
j=0

µjk
j , (5.63a)

g(k+1)
n = g(k)

n −
n+ 1

k + 1
f (k)
n

n−1∑
j=0

λjk
j , (5.63b)

We write our ansatz (5.61) for the solution to this equation as

f (k)
n = k

n∑
j=0

ajk
j (5.64a)

g(k)
n = (k −m)

n∑
j=0

bjk
j . (5.64b)

We note that one initial condition u(0)
n = 0 is satisfied automatically, but imposing the other

requires us to set

b0 = −u(1)
n /m. (5.65)

We now insert the ansatz (5.64) into the equation (5.63) and equate coefficients of powers
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of k to obtain a linear system in 2n+ 1 variables a0, . . . , an, b1, . . . , bn:

0 = an + bn, (5.66a)

λi = (n+ 1)ai + (i+ 1)bi +
n∑

j=i+1

(−1)j−i

 j + 1

i

+m

 j

i

 bj , (5.66b)

µi =
n∑
j=i

 j

i

 aj + (n+ 1)bi, (5.66c)

λ0 = (n+ 1)a0 + (m+ 1)
n∑
j=1

(−1)jbj , (5.66d)

µ0 =

n∑
j=0

aj + (n+ 1)b0, (5.66e)

for i = 1, . . . , n−1. We write this asMnv = c, where v = (a0, . . . , an, b1, . . . , bn)T , c =

(0, λ0, . . . , λn, µ0, . . . , µn)T andMn is the square matrix of size 2n + 1 giving the right-

hand side of the system (5.66). A simple sequence of row and column operations yields an

upper-triangular matrix and we obtain

detMn = (n!)2(m− n)n, (5.67)

where (a)n =
∏n−1
i=0 (a + i) is the usual Pochammer symbol, so the matrix is nonsingular

for n ≤ m − 1, showing that the unique solution of the recurrence (5.63) is of the form

(5.64) and the inductive step is complete.

Together with Proposition 5.5.2, this allows us deduce that u(2m+1)
n = 0 for m ≥ n,

and thus that u(2m+1) = O(zm).

5.5.2 Proof of Theorem 2.1

While we may proceed along the same lines as in Subsection 5.5.1, a shortcut is provided

by the known transformation between equation (5.1) and equation (5.2) in Lemma 5.1.1.

So, we consider a singularity pattern for equation (5.2) beginning with (
¯
v, v) = (rg, 0m),

and we also assume that the zero has developed while iterating through regular and nonzero

iterates, so
¯̄
v is also regular. Then under the transformation to a solution of (5.1), we have

(
¯
u, u) = (

¯̄
v
¯
v,

¯
vv) = (rg, 0m), (5.68)
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so the transformation gives us a singularity pattern for (5.1), which by Theorem 5.2.2 must

be (
rg, 0m,∞1,∞1,∞1, . . . ,∞1,∞1, 0m, rg

)
,

with u(k) ∼ ζ−1 for k = 1, . . . , 2m, then u(2m+1) ∼ ζm, and u(2m+2) regular. So this

implies that the iterates v(k) in the singularity pattern must satisfy:

v(k−1)v(k) = u(k) ∼ ζ−1 for k = 1, . . . , 2m, (5.69a)

v(2m)v(2m+1) = u(2m+1) ∼ ζm, (5.69b)

v(2m+1)v(2m+2) = u(2m+2) = O(ζ0). (5.69c)

Beginning with our assumption that v(0) ∼ ζm, we see from the k = 1 case of equation

(5.69a) that v(1) ∼ ζ−(m+1), and then using the k = 2, . . . , 2m cases successively that

v(2k) ∼ ζm, for k = 0, . . . ,m, v(2k+1) ∼ ζ−(m+1) for k = 0, . . . ,m− 1. (5.70)

Then using equations (5.69b) and (5.69c) we have that v(2m+1) ∼ ζ0 and v(2m+2) = O(ζ0)

and the proof is complete.

5.5.3 Proof of Theorem 2.3

Again, while the strategy and techniques from the proof of Theorem 5.2.2 are available for

this case, a shortcut is provided by the transformation between equation (5.1) and equation

(5.3) in Lemma 5.1.2 Similarly to in the proof above, we consider a singularity pattern for

equation (5.3) beginning with (
¯
w,w), where di

dzi
(λz

¯
w(z) + α

¯
w′(z)) = 0 at z = z0 for

i = 0, . . . ,m − 1 and w ∼ ζm. and we also assume that the zero has developed while

iterating through regular and nonzero iterates, so
¯̄
w,

¯̄̄
w are also regular and nonzero. Then

under the transformation to a solution of (5.1), we have

(
¯̄
u,

¯
u) =

(
¯
w/

¯̄̄
w,w/

¯̄
w
)

= (rg, 0m), (5.71)

so the transformation gives us a singularity pattern for (5.1), which by Theorem 5.2.2 must

be (
rg, 0m,∞1,∞1, . . . ,∞1,∞1, 0m, rg

)
,
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with u(k) ∼ ζ−1 for k = 0, . . . , 2m − 1, then u(2m) ∼ ζm, and u(2m+2) regular. So this

implies that the iterates w(k) in the singularity pattern must satisfy:

w(k+1)

w(k−1)
= u(k) ∼ ζ−1 for k = 0, . . . , 2m− 1, (5.72a)

w(2m+1)

w(2m−1)
= u(2m) ∼ ζm, (5.72b)

w(2m+2)

w(2m)
= u(2m+1) = O(ζ0). (5.72c)

Beginning with our assumptions that w(0) ∼ ζm and w(−1) is regular, we see recursively

from equation (5.72a) that

w(2k) ∼ ζm−k for k = 0, . . .m− 1, w(2k+1) ∼ ζ−k for k = 0, . . . ,m. (5.73)

Then using equations (5.72b) and (5.72c) we see that w(2m+1) ∼ ζ0 and w(2m+2) = O(ζ0)

and the proof is complete.
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