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Abstract

Concurrent Kleene Algebra (CKA) offers a set of axioms to reason about equivalence of concurrent

programs, such that equivalent programs must have the same interpretation in any program

semantics that respects the axioms of CKA. It builds on the well-known formalism of Kleene

Algebra, which offers the same benefits for sequential programs. CKA is complete, that is, any

valid equivalence can be proved from the axioms. Moreover, equivalence of programs according to

CKA can be verified mechanically, i.e., equivalence is decidable. Crucial to the latter is the fact

that programs can be represented as abstract machines, which admit equivalence checking.

In this thesis, we investigate techniques to augment the reasoning power of CKA with additional

truths particular to the program semantics at hand. Building on similar results about Kleene

Algebra, we will show that for a large class of extensions, decidability and completeness can be

recovered. In particular, our techniques will allow us to incorporate reasoning about interleaving,

i.e., the partially sequential execution of concurrent programs, as well as control flow, such as the

conditional branching and looping structures found in most programming languages.

In the second half of this thesis, we will develop our own abstract machine model to represent

programs modelled by Concurrent Kleene Algebra, and show that any such program can be

modelled by a machine, and vice versa. We will then argue that equivalence of these automata is

mechanisable, and that the correspondence between expressions and automata can be extended

further to incorporate a more general form of concurrent program composition.

Funding Work on this thesis was supported by the ERC Starting Grant ProFoundNet (679127).
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Impact Statement

Outside Academia: Verification of programs is of central importance to the safety of automated

systems in daily life. Since the emergence of concurrent or distributed systems and algorithms, this

task has become more complex. Because program code is always subject to change, it is important to

guarantee that changes do not violate the safety properties of code that was already proved correct.

As it happens, verification of program equivalence is undecidable in general. This thesis looks at

techniques to prove that general transformations of programs preserve semantics, algebraically

as well as mechanically. Because of the hardness of this problem, the main focus is on proving

completeness, i.e., showing that all valid transformations can be verified, and decidability, i.e., the

property that this process can, in principle, be automated. The potential payoff of automated

equivalence checking is not to be underestimated. For instance, a continuous integration tool could

check whether the new version of code is equivalent to the previous (verified) version, thereby

avoiding another iteration of unit tests. Similarly, an integrated development environment may

suggest several possibly more readable but still equivalent versions of code to the developer. While

the practicality of algorithms to check validity of transformations for the sequential case has been

well-established by other works, further study is necessary to find out whether the algorithms

proposed for concurrent programs in this thesis are feasible in an industrial setting.

Inside Academia: Proofs of completeness and decidability for various extensions of Kleene Algebra

has long been treated along the same lines, by reducing these problems to settings where those

properties have been established. This thesis formalises these tactic, and establishes useful meta-

theory to combine existing reductions, thereby easing the way for the study of future extensions of

Kleene Algebra. We show that these techniques can be used to settle open questions about the

axiomatisation of interleaving and control flow in concurrent programs. Our approach can also be

viewed as a tool to develop new domain-specific programming languages with strong guarantees

about semantic equivalence and verifiability, in the mould of NetKAT, an already established

programming language for specifying and reasoning about packet routing. Lastly, we propose a

new operational formalism for concurrency, and show that this machine model can be used as a

proxy to verify concurrent program equivalence. The results in this thesis have been published

in several highly ranked conferences [KBL+17; KBS+18; KBR+19; KBS+20] and in one journal

article [KBL+19]; at the time of writing, another article is under submission at a journal [KBL+18].
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Chapter 1

Introduction

Information technology pioneer Ted Nelson is said to have quipped “The good news about computers

is that they do what you tell them to do. The bad news is that they do what you tell them to

do.” This reflects a critically important aspect of computer science: to automate a task, we have

to completely and unambiguously specify the desired behaviour, lest we risk having the program

violate its specification. The consequences of the latter in a world pervaded by computing equipment

are well-known, ranging from “rapid unplanned disassembly” to loss of human life.

To prevent these adverse effects, programmers need to be provided with the right mathematical

and industrial tools that help them prevent mistakes, as well as argue that their code does exactly

what it was meant to do. The computer science community has risen to these challenges: from

early systems proposed by Floyd [Flo67] and Hoare [Hoa69] to modern program logics such as

Concurrent Separation Logic [OHe07; Bro07], program verification is present in undergraduate

courses and industry applications alike, and is not likely to lose prominence any time soon.

One way to view the problem of program correctness is through program equivalence [HHH+87].

The underlying thought is that a specification of a program should be equivalent to a program

purported to implement that specification, or at the very least, the program should not exhibit

any behaviour disallowed by the specification. The added benefit of this shift in perspective is that

results about program equivalence can be applied more broadly to programming. For instance,

when refactoring a program for readability, it seems reasonable to verify that the resulting code is

equivalent to the original, and hence satisfies the same correctness properties. Similarly, we may

want to prove that the machine code produced by an optimising compiler is equivalent to the code

produced by the programmer, so as to ensure that the intended meaning is not lost in translation.

12
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Of course, verification of program equivalence can be a complex task even in the best circum-

stances. As a program grows in complexity, so too does the task of confirming whether a given

modification preserves its semantics. To allow programmers to quickly adapt their code to new

insights, it is therefore desirable to automate equivalence checking as much as possible. Unfortu-

nately, this is where we reach a fundamental limit: since the halting problem is undecidable [Tur37],

program equivalence must also be undecidable in general. After all, if we could check program

equivalence in general, then we would also be able to solve the halting problem, by fixing the input

to the program and checking whether it is equivalent to a program that does not halt.

However, if we abstract from the particular meaning of the statements in the program and

instead focus on its structure, i.e., the way that the program arises from these statements, we can

still derive meaningful notions of program equivalence that are amenable to mechanisation. More

concretely, we can for instance show that a program of the form if b then e else f , which executes

e or f depending on whether b is true, is the same as a program of the form if not b then f else e.

Practically, this means that we cannot answer the question “are these two programs equivalent?”, but

we can try to answer the question “does this generic program rearrangement preserve semantics?”

This leaves open the matter of which axioms should be used to reason about program equivalence,

and how to mechanise equivalence checking of programs. In this thesis, we study techniques to show

(a) that a given set of axioms is complete, i.e., that can prove correctness of all valid transformations,

and (b) that equivalence under these axioms is decidable, i.e., that equivalence between abstract

programs under the axioms can be mechanically checked. We focus on programs that permit a

form of concurrency known as fork/join-concurrency, building on results from Kleene algebra.

Kleene Algebra Regular expressions were proposed by Kleene, as a way to represent the order

of events in nerve nets, a model of human neurons [Kle56]. Being a compact way to describe

simple patterns in series of symbols or events, regular expressions soon found their way into text

editors and programming languages alike. Crucial to this deployment was Kleene’s realisation that

regular expressions are equivalent to finite automata, known as Kleene’s theorem. This paved the

way for a straightforward algorithm to check acceptance by a regular expression. Among others,

Thompson [Tho68] and Brzozowski [Brz64] gave algorithms to convert regular expressions to finite

automata; see [Wat93] for a good overview. The other direction of Kleene’s theorem, i.e., that every

finite automaton corresponds to a regular expression, was further studied by McNaughton and

Yamada [MY60] and Backhouse [Bac75]. Silva [Sil10] used the theory of universal coalgebra [Rut00]

to transplant Kleene’s theorem to new settings, such as Segala systems and Mealy machines.



14 CHAPTER 1. INTRODUCTION

Regular expressions provided a sufficient but not unique way to describe patterns of events; the

problem thus quickly arose: how can one show that two regular expressions denote the same pattern?

The most direct answer is to convert the regular expressions in question to finite automata, and to

check whether these automata represent the same language. Rabin and Scott [RS59] showed that

the latter problem is decidable for deterministic finite automata, and that any finite automaton can

be made deterministic. Hopcroft and Karp [HK71] later provided an algorithm to decide in almost

linear time [Tar75] whether two finite automata accept the same language. Equivalence checking

algorithms were refined over the years, notably by the introduction of the antichain algorithm by

De Wulf et al. [WDH+06], as well as Bonchi and Pous’s algorithm to directly check equivalence of

non-deterministic finite automata using bisimulation up to congruence [BP13].

Just like expressions in classical algebra, one can reason about regular expressions by manipulat-

ing them algebraically. This matter was first studied by Red’ko [Red64a], who proved that no finite

set of equations is sufficient to prove all valid equivalences. Soon after, Salomaa [Sal66] provided

the first complete axiomatisation of regular expressions — i.e., a set of rules that are sufficient to

argue equivalence of any two equivalent regular expressions — given by finitely many equations in

addition to one rule of inference. This axiomatisation and others were studied by Conway [Con71],

and was later generalised for applications to other algebraic systems by Krob [Kro90], Boffa [Bof90]

and Kozen [Koz94]. Kozen’s axiomatisation of regular expressions is used most widely today, and

algebras satisfying these axioms are called Kleene algebras. While it is not apparent at this level of

detail, it should be noted that the study of axiomatisations of equivalence of regular expressions

benefited greatly from Kleene’s theorem relating regular expressions and finite automata.

The axioms of Kleene algebra make sense to reason about program equivalence. For instance,

choosing non-deterministically between running the programs e and f is the same as choosing

between running f and e — in other words, non-deterministic choice is commutative. Nevertheless,

this kind of equivalence is very fine-grained, and does not incorporate equalities particular to the

program under study. Cohen proposed to study reasoning under hypotheses [Coh94], i.e., where in

addition to the Kleene algebra axioms, one can use one or more premises that reflect properties

of the program at hand. Equivalence under hypotheses is powerful enough to encode general

program equivalence, and hence once more undecidable [Koz96]. However, Cohen showed that for

certain formats of hypotheses, equivalence remains decidable [Coh94]. This was later studied in

more detail by Kozen [Koz02], and extended to more general sets of hypotheses by Kozen and

Mamouras [KM14; Mam15]. Most recently, Doumane and collaborators [DKP+19] further extended

the sets of hypotheses that permit decidable equivalence, and analysed their complexity.
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One particularly useful type of hypotheses allowed reasoning about assertions, and thereby

encode control flow structures such as if b then e else f and while b do e; these tests were

proposed by Kozen [Koz96]. It was shown that adding the axioms of Boolean algebra is necessary

and sufficient to reason about equivalence in a model of guarded strings [KS96], and that equivalence

in Kleene algebra with tests is just as hard as equivalence in Kleene algebra proper [CKS96]. Kleene

algebra with tests then spawned a rich body of work on program equivalence, including applications

to program schematology [Koz97; AK01], compiler verification [KP00] and cache control [BK02].

One limitation of Kleene algebra that could not be fixed directly by hypotheses is the lack of

primitives for concurrent composition. While interleaving of two concurrent programs could be

simulated by including the “shuffle” operator in regular expressions, this kind of concurrency does

not reflect the possibility that, especially in multi-processor systems, actions may take place truly

concurrently, i.e., without any temporal or causal ordering between them. A new model of events

to reflect this type of concurrency was proposed by Grabowski [Gra81], and independently by

Pratt [Pra82], later studied extensively by Gischer [Gis88]. This model, called pomsets by the latter

authors, can be thought of as a generalisation of the strictly ordered series of events described by

regular expressions to allow partial ordering among events. Pomsets were connected to the shuffle

operator by Tschantz [Tsc94], who showed that the equational theory of pomsets coincides with

that of languages under concatenation and shuffle — in other words, both sides of any universally

valid equation of languages involving these operators correspond to the same pomset.

The development of pomsets as a model of concurrent events led Lodaya and Weil [LW00]

to study an extension of regular expressions known as series-parallel rational expressions, with a

model in terms of pomsets. In op. cit., an operational model to accept these pomset languages is

also put forward, along with a two-way correspondence between (a fragment of) this operational

model and series-parallel rational expressions. Lodaya, Ranganayakulu and Rangarajan proved a

similar Kleene theorem relating a fragment of series-parallel rational expressions to 1-safe Petri

nets [LRR03]. Hoare and collaborators [HMS+09] proposed to study concurrent Kleene algebra, i.e.,

a concurrent extension of Kleene algebra. Meanwhile, Prisacariu proposed an alternative model

called synchronous Kleene algebra, which differed from concurrent Kleene algebra in that it allowed

only single actions to take place concurrently. Laurence and Struth [LS14] followed up on [HMS+09]

by showing that part of the axioms of concurrent Kleene algebra were sound and complete for a

straightforward semantics of series-parallel rational expressions in terms of pomsets. Jipsen and

Moshier [JM16] proposed another operational model for pomset languages, and made the first steps

to extend concurrent Kleene algebra with tests in order to reason about control flow.
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Process algebra No discussion of concurrent program equivalence would be complete without

mentioning process algebra. Collectively, process algebra refers to the study of calculi such as

CSP [Hoa78], CCS [Mil80] and ACP [BK87]. While we cannot do justice to the rich and diverse

body of work around process algebra, we shall venture to provide a brief comparison with Kleene

algebra here. In the remainder of this thesis, we limit our scope to concurrent Kleene algebra.

Process algebra, like Kleene algebra, can be used to show that two programs are equivalent. The

main difference with Kleene algebra is in granularity: whereas equivalence in Kleene algebra typically

means that both programs can exhibit the same patterns of events in the same order, equivalence in

process algebra is usually defined using some form of bisimulation, where two processes are bisimilar

if one process can mimic the computational steps of the other, and vice versa. Hence, Kleene

algebra can typically be used to prove more programs equivalent, at the cost of abstracting away

from behavioural differences which may be relevant to the interpretation. Checking of bisimulation

also lends itself more readily to mechanisation; almost every definition of bisimulation readily be

checked by means of an algorithm that arises straightforwardly from said definition.

Algebraic equivalence under bisimulation has been studied extensively [AF06; AI07]. A subtle

but significant difference with Kleene algebra with regard to axiomatisation is that the syntax of

process calculi is usually set up differently from Kleene algebra, in that primitive actions are not

processes on their own but rather operators of the form a.−, which take a process and prefix it

with an action a. This has ramifications for the power of algebraic reasoning: whereas equivalences

in Kleene algebra are “scale-free” in that any primitive actions can be substituted with other

expressions to obtain an equally valid equivalence, the same does not hold true for process algebra.

Lastly, process calculi have historically included concurrent (interleaving) composition from the

start, while (as demonstrated above) this inclusion is relatively new in the realm of Kleene algebra.

Roadmap We will start by laying down some preliminary notions and notation in Chapter 2.

Next, we formally define pomsets and the axioms of bi-Kleene algebra in Chapter 3. The first

technical part of this thesis is focused on algebraic reasoning, organised as follows:

• In Chapter 4, we will start by showing how bi-Kleene algebra can be extended with hypotheses,

building on [DKP+19], and discussing techniques to argue decidability as well as completeness

(Lemmas 4.27, 4.32, 4.41 and 4.49) w.r.t. a model in terms of pomset languages (Theorem 4.14).

• In Chapter 5, we encode the exchange law in hypotheses, and argue that these are complete

w.r.t. a pomset language model (Corollary 5.38), settling a conjecture by Hoare et al. [HSM+16].

We also show how the exchange law can be separated from other hypotheses (Theorem 5.52).
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[KBS+18] [KBS+20] [KBR+19] [KBL+17] [KBL+18] [KBL+19]

Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Figure 1.1: Redistribution of material from published and submitted papers among chapters.

• In Chapter 6, we extend concurrent Kleene algebra with a mechanism to reason about control

flow. We show that an extension along the same lines as Kleene algebra with tests [JM16] is

unsuitable for reasoning about programs (Fact 6.6), and argue that a slight weakening of the

axioms appropriate to concurrency can be used to get around this problem (Corollary 6.38).

We conclude our study of algebraic reasoning by listing directions for further work. In the second

half of this thesis, we focus on extending Kleene’s theorem to the concurrent setting.

• In Chapter 7, we propose pomset automata, an operational model of pomset languages. We

show how Antimirov’s construction [Ant96] can convert a series-rational expression into pomset

automaton representing the same language (Theorem 7.35), and how a well-defined class of

pomset automata can also be represented by series-rational expressions (Theorem 7.41).

• In Chapter 8, we argue that equivalence of the fork-acyclic fragment of pomset automata is

decidable (Corollary 8.54), using a method inspired by the work of Laurence and Struth [LS14].

We also prove that equivalence of general pomset automata is undecidable (Corollary 8.10),

justifying the restriction to fork-acyclic pomset automata.

• In Chapter 9, we discuss an extension of series-rational expressions known as series-parallel

rational expressions, and extend the earlier Kleene theorem to include these. In particular,

we isolate a strictly more expressive fragment of pomset automata called well-nested pomset

automata that corresponds exactly to these expressions (Corollary 9.36).

Finally, we conclude this thesis by listing open questions regarding pomset automata.

Relation to co-authored works This thesis is based on joint work with (in alphabetical order)

Paul Brunet, Bas Luttik, Jurriaan Rot, Alexandra Silva, Jana Wagemaker and Fabio Zanasi,

although any errors in the present manuscript are mine. The material appearing in the technical

chapters is based on six papers. For the sake of narrative, the content of these papers has been

redistributed among six thematically consistent chapters.
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The backbone of the first half is formed by [KBS+20]. In particular, most of the results in

Chapter 4 first appeared in op. cit., including the application of hypotheses, reductions, and

factorisations to pomset languages, although the results about factorisations have been generalised

substantially. The reduction presented in Chapter 5 is based on [KBS+18], but the mathematics

have been polished and reworked to fit in the framework set by the previous chapter. Most of

the results about factorisation in this chapter first appeared in [KBS+20], with the exception of

the dualisation of results about left-simple hypotheses to right-simple hypotheses, which is new.

The contents of Chapter 6 mostly originate from [KBR+19] and have been adapted to fit earlier

discourse; the main results presented there constitute the last section of [KBS+20].

In the second half, the results that appear in Chapter 7 were first published in [KBL+17] and

updated and polished substantially for [KBL+18]. The results about decidability in [KBL+18] form

the basis of Chapter 8; on the other hand, results about undecidability are adapted from [KBL+19].

Chapter 9 is based mostly on [KBL+19], although the presentation has been adapted to fit with the

other chapters. In Chapters 7 and 9, the formulation of the automata-to-expressions construction

in terms of the solution to a (series-rational or series-parallel rational) system is new. Everywhere

except Chapter 8 the narrative has been thoroughly rewritten based on the original work.

Figure 1.1 contains a diagram summarising the correspondence between chapters and papers.

How to read this thesis The halves of this thesis are largely self-contained, save for the odd

cross-reference. Definitions and notations used in both parts are discussed in Chapters 2 and 3; in

particular, the solutions to (series-rational) systems will make an appearance in both halves.

Most of the work to prove the theorems in the technical chapters goes into finding the right

construction; validating the correctness of the construction is often routine. For this reason, the

main text will place emphasis on how the relevant construction is derived from the constraints at

hand, and strive to provide intuition as to why this construction might work. Most proofs are then

outlined by going through a series of lemmas, which naturally lead to the conclusion presented in

the form of a theorem. The proofs of these lemmas appear in the appendices so as not to interrupt

the narrative. The interested reader is invited to move between the main text and the proofs to

get a full explanation of all the details. For convenience, the headings provide hyperlinks to jump

back and forth — i.e., the first appearance of “Lemma X” links to the proof in the appendix, and

the second appearance links back to the original statement. Some of the more pivotal proofs are

included in the main text for the benefit of the reader’s understanding; with the exception of a

handful, these are short and rely on earlier stated and explained lemmas.



Chapter 2

Preliminaries

For the sake of self-containment, we start by specifying some mathematical notation. Readers

familiar with the mathematical vernacular may want to skip ahead to Chapter 3.

Sets Objects can be gathered in sets; we use brackets {−} to denote the contents of a set. For

instance, the set of natural numbers N is given by {0, 1, 2, . . . }. The order of elements does not

matter, nor does any repetition; hence {1, 0, 0} is the same set as {0, 1}. When an object a appears

in a set A, we say that a is an element of A, denoted a ∈ A; when a is not an element of A, we

write a 6∈ A. When A and B are sets such that all elements of A are also elements of B, we say that

A is a subset of B, denoted A ⊆ B. Sets A and B are equal when they are subsets of one another,

i.e., when A ⊆ B and B ⊆ A. We can also specify a set by taking another set and specifying

a predicate on elements of the latter. For instance, we can specify the set of even numbers by

{n ∈ N : n is even}, or more precisely {n ∈ N : there exists k ∈ N such that 2k = n}.

Another way of building a set is by saying that it is the smallest set satisfying some inference

rules. For instance, we can build the set of even numbers by saying A is the smallest set satisfying

0 ∈ A

n ∈ A

n+ 2 ∈ A

In these rules, the premises appear above the line, and the consequences appear below the line.

The first rule should thus be read as “0 is always an element of A”, and the second line should be

read as “if n is an element of A, then so is n+ 2”. Formally, these inference rules should induce

a monotone operator on sets, which (by the Knaster-Tarski fixpoint theorem) admits a unique

fixpoint. This condition can usually be satisfied by avoiding negation when writing the rules.

19
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A useful consequence of specifying a set using inference rules is that, to show that this set A is

contained in a set B, all one has to do is show that B satisfies the inference rules that build A.

After all, A is the smallest set satisfying those rules, so if B satisfies the same rules, then A must

necessarily be a subset of B. We will make repeated use of this principle throughout this thesis.

We will repeatedly use inference rules as an inductive handle in proofs. For instance, if A is

defined using inference rules and we want to prove that all members of A satisfy a certain property,

should show that if all elements of A that appear in the premise of an inference rule satisfy this

property, then so do the members of A that appear in the consequence of the rule.

Set composition The union of two sets A and B, denoted A ∪B, is the smallest set containing

the elements of A and B; similarly, the intersection of two sets, denoted A ∩B, is the largest set

containing elements that are both in A and B. We write A \B for the difference of A and B, which

is the set of elements that appear in A but not in B. The empty set, i.e., the unique set having no

elements at all, is denoted ∩. For instance, if A consists of the even numbers {0, 2, 4, . . . } and B

consists of the odd numbers {1, 3, 5, . . . }, then A ∪B = N, A ∩B = ∅ and A \B = A. When two

sets A and B have no elements in common, i.e., when A ∩B = ∅, we say that they are disjoint .

The set of subsets of a set A, also called the powerset of A, is denoted 2A. For instance, we

have that {0, 1} ∈ 2N. More generally, it holds that A ∈ 2B if and only if A ⊆ B.

A tuple is a finite and ordered list of objects. We will use angular brackets 〈−〉 to denote tuples,

such as 〈0, 1〉 for the two-element tuple containing 0 and 1. Order and repetition matters — i.e.,

〈0, 1〉 is not the same as 〈1, 0〉, nor 〈0, 0, 1〉. When A and B are sets, we write A × B for their

Cartesian product , which contains all tuples 〈a, b〉 where a ∈ A and b ∈ B. We write An for the

n-fold Cartesian product of A, e.g., A2 = A×A. We flatten tuples, i.e., 〈〈0, 1〉, 2〉 is the same as

〈0, 〈1, 2〉〉 and 〈0, 1, 2〉; hence, we think of A× (B ×C) as equal to (A×B)×C, writing A×B ×C.

Relations A relation between sets A and B is a subset of A×B. We commonly use infix notation

to denote membership of a relation, i.e., when R ⊆ A×B is a relation between A and B, we write

a R b to denote 〈a, b〉 ∈ R; we also say that a is related to b by R. Note that, since relations are

sets, we can specify them using the same inference rule format that we discussed for sets.

When R is a relation between A and itself, we say that R is a relation on A. Let R be a relation

on A. We say that R is reflexive if for all a ∈ A it holds that a R a; it is irreflexive if for all a ∈ A

it does not hold that a R a′. Furthermore, R is symmetric if for all a, a′ ∈ A with a R a′ it holds

that a′ R a; it is transitive if for all a, a′, a′′ ∈ A with a R a′ and a′ R a′′ it holds that a R a′′.

Lastly, R is antisymmetric if for all a, a′ ∈ A such that a R a′ and a′ ∈R a it holds that a = a′.
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A relation R is a preorder if it is reflexive and transitive and a partial order if it is a preorder

that is antisymmetric. A partially ordered set (poset) is a pair 〈A,R〉, where A is a set and R is a

partial order on A. R is a strict order if it is irreflexive and transitive. Any preorder R gives rise to

a strict order R′ by saying that for a, a′ ∈ A we have that a R′ a′ when a R a′ while a′ R a does

not hold. We often denote a partial order with the ordering symbol ≤. When we do this, we shall

use < to denote the largest strict order contained in ≤, i.e., a < b if and only if a 6= b and a ≤ b.

A relation R is an equivalence if it is reflexive, symmetric and transitive. When A is a set

and R is an equivalence on A, we write [a]R for the equivalence class of a ∈ A, which is the set

{a′ ∈ A : a R a′}. We shall drop the subscript when the equivalence is clear from context.

When A, B and C are sets and R ⊆ A×B and R′ ⊆ B × C are relations, we write R ◦R′ for

the relational composition of R and R′, which is the smallest relation such that if a R b and b R′ c,

then a (R ◦R′) c. Furthermore, when R is a relation on a set A, we write R∗ for the reflexive and

transitive closure of R, which is the least reflexive and transitive relation on A that contains R.

Functions A function f from A to B, denoted f : A→ B is a relation between A and B such

that for every a ∈ A there exists exactly one b ∈ B such that a is related to b by f . Given a ∈ A,

we denote the associated element of b by f(a). Note that f is completely specified by choosing for

every a ∈ A the associated f(a) ∈ B. We say that f is a bijection if for every b ∈ B, there exists

exactly one a ∈ A with f(a) = b. When g : B → C is a functions, we write g ◦ f the composition of

g and f , i.e., where (g ◦ f)(a) = g(f(a)). We use BA to denote the set of functions from A to B.1

When f : A→ B is a function, call A the domain of f , and B the codomain of f . If the domain

of f is a Cartesian product, i.e., A = A1 × · · · × An, we drop the tuple brackets when referring

to the function’s values, i.e., we write f(a1, . . . , an) instead of f(〈a1, . . . , an〉). Some functions are

denoted differently, in which case we will use the symbol − as a placeholder for the input. For

instance, we will often use J−K as a function, and JeK when referring to the value of J−K for input e.

When f is a function from A to 2B, we can use inference rules to specify f , similarly to how

we can use inference rules to specify a set. Formally, f is the smallest function satisfying those

inference rules, or alternatively we can think of them as a system of rules to specify a set f(a)

for every a ∈ A, possibly with cross-references to members of f(a′) for some a′ ∈ A. Either way,

the same condition applies: the inference rules should induce a monotone operator on the set of

functions from A to 2B ; all such definitions in this thesis tacitly satisfy this restriction.

1When we regard 2 as the two-element set {0, 1}, the notation 2A can be interpreted to mean either the powerset

of A or the set of functions from A to 2; it should be obvious that these sets are in one-to-one correspondence.
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When 〈A,≤〉 and 〈A′,≤′〉 are posets and f : A → A′ is a function, we say that f is a poset

morphism if f preserves the order, that is, if for a0, a1 ∈ A with a0 ≤ a1 it holds that f(a0) ≤′ f(a1).

A closure operator (on a set A) is a function that takes a subset of A and “closes” it, in the sense

that it sends each set to the smallest set satisfying some property. Formally, a closure operator is a

function f : 2A → 2A such that, for all B,C ⊆ A, it holds that B ⊆ f(C) if and only if f(B) ⊆ f(C).

In particular this means that, for all B ⊆ A, it holds that B ⊆ f(B). Furthermore, it follows that

closure is monotone w.r.t. the inclusion order on 2A, that is, if C ⊆ B, then f(C) ⊆ f(B). The

operator −∗ discussed above, which associates with each relation on a fixed set the smallest reflexive

and transitive relation that contains it, is one example of a closure operator.

Multisets A multiset is a collection of objects where order does not matter, but repetition does.

We will use double brackets {| − |} to explicitly denote finite multisets, such as {|0, 1, 2, 2|}. Note the

duplicate appearance of 2 in this multiset, which distinguishes it from {|0, 1, 2|}. All multisets in

this thesis will be finite; hence, we can formally think of a multiset over a set A as a function φ

from A to N, where φ(a) specifies how often the element a ∈ A appears in φ, if at all.

When φ is a multiset, we use |φ| to denote the number of elements in φ, including multiplicity.

More formally, if φ is a multiset over A, then |φ| is defined to be the sum of φ(a) for all a ∈ A. For

instance, if φ = {|0, 1, 2, 2|}, then |φ| = 4, since φ(0) + φ(1) + φ(2) = 4.

We use M(A) to denote NA, i.e., the set of all multisets containing elements of A. When φ and

ψ are multisets over A, we write φtψ for their disjoint union (or sum), which is the multiset where

(φ t ψ)(a) = φ(a) + ψ(a). For instance, when φ = {|0, 1|} and ψ = {|1, 2|}, then φ t ψ = {|0, 1, 1, 2|}.

We also use
(
A
n

)
to denote the set of n-ary multisets over A, i.e., the set of φ ∈M(A) such that the

sum of all φ(a) for a ∈ A is n. For instance, {|0, 1|} appears in
(
A
2

)
, but {|0, 1, 1|} does not.

Words An alphabet is a (usually, but not always, finite) set of symbols. A word over some alphabet

Σ is a finite sequence of symbols from Σ; for instance, if Σ = {a, b}, then aba is a word over Σ.

Words can be concatenated , that is, we can append one word to another, by the concatenation

operator ·; for instance, ab · ba = abba. The empty word (i.e., without any letters) is denoted 1.2

When n ∈ N and a ∈ Σ, we write an for the n-fold concatenation of a, i.e., a0 = 1 and an+1 = a · an.

The empty word is neutral w.r.t. concatenation, i.e., if w is a word, then 1 ·w = w = w · 1. A set of

words is called a language; the language of all words over an alphabet Σ is denoted Σ∗.

2Most authors use either the symbol ε or λ to denote the empty word; we choose 1 to conveniently identify the

empty word and the empty pomset, defined in the next chapter.
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Expressions We will often build expressions using symbols that represent functions with one or

more inputs, and constants, over a fixed alphabet. Formally, these expressions are built inductively,

using inference rules. For instance, we could describe the set of numerical expressions over some

fixed set of variables V as the smallest set E satisfying the following inference rules:

n ∈ N

n ∈ E

v ∈ V

v ∈ E

e, f ∈ E

e+ f ∈ E

e, f ∈ E

e× f ∈ E

e ∈ E

−e ∈ E

To ease definitions of syntax, we may use a (Backus-Naur form) grammar . For instance, the set of

expressions defined above could equivalently be said to be generated by the grammar

e, f ::= n ∈ N | v ∈ V | e+ f | e× f | − e

It is important to remember that elements of E are purely syntactic objects; they do not take on

any meaning until we provide a way to evaluate them. We shall use parentheses to disambiguate the

binding of expressions when necessary, writing for instance (1 + v)× 2 ∈ E to denote the expression

obtained by applying the first two rules to find that 1, v ∈ E, applying the third rule to find that

1 + v ∈ E, and finally applying the first and last rule to find that (1 + v)× 2 ∈ E. We may also

specify a precedence among operators; for instance, when we say that × “takes precedence over”

(or “binds more tightly than”) +, the expression 1 + 2× 3 is meant to denote 1 + (2× 3).

A relation R on a set of expressions is a congruence if it is an equivalence compatible with the

operators. For instance, for the set of expressions E defined above, a congruence R on E would

be an equivalence such that if e1 R f1 and e2 R f2, then e1 + e2 R f1 + f2, and similarly for the

other operators. Since such an implication can be encoded using inference rules, we can speak of

the smallest (or least) congruence satisfying some given set of inference rules.

A relation precongruence R on a set of expressions is a preorder on those expressions that is

compatible with the operators in the same way that a congruence is. For instance, a precongruence

on the set of expressions E defined above would be a preorder on E such that (among other things)

if e1 R f1 and e2 R f2, then e1 × e2 R f1 × f2, with similar rules for the other operators. Such a

property can again be encoded in inference rules, and hence we can speak of the least precongruence.

Automata Let Σ be an alphabet. A non-deterministic automaton (NA) is a tuple 〈Q,F, δ〉,

where Q is a set of states, and F is a subset of Q whose elements are called accepting states. Finally,

δ : Q× Σ→ 2Q is a function called the transition function. When there are finitely many states,

the non-deterministic automaton is said to be finite; such an automaton is called an NFA. All of

the non-deterministic automata in this thesis will be finite, and will use a finite alphabet.
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q0 q1
a

b

Figure 2.1: An example non-deterministic automaton.

We may graphically depict an NFA as in Figure 2.1. Here, every state is drawn as a (usually

circular) shape containing the symbol that state, with doubly circled circles representing the

accepting states. The transition function is represented by the arrows between the states, labelled

by the alphabet symbol associated with that transition. Thus, in the example drawing, we see that

q0 and q1 are states, with q1 accepting, and that q1 ∈ δ(q0, a) as well as q1 ∈ δ(q1, b).

Given an NA A = 〈Q,F, δ〉, we can define the function LA : Q→ Σ∗, which sends every state

q ∈ Q to the language accepted by q. Intuitively, this is the set of words that can be read by

following the arrows of the transition function starting in q and leading to an accepting state.

Formally, LA is the smallest function satisfying the inference rules

q ∈ F

1 ∈ LA(q)

q′ ∈ δ(q, a) w ∈ LA(q′)

a · w ∈ LA(q)

For instance, one can show that if A is the NFA from Figure 2.1, then LA(q0) = {a · bn : n ∈ N}.

Decidability A decision problem poses a well-defined set of inputs, and asks whether those inputs

satisfy a certain formally defined property. We say that a decision problem is decidable if there

exists an algorithm, that is, an unambiguous sequence of steps and tests, that can be used to find

out in finitely many steps whether a given input does or does not satisfy the constraints of the

problem. What it means for inputs to be well-defined and what qualifies as an algorithm is left

unspecified on purpose; these concepts can be formalised, but are outside the scope of this thesis.

Suffice to say that some problems, such as the halting problem [Tur37], are undecidable.

Similarly, we say that a function f : A→ B is computable when there exists an algorithm that,

given a ∈ A, can compute f(a). Computable functions are important when showing that instances

of one decision problem can be converted into instances of another decision problem while preserving

the answer, thereby showing that the former problem is decidable when the latter problem is.



Chapter 3

Pomsets and sr-expressions

In this chapter, we discuss two concepts that are foundational to the development in the rest of the

thesis: pomsets and series-rational expressions. It should be stressed that no claim of originality is

made to any of the material in this chapter; all definitions and results are adapted from existing

literature, chiefly [Gra81; Gis88; LW00; LS14; Ard61; Con71] to fit the purpose of this thesis.

An execution of a program can be seen as a sequence of symbols, each representing an action.

For instance, consider an automatic tea dispenser: beep · tea · milk · beep could represent the

behaviour where the machine beeps, dispenses tea followed by milk, and then beeps, in that order.

To represent an execution of a program with concurrency, we need to relax this model to allow

a partial order on events. For instance, a concurrency-enabled tea dispenser could beep, then fork

execution into two threads that provide milk and tea at the same time, before joining the threads

to beep again (c.f. Figure 3.1). Note that the events labelled by milk and tea are ordered after

the first occurrence of beep, but there is no ordering between them — they are concurrent.

The objects most commonly found in the literature to account for such executions are known as

partial words [Gra81], or equivalently, partially ordered multisets (pomsets) [Pra82]. In this chapter,

we review basic material on pomsets found in the literature [Gra81; Pra82; Gis88].

Defining pomsets requires some care, as the indirection between events and their names is not

beep tea

milk beep

Figure 3.1: Example ordering of events in a program.
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entirely straightforward to write down formally. We start with a basic model of concurrent events

in the form of labelled partially ordered sets, which we refine momentarily.

Convention 3.1. We fix an alphabet Σ of symbols commonly referred to as actions. When using

an object S defined using Σ with a different alphabet, ∆, we shall make this explicit, writing S(∆).

Definition 3.2 (Labelled posets). A labelled poset is a tuple u = 〈S,≤, λ〉 consisting of some

carrier set S, where S ⊆ N,1 a partial order ≤ on S and a labelling function λ : S → Σ.

When u is a labelled poset, we write Su, ≤u and λu for the carrier, partial order and labelling

of u respectively. The set of labelled posets is denoted LP, and the empty labelled poset is 1.

Example 3.3. The execution in Figure 3.1 can be represented by the labelled poset u, where

Su = {1, 2, 3, 4} 1 <u 2 <u 4 1 <u 3 <u 4 λu =

 1 7→ beep, 2 7→ tea,

3 7→ milk, 4 7→ beep


Suppose we construct the labelled poset v just like u in the example above, but we use 5 instead

of 2 for the event labelled with tea. Now v is just as accurate a representation of the execution in

Figure 3.1 as u. Hence, the exact carrier of the labelled poset does not matter, but the ordering

and labelling of the events do. We formalise the correspondence between u and v as follows.

Definition 3.4 (Labelled poset isomorphism). Let u and v be labelled posets. A labelled poset

morphism from u to v is a poset morphism from 〈Su,≤u〉 to 〈Sv,≤v〉 such that λv ◦ h = λu.

Moreover, h is a labelled poset isomorphism if it is a bijection such that h−1 is a poset isomorphism

from v to u. We say that u is isomorphic to v, denoted u ∼= v, if there exists a poset

Example 3.5. The labelled posets u and v discussed above are isomorphic, as witnessed by the

isomorphism that switches 2 for 5 and leaves the other elements untouched.

Note that ∼= is an equivalence. We can then use ∼= to abstract from the carrier, as follows.

Definition 3.6 (Pomsets). A partially ordered multiset, or pomset , is a ∼=-equivalence class of

labelled posets; we write [u] for the ∼=-equivalence class of u ∈ LP, i.e., [u] = {v ∈ LP : u ∼= v}.

We write Pom for the set of pomsets. The ∼=-equivalence class of 1 is denoted by 1. We identify

a ∈ Σ with the pomset containing exactly one event, labelled a; such a pomset is called primitive.

Convention 3.7. We tacitly assume w.l.o.g. that all (finitely many) pomsets in scope are repre-

sented by labelled posets with disjoint carriers. All pomsets in the sequel are finite.

1Restricting the carrier to contain natural numbers exclusively makes the collection of labelled posets a proper set.
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3.1 Composition

It often makes sense to describe the execution of a program in terms of smaller executions; for

instance, we could informally describe an execution by saying these events were taking place while

these other things occurred, or all of these things happened, followed by all of these other actions.

Since pomsets are meant to be models of program execution, it makes sense to compose them

similarly, both in parallel (the first option) and in sequence (the second option).

Definition 3.8 (Pomset composition). Let U, V ∈ Pom with U = [u] and V = [v]. We write

U ‖ V for the parallel composition of U and V , which is the pomset represented by u ‖ v, where

Su‖v = Su ∪ Sv ≤u‖v = ≤u ∪ ≤v λu‖v(x) =

λu(x) x ∈ Su

λv(x) x ∈ Sv

Similarly, we write U · V for the sequential composition of U and V , that is, the pomset

represented by the labelled poset u · v, with the carrier, ordering and labelling function given by

Su·v = Su‖v ≤u·v = ≤u ∪ ≤v ∪ (Su × Sv) λu·v = λu‖v

Example 3.9. Let be u as in Example 3.3. If we represent the primitive pomset beep by the

labelled poset 〈{1}, {〈1, 1〉}, {1 7→ beep}〉 and similarly use 2, 3 and 4 as events to represent tea,

milk and the second occurrence of beep respectively, we find that u is precisely the labelled poset

built by beep · (tea ‖ milk) · beep. In this labelled poset, the event 1, labelled by beep, precedes all

of the other events, but the events 2 and 3 (labelled by tea and milk respectively) are unordered.

Remark 3.10. The operators above yield the same pomset regardless of the labelled posets chosen

to represent the operands. Other pomset-related notions will also enjoy this property.

Also, it is easy to see that both operators are associative, and that ‖ is commutative. Furthermore,

1 is the unit of both operators, i.e., U · 1 = 1 · U = U ‖ 1 = U for all pomsets U .

Convention 3.11. Sequential composition binds more tightly than parallel composition, i.e.,

U · V ‖W should be read as (U · V ) ‖W . We shall also omit parentheses due to associativity.

Many pomsets in the sequel will be either obtained by parallel or sequential composition. It

therefore makes sense to identify these types of composed pomsets, as follows.

Definition 3.12 (Pomset types). Let U be a pomset. We say that U is sequential (resp. parallel)

if there exist non-empty pomsets U1 and U2 such that U = U1 · U2 (resp. U = U1 ‖ U2).
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Example 3.13. The pomset U from Example 3.9 is sequential, because it is the sequential

composition of beep and (tea ‖ milk) · beep. It is not parallel, because its underlying labelled

poset is connected. Primitive pomsets and the empty pomset are neither parallel nor sequential.

Remark 3.14. A pomset cannot be both sequential and parallel. On the other hand, there exist

non-trivial pomsets that are neither parallel nor sequential; we discuss these in Section 3.2.

When we decompose a sequential pomset into components, and one of those components is

sequential, we can decompose it again, continuing until we are left with non-sequential pomsets.

Because sequential composition is associative, this decomposition can take place in different ways,

but what matters in the end is the sequence of non-sequential pomsets obtained. We can make similar

observations for parallel composition; indeed, because of commutativity of parallel composition, the

order of the components does not matter either. This leads to the following.

Definition 3.15 (Factorisation). Let U ∈ Pom. When U = U1 · · ·Un with each Ui non-sequential

and non-empty, the sequence U1, . . . , Un is called a sequential factorisation of U .

When U = U1 ‖ · · · ‖ Un such that the Ui are non-parallel and non-empty, the multiset

{|U1, . . . , Un|} is called a parallel factorisation of U .

Example 3.16. The pomset U from Example 3.9 has beep, tea ‖ milk, beep as sequential factori-

sation. Because U is non-parallel, it has {|U |} as parallel factorisation. The sequential factorisation

of 1 is the empty sequence; the parallel factorisation of 1 is the empty multiset.

Sequential (resp. parallel) factorisation yields a unique sequence (resp. multiset) of components.

This was proved by Grabowski [Gra81, Proposition 2] and later by Gischer [Gis88, Lemma 3.2].

Lemma 3.17. Sequential and parallel factorisations exist uniquely.

Convention 3.18. Keeping with algebraic nomenclature, the above allows us to refer to non-empty

and non-sequential (resp. non-parallel) pomsets as sequential (resp. parallel) primes.

3.2 Series-parallelism

We focus on programs that can fork into multiple threads, which perform their own computations

before joining together to resume execution as a single thread. This type of concurrency is known

as fork/join concurrency . It can be described by series-parallel pomsets [Law75], as follows.
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cup heat

milk tea

Figure 3.2: A non-series-parallel pomset.

Definition 3.19 (Series-parallel pomsets). The set of series-parallel pomsets, or sp-pomsets,

denoted SP, is the smallest set satisfying the rules

1 ∈ SP

a ∈ Σ

a ∈ SP

U, V ∈ SP

U · V ∈ SP

U, V ∈ SP

U ‖ V ∈ SP

Remark 3.20. It should be clear that the pomsets in SP built without parallel composition have

a total order on their nodes, and hence correspond exactly to Σ∗, the set of words over Σ.

All pomsets we have encountered thus far are series-parallel. However, not all pomsets can be

built using sequential and parallel composition. For instance, suppose we refine our description

of the tea dispenser to include the action heat, which heats the tea, and cup, which drops a cup

into the holder. In this case, the machine could drop a cup before dispensing milk and tea, but

before tea can be dispensed it also needs to be heated (c.f. Figure 3.2). Note that there is no causal

dependency between heat and milk: indeed, the milk may be poured before heating and pouring

tea, or vice versa. The resulting pomset cannot be divided into parallel or sequential parts [Law78];

because it is also non-trivial, it is not series-parallel. In a sense, this shows that sp-pomsets cannot

capture message-passing concurrency [LW00]. Different mechanisms to construct more general

pomsets have been proposed [MH15; HSM+16; FJS+20], but these are beyond our scope.

Let us formalise the shape of such a message-passing interaction as follows.

Definition 3.21 (N-shapes, N-freedom [Law78]). Let U = [u] be a pomset. An N-shape in U is a

quadruple u0, u1, u2, u3 ∈ S4
u of distinct points such that u0 ≤u u1, u2 ≤u u3 and u0 ≤u u3 and

there exists no other relation between them. We say that U is N-free if it has no N-shapes.

It is not hard to show that an N-shape cannot be created by sequential and parallel composition.

As a matter of fact, the absence of shapes like this also means that we can deconstruct a pomset

using sequential and parallel composition.2 More formally, the following is known.

Theorem 3.22 [Gra81; VTL82; Gis88]. A pomset is series-parallel if and only if it is N-free.

2This is not unlike how distributive lattices can be characterised by the shapes of their sublattices [Bir48].



30 CHAPTER 3. POMSETS AND SR-EXPRESSIONS

cup heat

milk tea

Figure 3.3: Pomset subsumed by Figure 3.2.

3.3 Subsumption

On the one hand, a pomset may represent an ideal execution of a program, where actions scheduled

in parallel by the program are also unordered. On the other hand, it is generally allowed for an

implementation to introduce more ordering between the events; this can happen, for example, when

the number of parallel actions exceeds the number of available CPUs. To reason about such a

(partial) sequentialisation, we need the notion of subsumption [Gra81; Gis88], defined as follows.

Definition 3.23 (Subsumption). Let U = [u] and V = [v]. We say U is subsumed by V , denoted

U v V , if there exists a labelled poset isomorphism from v to u that is also a bijection.

Intuitively, U v V should be interpreted to mean that any ordering of events that refines the

one mandated by U is also a valid refinement of the order described by V . In other words, if U v V ,

then U is “more sequential” than V , i.e., U contains all of the ordering of V and possibly more.

Example 3.24. Suppose the pomset U in Figure 3.2 represents the ideal behaviour of our tea

dispenser, while the actual implementation waits for the tea to be heated before dispensing milk,

as depicted in the pomset V in Figure 3.3. In that case, V v U , as witnessed by the morphism

that maps the event labelled by cup (resp. heat, milk, tea) in U to the corresponding event in V .

Remark 3.25. Subsumption is a preorder on pomsets. For finite pomsets it is also antisymmetric,

making it a partial order; for infinite pomsets, antisymmetry does not hold [Ési02, Example 3.2(3)].

One easily shows that subsumption is irrelevant on empty and primitive pomsets.

Lemma 3.26. Let U, V ∈ Pom with U v V or V v U . If U is empty, then U = V . Furthermore,

if U is primitive, i.e., U = a for some a ∈ Σ, then V = a.

We can also relate pomset composition to subsumption. For instance, if a pomset is subsumed

by a sequential pomset, then this sequential composition also appears in the subsumed pomset.

Lemma 3.27 (Separation; c.f. [BÉ96, Theorem A.9]). Let U, V ∈ Pom with U v V .

(i) If V = V0 · V1, then U = U0 · U1 such that U0 v V0 and U1 v V1.

(ii) If U = U0 ‖ U1, then V = V0 ‖ V1 such that U0 v V0 and U1 v V1.
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Decomposition is still possible when a sequential pomset is subsumed by a parallel pomset, but

slightly more involved. This lemma can be thought of as the pivotal part of [Gis88, Lemma 5.6].

Lemma 3.28 (Interpolation). Let U, V,W,X be pomsets such that U · V v W ‖ X. Then there

exist pomsets W0,W1, X0, X1 such that all of the following hold:

W0 ·W1 vW X0 ·X1 v X U vW0 ‖ X0 V vW1 ‖ X1

Moreover, if W and X are series-parallel, then so are W0, W1, X0 and X1.

3.4 Pomset languages

Programs typically have more than one way of being executed — for instance, our tea dispenser

may have the option of not pouring milk. We can collect the pomsets that model valid behaviours

of the tea dispenser, or any other program, in a pomset language.

Definition 3.29 (Pomset languages). A pomset language is a set of pomsets; a pomset language

made up of sp-pomsets is referred to as a series-parallel language, or sp-language for short.

Example 3.30. To describe the pouring behaviour of the tea dispenser, we could have the language

L = {tea, tea ‖ milk}. This language offers two behaviours: one where tea is poured, and one

where tea and milk come out at the same time.

Convention 3.31. When U ∈ SP, we sometimes use U to denote the pomset language {U}.

We can build pomset languages by composing other pomset languages. For instance, if L,K ⊆

Pom represent the possible executions of the first and second parts of a program, then any pomset

in L sequentially composed with one in K may represent an execution of the program as a whole.

Definition 3.32 (Pomset language composition). Let L,K ⊆ Pom. We define the following.

L+K = L ∪K L ·K = {U · V : U ∈ L, V ∈ K} L ‖ K = {U ‖ V : U ∈ L, V ∈ K}

Sequential composition in turn gives rise to the Kleene closure, as follows:

L∗ =
⋃
n∈N

Ln where L0 = {1} and Ln+1 = Ln · L

Example 3.33. For the part of the tea dispenser behaviour before pouring, we could have the

language K = {cup ‖ heat}. Sequentially composing this language with L as in Example 3.30, we

find that K · L = {(cup ‖ heat) · tea, (cup ‖ heat) · (tea ‖ milk)}.
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When describing program behaviour in terms of pomsets, we may want to further refine this

description by looking at the behaviour that is internal to each action. A substitution [Gra81;

Gis88] provides a pomset language representing the possible (internal) behaviour of each action over

some other alphabet; we can apply a substitution to a language to include such internal actions.

Definition 3.34 (Pomset language substitution). Let ∆ be an alphabet. A substitution is a

function ζ : Σ→ 2Pom(∆). We can lift such a substitution to ζ : Pom(∆)→ 2Pom(∆), as follows:

ζ(1) = {1} ζ(U · V ) = ζ(U) · ζ(V ) ζ(U ‖ V ) = ζ(U) ‖ ζ(V )

When L is a series-parallel pomset language, we write ζ(L) for the pomset language
⋃
U∈L ζ(U).

Example 3.35. Suppose that the action tea internally consists of the actions mix and brew (in

that order), for mixing tea and water and brewing the tea, respectively. Furthermore, suppose milk

has the internal behaviour of offering soy milk (the action soy) or dairy milk (the action dairy). We

could then refine our model of behaviour by means of the substitution ζ where ζ(tea) = {mix ·brew},

and ζ(milk) = {soy, dairy}. If L = {tea, tea ‖ milk}, then we find that

ζ(L) = {mix · brew, mix · brew ‖ soy, mix · brew ‖ dairy}

3.5 Series-rational expressions

We now have everything in place to define a very rudimentary programming language, namely

that of series-rational expressions [LW00]. On the one hand, this language allows us to specify

the actions that a program with fork/join concurrency may perform, and compose them using

sequential and parallel composition, as well as iteration and non-deterministic choice. On the

other hand, the language lacks a mechanism to express control flow (i.e., conditional branching and

iteration) or partial interleaving; we will use it as a boilerplate to add these features in Part I.

Definition 3.36 (Syntax). The set of series-rational expressions, or sr-expressions for short, is

denoted by T and generated by the grammar

e, f ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e ‖ f | e∗

In addition to the primitive actions from Σ, series-rational expressions have the constants

0 and 1. For our purposes, the constant 0 represents the program without any valid (finite)

behaviour, which can be thought of as the program that crashes immediately, or a program that
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loops indefinitely. The constant 1 represents the no-operation program, i.e., one that terminates

immediately and successfully, without performing any action. The operator + represents non-

deterministic composition, i.e., e+f is a program that either executes the program e or the program

f . The operators · and ‖ correspond to sequential and parallel composition respectively, i.e., e · f is

the program that first executes e, followed by f , while e ‖ f is the program that runs e and f in

parallel. Lastly, the unary operator (−)
∗

(called Kleene star) corresponds to (non-deterministic)

iteration: e∗ represents the behaviour of running e some (possibly zero) number of times.

Convention 3.37. Sequential composition takes precedence over parallel composition, which in

turn takes precedence over non-deterministic composition. The unary operator of iteration has the

highest precedence. For instance, an expression like a ·b ‖ c+d∗ should be read as ((a ·b) ‖ c)+(d∗).

Example 3.38. The behaviour of one iteration of the tea dispensing machine can be described by

e = (cup ‖ heat) · ((dairy + soy) ‖ tea) + (cup ‖ heat) · tea

In this description, the machines offers a choice of tea with milk (on the left) and tea without

milk (on the right). In both branches, the machine pops out a cup and heats the tea, but in the

left branch the further choice between dairy and soy milk is offered. The overall behaviour of the

machine could then be described by e∗, which repeats the single-iteration behaviour in e.

Remark 3.39. We can also add an additional “parallel star” operator (−)
†
, sometimes denoted

(−)
(∗)

. This operator corresponds to (non-deterministic) parallel iteration, i.e., e† is the program

that runs zero or more parallel copies of e. Expressions in this extended syntax are known as

series-parallel rational expressions [LW00]. While (−)
†

is not without merit for modelling program

behaviour, we exclude it to keep our discussion simple. We return to this operator in Chapter 9.

So far, we have defined only the syntax of series-rational expressions. To attach a precise

meaning, we can associate a pomset language with each expression, where each pomset is meant to

represent a possible behaviour of the program. This is done by the semantics function J−K.

Definition 3.40 (Semantics). The function J−K : T → 2SP is defined inductively, as follows:

J0K = ∅ JaK = a Je · fK = JeK · JfK Je∗K = JeK ∗

J1K = {1} Je+ fK = JeK + JfK Je ‖ fK = JeK ‖ JfK

Convention 3.41. If L,K ⊆ SP, then expressions like L∗ + a ·K are both pomset languages and

sr-expressions over 2SP; in particular, T ⊆ T (2SP) as well as 2SP ⊆ T (2SP). The intended meaning

of such expressions will always be clear from context. When e, f ∈ T (2SP), we will write e
.
= f to

mean that e and f denote the same pomset language. In particular, if e ∈ T , then e
.
= JeK.
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Given e, f ∈ T , does their semantics coincide? This is not obvious, because JeK and JfK may be

infinite, so we cannot compare them exhaustively. Fortunately, this problem is decidable.

Theorem 3.42 [LS14; BPS17]. Let e, f ∈ T . It is decidable whether JeK = JfK.3

Remark 3.43. expspace is an upper complexity bound for this problem [BPS17]. Since checking

equivalence of rational expressions is a special case, pspace is a lower bound [SM73; CKS96].

We can also reason about equivalence of sr-expressions syntactically. For instance, since parallel

composition of pomsets is commutative [Gis88], e ‖ f should have the same semantics as f ‖ e. The

axioms of Kleene algebra [Koz94] and commutative Kleene algebra [Con71] apply [HMS+09].

Definition 3.44 (Bi-Kleene algebra). A bi-Kleene algebra congruence, or BKA congruence for

short, is a congruence ≈ on T w.r.t. all operators, such that for all e, f, g ∈ T the following hold:

e+ 0 ≈ e e+ e ≈ e e+ f ≈ f + e e+ (f + g) ≈ (f + g) + h

e · (f · g) ≈ (e · f) · g e · (f + g) ≈ e · f + e · h (e+ f) · g ≈ e · g + f · g

e · 1 ≈ e ≈ 1 · e e · 0 ≈ 0 ≈ 0 · e e ‖ f ≈ f ‖ e e ‖ 1 ≈ e e ‖ 0 ≈ 0

e ‖ (f ‖ g) ≈ (e ‖ f) ‖ g (e+ f) ‖ g ≈ e ‖ g + f ‖ g 1 + e · e∗ ≈ e∗ ≈ 1 + e∗ · e

e+ f · g / g =⇒ f∗ · e / g e+ f · g / f =⇒ e · g∗ / f (where e / f ⇐⇒ e+ f ≈ f)

We write ≡ for the smallest BKA congruence, and e 5 f whenever e+ f ≡ f .

Remark 3.45. It is fairly easy to show that if ≈ is a BKA congruence, then / is a preorder on T ;

indeed, it is a partial order up to ≈, in the sense that if e, f ∈ T such that e / f / e, then e ≈ f .

All operators are monotone w.r.t. /, e.g., if e, f, g ∈ T such that e / f , then e · g / f · g.

Remark 3.46. Readers familiar with concurrent Kleene algebra will notice that the signature

axiom of the exchange law [HMS+09], which allows (partial) interleaving of threads is missing; hence

/ is not related to v. As a matter of fact, the exchange law can be added to the semantics and

axioms using the general framework of hypotheses; this is the main result discussed in Chapter 5.

Of course, we should check whether the above axioms are sound, i.e., whether expressions related

by ≡ indeed yield the same behaviour. This turns out to be the case; more formally, we have:

Theorem 3.47 [LS14].
.
= is a BKA congruence. In particular, if e ≡ f , then JeK = JfK.

3We will present an alternative proof in Chapter 8.
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Convention 3.48. Non-deterministic, sequential and parallel composition of series-rational ex-

pressions are associative (modulo their semantics); hence, we drop parentheses when possible.

It will happen quite often that we need to write down an sr-expression that non-deterministically

chooses between a finite number of sr-expressions. Since non-deterministic choice is commutative

and associative w.r.t. BKA equivalence, the order and bracketing of such an expression is immaterial.

We therefore denote such an expression using generalised sum notation, i.e., when {e1, . . . , en} ⊆ T

we may denote e1 + · · · en by
∑
e∈S e. More generally, the subscript to the sum operator may be

some predicate that qualifies finitely many sr-expressions to appear in the summation.

When reasoning about such summations, it is useful to note that if S ⊆ T is finite and f ∈ T is

such that, for every e ∈ S, it holds that e 5 f , then we also have that
∑
e∈S e 5 f . Conversely, if∑

e∈S e 5 f , then we have for every e ∈ S that e 5 f . Both of these facts can be proved easily from

the axioms of non-deterministic choice. We will use this reasoning step implicitly in the sequel.

Example 3.49. Because of Theorem 3.47, we can use the axioms that build ≡ to reason about

series-rational expressions. For instance, recall the expression e that we saw in Example 3.38:

(cup ‖ heat) · ((dairy + soy) ‖ tea) + (cup ‖ heat) · tea

By left-distributivity of sequential composition over non-deterministic choice, we can factor out the

appearances of cup ‖ heat on the left-hand side of both operands to find that it is equivalent to

(cup ‖ heat) · ((dairy + soy) ‖ tea + tea)

Next, note that 1 is a unit of ‖, and that ‖ is commutative; hence, 1 ‖ tea ≡ 1 ‖ tea ≡ tea.

Because ≡ is a congruence, we can perform this substitution inside the above expression to obtain

(cup ‖ heat) · ((dairy + soy) ‖ tea + 1 ‖ tea)

Using distributivity of parallel composition over non-deterministic choice, we can factor out the

parallel composition with tea in the second half of the expression to obtain

(cup ‖ heat) · ((dairy + soy + 1) ‖ tea)

Arguably, this last expression is a simpler representation of the behaviour described by e.

Convention 3.50. When reasoning about equivalence w.r.t. some BKA congruence ≈, we will use

≡ to emphasize equivalences that are true as a consequence of the BKA congruence axioms alone,

instead of being particular to ≈. For instance, to prove e ≈ f , we may write e ≡ g ≈ h ≡ f .
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Conversely, we could ask whether the axioms of BKA congruence are complete, i.e., whether all

series-rational expressions that have the same behaviour can be proved equivalent using ≡. Such

a question is substantially harder to resolve than soundness — in this case, it can be answered

positively by combining earlier results about (commutative) Kleene algebra [Con71; Koz94].

Theorem 3.51 [LS14]. Let e, f ∈ T . We have e ≡ f if and only if JeK = JfK.

We sometimes need to restrict our discourse to sr-expressions whose semantics does (not) include

the empty pomset, similar to how Arden’s rule [Ard61] applies only to languages not containing

the empty word. This can be done with a simple extension of how Brzozowski [Brz64] inductively

characterised rational expressions whose semantics contains the empty word, as follows.

Definition 3.52. We define F as the smallest subset of T satisfying the following rules:

1 ∈ F

e ∈ F f ∈ T

e+ f ∈ F f + e ∈ F

e, f ∈ F

e · f ∈ F e ‖ f ∈ F

e ∈ T

e∗ ∈ F

To see that F indeed characterise the presence of the empty pomset, we record the following.

Lemma 3.53. Let e ∈ T . Now e ∈ F if and only if 1 ∈ JeK, which holds precisely when 1 5 e.

Convention 3.54. When Ψ is some logical assertion, we use [Ψ] to denote the sr-expression 1 when

Ψ is true, and 0 otherwise. For instance [2 + 2 = 5] = 0, while for e ∈ F we have that [e ∈ F ] 5 e.

3.6 Series-rational systems

It is well-known that rational expressions correspond to a machine model in terms of finite

automata [Kle56], and that commutative rational expressions can be described in terms of semi-

linear spaces [Red64b; Pil70]. Indeed, the former correspondence has proved to be very useful as a

way of constructing rational expressions, given a description in terms of a (finite) abstract machine;

see, for instance [DKP+19]. In this section, we show that Kleene’s technique (demonstrated also

in [MY60; Ard61; Sal66; Con71; Bac75]) can be straightforwardly lifted to sr-expressions.

To illustrate, suppose our tea dispenser has two modes. In “normal” mode, it operates as usual,

described by e ∈ T ; the machine may also terminate. The second, “cleaning” mode, would flush the

machine. From normal mode, cleaning mode is activated by the action clean; here, the machine

would flush using the action flush until done, at which point it transitions back to normal mode

by the action cleaned. We can think of this behaviour in terms of the machine in Figure 3.4.
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normal cleaninge flush

clean

cleaned

Figure 3.4: Tea dispenser modes of operation.

If we formulate the structure of this machine in terms of equations, we can use the rules for

reasoning about sr-expressions to obtain an expression describing its behaviour [Ard61]. The

behaviour in normal mode consists of three options: either perform the normal behaviour specified

by e, followed by the behaviour in normal, or emit the action clean and proceed with the behaviour

of cleaning, or terminate. Similarly, the cleaning mode consists of either performing the action

flush and starting over, or emitting the action cleaned and returning to normal mode.

Thus, if xnormal and xcleaning are unknowns for the expressions representing normal and

cleaning respectively, then we can describe their behaviour by the following equations.

e · xnormal + clean · xcleaning + 1 5 xnormal

cleaned · xnormal + flush · xcleaning 5 xcleaning
(3.1)

More precisely, the expression we are looking for is the least solution to xnormal in the system

above; after all, we do not want to include any behaviour that is not part of the specification.

It is not immediately obvious that the system above admits a solution to xnormal, given its

mutually recursive nature. However, we can find a solution, using the axioms of BKA congruence.

First, we eliminate the variable xcleaning; to this end, we apply the second-to-last axiom to the

second inequation in (3.1) to obtain that flush∗ · cleaned · xnormal 5 xcleaning. We can fill in this

lower bound on xcleaning into the first inequation, which tells us that

e · xnormal + clean · flush∗ · cleaned · xnormal + 1 5 xnormal

By right-distributivity of sequential composition over non-deterministic choice, we obtain

(e+ clean · flush∗ · cleaned) · xnormal + 1 5 xnormal

Applying the first fixpoint axiom to the above, we can then conclude that

(e+ clean · flush∗ · cleaned)
∗ · 1 5 xnormal

We have therefore found a lower bound on any solution to xnormal in (3.1); plugging this back

into (3.1), we also find a lower bound on xcleaning. With some additional work, it is possible to

show that these lower bounds are in fact tight solutions, i.e., (3.1) holds with ≡ instead of 5.
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That we could solve to this system of equations is not a coincidence. In fact, it is well-known

that finite systems of equations of rational expressions in the format of (3.1) admit a unique least

solution [Ard61; Con71; Bac75]. To see this, let us first formalise the format of such systems.

Definition 3.55 (Series-rational system). Let Q be a finite set. A series-rational system on Q, or

sr-system, is a pair S = 〈M, b〉, where M : Q2 → T and b : Q→ T . Let ≈ be a BKA congruence

on T (∆) with Σ ⊆ ∆, and e ∈ T . We call s : Q→ T (∆) a 〈≈, e〉-solution to S if for q ∈ Q:

b(q) · e+
∑
q′∈Q

M(q, q′) · s(q′) / s(q)

Lastly, s is the least 〈≈, e〉-solution if, for every such solution s′ and every q ∈ Q we have s(q) / s′(q).

Convention 3.56. When x : Q→ T and e ∈ T , we write xe for the vector given by xe(q) = x(q) ·e.

Remark 3.57. In the above, we can regard M as a Q-indexed matrix, and b and s as Q-indexed

vectors [Ard61; Con71]. We can define the multiplication of a Q-indexed vector t by a Q-indexed

matrix N in the usual way, that is, as the Q-indexed vector given by (N ·t)(q) =
∑
q′∈QN(q, q′)·t(q′).

If we lift + and / pointwise to Q-indexed vectors, then s is a 〈≈, e〉-solution when be +M · s / s.

Equivalently, s is a 〈≈, e〉-solution if it is a pre-fixpoint of the function which sends a Q-vector x

to be +M ·x (w.r.t. /). Furthermore, s is the least 〈≈, e〉-solution if it is the least such pre-fixpoint

(and hence the least fixpoint — see Lemma 3.59 below).

Example 3.58. Consider the series-rational system in (3.1). We can encode these inequations if

we choose Q = {normal,cleaning}, and we choose the system S = 〈M, b〉 on Q by setting

M(normal,normal) = e M(normal,cleaning) = clean b(normal) = 1

M(cleaning,normal) = cleaned M(cleaning,cleaning) = flush b(cleaning) = 0

Since ≡ in particular is a BKA congruence on T , we have that any 〈≡, 1〉-solution to S can be

plugged into (3.1) on the corresponding positions for the unknowns. Conversely, any solution to

the unknowns in (3.1), such as the one demonstrated above, is a 〈≡, 1〉-solution to S.

On an intuitive level, if S = 〈M, b〉 is an sr-system on Q, we can think of the elements of Q

as states of an operational description, with M as the transitions relation, while b describes the

halting behaviour, i.e., the behaviour that occurs when a state decides to halt execution.

Lemma 3.59. Let S = 〈M, b〉 be an sr-system on Q, and let ≈ be a BKA congruence on T (∆)

with Σ ⊆ ∆, and e ∈ T . Suppose s is the least 〈≈, e〉-solution to S. In that case, we have for q ∈ Q:

be(q) +
∑
q′∈Q

M(q, q′) · s(q′) ≈ s(q)
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On the other hand, it is not immediately obvious that for a given BKA congruence ≈ and e ∈ T

a 〈≈, e〉-solution even exists, let alone a least solution. Fortunately, algorithms to compute solutions

and least solutions exist [Ard61; Con71; Bac75]; the solutions computed are independent of ≈ or e.

These algorithms commonly take their cue from Kleene’s method to construct a rational expression

from a finite automaton [Kle56]; we present one such construction below.

Theorem 3.60. Let S = 〈M, b〉 be an sr-system on Q. We can construct an s : Q→ T such that,

for any BKA congruence ≈ on T (∆) with Σ ⊆ ∆ and any e ∈ T , the Q-vector se : Q→ T is the

least 〈≈, e〉-solution to S; we call such an s the least solution to S.

Proof. This proof is somewhat involved. We proceed by induction on the size of Q, which is possible

because it is finite. In the base, where Q = ∅, we can choose for s the empty function from Q to T .

For the inductive step, let Q 6= ∅. Our induction hypothesis is that, for any sr-system on a set

strictly smaller than Q, we can construct a least solution. Let Q = Q′ ∪ {q} with q 6∈ Q′. We craft

the series-rational system S ′ = 〈M ′, b′〉 on Q′ by choosing M ′ : Q′
2 → T and b′ : Q→ T given by

M ′(q′, q′′) = M(q′, q′′) +M(q′, q) ·M(q, q)
∗ ·M(q, q′′)

b′(q′) = b(q′) +M(q′, q) ·M(q, q)
∗ · b(q)

The intuition to this new system is that q is “eliminated” from the new system, by embedding

its dynamics into the behaviour of the other states: transitions from q′ to q′′ as recorded in M ′

are those in M ′, but augmented with the possibility of first taking a detour via q, following some

self-transitions there, and then transitioning to q′′. Similarly, the terminating behaviour in q′ as

recorded in b′ may also transition to q and take zero or more self-transitions, before halting there.

By induction, we obtain the least solution s′ : Q′ → T to S ′. We choose s : Q→ T by setting

s(q′) =


M(q, q)

∗ ·
(
b(q) +

∑
q′′∈Q′

M(q, q′′) · s′(q′′)
)

q′ = q

s′(q′) q′ 6= q

Let ≈ be a BKA congruence on T (∆) with Σ ⊆ ∆, and let e ∈ T . For q′ ∈ Q we then have that

be(q′) +
∑
q′′∈Q

M(q′, q′′) · se(q′′)

≈ be(q′) +
∑
q′′∈Q′

M(q′, q′′) · se(q′′) +M(q′, q) · se(q) (split out sum)

≈ be(q′) +
∑
q′′∈Q′

M(q′, q′′) · s′e(q′′) +M(q′, q) ·M(q, q)
∗ ·
(
be(q) +

∑
q′′∈Q′

M(q, q′′) · s′e(q′′)
)

(∗)
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On the one hand, if q′ ∈ Q′, then ≈ allows us to rearrange (∗) into the following

be(q′) +M(q′, q) ·M(q, q)
∗ · be(q) +

∑
q′′∈Q′

(M(q′, q′′) +M(q′, q) ·M(q, q)
∗ ·M(q, q′′)) · s′e(q′′)

≈ b′e(q′) +
∑
q′′∈Q′

M ′(q′, q′′) · s′e(q′′) (def. b′ and M ′)

/ s′e(q′) = se(q) (induction and def. s)

On the other hand, if q′ = q, then (∗) is precisely the expression below, which allows us to derive

be(q) +
∑
q′′∈Q′

M(q, q′′) · s′e(q′′) +M(q, q) ·M(q, q)
∗ ·
(
be(q) +

∑
q′′∈Q′

M(q, q′′) · s′e(q′′)
)

≈ (1 +M(q, q) ·M(q, q)
∗
) ·
(
be(q) +

∑
q′′∈Q′

M(q, q′′) · s′e(q′′)
)

(distributivity)

≈M(q, q)
∗ ·
(
be(q) +

∑
q′′∈Q′

M(q, q′′) · s′e(q′′)
)

= se(q)

Thus the condition on every q′ ∈ Q is satisfied. This makes s a 〈≈, e〉-solution to S.

To see that it is the least 〈≈, e〉-solution, suppose that t : Q→ T (∆) is a 〈≈, e〉-solution. First,

we note that we can derive the following.

be(q) +
∑
q′∈Q′

M(q, q′) · t(q′) +M(q, q) · t(q) ≈ be(q) +
∑
q′∈Q

M(q, q′) · t(q′) / te(q)

and hence, by the fixpoint axiom, we find that

M(q, q)
∗ ·
(
be(q) +

∑
q′∈Q′

M(q, q′) · t(q′)
)
/ t(q) (3.2)

Let t′ : Q′ → T (∆) be the restriction of t to Q′. We claim that t′ is a solution to S ′. To see

this, we derive using the definitions of b′, M ′ and t′ for q′ ∈ Q′ that

b′e(q′) +
∑
q′′∈Q′

M ′(q′, q′′) · t′(q′′)

≈ be(q′) +M(q′, q) ·M(q, q)
∗ · be(q) +

∑
q′′∈Q′

(M(q′, q′′) +M(q′, q) ·M(q, q)
∗ ·M(q, q′′)) · t(q′′)

Using distributivity, ≈ allows us to rearrange the above to

be(q′) +M(q′, q) ·M(q, q)
∗ ·
(
be(q) +

∑
q′′∈Q′

·M(q, q′′) · t(q′′)
)

+
∑
q′′∈Q′

M(q′, q′′) · t(q′′)

Next, using eq. (3.2), we can show that the above is related by / to

be(q′) +M(q′, q) · t(q) +
∑
q′′∈Q′

M(q′, q′′) · t(q′′) ≈ be(q′) +
∑
q′′∈Q′

M(q′, q′′) · t(q′′)

/ t(q′) = t′(q′)
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Since s′e is the least 〈≈, e〉-solution to S, we have for q′ ∈ Q′ that se(q′) = s′e(q′) / t′(q′) = t(q′).

It remains to prove that se(q) / t(q). To this end, we derive using eq. (3.2) that

se(q) = M(q, q)
∗ ·
(
be(q) +

∑
q′′∈Q′

M(q, q′′) · s′e(q′′)
)

/M(q, q)
∗ ·
(
be(q) +

∑
q′′∈Q′

M(q, q′′) · t′(q′′)
)
/ t(q)

It is important to emphasize the wording of Theorem 3.60: if s is the constructed vector, and

we choose any BKA congruence ≈ and e ∈ T , then s is the least 〈≈, e〉-solution. This is true even

if ≈ is a BKA congruence on sr-expressions over a larger alphabet, despite s assigning states to

sr-expressions over Σ. To demonstrate the power of least solutions, we record the following.

Corollary 3.61. Let S = 〈M, b〉 be an sr-system on Q with least solution s. Then J−K ◦ s is the

least function L : Q→ 2SP (w.r.t. the pointwise inclusion order) such that for q ∈ Q we have

Jb(q)K ∪
⋃
q∈Q

JM(q, q′)K · L(q′) ⊆ L(q) (3.3)

Proof. Recall the BKA congruence
.
= on T (2SP), as in Convention 3.41.

By Theorem 3.60, we have that s is the least 〈 .=, 1〉-solution to S, which means that it is the

least function from Q to T (2SP) such that for q ∈ Q:

b(q) · 1 +
∑
q∈Q

M(q, q′) · s(q′) ≤̇ s(q)

where ≤̇ is the precongruence associated with
.
=. Let L : Q→ 2SP be the least function satisfying

eq. (3.3). Since L is also a function from Q to T (2SP), we have s(q) ≤̇ L(q), and hence Js(q)K ⊆ L(q).

Conversely, since J−K ◦ s satisfies the condition on L, we find for q ∈ Q that L(q) ⊆ Js(q)K.

3.A Proof of unique factorisation lemma

To prove Lemma 3.17, we need the following generalisation of a lemma due to Levi [Lev44].

Lemma 3.A.1. Let U, V,W,X be pomsets such that U · V = W ·X. There exists a pomset Y such

that either U = W · Y and Y · V = X, or U · Y = W and V = Y ·X.

Proof. Let u,v,w,x be labelled posets such that U = [u], V = [v], W = [w] and X = [x]. Without

loss of generality, we assume that Su ∪Sv = Sw ∪Sx, with Su and Sv as well as Sw and Sx disjoint.

Suppose, towards a contradiction, that Su is incomparable to Sw, i.e., that Su 6⊆ Sw and

Sw 6⊆ Su. Then there exists a u ∈ Su \Sw and a w ∈ Sw \Su. Since u 6∈ Sw, it follows that u ∈ Sx;
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by the same reasoning, we find that w ∈ Sv. But then u ≤u·v w, and w ≤w·x u, and since ≤u·v

and ≤w·x coincide, we find that u = w by antisymmetry; this is a contradiction, since u ∈ Su and

w 6∈ Su. Thus, our assumption must have been false, and hence Su ⊆ Sw or Sw ⊆ Su.

For the remainder of this proof, suppose that Su ⊆ Sw; we can prove the claim when Sw ⊆ Su

using similar arguments. We choose the labelled poset y such that Sy = Sw \ Su, ≤y = ≤w ∩ S2
y

and λy : Sy → Σ such that λy(y) = λw(y). We now claim that w = u · y. To see this, we show

that their carriers, orders and labellings coincide.

• For the carrier, note that u and y are disjoint, and that Sw = Su ∪ (Sw \ Su) = Su ∪ Sy.

• For the order, suppose first that w0, w1 ∈ Sw with w0 ≤w w1. There are four cases.

– If w0, w1 ∈ Su, then since w0 ≤w w1, we have w0 ≤w·x w1. Because w · x = u · v it

follows that w0 ≤u·v w1, and hence w0 ≤u w1. This in turn means that w0 ≤u·y w1.

– If w0, w1 ∈ Sy, then w0 ≤y w1, and thus w0 ≤u·y w1.

– If w0 ∈ Su and w1 ∈ Sy, then w0 ≤u·y w1 by definition.

– The case where w1 ∈ Su and w0 ∈ Sy can be discounted, for here we find that

w0 ∈ Sy ⊆ Sv, and thus w1 ≤u·v w0, meaning that w1 ≤w·x w0, which in turn

implies that w0 = w1, contradicting that Su and Sy are disjoint.

Now suppose that w0, w1 ∈ Sw with w0 ≤u·y w1. There are three cases to consider.

– If w0, w1 ∈ Su, then w0 ≤u w1, and thus w0 ≤u·v w1. Since u · v = w · x, we have that

w0 ≤w·x w1. Since w0, w1 ∈ Sw, we have w0 ≤w w1.

– If w0, w1 ∈ Sy, then w0 ≤y w1. Since ≤y ⊆ ≤w, we find that w0 ≤w w1.

– If w0 ∈ Su and w1 ∈ Sy, then w1 ∈ Sv and therefore w0 ≤u·v w1. Since u · v = w · x,

we have that w0 ≤w·x w1. Since w0, w1 ∈ Sw, we then know that w0 ≤w w1.

• For the labelling, let w ∈ Sw. If w ∈ Su, then λw(w) = λw·x(w) = λu·v(w) = λu(w) =

λu·y(w). On the other hand, if w ∈ Sy, then λw(w) = λy(w) by definition of y.

We now claim that v = y · x. To this end, we first note that if s ∈ Sx, then s 6∈ Sw, and

hence s 6∈ Su by the fact that Su ⊆ Sw; since s ∈ Su ∪ Sv, it follows that s ∈ Sv. This tells

us that Sx ⊆ Sv. Furthermore, note that s ∈ Sy if and only if s ∈ Sw but s 6∈ Su, which

holds precisely when s 6∈ Sx but s ∈ Sv; in other words, Sy = Sv \ Sx. Next, we observe that

≤y = ≤w ∩ S2
y = ≤w·x ∩ S2

y = ≤u·v ∩ S2
y = ≤v ∩ S2

y, where in the last step we use that Sy ⊆ Sv.
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These premises exactly mirror the premises that we used to derive that u · y = w using the

arguments above; a similar argument thus allows us to derive that v = y · x.

We shall also need the following variant of the previous lemma for parallel composition.

Lemma 3.A.2. Let U, V,W,X ∈ Pom with U ‖ V = W ‖ X. There exist Y0, Y1, Z0, Z1 ∈ Pom s.t.

U = Y0 ‖ Y1 V = Z0 ‖ Z1 W = Y0 ‖ Z0 X = Y1 ‖ Z1

Proof. Let U = [u], V = [v], W = [w], and X = [x], and assume without loss of generality that u

and v as well as w and x are disjoint, and that u ‖ v = w ‖ x. When s and t are labelled posets,

we write s ∩ t for the labelled poset given by Ss∩t = Ss ∩ St, ≤s∩t = ≤s ∩ ≤t and λs∩t(s) = λs(s).

We can then choose labelled posets y0, y1, z0 and z1 such that

y0 = u ∩w z0 = v ∩w y1 = u ∩ x z1 = v ∩ x

We claim that u = y0 ‖ y1, v = z0 ‖ z1, w = y0 ‖ z0 and x = y1 ‖ z1; the claim is then satisfied by

Yi = [yi] and Zi = [zi] for i ∈ {0, 1}. Because the proofs are similar, we show only the first equality.

• For the carrier, we can derive

Su = Su ∩ (Sw ∪ Sx) = (Su ∩ Sw) ∪ (Su ∩ Sx) = Sy0
∪ Sy1

• For the ordering, first suppose that u0 ≤u u1. There are four cases to consider.

– If u0, u1 ∈ Sw, then u0 ≤w u1 and hence u0 ≤y0
u1, meaning that u0 ≤y0‖y1

u1.

– If u0, u1 ∈ Sx, then u0 ≤x u1 and hence u0 ≤y1
u1, meaning that u0 ≤y0‖y1

u1.

– The case where u0 ∈ Sw and u1 ∈ Sx can be disregarded, for then we have that

u0 ≤u‖v u1, which means that u0 ≤w‖x u1 and hence u0, u1 ∈ Sw or u0, u1 ∈ Sx,

contradicting that Sw and Sx are disjoint.

– The case where u0 ∈ Sx and u1 ∈ Sw can be similarly disregarded.

• For the labelling, let u ∈ Su. On the one hand, if u ∈ Sw, then λu(u) = λu‖v(u) = λw‖x(u) =

λw(u) = λy0(u) = λy0‖y1
(u). On the other hand, if u ∈ Sx, then λu(u) = λu‖v(u) =

λw‖x(u) = λx(u) = λy1
(u) = λy0‖y1

(u).

This then leads to the following property of non-parallel and non-empty pomsets.

Lemma 3.A.3. If U1, . . . , Un,W,X ∈ Pom with n ≥ 1 such that U1, . . . , Un and X are non-empty

and non-parallel, and U1 ‖ · · ·Un = W ‖ X, then there exists a bijection f : {1, . . . , n} → {1, . . . , n}

such that Uf(1) ‖ · · · ‖ Uf(n−1) = W and Uf(n) = X.
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Proof. We proceed by induction on n. In the base, let n = 1. We then have that U1 = W ‖ X;

since U1 is non-empty and non-sequential, it follows that W must be empty. The claim then holds

vacuously, if we choose the unique bijection from {1, . . . , n} = {1} to itself.

For the inductive step, let n > 1. By Lemma 3.A.2, we find Y0, Y1, Z0, Z1 ∈ Pom such that

U1 ‖ · · · ‖ Un−1 = Y0 ‖ Y1 Un = Z0 ‖ Z1 W = Y0 ‖ Z0 X = Y1 ‖ Z1

Because Un is non-empty and non-parallel, there are two cases to distinguish.

• If Z0 = 1, then Y1 must be empty too, because otherwise X = Y1 ‖ Un is a parallel pomset.

In that case, Un = Z1 = X, and W = Y0, meaning that U1 ‖ · · · ‖ Un−1 = W . We can choose

the identity on {1, . . . , n} to satisfy the claim.

• If Z1 = 1, then Un = Z0 and X = Y1, meaning U1 ‖ · · · ‖ Un−1 = Y0 ‖ X and W = Y0 ‖ Un.

By induction, we find a bijection f ′ on {1, . . . , n−1} such that Uf ′(1) ‖ · · · ‖ Uf ′(n−2) = Y0 and

Uf ′(n−1) = X. We choose a bijection f on {1, . . . , n} by setting f(i) = f ′(i) for 1 ≤ i ≤ n− 2,

f(n − 1) = n and f(n) = f ′(n − 1). Thus, Uf(1) ‖ · · · ‖ Uf(n−1) = Uf(1) ‖ · · · ‖ Uf(n−2) ‖

Uf(n−1) = Y0 ‖ Un = W , as well as Uf(n) = Uf ′(n−1) = X.

We can now prove Lemma 3.17, as follows.

Lemma 3.17. Sequential and parallel factorisations exist uniquely.

Proof. Let U ∈ Pom. To find a sequential factorisation of U , we proceed by induction on the size of

U . In the base, U = 1; we choose n = 0. For the inductive step, there are two cases. First, if U is non-

sequential, then choose U1 = U . Otherwise, if U is sequential, then U = U ′ · U ′′ for U ′, U ′′ ∈ Pom.

Since U ′ and U ′′ are strictly smaller than U , they admit sequential factorisations U ′1, . . . , U
′
n′ and

U ′′1 , . . . , U
′′
n′′ . We choose n = n′ + n′′ and for 1 ≤ i ≤ n′ that Ui = U ′i , while for n′ < i ≤ n that

Ui = U ′′i−n′ . These Ui are non-sequential and non-empty, and U = U ′ ·U ′′ = U1 · · ·Un′ ·Un′+1 · · ·Un.

To see that sequential factorisations are unique, suppose that U admits sequential factorisations

U1, . . . , Un and U ′1, . . . , U
′
n′ . We proceed by induction on n+ n′ to show that n = n′, and that for

1 ≤ i ≤ n we have Ui = U ′i . In the base, where n+ n′ = 0, the claim holds immediately.

For the inductive step, where n + n′ > 0, we first note that necessarily n, n′ > 0; after all, if

n = 0 or n′ = 0, then one of U1 · · ·Un or U ′1 · · ·U ′n′ is empty, while the other one is not — which

would contradict that U1 · · ·Un = U = U ′1 · · ·U ′n′ . We thus proceed knowing that n, n′ > 0.

Now, suppose the claim holds for smaller values of n+n′. Since U1 · · ·Un = U ′1 · · ·U ′n′ , we find by

Lemma 3.A.1 that there exists a V ∈ Pom such that either U1 = U ′1 · · ·U ′n′−1 ·V and V ·Un = Un′ , or
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U1 ·V = U ′1 · · ·U ′n′−1 and Un = V ·U ′n′ . However, since Un and U ′n are non-sequential and non-empty,

it follows that V must be empty. We then know that Un = Un′ and U1 · · ·Un−1 = U ′1 · · ·U ′n′−1. By

induction, we find that n− 1 = n′ − 1, and for 1 ≤ i ≤ n− 1 that Ui = U ′i ; the claim follows.

To show unique existence of parallel factorisations, note that we can find a parallel factorisation

for any pomset inductively, just like we found a sequential factorisation. It remains to prove that

parallel factorisations are unique. To this end, suppose that a pomset U has parallel factorisations

{|U1, . . . , Un|} and {|U ′1, . . . , U ′n′ |}. We claim that n = n′, and that there exists a bijection f :

{1, . . . , n} → {1, . . . , n} such that for 1 ≤ i ≤ n we have Ui = U ′f(i).

The proof proceeds by induction on n + n′. In the base, where n + n′ = 0, the claim holds

vacuously. For the inductive step, where n+n′ > 0, note that n, n′ > 0 again. Since U1 ‖ · · · ‖ Un =

U ′1 ‖ · · · ‖ U ′n′ , we find by Lemma 3.A.3 that there exists a bijection g : {1, . . . , n−1} → {1, . . . , n−1}

such that Ug(1) ‖ · · · ‖ Ug(n−1) = U ′1 ‖ · · · ‖ U ′n′−1 and Ug(n) = U ′n′ . By induction, we then find

n−1 = n′−1, and a bijection f ′ : {1, . . . , n−1} → {1, . . . , n−1} such that for 1 ≤ i ≤ n−1 we have

Uf ′(g(i)) = U ′i . We choose f : {1, . . . , n} → {1, . . . , n} by setting f(i) = f ′(g(i)) for 1 ≤ i ≤ n− 1,

and f(n) = g(n). This makes f a bijection such that for 1 ≤ i ≤ n we have Uf(i) = U ′f(i).

3.B Proofs about subsumption

To prove Lemma 3.26, we need the following lemma.

Lemma 3.B.1. The subsumption order is a preorder on Pom, and antisymmetric on finite pomsets.

Proof. For reflexivity, we note that if U = [u] is a pomset, then the identity function h : Su → Su

given by h(u) = u can easily be shown to witness that U v U .

For transitivity, suppose that U, V,W ∈ Pom such that U v V and V v W . Without loss

of generality, we can assume that U = [u], V = [v] and W = [w], and that h : Sv → Su and

g : Sw → Sv witness that U v V and V vW respectively. It is then straightforward to show that

h ◦ g : Sw → Su witnesses that U vW .

For the last claim, suppose U, V ∈ Pom are finite, with U v V and V v U . Let U = [u] and

V = [v], let h : Sv → Su and g : Su → Sv witness U v V and V v U . A standard argument

from group theory says that there must be some n ≥ 1 such that (h ◦ g)
n

(that is, h ◦ g composed

with itself n times) is the identity on Su. We claim that f = g ◦ (h ◦ g)
n−1

: Su → Sv witnesses

v ∼= u. First, note that f is an order- and label-preserving bijection, by construction. To see that

f reflects order, let u, u′ ∈ Su with f(u) ≤v f(u′). In that case, g(f(u)) ≤u g(f(u′)). But since
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g ◦ f = (h ◦ g)
n
, we find u = g(f(u)) ≤u g(f(u′)) = u′. We conclude that U = V .

Lemma 3.26. Let U, V ∈ Pom with U v V or V v U . If U is empty, then U = V . Furthermore,

if U is primitive, i.e., U = a for some a ∈ Σ, then V = a.

Proof. First, suppose that U = 1. We then have that U = [1] and V = [v], where 1 is the unique

labelled poset with the empty carrier. We now claim that v = 1 and thus V = [1] = 1; to this end,

we treat the case where U v 1; the case where 1 v U can be argued similarly. Let h : S1 → Su

witness that U v 1. Then h is a bijection from S1 = ∅ to Su; accordingly, Su = ∅. In that case, the

order and labelling of u must also coincide with 1, and the claim follows.

Second, suppose that U = a for some a ∈ Σ. Then U = [u] for some pomset with singleton

carrier Su = {∗}, with λu(∗) = a. Furthermore, V = [v]. We then claim that u ∼= v; to this end, we

treat the case where U v V ; the case where V v U is similar. Let h : Sv → Su witness that U v V ;

we claim that V v U . Since h is a bijection from Sv to Su, it follows that Su = {†} is a singleton.

We write h−1 for the unique function from Su to Sv. Now, if u ≤u u
′, then u, u′ ∈ Su and thus

u = † = u′. Consequently, h−1(u) = h−1(u′), and thus h−1(u) ≤v h
−1(u′). Furthermore, if u ∈ Su,

then necessarily (h ◦ h−1)(u) = u. Thus, if u ∈ Su, then λu(u) = λu(h(h−1(u))) = λv(h−1(u)), and

hence λu = λv ◦ h−1. It follows that h−1 : Su → Sv is a subsumption witnessing that V v U . We

can thus conclude that U = V by Lemma 3.B.1.

Lemma 3.27 (Separation; c.f. [BÉ96, Theorem A.9]). Let U, V ∈ Pom with U v V .

(i) If V = V0 · V1, then U = U0 · U1 such that U0 v V0 and U1 v V1.

(ii) If U = U0 ‖ U1, then V = V0 ‖ V1 such that U0 v V0 and U1 v V1.

Proof. We start with the first claim. Let U , V0 and V1 be as in the premise, and write U = [u],

V0 = [v0] and V1 = [v1]. Without loss of generality, we can assume that v0 and v1 are disjoint,

that Sv0 ∪ Sv1 = Su, and that the identity function Sv0 ∪ Sv1 → Su is the subsumption witnessing

that u v v0 · v1. We then choose ui = u ∩ vi for i ∈ {0, 1}, and claim that u0 · u1 = u.

• For the carrier, we already know that

Su0·u1 = Su0 ∪ Su1 = (Su ∩ Sv0) ∪ (Su ∩ Sv1) = Su ∩ (Sv0 ∪ Sv1) = Su

• Now suppose that u, u′ ∈ Su such that u ≤u0·u1 u
′. There are two cases:

– If u, u′ ∈ Svi
for some i ∈ {0, 1}, then u ≤vi

u′, and thus u ≤v0·v1
u′, meaning u ≤u u

′.
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– If u ∈ Sv0 and u′ ∈ Sv1 , then u ≤v0·v1 u
′, and thus u ≤u u

′.

In the other direction, let u, u′ ∈ Su with u ≤u u
′. There are three cases.

– If u, u′ ∈ Svi
for some i ∈ {0, 1}, then u ≤vi

u′, and thus u ≤ui
u′, meaning u ≤u0·u1

u′.

– If u ∈ Sv0 = Su0 and u′ ∈ Sv1 = Su1 , then u ≤u0·u1 u
′ immediately.

– The case where u ∈ Su1
and u′ ∈ Su0

can be disregarded, for there we find u′ ≤v0·v1
u,

and thus u′ ≤u u, meaning that u = u′ and contradicting disjointness of u0 and u1.

• For the labelling, let u ∈ Su. If u ∈ Svi for i ∈ {0, 1}, then we derive that

λu(u) = λui
(u) = λvi

(u) = λv0·v1
(u)

We also claim that for i ∈ {0, 1}, it holds that ui v vi, as witnessed by the identity function

Svi
→ Sui

. To see this, let v, v′ ∈ Svi
be such that v ≤vi

v′. We then know that v ≤v0·v1
v′, and

thus v ≤u v
′ by the premise. However, since v, v′ ∈ Svi = Sui , it follows that v ≤ui v

′.

The first claim is now satisfied by choosing V0 = [v0] and V1 = [v1]. The second claim can be

proved analogously; here, we split up V = [v] according to U0 = [u0] and U1 = [u1].

3.C Proof of interpolation lemma

Lemma 3.28 (Interpolation). Let U, V,W,X be pomsets such that U · V v W ‖ X. Then there

exist pomsets W0,W1, X0, X1 such that all of the following hold:

W0 ·W1 vW X0 ·X1 v X U vW0 ‖ X0 V vW1 ‖ X1

Moreover, if W and X are series-parallel, then so are W0, W1, X0 and X1.

Proof. Let U = [u], V = [v], W = [w] and X = [x], and assume without loss of generality that

Su and Sv are disjoint, as are Sw and Sx, and that Su ∪ Sv = Sw ∪ Sx, where [u · v] v [w ‖ x] is

witnessed by the identity i : Sw ∪ Sx → Su ∪ Sv. We choose labelled posets w0, w1, x0 and x1:

w0 = w ∩ u w1 = w ∩ v x0 = x ∩ u x1 = x ∩ v

One easily verifies that these are pairwise disjoint. To show that [u] v [w0 ‖ x0], first note that

Sw0‖x0
= Sw0

∪ Sx0
= (Su ∩ Sw) ∪ (Su ∩ Sx) = Su ∩ (Sw ∪ Sx) = Su ∩ (Su ∪ Sv) = Su

We now claim that i : Sw0‖x0
→ Su, i.e., the identity on Su, is a subsumption witnessing that

[u] v [w0 ‖ x0]. To see this, let u0, u1 ∈ Su be such that u0 ≤w0‖x0
u1. If u0 ≤w0

z, then u0 ≤w u1
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by choice of w0. But then u0 ≤w‖x u1, and thus u0 ≤u·v u1 by the premise. Since u0, u1 ∈ Su, we

can conclude that u0 ≤u u1. We can similarly show that u0 ≤u u1 when u0 ≤x0
z and therefore we

conclude that [u] v [w0 ‖ x0]. A similar argument shows that [v] v [w1 ‖ x1].

To see [w0 ·w1] v [w], first note that Sw0·w1
= Sw by reasoning similar to the above. We claim

that i : Sw → Sw0·w1 , i.e., the identity on Sw, is a subsumption witnessing [w0 ·w1] v [w]. To see

this, suppose that w0, w1 ∈ Sw such that w0 ≤w w1. Then we know that w0 ≤w‖x w1, and thus

w0 ≤u·v w1 by the premise. We exclude the case where w1 ∈ Su and w0 ∈ Sv, for then w1 ≤u·v w0

and thus w0 = w1 by antisymmetry, contradicting that u and v are disjoint. Three cases remain.

• If w0, w1 ∈ Su, then w0 ≤w0
w1, and thus w0 ≤w0·w1

w1.

• If w0, w1 ∈ Sv, then w0 ≤w1
w1, and thus w0 ≤w0·w1

w1.

• If w0 ∈ Su and w1 ∈ Sv, then w0 ∈ Sw0
and w1 ∈ Sw1

, thus w0 ≤w0·w1
w1 by definition.

Since w0 ≤w0·w1
w1 in all possible cases, we conclude that i preserves ordering and is therefore a

subsumption. The proof that [x0 · x1] v [x] is similar.

We can now choose W0 = [w0], W1 = [w1], X0 = [x0] and X1 = [x1] to satisfy the claim.

Moreover, we note that if W and X are series-parallel, then they are N-free by Theorem 3.22. The

labelled posets w0, w1, x0 and x1 must then also be N-free, and therefore W0, W1, X0 and X1 are

series-parallel by Theorem 3.22. This concludes the proof.

3.D Proofs about sr-expressions

Lemma 3.53. Let e ∈ T . Now e ∈ F if and only if 1 ∈ JeK, which holds precisely when 1 5 e.

Proof. We prove that the first implies the second, the second the third, and the third the first.

• First, suppose e ∈ F . We prove that 1 5 e by induction on F . In the base, we have two cases.

On the one hand, if e = 1, then the claim holds immediately. On the other hand, if e = e∗0,

then 1 5 1 + e0 · e∗0 ≡ e∗0, and so the claim follows.

For the inductive step, there are two cases to consider. On the one hand, if e = e0 + e1 such

that ei ∈ F for some i ∈ {0, 1}, then 1 5 ei by induction. Since ei 5 e0 + e1 = e, the claim

then follows. On the other hand, if e = e0 · e1 or e = e0 ‖ e1 such that e0, e1 ∈ F , then 1 5 e0

and 1 5 e1 by induction. Since 1 ≡ 1 · 1 5 e0 · e1 = 1, the claim then follows.

• Next, if 1 5 e, then 1 ∈ J1K ⊆ JeK by Theorem 3.47.
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• Lastly, if 1 ∈ JeK, then we prove e ∈ F by induction on e. In the base, it must be that e = 1;

we then find that e ∈ F immediately. For the inductive step, there are five cases to consider.

– If e = e0 + e1, then 1 ∈ Je0K or 1 ∈ Je1K. By induction, we then find that 1 ∈ e0 or

1 5 e1, which implies that e ∈ F .

– If e = e0 · e1, then there exist U0 ∈ Je0K and U1 ∈ Je1K with U0 · U1 = 1. It then follows

that U0 = U1 = 1. By induction, we then find e0 ∈ F and e1 ∈ F , and thus e ∈ F .

– If e = e0 ‖ e1, then an argument similar to the previous case applies.

– If e = e∗0, then e ∈ F immediately.

Lemma 3.59. Let S = 〈M, b〉 be an sr-system on Q, and let ≈ be a BKA congruence on T (∆)

with Σ ⊆ ∆, and e ∈ T . Suppose s is the least 〈≈, e〉-solution to S. In that case, we have for q ∈ Q:

be(q) +
∑
q′∈Q

M(q, q′) · s(q′) ≈ s(q)

Proof. As announced, the proof is a fairly standard argument from fixpoint theory. Let s be the

least 〈≈, e〉-solution to S, and choose s′ : Q→ T as follows:

s′(q) = be(q) +
∑
q′∈Q

M(q, q′) · s(q′)

Now, since s is a 〈≈, e〉-solution to S, we have for q ∈ Q that s′(q) / s(q). We also claim that s′ is

a solution to S. To see this, note that for q ∈ Q we have

be(q) +
∑
q′∈Q

M(q, q′) · s′(q) / be(q) +
∑
q′∈Q

M(q, q′) · s(q) = s′(q)

Since s is the least 〈≈, e〉-solution to S, it follows that for q ∈ Q we have s(q) / s′(q).
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Chapter 4

Hypotheses for concurrency

In the previous chapter, we discussed series-rational expressions, a simple language for specifying

and verifying the order of events in programs with fork/join concurrency. Because the axioms of

BKA congruence are rather general, they may also be valid for other programming languages. We

can use them to reason about equivalence in those languages, as well. On the other hand, languages

may have properties that are specific to their purpose and domain. Hence, the BKA congruence

may not always be enough to prove the desired equivalences between actual programs.

For instance, consider the toy programming language count, whose sole purpose is to increment

some counter. Programs in count are formed by series-rational expressions over the alphabet

Σ = {inc(n) : n ∈ N}. Here, inc(n) is a primitive action meaning increment the counter by n.

Conceivably, the behaviour of running inc(n) followed by inc(m) should contain the behaviour of

running inc(n+m). Similarly, the semantics of the no-operation program 1 should contain the

semantics of incrementing by zero. If we assume these two properties of the language, we are able

to prove new things about our language, such as that the semantics of inc(1)
∗

includes that of

inc(n) for all natural numbers n. Nevertheless, neither of these properties are guaranteed by the

relation 5 on series-rational expressions as defined in Chapter 3. We thus need a way to augment

the BKA congruence with a set of additional, language-specific hypotheses [Coh94], as follows.

Definition 4.1 (Hypotheses). A hypothesis is an inequation e ≤ f where e, f ∈ T . When H is a set

of hypotheses, we write ≡H for the smallest BKA congruence on T that satisfies the containments

in H. More concretely, whenever e ≤ f ∈ H, also e+ f ≡H f . Analogous to previous notation, we

will abbreviate the latter by writing e 5H f .

51
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Remark 4.2. It is not hard to show that 5H is a preorder on T ; in fact, it is a partial order up

to ≡H , i.e., if e 5H f 5H e, then e ≡H f . Furthermore, all operators are monotone w.r.t. 5H .

Convention 4.3. Hypotheses are formulated as containments rather than equivalences to ease our

development later on. Equivalences can still be encoded by including both e ≤ f and f ≤ e in H.

Going forward, we write {e = f : · · · } for the hypotheses given by {e ≤ f : · · · } ∪ {f ≤ e : · · · }.

Example 4.4. Consider the programming language count outlined above, given by sr-expressions

over {inc(n) : n ∈ N}. To refine our reasoning about count, we choose the following hypotheses:

count = {inc(0) ≤ 1} ∪ {inc(n+m) ≤ inc(n) · inc(m) : n,m ∈ N}

To prove that, for n ∈ N, it holds that inc(n) 5count inc(1)
∗
, we proceed by induction on n. In the

base, where n = 0, we have that inc(0) ≤ 1 ∈ count implies inc(0) 5count 1. Moreover, because

1 + inc(1) · inc(1)
∗ ≡ inc(1)

∗
, we can conclude that inc(0) 5count inc(1)

∗
.

For the inductive step, suppose the claim holds for n. Then we find that

inc(n+ 1) 5count inc(1) · inc(n) 5count inc(1) · inc(1)
∗ 5count 1 + inc(1) · inc(1)

∗ ≡count inc(1)
∗

in which the second step is a consequence of the induction hypothesis and monotonicity.

Remark 4.5. Unlike the axioms that generate ≡, hypotheses are not necessarily stable under

substitution, i.e., if H = {a ≤ b} for a, b ∈ Σ, this means that a 5H b, but not necessarily b 5H a.

Hypotheses have been studied extensively for rational expressions [Coh94; Koz96; Koz02; KM14;

Mam15; DKP+19]. In this chapter, we take a method to synthesise a semantics of rational

expressions that is sound w.r.t. a set of hypotheses [DKP+19], and extend it to sr-expressions.

This extension is non-trivial because of the two-dimensional nature of sp-pomsets. Next, we study

the meta-theory of hypotheses on sr-expressions, and obtain a number of tools that can help ease

the recovery of decidability and completeness results under hypotheses. In particular, we propose

formalisms to compose and reuse existing results concerning decidability and completeness.

4.1 Soundness

The augmented congruence on series-rational expressions is not necessarily sound w.r.t. the semantics

in terms of series-rational languages introduced in the previous chapter. For instance, if count is as

in Example 4.4, then J1K contains just the empty pomset, and Jinc(0)K is the singleton containing

just the primitive pomset inc(0), despite the fact that inc(0) 5count 1.
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In this section, we discuss a method that can, given any set of hypotheses, construct a semantics

of series-rational expressions in terms of pomset languages that is sound under those hypotheses.

The benefit of this method is twofold. On the one hand, it allows us to synthesise semantics of a

programming language intended to satisfy properties encoded as hypotheses. While the resulting

pomset languages may be unwieldy at first, we shall see that in some cases an intuitive understanding

can be obtained. On the other hand, the constructed semantics can be used as a proxy for falsifying

properties — after all, if two programs are provably equal, then their semantics should also coincide.

In Section 4.2, we shall see some techniques that, for certain hypotheses allow us to prove the

converse: if two expressions coincide semantically, they are also provably equal.

The idea behind this method is to take the original semantics of series-rational expressions in

terms of pomset languages, and use the hypotheses to saturate them [DKP+19]. For instance, given

that inc(n) 5count inc(1)
∗

for all n ∈ N, we need to find a way to add the pomset inc(n) for every

n ∈ N to the semantics of inc(1)
∗
. More generally, this should work for all provable containments,

i.e., since inc(42) ‖ inc(91) 5count inc(1)
∗ ‖ inc(1)

∗
by monotonicity, the semantics of the latter

should include the semantics of the former. To reckon with this, we introduce pomset contexts.

Definition 4.6 (Pomset contexts). Let � 6∈ Σ. The set of series-parallel pomset contexts , denoted

PCsp, is the smallest subset of Pom(Σ ∪ {�}) satisfying the following rules of inference:

� ∈ PCsp

V ∈ SP C ∈ PCsp

V · C ∈ PCsp

C ∈ PCsp V ∈ SP

C · V ∈ PCsp

V ∈ SP C ∈ PCsp

V ‖ C ∈ PCsp

Intuitively, � is a placeholder or gap where another pomset can be inserted, and an sp-pomset

context is an sp-pomset with one and only one occurrence of �. Given a pomset context C ∈ PCsp

and a pomset U ∈ Pom, we can “plug” U into the gap left in C to obtain the pomset C[U ] ∈ Pom.

This new pomset contains all of the events of C except the one labelled by �, which is where the

events from U have been filled in; these events are ordered w.r.t. the events in C in the same way

that � was. More formally, this plugging operation is done as follows.

Definition 4.7 (Context plugging). Let C ∈ PCsp and U ∈ Pom. We write C[U ] for the pomset

defined by induction on the structure of C, as follows:

�[U ] = U (V · C)[U ] = V · C[U ] (C · V )[U ] = C[U ] · V (V ‖ C)[U ] = V ‖ C[U ]

If L ⊆ Pom and C ∈ PCsp, we write C[L] for the pomset language {C[U ] : U ∈ L}.

Example 4.8. We can construct the series-parallel pomset context (inc(0) ‖ inc(1)) · (inc(2) ‖ �),

and plug in inc(3) ‖ inc(4) to obtain (inc(0) ‖ inc(1)) · (inc(2) ‖ inc(3) ‖ inc(4)); c.f. Figure 4.1.
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inc(0) inc(1)

inc(2) �

inc(0) inc(1)

inc(3)inc(2) inc(4)

Figure 4.1: An sp-pomset context and the pomset obtained by plugging in inc(3) ‖ inc(4).

Using contexts, we can post-process the semantics of series-parallel pomsets using a given set of

hypotheses. Intuitively, this is done by finding parts of the pomset language that (under a context)

match the right side of a hypothesis, and adding the language corresponding to the left side of the

hypothesis (under the same context) if this is the case. Formally, we define the following operation.

Definition 4.9 (Closure; c.f. [DKP+19, Definition 2]). Let H be a set of hypotheses, and L ⊆ Pom.

We define the H-closure of L, written LH , as the smallest language containing L, and satisfying

e ≤ f ∈ H C ∈ PCsp C[JfK] ⊆ LH

C[JeK] ⊆ LH

Example 4.10. Recall the set of hypotheses count from Example 4.4. Let e = inc(1)
∗ ‖ inc(1)

∗
.

If we then choose C = � ‖ inc(1), we find that C[Jinc(1) ·inc(1)K] ⊆ JeK ⊆ JeKcount. Hence, because

inc(2) ≤ inc(1) · inc(1) ∈ count, it follows that {inc(2) ‖ inc(1)} = C[Jinc(2)K] ⊆ JeKcount, by the

rule above. We can repeat this process to show that inc(n) ‖ inc(m) ∈ JeKcount for all n,m ∈ N,

which matches that we have that inc(n) ‖ inc(m) 5count inc(1)
∗ ‖ inc(1)

∗
for all n,m ∈ N.

The example above already hints that H-closure can help saturate the semantics of an sr-

expression such that facts derived using the hypotheses are also true in the semantics. To prove

this in full generality, we first note that (−)H truly is a closure operator.

Lemma 4.11 (c.f. [DKP+19, Lemma 1]). Let L,K ⊆ Pom. Then L ⊆ KH if and only if LH ⊆ KH .

Remark 4.12. Closure with respect to a set of hypotheses is not, in general, a Kuratowski

closure operator [Kur22], since it fails to commute with union. For instance, if Σ = {a, b, c} and

H = {a ≤ b + c}, then {b}H ∪ {c}H = {b, c}, while a ∈ ({b} ∪ {c})H .

Lemma 4.11 then allows us to prove properties relating closure to pomset language composition.

Lemma 4.13 (c.f. [DKP+19, Lemma 2]). Let L,K ⊆ Pom. The following hold:

(L ∪K)H =
(
LH ∪KH

)
H (L ·K)H =

(
LH ·KH

)
H

(L ‖ K)H =
(
LH ‖ KH

)
H (L∗)H =

((
LH
)∗)H
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With these properties in hand, we can then show that H-closure gives rise to a semantics of

series-rational language that is sound with respect to the equivalence ≡ built from H.

Theorem 4.14 (c.f. [DKP+19, Theorem 2]). If e ≡H f , then JeKH = JfKH .

We conclude this section by showing how this general soundness theorem may be used to derive

a base semantics of an abstract programming language, given the properties it should satisfy.

Example 4.15. Consider the programming language undo, whose syntax is given by rational

expressions over an alphabet Σ. The purpose of undo is that every primitive action a ∈ Σ has

an opposite action a−1 ∈ Σ, which completely reverts a. This means that running a and a−1 in

sequence is the same as not doing anything. Naturally, the inverse of an inverse action is the original

action, i.e., (a−1)
−1

= a. We can encode this behaviour using hypotheses, as follows:

undo =
{
a · a−1 = 1 : a ∈ Σ

}
If we use J−Kundo as a semantics, we can obtain some rather bulky pomset languages. For instance,

J1Kundo includes all pomsets where a is repeated n times, followed by a−1 repeated n times.

We can, however, recover a sensible semantics from J−Kundo, by pruning the redundancy. More

precisely, let M =
{
C[a · a−1] : C ∈ PCsp

}
be the set of pomsets over Σ in which, for every a ∈ Σ,

there is a node labelled a−1 directly succeeding it, i.e., where some action is undone. Now, for

e ∈ T , the language JeKundo \M contains all of the pomsets that record actions performed and not

reverted. Indeed, it is not hard to show that this new semantics is isomorphic to the old semantics,

i.e., for e, f ∈ T we have that JeKundo = JfKundo if and only if JeKundo \M = JfKundo \M .

4.2 Reduction

Suppose we have a language whose semantics is sound w.r.t. the BKA congruence, as well as an

additional set of hypotheses H. The question then arises: can we mechanically verify whether

two programs are provably equivalent according to ≡H? Furthermore, is ≡H sufficient to prove

equivalence of expressions identified by J−KH? In this section, we try to answer these questions.

By Theorem 4.14, we know that if JeKH = JfKH does not hold, then neither can e ≡H f . Thus, to

obtain a complete decision procedure, we need to answer following two questions:

(decidability) Can we decide whether JeKH = JfKH?

(completeness) Does JeKH = JfKH imply e ≡H f?

In general, either of these properties may not hold, as witnessed by the following.
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Example 4.16 (Due to E. Cohen, c.f. [Koz96]). In Post’s correspondence problem (PCP) [Pos46]

we are provided x1, . . . , xn, y1, . . . , yn ∈ {a, b}∗, and asked whether there exist 1 ≤ i1, . . . , im ≤ n

with m ≥ 1 such that xi1 · · ·xim = yi1 · · · yim . It is well-known that this problem is undecidable.

Given an instance of PCP as above, we can produce e, f ∈ T and a finite set of hypotheses

H such that we have a no-instance if and only if JeK ⊆ JfKH . Since the latter can be decided by

checking Je+ fKH = JfKH , checking semantic equivalence under closure is undecidable.

We encode choice of indices by e = (x1 · y′1 + · · ·+ xn · y′n)
+

where we use g+ as shorthand for

g · g∗, and y′i denotes the word yi where every a (resp. b) is replaced by a′ (resp. b′). A pomset in

JeK consists of unprimed letters forming xi1 · · ·xim , and primed letters which form yi1 · · · yim .

Next, think about what it means for xi1 · · ·xim to be different from yi1 · · · yim : after some

common prefix w, either the former ends but the latter does not (or vice versa) or the former

contains an a while the latter contains a b (or vice versa). We encode these possibilities as follows:

f = (a · a′ + b · b′)∗ ·
(

(a + b)
+

+ (a′ + b′)
∗

+ (a · b′ + b · a′) · (a + b + a′ + b′)
∗
)

Again, every element of JfK contains two pomsets: one formed by the unprimed letters, and one

formed by the primed letters (with their primes removed); the construction of f guarantees that

these words differ. In this encoding, the relative ordering of primed versus unprimed letters does

not matter. This can be guaranteed by choosing the following set of hypotheses:

pcp = { a · a′ = a′ · a, a · b′ = b′ · a, b · b′ = b′ · b, b · a′ = a′ · b }

Intuitively, we have a no-instance of PCP if and only if every possible arrangement of the words

(encoded by e) represents two different words (as encoded by f). This is the key idea that allows

one to show that JeK ⊆ JfKpcp if and only if we have a no-instance of PCP.

Example 4.17. Suppose a concurrent programming language is implemented such that only single

primitive actions could run in parallel, i.e., it is synchronous [Pri10]. Hence, given a program

starting with the action a, and another starting with the action b, their parallel composition would

first run a in parallel with b before continuing with the remaining parallel program. Furthermore,

performing an action a in parallel with itself would be the same as simply running a.

We could encode this type of behaviour using the following set of hypotheses

sync =
{
α · e ‖ β · f = (α ‖ β) · (e ‖ f) : α, β ∈ Σ†, e, f ∈ T

}
∪ {a ‖ a = a : a ∈ Σ}

where Σ† = {a1 ‖ · · · ‖ an : a1, . . . , an ∈ Σ}. It is not hard to show that Ja∗ ‖ a∗Ksync = Ja∗Ksync.

On the other hand, a∗ ‖ a∗ ≡sync a∗ does not hold [WBK+19]. Hence, for the hypotheses in sync,

the model constructed in the previous section identifies expressions that are not provably equal.
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Remark 4.18. If we augment BKA congruence with star-continuity , i.e., the infinitary quasi-

equation e · f∗ · g ≡
∑
n∈N e · fn · g where f0 = 1 and fn+1 = f · fn [Con71], then for all e, f ∈ T

without ‖ (i.e., rational expressions), JeKH = JfKH does imply e ≡H f , regardless of H [DKP+19].

Thus, the question becomes: how should H look to positively answer the questions about

decidability and completeness? We formalise this as a property of hypotheses, as follows.

Definition 4.19 (Decidability, completeness). Let H be a set of hypotheses, and let e, f ∈ T . We

call H decidable if JeKH = JfKH is decidable. We call H complete if JeKH = JfKH implies e ≡H f .

Example 4.20. The empty set of hypotheses is decidable and complete, as a result of Theorems 3.42

and 3.51; similarly, the set of hypotheses all = {e = f : e, f ∈ T } is decidable and complete, as

well. In contrast, we have seen that the set of hypotheses pcp from Example 4.16 is undecidable,

and the set of hypotheses sync from Example 4.17 is incomplete.

We will tackle the question of completeness and decidability by relating sets of hypotheses,

showing how, in the right circumstances, these properties can be carried over from one set of

hypotheses to the next. To this end, we first need the notion of implication between hypotheses,

which shows how one set of hypotheses can be “stronger” than another.

Definition 4.21 (Implication). We say that H implies H ′ if we can use the hypotheses in H to

prove those of H ′, i.e., if for every hypothesis e ≤ f ∈ H ′ it holds that e 5H f .

Example 4.22. Every set of hypotheses implies the empty set of hypotheses; similarly, the set of

hypotheses all from Example 4.20 implies every set of hypotheses. Less trivially, the set of hypotheses

comm = {a · b = a ‖ b : a, b ∈ Σ} implies pcp, since a · b′ ≡comm a ‖ b′ ≡ b′ ‖ a ≡comm b′ · a, and

similarly for the other hypotheses in pcp. On the other hand, comm does not imply sync, because

a 6∈ Ja ‖ aKcomm, meaning that JaKcomm 6= Ja ‖ aKcomm, and hence a ≡comm a ‖ a does not hold.

By itself, implication is not very useful to show that decidability or completeness of one set of

hypotheses can be transposed to another. This is witnessed by the fact that the decidable set of

hypotheses all implies the undecidable set of hypotheses pcp, which in turn implies the decidable

empty set of hypotheses, and similarly for sync and completeness. What we can do is show that

mutual implication means that either both sets of hypotheses are decidable, or neither is, as follows.

Lemma 4.23. Let H and H ′ be sets of hypotheses such that H implies H ′.

(i) If e, f ∈ T with e ≡H′ f , then e ≡H f .

(ii) If L ⊆ Pom, then LH
′ ⊆ LH .
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(iii) If H ′ also implies H, then H is decidable (resp. complete) if and only if H ′ is, too.

We thus need something more asymmetrical, to get from a “complicated” set of hypotheses H

to a “simpler” set of hypotheses H ′, where completeness or decidability might be easier to prove.

Ultimately, we would like H ′ to be the empty set of hypotheses, where these questions are settled.

The idea of a reduction is to show that we can shed hypotheses by massaging expressions: given an

expression e, we obtain an expression e′ that is equivalent to e (under H), and whose H ′-closed

semantics is isomorphic to the H-closed semantics of e. The ideas behind reductions are not

new [Coh94; KS96; AFG+14; KM14; LS17; DKP+19]; what follows is merely a formalisation.

Definition 4.24 (Reduction). Let H and H ′ be sets of hypotheses such that H implies H ′. A

computable function r : T → T is a reduction from H to H ′ when both of the following are true:

(i) for e ∈ T , it holds that e ≡H r(e), and

(ii) for e, f ∈ T , if JeKH = JfKH , then Jr(e)KH
′

= Jr(f)KH
′
.

If the first requirement is replaced by the condition that r(e) 5H e and e 5H
′
r(e), and the latter

requirement is replaced by the condition that for e ∈ T we have JeKH = Jr(e)KH
′
, we say that r is

strong. We call H (strongly) reducible to H ′ if there exists a (strong) reduction from H to H ′.

Remark 4.25. Any strong reduction r is a reduction, since e 5H
′
r(e) means e 5H r(e), and hence

e ≡H r(e). Moreover, the second condition also holds, since Jr(e)KH
′

= JeKH = JfKH = Jr(f)KH
′
.

Furthermore, if we have established that r satisfies the first property of strong reduction, then

for the second property we need only check that JeKH ⊆ Jr(e)KH
′
. After all, the other inclusion can

be derived by noting that Jr(e)KH
′ ⊆ Jr(e)KH = JeKH , by Lemma 4.23 and Theorem 4.14.

Example 4.26. Let Σ = {a, b}. Let H = {a ≤ b}. We can define for e ∈ T the expression r(e) ∈ T ,

which is e but with every occurrence of b replaced by a+b. For instance, r(a·b∗ ‖ c) = a·(a + b)
∗ ‖ c.

An inductive argument on the structure of e shows that r strongly reduces H to ∅.

Reduction carries decidability and completeness from one set of hypotheses to another.

Lemma 4.27. Suppose H is reducible to H ′. If H ′ is decidable (resp. complete), then so is H.

Proof. Let r be the reduction from H to H ′, and let e, f ∈ T .
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For completeness, suppose that JeKH = JfKH . We then know that Jr(e)KH
′

= Jr(f)KH
′
. Hence,

by completeness of H ′, we have that r(e) ≡H′ r(f). Because H implies H ′, it follows that

r(e) ≡H r(f); for the same reason, e ≡H r(e) and f ≡H r(f). In total, this tells us that e ≡H f .

For decidability, first note that if JeKH = JfKH , then also Jr(e)KH
′

= Jr(f)KH
′

by definition of

reduction. Conversely, if Jr(e)KH
′

= Jr(f)KH
′
, then (Jr(e)KH

′
)H = (Jr(f)KH

′
)H , which in turn allows

us to derive that Jr(e)KH = Jr(f)KH by Lemma 4.23(ii). Hence, by soundness of J−KH w.r.t. ≡H

and the fact that e ≡H r(e) as well as f ≡H r(f), we can conclude that JeKH = JfKH . Therefore,

we can decide whether JeKH = JfKH by checking whether Jr(e)KH
′

= Jr(f)KH
′
.

Finding a reduction is not always entirely trivial. The remainder of this chapter is devoted to

two particular types of reduction that are comparatively easier to establish, and which will be used

to derive results about equivalence of concurrent programs later on.

4.2.1 Reification

It can happen that the hypotheses in H impose an internal algebraic structure on the letters in

Σ. To peel away this layer of axioms, we can try to reduce to expressions over a smaller alphabet,

rendering the structure on the letters irrelevant. In a sense, this kind of reduction shows that the

equivalences between letters from the hypotheses can already be guaranteed by normalisation.

Example 4.28. Let Σ be the set of group expressions over a (finite) alphabet Λ, that is, Σ consists

of the expressions generated by the grammar g, h ::= u | a ∈ Λ | g ◦ h | g. Furthermore, let ' be

the smallest congruence on Σ generated by the group axioms, i.e., for all g, h, i ∈ Λ it holds that

g ◦ (h ◦ i) ' (g ◦ h) ◦ i g ◦ u ' g ' u ◦ g g ◦ g ' u ' g ◦ g

Let group = {g = h : g ' h}.1 Since every letter is uniquely represented by the minimal equivalent

group expression, we can replace every group expression in e with its reduced form, obtaining a

group-equivalent expression e′. For instance, if Λ = {a, b, c}, then we send a ◦ a ‖ b ◦ c ◦ c to u ‖ b.

We fix a subalphabet Γ ⊆ Σ. When r : Σ→ T (Γ), we extend r to a map from T (Σ) to T (Γ),

by inductively applying r to expressions. We formalise the idea of reducing by replacing letters.

Definition 4.29 (Reification). Let r : Σ→ T (Γ) be computable. We call r a reification when

(i) For all a ∈ Σ, it holds that r(a) ≡H a.

(ii) For all e ≤ f ∈ H, it holds that r(e) 5H
′
r(f).

1Recall from Convention 4.3 that this a shorthand for {g ≤ h : g ' h} ∪ {h ≤ g : g ' h}.
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Example 4.30. Continuing Example 4.28, let r be the function that sends a group expression to

its reduced form; this is computable. We claim that r is a reification from group to ∅. We already

know that for a group expression g, r(g) ' g, and hence r(g) ≡group g. Second, if e ≤ f ∈ group,

then e ' f . Since reduced forms are unique, we have r(e) = r(f), and hence r(e) 5∅ r(f).

To show that reification can give rise to reduction, we need some technical properties. First,

note that a reification r associates with every a ∈ Σ a pomset language Jr(a)K. This means that we

can view a reification r as a substitution r : Σ→ 2SP. We can then prove the following.

Lemma 4.31. Let r : Σ→ T (Γ) be a reification.

(i) For all e ∈ T , it holds that r(JeK) = Jr(e)K.

(ii) For all L ⊆ SP(Σ), it holds that r(LH)H
′

= r(L)H
′
.

Using the above and some earlier properties, we then arrive at the desired result.

Lemma 4.32. Suppose H implies H ′. Any reification from H to H ′ is a reduction from H to H ′.

Proof. Note that r is computable by definition of reification. The first condition, i.e., that for e ∈ T

we have r(e) ≡H e, can be checked using the first property of reification by induction on e.

To prove the second condition, suppose that JeKH = JfKH . Using Lemma 4.31, we derive

Jr(e)KH
′

= r(JeK)H
′

= r(JeKH)H
′

= r(JfKH)H
′

= r(JfK)H
′

= Jr(f)KH
′

Since group implies ∅, the fact that we have a reification from group to ∅ (c.f. Example 4.30) in

combination with the above allows us to conclude that group is both decidable and complete.

4.2.2 Lifting

Hypotheses have already been studied extensively at the level of rational expressions. For instance,

Cohen studied hypotheses of the forms e = 0 and e ≤ 1 [Coh94], Kozen considered commutativity

conditions of the form a · b = b · a that we saw in Example 4.16 [Koz96], Kozen and Mamouras

studied a wide class of hypotheses that could be presented as rewriting systems [KM14], and

Doumane et al. considered (among other things) hypotheses of the form 1 = a1 + · · ·+an [DKP+19].

Ideally, one would like to generalize those procedures to series-rational expressions without

having to modify their internals. Similarly, when coming up with a new reduction, it is sometimes

easier to focus on the fragment of expressions without parallel composition, and include this operator

at a later stage. We shall derive a criterion that allows us to perform exactly such a lifting; the

underlying idea is that the reduction must be one that is more or less agnostic of concurrency.
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Example 4.33. The reductions in Example 4.26 and Example 4.28 were already correct for sr-

expressions without parallel composition, and can then be extended by induction on the number of

occurrences of ‖, defining the reduction of e ‖ f to be reductions of e and f , composed in parallel.

In contrast, consider H = {a ≤ 1} for some a ∈ Σ. Although H can be reduced to ∅ for rational

expressions [Coh94], it is not obvious how this would work for pomset languages. In particular, if

1 ∈ L, then 1 ‖ · · · ‖ 1 ∈ L for any number of 1’s, and hence a ‖ · · · ‖ a ∈ LH for any number of a’s.

This precludes the possibility of a strong reduction to ∅, because it shows that J1KH is a pomset

language of unbounded (parallel) width, which cannot be expressed by any e ∈ T [LW00].

We start by formalising the idea of a reduction that applies only to sr-expressions without ‖.

To this end, we should first properly define rational expressions and their equivalence.

Definition 4.34 (Rational expressions). The set of rational expressions, denoted TR, consists of

the expressions in T that do not contain ‖; equivalently, it is generated by

e, f ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e∗

We say that ≈ is a Kleene algebra congruence, or KA congruence for short, if ≈ is a congruence

that satisfies all the axioms of BKA congruence that do not involve ‖. We write ≡R for the smallest

KA congruence, and use e 5R f as a shorthand for e+ f ≡R f . The set FR of accepting rational

expressions is defined similarly to F , but without parallel composition; equivalently, FR = F ∩ TR.

It should be clear that the axioms of KA congruence are precisely the well-known axioms of

Kleene algebra [Koz94]; the semantics of rational expressions given by J−K is exactly the well-known

semantics in terms of languages, where words are represented by totally ordered pomsets.

We can then define the non-parallel analogue of hypotheses and closure. Because the semantics

of rational expressions includes totally ordered pomsets exclusively, we may forego the use of pomset

contexts and use what is essentially the closure operator from [DKP+19].

Definition 4.35 (Sequential hypotheses). A sequential hypothesis is a hypothesis e ≤ f where

e, f ∈ TR. The relation ≡HR is generated from a set of sequential hypotheses H and ≡R as before.

Given a set of hypotheses H and a language L ⊆ Σ∗, the sequential closure of L w.r.t. H,

written L〈H〉, is the least language that contains L and satisfies the following inference rule

e ≤ f ∈ H w, x ∈ Σ∗ w · JfK · x ⊆ L〈H〉

w · JeK · x ⊆ L〈H〉



62 CHAPTER 4. HYPOTHESES FOR CONCURRENCY

Next, we define what it means to have a reduction that applies to rational expressions exclusively,

using rational expressions, equivalence between rational expressions, and the above notion of closure.

Definition 4.36 (Sequential reduction). Suppose that H implies H ′. A computable function

r : TR → TR is a sequential reduction from H to H ′ when the following hold:

(i) for e ∈ TR, it holds that e 5H
′

R r(e) and r(e) 5HR e, and

(ii) for e ∈ TR, it holds that JeK〈H〉 = Jr(e)K〈H
′〉.

H sequentially reduces to H ′ if there exists a sequential reduction from H to H ′.

To recover a strong reduction from a sequential reduction, we can try to simply extend it

homomorphically, setting r(e ‖ f) = r(e) ‖ r(f). However, this does not always work.

Example 4.37. Let H = {a ≤ b+ c}. It is possible to find a sequential reduction r from H to the

empty set of hypotheses. If we try to lift r to sr-expressions as outlined above, we find that, since

Jb+ cK ⊆ J(b+ 1) ‖ (c+ 1)K and a ≤ b+ c, also a ∈ JaK ⊆ J(b+ 1) ‖ (c+ 1)KH . On the other hand,

Jr(b + 1) ‖ r(c + 1)K ∅ = Jr(b + 1)K ‖ Jr(c + 1)K = Jb + 1KH ‖ Jc + 1KH = J(b + 1) ‖ (c + 1)K

which does not contain a. Note that this argument applies to any sequential reduction r.

From the above, we learn that a hypothesis e ≤ f where the semantics of f contains more than

one word might be problematic. In Example 4.33, we have also seen that having the semantics of f

contain the empty pomset may also give us trouble. Excluding both of these cases then naturally

leads to the following restriction on the right-hand side of hypotheses.

Definition 4.38 (Grounded hypotheses). A sequential hypothesis e ≤ f is grounded if f = a1 · · · an
for some a1, . . . , an ∈ Σ with n ≥ 1. A set of hypotheses H is grounded if its members are.

Example 4.39. The hypotheses in pcp (c.f. Example 4.16) are grounded. On the other hand, the

hypothesis a ≤ 1 discussed in Example 4.33 is not grounded, because 1 is not a sequence of letters.

Similarly, neither is the hypothesis a ≤ b + c discussed in Example 4.37.

Grounded hypotheses are sufficiently well-behaved to establish the following technical properties.

Lemma 4.40. Let H be grounded. If L ⊆ Σ∗, then LH = L〈H〉.

Furthermore, for L,L′ ⊆ SP, we have that (L ‖ L′)H = LH ‖ L′H .

We can then state the desired result, which says that sequential reductions can be turned into

strong reductions on series-rational expressions, provided the hypotheses are grounded.
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Lemma 4.41. Let H and H ′ be grounded, and let r be a sequential reduction from H to H ′. If we

extend r to r : T → T by setting r(e ‖ f) = r(e) ‖ r(f), then r is a strong reduction from H to H ′.

Proof. We already know that H implies H ′. Let r be the sequential reduction from H to H ′. We

extend r to a function T → T by acting homomorphically, i.e., r(e ‖ f) = r(e) ‖ r(f); if r is

computable, then this extension is, too. It is not hard to show that e 5H
′
r(e) and r(e) 5H e.

For the last requirement, the proof proceeds by induction on the number of occurrences of ‖ in e.

In the base, where ‖ does not occur, we have that e ∈ TR. We can then derive by Lemma 4.40 that

JeKH = JeK 〈H〉 = Jr(e)K 〈H
′〉 = Jr(e)KH

′

For the inductive step, we have e = e0 ‖ e1. We then derive, using Lemma 4.40 and induction that

JeKH = Je0KH ‖ Je1KH = Jr(e0)KH
′
‖ Jr(e1)KH

′
= Jr(e)KH

′

Thus, when H is grounded, we can find a strong reduction from H to H ′ by constructing a

sequential reduction from H to H ′. To find such a sequential reduction, we can specialise the results

about series-rational systems to rational expressions, and adapt the relevant proofs [Bac75; Koz94].

Definition 4.42 (Rational systems). Let Q be a finite set. A rational system on Q is a tuple

S = 〈M, b〉, where M : Q2 → TR and b : Q→ TR. Let ≈ be a KA congruence on TR(∆) with Σ ⊆ ∆,

and let e ∈ TR. We call s : Q→ TR(∆) a 〈≈, e〉-solution to S if for every q ∈ Q we have:

b(q) · e+
∑
q′∈Q

M(q, q′) · s(q′) / s(q)

Lastly, s is the least 〈≈, e〉-solution if, for every such solution s′ and every q ∈ Q we have s(q) / s′(q).

Theorem 4.43. Let S = 〈M, b〉 be a rational system on Q. We can construct an s : Q→ TR such

that, for any KA congruence ≈ on TR(∆) with Σ ⊆ ∆ and any e ∈ TR, the Q-vector se : Q→ TR
given by se(q) = s(q) · e is the least 〈≈, e〉-solution to S.

Convention 4.44. Keeping with previous nomenclature, we refer to the function s : Q → TR
obtained for any rational system S as the least solution to S.

Remark 4.45. We should be careful to emphasize that Theorem 4.43 is not a special case of

Theorem 3.60, because solutions to rational systems are defined in terms of KA congruence, and are

required to contain rational expressions. On the other hand, the proof of Theorem 3.60 does not use

parallel composition anywhere, so it can straightforwardly be turned into a proof of Theorem 4.43;

conversely, any proof of Theorem 4.43 can be turned into a proof of Theorem 3.60.
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4.2.3 Decomposition

When designing a reduction from H0 to H1, a compositional approach can be useful, because it

can help manage complexity, and opens up the possibility of reusing reductions derived elsewhere.

The most obvious way to do this is by first reducing H0 to some intermediate set of hypotheses H ′,

which is in turn reduced to H1; the reductions involved can then be composed, as follows.

Lemma 4.46. Let H0, H1 and H ′ be sets of hypotheses. If r is a reduction from H0 to H ′, and r′

is a reduction from H ′ to H1, then r′ ◦ r is a reduction from H0 to H1.

Alternatively, we can find reductions by decomposition [DKP+19]. The idea here is to find

several weaker sets of hypotheses, and show that closure w.r.t. H can be factorised into closure

w.r.t. these sets of hypotheses, in some order. First, let us formalise factorisation.

Definition 4.47 (Factorisation). H factorises into H1, . . . ,Hn if for every L ⊆ SP we have

LH =
(
(LH1) · · ·

)
Hn

Example 4.48 [DKP+19, Proposition 3]. Let H = {a1 + · · · + an = 1} for a1, . . . , an ∈ Σ. For

rational languages, we can factorise H into two sets of hypotheses, H≤, H≥, where

H≤ = {ai ≤ 1 : 1 ≤ i ≤ n} H≥ = {1 ≤ a1 + · · ·+ an}

This can be generalised to the case where H consists of several hypotheses of the form a1+· · ·+an = 1.

With a little more work, one can show that the same holds for series-rational languages.

If we can show that each of the sets of hypotheses that H factorises into strongly reduces to the

last, we can conclude that H strongly reduces to this last set. For instance, if both H≤ and H≥

strongly reduce to ∅, then H strongly reduces to ∅ [DKP+19, Propositions 5 and 6].

Lemma 4.49. Let H be a set of hypotheses that factorises into H1, . . . ,Hn, where for 1 ≤ i ≤ n,

H implies Hi, which strongly reduces to Hn. Then H strongly reduces to Hn.

Proof. For 1 ≤ i ≤ n, let ri be the reduction from Hi to Hn. We choose r′m = rm ◦ · · · ◦ r1 for

0 ≤ m ≤ n. We claim that r = r′n is a strong reduction from H to Hn; this function is computable.

First, note that H already implies Hn. It remains to verify the two conditions for strong

reduction. Observe that for 1 ≤ m ≤ n we have r′m(e) = rm(r′m−1(e)) 5Hm r′m−1(e) and similarly

r′m−1(e) 5Hn rm(r′m−1(e)) = r′m(e). Because H implies each Hi, we can lift the former to 5H (by

Lemma 4.23); hence, r′m(e) 5H r′m−1(e) and r′m−1(e) 5Hn r′m(e) for 1 ≤ m ≤ n; chaining these, we

find that r(e) = r′n(e) 5H r′0(e) = e and similarly e = r′0(e) 5Hn r′n(e) = r(e).
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For the second condition, first note that JeKH = Jr(e)KH by soundness; hence, Jr(e)KHn ⊆

JeKH by Lemma 4.23. For the other inclusion, we first show that for 0 ≤ m ≤ n, we have

((JeK)H1 · · · )Hm ⊆ Jr′m(e)KHn , by induction on m. In the base, where m = 0, the claim holds

trivially. For the inductive step, let m > 0 and note that ((JeK)H1 · · · )Hm ⊆ (Jr′m−1(e)KHn)Hm .

By Lemma 4.23, the latter is contained in Jr′m−1(e)KHm . Because rm is a strong reduction, this

in turn is equal to Jrm(r′m−1(e))KHn = Jr′m(e)KHn . Thus, by Lemma 4.11, we can conclude that

JeKH = (((JeK)H1 · · · )Hn)Hn ⊆ Jr′n(e)KHn = Jr(e)KHn .

We conclude this chapter with a useful result about factorising a set of hypotheses into a

partition of those hypotheses, i.e., factorising H = H1 ∪ · · · ∪Hn into H1, . . . ,Hn. Proving such a

factorisation result is a very tedious exercise indeed. However, if we can show that each (ordered)

pair of these smaller sets of hypotheses can be factorised, this leads to a factorisation of H.

Lemma 4.50. Let H1, . . . ,Hn be sets of hypotheses. If, for 1 ≤ i ≤ j ≤ n, we have that Hi ∪Hj

factorises into Hi, Hj, then H1 ∪ · · · ∪Hn factorises into H1, . . . ,Hn.

Proof. Let H = H1 ∪ · · · ∪Hn. We should prove that LH = (LH1 · · · )Hn .

For the inclusion from right to left, we proceed by induction on n. In the base, where n = 0,

the claim holds immediately, since L∅ = L. For the inductive step, assume the claim holds for n,

i.e., that ((LH1) · · · )Hn ⊆ LH1∪···∪Hn . We then find, using Lemma 4.23(ii) and Lemma 4.11, that

((
(LH1) · · ·

)
Hn
)
Hn+1 ⊆

(
LH1∪···∪Hn

)
Hn+1 ⊆

(
LH
)
H = LH

For the other inclusion, we show that if A ⊆ LH , then A ⊆ ((LH1) · · · )Hn , by induction on

the construction of the former. In the base, where A = L, the claim holds immediately. In the

inductive step, we obtain e ≤ f ∈ Hi for some 1 ≤ i ≤ n and C ∈ PCsp such that A = C[JeK] and

C[JfK] ⊆ LH . By induction, we then have that C[JfK] ⊆ ((LH1) · · · )Hn . By the premise, we have

for 1 ≤ i ≤ j ≤ n and K ⊆ SP that (KHj )Hi ⊆ KHi∪Hj ⊆ (KHi)Hj ; thus, we conclude that

A ⊆
((

(LH1) · · ·
)
Hn
)
Hi ⊆

(((
(LH1) · · ·

)
Hi
)
Hi · · ·

)
Hn ⊆

(
(LH1) · · ·

)
Hn

Summary of this chapter The axioms of bi-Kleene algebra can be used to reason about general

program equivalence, but further specialisation is required when reasoning about particular programs.

Hypotheses provide a tool for such specialisation. We formalised existing methods to achieve results

about completeness and decidability using reductions, and proposed several tools for deriving

these reductions. We also formalised an existing method to compose several existing reductions in

non-trivial ways, thereby deriving new reductions for more complicated sets of hypotheses.



66 CHAPTER 4. HYPOTHESES FOR CONCURRENCY

4.A Proofs about closure

Lemma 4.11 (c.f. [DKP+19, Lemma 1]). Let L,K ⊆ Pom. Then L ⊆ KH if and only if LH ⊆ KH .

Proof. First, suppose L ⊆ KH . We show that for all A ⊆ LH , we have that A ⊆ KH , by induction

on the construction of A ⊆ LH . In the base, where A = L, we have A ⊆ KH by the premise.

If A = C[JeK] with e ≤ f ∈ H and C[JfK] ⊆ LH , then by induction C[JfK] ⊆ KH , and thus

A = C[JeK] ⊆ KH . The other implication is trivial, since L ⊆ LH ⊆ KH .

Lemma 4.13 (c.f. [DKP+19, Lemma 2]). Let L,K ⊆ Pom. The following hold:

(L ∪K)H =
(
LH ∪KH

)
H (L ·K)H =

(
LH ·KH

)
H

(L ‖ K)H =
(
LH ‖ KH

)
H (L∗)H =

((
LH
)∗)H

Proof. First, recall that closure is necessarily monotone: if L ⊆ K, then LH ⊆ KH . After all, we

can find that L ⊆ K ⊆ KH , whence LH ⊆ KH by Lemma 4.11. In all equalities, the inclusion from

left to right is a consequence of monotonicity. For instance, since L ⊆ LH and K ⊆ KH , we have

that L ∪K ⊆ LH ∪KH , and hence (L ∪K)H ⊆ (LH ∪KH)H , and similarly for the other claims.

To show that (LH ∪KH)H ⊆ (L ∪K)H , observe that LH ,KH ⊆ (L ∪K)H by monotonicity,

and hence LH ∪KH ⊆ (L∪K)H . We then conclude by Lemma 4.11 that (LH ∪KH)H ⊆ (L∪K)H .

To show that (LH ·KH)H ⊆ (L ·K)H and (LH ‖ KH)H ⊆ (L ‖ K)H , it suffices to prove that

LH ·KH ⊆ (L ·K)H and LH ‖ KH ⊆ (L ‖ K)H . To this end, we first prove the following.

Fact 4.A.1. If A ⊆ LH and C ∈ PCsp, then C[A] ⊆ C[L]H .

Proof. We proceed by induction on the construction of A ⊆ LH . In the base, where A ⊆ LH

because A = L, the claim holds immediately. For the inductive step, if A ⊆ LH because there exist

C ′ ∈ PCsp and e ≤ f such that C ′[JfK] ⊆ LH and A = C ′[JeK], then choose C ′′ = C[C ′]. Since

C ′′[JfK] = C[C ′[JfK]] ⊆ C[L]H , by induction, also C[A] = C[C ′[JeK]] = C ′′[JeK] ⊆ C[L]H .

The above straightforwardly gives rise to the following containments for all L,K ⊆ Pom:

L ·KH ⊆ (L ·K)H LH ·K ⊆ (L ·K)H L ‖ KH ⊆ (K ‖ K)H

The desired inclusions then follow; after all, we can derive that

LH ·KH ⊆
(
L ·KH

)
H ⊆

(
(L ·K)H

)
H ⊆ (L ·K)H

LH ‖ KH ⊆
(
L ‖ KH

)
H ⊆

(
(L ‖ K)H

)
H ⊆ (L ‖ K)H

where the last inclusion follows from Lemma 4.11.
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To show that ((LH)
∗
)H ⊆ (L∗)H , it suffices to prove that (LH)

∗ ⊆ (L∗)H . To this end, we first

argue that for all n ∈ N, it holds that (LH)
n ⊆ (L∗)H , by induction on n. In the base, where n = 0,

we have that (LH)
0

= {1} ⊆ ({1})H ⊆ (L∗)H by monotonicity. For the inductive step, suppose the

claim holds for n. We then calculate, using Lemma 4.11 and the second equality, that

(LH)
n+1

= (LH)
n · LH ⊆ (L∗)H · LH ⊆ (L∗ · L)H ⊆ (L∗)H

Putting this together, we have that

(LH)
∗

=
⋃
n∈N

(LH)
n ⊆

⋃
n∈N

(L∗)H ⊆ (L∗)H

Theorem 4.14 (c.f. [DKP+19, Theorem 2]). If e ≡H f , then JeKH = JfKH .

Proof. We proceed by induction on the construction of ≡H . In the base, there are three cases. First,

if e ≡H f because e = f , then the claim holds immediately. Otherwise, if e ≡H f because e ≡ f ,

then JeK = JfK by Theorem 3.47, and therefore JeKH = JfKH . Lastly, if e 5H f because e ≤ f ∈ H,

then by definition of closure we have JeK ⊆ JfKH , and hence JeKH ⊆ JfKH by Lemma 4.11.

For the inductive step, there are several cases to consider. If e ≡H f because of a congruence

rule, then for instance e = e0 + e1 and f = f0 + f1 with ei ≡H fi for i ∈ {0, 1}. Thus, by induction,

we have that JeiKH = JfiKH for i ∈ {0, 1}. Using Lemma 4.13, we then derive that

Je0 + e1KH = (Je0K ∪ Je1K)H =
(
Je0KH ∪ Je1KH

)
H

=
(
Jf0KH ∪ Jf1KH

)
H = (Jf0K ∪ Jf1K)H = Jf0 + f1KH

The other cases for congruence are argued similarly.

Otherwise, if e ≡H f because f ≡H e, then by induction we have that JfKH = JeKH , and so

the claim follows. Lastly, if e ≡H f because there exists a g ∈ T with e ≡H g and g ≡H f , then

JeKH = JgKH and JgKH = JfKH by induction, and hence the claim follows again.

4.B Proofs about reductions

Lemma 4.23. Let H and H ′ be sets of hypotheses such that H implies H ′.

(i) If e, f ∈ T with e ≡H′ f , then e ≡H f .

(ii) If L ⊆ Pom, then LH
′ ⊆ LH .

(iii) If H ′ also implies H, then H is decidable (resp. complete) if and only if H ′ is, too.
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Proof. We treat the claims in the order given.

(i) By induction on e ≡H′ f . In the base, we have two cases. On the one hand, if e ≡H′ f

because e ≡ f , then e ≡H f immediately. On the other hand, if e 5H
′
f because e ≤ f ∈ H ′,

then e 5H f by the premise. For the inductive step, there are again two cases to consider.

• The proof for congruence is straightforward. For instance, if e = e0 + e1 and f = f0 + f1

with ei ≡H
′
fi for i ∈ {0, 1}, then by induction ei ≡H fi for i ∈ {0, 1}, hence e ≡H f .

• If e 5H
′
f because of a fixpoint rule, then we proceed as follows. First, if e = g · h∗ and

g+h · f 5H′ f , then by induction g+h · f 5H f . We then conclude that e = g ·h∗ 5H f

as well. The proof for the other fixpoint rule is similar.

(ii) We show that if A ⊆ LH
′
, then A ⊆ LH , by induction on the construction of A ⊆ LH

′
. In

the base, where A = L, the claim holds by definition. For the inductive step, there exist

C ∈ PCsp and e ≤ f ∈ H ′ with A = C[JeK] and C[JfK] ⊆ LH′ ; thus C[JfK] ⊆ LH by induction.

By the premise we furthermore know that e 5H f , and hence JeKH ⊆ JfKH by soundness. By

Lemma 4.13, we derive that C[JeK]H ⊆ C[JfK]H ⊆ LH and hence C[JeK] ⊆ LH by Lemma 4.11.

(iii) For decidability, note that by the previous property we have for e, f ∈ T that JeKH = JfKH

holds if and only if JeKH
′

= JfKH
′
. Hence we can decide one by checking the other.

For completeness, suppose that H is complete. To argue completeness of H ′, let e, f ∈ T

with JeKH
′

= JfKH
′
. By (ii), we have that JeKH = JfKH ; by completeness of H this implies

that e ≡H f , and by (i) and the fact that H ′ implies H, we have that e ≡H′ f . The proof

that completeness of H ′ yields completeness of H is similar.

To prove Lemma 4.31, we need the following technical lemma.

Lemma 4.B.1. Let r : Σ → 2SP be a substitution, and suppose we extend this substitution to

r : Σ ∪ {�} → 2SP(Σ∪{�}) by setting r(�) = {�}. In that case, it holds for for all L ⊆ SP and

C ∈ PCsp that r(C) ⊆ PCsp as well as r(C[L]) =
⋃
D∈r(C)D[r(L)].

Proof. The proof of the first claim proceeds by induction on the construction of C. In the base,

C = �, in which case r(C) = {�} ⊆ PCsp. For the inductive step, there are three cases. If

C = C ′ · V , then r(C) = r(C ′) · r(V ). By induction, we know that r(C ′) ⊆ PCsp; since r(V ) ⊆ SP,

the claim then follows by definition of PCsp. The other cases are similar.

The proof of the second claim proceeds by induction on the construction of C. In the base,

C = �, in which case r(C) = {�}, and hence r(C[L]) = r(L) =
⋃
D∈r(C)D[r(L)]. For the inductive

step, there are three cases. If C = C ′ · V , then r(C) = r(C ′) · r(V ). We observe:
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• If D′ ∈ r(C ′) and U ∈ D′[r(L)] · r(V ), then there exists a D ∈ r(C) such that U ∈ D[r(L)].

To see this, note that U = D′[W ] · X for W ∈ r(L) and X ∈ r(V ). If we then choose

D = D′ ·X ∈ r(C ′) · r(V ) = r(C), we find that U ∈ D′[r(L)] ·X = D[r(L)].

• If D ∈ r(C), then there exists a D′ ∈ r(C ′) with D[r(L)] ⊆ D′[r(L)] · r(V ). To see this, note

that D = D′ ·W for D′ ∈ r(C ′) and W ∈ r(V ), and D[r(L)] = D′[r(L)] ·W ⊆ D′[r(L)] · r(V ).

Hence, we derive that

r(C[L]) = r(C ′[L] · V ) (Def. C[−])

= r(C ′[L]) · r(V ) (Def. r on languages)

=
(⋃

D′∈r(C′)
D′[r(L)]

)
· r(V ) (Induction)

=
⋃

D′∈r(C′)

D′[r(L)] · r(V ) (Distributivity)

=
⋃

D∈r(C)

D[r(L)] (Observations above)

The other cases can be derived similarly.

Lemma 4.31. Let r : Σ→ T (Γ) be a reification.

(i) For all e ∈ T , it holds that r(JeK) = Jr(e)K.

(ii) For all L ⊆ SP(Σ), it holds that r(LH)H
′

= r(L)H
′
.

Proof. We treat the claims in the order given.

(i) The proof proceeds by induction on the construction of e. In the base, there are two cases to

consider. First, if e = 0 or e = 1, then r(JeK) = JeK = Jr(e)K. Otherwise, if e = a for some

a ∈ Σ, then r(JeK) = r({a}) = r(a) = Jr(a)K.

For the inductive step, the proof is straightforward. For instance, when e = e0 + e1, we derive

r(Je0 + e1K) = r(Je0K ∪ Je1K) (Def. J−K)

= r(Je0K) ∪ r(Je1K) (Def. r on languages)

= Jr(e0)K ∪ Jr(e1)K (Induction)

= Jr(e0) + r(e1)K (Def. J−K)

= Jr(e0 + e1)K (Def. r on expressions)

The other cases can be shown similarly.
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(ii) For the inclusion from right to left, note that L ⊆ LH , and hence r(L) ⊆ r(LH), which in

turn means that r(L)H
′ ⊆ r(LH)H

′
. By Lemma 4.11, the other inclusion can be proved by

showing that r(LH) ⊆ r(L)H
′
. As usual for such statements, we proceed by induction on the

construction of LH , showing that for all A ⊆ LH it holds that r(A) ⊆ r(L)H
′
. In the base,

where A = L, we have r(L) ⊆ r(L)H
′

by definition of closure.

For the inductive case, assume A = C[JeK], for some C and e ≤ f ∈ H ′ such that C[JfK] ⊆ LH .

By induction, we have that r (C[JfK]) ⊆ r(L)H
′
. Furthermore, since e ≤ f ∈ H, by definition

of a reification we have r(e) 5H
′
r(f), so by soundness Jr(e)KH

′ ⊆ Jr(f)KH
′
. By Fact 4.A.1,

D [Jr(e)K]H
′
⊆ D [Jr(f)K]H

′
for D ∈ PCsp. Using this observation, we may then derive:

r(C[JeK]) =
⋃

D∈r(C)

D[r(JeK)] (Lemma 4.B.1)

⊆
⋃

D∈r(C)

D[Jr(e)K]H
′

(Def. closure)

⊆
⋃

D∈r(C)

D[Jr(f)K]H
′

(Observation above)

⊆

 ⋃
D∈r(C)

D[Jr(f)K]

H′ (Lemma 4.13)

= r(C[JfK])H
′

(Lemma 4.B.1)

⊆
(
r(L)H

′
)
H′ (Induction)

⊆ r(L)H
′

(Lemma 4.11)

To prove Lemma 4.40, we need the following technical properties.

Lemma 4.B.2. Let C ∈ PCsp and U ∈ Pom. If C[U ] ∈ Σ∗ and U 6= 1, then U ∈ Σ∗, and there

exist w, x ∈ Σ∗ such that C = w ·� · x.

Proof. The proof proceeds by induction on the construction of C. In the base, where C = �, we

have U = C[U ] ∈ Σ∗, and we can choose w = x = 1 to satisfy the claim. For the inductive step,

there are three cases to consider.

• If C = C ′ · V for some C ′ ∈ PCsp and V ∈ SP, then note that since C[U ] is totally ordered,

so is C ′[U ] ∈ Σ∗. By induction, we then find that U ∈ Σ∗, and that w′, x′ ∈ Σ∗ such that

C ′ = w′ ·� · x′. We can then choose w = w′ and x = x′ · V to satisfy the claim.

• If C = V ·C ′ for some C ′ ∈ PCsp and V ∈ SP, then an argument similar to the above applies.
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• If C = V ‖ C ′ for C ′ ∈ PCsp and V ∈ SP, then since C[U ] is sequential and C[U ] = V ‖ C ′[U ],

it follows that V must be empty (since C ′[U ] cannot be empty). Hence, C = C ′; by induction

we find that U ∈ Σ∗, and we obtain w, x ∈ Σ∗ such that C = C ′ = w ·� · x.

Lemma 4.B.3. Let C ∈ PCsp be a pomset context, let V,W ∈ Pom, and let x ∈ Σ∗ be non-empty.

If C[x] = V ‖ W , then there exists a C ′ ∈ PCsp such that either C = C ′ ‖ W and C ′[x] = V , or

C = V ‖ C ′ and C ′[x] = W .

Proof. We proceed by induction on C. In the base, C = �, in which case w = C[x] = V ‖W . Since

x is a non-empty word, either V = 1 or W = 1 — otherwise, C[x] is both sequential and parallel. In

the former case, we choose C ′ = C to find that C ′[U ] = C[U ] = U = W , and C = C ‖ 1 = C ′ ‖ V ;

the latter case can be handled similarly. For the inductive step, there are three cases to consider.

• If C = D ·X for some D ∈ PCsp and X ∈ SP, then D[x] ·X = V ‖W . Since D[x] is non-empty

and C[x] cannot be both sequential and parallel, there are two subcases. If V = 1, then

choose C ′ = C such that C ′[x] = C[x] = W and C = C ‖ 1 = C ′ ‖ V . The case where W = 1

is similar. Otherwise, if X = 1, then C[x] = D[x] = V ‖W . The claim follows by induction.

• If C = X ·D for some D ∈ PCsp and X ∈ SP, then we can find C ′ analogously to the above.

• If C = D ‖ X with D ∈ PCsp and X ∈ SP, then by Lemma 3.A.2 we obtain Y0, Y1, Z0, Z1 ∈ SP

such that D[x] = Y0 ‖ Y1, X = Z0 ‖ Z1, V = Y0 ‖ Z0, and W = Y1 ‖ Z1. By induction, we

find D′ ∈ PCsp such that either D = D′ ‖ Y1 and D′[x] = Y0, or D = Y0 ‖ D′ and D′[x] = Y1.

In the former case, we can choose C ′ = D′ ‖ Z0 to find that C ′[x] = D′[x] ‖ Z0 = Y0 ‖ Z0 = V

and C = D ‖ X = D′ ‖ Y1 ‖ Z0 ‖ Z1 = C ′ ‖W . The latter case is similar.

Lemma 4.40. Let H be grounded. If L ⊆ Σ∗, then LH = L〈H〉.

Furthermore, for L,L′ ⊆ SP, we have that (L ‖ L′)H = LH ‖ L′H .

Proof. For the first claim, we start with the inclusion from left to right. Here, we show that if

A ⊆ L〈H〉, then A ⊆ LH . To see this, we proceed by induction on the construction of A ⊆ L〈H〉. In

the base, A = L, and hence A ⊆ LH immediately. For the inductive step, we obtain e ≤ f ∈ H and

x, y ∈ Σ∗ with A = x · JeK · y and w · JfK ·x ⊆ L〈H〉. By induction, we know x · JfK · y ⊆ LH . We can

then choose C = x ·� · y to find that, since C[JfK] ⊆ LH , we also have x · JeK · y = C[JeK] ⊆ LH .

For the other inclusion, we proceed by induction on the construction of A ⊆ LH , showing that

A ⊆ L〈H〉 and A ⊆ Σ∗. In the base, we know that A ⊆ L, hence A ⊆ L〈H〉 and A ⊆ Σ∗ immediately.

For the inductive step, we find e ≤ f ∈ H and C ∈ PCsp such that A = C[JeK] and C[JfK] ⊆ LH .
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Since H is grounded, we have JfK = {w} for some non-empty word w. Since C[w] ∈ C[JfK] ⊆ Σ∗

by induction, it follows that C = x · � · y for x, y ∈ Σ∗ by Lemma 4.B.2. Also by induction, we

know that x · JfK · y = C[JfK] ⊆ L〈H〉; hence, A = C[JeK] = x · JeK · y ⊆ LH . Finally, we note that

since e ∈ TR, we have that JeK ⊆ Σ∗, and hence A = C[JeK] = x · JeK · y ⊆ Σ∗ as well.

For the second claim, the inclusion from right to left follows from Lemma 4.13. For the other

inclusion, suppose A ⊆ (L ‖ L′)H ; it suffices to show that we can find B,B′ ⊆ SP such that

A ⊆ B ‖ B′ and B ⊆ LH and B′ ⊆ L′H . We proceed by induction on the construction of (L ‖ L′)H .

In the base, where A ⊆ L ‖ L′, we can choose B = L and B′ = L′ to satisfy the claim.

For the inductive step, A ⊆ (L ‖ L′)H because there exist C ∈ PCsp and e ≤ f ∈ H with

A = C[JeK] and C[JfK] ⊆ (L ‖ L′)H . By induction, we find B,B′ ⊆ SP with C[JfK] ⊆ B ‖ B′

and B ⊆ LH and B′ ⊆ L′H . Since e ≤ f is grounded, JfK = {w} for some non-empty word w;

hence C[w] = X ‖ X ′ with X ∈ B and X ′ ∈ B′. By Lemma 4.B.3, either C = C ′ ‖ X ′ such that

C ′[w] = X, or C = C ′ ‖ X such that C ′[w] = X ′. In the former case, A = C[JeK] ⊆ C ′[JeK] ‖ B′.

Since C ′[JeK] ⊆ LH , the claim follows. The latter case can be treated similarly.

Lemma 4.46. Let H0, H1 and H ′ be sets of hypotheses. If r is a reduction from H0 to H ′, and r′

is a reduction from H ′ to H1, then r′ ◦ r is a reduction from H0 to H1.

Proof. Let r be the reduction from H to H ′, and let r′ be the reduction from H ′ to H ′′. We claim

that r′ ◦ r is a reduction from H to H ′′. We check the conditions one-by-one.

To see that H implies H ′′, suppose that e ≤ f ∈ H ′′. Since H ′ implies H ′′, we obtain e 5H
′
f .

Since H implies H ′, we find e 5H f by Lemma 4.23(i).

To see that e ≡H r′(r(e)), first note e ≡H r(e). Also, r(e) ≡H′ r′(r(e)), and since H implies H ′,

we have r(e) ≡H r′(r(e)). The claim then follows by transitivity of ≡H .

Lastly, suppose that e, f ∈ T such that JeKH = JfKH . We then know that Jr(e)KH
′

= Jr(f)KH
′
,

thus Jr′(r(e))KH
′′

= Jr′(r(e))KH
′′
, by definition of reduction.



Chapter 5

The Exchange Law

When writing program code, we typically want to abstract from the machine where the code is

run. This is particularly true in the case of concurrency, where hardware constraints may mean

that code specified to run in parallel is run sequentially. For instance, recall the tea dispenser

discussed in Chapter 3. If the machine has only one outlet it may not be able to dispense milk and

tea concurrently, because the steam coming off the hot tea may run back into the milk reservoir.

In this case, it is still acceptable to first pour tea followed by milk, or vice versa (depending on

the user’s preference) — it still accomplishes the goal of serving tea with milk. Similarly, parallel

threads in a program may be interleaved, for example when the number of threads exceeds the

number of processors available, or when two threads need exclusive access to some resource.

For these reasons, the semantics of a programming language may include the possibility that

behaviour is executed with more temporal dependencies than specified in the code. Hence, when

reasoning algebraically about equivalence and containment of programs, we typically want to include

the possibility that a (partial) sequentialisation is included in parallel composition of two threads.

This is where the exchange law comes in [Gis88; HMS+09]. We can encode the exchange law as an

additional hypothesis on series-rational expressions, as follows.

Definition 5.1 (The exchange law as hypotheses). The set of hypotheses exch is given by

exch = {(e ‖ f) · (g ‖ h) ≤ (e · g) ‖ (f · h) : e, f, g, h ∈ T }

Intuitively, the exchange law says that if two threads run in parallel, consisting of a first and

second sequential part (as on the right hand side), then the first parts may be executed in parallel,

followed by the second parts in parallel (as on the left hand side).

73
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Example 5.2. Let e, f ∈ T , and note that e · f ≡ (e ‖ 1) · (1 ‖ f) 5exch (e · 1) ‖ (1 · f) ≡ e ‖ f . In

words, the behaviour of running e and f in parallel includes that of running e and f in sequence.

We can apply this to the description of the tea dispenser in Example 3.49, where we find that

(cup ‖ heat) · ((dairy + soy + 1) · tea) 5exch (cup ‖ heat) · ((dairy + soy + 1) ‖ tea)

In this chapter, we study the exchange law as a set of hypotheses, and contribute two results.

• We prove that exch strongly reduces to ∅; this settles a conjecture by Hoare et al. [HSM+16],

who proposed that ≡exch is sound and complete w.r.t. J−Kexch. This was also proved by

Laurence and Struth [LS17]. In contrast with op. cit., we explicitly show how to compute

this reduction, and we rely on syntactic constructions, rather than finite monoid theory.

• Second, we show that the exchange law can be factorised from certain hypotheses, enabling a

modular approach to establish reductions of new sets of hypotheses that include exch.

Remark 5.3. The axioms that generate ≡exch, i.e., those of bi-Kleene algebra in conjunction with

the exchange law, are precisely the axioms of concurrent Kleene algebra [HMS+09].

Remark 5.4. The reader be reminded of interchange law from category theory [Mac98, pp. 43].

The exchange law, in contrast, is an inequation; had we used an equational exchange law, i.e.,

exch′ = {(e ‖ f) · (g ‖ h) = (e · g) ‖ (f · h) : e, f, g, h ∈ T }

then, using the Eckmann–Hilton argument [EH62], we could derive as follows:

e · f ≡ (e ‖ 1) · (1 ‖ f) ≡exch′ (e · 1) ‖ (1 · f) ≡ e ‖ f ≡ (1 · e) ‖ (f · 1) ≡exch′ (1 ‖ f) · (e ‖ 1) ≡ f · e

Thus, exch′ would make sequential coincide with parallel composition, which makes little sense.

Since exch encodes the possibility of partial interleaving, and subsumption relates a pomset to a

“more sequential” version, this begs the question: can subsumption be related to the exchange law?

In fact, the exchange law also holds in the level of pomsets and subsumption.

Lemma 5.5 [Gis88]. Let vsp be v restricted to SP. Then vsp is the smallest precongruence

satisfying the exchange law, i.e., such that for all U, V,W,X ∈ SP, it holds that

(U ‖ V ) · (W ‖ X) vsp (U ·W ) ‖ (V ·X)

Lemma 5.5 allows us to show that closure w.r.t. the set of hypotheses exch is the same as

downward closure w.r.t. subsumption restricted to series-parallel pomsets. This shows that the

exch-closed semantics of sr-expressions coincides precisely with the semantics proposed in [HMS+09].
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Corollary 5.6. Let L ⊆ SP. Now U ∈ Lexch if and only if there exists a V ∈ L such that U v V .

In the sequel, we may write L↓ for the smallest series-parallel language containing L such that

if U v V ∈ L↓, then U ∈ L↓. By the above, this set is the same as Lexch.

5.1 Reduction

We start by showing that exch strongly reduces to the empty set of hypotheses. This means that we

should show that, for every sr-expression e, we can compute an sr-expression that is equivalent under

exch, but whose semantics already includes the pomsets added by exch-closure. By Corollary 5.6,

we can then simplify the requirements on the expression that we need to compute to the following.

Definition 5.7 (Closure). Let e ∈ T ; e↓ ∈ T is a closure of e if e↓ 5exch e 5 e↓ and Je↓K = JeK↓.

Clearly, if for every e ∈ T we can compute a closure e↓, we have a reduction from exch to ∅.

Note that a closure of e ∈ T , if it exists, is unique up to ≡exch-equivalence, by definition. Going

forward, we will therefore speak of the closure of a series-rational expression.

Example 5.8. The closure of e = a ‖ b is e↓ = a ‖ b+a ·b+b ·a, where a and b execute in parallel,

or either precedes the other — matching the optional parallelism. Since a · b, b · a 5exch a ‖ b, we

have that e↓ 5exch e; furthermore, e 5 e↓ by construction. If U ∈ JeK, then U = a ‖ b; the pomsets

subsumed by U are U itself, a · b and b · a, which are precisely the pomsets in Je↓K.

Example 5.9. A closure of f = a∗ ‖ b∗ would be f↓ = (a∗ ‖ b∗)∗. To prove this, first note that

f 5 1 + f · f∗ ≡ f∗ = f↓. To show that f↓ 5exch f , we start by deriving that

(a∗ ‖ b∗) · (a∗ ‖ b∗) + 1 5exch a∗ · a∗ ‖ b∗ · b∗ + 1 ≡ a∗ ‖ b∗ + 1 ≡ a∗ ‖ b∗

where in the second step we use the fact that, for all g ∈ T , it holds that g∗ · g∗ ≡ g∗. From this,

we can conclude that f↓ ≡ (a∗ ‖ b∗)∗ · 1 5 a∗ ‖ b∗ = f . We can also show JfK↓ = Jf↓K, if we argue

that when U vsp V ∈ Ja∗ ‖ b∗K, also U ∈ J(a∗ ‖ b∗)∗K; the proof is left as an exercise for the reader.

The remainder of this section is dedicated to describing exactly how such a closure can be

computed. To this end, we take an inductive approach, in that we compute the closure of an

sr-expression e using (possibly several) closures already computed. More precisely, we assume that

we can compute closures of sr-expressions e′ where ‖ is nested less often than e, and use those to

compute the closure of e proper. This is formalised as follows.
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〈e, f〉 〈e′, f ′〉 〈e′′, f ′′〉 · · ·
e0 � f0 e′0 � f ′0 e′′0 � f ′′0

Figure 5.1: The series-rational system to compute closure of e ‖ f .

Definition 5.10 (‖-depth). We denote the ‖-depth of e ∈ T by d‖(e), i.e.,

d‖(0) = 0 d‖(a) = 0 d‖(e · f) = max(d‖(e), d‖(f)) d‖(e
∗) = d‖(e)

d‖(1) = 0 d‖(e+ f) = max(d‖(e), d‖(f)) d‖(e ‖ f) = max(d‖(e), d‖(f)) + 1

Our main induction hypothesis in computing a closure of e will be the following

If f ∈ T and d‖(f) < d‖(e), then we can compute f↓, the closure of f .

We want to show that, under the main induction hypothesis, we can compute a closure of e. To this

end, we observe the following property of subsumption closure and pomset language composition.

Lemma 5.11 (c.f. [Gis88, Theorems 5.2 and 5.4]). Let L,K ⊆ SP and a ∈ Σ. The following hold:

{1}↓ = {1} {a}↓ = {a} (L ∪K)↓ = L↓ ∪K↓ (L ·K)↓ = L↓ ·K↓ L∗↓ = (L↓)∗

The above can be interpreted to mean that closure can be computed using a divide-and-conquer

approach for all operators except parallel composition. More precisely, if we want to compute the

closure of an sr-expression like e ·f , then we can simply compute the closures of e and f individually,

and output e↓ · f↓. After all, e · f ≡exch e↓ · f↓ by congruence, and using Lemma 5.11 we can derive

Je · fK↓ = (JeK · JfK)↓ = JeK↓ · JfK↓ = Je↓K · Jf↓K = Je↓ · f↓K

Similar observations hold for expressions of the form e + f and e∗. The above lemma also

implies that expressions of the form 0, 1, or a for some a ∈ Σ are their own closure. The recursive

computation of closures can continue, until we hit an expression of the form e ‖ f ; it remains to find

a closure of this expression. This is where the heavy lifting of closure computation will be done.

Before we go on, recall the intuition behind the exchange law: if we can run some “initial” parts

of e and f in parallel, and continue by running the “remaining” parts of the operands in parallel,

that is a valid behaviour of e ‖ f . We will exploit this by creating an operational representation

in the form of a series-rational system. In this representation, the state 〈e, f〉 with e ≡ e0 · e′ and

f ≡ f0 · f ′, can perform an interleaving of e0 in parallel with f0 to transition into the state 〈e′, f ′〉

(c.f. Figure 5.1). The idea is that the solution to 〈e, f〉 in the sr-system will be the closure of e ‖ f .

This sketch leaves us with two things to formalize:
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• The sr-system discussed above needs to be constructed explicitly. In particular, we need to

show that it is finite, as well as how to find the different ways of splitting e and f into initial

and remaining parts. This will be done in Section 5.1.2.

• Some interleaving that is internal to the parallel composition of e0 and f0 may still take place.

We need to use closures of simpler expressions to calculate an expression that encodes this

interleaving, to label the transition into the next state. This is done in Section 5.1.1.

5.1.1 Preclosure

We start by working out what the labels for the transitions in our sr-system to compute closure

should be. Recall that a transition in this system is the parallel composition of some initial parts

e0 and f0 of both operands, and that we should work out some interleaving between them. To this

end, we will assume that the main induction hypothesis holds for e0 ‖ f0, i.e., that for all g ∈ T

such that d‖(g) < d‖(e0 ‖ f0) we can compute a closure g↓. Thus, we cannot just take the closure of

e0 ‖ f0 as the label of this transition, because it cannot be strictly simpler than itself. On the other

hand, we are interested only in the pomsets in Je0 ‖ f0K↓ that represent a single “step” — after all,

a pomset that represents multiple sequential steps should be represented by multiple transitions in

sequence. Hence, we do not need a full closure of e0 ‖ f0. Instead, we make do with the following.

Definition 5.12 (Preclosure). Let e ∈ T . A preclosure of e is an sr-expression ẽ ∈ T such that

ẽ 5exch e and e 5 ẽ, and if U ∈ JeK↓ is a sequential prime (c.f. Convention 3.18), then U ∈ JẽK.

Example 5.13. We start with a non-example. Let e0 = a ‖ b and f0 = c. Recall from Example 5.8

that e0↓ = a ‖ b+ a · b+ b · a is a closure of e0, and observe that f0↓ = c is a closure of f0. Now, to

compute a preclosure of e0 ‖ f0, we cannot simply take the parallel composition of these closures,

because a · c ‖ b ∈ Je0 ‖ f0K↓ is a sequential prime, while a · c ‖ b 6∈ Je0↓ ‖ f0↓K.

Example 5.14. Let e0 = a ‖ b and f0 = c, as above. A valid preclosure of e0 ‖ f0 could be

g = a ‖ b ‖ c + (a · b + b · a) ‖ c + (b · c + c · b) ‖ a + (a · c + c · a) ‖ b

To verify this, first note that e0 ‖ f0 5 g by construction. It remains to show that g 5exch e0 ‖ f0.

This is fairly straightforward: since a · b+ b · a 5exch a ‖ b, we have (a · b+ b · a) ‖ c 5exch e0 ‖ f0; a

similar remark holds for the other expressions. Since all the terms of g are below e0 ‖ f0, so is g

itself. Furthermore, there are seven non-sequential and non-empty pomsets in Je0 ‖ f0K↓; they are

a ‖ b ‖ c a · b ‖ c b · a ‖ c b · c ‖ a c · b ‖ a a · c ‖ b c · a ‖ b



78 CHAPTER 5. THE EXCHANGE LAW

Each of these pomsets is found in JgK. It should be noted that g is not a closure of e; to see this,

observe for instance that a · b · c ∈ Je0 ‖ f0K↓, while a · b · c 6∈ JgK, and hence Je0 ‖ f0K↓ 6= JgK.

Thus, our focus is now on computing a preclosure of sr-expressions of the form e ‖ f . The

examples above already give us a hint: we cannot simply take the closures of e and f and put

them in parallel; if we do that, we miss out on possible sequential primes that can be obtained by

interleaving a parallel part of e with f , and vice versa, such as the pomset a · c ‖ b discussed there.

Instead, we need to compute the closures of each (non-trivial) parallel part of e ‖ f , and

accumulate them. This is how one can arrive at the preclosure in the second example, which

includes for instance a closure of a ‖ c in parallel with b, even though a is a parallel part of e0,

while c is the whole of f0. To obtain the parallel parts of an sr-expression, we propose the following.

Definition 5.15 (Parallel splitting). We define ∆ as the smallest subset of T ×
(T

2

)
that satisfies

the following rules, where e, f ∈ T , and we abbreviate 〈e, {|`, r|}〉 ∈ ∆ by writing ` ∆e r.

e ∆e‖f f

` ∆e r `′ ∆f r
′

` ‖ `′ ∆e‖f r ‖ r′
` ∆e r

` ∆e‖f r ‖ f

` ∆f r

e ‖ ` ∆e‖f r

` ∆e r

` ∆e+f r

` ∆f r

` ∆e+f r

` ∆e r

` ∆e∗ r

` ∆e r f ∈ F

` ∆e·f r

` ∆f r e ∈ F

` ∆e·f r

When ` ∆e r, we say that ` and r form a parallel splitting of e.

The final two rules are meant to accommodate the fact that the empty pomset is neutral for

sequential composition, and hence if we can split e in parallel into ` and r, then the same holds for

e · f , provided that the semantics of f contains the empty pomset (i.e., f ∈ F ; c.f. Definition 3.52).

Remark 5.16. It may not be immediately obvious from the notation, but for every e ∈ T , the

“relation” ∆e is symmetric; after all, if ` ∆e r, then 〈e, {|r, `|}〉 = 〈e, {|`, r|}〉 ∈ ∆, and hence r ∆e `.

Example 5.17. Let e0 = a ‖ b and f0 = c, as in Example 5.14. Since a ∆e0 b by the first rule

above, it follows that b ∆e0 a, and hence we find that b ∆e0‖f0 a ‖ c, by the third rule above.

Using the above example, we see that the pomset a ‖ b ‖ c, which appears in Je0 ‖ f0K, can be

split into the parallel parts b and a ‖ c, which can be found in the semantics of `, r ∈ T such that

` ∆e r. To validate the intuition that this can be done in general, i.e., that all possible `, r ∈ T

such that ` ∆e r cover the ways of splitting the pomsets in e, we record the following lemma.

Lemma 5.18. Let e ∈ T . If V,W ∈ SP are non-empty and V ‖W ∈ JeK, then there exist `, r ∈ T

with ` ∆e r such that V ∈ J`K and W ∈ JrK.
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We are now almost ready to define the preclosure of e ‖ f . Before we can, however, we need to

note some technical properties of the parallel splitting relation, recorded in the following lemma.

Lemma 5.19. Let e ∈ T . The following hold:

(i) There are finitely many `, r ∈ T such that ` ∆e r.

(ii) If ` ∆e r, then ` ‖ r 5 e.

(iii) If ` ∆e r, then d‖(`), d‖(r) < d‖(e).

The preclosure of a parallel composition can then be constructed as follows.

Definition 5.20 (Syntactic construction of preclosure). Let e, f ∈ T , and suppose that the main

induction hypothesis applies to e ‖ f . The sr-expression e� f is defined to be

e� f =
∑
`∆e‖fr

`↓ ‖ r↓

Remark 5.21. Note that e� f is well-defined and computable: if `, r ∈ T such that ` ∆e‖f r, then

d‖(`), d‖(r) < d‖(e ‖ f) by Lemma 5.19(iii), and hence the sr-expressions `↓ and r↓ exist and are

computable. Also, since there are finitely many such `, r by Lemma 5.19(i), the sum is finite.

Example 5.22. Let e0 = a ‖ b and f0 = c. We compute e0 � f0 and verify that we obtain a

preclosure of e0 ‖ f0. Working through the definition, we see that if ` ∆e0‖f0 r, then {|`, r|} must be

one of {|a ‖ b, c|} {|a, b ‖ c|}, or {|b, a ‖ c|}. Recall that a ‖ b + a · b + b · a is a closure of a ‖ b, and

note that the closures of b ‖ c and a ‖ c are computed analogously. Now, we find that

e0 � f0 = (a ‖ b)↓ ‖ c + a ‖ (b ‖ c)↓+ b ‖ (a ‖ c)↓

= (a ‖ b + a · b + b · a) ‖ c + a ‖ (b ‖ c + b · c + c · b) + b ‖ (a ‖ c + a · c + c · a)

≡ a ‖ b ‖ c + (a · b + b · a) ‖ c + (b · c + c · b) ‖ a + (a · c + c · a) ‖ b

which was shown to be a preclosure of e0 ‖ f0 in Example 5.14.

We now have everything in place to formally verify that e0 � f0 is indeed a preclosure of e0 ‖ f0.

Lemma 5.23. Let e, f ∈ T , and suppose that the main induction hypothesis applies to e ‖ f . Then

e� f is the preclosure of e ‖ f .

Proof. Note that e↓ ‖ f↓ appears in the sum that builds e� f ; hence, e ‖ f 5 e↓ ‖ f↓ 5 e� f . For

the other inclusion, note that if `↓ ‖ r↓ is a term in the sum that builds e� f , then `↓ ‖ r↓ 5exch

` ‖ r 5 e ‖ f , where the last step follows by Lemma 5.19(ii). Hence, e� f 5exch e ‖ f as well.
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Finally, suppose that U ∈ Je ‖ fK↓ is a sequential prime. Then there exists a U ′ ∈ Je ‖ fK such

that U v U ′. On the one hand, if U is primitive, then U = U ′, by Lemma 3.26, and hence

U ∈ Je ‖ fK ⊆ Je↓ ‖ f↓K ⊆ Je� fK

Otherwise, if U is parallel, then U = V ‖W such that V and W are non-empty. By Lemma 3.27,

U ′ = V ′ ‖W ′ such that V v V ′ and W vW ′, with both V ′ and W ′ non-empty. By Lemma 5.18,

we then find `, r ∈ T such that V ′ ∈ J`K and W ′ ∈ JrK, with ` ∆e‖f r. Hence, V ∈ J`K↓ = J`↓K and

similarly W ∈ Jr↓K. This allows us to conclude that U = V ‖W ∈ J`↓ ‖ r↓K ⊆ Je� fK.

5.1.2 Closure

We now focus our attention on constructing the sr-system that represents the operational perspective

on the closure of an sr-expression like e ‖ f . Here, we assume that the main induction hypothesis

applies to e ‖ f , i.e., if g ∈ T such that d‖(g) < d‖(e ‖ f), then we can compute the closure of g.

Recall that the sketch of the proposed series-rational system relied on taking some “initial”

parts e0 and f0 of e and f respectively, computing the preclosure of this part, and jumping to the

parallel composition of the “remaining” parts e′ and f ′ of e and f . We therefore need a method to

compute the ways in which we can split e and f into initial and remaining parts. We formalise this

analogously to the parallel splitting of sr-expressions that we needed to define preclosure.

Definition 5.24 (Sequential splitting). We define ∇ as the smallest subset of T 3 that satisfies the

following rules, where a ∈ Σ and e, f ∈ T , and we abbreviate 〈e, `, r〉 ∈ ∇ by writing ` ∇e r.

1 ∇1 1 a ∇a 1 1 ∇a a 1 ∇e∗ 1

` ∇e r

` ∇e+f r

` ∇f r

` ∇e+f r

` ∇e r

` ∇e·f r · f

` ∇f r

e · ` ∇e·f r

` ∇e r `′ ∇f r′

` ‖ `′ ∇e‖f r ‖ r′
` ∇e r

e∗ · ` ∇e∗ r · e∗

When ` ∇e r, we say that ` and r are a sequential splitting of e.

Example 5.25. Let e = a∗ and f = b ‖ c. Since we have a ∇a 1 by the third rule, it follows that

a∗ · a ∇e 1 · a∗, by the last rule. Furthermore, since 1 ∇b b and c ∇c 1 by the second and third

rule, we have that 1 ‖ c ∇f b ‖ 1 by the second-to-last rule. If we apply the second-to-last rule to

those splittings of e and f , we may then conclude that a∗ · a ‖ 1 ‖ c ∇e‖f 1 · a∗ ‖ b ‖ 1.

The intuition behind the sequential splitting relation is that for every way of dividing a pomset

U ∈ JeK↓ into sequential parts, we can find `, r ∈ T such that ` ∇e r, and JrK↓ and J`K↓ contain
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the first and second sequential parts of U . In other words, every way of splitting a pomset in the

semantic closure of e can be traced to sequential parts of e. We formalise this in the next lemma.

Lemma 5.26. Let e ∈ T , and let V and W be pomsets such that V ·W ∈ JeK↓. Then there exist

`, r ∈ T with ` ∇e r such that V ∈ J`K↓ and W ∈ JrK↓.

Remark 5.27. Although sequential splitting is largely analogous to parallel splitting, Lemma 5.26

is not entirely analogous to Lemma 5.18: whereas the latter stipulates that V and W be non-empty,

the former does not. This is a conscious choice in the definition of ∇: either of the “initial” parts of

e and f may be empty, and hence our way of splitting these sr-expressions needs to account for this.

There is nothing conceptually preventing the “initial” part of e to be e itself, while the remaining

part is 1. This is not directly true for sequential splitting; for instance, a∗ ∇a∗ 1 does not hold.

However, we can reconstruct e from the left-hand sides of finitely many splittings.

Lemma 5.28. Let e ∈ T . There exist `1, . . . , `n ∈ T and r1, . . . , rn ∈ F such that for 1 ≤ i ≤ n it

holds that `i ∇e ri, and furthermore e ≡ `1 + · · ·+ `n.

We also remark on some other technical properties of sequential splitting: that an sr-expression

can be split in only finitely many pairs, that each of those pairs composed sequentially is contained

in the original sr-expression (modulo exch) and that the splittings of e are at most as complex as e.

Lemma 5.29. Let e ∈ T . The following hold.

(i) There are finitely many `, r ∈ T such that ` ∇e r.

(ii) If ` ∇e r, then ` · r 5exch e.

(iii) If ` ∇e r, then d‖(`), d‖(r) ≤ d‖(e).

Next, we note that a state representing the closure of e ‖ f should be able to visit only finitely

many states. If this is not the case, then the sr-system may not have a solution. The right-hand

sides that can be obtained by splitting an sr-expression e repeatedly are formalised as follows.

Definition 5.30. Let e ∈ T . The set of (right-hand) remainders of e, written R(e), is the smallest

set containing e such that if f ∈ R(e) and ` ∇f r, then r ∈ R(e).

Example 5.31. Let e = a∗. In Example 5.25, we found that a∗ · a ∇e 1 · a∗; hence, 1 · a∗ ∈ R(e).

Furthermore, since a∗ · 1 ∇a∗ a · a∗, we find that 1 · a∗ · 1 ∇1·a∗ a · a∗ by the third-to-last rule of

sequential splitting. Hence, by the second inference rule above, a · a∗ ∈ R(e). Lastly, 1 ∇e 1 by the

fourth rule defining sequential splitting. Splitting these sr-expressions further yields only remainders

that we have already seen; hence, these comprise all of R(e), that is, R(e) = {a∗, 1 · a∗, a · a∗, 1}.
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In the example above, we remarked that a∗ has finitely many right-hand remainders. This turns

out to be true in general; moreover, each of those right-hand remainders is at most as complex as e.

Lemma 5.32. Let e ∈ T . R(e) is finite. Furthermore, if e′ ∈ R(e), then d‖(e
′) ≤ d‖(e).

We now have all of the ingredients to define the series-rational system that we were aiming for.

In this system, each state is an expression of the form g ‖ h, with g ∈ R(e) and h ∈ R(f); it can

either terminate and read the empty pomset provided g and h are accepting, or transition to a

state g′ ‖ h′ while performing an action from g0 � h0, provided that g splits into g0 followed by g′,

and h splits into h0 followed by h′. Since this system is series-rational, Theorem 3.60 allows us to

compute a solution that is valid w.r.t. both ≡ and ≡exch. Formally, we define the system as follows.

Definition 5.33. Let e, f ∈ T , and suppose that the main induction hypothesis applies to e ‖ f .

We define a system S = 〈M, b〉 on Q = {g ‖ h : g ∈ R(e), h ∈ R(f)}, with components given by

M(g ‖ h, g′ ‖ h′) =
∑
g0∆gg

′

h0∆hh
′

g0 � h0 b(g ‖ h) = [g ‖ h ∈ F ]

Let s be the least solution to S obtained through Theorem 3.60; we write e⊗ f for s(e ‖ f).

Remark 5.34. The system above is well-defined. We know that R(e) and R(f) are finite, by

Lemma 5.32. Therefore, the system has finitely many variables. Moreover, for each g′ ∈ R(e) and

h′ ∈ R(f), there are finitely many g0, h0 ∈ T such that g0 ∇g g′ and h0 ∇h h′, by Lemma 5.29(i) —

hence, the sum in each component of M is finite. Lastly, we know that for each of those g0 and h0,

we have d‖(g0) ≤ d‖(g) ≤ d‖(e) and d‖(h0) ≤ d‖(h) ≤ d‖(f), by Lemma 5.29(iii) and Lemma 5.32.

Hence d‖(g0 ‖ h0) ≤ d‖(e ‖ f), meaning that the main induction hypothesis applies to g0 ‖ h0.

Example 5.35. Let e = a∗ and f = b. In Example 5.31, we saw that R(e) = {a∗, 1 · a∗, a · a∗, 1};

it is not hard to compute that R(f) = {b, 1}. Suppose s is a solution to the series-rational system

for e ‖ f . Unrolling the definitions, we then obtain the following constraint on s(e ‖ f):

0 + (a∗ · a� 1) · s(1 · a∗ ‖ b) + (a∗ · 1� 1) · s(a · a∗ ‖ b) + (1� 1) · s(1 ‖ b)

+ (a∗ · a� b) · s(1 · a∗ ‖ 1) + (a∗ · 1� b) · s(a · a∗ ‖ 1) + (1� b) · s(1 ‖ 1) 5 s(e ‖ f)

In the above, sequential composition binds more tightly than the preclosure operator �.

In this case, the preclosures coincide with parallel composition, e.g., a∗ · a� b = a∗ · a ‖ b. This

means that we can simplify the above constraint to

a∗ · a · s(1 · a∗ ‖ b) + a∗ · s(a · a∗ ‖ b) + 1 · s(1 ‖ b)

+ (a∗ · a ‖ b) · s(1 · a∗ ‖ 1) + (a∗ ‖ b) · s(a · a∗ ‖ 1) + b · s(1 ‖ 1) 5 s(e ‖ f)
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Similar constraints can be derived on the other variables, which can then be used to compute a

least solution s for all variables, and to obtain s(e ‖ f) = e⊗ f in particular.

With the above in place, we are now ready to assert correctness of e⊗ f as a closure of e ‖ f .

Lemma 5.36. If the main induction hypothesis applies to e ‖ f , then e⊗ f is a closure of e ‖ f .

Proof. Let S be the system on states Q obtained for e ‖ f , as in Definition 5.33, and let s : Q→ T

be its least solution. We prove the more general claim that s(g ‖ h) is the closure of g ‖ h.

To show that s(g ‖ h) 5exch g ‖ h, we choose the function s′ : Q→ T by setting s′(g ‖ h) = g ‖ h,

and claim that s′ is a 〈≡exch, 1〉-solution to the system. To see this, first note b(g ‖ h) = [g ‖ h ∈

F ] 5 g ‖ h = s′(g ‖ h) by Lemma 3.53. Furthermore, if g0 ∇g g′ and h0 ∇h h′, then

(g0 � h0) · s′(g′, h′) = (g0 � h0) · (g′ ‖ h′)

≡exch (g0 ‖ h0) · (g′ ‖ h′) (Lemma 5.23)

5exch (g0 · g′) ‖ (h0 · h′) (the exchange law)

5exch g ‖ h (Lemma 5.29(ii))

We surmise that for each g′ ∈ R(e) and h′ ∈ R(f), the sr-expression M(g ‖ h, g′ ‖ h′) · s′(g ‖ h) is

included (by 5exch) in g ‖ h = s′(g ‖ h). Together with the observation that b(g ‖ h) 5 s′(g ‖ h), this

makes s′ a 〈≡exch, 1〉-solution. Since s is the least 〈≡exch, 1〉-solution, s(g ‖ h) 5exch s′(g ‖ h) = g ‖ h.

To show g ‖ h 5 s(g ‖ h), note that for g ∈ R(e) and h ∈ R(f) we obtain by Lemma 5.28

`1, . . . , `n, `
′
1, . . . , `

′
m ∈ T and r1, . . . , rn, r

′
1, . . . , r

′
m ∈ F such that for 1 ≤ i ≤ n and 1 ≤ j ≤ m we

have `i ∇h ri and `′j ∇g r′j , as well as g ≡ `1 + · · ·+ `n and h ≡ `′1 + · · ·+ `′m. Therefore,

g ‖ h ≡ (`1 + · · ·+ `n) ‖ (`′1 + · · ·+ `′m) ≡ `1 ‖ `′1 + · · ·+ `n ‖ `′m (5.1)

Take one such sr-expression `i ‖ `′j . By Lemma 5.23 and the definition of M , we know that

`i ‖ `′j 5 `i � `′j 5M(g ‖ h, ri ‖ r′j) (5.2)

Since ri, r
′
j ∈ F , we have ri ‖ r′j ∈ F , and hence 1 5 s(ri ‖ r′j). In combination with (5.2) and the

fact that s is a solution to the system, we find `i ‖ `′j 5M(g ‖ h, ri ‖ r′j) ·s(ri ‖ r′j) 5 s(g ‖ h). Since

each sr-expression on the right hand side of (5.1) is below s(g ‖ h), so is g ‖ h, i.e., g ‖ h 5 s(g ‖ h).

For the second condition on closure, first note that since s(g ‖ h) ≡exch g ‖ h, we have that

Js(g ‖ h)K ⊆ Js(g ‖ h)K↓ = Jg ‖ hK↓, by Theorem 4.14. It remains to prove the other inclusion,

which we do for all g ‖ h ∈ Q in tandem. To this end, let U ∈ Jg ‖ hK↓, and let U = U1 · · ·Un be

the sequential factorisation of U . We proceed by induction on n.
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• In the base, where n = 0, we have that U = 1. Hence, by Lemma 3.26, we have that

U ∈ Jg ‖ hK, which means that g ‖ h ∈ F , and therefore U ∈ Jb(g ‖ h)K ⊆ Js(g ‖ h)K.

• For the inductive step, let n > 0 and assume the claim holds for n−1. We write U ′ = U2 · · ·Un.

Since U1 · U ′ = U ∈ Jg ‖ hK↓, we find V ∈ JgK and W ∈ JhK such that U1 · U ′ v V ‖ W . By

Lemma 3.28, we then find pomsets V0, V1,W0,W1 such that the following hold

U1 v V0 ‖W0 U ′ v V1 ‖W1 V0 · V1 v V W0 ·W1 vW

By Lemma 5.26, we obtain `0, `1, r0, r1 ∈ T such that all of the following hold

`0 ∇g r0 `1 ∇h r1 V0 ∈ J`0K↓ V1 ∈ J`1K↓ W0 ∈ Jr0K↓ W1 ∈ Jr1K↓

In that case, since U1 is a sequential prime, we have that U1 ∈ J`0 � `1K by Lemma 5.23.

Furthermore, U ′ ∈ Jr0 ‖ r1K↓, which by induction tells us that U ′ ∈ Js(r0 ‖ r1)K. By

construction of our sr-system, we have that (`0 � `1) · s(r0 ‖ r1) 5 s(g ‖ h); we conclude

U = U1 · U ′ ∈ J(`0 � `1) · s(r0 ‖ r1)K ⊆ Js(g ‖ h)K

This was the last piece of the puzzle necessary to argue computability of closures in general. We

conclude by recording the desired reduction and its ramifications for decidability and completeness.

Theorem 5.37. We can compute a closure e↓ of e ∈ T ; hence, exch strongly reduces to ∅.

Corollary 5.38. Let e, f ∈ T . The following hold:

(i) It is decidable whether JeK↓ = JfK↓.

(ii) We have JeK↓ = JfK↓ if and only if e ≡exch f .

The first of the above is known [BPS17]. The second (along with [LS17]) settles a conjecture by

Hoare et al. [HSM+16], namely that semantic equivalence of sr-expressions, when closed w.r.t.

subsumption, is completely axiomatised by BKA congruence augmented with the exchange law.

Remark 5.39. If we extend the syntax of series-rational expressions with the operator (−)
†

(c.f.

Remark 3.39) to arrive at series-parallel rational expressions, and augment the semantics J−K by

setting Je†K = {U1 ‖ · · · ‖ Un : U1, . . . , Un ∈ JeK}, then a strong reduction of exch to the empty set

of hypotheses cannot exist. To see this, first note that there is no upper bound on the nesting

between sequential and parallel composition (c.f. Chapter 9) in the pomsets of Ja†K↓; after all,

a, a ‖ a, (a ‖ a) · a, (a ‖ a) · a ‖ a . . . ∈
q
a†
y
↓

On the other hand, for any series-parallel rational expression e it can be shown that JeK does have

such a bound [LS14]. Hence, Ja†K↓ 6= JeK for any series-parallel rational expression e.
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5.2 Decomposition

Having reduced the exchange law, one might wonder whether this reduction also applies in the

presence of other hypotheses. More specifically, if we have a set of hypotheses H, what are the

circumstances under which H ∪ exch can also be reduced to the empty set of hypotheses?

To answer this question, recall that in Section 4.2.3 we developed several tools to compose

reductions. In particular, as an instance of Lemma 4.49, we can obtain the following.

Lemma 5.40. Let H be a set of hypotheses. Then H ∪ exch strongly reduces to ∅, provided that

(i) H strongly reduces to ∅, and

(ii) H ∪ exch factorises into H, exch or exch, H.

Thus, reduction of H ∪ exch largely comes down to whether H itself reduces to the empty set, and

whether we can factorise H ∪ exch. In this section, we focus on the latter question, in order to

derive sufficient conditions that allow for such a factorisation. To get a feeling for which type of

hypotheses may be factorised from exch, let us first consider when factorisation fails.

Example 5.41. Let H = {a ≤ b + c}. Then H ∪ exch does not factorise into H, exch. To

see this, take L = {d ‖ b, d · c}. Since d · b v d ‖ b, we find that d · b ∈ Lexch ⊆ LH∪exch (by

Corollary 5.6). If we then choose C = d ·�, we find that C[Jb + cK] = {d · b, d · c} ⊆ LH∪exch, and

hence d · a ∈ C[JaK] ⊆ LH∪exch. On the other hand, d · a 6∈ (LH)exch, thus (LH)exch 6= LH∪exch.

In this example, we see that if e ≤ f ∈ H where JfK contains more than one pomset, then H

may not be factorised in front of exch. This is because not all elements of C[JfK] may be present in

the language before exch-closure, and C[JeK] can be added only after subsumption closure.

Example 5.42. Let H = {a ≤ b · c}. Then H ∪ exch does not factorise into H, exch. To see this,

take L = {b ‖ c}. Since b · c v b ‖ c, we have that b · c ∈ Lexch ⊆ LH∪exch, and hence a ∈ LH∪exch

as well. Meanwhile, a 6∈ (LH)exch, which shows that (LH)exch 6= LH∪exch.

Thus, if e ≤ f ∈ H where U ∈ JfK has some non-trivial ordering, then H may also not be

factorised in front of exch. The reason here is that the language may contain V 6= U such that

U v V , which means that U may be added only after exchange, at which point H can kick in. More

generally, the right-hand side of a hypothesis in H should not rely on some causal dependency.

Dually, factorising H after exch may also be impossible, as witnessed by the following.
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Example 5.43. Let H = {a · b ≤ c}. Then H ∪ exch does not factorise into exch, H. To see this,

take L = {d ‖ c}. If we choose C = d ‖ �, then C[JcK] ⊆ L, and hence d ‖ a · b ∈ C[Ja · bK] ⊆ LH .

Since a · d · b v d ‖ a · b, we then know that a · d · b ∈ (LH)exch ⊆ LH∪exch. On the other hand,

a · d · b 6∈ (Lexch)H , and therefore (Lexch)H 6= LH∪exch.

Here, we see that if the left-hand side e ≤ f ∈ H contains some non-trivial ordering, then first

closing w.r.t. exch followed by closing w.r.t. this hypothesis may mean that we miss out on some

pomsets. After all, if can close w.r.t. e ≤ f first, then the events internal to e may be interleaved

differently with other events. In the example, this is witnessed by a being ordered before d, while b

is placed after d, whereas first closing L w.r.t. exch means that c is interleaved as a whole, after

which it can be substituted by a · b, which means that both letters end up before or after d.

Remark 5.44. A set of hypotheses of the form H = {a + b ≤ c} would be the next format to test

for factorisation. However, one can show that this set is equivalent (by way of mutual implication)

to the set H ′ = {a ≤ c, b ≤ c}, which, as we shall see, can be factorised out of H ′ ∪ exch.

In summary, we see that if we want to factorise H before exch, then the right-hand side of

hypotheses in H should not contain more than one pomset, nor should it contain pomsets with

non-trivial order; this leaves us with right-hand sides that contain at most one pomset, which

is primitive or empty. Similarly, if we want to factorise H after exch, then the left-hand side of

hypotheses in H should not contain pomsets with non-trivial order; hypotheses whose left-hand

side contains more than one pomset can, in some cases, be converted into several hypotheses where

this is not the case. We thus arrive at the same restriction for left-hand sides.

Definition 5.45 (Simple hypotheses). Let e ≤ f be a hypothesis. We say that e ≤ f is left-simple

if e = 1 or e = a for some a ∈ T ; similarly, we say that e ≤ f is right-simple if f = 1 or f = a for

some a ∈ T . A set of hypotheses is called left-simple (resp. right-simple) if each of its elements is.

We now focus our attention on the case where H is left-simple, and we try to factorise it after

exch, as well as the case where where H is right-simple, and we try to factorise it before exch. Since

exch-closure is the same as v-downward closure, it pays to think about how the contexts involved

in H-closure relate to subsumption. In particular, suppose that we are computing the closure of a

language L w.r.t. H ∪ exch, and we have added U to this closure because V ∈ LH∪exch and U v V .

Next, we note that C ∈ PCsp is such that C[a] = U , and because e ≤ a ∈ H, we are about to add

C[JeK] to the closure as well. What we could have done instead was find a context C ′ ∈ PCsp such

that C ′[a] = V and C v C ′; then, we could have added C ′[JeK] first, followed by C[JeK].
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Finding such a C ′ is not hard: take the events in C and superimpose the order of V , where the

event labelled � plays the role of the substituted event. An example is depicted in Figure 5.2a.

For this approach to work, we need to formalise how to work with the partial order implicit in an

sp-pomset context; to this end, we generalise sp-pomset contexts, as follows:

Definition 5.46. We define the set of pomset contexts , denoted PC, as containing all pomsets over

Σ ∪ {�} that have exactly one node labelled by �. When C ∈ PC with C = [c], we denote this

node by s� ∈ Sc. When furthermore u is a labelled poset over Σ, we write c[u] for the labelled

poset where Sc[u] = Su ∪ Sc \ {s�} and λc[u](s) is given by λc(s) if s ∈ Sc \ {s�}, and λu(s) when

s ∈ Su. Lastly, ≤c[u] is the smallest relation on Sc[u] satisfying the following rules1

s ≤u s
′

s ≤c[u] s
′

s ≤c s
′

s ≤c[u] s
′

s� ≤c s s′ ∈ Su

s′ ≤c[u] s

s′ ∈ Su s ≤c s�

s ≤c[u] s
′

The sp-pomset contexts are precisely the pomset contexts that are series-parallel. Furthermore,

the substitution on the level of labelled posets that represent a pomset context relates to substitution.

Lemma 5.47. Let C ∈ PC; the following hold:

(i) C ∈ PCsp if and only if C is series-parallel, and

(ii) if C = [c] ∈ PCsp and U = [u] ∈ Pom, then C[U ] = [c[u]].

The above justifies extending our notation for plugging holds in contexts to pomset contexts in

general, i.e., when C = [c] ∈ PC and U = [u] ∈ Pom, we write C[U ] for the pomset represented by

the labelled poset c[u]; in the special case where C ∈ PCsp, this is the same as the old definition of

C[U ]. This then gives us the flexibility to work out our earlier idea, as follows.

Lemma 5.48. Let C ∈ PC, V ∈ Pom and a ∈ Σ. The following hold:

(i) If C[a] v V , then we can construct C ′ ∈ PC s.t. C v C ′ and C ′[a] = V .

(ii) If V v C[a], then we can construct C ′ ∈ PC s.t. C ′ v C and C ′[a] = V .

Moreover, if V ∈ SP, then the C ′ constructed in each of the above is series-parallel.

Conceptually, the same construction would also work if instead of a primitive pomset a, we plug

in the empty pomset. There is, however, one wrinkle: the context obtained using this method may

not be series-parallel, that is to say, it may contain an N-shape, such as depicted in Figure 5.2b.

This is a problem, because closure w.r.t. a set of hypotheses is defined using series-parallel contexts.

1It can easily be shown that these rules make ≤c[u] a partial order.



88 CHAPTER 5. THE EXCHANGE LAW

� b

c d

� b

c d

a b

c d

a b

c d

−[a]

−[a]

v v

(a) On the upper left, we have a context C and

on the upper right the pomset C[a] = U , which

is subsumed by the pomset V on the lower right.

The context C′ on the lower left subsumes C,

such that C′[a] yields V . Dually, we can have

the context C on the lower left, and C[a] on the

lower right. The pomset V subsumed by C[a] is

on the upper right. The context C′ on the upper

left is subsumed by C such that C′[a] = V .

� b

c d

� b

c d

b

c d

b

c d

−[1]

−[1]

v v

(b) A version of Lemma 5.48 where we substitute

by the empty pomset may produce pomset con-

texts that are not series-parallel. In the above,

we have the context C on the lower left, and C[1]

on the lower left, which subsumes V on the upper

right. If we take the ordering of V and impose

it on C, we obtain the context C′ on the upper

left, which is subsumed by C, and furthermore

C′[1] = V . However, C′ is not series-parallel.

Figure 5.2: Transposition of subsumption across contexts.

However, we can add or remove order to ensure series-parallelism, while preserving the pomset

obtained. For instance, in Figure 5.2b we can connect the event labelled � to the one labelled d on

the upper left; this gives us a context that is still subsumed by the context on the lower left, while

plugging in 1 still yields the pomset on the upper right. In general, we find the following.

Lemma 5.49. Let C ∈ PC and U ∈ SP such that C[1] = U . The following hold:

(i) We can construct a C ′ ∈ PCsp such that C ′[1] = U and C v C ′.

(ii) We can construct a C ′ ∈ PCsp such that C ′[1] = U and C ′ v C.

With the above in hand, we can obtain an analogue of Lemma 5.48.

Lemma 5.50. Let C ∈ PC and V ∈ Pom. The following hold:

(i) If C[1] v V , then we can construct C ′ ∈ PC such that C v C ′ and C ′[1] = V .

(ii) If V v C[1], then we can construct C ′ ∈ PC such that C ′ v C and C ′[1] = V .

Moreover, if V ∈ SP, then the C ′ constructed in each of the above is series-parallel.
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In the proof of the above, we can simply argue the first two claims using the same technique as

Lemma 5.48; the latter is a consequence of Lemma 5.49.

Using Lemmas 5.48 and 5.50, we can then show that exch-closure followed by H-closure with

H a left-simple set of hypotheses H yields a language that is still exch-closed. Dually, H-closure

where H is a right-simple set of hypotheses, followed by exch-closure yields an H-closed language.

Lemma 5.51. Let H be a set of hypotheses, let L ⊆ SP and C ∈ PCsp. The following hold:

(i) If H is right-simple and e ≤ f ∈ H such that C[JfK] ⊆ (LH)exch, then C[JeK] ⊆ (LH)exch.

(ii) If H is left-simple and e ≤ f ∈ exch such that C[JfK] ⊆ (Lexch)H , then C[JeK] ⊆ (Lexch)H .

This is the final piece of the puzzle necessary to show that simple hypotheses can be factored out

when encountered in conjunction with the exchange law, with left-simple hypotheses appearing

after exchange, and right-simple hypotheses appearing before exchange.

Theorem 5.52. Let H be a set of hypotheses. The following hold.

(i) If H is right-simple, then H ∪ exch factorises into H, exch.

(ii) If H is left-simple, then H ∪ exch factorises into exch, H.

We can then reap the benefits of our factorisation theorem, by combining it with Lemma 5.40 to

obtain the following statement about strong reduction of sets of hypotheses that include exch.

Corollary 5.53. Suppose that H is left-simple or right-simple, and that H strongly reduces to ∅.

Then H ∪ exch strongly reduces to ∅ as well.

In the above, we require that all hypotheses in H are left-simple, or that all are right-simple.

This may not always be the case; it could be that some hypotheses are left-simple, and others are

right-simple. From Lemma 4.50, we learned that if we have a set of hypotheses consisting of several

smaller sets of hypotheses, then we can factorise this larger set as well, provided that the union of

each of the smaller sets can be factorised. Since left-simple hypotheses factorise after exchange,

and right-simple hypotheses factorise before exchange, it then suffices to verify that the left-simple

hypotheses factorise after the right-simple ones. We then obtain the following.

Corollary 5.54. Let H` be left-simple, and let Hr be a right-simple set of hypotheses. If H` ∪Hr

factorises into H`, Hr, then H` ∪ exch ∪Hr factorises into H`, exch, Hr.

If the left-simple and right-simple hypotheses themselves again reduce to the empty set of

hypotheses, then the union of these with the exchange law also reduces to the empty set.
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Corollary 5.55. Let H` be a left-simple set of hypotheses, and let Hr be a right-simple set

of hypotheses. If both of these strongly reduce to ∅, and H` ∪ Hr factorises into H`, Hr, then

H` ∪ exch ∪Hr strongly reduces to ∅.

Summary of this chapter The possibility of interleaving is commonly represented by adding the

exchange law to the axioms of bi-Kleene algebra. We showed that the exchange law can be regarded

as a set of hypotheses, exch, and that closure w.r.t. these hypotheses coincides with downward

closure w.r.t. subsumption. We then went on to show that exch can be reduced to the empty

set of hypotheses. As a consequence, we derived completeness and decidability for series-rational

expressions with respect to subsumption closure. We also showed that, under certain conditions,

the exchange law can be factorised out of a larger set of hypotheses.

5.A Proofs to reduce the exchange law

Lemma 5.5 [Gis88]. Let vsp be v restricted to SP. Then vsp is the smallest precongruence

satisfying the exchange law, i.e., such that for all U, V,W,X ∈ SP, it holds that

(U ‖ V ) · (W ‖ X) vsp (U ·W ) ‖ (V ·X)

Proof. Let 6 be the smallest precongruence satisfying the above. To show that 6 is included in vsp,

we need to show that vsp satisfies the rules that define 6. To show that vsp is a precongruence,

we first note that it is a preorder (c.f. Lemma 3.B.1). To show compatibility with the operators,

let U,U ′, V, V ′ ∈ SP be such that U = [u], U ′ = [u′], V = [v] and V ′ = [v′], and let U vsp U ′

and V vsp V ′ be witnessed by h : Su′ → Su and g : Sv′ → Sv respectively. We then define

f : Su′ ∪ Sv′ → Su ∪ Sv by setting f(x) = h(x) when x ∈ Su′ and f(x) = g(x) when x ∈ Sv′ .

• To show U ‖ V vsp U ′ ‖ V ′, suppose x ≤u′‖v′ x
′. Then either x ≤u′ x

′ or x ≤v′ x
′; in the

first case, f(x) ≤u f(x′), whence f(x) ≤u‖v f(x′) — the second case can be treated similarly.

• To show U · V vsp U ′ · V ′, suppose x ≤u′·v′ x. If x ≤u x′ or x ≤v x′, then we find that

f(x) ≤u·v f(x′) analogously to the case for parallel composition. Otherwise, if x ∈ Su′ and

x′ ∈ Sv′ , then f(x) ∈ Su and x′ ∈ Sv, which means that f(x) ≤u·v f(x′).

It remains to show that vsp is included in 6. To this end, suppose U vsp V . We proceed by

induction on the size of U (which is the same size as V ). In the base, U is empty or primitive, in

which case U = V by Lemma 3.26, and thus U 6 V . For the inductive step, there are three cases.
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• If U is parallel, then U = U0 ‖ U1 for non-empty U0, U1 ∈ SP. By Lemma 3.27, we find that

V = V0 ‖ V1 such that U0 v V0 and U1 v V1. Furthermore, Theorem 3.22 tells us that since

V is N-free, V0 and V1 are also N-free, and hence V0, V1 ∈ SP. By induction, we then find

that U0 6 V0 and U1 6 V1, from which we conclude that U = U0 ‖ U1 6 V0 ‖ V1 = V .

• If V is sequential, then V = V0 · V1 for non-empty V0, V1 ∈ SP. By Lemma 3.27, we find that

U = U0 · U1 such that U0 v V0 and U1 v V1. Furthermore, Theorem 3.22 tells us that since

V is N-free, so are U0 and U1, and hence U0, U1 ∈ SP. By induction, we find that U0 6 V0

and U1 6 V1, which means that U = U0 · U1 6 V0 · V1 = V .

• In the final case, U is neither empty, nor, primitive, nor sequential, which means it must

be parallel. Similarly, V is neither empty, nor sequential, nor parallel, which means that it

must be sequential. We thus write U = U0 · U1 and V = V0 ‖ V1 for U0, U1, V0, V1 ∈ SP. By

Lemma 4.49, we find W0,W1, X0, X1 ∈ SP such that

W0 ·W1 v V0 X0 ·X1 v V1 U0 vW0 ‖ X0 U1 vW1 ‖ X1

All of these pomsets are strictly smaller than U , and hence by induction we find that

W0 ·W1 6 V0 X0 ·X1 6 V1 U0 6W0 ‖ X0 U1 6W1 ‖ X1

This then allows us to derive that

U = U0 · U1 6 (W0 ‖ X0) · (W1 ‖ X1) 6 (W0 ·W1) ‖ (X0 ·X1) 6 V0 ‖ V1 = V

Lemma 5.11 (c.f. [Gis88, Theorems 5.2 and 5.4]). Let L,K ⊆ SP and a ∈ Σ. The following hold:

{1}↓ = {1} {a}↓ = {a} (L ∪K)↓ = L↓ ∪K↓ (L ·K)↓ = L↓ ·K↓ L∗↓ = (L↓)∗

Proof. The inclusion from right to left for the first two equalities holds by definition of closure. For

the last three equalities, this inclusion follows from Lemma 4.13 and Corollary 5.6. It remains to

prove the inclusions from left to right, which we do in the order of the claims.

• If U ∈ {1}↓, then U v 1, which means that U = 1 by Lemma 3.26, which means that U ∈ {1}.

• If U ∈ {a}↓, then U v a, which means that U = a by Lemma 3.26, which means that U ∈ {a}.

• If U ∈ (L ∪K)↓, then U v V for some V ∈ L∪K. If U ∈ L, then U ∈ L↓, which means that

U ∈ L↓ ∪K↓. The case where U ∈ K can be treated similarly.

• If U ∈ (L ·K)↓, then U v V ·W where V ∈ L and W ∈ K. By Lemma 3.27, we find that

U = X · Y where X v V and W v K. It then follows that X ∈ L↓ and W ∈ K↓, which

means that V ∈ L↓ ·K↓.
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• If U ∈ L∗↓, then U v V1 · · ·Vn for V1, . . . , Vn ∈ L. By Lemma 3.27, we find that U = U1 · · ·Un
such that for 1 ≤ i ≤ n we have Ui v Vi. From this, we find that for 1 ≤ i ≤ n we have

Ui ∈ L↓, and hence U ∈ (L↓)∗.

Lemma 5.18. Let e ∈ T . If V,W ∈ SP are non-empty and V ‖W ∈ JeK, then there exist `, r ∈ T

with ` ∆e r such that V ∈ J`K and W ∈ JrK.

Proof. The proof proceeds by induction on e. In the base, there are two cases.

• If e = 1, then V ‖W ∈ JeK entails V ‖W = 1. This means that V = W = 1. Since 1 ∆e 1 by

definition of ∆e, the claim follows when we choose ` = r = 1.

• If e = a for some a ∈ Σ, then V ‖ W ∈ JeK entails V ‖ W = a. Hence, either V = 1 and

W = a, or V = a and W = 1. In the former case, we can choose ` = 1 and r = a, while in

the latter case we can choose ` = a and r = 1. In either case, the claim follows.

For the inductive step, there are four cases to consider.

• If e = e0 + e1, then U0 ‖ U1 ∈ JeiK for some i ∈ {0, 1}. By induction, we find `, r ∈ T with

` ∆ei r such that V ∈ J`K and W ∈ JrK. Since this implies that ` ∆e r, the claim follows.

• If e = e0 · e1, then there exist pomsets U0, U1 such that V ‖ W = U0 · U1, and Ui ∈ JeiK for

all i ∈ {0, 1}. Since a pomset cannot be both sequential and parallel, it must be the case

that Ui = 1 for some i ∈ {0, 1}, meaning that V ‖ W = U0 · U1 = U1−i ∈ Je1−iK for this

i. By induction, we find `, r ∈ T with ` ∆e1−i
r, and V ∈ J`K as well as W ∈ JrK. Since

Ui = 1 ∈ JeiK, we have that ei ∈ F by Lemma 3.53, and thus ` ∆e r.

• If e = e0 ‖ e1, then there exist pomsets U0, U1 such that V ‖ W = U0 ‖ U1, and Ui ∈ JeiK

for all i ∈ {0, 1}. By Lemma 3.A.2, we find pomsets V0, V1,W0,W1 such that V = V0 ‖ V1,

W = W0 ‖W1, and Ui = Vi ‖Wi for i ∈ {0, 1}. This gives us three subcases.

– If V0 is empty, but V1 and W1 are not, then V = V1 and U0 = W0. By induction we

obtain `′, r′ ∈ T s.t. `′ ∆e1 r
′, with W1 ∈ J`′K and V1 ∈ Jr′K. We choose ` = e0 ‖ `′ and

r = r′ to find ` ∆e r, with W = W0 ‖W1 = U0 ‖W1 ∈ Je0 ‖ `′K and V = V1 ∈ Jr′K = JrK.

The cases where (a) V1 is empty but V0 and W0 are not, (b) W0 is empty, but W1 and

V1 are not, and (c) W1 is empty, but W0 and V0 are not can be handled similarly.

– If V0 and W1 are empty, while V1 and W0 are not, then V = V1 and W = W0. We can

then choose ` = e0 and r = e1 to find that V = V1 ∈ J`K and W = W0 ∈ JrK, while

` ∆e r. The case where V1 and W0 are empty, while V0 and W1 are not, is similar.
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– If none of V0, V1,W0,W1 is empty, then we proceed as follows. For i ∈ {0, 1}, we find by

induction `i, ri ∈ T with `i ∆ei ri such that Vi ∈ J`iK and Wi ∈ JriK. We then choose

` = `0 ‖ `1 and r = r0 ‖ r1. Since V = V0 ‖ V1, it follows that V ∈ J`K, and similarly we

find that W ∈ JrK. Since ` ∆e r, the claim follows.

Note that this covers all of the cases, since no more than two of V0, V1,W0,W1 can be empty

at the same time, and V0 and V1 cannot both be empty, as can W0 and W1.

• If e = e∗0, then there exist U1, . . . , Un ∈ Je0K such that V ‖ W = U1 · · ·Un. We can assume

without loss of generality that, for 0 ≤ i < n, we have Ui 6= 1. Since both V and W are

non-empty, it must be the case that n = 1 — otherwise Uj = 1 for some 1 ≤ i ≤ n, which

would contradict the above. Since V ‖ W = U0 ∈ Je0K, we find by induction `, r ∈ T with

` ∆e0 r such that V ∈ J`K and W ∈ JrK. The claim then follows by the fact that ` ∆e r.

Lemma 5.19. Let e ∈ T . The following hold:

(i) There are finitely many `, r ∈ T such that ` ∆e r.

(ii) If ` ∆e r, then ` ‖ r 5 e.

(iii) If ` ∆e r, then d‖(`), d‖(r) < d‖(e).

Proof. We prove the claims in the order given.

(i) The proof proceeds by induction on e, showing that we derive a constraint on ` and r that is

satisfied by only finitely many sr-expressions. In the base, where e ∈ {0, 1} ∪ Σ, the claim

holds immediately: since only the first rule applies, it must be the case that {|`, r|} = {|1, e|}.

For the inductive step, suppose that ` ∆e r; one of seven cases must apply.

• e = e0 + e1, with either ` ∆e0 r, or ` ∆e1 r.

• e = e0 · e1, with an i ∈ {0, 1} such that ` ∆ei r and e1−i ∈ F .

• e = e0 ‖ e1, with ` = `0 ‖ `1 and r = r0 ‖ r1, such that `i ∆ei ri for all i ∈ {0, 1}.

• e = e0 ‖ r, with ` = `′ ‖ r′ and `′ ∆e0 r
′.

• e = ` ‖ e1, with r = `′ ‖ r′ and `′ ∆e1 r
′.

• e = ` ‖ r, with no further constraints on ` and r.

• e = e∗0, with ` ∆e0 r.

In all of these, there are finitely many `, r ∈ T that satisfy the derived restrictions — by

induction in all but the penultimate case, where ` and r are uniquely determined.
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(ii) We proceed by induction on the construction of ∆. In the base, ` ∆e r because e = ` ‖ r, in

which case the claim holds vacuously. For the inductive step, there are five cases to consider.

• If e = e0 ‖ e1 with ` = `0 ‖ `1 and r = r0 ‖ r1 such that `i ∆ei ri for i ∈ {0, 1}, then by

induction we have that `i ‖ ri 5 ei. In total, we can derive that

` ‖ r = `0 ‖ `1 ‖ r0 ‖ r1 = `0 ‖ r0 ‖ `1 ‖ r1 5 e0 ‖ e1 = e

• If e = e0 ‖ e1 with r = r′ ‖ e1 and ` ∆e0 r
′, then by induction we have that ` ‖ r′ 5 e0.

We can then derive that ` ‖ r = ` ‖ r′ ‖ e1 5 e0 ‖ e1 = e. The case where e = e0 ‖ e1

with ` = e0 ‖ `′ and `′ ∆e1 r can be treated similarly.

• If e = e0 + e1 and ` ∆e0 r, then by induction we have that ` ‖ r 5 e0 5 e0 + e1 = e. The

case where e = e0 + e1 and ` ∆e1 r can be treated similarly.

• If e = e0 · e1 and ` ∆e0 r with e1 ∈ F , then by induction we have that ` ‖ r 5 e0. Since

1 5 e1 by Lemma 3.53, we can then derive that ` ‖ r 5 e0 ≡ e0 · 1 5 e0 · e1 = e. The

case where e = e0 · e1 and ` ∆e1 r with e0 ∈ F can be treated similarly.

• If e = e∗0 and ` ∆e0 r, then by induction we have that ` ‖ r 5 e0 5 e0 · e∗0 5 e∗0.

(iii) We proceed by induction on the construction of ∆. In the base, where e = ` ‖ r, we have that

d‖(`), d‖(r) < max(d‖(`), d‖(r)) + 1 = d‖(e). For the inductive step, there are five cases.

• If e = e0 ‖ e1 with ` = `0 ‖ `1 and r = r0 ‖ r1 such that `i ∆ei ri for i ∈ {0, 1}, then by

induction we have that d‖(`i), d‖(ri) < d‖(ei). We can then derive that

d‖(`) = max(d‖(`0), d‖(`1)) + 1 < max(d‖(e0), d‖(e1)) + 1 = d‖(e)

and similarly for d‖(r).

• If e = e0 ‖ e1 with r = r′ ‖ e1 and ` ∆e0 r′, then by induction we have that

d‖(`), d‖(r
′) < d‖(e0) ≤ d‖(e). We can then derive d‖(r) = max(d‖(r

′), d‖(e1)) + 1 <

max(d‖(e0), d‖(e1)) + 1 = d‖(e). The case where e = e0 ‖ e1 with ` = e0 ‖ `′ and `′ ∆e1 r

can be treated similarly.

• If e = e0 + e1 and ` ∆e0 r, then by induction we have that d‖(`), d‖(r) < d‖(e0). Since

d‖(e0) ≤ d‖(e), the claim then follows. The case where e = e0 + e1 and ` ∆e1 r is similar.

• If e = e0 · e1 with ` ∆e0 r and e1 ∈ F , then by induction d‖(`), d‖(r) < d‖(e0). Since

d‖(e0) ≤ d‖(e), the claim then follows. The case where e = e0 · e1 with ` ∆e1 r is similar.

• If e = e∗0 and ` ∆e0 r, then by induction we have that d‖(`), d‖(r) < d‖(e0). Since

d‖(e0) = d‖(e), the claim then follows.
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Lemma 5.26. Let e ∈ T , and let V and W be pomsets such that V ·W ∈ JeK↓. Then there exist

`, r ∈ T with ` ∇e r such that V ∈ J`K↓ and W ∈ JrK↓.

Proof. The proof proceeds by induction on e. In the base, we can discount the case where e = 0,

for then the claim holds vacuously. This leaves us two cases.

• If e = 1, then V ·W = 1, and hence V = W = 1. Since 1 ∇e 1, we can just choose ` = r = 1.

• If e = a for some a ∈ Σ, then V ·W = a, and hence either V = 1 and W = a, or V = a and

W = 1. In the former case, choose ` = a and r = 1; the latter case is similar.

For the inductive step, there are four cases to consider.

• If e = e0 + e1, then V ·W ∈ JeiK↓ for some i ∈ {0, 1}. By induction, we find `, r ∈ T with

` ∇ei r such that V ∈ J`K↓ and W ∈ JrK↓. Since ` ∇e r in this case, the claim follows.

• If e = e0 · e1, then there exist U0 ∈ Je0K↓ and U1 ∈ Je1K↓ such that V ·W = U0 · U1. By

Lemma 3.A.1, we find a series-parallel pomset X such that either V = U0 ·X and X ·W = U1,

or V ·X = U0 and W = X · U1. In the former case, X ·W ∈ Je1K↓, and thus by induction we

find `′, r ∈ T with `′ ∇e1 r such that X ∈ J`′K↓ and W ∈ JrK↓. We then choose ` = e0 · `′ to

find that ` ∇e r, as well as V = U0 ·X ∈ Je0K↓ · J`′K↓ = J`K↓ and thus V ∈ J`K↓. The latter

case can be treated similarly; here, we apply the induction hypothesis to e0.

• If e = e0 ‖ e1, then there exist U0 ∈ Je0K and U1 ∈ Je1K such that V ·W v U0 ‖ U1. By

Lemma 3.28, we find V0, V1,W0,W1 ∈ SP such that V v V0 ‖ V1 and W vW0 ‖W1, as well

as Vi ·Wi v Ui for all i ∈ {0, 1}. In that case, Vi ·Wi ∈ JeiK↓ for all i ∈ {0, 1}, and thus by

induction we find `i, ri ∈ T with `i ∇ei ri such that Vi ∈ J`iK↓ and Wi ∈ JriK↓. We choose

` = `0 ‖ `1 and r = r0 ‖ r1 to find that V ∈ J`0 ‖ r0K↓ and W ∈ J`1 ‖ r1K↓, as well as ` ∇e r.

• If e = e∗0, then there exist U1, . . . , Un ∈ Je0K↓ such that V ·W = U1 · · ·Un. Without loss of

generality, we can assume that for 1 ≤ i ≤ n it holds that Ui 6= 1.

We then proceed by induction on n, proving that we can find `′, r′ ∈ T such that `′ ∇e0 r′

with V ∈ Je∗0 · `′K↓ and W ∈ Jr′ · e∗0K↓; since in this case e∗0 · `′ ∇e r′ · e∗0 and J`′K↓ ⊆ Je∗0 · `′K↓,

we can choose ` = e∗0 · `′ and r = r′ · e∗0 to satisfy the claim. In the base, where n = 0, we

have that V ·W = 1, thus V = W = 1; we can choose `′ = r′ = 1 to satisfy the claim.

In the inductive step, we have n > 0, and assume that the claim holds for n − 1. By

Lemma 3.A.1, we then have X ∈ SP such that one of the following two cases applies:
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– If V ·X = U1 · · ·Un−1 and X ·Un = W , then since V ·X = U1 · · ·Un−1 ∈ Je∗0K↓, we find

by induction `′, r′ ∈ T such that `′ ∇e0 r′ with V ∈ Je∗0 · `′K↓ and X ∈ Jr′ · e∗0K↓. Since

W = X · Un ∈ Jr′ · e∗0K↓ · Je0K↓ ⊆ Jr′ · e∗0K↓, the claim follows.

– If U1 · · ·Un−1 · X = V and X ·W = Un, then since X ·W = Un ∈ Je0K↓ we find by

induction `′, r′ ∈ T such that `′ ∇e0 r′ with X ∈ J`′K↓ and W ∈ Jr′K↓. It then follows

that V = U1 · · ·Un−1 ·X ∈ Je∗0K↓ · J`′K↓ = Je∗0 · `′K↓ and W ∈ Jr′K↓ ⊆ Jr′ · e∗0K↓.

Lemma 5.28. Let e ∈ T . There exist `1, . . . , `n ∈ T and r1, . . . , rn ∈ F such that for 1 ≤ i ≤ n it

holds that `i ∇e ri, and furthermore e ≡ `1 + · · ·+ `n.

Proof. We proceed by induction on e. In the base, there are two cases to consider.

• If e = 0, then we can choose n = 0 to satisfy the claim.

• If e = {1} ∪ Σ, then we can choose `1 = r1 = 1 to satisfy the claim.

For the inductive step, there are five cases.

• If e = e0 + e1, then by induction there exist `′1, . . . , `
′
n′ ∈ T and `′′1 , . . . , `

′
n′′ ∈ T as well as

r′1, . . . , r
′
n′ ∈ F as well as r′′1 , . . . , r

′′
n′′ ∈ F such that for 1 ≤ i ≤ n′ it holds that `′i ∇e0 r′i,

and for 1 ≤ i ≤ n′′ it holds that `′′i ∇e1 r′′i , and moreover e0 ≡ `′1 + · · · + `′n′ as well as

e1 ≡ `′′1 + · · ·+ `′′n′′ . We can then choose n = n′ + n′′ where for 1 ≤ i ≤ n′ we have `i = `′i

and ri = r′i, as well as for n′ < i ≤ n we have `i = `′′n′−i and ri = r′′n′−i to satisfy the claim.

After all, for 1 ≤ i ≤ n we have `i ∇e ri, and furthermore

e = e0 + e1 ≡ `′1 + · · ·+ `n′ + `′′1 + · · ·+ `′′n′′ = `1 + · · ·+ `n

• If e = e0 · e1, then by induction there exist `′1, . . . , `
′
n′ ∈ T as well as r′1, . . . , r

′
n′ ∈ F such

that for 1 ≤ i ≤ n′ it holds that `′i ∇e1 r′i. We can then choose n = n′ and for 1 ≤ i ≤ n set

`i = e0 · `′i as well as ri = r′i to find that for 1 ≤ i ≤ n we have `i ∇e ri, and furthermore

e = e0 · e1 ≡ (`′1 + · · ·+ `′n′) ≡ e0 · `′1 + · · ·+ e0 · `′n′ = `1 + · · ·+ `n

• If e = e0 ‖ e1, then by induction there exist `′1, . . . , `
′
n′ ∈ T and `′′1 , . . . , `

′
n′′ ∈ T as well as

r′1, . . . , r
′
n′ ∈ F as well as r′′1 , . . . , r

′′
n′′ ∈ F such that for 1 ≤ i ≤ n′ it holds that `′i ∇e0 r′i,

and for 1 ≤ i ≤ n′′ it holds that `′′i ∇e1 r′′i , and moreover e0 ≡ `′1 + · · · + `′n′ as well as

e1 ≡ `′′1 + · · ·+ `′′n′′ . We can then choose n = n′ · n′′ as well as for 1 ≤ i ≤ n′ and 1 ≤ j ≤ n′′
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that `i+(j−1)·n′ = `′i ‖ `′′j and ri+(j−1)·n′ = r′i ‖ r′′j ∈ F , to find that for 1 ≤ i ≤ n′ and

1 ≤ j ≤ n′′ we have that `i+(j−1)·n′ = `′i ‖ `′′j ∇e r′i ‖ r′′j = ri+(j−1)·n′ , and furthermore

e = e0 ‖ e1 ≡ (`′1 + · · ·+ `′′n′) ‖ (`′′1 + · · ·+ `′′n′′) ≡ `′1 ‖ `′′1 + · · ·+ `′n′ ‖ `′n′′ ≡ `1 + · · ·+ `n

• If e = e∗0, then by induction there exist `′1, . . . , `
′
n′ ∈ T as well as r′1, . . . , r

′
n′ ∈ F such that

for 1 ≤ i ≤ n′ it holds that `′i ∇e0 r′i. We can then choose n = n′ + 1 and for 1 ≤ i ≤ n set

`i = e∗0 · `′i and ri = r′i · e∗0 ∈ F , as well as `n = rn = 1 ∈ F , to find that for 1 ≤ i ≤ n we

have `i = e∗0 · `′i ∇e r′i · e∗0, and furthermore that

e ≡ e0 · e∗0 + 1 ≡ (`′1 + · · ·+ `n′) · e∗0 + 1 ≡ `′1 · e∗0 + · · ·+ `′n′ · e∗0 + 1 ≡ `1 + · · ·+ `n′ + `n

Lemma 5.29. Let e ∈ T . The following hold.

(i) There are finitely many `, r ∈ T such that ` ∇e r.

(ii) If ` ∇e r, then ` · r 5exch e.

(iii) If ` ∇e r, then d‖(`), d‖(r) ≤ d‖(e).

Proof. We treat the claims in the order given.

• The proof proceeds by induction on e, deriving a constraint on ` and r that is satisfied by

only finitely many sr-expressions. In the base, we can disregard the case where e = 0, for no

rule applies here. This leaves us two cases to consider.

– If e = 1, then ` = r = 1.

– If e = a for some a ∈ Σ, then 〈`, r〉 ∈ {〈1, a〉, 〈a, 1〉}.

In the inductive step, suppose that `, r ∈ T are such that ` ∇e r. There are four cases.

– If e = e0 + e1, then ` ∇ei r for some i ∈ {0, 1}.

– If e = e0 · e1, then either ` = e0 · `′ and `′ ∇e1 r, or r = r′ · e1 and ` ∇e0 r′.

– If e = e0 ‖ e1, then ` = `0 ‖ `1 and r = r0 ‖ r1, such that for i ∈ {0, 1} we have `i ∇ei ri.

– If e = e∗0, then either ` = r = 1, or ` = e · `′ and r = r′ · e such that ` ∇e0 r

In all cases, there are finitely many `, r ∈ T that satisfy the restrictions put on them, by

induction. For instance, in the first case we know by induction that there are finitely many

`, r ∈ T such that ` ∇e0 r or ` ∇e1 r. This completes the proof of this claim.

• The proof proceeds by induction on the construction of ∇. In the base, there are three cases.
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– If e = ` = r = 1, then ` · r ≡ e, and so the claim holds immediately.

– If e = a for some a ∈ Σ, and either ` = 1 and r = a, or ` = a and r = 1, then ` · r ≡ e.

– If e = e∗0 and ` = r = 1, then ` · r ≡ 1 5 e∗0 = e, and so the claim holds.

For the inductive step, there are four cases to consider.

– If e = e0 + e1 and ` ∇ei r for some i ∈ {0, 1}, then ` · r 5exch ei 5 e by induction.

– If e = e0 · e1 and r = r′ · e1 with ` ∇e0 r′, then by induction we find that ` · r′ 5exch e0. It

then follows that ` · r = ` · r′ · e1 5 e0 · e1 = e. The case where e = e0 · e1 and ` = e0 · `′

with `′ ∇e1 r can be treated similarly.

– If e = e0 ‖ e1 and ` = `0 ‖ `1 and r = r0 ‖ r1 such that `i ∇ei ri for all i ∈ {0, 1}, then

by induction we have that `i · ri 5exch ei for all i ∈ {0, 1}. We then find that

` · r = (`0 ‖ `1) · (r0 ‖ r1) 5exch (`0 · r0) ‖ (`1 · r1) 5 e0 ‖ e1 = e

– If e = e∗0 and ` = e∗0 · `′ and r = r′ · e∗0 such that `′ ∇e0 r′, then by induction we have that

`′ · r′ 5exch e0. This allows us to derive that ` · r = e∗0 · `′ · r′ · e∗0 5 e∗0 · e0 · e∗0 5 e∗0 = e.

• The proof proceeds by induction on the construction of ∇. In the base, there are three cases.

– If e = ` = r = 1, then the claim holds immediately.

– If e = a for some a ∈ Σ, and either ` = 1 and r = a or ` = a and r = 1, then

d‖(`) = d‖(r) = 0 = d‖(e), and so the claim holds again.

– If e = e∗0 and ` = r = 1, then d‖(`) = d‖(r) = 0 ≤ d‖(e
∗
0) immediately.

For the inductive step, there are four cases to consider.

– If e = e0 + e1 and ` ∇ei r for some i ∈ {0, 1}, then d‖(`), d‖(r) ≤ d‖(ei) by induction.

Since d‖(ei) ≤ d‖(e), the claim then follows.

– If e = e0 · e1 and r = r′ · e1 with ` ∇e0 r′, then by induction we find that d‖(`), d‖(r
′) ≤

d‖(e0). Since d‖(e0) ≤ d‖(e), we then immediately know that d‖(`) ≤ d‖(e). Furthermore,

since d‖(r) = max(d‖(r
′), d‖(e1)) ≤ max(d‖(e0), d‖(e1)) = d‖(e), other inequality also

holds. The case where e = e0 · e1 and ` = e0 · `′ with `′ ∇e1 r can be treated similarly.

– If e = e0 ‖ e1, then ` = `0 ‖ `1 and r = r0 ‖ r1 such that `i ∇ei ri for i ∈ {0, 1}. By

induction, we then have that d‖(`i), d‖(ri) ≤ d‖(ei) for i ∈ {0, 1}. We can then derive

that

d‖(`) = max(d‖(`0), d‖(`1)) + 1 ≤ max(d‖(e0), d‖(e1)) + 1 = d‖(e)
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and similarly show that d‖(r) ≤ d‖(e).

– If e = e∗0 with ` = e∗0 · `′ and r = r′ · e∗0 such that `′ ∇e0 r′, then by induction we know

that d‖(`
′), d‖(r

′) ≤ d‖(e0). We can then derive that

d‖(`) = max(d‖(e
∗
0), d‖(`

′)) ≤ max(d‖(e
∗
0), d‖(e0)) = d‖(e

∗
0)

and similarly for d‖(r).

Lemma 5.32. Let e ∈ T . R(e) is finite. Furthermore, if e′ ∈ R(e), then d‖(e
′) ≤ d‖(e).

Proof. For finiteness, it suffices to find for every e ∈ T a finite set S(e) that contains e and satisfies

the rule that defines R(e) — after all, since R(e) is the smallest such set, it follows that R(e) ⊆ S(e),

and hence R(e) must be finite. To this end, we define for e ∈ T the set S(e) inductively, as follows

S(0) = {0} S(e0 + e1) = {e0 + e1} ∪ S(e0) ∪ S(e1)

S(1) = {1} S(e0 · e1) = {e′0 · e1 : e′0 ∈ S(e′0)} ∪ S(e1)

S(a) = {a, 1} S(e0 ‖ e1) = {e′0 ‖ e′1 : e′0 ∈ S(e0), e′1 ∈ S(e1)}

S(e∗0) = {1, e∗0} ∪ {e′0 · e∗0 : e′0 ∈ S(e0)}

It should be clear that S(e) is finite for every e ∈ T . To show that S(e) is a valid choice for our

objective, we proceed by induction on e. In the base, there are three cases to consider, and in each

case the claim holds trivially. For the inductive step, there are four cases to consider.

• If e = e0 + e1, then note that e0 + e1 ∈ S(e) by definition. Furthermore, if e′ ∈ S(e) and

` ∇e′ r, then there are two cases to consider. On the one hand, if e′ = e0 + e1, then ` ∇e0 r

or ` ∇e1 r, which means that r ∈ S(e0) or r ∈ S(e1); in either case r ∈ S(e). On the other

hand, if e′ ∈ S(e0) or e′ ∈ S(e1), then r ∈ S(e0) or r ∈ S(e1) by induction.

• If e = e0 · e1, then note that since e0 ∈ S(e0), we also have that e ∈ S(e). Now, if e′ ∈ S(e),

then e′ = e′0 · e1 for some e′0 ∈ S(e0). Suppose that ` ∇e′ r; then there are two cases. On the

one hand, if r = r′ · e1 such that ` ∇e′0 r
′, then by induction we know that r′ ∈ S(e0), and

hence r = r′ · e1 ∈ S(e). On the other hand, if ` = e′0 · `′ and `′ ∇e1 r, then r ∈ S(e1) by

induction, and hence r ∈ S(e) again.

• If e = e0 ‖ e1, then note that since e0 ∈ S(e0) and e1 ∈ S(e1), we also have that e ∈ S(e).

Now, if e′ ∈ S(e), then e′ = e′0 ‖ e′1 with e′0 ∈ S(e0) and e′1 ∈ S(e1). Suppose that ` ∇e′ r′;

then ` = `0 ‖ `1 and r = r0 ‖ r1, and `i ∇ei ri for i ∈ {0, 1}. By induction, r0 ∈ S(e0) and

r1 ∈ S(e1), which means that r = r0 ‖ r1 ∈ S(e).
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• If e = e∗0, then note that e∗0 ∈ S(e) by construction. Now, if e′ ∈ S(e) and ` ∇e r, then there

are three subcases to consider.

– If e′ = 1, then ` = r = 1, in which case r ∈ S(e) immediately.

– If e′ = e∗0, then ` = r = 1, or ` = e∗0 · `′ and r = r′ · e∗0 with `′ ∇e0 r′. In the former case,

r ∈ S(e). In the latter case, r′ ∈ S(e0) by induction, and hence r = r′ · e∗0 ∈ S(e).

– If e′ = e′0 · e∗0 with e′0 ∈ S(e0), then either r = r′ · e∗0 with ` ∇e′0 r
′, or ` = e∗0 · `′ and

`′ ∇e∗0 r. In the former case, r′ ∈ S(e0), meaning that r = r′ · e∗0 ∈ S(e). In the latter

case, r ∈ S(e) by an argument similar to the previous case.

For the second claim, we show that if e′ ∈ S(e), then d‖(e
′) ≤ d‖(e), by induction on e. In the base,

where e ∈ {0, 1} ∪ Σ, the claim holds, for d‖(e
′) = 0. For the inductive step, there are four cases.

• If e = e0 +e1, then either e′ = e0 +e1, in which case the claim holds immediately, or e′ ∈ S(e0)

or e′ ∈ S(e1). If e′ ∈ S(e0), then d‖(e
′) ≤ d‖(e0) by induction. Since d‖(e0) ≤ d‖(e), the

claim follows; the case where e′ ∈ S(e1) can be argued similarly.

• If e = e0 · e1, then either e′ = e′0 · e1 for e′0 · S(e0), or e′ ∈ S(e1). In the former case, d‖(e
′
0) ≤

d‖(e0) by induction, and hence d‖(e
′) = max(d‖(e

′
0), d‖(e1)) ≤ max(d‖(e0), d‖(e1)) = d‖(e).

In the latter case, d‖(e
′) ≤ d‖(e1) by induction; since d‖(e1) ≤ d‖(e), the claim follows.

• If e = e0 ‖ e1, then e′ = e′0 ‖ e′1 for e′0 ∈ S(e0) and e′1 ∈ S(e1). By induction, we then

know that d‖(e
′
0) ≤ d‖(e0) and d‖(e

′
1) ≤ d‖(e

′
1), whence d‖(e

′) = max(d‖(e
′
0), d‖(e

′
1)) + 1 ≤

max(d‖(e0), d‖(e1)) + 1 = d‖(e).

• If e = e∗0, then either e′ = 1, in which case d‖(e
′) = 0 ≤ d‖(e) immediately, or e′ = e, in which

case d‖(e
′) ≤ d‖(e), or e′ = e′0 · e∗0 for some e′0 ∈ S(e0). In the latter case, d‖(e

′
0) ≤ d‖(e0) by

induction. We then derive d‖(e
′) = max(d‖(e

′
0), d‖(e

∗
0)) ≤ max(d‖(e0), d‖(e

∗
0)) = d‖(e).

5.B Proofs to factorise the exchange law

Lemma 5.47. Let C ∈ PC; the following hold:

(i) C ∈ PCsp if and only if C is series-parallel, and

(ii) if C = [c] ∈ PCsp and U = [u] ∈ Pom, then C[U ] = [c[u]].

Proof. We treat the claims in the order given.
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(i) The implication from left to right holds by construction of PCsp. For the other implication,

we proceed by induction on the construction of C as a series-parallel pomset. In the base, we

can disregard the case where C = 1, for then C would not have any node labelled with �,

meaning that C 6∈ PC. We thus know that C is primitive; it must then be the case that C = �

(otherwise, C would again not be a valid pomset context), which means that C ∈ PCsp.

For the inductive step, there are two cases to consider. If C = V ·W , then exactly one of V and

W contains the node labelled by �, and the other one does not have any nodes labelled by �.

Thus, if V has exactly one node labelled by �, then V ∈ PC. Since furthermore both V and W

are series-parallel, it follows that V ∈ PCsp by induction, and hence C = V ·W ∈ PCsp. The

case where V has exactly one node labelled by � is similar, as is the case where C = V ‖W .

(ii) We proceed by induction on the construction of C as a member of PCsp. In the base, C = �;

in this case, the definition of c[u] degenerates into u. We check this as follows:

• For the carrier, we have Sc[u] = Su ∪ Sc \ {s�} = Su ∪ {s�} \ {s�} = Su ∪ ∅ = §u.

• For the order, we claim that ≤u is the same as ≤c[u]. The inclusion from left to right

follows by definition of ≤c[u]. For the other inclusion, we note that only the first rule

in the construction of ≤c[u] has any instances; after all, if s ≤c[u] s
′, then s, s′ ∈ Sc[u],

which means in particular that s, s′ 6∈ Sc = {s�}.

• For the labelling, we note that if s ∈ Sc[u] = Su, then λc[u](s) = λu(s) by definition.

For the inductive step, we consider the case where C = C ′ · V for C ′ ∈ PCsp and V ∈ SP; the

other cases are similar. We write C ′ = [c′] and V = [v], noting c = c′ · v. It suffices to show

that c[u] = c′[u] · v, which we do by comparing their components as labelled posets.

• For the carriers, we derive that they coincide as follows:

Sc[u] = Sc ∪ Su − {s�} = Sc′ ∪ Sv ∪ Su − {s�} = Sc′[u] ∪ Sv = Sc′[u]·v

• For the ordering, first suppose that s, s′ ∈ Sc[u] with s ≤c[u] s
′.

– If s, s′ ∈ Sc − {s�}, then s ≤c s
′; this gives us three subcases to consider.

∗ If s, s′ ∈ Sc′ − {s�}, then s ≤c′ s
′, meaning s ≤c′[u] s

′; thus, s ≤c′[u]·v s
′.

∗ If s, s′ ∈ Sv, then s ≤v s
′, meaning that s ≤c′[u]·v s

′.

∗ If s ∈ Sc′ − {s�} and s′ ∈ Sv, then s ∈ Sc′[u], meaning s ≤c′[u]·v s
′.

– If s, s′ ∈ Su, then s ≤u s
′. This tells us that s ≤c′[u] s

′, meaning s ≤c′[u]·v s
′.

– If s ∈ Su and s′ ∈ Sc − {s�} with s� ≤c s
′, then there are two subcases:
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∗ If s′ ∈ Sc′ − {s�}, then s� ≤c′ s
′, meaning s ≤c′[u] s

′; thus, s ≤c′[u]·v s
′.

∗ If s′ ∈ Sv, then since s ∈ Sc′[u], we have s ≤c′[u]·v s
′ immediately.

– If s ∈ Sc and s′ ∈ Su with s ≤c s�, an argument similar to the above applies.

This shows that ≤c[u] ⊆ ≤c′[u]·v; the other inclusion can be shown similarly.

• To see that their labellings are the same, suppose that s ∈ Sc[u]; there are three cases.

– If s ∈ Sc′ − {s�}, then in particular s ∈ Sc − {s�}, meaning

λc[u](s) = λc(s) = λc′(s) = λc′[u](s) = λc′[u]·v(s)

– If s ∈ Sv, then s ∈ Sc − {s�}, whence λc[u](s) = λc(s) = λv(s) = λc′[u]·v(s).

– If s ∈ Su, then we derive λc[u](s) = λu(s) = λc′[u](s) = λc′[u]·v(s).

To prove Lemma 5.48, we need the following technical lemma.

Lemma 5.B.1. Let C ∈ PC and U ∈ Pom and a ∈ Σ. Now C[a] = U if and only if C = [c] and

U = [u] such that all of the following hold:

(i) Sc = Su as well as ≤c = ≤u, and

(ii) λc(s�) = � and λu(s�) = a, and

(iii) λc(s) = λu(s) for all s ∈ Sc − {s�}.

Proof. Let C = [c] with s� ∈ Sc the unique node of c such that λc(s�) = �. Also, let a = [a],

where we assume without loss of generality that Sa = {sa} (where sa 6∈ Sc), and we have λa(sa) = a.

For the direction from left to right, we choose Su = Sc and ≤u = ≤c, and we set λu(s�) = a,

while λu(s) = λc(s) for all s ∈ Sc − {s�}. It should be clear that this choice of u and c satisfies

the three conditions above; it remains to prove that [u] = U , for which it suffices to show that that

u is isomorphic to c[a], since C[a] = U . To see this, first note that

Sc[a] = Sc ∪ Sa − {s�} = Sc ∪ {sa} − {s�}

We choose h : Sc[a] → Su by setting h(sa) = s� and h(s) = s when s 6= sa; clearly, h is a bijection

between Sc[a] and Su. To see that h preserves labels, first note

λu(h(sa)) = λu(s�) = a = λa(sa) = λc[a](sa)

Second, when s 6= sa we have that s ∈ Sc, and hence λu(h(s)) = λu(s) = λc(s) = λc[a](s).

To see that h preserves order, suppose that s, s′ ∈ Sc[a] such that s ≤c[a] s
′; there are four cases.
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• If s ≤c s
′, then s, s′ 6= sa, and hence h(s) = s ≤u s

′ = h(s′) by definition.

• If s ≤a s
′, then s = s′ = sa since Sa is a singleton; hence h(sa) ≤u h(sa).

• If s ≤c s� and s′ ∈ Sa, then s ∈ Sc and s′ = sa; hence h(s) = s ≤u s� = h(s′).

• If s� ≤c s
′ and s ∈ Sa, then s′ ∈ Sc and s = sa; hence h(s) = s� ≤u s

′ = h(s′).

A similar argument shows that h reflects ordering; hence, h is a pomset isomorphism, and [c[a]] = [u].

For the converse direction, suppose that U = [u] such that the three conditions above are

satisfied. It remains to show that C[a] = U — in other words, that c[a] is isomorphic to u. As

isomorphism, we choose the identity function, which is already a bijection by the first property; it

also preserves and reflects ordering (by the first property), and preserves labels (by the second and

last properties). Hence, c[a] is isomorphic to u, and therefore C[a] = U .

Lemma 5.48. Let C ∈ PC, V ∈ Pom and a ∈ Σ. The following hold:

(i) If C[a] v V , then we can construct C ′ ∈ PC s.t. C v C ′ and C ′[a] = V .

(ii) If V v C[a], then we can construct C ′ ∈ PC s.t. C ′ v C and C ′[a] = V .

Moreover, if V ∈ SP, then the C ′ constructed in each of the above is series-parallel.

Proof. We prove the first claim; the second claim can be proved similarly. Let U = C[a]. By

Lemma 5.B.1, we have C = [c] and U = [u] with Su = Sc and ≤u = ≤c, with λc(s�) = � and

λu(s�) = a, and that λc(s) = λu(s) for all s ∈ Sc − {s�}. Without loss of generality, we can

assume that V = [v] with Sv = Su and λv = λu and ≤u ⊆ ≤v. We choose Sc′ = Sc and ≤c′ = ≤v

and λc′ = λc to obtain C ′ = [c′]. First, note that C ′ v C by construction. Also, observe that

Sc′ = Sc = Su = Sv; furthermore, λc′(s�) = λc(s�) = ∗, while λv(s�) = λu(s�) = a, and for

s ∈ Sc − {s�} we have λc′(s) = λc(s) = λu(s) = λv(s). By Lemma 5.B.1, we conclude C ′[a] = V .

Finally, if V ∈ SP, then C ′ must also be N-free (and hence series-parallel), since any N in C ′

must also occur in V (by construction of C ′), and V is N-free because it is series-parallel.

To prove Lemma 5.49, we need the following auxiliary lemma.

Lemma 5.B.2. Let C ∈ PC and U ∈ Pom. Now C[1] = U if and only if C = [c] and U = [u] s.t.:

(i) Sc = Su ∪ {s�} with s� 6∈ Su, and

(ii) for all s, s′ ∈ Su it holds that s ≤u s
′ if and only if s ≤c s

′, and

(iii) λc(s�) = � and λc(s) = λu(s) for all s ∈ Su.
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Proof. Let C = [c], where s� ∈ Sc is the unique �-labelled note of c, and write 1 for the (unique)

empty labelled partial order. For the direction from left to right, we know that U = C[1] = [c[1]].

It suffices to prove that c[1] satisfies exactly the properties of u listed above. First of all, note that

Sc[1] = Sc ∪S1−{s�} = Sc \ {s�} by definition, hence s� 6∈ Sc[1]. Furthermore, Sc[1] ∪{s�} = Sc.

Next, suppose that s, s′ ∈ Sc[1] with s ≤c[1] s
′. We can discount the possibility that s ∈ S1 or

s′ ∈ S1, which leaves us to conclude that s ≤c s
′; the converse holds by definition of ≤c[1]. Lastly,

note that λc(s�) = � immediately, and that if s ∈ Sc[1], then s ∈ Sc, and hence λc[1](s) = λc(s).

Conversely, we can show that c[1] is isomorphic to u satisfying the above conditions, and hence

that C[1] = U . In detail, first note that Sc[1] = Sc ∪ S1 − {s�} = Sc − {s�} = Su by the first

property; we choose the identity on Sc to be the mediating isomorphism. To see that this indeed

gives us a labelled poset isomorphism, note that the identity preserves and reflects ordering by the

first property, and it preserves labels by the second property.

Lemma 5.49. Let C ∈ PC and U ∈ SP such that C[1] = U . The following hold:

(i) We can construct a C ′ ∈ PCsp such that C ′[1] = U and C v C ′.

(ii) We can construct a C ′ ∈ PCsp such that C ′[1] = U and C ′ v C.

Proof. We prove the second claim; the first claim can be shown using a similar argument. Let

C = [c] and U = [u]. Without loss of generality, assume that c[1] = u. We will show that if

C /∈ PCsp, then we can construct a labelled poset c′ such that all of the following hold:

(a) Sc = Sc′ , and

(b) for all s, s′ ∈ Sc \ {s�} with s ≤c′ s
′, we have s ≤c s

′, and

(c) λc = λc′ , and

(d) ≤c is contained in but not equal to ≤c′ .

Conditions (a)–(c), in combination with Lemma 5.B.2, imply that C[1] = [c′[1]]. Moreover, (a), (c)

and (d) tell us that [c′] v [c] but [c′] 6= [c]. Hence, [c′] is strictly subsumed by C but still satisfies

the premise of the lemma. By well-founded induction on v, we can repeat this process until we

find a context C ′ ∈ PCsp that is subsumed by C and still satisfies that C ′[1] = U .

Recall that an N-shape in v is a quadruplet of events 〈s1, s2, s3, s4〉 ∈ S4
v such that:

s1 ≤v s3 s2 ≤v s3 s2 ≤v s4 s1 6≤v s4 s2 6≤v s1 s4 6≤v s3.
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Since C 6∈ PCsp but C ∈ PC, it follows by Theorem 3.22 and Lemma 5.47 that C is not series-parallel;

hence, there is an N-shape 〈s1, s2, s3, s4〉 ∈ S4
c . On the other hand, since U = C[1] ∈ SP we know

that U does not have this pattern, so s� must be one of these four events. Let us do a case analysis:

1. First, suppose that s� = s1. We claim that we can build c′ by choosing

Sc′ = Sc λc′ = λc ≤c′ = (≤c ∪ {〈s�, s4〉})∗

Conditions (a), (c) and (d) hold by construction, and ≤c′ is reflexive and transitive, too. It

remains to validate condition (b), and that ≤c′ is antisymmetric. The following facts help.

Fact 5.B.3. For all s ∈ Sc with s <c s� we have s ≤c s4.

Proof of Fact 5.B.3. The proof proceeds by contradiction: assume there exists s ∈ Sc with

s <c s� and s 6≤c s4. Then we can show that the quadruplet 〈s, s2, s3, s4〉 ∈ Sc \ {s�} = Su

is an N-shape in u. Indeed, we already know that

s2 ≤u s3 s2 ≤u s4 s4 6≤u s3.

Therefore what remains are the statements relating to s, i.e., that

s ≤u s3 s 6≤u s4 s2 6≤u s

The first one is obtained by transitivity: s ≤c s� ≤c s3, and thus s ≤u s3. The second one

is a direct consequence of our assumption that s 6≤c s4. Lastly, if we assume s2 ≤u s, then

s2 ≤c s, and by transitivity we get s2 ≤c s�, which contradicts that (s�, s2, s3, s4) is an

N-shape. We now have shown that s 6≤c s4 implies the existence of an N-shape in U , which

cannot be the case. We conclude that if s <c s�, then s ≤c s4.

Fact 5.B.4. If s ≤c′ s
′, then either s ≤c s

′, or s = s� and s4 ≤c s
′.

Proof of Fact 5.B.4. We shall phrase the claim and its proof in terms of relations. Let

R = {〈s�, s4〉} and T = <c; note that ≤c = (T ∪R)
∗
. It now suffices to show that

(T ∪R)
∗ ⊆ T ∗ ∪R ◦ T ∗

Note that Fact 5.B.3 can be written as T ◦R ⊆ T ∗. Also, R ◦R = ∅, since s� 6= s4, because

s� ≤c s3 and s4 6≤u s3. Using these properties, we can derive the following containments:

T ◦ T ∗ ⊆ T ∗ ∪R ◦ T ∗ T ◦R ◦ T ∗ ⊆ T ∗ ◦ T ∗ ⊆ T ∗ ∪R ◦ T ∗

R ◦ T ∗ ⊆ T ∗ ∪R ◦ T ∗ R ◦R ◦ T ∗ = ∅ ◦ T ∗ = ∅ ⊆ T ∗ ∪R ◦ T ∗
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By distributivity of relational composition over union, we can then derive the following:

(T ∪R) ◦ (T ∗ ∪R ◦ T ∗) = T ◦ T ∗ ∪ T ◦R ◦ T ∗ ∪R ◦ T ∗ ∪R ◦R ◦ T ∗ ⊆ T ∗ ∪R ◦ T ∗.

By the fixpoint principle for reflexive-transitive closure, it follows that:

(T ∪R)
∗ ◦ (T ∗ ∪R ◦ T ∗) ⊆ T ∗ ∪R ◦ T ∗.

Finally, we conclude that (T ∪R)
∗ ⊆ T ∗ ∪R ◦ T ∗ by:

(T ∪R)
∗ ⊆ (T ∪R)

∗ ◦ (T ∗ ∪R ◦ T ∗) ⊆ T ∗ ∪R ◦ T ∗

We can now use Fact 5.B.4 to show the remaining properties. For the third condition on c′,

assume s ≤c′ s
′ with s, s′ 6= s�. By the previous observation, either s ≤c s

′ or we have both

s = s� and s4 ≤c s
′. Since s 6= s�, we may conclude that s ≤c s

′.

For antisymmetry, let s ≤c′ s
′ ≤c′ s. Using Fact 5.B.4, we distinguish four cases:

(a) If s ≤c s
′ ≤c s, then by antisymmetry of ≤c we get s = s′;

(b) If s ≤c s
′ and s′ = s� with s4 ≤c s, then we get s4 ≤c s ≤c s

′ = s�;

(c) If s = s� with s4 ≤c s
′ and s′ ≤c s, then we get s4 ≤c s

′ ≤c s = s�;

(d) If s = s� with s4 ≤c s
′ and s′ = s� with s4 ≤c s, then we get s = s� = s′.

In the first and last case we could conclude that s = s′, while in the other three we ended up

with s4 ≤c s�, contradicting that s� ≤c s3 and s4 6≤u s3.

2. Next, suppose that s� = s2. We claim that we can build c′ by choosing

Sc′ = Sc λc′ = λc ≤c′ = (≤c ∪ {〈s�, s1〉})∗

As before, conditions (a), (c) and (d) hold by construction, and ≤c′ is reflexive and transitive.

It remains to validate (b), and that ≤c′ is antisymmetric. The following facts help.

Fact 5.B.5. For all s ∈ Sc with s <c s�, we have s ≤c s1.

Proof of Fact 5.B.5. We proceed by contradiction. Assume that s <c s� and s 6≤c s1 Then

we show that 〈s1, s, s3, s4〉 ∈ Sc \ {s�} = Su is an N-shape. Indeed, we already know that

s1 ≤u s3 s1 6≤u s4 s4 6≤u s3.

Therefore what remains are the statements relating to s, i.e.,

s ≤u s3 s ≤u s4 s 6≤u s1



5.B. PROOFS TO FACTORISE THE EXCHANGE LAW 107

The first and second are obtained by transitivity: s ≤c s� ≤c s3, s4. The third one follows

directly from our assumption. We now have shown that s 6≤c s1 implies the existence of an

N-pattern in U , which cannot be the case. We conclude that if s <c s�, then s ≤c s1.

Fact 5.B.6. If s ≤c′ s
′, then either s ≤c s

′ or s = s� and s1 ≤c s
′.

Proof of Fact 5.B.6. As before, we formulate and prove claim in terms of relations. Let

R = {〈s�, s1〉} and T = <c. We have ≤c = (T ∪R)
∗
, which makes the claim equivalent to

(T ∪R)
∗ ⊆ T ∗ ∪R ◦ T ∗

We can write Fact 5.B.5 as T ◦R ⊆ T ∗. Note also that T ◦ T = ∅, since s� 6= s1. Since we

now have the same premises as in Fact 5.B.4, we may derive the same conclusion.

The desired properties now follow from Fact 5.B.6, as in the previous case.

3. If s� = s3, then by a similar argument as in the case where s� = s2, we may show first that

for all s with s� <c s it holds that s4 <c s. We can then use this to show that choosing

≤c′ = (≤c ∪ {〈s4, s�〉})∗ validates the claim.

4. If s� = s4, then by a similar argument as in the case where s� = s1, we may show first that

for all s with s� <c s it holds that s1 <c s. We can then use this to show that choosing

≤c′ = (≤c ∪ {〈s1, s�〉})∗ validates the claim.

Lemma 5.50. Let C ∈ PC and V ∈ Pom. The following hold:

(i) If C[1] v V , then we can construct C ′ ∈ PC such that C v C ′ and C ′[1] = V .

(ii) If V v C[1], then we can construct C ′ ∈ PC such that C ′ v C and C ′[1] = V .

Moreover, if V ∈ SP, then the C ′ constructed in each of the above is series-parallel.

Proof. Let U = C[1]. It suffices to construct a C ′ ∈ PC such that C ′ v C and C ′[1] = V , since

Lemma 5.49 takes care of the “moreover” clause. By Lemma 5.B.2, we find that C = [c] and

U = [u] such that Sc = Su ∪ {s�}, for all s, s′ ∈ Su it holds that s ≤u s
′ if and only if s ≤c s

′,

λc(s�) = � and λc(s) = λu(s) for all s ∈ Su. Let V = [v]; since V v U , we know without loss of

generality that Sv = Su and λu = λv and ≤u ⊆ ≤v. Let ≤c′ be the smallest transitive relation on

Sc containing ≤v and ≤c. Let s, s′ ∈ Sc with s ≤c′ s
′; the following properties of ≤c′ are useful:

(a) If s = s� and s′ ∈ Sv, then there exists an ŝ ∈ Sv such that s� ≤c ŝ ≤v s
′.
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(b) If s ∈ Sv and s′ = s�, then there exists an ŝ ∈ Sv such that s ≤v ŝ ≤c s�.

(c) If s, s′ ∈ Sv, then s ≤v s
′.

We prove these claims in tandem by induction on the construction of ≤c′ . In the base, suppose for

the first claim that s = s� and s′ ∈ Sv; we then know that s ≤c s
′ (the case where s ≤v s

′ can be

excluded, for s� 6∈ Sv), and hence we can choose ŝ = s′ to satisfy the claim; the second claim goes

through similarly. For the last claim, if s ≤v s
′ then we are done immediately; otherwise, if s ≤c s

′,

then since s, s′ 6= s� we have that s ≤u s
′, and hence s ≤v s

′.

In the inductive step, we have that s ≤c′ s
′ because there exists an s′′ ∈ Sc with s ≤c′ s

′′ ≤c′ s
′.

We shall treat each claim separately, assuming that all three claims hold for s ≤c′ s
′′ and s′′ ≤c′ s

′.

(a) If s = s� and s′ ∈ Sv, then there are two cases to consider. On the one hand, if s′′ = s�, then

we can apply the induction hypothesis to s′′ ≤c′ s
′ to find an ŝ ∈ Sv such that s� ≤c ŝ ≤v s

′.

On the other hand, if s′′ 6= s�, then s′′ ∈ Sv, and we can apply the induction hypothesis to

s ≤c′ s
′′ to find an ŝ ∈ Sv such that s� ≤c ŝ ≤v s

′′. By applying the induction hypothesis to

s′′ ≤c′ s
′, we find s′′ ≤v s

′, and thus we can conclude that s� ≤c ŝ ≤v s
′.

(b) If s ∈ Sv and s = s�, then the proof proceeds as in the previous case.

(c) If s, s′ ∈ Sv, then there are again two cases to consider.

• If s′′ = s�, then we can apply the induction hypothesis (specifically, the second claim)

to s ≤c′ s
′′ to find an ŝ ∈ Sv such that s ≤v ŝ ≤c s

′′. Similarly, we can apply the

induction hypothesis (in this case, the first claim) to s′′ ≤c′ s to find an ŝ′ ∈ Sv such

that s′′ ≤c ŝ
′ ≤v s

′. We then know that ŝ ≤c ŝ
′, and since ŝ, ŝ′ ∈ Sv = Su, we know

that ŝ ≤u ŝ
′, and hence ŝ ≤v ŝ

′. In total, we find that s ≤v ŝ ≤v ŝ
′ ≤v s

′.

• If s′′ 6= s�, then s′′ ∈ Sv, and we can apply the induction hypothesis to both s ≤c′ s
′′

and s′′ ≤c′ s
′ to find that s ≤v s

′′ ≤v s
′.

We now claim that ≤c′ is antisymmetric. To see this, suppose that s, s′ ∈ Sc with s ≤c′ s
′ ≤c′ s.

Now, if s, s′ ∈ Sv, then s ≤v s
′ ≤v s by property (c), and hence s = s′ by antisymmetry of ≤v.

Otherwise, if s = s�, then suppose towards a contradiction that s′ 6= s�; in that case, s′ ∈ Sv,

and we can find ŝ, ŝ′ ∈ Sv such that s� ≤c ŝ ≤v s
′ ≤v ŝ

′ ≤c s� by properties (a) and (b). But

then, since ŝ′ ≤c ŝ, it follows that ŝ′ ≤v ŝ. Moreover, ŝ ≤v s
′ ≤v ŝ

′ ≤ ŝ, and hence ŝ′ = s′ = ŝ by

antisymmetry of ≤v. It then follows that s� ≤c s
′ ≤c s�, meaning that s′ = s� by antisymmetry

of ≤c — a contradiction. We conclude that s′ = s� = s.
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Since ≤c′ is reflexive and transitive by construction, and antisymmetric by the above, it is a

partial order. We now choose Sc′ = Sc and λc′ = λc, and let C ′ = [c′]. Note that C ′ has exactly

one s�-labelled node, and hence C ′ ∈ PC. Now, if s, s′ ∈ Sv, then s ≤v s′ implies s ≤c′ s
′ by

definition of ≤c′ ; furthermore, if s ≤c′ s
′, then s ≤v s

′ by property (c) above. Since Sc′ = Sc =

Su∪{s�} = Sv∪{s�}, and furthermore λc′(s�) = λc(s�) = � and λc′(s) = λc(s) = λu(s) = λv(s)

for s ∈ Sv, we have that C ′[1] = V by Lemma 5.B.2. Lastly, ≤c ⊆ ≤c′ , and thus C ′ v C.

Lemma 5.51. Let H be a set of hypotheses, let L ⊆ SP and C ∈ PCsp. The following hold:

(i) If H is right-simple and e ≤ f ∈ H such that C[JfK] ⊆ (LH)exch, then C[JeK] ⊆ (LH)exch.

(ii) If H is left-simple and e ≤ f ∈ exch such that C[JfK] ⊆ (Lexch)H , then C[JeK] ⊆ (Lexch)H .

Proof. We treat the claims in the order given.

(i) We know that, if e ≤ f ∈ H, then f = 1 or f = a for some a ∈ Σ. We denote the sole pomset

in JfK by U ; observe that either U = 1 or U = a for some a. Using Corollary 5.6, it then

suffices to show that if C ∈ PCsp and C[a] vsp V ∈ LH , then C[JeK] ⊆ (LH)exch.

Given the premises above and applying Lemma 5.50(i) as well as Lemma 5.48(i), we can find

C ′ ∈ PCsp such that C v C ′ and C ′[Uf ] = V . But then, by definition of closure, it follows

that C ′[JeK] ⊆ LH . Now, let W ∈ C[JeK]; then W = C[X] for some X ∈ JeK, which means

that W v C ′[X]. Since C ′[X] ∈ C ′[JeK] ⊆ LH , it follows that W ∈ (LH)exch by Corollary 5.6.

(ii) In this case, Corollary 5.6 tells us that the claim is equivalent to showing that if U vsp

V ∈ (Lexch)H , then U ∈ (Lexch)H , or, more generally, that if U vsp V ∈ B ⊆ (Lexch)H ,

then U ∈ (Lexch)H . Our proof proceeds by induction on the construction of B ⊆ (Lexch)H .

In the base, we have that B = Lexch, in which case U ∈ Lexch ⊆ (Lexch)H immediately.

For the inductive step, we obtain e ≤ f ∈ H and C ∈ PCsp such that B = C[JeK] and

C[JfK] ⊆ (Lexch)H . Since H is left-simple, we know that e = 1 or e = a. Let us write X for

the sole pomset in JeK, and observe that X = 1 or X = a for some a ∈ Σ. We then know that

V = C[X]. By Lemma 5.50(ii) and Lemma 5.48(ii), we find C ′ ∈ PCsp such that C ′ v C and

C ′[X] = U . Since very pomset in C ′[JfK] is subsumed by one in C[JfK], we find by induction

that C ′[JfK] ⊆ (Lexch)H , and thus U = C ′[X] ∈ (Lexch)H by definition of closure.

Theorem 5.52. Let H be a set of hypotheses. The following hold.

(i) If H is right-simple, then H ∪ exch factorises into H, exch.

(ii) If H is left-simple, then H ∪ exch factorises into exch, H.
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Proof. We prove the first claim; the second claim follows by a similar argument. First, note that

since H ∪ exch implies H, we have that LH ⊆ LH∪exch by Lemma 4.23, and hence (LH)exch ⊆

(LH∪exch)H∪exch = LH∪exch, where the latter equality follows from Lemma 4.11.

For the other inclusion, we show that if A ⊆ LH∪exch, then A ⊆ (LH)exch, by induction on

A ⊆ LH∪exch. In the base, where A = L, note that A = L ⊆ LH ⊆ (LH)exch. For the inductive

step, we obtain e ≤ f ∈ H ∪ exch and C ∈ PCsp such that A = C[JeK] and C[JfK] ⊆ LH∪exch. By

induction, it then follows that C[JfK] ⊆ (LH)exch. There are now two cases to consider.

• If e ≤ f ∈ H, then because H is right-simple, we have that C[JeK] ⊆ (LH)exch by Lemma 5.51.

• On the other hand, if e ≤ f ∈ exch, then A = C[JeK] ⊆ (LH)exch by definition of closure.



Chapter 6

Control Flow

Thus far, we have considered macroscopic program composition: run either this or that program,

run this before that other piece of code, and have these threads execute in parallel. Our toolkit

lacks the ability of a program to act on the current state: do this if that is true, or do this while

that holds. If we had this type of composition available in our syntax and axioms, we could perhaps

show that some complicated conditional can be simplified, or we could prove that a certain program

with a doubly nested loop is equivalent to a program with a single loop.

For rational expressions, i.e., series-rational expressions without parallel composition, an ex-

tension along these lines was proposed and studied by Kozen and collaborators, in the form of

Kleene algebra with tests (KAT) [Koz96; CKS96; KS96; Koz97]; Jipsen and Moshier studied the

extension of these techniques to sr-expressions [JM16]. For our purposes, we can think of the

relevant (series-)rational expressions over an extended alphabet, where some letters represent the

actions available to a program, and the other letters represent assertions about the state. These

assertions furthermore have an internal algebraic structure: if p and q are assertions, then so is

p ∧ q, i.e., the assertion that both p and q are true, as is p, i.e., the assertion that p is false.

One can then use these assertions to embed structures that model control flow. For instance,

a conditional like if p then e else f for programs e and f and an assertion p can be encoded as

p · e + p · f : either p holds, after which e is executed, or p does not hold, in which case we run

f . Similarly, we can encode a loop like while p do e, where p is an assertion and e represents a

program, by (p · e)∗ · p: run e some number of times, where before each iteration p is true, such

that in the end p no longer holds. Assertions also come with reasoning rules, and we can use these

to reason about control flow [Koz97; AK01; KP00; BK02].
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Our objective in this chapter is to study the inclusion of reasoning about control flow to concurrent

programs, using the tools derived in previous chapters. There are two main contributions. We

shall show that, on the one hand, combining existing hypotheses to encode control flow with the

exchange law can lead to a system that is not very useful for reasoning about program equivalence.

On the other hand, we show that these hypotheses can be slightly weakened to obtain a system

that does not have this problem, and for which we can derive completeness and decidability.

We start by casting KAT in the framework of hypotheses, starting with the syntax.

Definition 6.1 (Syntax). Let Ω be a (finite) alphabet of symbols called tests. The set of proposi-

tional expressions is denoted TB, and generated by the grammar

p, q ::= ⊥ | > | o ∈ Ω | p ∨ q | p ∧ q | p

The set of guarded rational expressions, denoted TG, contains rational expressions over Σ ∪ TB; i.e.,

generated by

e, f ::= 0 | 1 | a ∈ Σ | p ∈ TB | e+ f | e · f | e∗

In the syntax for propositional expressions, the symbol ⊥ represents the assertion that is always

false, > is the assertion that is always true, p ∨ q asserts that either p or q holds, p ∧ q asserts that

both p and q hold, and p is the assertion that succeeds precisely when p is false.

Having defined how to embed assertions in rational expressions, we now need a way to reason

about them. The first and most obvious rule is that assertions satisfy the axioms of Boolean algebra,

e.g., asserting that p or p hold is the same as the assertion that is always true. Next, we connect

the assertions to the syntax of rational expressions themselves: for instance, asserting that p holds

and then immediately asserting that q holds should be the same as asserting that p and q hold at

the same time. Similarly, running the assertion >, which always succeeds, has the same behaviour

as 1, the program that does nothing. In total, we arrive at the following hypotheses.

Definition 6.2 (Axioms). We define ≡B as the smallest congruence on TB that satisfies

p ∨ ⊥ ≡B p p ∨ q ≡B q ∨ p p ∨ p ≡B > p ∨ (q ∨ r) ≡B (p ∨ q) ∨ r

p ∧ > ≡B p p ∧ q ≡B q ∧ p p ∧ p ≡B ⊥ p ∧ (q ∧ r) ≡B (p ∧ q) ∧ r

p ∨ (q ∧ r) ≡B (p ∨ q) ∧ (p ∨ r) p ∧ (q ∨ r) ≡B (p ∧ q) ∨ (p ∧ r)

We define kat as the union of the following sets of hypotheses

bool = {p = q : p ≡B q} unit = {0 = ⊥, 1 = >}

choice = {p+ q = p ∨ q : p, q ∈ TB} seq = {p · q = p ∧ q : p, q ∈ TB}
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Convention 6.3. Because conjunction and disjunction are commutative and associative (up to

≡B), the bracketing and ordering of an expression like p1 ∨ · · · ∨ pn is unimportant as far as ≡B is

concerned. For a finite S = {p1, . . . , pn} ⊆ TB, this allows us to unambiguously (up to ≡B) denote∨
S = p1 ∨ · · · ∨ p1

∧
S = p1 ∧ · · · ∧ pn

Remark 6.4. The usual syntax for KAT elides ⊥ and >, identifying them with 0 and 1 at the

syntactic level; sequential composition of tests is similarly identified with conjunction, and non-

deterministic composition of tests is syntactically the same as disjunction. It is not very hard

to show that, with these identifications, ≡kat
R coincides with the usual congruence used in Kleene

algebra with tests, and that J−K〈kat〉 is isomorphic to the traditional semantics of KAT given in terms

of guarded strings, i.e., strings in which letters and atoms of the Boolean algebra alternate [KS96].

6.1 The perils of concurrent KAT

We can extend the syntax of series-rational expressions with assertions analogously.

Definition 6.5. The set of guarded series-rational expressions (or gsr-expressions, for short),

denoted TGSR, is formed by series-rational expressions over Σ ∪ TB; alternatively, it is generated by

e, f ::= 0 | 1 | a ∈ Σ | p ∈ TB | e+ f | e · f | e ‖ f | e∗

The most obvious way forward, then, is to take the hypotheses in kat as well as exch and use

them to reason about gsr-expressions [JM16]. The problem is that such a system would not make a

lot of sense when applied to concurrent programs. To see this, consider the following observation.

Fact 6.6. Let ckat = kat ∪ exch. If e ∈ TGSR and p ∈ TB, then p · e · p ≡ckat 0.

Proof. Using the hypotheses in exch, we first derive that

p · e · p 5exch (p ‖ e) · p ≡ (p ‖ e) · (p ‖ 1) 5exch (p · p) ‖ (e · 1) ≡ (p · p) ‖ e

Using the hypotheses in kat, we next derive that

(p · p) ‖ e ≡kat (p ∧ p) ‖ e ≡kat ⊥ ‖ e ≡kat 0 ‖ e ≡ 0

The above invalidates the use of ≡ckat as a tool to reason about program equivalence. It says that

first asserting that p is true, running a program e, and then asserting that p is false, is equivalent to

the program 0 (i.e., the program without valid behaviour) for any assertion p and any program e.
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In other words, there is no way for e to affect the outcome of p — all assertions are invariants of all

programs! This has further ramifications for encoding control flow; for instance, a corollary of the

above is that (p · e)∗ · p, the encoding of while p do e, is equivalent to p, since we can derive that

(p · e)∗ · p ≡ (1 + (p · e)∗ · p · e) · p ≡ p+ (p · e)∗ · p · e · p ≡ckat p+ (p · e)∗ · 0 ≡ p

In other words, the body of any loop does not affect the program at all.

Conceptually, one could argue that the mistake in trying to lift kat to sr-expressions is that

we included the hypotheses {p · q ≤ p ∧ q : p, q ∈ TB}. For sequential programs, these make sense:

the behaviour of asserting that p and q hold at the same time contains the behaviour of asserting

that p is true, and then q is true, because nothing happens in the interim. With concurrency,

such hypotheses cause trouble. For instance, if p · p runs in parallel with e, actions from e may

be interleaved between p and p to make sure that both are true in succession, even though they

cannot be true at the same time [CHM17]. This happened in the derivation for Fact 6.6 above.

Remark 6.7. Jipsen and Moshier [JM16] proposed a set of laws on gsr-expressions similar to

those of KAT. Even though their hypotheses on the propositional expressions are those of a

pseudo-complemented distributive lattice [BD74] and therefore strictly weaker than Boolean algebra,

p ∧ p remains equivalent to ⊥ in their system, and hence the derivation in Fact 6.6 still applies.

Since the hypotheses {p · q ≤ p ∧ q : p, q ∈ T } cause problems in conjunction with the axioms

of Boolean algebra and the exchange law, we should drop these. On the other hand, the converse

hypotheses, i.e., {p ∧ q ≤ p · q : p, q ∈ T }, are not involved in the derivation. Intuitively, these still

make sense for concurrency: the behaviour of asserting p and then q includes the behaviour of

asserting that p and q hold at the same time, in the special case that nothing happens between p

and q. We refer to this set of hypotheses as the contraction law . This leaves us with the following:

ckat′ = exch ∪ bool ∪ choice ∪ contr ∪ unit where contr = {p ∧ q ≤ p · q : p, q ∈ TB}

To see that ckat′ does not permit the same strange derivation as ckat, we observe the following.

Fact 6.8. There exist p ∈ TB and e ∈ T such that p · e · p 6≡ckat′ 0.

Proof. Take p = o ∈ Ω and e = a ∈ Σ, and let L be the set of all pomsets such that at least one

event is labelled with a q ∈ TB such that q ≡B ⊥. First, note that if e ≤ f ∈ ckat′ such that JfK ⊆ L,

then JeK ⊆ L. Since J0K ⊆ L, a simple inductive argument shows that J0Kckat
′ ⊆ L as well. On the

other hand, o · a · o ∈ Jp · e · pK, and since o, o 6≡B ⊥, we have that Jp · e · pKckat′ 6⊆ L. This implies

that Jp · e · pKckat′ 6= J0Kckat
′
, and hence p · e · p 6≡ckat′ 0 by Theorem 4.14.
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We are not out of the woods just yet. To see this, note that kat enjoys a useful property: any

program whose behaviour is included in that of an assertion is equivalent to an assertion — that

is, assertions can be used to describe all assertion-like behaviour. Furthermore, all equivalences of

assertions follow from the laws of Boolean algebra — in other words, equivalence of assertions is

mediated by Boolean algebra exclusively. Formally, we describe this property as follows.

Definition 6.9 (Conservative). Let H be a set of hypotheses. We say that H is conservative if

(i) if e ∈ TGSR and p ∈ TB with e 5H p, then there exists a q ∈ TB such that e ≡H q, and

(ii) if p, q ∈ TB such that p ≡H q, then p ≡B q.

It is not entirely unreasonable, or indeed undesirable, that ckat′ is conservative. Unfortunately, this

means that the old (erroneous) set of hypotheses rears its head once more.

Fact 6.10. If ckat′ is conservative, then ckat′ implies ckat.

Proof. It suffices to verify that, for p, q ∈ TB we have p · q 5ckat′ p ∧ q. To this end, note that

p ·q 5ckat′ p ·> 5ckat′ p ·1 ≡ckat′ p, which means that we obtain p′ ∈ TB such that p ·q ≡ckat′ p′ by the

first property of conservative hypotheses. Since p′ ≡ p·q 5ckat′ p·1 ≡ p, we find that p′ 5ckat′ p by the

second property of conservative hypotheses. Likewise, we obtain q′ ∈ TB such that p · q ≡ckat′ q′ and

q′ 5B q. Since p′ ≡ckat′ q′ and hence p′ ≡B q
′, we can derive that p·q ≡ckat′ p′ ≡B p

′∧q′ 5B p∧q.

Thus, if ckat′ were conservative, then for p ∈ TB and e ∈ T , we would have p · e · p ≡ckat′ 0 again.

This contradicts Fact 6.8, which means that ckat′ cannot be conservative. To work around this,

note that the derivation above hinges on the hypothesis > = 1 to show p · q 5ckat′ p and p · q 5ckat′ q.

If we drop this hypothesis, we arrive at the axioms of Concurrent Kleene algebra with Observations:

ckao = exch ∪ bool ∪ choice ∪ contr ∪ {0 = ⊥}

Remark 6.11. The derivation in Fact 6.10 can be prevented if we just omit the hypothesis > ≤ 1,

and leave 1 ≤ > in place. We drop the latter hypothesis as well, for the sake of simplicity: we do

not gain a lot of additional reasoning power by stipulating that the behaviour of doing nothing is

contained in the behaviour of the assertion that always succeeds, but doing so would complicate

our analysis a great deal. We defer the extension of ckao with this hypothesis to future work.

Note that ckao has more hope of being conservative, because the second property is a consequence

of the technical lemma below. We shall prove the other property at the end of this chapter. Before

we do, we first argue that ckao is decidable and complete, by reducing it to the empty set.

Lemma 6.12. Let p, q ∈ TB; then q 5B p if and only if q ∈ JpKckao.
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6.2 Discharging the Boolean structure

The first step in reducing ckao to the empty set of hypotheses is to reduce the hypotheses that

describe the Boolean structure on assertions. We do this by means of reification (c.f. Section 4.2.1),

replacing every assertion by an expression that uses a restricted form of assertion.

This restricted form essentially spells out the states of the machine that would validate the

assertion. For instance, if Ω = {o1, o2}, then the assertion o1 would be valid if both o1 and o2

were true, or if o1 were true and o2 were false. Syntactically, this is represented by the expression

(o1 ∧ o2)∨ (o1 ∧ o2). Readers familiar with Boolean algebra may recognise the latter as a disjunction

of propositional expressions known as atoms [BB70]. We formalise these as follows.

Definition 6.13 (Atoms). Let Ω = {o1, . . . , on}. An atom is an element of TB of the form

t1 ∧ · · · ∧ tn, where for 1 ≤ i ≤ n, we have that ti = oi or ti = oi. We write At for the set of atoms.

Example 6.14. If Ω is as above, then o1 ∧ o2 and o1 ∧ o2 are indeed atoms. However, o1 is not an

atom (it does not mention o2), and neither is o1 ∨ o2, because it contains a disjunction.

An atom asserts for each of the variables whether it is true or false; they correspond with the

guards that appear in guarded languages [KS96]. Note that there are finitely many atoms. It is

well-known that every propositional expression can be written uniquely (up to commutativity and

associativity) as the disjunction of the atoms below it, as follows.

Theorem 6.15 [BB70, Chapter 5.6]. For every p ∈ TB, it holds that

p ≡B

∨
{α ∈ At : α 5B p}

Furthermore, the expression on the right-hand side of the above equivalence is computable.

Since every propositional expression is equivalent to a disjunction of atoms, and choice identifies

disjunction of propositions with their sum, we can rewrite every propositional expression to a sum

of atoms. This prompts our candidate reification r : TGSR → T (Γ), where Γ = Σ ∪ At and

r(a) =

a a = a ∈ Σ∑
{α : α 5B p} a = p ∈ TB

r(e+ f) = r(e) + r(f) · · ·

The question then arises: which hypotheses do we need to reason about expressions in T (Γ)?

First, note that since atoms do not contain any disjunction, and since ⊥ is not an atom, we

should be able to do away with the hypotheses in choice, as well as 0 = ⊥. As a matter of fact,
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every propositional expression has been normalised, so we also should not have to reason about

equivalence between propositional expressions; this means that we should be able to reason without

bool. Lastly, we need a version of the contraction law that is exclusive to atoms, since those are the

only propositional expressions left. This leaves us with the following reduced set of hypotheses:

ckao′ = exch ∪ contr′ where contr′ = {α ≤ α · α : α ∈ At}

We can now verify that r is a reification, and in fact a reduction, from ckao to ckao′.

Lemma 6.16. The function r is a reduction from ckao to ckao′.

Proof. By Lemma 4.32, it suffices to verify that ckao implies ckao′, and that r is a reification from

ckao to ckao′. First, note that ckao trivially implies exch. It remains to show that ckao implies

contr′. To this end, let α ∈ At, and note that α ≡B α ∧ α 5contr α · α, and therefore α 5ckao α · α.

The first requirement on reification holds by construction of r and the hypotheses from choice.

Concretely, we have for a ∈ Σ that r(a) = a, and for p ∈ TB we can derive using Theorem 6.15 that

r(p) =
∑
{α : α 5B p} ≡choice

∨
{α : α 5B p} ≡B p

For the second requirement, let e ≤ f ∈ ckao; we should show that r(e) 5ckao′ r(f). To this end,

we consider the different parts that make up ckao.

• If e ≤ f ∈ exch, then there exist g1, g2, h1, h2 ∈ TGSR such that e = (g1 ‖ h1) · (g2 ‖ h2)

and f = g1 · g2 ‖ h1 · h2. In that case, r(e) = (r(g1) ‖ r(h1)) · (r(g2) ‖ r(h2)) and

r(f) = r(g1)·r(g2) ‖ r(h1)·r(h2). Thus r(e) ≤ r(f) ∈ exch ⊆ ckao′, and hence r(e) 5ckao′ r(f).

• If e ≤ f ∈ bool, then e = p ∈ TB and f = q ∈ TB such that p 5B q. Let α ∈ At such that

α 5B p; it then follows that α 5B q. Hence, every term in the sum that makes up r(e) appears

in r(f), which means that r(e) 5 r(f).

• Let e ≤ f ∈ choice. There are two subcases. First, if p, q ∈ TB such that e = p + q and

f = p ∨ q, then we can derive as follows

r(e) = r(p) + r(q) =
∑
{α : α 5B p}+

∑
{α : α 5B p} ≡

∑
{α : α 5B p ∨ q} = r(f)

This also shows that if e = p ∨ q and f = p+ q, then r(e) 5 r(f).
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• Let e ≤ f ∈ contr, i.e., there exist p, q ∈ TB such that e = p ∧ q and f = p · q. We then derive

r(e) =
∑
{α : α 5B p ∧ q}

5contr′
∑
{α · α : α 5B p ∧ q}

5
∑
{α · β : α 5B p, β 5B q}

≡
(∑

{α : α 5B p}
)
·
(∑

{α : α 5B q}
)

(distributivity)

= r(p) · r(q) = r(f)

• Finally, if e = ⊥ and f = 0, then r(e) is the empty sum, which by definition is 0. We can

then conclude that r(e) = 0 = r(f).

6.3 Reducing the contraction law

The next step to show that ckao reduces to the empty set of hypotheses is to argue that the residual

set of hypotheses ckao′ reduces to the empty set of hypotheses, on sr-expressions over Γ. Since ckao′

consists of exch and contr′, we can use what we learned in Section 5.2: because contr′ is left-simple,

it suffices to find a strong reduction from contr′ to the empty set of hypotheses.

In this section, we show how to obtain such a strong reduction. The first step is to observe that

contr′ is grounded. By Lemma 4.41, it then suffices to find a sequential reduction of contr′ to the

empty set of hypotheses, and hence we can focus on rational expressions over Γ = Σ ∪ At.

Remark 6.17. The sequential reduction that we are about to demonstrate can also be obtained

by means of the more general framework from [KM14]. We include our own construction because it

saves us from having to import the required background on finitely presented monoids; the ideas

behind why this construction works, however, can be traced back to op. cit.

Recall that a sequential reduction from contr′ to the empty set of hypotheses should show how

to compute, for every e ∈ TR(Γ), an expression ê ∈ TR(Γ) such that both of the following hold:

ê 5contr′

R e 5R ê JeK 〈contr
′〉 = JêK

Example 6.18. If e = (α · α)
∗

for α ∈ At, then ê = α∗ satisfies the constraints above. First, since

α ≤ α · α ∈ contr′, we have that α∗ 5contr′

R (α · α)
∗

by monotonicity. Second, since α · α · α∗ + 1 5R

α · α∗ + 1 ≡R α∗, we have that (α · α)
∗ 5R α∗ by the fixpoint rule. This also shows that

JêK ⊆ JeK〈contr
′〉. For the converse, note that any word in JeK contains α exclusively, and that

contr′-closure preserves this; hence JeK〈contr
′〉 ⊆ JêK.
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s0 s1 s2 snα α

α

x

Figure 6.1: A shortcut in a non-deterministic automaton.

To get an idea for how the second requirement can be accomplished, consider the sequential contr′-

closure. Here, L〈contr
′〉 for L ⊆ Γ∗ is the smallest set containing L, such that when w·α·α·x ∈ L〈contr′〉

with w, x ∈ Γ∗ and α ∈ At, also w · α · x ∈ L〈contr′〉. In other words, adjacent atoms can be merged,

and every word in the contr′-closure of L should be obtainable this way. As a matter of fact, we

can set up this series of merges such that the last merge is furthest to the left of the word. This

leads us to the following characterisation of sequential closure w.r.t. contr′.

Lemma 6.19. Let L ⊆ Γ∗, and define P as the smallest preorder on Γ∗ satisfying the rules

a ∈ Γ w P x

a · w P a · x

α ∈ At w P x

α · w P α · α · x
.

Now w ∈ L〈contr′〉 if and only if there exists an x ∈ L such that w P x.

In other words, to construct ê, we need to ensure that JêK is the smallest P-closed language that

contains JeK. To accomplish this, imagine an automaton accepting JêK: if a state s0 accepts the

word α · α · x, then it should also accept α · x. The path from s0 to an accepting state for α · α · x

includes two transitions labelled α, the last of which leads to a state s2. To make s0 accept α ·x, we

could also include an α-transition from s0 to s2, bypassing the intermediate state (c.f. Figure 6.1).

We will use this intuition to guide our construction of ê. The general setup will be to construct

a rational system represented by a non-deterministic automaton that implements the behaviour

expected of ê, with the aforementioned shortcut transitions. The states in this automaton will be

expressions; the idea is that a state e ∈ TR(Γ) represents the (P-closed) language accepted by that

expression, and a transition from e to e′ labelled a ∈ Γ means that, after reading a, we still need to

read a word described by e′. The solution of this rational system will then be used to build ê.

We start with transitions exiting a state labelled with letters from Σ. These transitions are

built inductively on the structure of the expression represented by the state, and exactly match the

well-known partial derivatives of rational expressions proposed by Antimirov [Ant96].

Convention 6.20. If S ⊆ TR(Γ) and e ∈ TR(Γ), we abbreviate {f · e : f ∈ S} by writing S # e.
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Definition 6.21 (Σ-transitions). We define δ : TR(Γ)× Σ→ 2TR(Γ) inductively

δ(0, a) = δ(1, a) = ∅ δ(e+ f, a) = δ(e, a) ∪ δ(f, a)

δ(a, b) = {1 : a = b} δ(e · f, a) = δ(e, a) # f ∪∆(e, f, a)

δ(α, a) = ∅ δ(e∗, a) = δ(e, a) # e∗

where ∆(e, f, a) = δ(f, a) when e ∈ FR, and ∅ otherwise.

The interpretation of δ is that if e ∈ TR(Γ) and a ∈ Σ, with e′ ∈ δ(e, a), then e has a transition

labelled a to e′. For instance, if e = a∗, then 1 ∈ δ(a, a), and therefore 1 ·a∗ ∈ δ(a∗, a). Furthermore,

since 1 ∈ FR we have that 1 · a∗ ∈ ∆(1, a∗, a), which means that 1 · a∗ ∈ δ(1 · a∗, a).

Before we give a more extensive example of the automata built using δ, we also need to define

the transitions labelled by atoms. These are built in a manner very similar to the ones above; the

only difference is that we need to add the shortcut edges.

Definition 6.22 (At-transitions). We define ζ : TR(Γ)× At→ 2TR(Γ) inductively

ζ(0, α) = δ(1, α) = ∅ ζ(e+ f, α) = ζ(e, α) ∪ ζ(f, α)

ζ(a, α) = ∅ ζ(e · f, α) = ζ(e, α) # f ∪ Z(e, f, α)

ζ(α, β) = {1 : α = β} ζ(e∗, α) = ζ(e, α) # e∗

where Z(e, f, α) = ζ(f, α) when e ∈ FR or e′ ∈ FR for some e′ ∈ ζ(e, α), and ∅ otherwise.

Because the transitions are built by induction on the expression, shortcut edges carry over quite

nicely. For instance, the transitions that exit an expression like e+ f are built from the transitions

exiting e and f ; since these already have shortcut edges, we do not need to add them. We do need

to take care for expressions of the form e · f . Here, an atom-labelled edge exiting e may lead to an

accepting state, in which case we should be able to skip ahead and perform an α-transition in f .

Example 6.23. To get an idea for what the transition structure generated by δ and ζ might look

like, suppose e = α · a · α. In that case, 1 · a · α ∈ ζ(e, α), and therefore 1 · a · α · e∗ ∈ ζ(1 · e∗, α).

Similarly, 1 · α · e∗ ∈ δ(1 · a · α · e∗, a), and 1 · e∗ ∈ ζ(1 · α · e∗). However, since 1 · e∗ ∈ FR, we have

1 · a · α ∈ ζ(e∗, α) = Z(1 · α, e∗) ⊆ ζ(1 · α · e∗, α). This shortcuts the α-transitions that allow us to

move from 1 · α · e∗ to 1 · a · α · e∗ by way of 1 · e∗. The transitions are depicted in Figure 6.2a.

Example 6.24. If f∗ has two successive α-transitions, then the first transition may originate from

f and lead to an accepting state, in which case the second transition is already available from f∗.
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1 · e∗

1 · a · α · e∗ 1 · α · e∗

α a

α

α

(a) Transitions from 1 · e∗, where e = α · a · α.

f∗

1 · f∗ 1 · a · f∗

α

α

α

a

α

(b) Transitions from f∗, where f = α+ α · a.

Figure 6.2: Schematic depictions of transitions generated by the derivative functions δ and ζ. If a

node is labelled by an expression g ∈ TR(Γ) and has an edge labelled by a ∈ Σ to a node g′ ∈ TR(Γ),

this means that g′ ∈ δ(g, a). Similarly, if the edge is labelled by α ∈ At, then g′ ∈ ζ(g, α).

For instance, if f = α+α ·a, then 1 ∈ ζ(f, α), and hence 1 ·f∗ ∈ ζ(f∗, α). Next, since 1 ·a ∈ ζ(f, α),

we have 1 · a · f∗ ∈ ζ(1 · f∗, α). Thus, two α-transitions get us from f∗ to 1 · a · f∗. However, since

1 · a · f∗ ∈ ζ(f∗, α), a single α-transition from f∗ also exists. This is depicted in Figure 6.2b.

In the above examples, we see that the shortcut edges naturally appear as a result of the

definition of ζ. To formally see that this is always the case, we record the following lemma.

Lemma 6.25. Let e ∈ TR(Γ), α ∈ At. If e′ ∈ ζ(e, α), then ζ(e′, α) ⊆ ζ(e, α).

Now, to build a rational system where states are expressions using the transition structures

induced by δ and ζ, we need to make sure that the set of states in that rational system is closed

under the transitions. To this end, we introduce the notion of the reach of an expression.

Definition 6.26 (Reach). For e ∈ TR(Γ), we define the reach of e, denoted ρ(e), inductively:

ρ(0) = ∅ ρ(a) = {1, a} ρ(e+ f) = ρ(e) ∪ ρ(f) ρ(e∗) = {1} ∪ ρ(e) # e∗

ρ(1) = {1} ρ(α) = {1, α} ρ(e · f) = ρ(e) # f ∪ ρ(f)

Example 6.27. Let e = α · α. We can then calculate ρ(1 · e∗). To do this, we need to calculate

ρ(e∗), and for this we need ρ(e). The latter is given by ρ(α ·α) = ρ(α) #α∪ ρ(α) = {1 ·α, α ·α, 1, α}.

Thus, ρ(e∗) = {1 · α · e∗, α · α · e∗, 1 · e∗, α · e∗, 1}, which happens to be the same as ρ(1 · e∗).

It should be clear that, for a given e ∈ TR(Γ), the set ρ(e) is finite; after all, every step to build

ρ(e) from its subexpressions combines finite sets in a finitary manner. We should also check that

ρ(e) is closed under following transitions stipulated by δ and ζ. This turns out to be the case.

Lemma 6.28. Let e ∈ TR(Γ), and e′ ∈ ρ(e). The following hold.

(i) For every a ∈ Σ, it holds that δ(e′, a) ⊆ ρ(e).
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(ii) For every α ∈ At, it holds that ζ(e′, α) ⊆ ρ(e).

Now, ρ(e) does not, in general, contain e itself. On the surface, this could be fixed by defining ρ(e)

to contain e. For our purposes, however, it is more convenient to note that ρ(e) contains enough

information to reconstruct e. The subset of ρ(e) necessary to do this is built as follows.

Definition 6.29 (Initial factors). For e ∈ TR(Γ), we define ι : TR(Γ)→ 2TR(Γ) inductively:

ι(0) = ∅ ι(a) = {a} ι(e+ f) = ι(e) ∪ ι(f) ι(e∗) = {1} ∪ ι(e) # e∗

ι(1) = {1} ι(α) = {α} ι(e · f) = ι(e) # f

Example 6.30. To compute ι(1 · e∗) where e = α · α, we should calculate ι(e∗). To this end, we

first note that ι(e) = {α ·α}, and hence ι(e∗) = {1, α ·α · e∗}. This happens to be ι(1 · e∗), too. We

can now add the expressions in ι(1 · e∗) to find that 1 + α · α · e∗ ≡R e
∗ ≡R 1 · e∗.

It should be clear that ι(e) is contained in ρ(e) by construction. In the above, we also saw that

adding the contents of ι(e) together yielded an expression equivalent to e. This works in general.

Lemma 6.31. Let e ∈ TR(Γ). Then e ≡R

∑
ι(e).

We now have everything in place to define a rational system on ρ(e), with transitions brokered

by the functions δ and ζ. Because we want this rational system to contain the original behaviour of

e, each state can also terminate if the expression it represents can accept the empty word.

Definition 6.32. Let e ∈ T . We define the rational system Se = 〈Me, be〉 on ρ(e) by setting

Me(e
′, e′′) =

∑
e′′∈δ(e′,a)

a +
∑

e′′∈ζ(e′,α)

α be(e
′) = [e′ ∈ FR]

We denote the least solution to this rational system (c.f. Theorem 4.43) by se. Furthermore, we

write ê for
∑
{se(e′) : e′ ∈ ι(e)}, i.e., the sum of least solutions to initial factors of e.

Example 6.33. If e = α · α, then the rational system for e∗ has five states, as calculated in

Example 6.27. The constraints on a solution s : ρ(e∗)→ TR(Γ) to this rational system are

α · s(1 · α · e∗) + α · s(1 · e∗) 5R s(1 · α · e∗)

α · s(1 · α · e∗) + α · s(1 · e∗) 5R s(α · α · e∗)

1 + α · s(1 · α · e∗) + α · s(1 · e∗) 5R s(1 · e∗)

α · s(1 · α · e∗) + α · s(1 · e∗) 5R s(α · e∗)

1 5R s(1)
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To prove that the solution to Se indeed gives us the desired expression, we need to analyse how

the derivatives relate to containment up to contr′. In particular, we need to show that if e can take

a transition labelled a ∈ Γ to e′, then the behaviour of a · e′ is contained in the behaviour of e.

Lemma 6.34. Let e ∈ TR(Γ). The following hold.

(i) For all a ∈ Σ and e′ ∈ δ(e, a), we have a · e′ 5contr′

R e.

(ii) For all α ∈ At and e′ ∈ ζ(e, α), we have α · e′ 5contr′

R e.

Another thing that is useful is that the solution to an expression in Se is below that expression.

Lemma 6.35. If e ∈ TR(Γ) and e′ ∈ ρ(e), then e′ 5R se(e
′).

With this analysis of Se, we are ready to show that it gives us the desired reduction.

Lemma 6.36. The hypotheses in contr′ sequentially reduce to the empty set.

Proof. We start by proving that for e′ ∈ ρ(e) we have se(e
′) 5contr′

R e′ 5R se(e
′) as well as

Je′K〈contr
′〉 = Jse(e′)K. First, we note we already have e′ 5R se(e

′), by Lemma 6.35.

To show that se(e
′) 5contr′

R e′, let s : ρ(e) → TR(Γ) be given by s(e′) = e. By Theorem 4.43

it suffices to show that s is a 〈≡contr′

R , 1〉-solution to Se: since se is the least 〈≡contr′

R , 1〉-solution,

the claim then follows. To this end, first note that be(e
′) = [e′ ∈ FR] 5R e′. Furthermore, if

e′′ ∈ δ(e′, a), then a · e′′ 5contr′

R e′, and if e′′ ∈ ζ(e′, α), then α · e′′ 5contr′

R e′, by Lemma 6.34. Hence,

Me(e
′, e′′) · s(e′′) 5contr′

R s(e′). This makes s a 〈≡contr′

R , 1〉-solution to Se, and thus se(e
′) 5contr′

R e′.

Finally, we should show that Je′K〈contr
′〉 = Jse(e′)K. Note that the inclusion from right to left

follows by soundness (Theorem 4.14) and the fact that se(e
′) 5contr′

R e′. For the other inclusion, it

suffices to prove that Jse(e′)K is closed under P, by Lemma 6.19. Before we start, it is useful to

note that by the fact that se is a solution to Se and by soundness (Theorem 3.47), we have that

Jse(e′)K = {1 : e′ ∈ FR} ∪
⋃
{α · Jse(e′′)K : e′′ ∈ ζ(e′, α)} ∪

⋃
{a · Jse(e′′)K : e′′ ∈ δ(e′, a)}

Now, let x ∈ Jse(e′)K and let w P x; we should show that w ∈ Jse(e′)K as well. The proof proceeds

by induction on the construction of P, in tandem for all e′ ∈ ρ(e). In the base, w = x, and hence

w ∈ Jse(e′)K immediately. In the inductive step, there are two cases to consider.

• First, suppose a ∈ Γ such that w = a ·w′ and x = a · x′ with w′ P x′. If a = α ∈ Γ, then since

α · x′ ∈ Jse(e′)K there exists an e′′ ∈ ζ(e′, α) such that x′ ∈ Jse(e′′)K. By induction, it follows

that w′ ∈ Jse(e′′)K, and therefore w = α · w′ ∈ Jse(e′)K. The case where a = a ∈ Σ is similar.
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• Next, suppose α ∈ At with w = α ·w′ and x = α · α · x′ s.t. w′ P x′. Using the above, we find

e′′ ∈ ζ(e′, α) and e′′′ ∈ ζ(e′′, α) such that x′ ∈ Jse(e′′′)K. By induction, we find w′ ∈ Jse(e′′′)K.

By Lemma 6.25, we have e′′′ ∈ ζ(e′, α). Hence, we conclude w = α · w′ ∈ Jse(e′)K.

• Lastly, if w P x because there exists a y ∈ Γ∗ such that w P y and y P x, then by induction we

find that y ∈ Jse(e′)K, and applying the induction hypothesis once more we find w ∈ Jse(e′)K.

To show that JeK〈contr
′〉 = JêK, we derive using Lemma 6.31 and the above that

JeK 〈contr
′〉 =

(⋃
{Je′K : e′ ∈ ι(e)}

)
〈contr′〉

=
⋃{

Je′K 〈contr
′〉 : e′ ∈ ι(e)

}
=
⋃
{Jse(e′)K : e′ ∈ ι(e)} = JêK

where we use that (−)〈contr
′〉 commutes with union, as a consequence of Lemma 6.19.

Finally, to show that ê 5contr′

R e 5 ê, we derive using Lemma 6.31 and the above that

ê =
∑
{se(e′) : e′ ∈ ι(e)} 5contr′

R

∑
ι(e) ≡R e ≡R

∑
ι(e) 5R

∑
{se(e′) : e′ ∈ ι(e)} = ê

It is now time to harvest the fruits of our labour and put together the results of the previous two

sections. We start by composing the reductions to find a reduction for ckao.

Theorem 6.37. The hypotheses in ckao reduce to the empty set.

Proof. We saw that ckao reduces to ckao′ in Lemma 6.16. Furthermore, contr′ sequentially reduces

to the empty set of hypotheses, by Lemma 6.36. Since contr′ is grounded, this means that it strongly

reduces to the empty set of hypotheses, by Lemma 4.41. Next, because contr′ is left-simple, we

have that ckao′ = exch ∪ contr′ strongly reduces to the empty set of hypotheses, by Corollary 5.53.

Composing these reductions, we find that ckao reduces to the empty set of hypotheses.

As a direct consequence of the above and Lemma 4.27, we obtain the following.

Corollary 6.38. Let e, f ∈ TGSR. The following are true:

(i) It holds that e ≡ckao f if and only if JeKckao = JfKckao.

(ii) It is decidable whether JeKckao = JfKckao (and hence, whether e ≡ckao f).

Finally, recall that in Section 6.1 we rejected ckat′ because it was not conservative, but we left open

the question of whether ckao was. Using completeness, we can settle this.

Theorem 6.39. The set of hypotheses ckao is conservative.
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Proof. For the first property, suppose that e ∈ TGSR and p ∈ TB such that e 5ckao p. By Theorem 4.14,

we have JeKckao ⊆ JpKckao. Choose q =
∨{

α ∈ At : α ∈ JeKckao
}

; note that this expression is well-

defined, since At is finite. It remains to prove that e ≡ckao q, which we do as follows.

• First, note that if α ∈ JeKckao, then JαKckao ⊆ JeKckao, and hence α 5ckao e by Corollary 6.38(i).

We can then find that q ≡ckao
∑{

α ∈ At : α ∈ JeKckao
}
5ckao e.

• For the converse, note that by Corollary 6.38(i), it suffices to prove JeKckao ⊆ JqKckao. To this

end, let r ∈ JeKckao. Then, if α ∈ At such that α 5B r, also α ∈ JeKckao, and thus α 5B q. By

Theorem 6.15, r ≡B

∨
{α ∈ At : α 5B r} 5B q, and therefore r ∈ JqKckao by Lemma 6.12.

For the second property, let p, q ∈ TB, and suppose that p ≡ckao q. By Theorem 4.14, we have that

JpKckao = JqKckao. But then, since p ∈ JpK ⊆ JpKckao = JqKckao, we have that p 5B q by Lemma 6.12.

We find similarly that q 5B p, and hence p ≡B q.

Summary of this chapter Kleene algebra can be extended with a set of hypotheses to obtain

Kleene algebra with tests, which adds the possibility of reasoning about control flow. We showed

that, if one tries to extend bi-Kleene algebra along the same lines, the resulting system is unsuitable

for reasoning about program equivalence. However, when the hypotheses that govern tests are

weakened slightly, we obtain a new primitive for reasoning about control flow, called concurrent

Kleene algebra with observations. Using the framework of reductions explored in the previous

chapters, we obtained completeness and decidability results for this system.

6.A Proofs towards completeness

Lemma 6.12. Let p, q ∈ TB; then q 5B p if and only if q ∈ JpKckao.

Proof. The implication from left to right holds by definition of ckao-closure. For the other direction,

we prove that if q ∈ A ⊆ JpKckao, then A ⊆ TB and q 5B p, by induction on A ⊆ Lckao. In the

base, A = JpK, which means that the claim holds immediately. For the inductive step, we obtain

e ≤ f ∈ ckao and C ∈ PCsp such that C[JfK] ⊆ JpKckao and A = C[JeK]. By induction, we then have

that C[JfK] ⊆ TB, which can mean one of two things.

• If C 6= �, then JfK ⊆ {1}. It is not hard to show that, since e ≤ f ∈ ckao, we have

JeK ⊆ {1,⊥}. This means that q = ⊥, and therefore the claim holds immediately.

• If C = �, then JfK ⊆ JpKckao and p ∈ JeK. This gives us some cases to consider:



126 CHAPTER 6. CONTROL FLOW

– If e ≤ f ∈ bool, then e, f ∈ TB such that e 5B f . Since f ∈ JfKckao, we obtain by

induction that f 5B p. Since q ∈ JeK, we have that q = e 5B f 5B p.

– If e ≤ f ∈ exch, then q ∈ JeK implies that q ∈ JfK as well; the claim follows by induction.

– If e ≤ f ∈ choice, then there are two subcases to consider.

∗ If e = r + s and f = r ∨ s for r, s ∈ TB, then by induction we find r ∨ s 5B p. Since

q ∈ JeK, we have q = r or q = s; in either case, q 5B r ∨ s 5B p.

∗ If e = r ∨ s and f = r + s for r, s ∈ TB, then by induction we find that r, s 5B p. It

then follows that q = r ∨ s 5B p as well.

– If e ≤ f ∈ contr, then e = r ∧ s and f = r · s for r, s ∈ TB. But this contradicts that

JfK ⊆ TB, which we know by induction. We can therefore disregard this case.

– If e ≤ f ∈ {0 = ⊥}, then we can disregard the case where e = 0, for it contradicts that

q ∈ JeK. Thus we have that e = ⊥. In that case q = ⊥, and hence q 5B p.

Lemma 6.19. Let L ⊆ Γ∗, and define P as the smallest preorder on Γ∗ satisfying the rules

a ∈ Γ w P x

a · w P a · x

α ∈ At w P x

α · w P α · α · x
.

Now w ∈ L〈contr′〉 if and only if there exists an x ∈ L such that w P x.

Proof. We first define J as the smallest preorder on Γ∗ satisfying

α ∈ At u, v ∈ Γ∗

u · α · v J u · α · α · v

We now claim that J is the same as P, which we prove as follows.

• Suppose that w J x; we proceed by induction on the construction of J. In the base, either

w = x, in which case w P x immediately, or there exist u, v ∈ Γ∗ and α ∈ At such that

w = u · α · v and x = u · α · α · v. Since v P v, we have that α · v P α · α · v. By induction on

the length of u, we can then easily show that w = u · α · v P u · α · α · v = x.

• Suppose that w P x; we proceed by induction on the construction of P. In the base, we have

that w = x, in which case w J x. For the inductive step, there are two cases to consider.

– If there exists an a ∈ Γ such that w = a · w′ and x = a · x′ with w′ P x′, then by

induction w′ J x′. A simple inductive argument on the construction of J then shows

that w = a · w′ J a · x′ = x.
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– If there exists an α ∈ At such that w = α · w′ and x = α · α · x′ with w′ P x′, then

by induction w′ J x′. By an argument similar to the previous case, we can show that

w = α · w′ J α · x′. Since α · x′ J α · α · x′ = x, it follows that w J x.

For the main claim, it suffices to show that w ∈ L〈contr′〉 if and only if there exists an x ∈ L with

w J x. For the implication from left to right, suppose w ∈ A ⊆ L〈contr′〉; we proceed by induction

on A ⊆ L〈contr′〉. In the base, we have that A = L, and hence x = w suffices. For the inductive step,

we obtain α ∈ Γ and u, v ∈ Γ∗ such that A = u · {α} · v and u · {α · α} · v ⊆ L〈contr′〉. By induction,

we find x ∈ L such that u ·α ·α · v J x. Since w = u ·α · v J u ·α ·α · v J x, the claim then follows.

For the other direction, we prove more generally that if w J x ∈ L〈contr′〉, then w ∈ L〈contr′〉. We

proceed by induction on the construction of w J x. In the base, either w = x, in which case the

claim holds immediately, or there exist u, v ∈ Γ∗ such that w = u ·α · v and x = u ·α ·α · v. In that

case, since u · {α · α} · v ⊆ L and α ≤ α · α ∈ contr′, it follows that w ∈ u · {α} · v ⊆ L〈contr′〉. For

the inductive step, we have that w J x because there exists a y ∈ Γ∗ with w J y and y J x. By

induction, we find that y ∈ L〈contr′〉, and hence again by induction we conclude that w ∈ L〈contr′〉.

Lemma 6.25. Let e ∈ TR(Γ), α ∈ At. If e′ ∈ ζ(e, α), then ζ(e′, α) ⊆ ζ(e, α).

Proof. We proceed by induction on e. In the base, where e ∈ {0, 1} ∪ Γ, the claim holds, since

necessarily e′ = 1, and hence ζ(e′, α) = ∅. For the inductive step, there are three cases.

• If e = e0 + e1, then e′ ∈ ζ(e0, α) or e′ ∈ ζ(e1, α); we assume the former without loss of

generality. By induction, ζ(e′, α) ⊆ ζ(e0, α); since ζ(e0, α) ⊆ ζ(e, α), the claim then follows.

• If e = e0 · e1, we have three subcases to consider.

– If e′ = e′0 · e1 with e′0 ∈ ζ(e0, α), then by induction we know that ζ(e′0, α) ⊆ ζ(e0, α). If

e′′ ∈ ζ(e′0 · e1, α), then we have two more subcases to consider.

∗ If e′′ = e′′0 · e1 for some e′′0 ∈ ζ(e′0, α), then by induction we know that e′′0 ∈ ζ(e0, α),

and therefore e′′ ∈ ζ(e0 · e1, α).

∗ If e′′ ∈ Z(e′0, e1, α) = ζ(e1, α), then one of two cases applies. First, if e′0 ∈ FR, then

e′′ ∈ ζ(e1, α) = Z(e0, e1, α). Second, if there exists an e′′0 ∈ ζ(e′0, α) such that e′′0 ∈

FR, then e′′0 ∈ ζ(e0, α) by induction; hence, e′′ ∈ ζ(e1, α) = Z(e0, e1, α) ⊆ ζ(e, α).

– If e′ ∈ Z(e′0, e1, α) = ζ(e1, α) then by induction e′′ ∈ ζ(e1, α). Furthermore, either

e′0 ∈ FR or there exists e′′0 ∈ ζ(e′0, α) with e′′0 ∈ FR, in which case e′′0 ∈ ζ(e0, α) by

induction. In either case, Z(e0, e1, α) ⊆ ζ(e, α), which completes this part of the proof.
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• If e = e∗0, then e′ = e′0 · e∗0 for some e′0 ∈ ζ(e0, α). If e′′ ∈ ζ(e′, α), then we have two subcases:

– If e′′ = e′′0 · e∗0 for some e′′0 ∈ ζ(e′0, α), then by induction we know that e′′0 ∈ ζ(e0, α). It

therefore follows that e′′ ∈ ζ(e, α).

– If e′′ ∈ Z(e′0, e
∗
0, α) = ζ(e∗0, α), then e′′ ∈ ζ(e, α) immediately.

Lemma 6.28. Let e ∈ TR(Γ), and e′ ∈ ρ(e). The following hold.

(i) For every a ∈ Σ, it holds that δ(e′, a) ⊆ ρ(e).

(ii) For every α ∈ At, it holds that ζ(e′, α) ⊆ ρ(e).

Proof. We prove the second claim; the proof of the first claim is similar. We start by proving that

for e ∈ TR(Γ) we have ζ(e, α) ⊆ ρ(e), by induction on e. In the base, where e ∈ {0, 1}∪Γ, the claim

holds, since ζ(e, α) ⊆ {1} ⊆ ρ(e). For the inductive step, there are three cases.

• If e = e0 + e1, then by induction we have ζ(e0, α) ⊆ ρ(e0) and ζ(e1, α) ⊆ ρ(e1). Hence, we

derive that ζ(e, α) = ζ(e0, α) ∪ ζ(e1, α) ⊆ ρ(e0) ∪ ρ(e1) = ρ(e).

• If e = e0 · e1, then by induction we have ζ(e0, α) ⊆ ρ(e0) and ζ(e1, α) ⊆ ρ(e1). Hence, we

calculate that ζ(e, α) = ζ(e0, α) # e1 ∪ Z(e0, e1, α) ⊆ ρ(e0) # e1 ∪ ρ(e1) = ρ(e).

• If e = e∗0, then by induction we have ζ(e0, α) ⊆ ρ(e0). Hence, we find that ζ(e, α) =

ζ(e0, α) # e∗0 ⊆ ρ(e0) # e∗0 ⊆ ρ(e).

For the main claim, it now suffices to show that if e′ ∈ ρ(e), then ρ(e′) ⊆ ρ(e). We proceed by

induction on e. In the base, there are two cases. First, if e ∈ {0, 1} ∪ Γ, then the claim holds

immediately, because e′ ∈ {0, 1}. For the inductive step, there are three cases to consider.

• If e = e0 + e1, assume w.l.o.g. e′ ∈ ρ(e0). By induction, ρ(e′) ⊆ ρ(e0) ⊆ ρ(e).

• If e = e0 · e1 then there are two cases to consider.

– If e′ = e′0 · e1 where e′0 ∈ ρ(e0), then ρ(e′) = ρ(e′0) # e1 ∪ ρ(e1) ⊆ ρ(e0) # e1 ∪ ρ(e1) = ρ(e) ..

– If e′ ∈ ρ(e1), then by induction we have ρ(e′) ⊆ ρ(e1) ⊆ ρ(e).

• If e = e∗0, then either e′ = 1 or e′ = e′0 ·e∗0 for some e′0 ∈ ρ(e0). In the former case, ρ(e′) = ∅. In

the latter case, we find by induction that ρ(e′) = ρ(e′0)#e∗0∪ρ(e∗0) ⊆ ρ(e0)#e∗0∪ρ(e∗0) = ρ(e).

Lemma 6.31. Let e ∈ TR(Γ). Then e ≡R

∑
ι(e).

Proof. The proof proceeds by induction on e. In the base, where e ∈ {0, 1} ∪ Γ, the claim holds

trivially. For the inductive step, there are three cases to consider.
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• If e = e0 + e1, then we calculate by induction that

e = e0 + e1 ≡R

∑
e′0∈ι(e0)

e′0 +
∑

e′1∈ι(e1)

e1 ≡R

∑
e′∈ι(e)

e′ .

• If e = e0 · e1, then we calculate by induction that

e = e0 · e1 ≡R

∑
e′0∈ι(e0)

e′0 · e1 ≡R

∑
e′∈ι(e)

e′ .

• If e = e∗0, then we calculate by induction that

e = e∗0 ≡R 1 + e0 · e∗0 ≡R 1 +
∑

e′0∈ι(e′0)

e′0 · e∗0 ≡R

∑
e′∈ι(e)

e′ .

Lemma 6.34. Let e ∈ TR(Γ). The following hold.

(i) For all a ∈ Σ and e′ ∈ δ(e, a), we have a · e′ 5contr′

R e.

(ii) For all α ∈ At and e′ ∈ ζ(e, α), we have α · e′ 5contr′

R e.

Proof. We prove the second claim by induction on e; the first claim can be shown analogously. For

the base, the claim holds vacuously if e ∈ {0, 1} ∪ Σ. When e ∈ At, we have e′ = 1 and e = α.

Hence, we conclude that α · e′ ≡contr′

R e. For the inductive step, there are three cases to consider.

• If e = e0 + e1, then either e′ ∈ ζ(e0, α) or e′ ∈ ζ(e1, α); w.l.o.g., we assume the former. By

induction, we then find that α · e′ 5contr′

R e0 5R e.

• If e = e0 · e1, then there are two cases to consider.

– If e′ = e′0 · e1 for some e′0 ∈ ζ(e0, α), then by induction we know that α · e′0 5contr′

R e0. It

then follows that α · e′ = α · e′0 · e1 5contr′

R e0 · e1 = e.

– If e′ ∈ Z(e0, e1, α) = ζ(e1, α), then α · e′ 5contr′

R e1, and one of two cases applies. If

e0 ∈ FR, then α · e′ 5contr′

R e1 ≡contr′

R 1 · e1 5contr′

R e0 · e1 = e. Otherwise, e′0 ∈ ζ(e0, α)

with e′0 ∈ FR, then by induction α · e′0 5contr′

R e0. Hence, we can derive that

α · e′ 5contr′

R α · α · e′ 5contr′

R α · e′0 · α · e′ 5contr′

R e0 · e1 ≡contr′

R e

• If e = e∗0, then e′ = e′0 · e∗0 for some e′0 ∈ ζ(e0, α). By induction, we know that α · e′0 5contr′

R e0.

We can then derive that

α · e′ = α · e′0 · e∗0 5contr′

R e0 · e∗0 5R 1 + e0 · e∗0 ≡R e
∗
0 .
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To prove Lemma 6.35, we need three technical lemmas.

Lemma 6.A.1. Let e, f ∈ TR(Γ), and let s : ρ(e)→ T be given by s(e′) = se(e
′) · f . Now s is the

least ρ(e)-vector s such that for each e′ ∈ ρ(e), it holds that

[e′ ∈ FR] · f +
∑

e′′∈δ(e′,a)

a · s(e′′) +
∑

e′′∈ζ(e′,α)

α · s(e′′) 5R s(e
′) .

Proof. Suppose that s′ is a ρ(e)-vector that satisfies the constraints above. Using Lemma 6.28, we

can then calculate for any e′ ∈ ρ(e) as follows:

be(e
′) · f +

∑
e′′∈ρ(e)

Me(e
′, e′′) · s′(e′′) ≡R be(e

′) · f +
∑

e′′∈ρ(e)

( ∑
e′′∈δ(e′,a)

a +
∑

e′′∈ζ(e′,α)

α
)
· s′(e′′)

≡R be(e
′) · f +

∑
e′′∈δ(e′,a)

a · s′(e′′) +
∑

e′∈ζ(e′′,α)

α · s′(e′′)

5R s
′(e′)

Since s is the least ρ(e)-vector for which this holds (c.f. Theorem 4.43), it follows that for e′ ∈ ρ(e)

we have s(e′) 5 s′(e′). A similar derivation shows that s indeed satisfies the desired constraint.

Lemma 6.A.2. Let e, f ∈ TR(Γ). If f ′ ∈ ρ(f) and ρ(f) ⊆ ρ(e), then sf (f ′) 5R se(f
′).

Proof. We fix a ρ(f)-vector s by choosing for f ′ ∈ ρ(f) that s(f ′) = se(f
′). By Lemma 6.A.1, we

have for any f ′ ∈ ρ(f) that the following holds:

[f ′ ∈ FR] +
∑

f ′′∈δ(f ′,a)

a · s(f ′′) +
∑

f ′′∈ζ(f ′,α)

α · s(f ′′) 5R s(f
′) .

Hence, s satisfies the system of linear equations obtained from f , and therefore sf is a lower bound

of s; the claim then follows.

Lemma 6.A.3. Let e, f ∈ TR(Γ). If e′ ∈ ρ(e) and f ′ ∈ ι(f), then se(e
′) · sf (f ′) 5R se·f (e′ · f).

Proof. Using Lemmas 6.A.1, 6.A.2 and 6.31, we calculate for all e′ ∈ ρ(e):

[e′ ∈ FR] · sf (f ′) +
∑

e′′∈δ(e′,a)

a · se·f (e′′ · f) +
∑

e′′∈ζ(e′,α)

α · se·f (e′′ · f)

≡R [e′ ∈ FR] ·
(

[f ′ ∈ FR] +
∑

f ′′∈δ(f ′,a)

a · sf (f ′) +
∑

f ′′∈ζ(f ′,α)

α · sf (f ′)
)

+
∑

e′′∈δ(e′,a)

a · se·f (e′′ · f) +
∑

e′′∈ζ(e′,α)

α · se·f (e′′ · f)

5R [e′ · f ∈ FR] +
∑

g∈δ(e′·f,a)

a · se·f (g) +
∑

g∈ζ(e′·f,α)

α · se·f (g) ≡R se·f (e′ · f) .
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Hence, the ρ(e)-vector s where s(e′) = se·f (e′ · f) satisfies the system obtained from e and sf (f ′).

By Lemma 6.A.1, we find for all e′ ∈ ρ(e) that se(e
′) · sf (f ′) 5R se·f (e′ · f).

Lemma 6.35. If e ∈ TR(Γ) and e′ ∈ ρ(e), then e′ 5R se(e
′).

Proof. We proceed by induction on e. In the base, there are four cases.

• If e = 0, then ρ(e) = ∅, and so the claim holds trivially.

• If e = 1, then e′ = 1, and e′ = 1 = be(1) 5contr′

R se(1) = se(e
′).

• If e = a for some a ∈ Γ, then either e′ = a, or e′ = 1. The case where e′ = 1 can be argued as

before. On the other hand, if e′ = a, then we find that

e′ = a ≡contr′

R a · 1 5contr′

R a · se(1) 5contr′

R se(a) = se(e
′)

For the inductive step, there are three cases

• If e = e0 + e1, then either e′ ∈ ρ(e0) or e′ ∈ ρ(e1); we assume the former without loss

of generality. By induction, we have that e′ 5R se0(e′). By Lemma 6.A.2, we know that

se0(e′) 5R se(e
′), completing the proof.

• If e = e0 · e1, then either e′ = e′0 · e1 for some e′ ∈ ρ(e0), or e′ ∈ ρ(e1). In the former case, we

find by induction as well as Lemmas 6.A.3 and 6.31 that

e′ = e′0 · e1 ≡R

∑
e′1∈ι(e1)

e′0 · e′1 5contr′

R

∑
e′1∈ι(e1)

se0(e′0) · se1(e′1) 5contr′

R se(e
′) .

In the latter case, we find e′ 5contr′

R se(e
′) as in the case where e = e0 + e1.

• If e = e∗0, then it suffices to treat the case where e′ = e′0 · e with e′0 ∈ ρ(e0) only. By

Lemma 6.A.3, we derive for any e′′ ∈ ι(e) that se0(e′0) · se(e′) 5contr′

R se0·e(e
′
0 · e). By

Lemma 6.A.2 and the observation that ρ(e0 ·e) ⊆ ρ(e), we furthermore have se0·e(e
′
0 ·e) 5contr′

R

se(e
′
0 · e). We then conclude by induction, Lemma 6.31 and the above that

e′ = e′0 · e ≡R

∑
e′′∈ι(e)

e′0 · e′′ 5contr′

R

∑
e′∈ι(e)

se0(e′0) · se(e′) 5contr′

R se(e
′
0 · e) = se(e

′)



Further Work

We conclude the first half of this thesis by listing some questions that remain open, as well as

possible avenues for work that builds upon the results presented in the previous chapters.

Complexity Our results were about decidability of semantic (and, by proxy, axiomatic) equiva-

lence of sr-expressions. More granular analysis is necessary to see whether these problems can be

solved efficiently, and pin down the appropriate complexity class. Some results about complexity

of equivalence checking already exist; equivalence of rational expressions w.r.t. ≡ and ≡kat, for

instance, is pspace-complete [SM73; CKS96]; other sets of hypotheses were analysed on the level

of rational expressions in [DKP+19]. Furthermore, equivalence of sr-expressions w.r.t. ≡exch is

expspace-complete [BPS17]. In op. cit., deciding ≡-equivalence is shown to be in expspace;

the question of whether it is expspace-complete remains open. The reduction of exch to the

empty set of hypotheses could be viewed as a reduction from the former problem to the latter

problem. Unfortunately, this does show directly that equivalence of sr-expressions w.r.t. ≡ is

expspace-complete, because the sr-expressions e↓ computed for each e ∈ T appears to grow quite

rapidly, as a result of solving the sr-system, which suggests that the reduction is not polynomial.

Parallel Star The reduction of exch to the empty set of hypotheses worked for sr-expressions, and

we noted that adding parallel star as an operator (moving to spr-expressions) prevents the existence

of a strong reduction. However, we have no evidence to suggest that a (non-strong) reduction

cannot exist, nor that ≡exch is incomplete w.r.t. equivalence of spr-expressions up to exch-closure.

One possible way to tackle this problem could be to look at (ordered) bi-monoids [BÉ96; LW00];

finite bi-monoids relate to spr-expressions in the same way that finite monoids relate to rational

expressions as described by the famous Myhill-Nerode theorem [Ner58]. Finite monoids can be

used to come up with reductions for rational languages [KM14], and it would be interesting to see

whether similar techniques apply to series-parallel rational languages.

132
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Critical Sections The exchange law is a form of unbridled interleaving: if actions take place in

sequence, then anything from a concurrent thread may happen in between. This led to problems

when we combined hypotheses on assertions (from kat) with the exchange law. Programming

languages have developed a mechanism to tame interleaving: critical sections protect a piece of

code from being interleaved with actions inside other threads. Recent work has incorporated an

operator to delineate critical sections into sr-expressions, along with several sets of hypotheses to

reason about the resulting expressions [BP20]. It would be interesting to see whether this extension

of sr-expressions works well with the hypotheses to reason about assertions from ckao.

Contextual equivalence A gsr-expression like p · p describes pomsets of the form α · β, where

α 5B p and β 5B p, i.e., first the state of the machine is described by the atom α, and then by a

different atom β, with nothing to mediate this change. The reason for this “spooky action at a

distance” is that if p · p had no semantics, then it would be equivalent to 0, which would mean that

p · p ‖ e would also be equivalent to 0 for any gsr-expression e, causing the problem in Fact 6.6.

Thus, p · p has no valid execution in isolation (because there is nothing to interleave with) but, in

some contexts, it must give rise to pomsets that combine with others to form sensible executions.

A way to get around this would be to extract the pomsets that make sense as an execution of a

program in isolation; guarded pomsets [JM16] seem a reasonable candidate. This gives two ways

of comparing a program: using the semantics J−Kckao encountered before, and using the “sensible”

part of this semantics; the former would then correspond to equivalence of programs in any context,

whereas the latter models equivalence in isolation. We conjecture that these are connected, in that

equivalence w.r.t. the former is the largest congruence contained in equivalence w.r.t. the latter.

Partial Tests The law of excluded middle (p ∨ p ≡B >), which says that an assertion either does

or does not hold, may not be valid in a setting where threads have only partial knowledge of the state

of the machine. In this case, it could be that the veracity of p cannot be ascertained, as it depends

on a part of the state not accessible by the current thread, and therefore there may not be any

positive evidence to support it. Jipsen and Moshier [JM16] studied assertions related by a weakened

version of the axioms of Boolean algebra which does not include the law of excluded middle, known

as the axioms of pseudo-complemented distributive lattices (PCDLs) [BD74]. We have recently

explored an extension of ckao to this weaker setting, including assertions about variables of the

form f = n and primitive actions that modify those variables, i.e., of the form f ← n [WBD+20].

In particular, we think this framework, which relies heavily on the use of hypotheses, could be used

to prove properties of concurrency in programming languages through litmus tests [AMS+11].
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Star-continuity If the axioms of rational expressions that build ≡R are augmented with the

(infinitary) star-continuity axiom, one can obtain a generic completeness result [DKP+19], i.e., for

rational expressions e and f and a set of hypotheses H it would hold that e ≡HR f if and only if

JeK〈H〉 = JfK〈H〉. We would like to know whether the same applies to sr-expressions, or indeed

spr-expressions with a similar continuity axiom for the parallel star. If this turns out to be true, it

may open up the possibility of axiomatising synchronous rational languages [Pri10] without the

Salomaa-style unique fixpoint axioms used in [WBK+19], but with the star-continuity axiom.

Quasi-hypotheses The unique fixpoint axioms proposed by Salomaa cannot be captured by the

framework of hypotheses, because they are quasi-equations rather than equations, i.e., they require

some other precondition to hold. We wonder whether hypotheses can be generalised to include such

quasi-hypotheses, and whether useful reductions can still be obtained. In particular, we wonder

whether a similar generic completeness theorem can be derived, i.e., whether augmenting the axioms

for series-rational expressions with star continuity and quasi-hypotheses gives a sound and complete

proof principle for equivalence under a supposed closure w.r.t. quasi-hypotheses.

Guarded control The traditional control flow structures of if p then e else f and while p do e

can be encoded using assertions, as p ·e+p ·f and (p · e)∗ ·p respectively. Alternatively, we can forego

the use of non-deterministic composition and the Kleene star as operators, and include guarded

composition as a first-class citizen [KT08]. The benefit of this shift to guarded Kleene algebra with

tests (GKAT ) is that it significantly reduces the complexity of deciding equivalence [SFH+20]. We

would extend GKAT with hypotheses, in hopes of finding similarly efficient algorithms to mechanise

equivalence of programs. Orthogonally, perhaps GKAT can be extended with concurrent composition

in the same way that we weakened KAT, and then extended with concurrent composition.

Bisimilarity One could argue that equivalence in (concurrent) Kleene algebra is too coarse; for

instance, we do not distinguish between expressions like (e+ f) · g and e · g + f · g, while the latter

makes a choice between e and f before executing g, whereas the former does not. Such a distinction

is made in process algebra [Hoa78; Mil80], where programs are not compared based on the runs that

they give rise to, but rather based on whether one program can replicate the behaviour of another

and vice versa, using bisimulation. We want to investigate whether hypotheses can be applied to

equational axiomatisations of bisimulation (see, e.g., [AF06; AI07; BLB19]) as well, and whether

the well-known results about Kleene algebra can be recovered from such a framework. The study

of probabilistic Kleene algebra [MW05] already includes some weakening of the distributive law.
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Network programming NetKAT [AFG+14] is a programming language that can be used to

specify and reason about packet routing in a software-defined network, based on Kleene algebra

with tests. It features a sound and complete axiomatisation [AFG+14] as well as an efficient

decision procedure based on coalgebra [FKM+15]. We would like to apply our insights on tests and

concurrency to NetKAT, in order to derive an extension that allows reasoning about concurrent

packet processing, which could either take place within a device, or distributed among different

devices. For instance, it would be interesting to specify and reason about the behaviour of a network

where inbound packets are filtered concurrently by a firewall and an intrusion detection system.

Logic Kleene algebra with tests is closely connected to propositional Hoare logic [Koz00]. More

specifically, one can show that every propositionally valid Hoare triple corresponds to a valid

equation in KAT. We would like to investigate whether the propositional versions of concurrent

extensions of this logic, such as concurrent separation logic [Bro07; OHe07], can be similarly

connected to concurrent Kleene algebra with observations.
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Chapter 7

Pomset Automata

Kleene’s theorem states that rational expressions correspond exactly to languages accepted by

finite automata [Kle56]. Such a correspondence is extremely useful, because it allows us to

shift perspectives from the denotational description to the operational description of a rational

language (or vice versa) when reasoning. For instance, Kleene’s theorem was crucial in axiomatising

equivalence of rational expressions [Sal66; Con71; Koz94]. Furthermore, an operational description

of semantics also lends itself to mechanisation: it is relatively easy to decide whether a finite

automaton accepts a given word, or whether two finite automata accept the same language.

Given these benefits, it seems worthwhile to develop a similar correspondence for series-rational

expressions. In fact, several such correspondences exist in the literature; they can be classified by

the type of operational formalism to describe pomset languages. First, we have approaches based

on Petri nets [Pet62]. Grabowski provided a two-way correspondence between 1-safe Petri nets and

pomset languages denoted by a generalisation of sr-expressions [Gra81]. Lodaya et al. later proved

that series-rational languages correspond precisely to the series-parallel parts of these 1-safe Petri

nets [LRR03]. Brunet et al. showed that an extension of Grabowski’s construction to translate an

sr-expression into a Petri net can be used to decide equivalence of sr-expressions [BPS17].

Other constructions are based on automata theory. Ésik and Németh proposed higher dimen-

sional automata and related these to sr-expressions, for a language model were parallel composition

is non-commutative [ÉN04]. Lodaya and Weil invented branching automata, which are finite

automata augmented with two types of transition that specify where computation can fork and

join [LW00]. Later, Jipsen and Moshier proposed their own type of branching automaton, which

specifies where computations can join after having forked from a predesignated state [JM16].

137
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Petri automata are a formalism situated between these approaches, proposed by Brunet and

Pous [BP17]. On the one hand, Petri automata can be thought of as 1-safe Petri nets with a

particular structure; on the other hand, they correspond closely to Lodaya and Weil’s branching

automata. The main difference between Petri automata and the formalisms discussed above

is that they are aimed at recognising series-parallel graphs. Superficially, series-parallel graphs

can be thought of as sp-pomsets where the edges rather than the vertices are labelled; however,

series-parallel graphs may also contain cycles, and are therefore a strictly richer model.

In this chapter, we will define pomset automata, another operational model for pomset languages.

We will identify a class of pomset automata called fork-acyclic pomset automata, and show that

languages accepted by these correspond precisely to series-rational languages, thus establishing

a Kleene-like theorem. More accurately, we will show that a series-rational expression can be

translated into a fork-acyclic pomset automaton accepting the same language, and that given a

fork-acyclic pomset automaton we can obtain a series-rational expression describing its language.

Our work differs from previous investigations on three points.

• First, previous translations from series-rational expressions to automata or Petri nets used an

inductive approach similar to that of Thompson [Tho68]. In contrast, our translation is in the

style of Brzozowski [Brz64] and Antimirov [Ant96]. The advantage of this approach is that it

allows one to construct the automaton lazily, i.e., on the fly. This can be advantageous for

algorithms that are structured in such a way as to explore the state space starting from some

initial state, and may terminate early, preventing exploration of the whole state space.

• Second, the operational formalisms are typically more expressive than series-rational expres-

sions and, as a result, the translation back to series-rational expressions requires an additional

condition on the automaton or Petri net to be correct. The problem is that, in existing

work, this translation is typically phrased in semantic terms, which makes it unclear whether

membership of this class of automata is decidable. On the other hand, the fork-acyclicity

property that we require of pomset automata is presented structurally, and is in fact decidable.

• Lastly, in contrast with other constructions on automata, we derive (in Chapter 8) an algorithm

that decides whether two states in a pomset automaton accept the same pomset language.

By proxy, this gives an alternative proof that equivalence of series-rational expressions is

decidable — supplementing earlier proofs by other authors [LS14; BPS17]. More generally,

our approach can be seen as a generalisation of Brzozowski and Tamm’s algorithm, which

calculates the “atoms” of a finite automaton by reverse determinisation [BT14].
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q0 q1

q3

q4

q2 q5
a

b

c

a

Figure 7.1: Pomset automaton accepting a · (b ‖ c) · a.

7.1 Automata model

Imagine writing a program with fork/join concurrency. When the program reaches a point where

parallel computation is desirable, one could imagine saying “run these functions in parallel, and

when both are done, resume computation here”. Pomset automata reflect this intuition: they have

transitions that allow computation to be forked into several states; once each of those threads has

reached an accepting state, computation resumes elsewhere. More formally, we have the following.

Definition 7.1 (Pomset automaton). A pomset automaton (PA) is a tuple 〈Q,F, δ, γ〉 where

• Q is a set of states, with F ⊆ Q the accepting states, and

• δ : Q× Σ→ 2Q the sequential transition function, and

• γ : Q×M(Q)→ 2Q the parallel transition function.1

Lastly, for all q ∈ Q, there are only finitely many φ ∈M(Q) such that γ(q, φ) 6= ∅.

In the above, q′ ∈ δ(q, a) means that A may transition from q to q′ if it performs the action a.

The parallel transition function implements forking and joining: q′ ∈ γ(q, {|r1, . . . , rn|}) should be

interpreted to mean that, in state q, the automaton may fork into the multiset of states {|r1, . . . , rn|},

and, as soon as each of these reaches a (possibly distinct) accepting state, may resume in q′.

Remark 7.2. One can think of PAs as the dual to Jipsen and Moshier’s branching automata [JM16].

Branching automata say where computation can join after branching off from a given state, while

PAs specify where computation can fork, provided that it commits to resume at a certain place.

We can draw finite PAs as in Figure 7.1. A state is represented by a vertex, doubly circled when

the state is accepting. Edges represent transitions: the edge labelled a between q0 and q1 encodes

that q1 ∈ δ(q0, a), and the multi-ended edge signifies that q2 ∈ γ(q1, {|q3, q4|}). A PA is called finite

if it has finitely many states. A finite PA has finitely many transitions, and can therefore be drawn.

1Recall that M(Q) is the set of finite multisets with elements in Q.
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For the remainder of this section, we fix a PA A = 〈Q,F, δ, γ〉. We proceed to define how one

can “read” an sp-pomset U while transitioning from a state q to a state q′, matching the intuition

of the parallel transition function. This information is encoded in a ternary relation between states,

pomsets, and states, called the run relation. If a state q is related to a pomset U and another state

q′, it means that, starting in state q, we can read the pomset U to end up in state q′. The pomsets

that we can read to reach an accepting state form the language accepted by a state.

Definition 7.3 (Runs and language). We define the run relation →A ⊆ Q×SP×Q as the smallest

set satisfying the following rules, where we abbreviate 〈q, U, q〉 ∈ →A by writing q U−→A
q′.

q 1−→A
q

q′ ∈ δ(q, a)

q a−→A
q′

q U−→A
q′′ q′′ V−→A

q′

q U ·V−−−→A
q′

∀1 ≤ i ≤ n. qi Ui−→A q
′
i ∈ F

q′ ∈ γ(q, {|q1, . . . , qn|})

q U1‖···‖Un−−−−−−→A
q′

The language accepted by q ∈ Q, denoted LA(q), is the set
{
U ∈ SP : q U−→A

q′ ∈ F
}

.

Given an element of the run relation, a proof tree witnessing that this triple occurs in →A

contains structural information about how the pomset automaton read the pomset, i.e., the order

the states were visited, which fork transitions were used, et cetera. Such a proof tree can therefore

be called a run of the pomset automaton. We shall often abuse this nomenclature and refer to

individual elements of the run relation as runs, with their underlying proof tree implicitly present.

Example 7.4. Suppose A is the PA in Figure 7.1. Then, we have that q0
a−→A

q1, q2
a−→A

q5,

q3
b−→A

q5, and q4
c−→A

q5. From the latter two runs and the fact that q2 ∈ γ(q1, {|q3, q4|}), it follows

that q1
b‖c−−→A

q2 by the last rule. By applying the third rule to this run and the first two runs

above, we find q0
a·(b‖c)·a−−−−−→A

q5. Since q5 ∈ F , we have that a · (b ‖ c) · a ∈ LA(q0).

Remark 7.5. Due to the non-deterministic nature of the transition functions, there may be more

than one way to read a pomset starting in a state. In principle, it is possible to determinise these

transition functions using a powerset construction [RS59]. The problem, however, is that even if

every transition has at most one target, there is still an implicit type of non-determinism. For

instance, if A is the PA in Figure 7.2a, then q1
a−→A

q2 and q1
a−→A

q3. Since we are going to have to

deal with such ambiguity either way, we leave the non-determinism in the transition functions in

place. In fact, we will exploit the flexibility of non-determinism in constructions to come.

It is useful to distinguish runs based on the rules that induce them. To this end, we establish

the following terminology for q, q′ ∈ Q and U ∈ SP.
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q1

q3

q4

q2

a

a

(a) A PA with implicit non-determinism.

q1

q3

q4

q2

a

(b) A PA with run confusion.

Figure 7.2: Pomset automata that exhibit unexpected effects of parallel transitions.

• If q U−→A
q′ follows by an application of the first rule, we speak of a trivial run.

• If q U−→A
q′ has a derivation where the second rule is applied last, it is a sequential unit run.

• If q U−→A q
′ is a consequence of the last rule, this run is a parallel unit run.

• The sequential and parallel unit runs are collectively referred to as unit runs.

• If q U−→A
q′ is a result of the third rule, i.e., there exist non-empty U1, U2 ∈ SP and q′′ ∈ Q

such that q U1−−→A
q′′ as well as q′′ U2−−→A

q′, then q U−→A
q′ is known as a composite run.

By definition of →A, each run falls into at least one (and possibly more) of these categories.

Example 7.6. Returning to Example 7.4 above, q0
a−→A

q1 is a sequential unit run, and q1
b‖c−−→A

q2

is a parallel unit run; q5
1−→A

q5 is a trivial run. Lastly, q0
a·(b‖c)·a−−−−−→A

q5 is a composite run.

Remark 7.7. The kind of a run is not uniquely determined by the kind of pomset that labels it,

that is, not all runs labelled by parallel pomsets are parallel unit runs. For instance, if A is the PA

in Figure 7.2b, then we can construct the parallel unit run q1
a−→A

q2, even though a is not parallel.

Similarly, not every run labelled by the empty pomset is trivial. For instance, if q, q′ ∈ Q such that

q′ ∈ γ(q,�), then q 1−→A
q′.2 We reckon with this kind of confusion between run types in Chapter 8.

When reasoning about runs in a pomset automaton, it is often useful to split up a composite

run, and then split up any composite runs that result from that, until only unit runs are left. Any

trivial runs that are found in this process can be omitted, because they do not change the pomset

accepted. We can iterate this process, as witnessed by the following lemma.

Lemma 7.8. Let q U−→A
q′. There exist q = q0, . . . , q` = q′ ∈ Q and U1, . . . , U` ∈ SP, such that

U = U1 · · ·U`, and for all 1 ≤ i ≤ ` we have that qi−1
Ui−→A

qi is a unit run.

2Recall that � is the empty multiset.
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q1

q3

q2

q4

a

b

(a) A PA with unbounded parallelism.

q1 q2

q4

q3

b

a

(b) A PA accepting an · bn.

Figure 7.3: Some problematic pomset automata.

The minimal ` for a given run as obtained above is known as the length of the run. We shall

use the length of a run as an inductive handle on several occasions.

7.1.1 Fork-acyclicity

Pomset automata are a powerful model of computation. In particular, they can be used to accept

pomset languages that are not series-rational, either because they have unbounded width, or because

they are in fact languages of words that cannot be described by a rational expression. This is a

problem if we want to describe the language accepted by a state in PA using an sr-expression.

Example 7.9. Suppose A is the PA in Figure 7.3a. We then find that q4
b−→A

q2 and q3
a−→A

q1.

Since q2 ∈ γ(q1, {|q3, q4|}), we know that q1
a‖b−−→A

q2. However, because q3
a−→A

q1, it follows

that q3
a·(a‖b)−−−−→A

q2, and hence we also find that q1
a·(a‖b)‖b−−−−−−→A

q2. This pattern can be repeated

indefinitely, leading to an unbounded number of forks in the construction of runs originating from

q1. In addition, we note that LA(q1) is of unbounded depth, and therefore not series-rational [LS14].

Example 7.10. Suppose A is the PA in Figure 7.3b. In this PA, the state q1 accepts the non-

rational language L = {an · bn : n ∈ N} [RS59; BPS61]. To show L ⊆ LA(q1), we claim that if

n ∈ N, then q1
an·bn−−−→ q with q ∈ F . To see this, first note that for n = 0, the claim holds trivially if

we choose q = q1. If the claim holds for n, then note that since q3
a−→ q1, we have q3

an+1·bn−−−−−→ q with

q ∈ F . Since q4
1−→ q4 ∈ F and q2 ∈ γ(q1, {|q3, q4|}), also q1

an+1·bn−−−−−→ q2; since q2
b−→ q4, we conclude

that q1
an+1·bn+1

−−−−−−→ q4 ∈ F . The proof of the converse inclusion is left as an exercise to the reader.

To prevent this excessive amount of expressive power, we need to put a structural restriction on

PAs. Indeed, earlier automata models for sr-expressions had to apply similar restrictions [LW00;

JM16]. The common factor in these cases is the behaviour that can occur when a state q can fork

into a state q′, which can start a run that somehow involves the original state q, through a series
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of transitions and forks. Hence, the first step in inhibiting this kind of mutual dependency across

forks is to get a handle on the states that can be involved in constructing a run that originates in a

given state, by transitioning to that state, by forking into it, or some combination of the two.

Definition 7.11 (Support relation). We define �A as the smallest preorder on Q s.t. for q ∈ Q:

a ∈ Σ q′ ∈ δ(q, a)

q′ �A q

φ ∈M(Q) q′ ∈ γ(q, φ)

q′ �A q

r ∈ φ ∈M(Q) γ(q, φ) 6= ∅

r �A q

We refer to �A as the support relation of A. This relation in turn gives rise to the strict support

relation ≺A, which is the strict order where q′ ≺A q holds if q′ �A q and q 6�A q′.

Example 7.12. Returning to the PA A in Figure 7.3a, we see that q5 �A q4, since q5 ∈ δ(q4, b)

(by the first rule). Since q2 ∈ γ(q1, {|q3, q4|}), it follows that q1 �A q1 (by the second rule) as well as

q3, q4 �A q1 (by the third rule). By transitivity, it then follows that q5 �A q1.

Intuitively, if q′ is necessary to establish some run originating from q, then q′ �A q; hence, we

say that q′ supports q. In particular, if r �A q because there exists a φ ∈ M(Q) with r ∈ φ and

γ(q, φ) 6= ∅, then r serves as the start of one or more threads that q may fork into, and we say that

r is a fork target of q. Support can be mutual; such a two-way dependency need not be a problem:

for instance when q′ ∈ δ(q, a) and q ∈ δ(q′, b); consequently, �A need not be antisymmetric.

To break fork cycles, we can define a restriction that avoids infinitely nested forks, by stipulating

a state cannot support any of its fork targets. Formally, this restriction is as follows.

Definition 7.13 (Fork-acyclicity). We say that A is fork-cyclic if for some q, r ∈ Q such that r is

a fork target of q, we have that q �A r; A is fork-acyclic if it is not fork-cyclic.

If A is finite and fork-acyclic, we write DA(q) for the depth of q ∈ Q in A, which is the maximum

n such that there exist q1, . . . , qn ∈ Q with q1 ≺A q1 ≺A · · · ≺A qn = q. We furthermore write DA

for the depth of A, which is defined as the maximum of DA(q) for all states q.

Example 7.14. Returning to the PA in Figure 7.3a, we see that q3 is a fork target of q1, while

q1 �A q3. Hence, this PA is fork-cyclic. On the other hand, the PA in Figure 7.2b is fork-acyclic,

because neither q3 nor q4 is supported by q1; it has depth 2, since q3 ≺A q1.

7.1.2 Implementation

In some cases, it is useful to restrict a pomset automaton to a subset of its states. For such a

restriction to be sound, we need to be sure that the transition functions in this subset require only

other states in the subset. To that end, the following notion is helpful.
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Definition 7.15 (Support). We say that Q′ ⊆ Q is support-closed if for all q ∈ Q′ with q′ �A q we

have q′ ∈ Q′. The support of q ∈ Q, denoted πA(q), is the smallest support-closed set containing q.

Example 7.16. In Figure 7.3a, the set {q2, q4} is support-closed and is in fact the support of q2.

The set {q3} is not, since q1 �A q3. The support of q1 is given by the set of all states.

Our main interest is finite pomset automata. It will also be convenient to relax this property

and speak of pomset automata with infinitely many states. Such a PA may yet allow an unbounded

number of nested forks and accept non-series-rational languages. We thus want to ensure that we

can restrict such a PA to a finite fragment of interest. The following helps with that.

Definition 7.17 (Bounded). When πA(q) is finite for all q ∈ Q, we say that A is bounded .

In the sequel, we will perform a number of transformations on automata to enforce desirable

properties. To ensure correctness, we will require these constructions to transform an automaton A

into an automaton A′ that can accept the same languages as A, while preserving properties of A.

Definition 7.18 (Implementation). Let A = 〈Q,F, δ, γ〉 and A′ = 〈Q′, F ′, δ′, γ′〉 be pomset

automata. We say that A′ implements A if the following hold:

(i) Q ⊆ Q′ such that if q ∈ Q, then LA(q) = LA′(q), and

(ii) if A is fork-acyclic, then so is A′.

We can restrict a PA to a support-closed subset, as follows

Definition 7.19. Let Q′ ⊆ Q be support-closed. We write A[Q′] for the PA 〈Q′, F ∩ Q′, δ′, γ′〉,

where δ′ : Q′ × Σ→ 2Q
′

and γ′ : Q′ ×M(Q′)→ 2Q
′

are the appropriate restrictions to Q′, i.e.,

δ′(q, a) = δ(q, a) γ′(q, φ) = γ(q, φ)

Note that, because Q′ is support-closed, the restrictions δ′ and γ′ are well-defined. For instance,

if q ∈ Q′ and a ∈ Σ, then δ′(q, a) = δ(q, a) ⊆ Q′, since if q′ ∈ δ(q, a), then q′ �A q, and thus q′ ∈ Q′.

The restriction of a PA to a support-closed set of states preserves its languages, as well as

properties such as fork-acyclicity and finiteness. More precisely, we have the following.

Lemma 7.20. If Q′ is support-closed, then A[Q′] implements A. If A is bounded, then so is A[Q′].

Given a state q in a bounded PA A, we can restrict A to A[πA(q)] to obtain a PA that accepts

LA(q). Since A is bounded, we have that πA(q) is finite, and therefore A[πA(q)] is also finite.
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7.2 Expressions to automata

We proceed to show how, given an sr-expression e, we can obtain a fork-acyclic and finite PA,

where some state accepts JeK. By Lemma 7.20, it suffices to find a bounded and fork-acyclic PA

where every sr-expression e is a state that accepts JeK. We will craft the transition functions of this

pomset automaton such that, if we start in e ∈ T and read the pomset U to arrive in e′, then Je′K

contains pomsets V such that U · V ∈ JeK. This methodology is a generalisation of Antimirov’s

(partial) derivatives of rational expressions [Ant96], which is itself a variation on Brzozowski’s

derivatives [Brz64]; for this reason, we refer to the transition functions on expressions as derivatives.

Convention 7.21. Let e ∈ T and S ⊆ T . We use e ? S to denote S when e ∈ F , and ∅ otherwise.

Definition 7.22 (Derivatives). We define δSR : T × Σ→ 2T and γSR : T ×M(T )→ 2T inductively.

δSR(0, a) = ∅ γSR(0, φ) = ∅

δSR(1, a) = ∅ γSR(1, φ) = ∅

δSR(b, a) = {1 : a = b} γSR(b, φ) = ∅

δSR(e+ f, a) = δSR(e, a) ∪ δSR(f, a) γSR(e+ f, φ) = γSR(e, φ) ∪ γSR(f, φ)

δSR(e · f, a) = δSR(e, a) # f ∪ e ? δSR(f, a) γSR(e · f) = γSR(e, φ) # f ∪ e ? γSR(f, φ)

δSR(e ‖ f, a) = ∅ γSR(e ‖ f, φ) = {1 : φ = {|e, f |}}

δSR(e
∗, a) = δSR(e, a) # e∗ γSR(e

∗, φ) = γSR(e, φ) # e∗

We can now define our pomset automaton that operates on sr-expressions. Since the sr-

expressions that accept the empty pomset are in F , we choose those as the accepting states.

Definition 7.23. The (series-rational) syntactic PA, denoted by ASR, is the PA 〈T ,F , δSR, γSR〉.

We simplify subscripts, writing →SR instead of →ASR
, and so forth.

Example 7.24. We have drawn part of the syntactic PA, specifically the support of a · b∗ ‖ c,

in Figure 7.4. There, we see that 1 · b∗ is an accepting state, because 1, b∗ ∈ F . The sequential

transitions are generated by δSR; for instance, 1 · b∗ ∈ δSR(a · b∗, a), because 1 ∈ δSR(a, a) and

δSR(a, a) # b∗ ⊆ δSR(a · b∗, a); also, 1 · b∗ ∈ δSR(1 · b∗, b), because 1 ∈ δSR(b, b), and δSR(b, b) # b∗ ⊆

δSR(1 · b∗, b). Lastly, 1 ∈ γSR(a · b∗ ‖ c, {|a · b∗, c|}) by definition of γSR.

The remainder of this section is dedicated to show that the syntactic PA fulfills our objectives,

i.e., that it is bounded and fork-acyclic, and that each state e accepts JeK.
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a · b∗ ‖ c

a · b∗ 1 · b∗

c

1

a

c

b

Figure 7.4: Part of the series-rational syntactic pomset automaton.

7.2.1 The languages accepted by the syntactic PA

To show that the syntactic PA accepts the right languages, we begin by analysing the runs that

its transition structure allows. Specifically, given a run of ASR that starts in e ∈ T and ends in a

f ∈ F , we show that we can obtain one or more runs starting in subexpressions of e. Conversely,

we show how to construct runs to an accepting state if we have runs to accepting states for each of

the operands that make up e. First, we show how this works for sums.

Lemma 7.25. Let e1, e2 ∈ T and U ∈ SP. The following are equivalent:

(i) There exists an f ∈ F such that e1 + e2
U−→SR

f .

(ii) There exists an f ∈ F such that e1
U−→SR

f or e2
U−→SR

f .

Next, we show how a run that starts in a sequential composition and reaches an accepting state

gives rise to runs that originate in the operands, and reach an accepting state too — and vice versa.

Lemma 7.26. Let e1, e2 ∈ T , U ∈ SP, and ` ∈ N. The following are equivalent:

(i) There exists an f ∈ F such that e1 · e2
U−→SR

f of length `.

(ii) U = U1 ·U2, and there exist f1, f2 ∈ F with ei Ui−→SR
fi for i ∈ {1, 2}, of total length at most `.

We can also relate runs originating in a parallel composition to runs from their operands.

Lemma 7.27. Let e1, e2 ∈ T and U ∈ SP. The following are equivalent:

(i) There exists f ∈ F such that e1 ‖ e2
U−→SR

f .

(ii) U = U1 ‖ U2 and there exist f1, f2 ∈ F such that ei Ui−→SR
fi for i ∈ {1, 2}.

For the last such lemma, we consider sr-expressions with the Kleene star as the topmost operator.

Here, we show that a run originating in such an sr-expression to an accepting state gives rise to a

number of runs, each of which originates in the starred expression, reaching an accepting state.
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Lemma 7.28. Let e ∈ T and U ∈ SP. The following are equivalent:

(i) There exists f ∈ F such that e∗ U−→SR
f .

(ii) U = U1 · · ·Un, such that for 1 ≤ i ≤ n there exists fi ∈ F with e Ui−→SR
fi.

These deconstruction and reconstruction lemmas combine to prove the equations claimed by the

lemma below; deconstruction of a run proves the inclusion from left to right, whereas construction

of a run can be used to show the inclusion from right to left.

Lemma 7.29. Let e, f ∈ T . The following hold:

LSR(e+ f) = LSR(e) + LSR(f) LSR(e
∗) = LSR(e)

∗

LSR(e · f) = LSR(e) · LSR(f) LSR(e ‖ f) = LSR(e) ‖ LSR(f)

A straightforward inductive argument now helps us validate the following:

Lemma 7.30. For all e ∈ T , we have LSR(e) = JeK.

7.2.2 Correctness of the syntactic PA

It remains to show that the syntactic PA satisfies the other objectives that we set, namely that it is

fork-acyclic and bounded. For fork-acyclicity, we need to argue that if f ∈ T is a fork target of

e ∈ T , then f ≺SR e. To this end, we relate the support relation of the syntactic PA to ‖-depth.

Lemma 7.31. If e, f ∈ T such that e �SR f , then d‖(e) ≤ d‖(f).

To argue fork-acyclicity, it then suffices to show that if f is a fork target of e, it holds that the

‖-depth of f is strictly lower than that of e, ensuring that e cannot support f .

Lemma 7.32. Let e, f ∈ T . If f is a fork target of e in the syntactic PA, then d‖(f) < d‖(e).

Consequently, the syntactic PA is fork-acyclic.

Next, we prove that each state in the syntactic PA has finite support. To argue this, it suffices to

find a finite overestimation of the support, i.e., a finite set and support-closed that contains that

state; since the support of a state is the smallest such set, it is necessarily contained in such an

overestimation. To that end, we propose the following:

Definition 7.33. We define R : T → 2T inductively, as follows

R(0) = {0} R(e1 + e2) = R(e1) ∪R(e2) ∪ {e} R(e∗1) = R(e1) # e∗1 ∪R(e1) ∪ {e∗1}

R(1) = {1} R(e1 · e2) = R(e1) # e2 ∪R(e1) ∪R(e2)

R(a) = {a, 1} R(e1 ‖ e2) = R(e1) ∪R(e2) ∪ {e1 ‖ e2, 1}
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It should be clear that R(e) is finite; it also fulfills our objective, as follows.

Lemma 7.34. For every e ∈ T , we have that e ∈ R(e) and R(e) is support-closed.

Consequently, the syntactic PA is bounded.

This then allows us to wrap up this section by stating half of our Kleene theorem, as follows.

Theorem 7.35 (Expressions to automata). For every e ∈ T , we can obtain a fork-acyclic and

finite PA A with a state q such that LA(q) = JeK.

7.3 Automata to expressions

In this section, we provide the converse to the construction from the previous section, that is,

we show that the language accepted by a state in any fork-acyclic and finite pomset automaton

can be implemented by a series-rational expression. To achieve this, we start by deriving the

conditions that these expressions should satisfy based on ≡, the axiomatic equivalence relation on

sr-expressions, and then proceed to derive the correct expressions from these conditions.

To develop an intuition of what the conditions on an expression that describes the language

accepted by a state might look like, let A = 〈Q,F, δ, γ〉 be a pomset automaton with q ∈ Q. If

q ∈ F , then q accepts the empty pomset; hence, 1 ∈ LA(q). Furthermore, let a ∈ Σ and q′ ∈ δ(q, a).

If we take a pomset in LA(q′) and prepend a, we should obtain a pomset in LA(q). Hence, we expect

that a · LA(q′) ⊆ LA(q). Lastly, let r1, . . . , rn ∈ Q and q′ ∈ γ(q, {|r1, . . . , rn|}). If for 1 ≤ i ≤ n we

have Ui ∈ LA(ri), and furthermore V ∈ LA(q′), then (U1 ‖ · · · ‖ Un) · V ∈ LA(q). Hence, we should

have that (LA(r1) ‖ · · · ‖ LA(rn)) · LA(q′) ⊆ LA(q). This leads us to the following characterisation.

Lemma 7.36. If A = 〈Q,F, δ, γ〉 be a pomset automaton, then LA : Q→ 2SP is the least function

t : Q→ 2SP (w.r.t. the pointwise inclusion order) such that for all q ∈ Q the following hold:

q ∈ F

1 ∈ t(q)

a ∈ Σ q′ ∈ δ(q, a)

a · t(q′) ⊆ t(q)

q′ ∈ γ(q, {|r1, . . . , rn|})

(t(r1) ‖ · · · ‖ t(rn)) · t(q′) ⊆ t(q)

We can exploit the above characterisation by taking it as a template for the conditions that we

put on sr-expressions. This brings us to the idea of a solution to a pomset automaton, as follows.

Definition 7.37 (Solution of a PA). Let A = 〈Q,F, δ, γ〉 be a PA, and let ≈ be a BKA congruence

on T (∆) with Σ ⊆ ∆. We say s : Q→ T (∆) is a ≈-solution to A if, for every q ∈ Q:

[q ∈ F ] +
∑

q′∈δ(q,a)

a · s(q′) +
∑

q′∈γ(q,{|r1,...,rn|})

(s(r1) ‖ · · · ‖ s(rn)) · s(q′) / s(q)
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q0 q1

q3

q4

q2 q5
a

b

c

a

Figure 7.1: Pomset automaton accepting a · (b ‖ c) · a. (repeated from page 139)

Also, s is a least ≈-solution to A if for every ≈-solution s′ we have that s(q) / s(q′) for all q ∈ Q.

We call s : Q→ T the least solution to A if it is the least ≈-solution for any BKA congruence ≈.

Example 7.38. Let A = 〈Q,F, δ, γ〉 be the PA in Figure 7.1, and let ≈ be a BKA congruence on

T (∆) with Σ ⊆ ∆. The constraints on a ≈-solution s : Q→ T (∆) to A can then be written as

a · s(q1) / s(q0) (s(q3) ‖ s(q4)) · s(q2) / s(q1) a · s(q5) / s(q2)

b · s(q5) / s(q3) c · s(q5) / s(q4) 1 / s(q5)

Least ≈-solutions (resp. least solutions) to a PA are unique up to pointwise ≈-equivalence (resp.

≡-equivalence). We therefore speak of the least ≈-solution or least solution, if it exists.

The least solution to a pomset automaton indeed contains the series-rational expressions that

reflect the behaviour of its states, as validated by the following lemma.

Lemma 7.39. Let A = 〈Q,F, δ, γ〉 be a pomset automaton. If s : Q→ T is the least solution to A,

then for q ∈ Q it holds that LA(q) = Js(q)K.

Proof. Recall the congruence
.
= on T (2SP), where e

.
= f if and only if e and f represent the same

sr-expression. In particular, Lemma 7.36 tells us that for q ∈ Q we have

[q ∈ F ] +
∑

q′∈δ(q,a)

a · LA(q′) +
∑

q′∈γ(q,{|r1,...,rn|})

(LA(r1) ‖ · · · ‖ LA(rn)) · LA(q′) ≤̇ LA(q)

where ≤̇ is the precongruence associated with
.
=. Since LA is also a function from Q to T (2SP),

and s is the least such function (w.r.t. ≤̇), we have s(q) ≤̇ LA(q), or equivalently, Js(q)K ⊆ LA(q).

For the other direction, note that since s is a ≡-solution, and ≡ is sound w.r.t. J−K, we have

{1 : q ∈ F} ∪
⋃

q′∈δ(q,a)

a · Js(q′)K ∪
⋃

q′∈γ(q,{|r1,...,rn|})

(Js(r1)K ‖ · · · ‖ Js(rn)K) · Js(q′)K ⊆ Js(q)K

Hence J−K ◦ s satisfies the inference rules in Lemma 7.36; it follows that LA(q) ⊆ Js(q)K.
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We can therefore reach our objective if we just manage to find a method that obtains the least

solution to any fork-acyclic and finite pomset automaton. To this end, we can leverage the results

that we obtained about solving systems of series-rational expressions.

Lemma 7.40. Let A be a fork-acyclic and finite PA. We can construct the least solution to A.

Proof. We proceed by induction on the depth of A = 〈Q,F, δ, γ〉. In the base, where DA = 0, there

cannot be any states, and therefore the claim holds vacuously. For the inductive step, assume that

the claim holds for fork-acyclic and finite pomset automata of depth DA − 1. We can then choose

Q′ = {q′ ∈ Q : DA(q) < DA}, and we note that Q′ is support-closed by construction. After all, if

q ∈ Q′ and q′ �A q, then DA(q′) ≤ DA(q), and therefore DA(q′) < DA, whence q′ ∈ Q′.

This gives us A′ = A[Q′] = 〈Q′, F ∩Q′, δ′, γ′〉; it is not hard to see that DA′ < DA, and thus

the induction hypothesis applies to A′. We then obtain s′ : Q′ → T as the least solution to A′.

Using s′, we craft the series-rational system S = 〈M, b〉 on Q \Q′, where M and b are given by

M(q, q′) =
∑

q′∈δ(q,a)\Q′
a +

∑
q′∈γ(q,{|r1,...,rn|})\Q′

s′(r1) ‖ · · · ‖ s′(rn)

b(q) = [q ∈ F ] +
∑

q′∈δ(q,a)∩Q′
a · s′(q′) +

∑
q′∈γ(q,{|r1,...,rn|})∩Q′

(s′(r1) ‖ · · · ‖ s′(rn)) · s′(q′)

In the above, we note that if ri is a fork target of q ∈ Q \Q′, then ri ≺A q since A is fork-acyclic,

and hence DA(ri) < DA(q) ≤ DA, which means that ri ∈ Q′; thus, M is well-defined. We can

similarly argue that the calls to s′ in the definition of b(q) are well-defined.

Let s′′ : Q \Q′ → T be the least solution to S. We choose s : Q → T by setting s(q) = s′(q)

when q ∈ Q′, and s(q) = s′′(q) when q ∈ Q \Q′. We claim that s is the least solution to A. To this

end, let ≈ be a BKA congruence on T (∆) with Σ ⊆ ∆, with associated precongruence /. To see

that it is a ≈-solution at all, first note that if q ∈ Q′, then we can derive that

[q ∈ F ] +
∑

q′∈δ(q,a)

a · s(q′) +
∑

q′∈γ(q,{|r1,...,rn|})

(s(r1) ‖ · · · ‖ s(rn)) · s(q′)

= [q ∈ F ] +
∑

q′∈δ′(q,a)

a · s′(q′) +
∑

q′∈γ′(q,{|r1,...,rn|})

(s′(r1) ‖ · · · ‖ s′(rn)) · s′(q′) (def. s, δ′, γ′)

/ s′(q) = s(q) (s′ is a ≈-solution to A′)

Otherwise, if q ∈ Q \Q′, then we calculate that

[q ∈ F ] +
∑

q′∈δ(q,a)

a · s(q′) +
∑

q′∈γ(q,{|r1,...,rn|})

(s(r1) ‖ · · · ‖ s(rn)) · s(q′)
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≈ [q ∈ F ] +
∑

q′∈δ(q,a)∩Q′
a · s′(q′) +

∑
q′∈γ(q,{|r1,...,rn|})∩Q′

(s(r1) ‖ · · · ‖ s(rn)) · s′(q′)

+
∑

q′∈δ(q,a)\Q′
a · s′′(q′) +

∑
q′∈γ(q,{|r1,...,rn|})\Q′

(s(r1) ‖ · · · ‖ s(rn)) · s′′(q′) (def. s)

≈ b(q) +
∑

q′∈δ(q,a)\Q′
a · s′′(q′) +

∑
q′∈γ(q,{|r1,...,rn|})\Q′

(s(r1) ‖ · · · ‖ s(rn)) · s′′(q′) (def. b)

/ s′′(q) = s(q) (s′′ is a 〈≈, 1〉-solution to S)

To see that s is the least ≈-solution, suppose that t : Q → T (∆) is a ≈-solution to A. If t′ is

the restriction of t to Q′, then t′ becomes a ≈-solution to A′, and thus we find for q ∈ Q′ that

s(q) = s′(q) / t′(q) = t(q). Furthermore, if t′′ is the restriction of t to Q \Q′, then t′′ becomes a

≈-solution to S, and thus we find for q ∈ Q \Q′ that s(q) = s′′(q) / t′′(q) = t(q).

This allows us to conclude with the converse of Theorem 7.35. Together, these theorems combine

into a Kleene theorem for pomset languages, which was the goal of this chapter.

Theorem 7.41. If A = 〈Q,F, δ, γ〉 is a fork-acyclic and finite PA, then we can construct for every

q ∈ Q a series-rational expression e ∈ T such that LA(q) = JeK.

Corollary 7.42 (Kleene theorem for pomset languages). Let L ⊆ SP. Then L is series-rational if

and only if it is accepted by a finite and fork-acyclic pomset automaton.

Summary of this chapter We introduced pomset automata as an operational formalism to

accept series-parallel pomset languages. Using Antimirov’s construction, we showed that every

pomset language expressed by a series-rational expression can also be accepted by a finite and

fork-acyclic pomset automaton. Conversely, we used series-rational systems to argue that a pomset

language accepted by a fork-acyclic and finite pomset automaton can also be represented by a

series-rational expression, thereby establishing an extension of Kleene’s celebrated theorem.

7.A Proofs about pomset automata

Lemma 7.8. Let q U−→A
q′. There exist q = q0, . . . , q` = q′ ∈ Q and U1, . . . , U` ∈ SP, such that

U = U1 · · ·U`, and for all 1 ≤ i ≤ ` we have that qi−1
Ui−→A

qi is a unit run.

Proof. We proceed by induction on →A. In the base, there are two cases to consider.

• If q U−→A
q′ because q = q′ and U = 1, then we choose ` = 0 to satisfy the claim.

• If q U−→A
q′ because U = a for some a ∈ Σ and q′ ∈ δ(q, a), then choose ` = 1 and U1 = a.
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For the inductive step, there are also two cases to consider.

• On the one hand, if q U−→A
q′ because U = V ·W and there exists a q′′ ∈ Q such that q V−→A

q′′

and q′′ W−→A
q′, then we can obtain the necessary states and pomsets by induction. More

precisely, let q = q′′0 , . . . , q
′′
`′′ = q′′ ∈ Q and V1, . . . , V`′′ ∈ SP as well as q′′ = q′0, . . . , q

′
`′ = q′ ∈ Q

and W1, . . . ,W`′ ∈ SP such that V = V1 · · ·V`′′ and W = W1 · · ·W`′ and for all 1 ≤ i ≤ `′′

we have that q′′i−1
Vi−→A

q′′i is a unit run, while for all 1 ≤ i ≤ `′ we have that q′i−1
Wi−−→A

q′i

is a unit run. We can then choose ` = `′′ + `′, and U1, . . . , U` such that for 1 ≤ i ≤ `′′ we

have Ui = Vi, and for `′′ < i ≤ ` we have Ui = Wi−`′′ , as well as q = q0, . . . , q` = q′ ∈ Q

such that for 0 ≤ i ≤ `′′ we have qi = q′′i , and for `′′ < i ≤ ` we have qi = q′i−`′′ . It is then

straightforward to see that U = V ·W = V1 · · ·V`′′ ·W1 · · ·W`′ = U1 · · ·U`′′ ·U`′′+1 · · ·U`, and

that for 1 ≤ i ≤ n we have that qi−1
Ui−→A

qi is a unit run.

• On the other hand, if q U−→A
q′ because U = U1 ‖ · · · ‖ Un and there exist r1, . . . , rn ∈ Q

as well as r′1, . . . , r
′
n ∈ F such that for 1 ≤ i ≤ n we have ri

U ′i−→ r′i, and furthermore

q′ ∈ γ(q, {|r1, . . . , rn|}), then we can choose ` = 1 and U1 = U to satisfy the claim.

Lemma 7.20. If Q′ is support-closed, then A[Q′] implements A. If A is bounded, then so is A[Q′].

Proof. We should show that, for q ∈ Q′, it holds that LA[Q′](q) = LA(q). For the inclusion from

left to right, we prove that if q U−→A[Q′]
q′, then q U−→A

q′. We proceed by induction on →A[Q′]. In

the base, there are two cases. On the one hand, if U = 1 and q = q′, then q U−→A
q′ immediately.

Otherwise, if U = a for some a ∈ Σ and q′ ∈ δ′(q, a), then q′ ∈ δ(q, a), and hence q U−→A
q′ as well.

For the inductive step, there are two cases to consider.

• Suppose that q U−→A[Q′]
q′ because U = V ·W and there exists a q′′ ∈ Q′ such that q V−→A[Q′]

q′′

and q′′ W−→A[Q′]
q′. By induction, q V−→A

q′′ and q′′ W−→A
q′, and therefore q U−→A

q′.

• Suppose that q U−→A[Q′] q
′ because U = U1 ‖ · · · ‖ Un and r1, . . . , rn ∈ Q and r′1, . . . , r

′
n ∈

Q′∩F s.t. for 1 ≤ i ≤ n we have ri Ui−→A[Q′]
r′i as well as q′ ∈ γ′(q, {|r1, . . . , rn|}). By induction,

we find for 1 ≤ i ≤ n that ri Ui−→A
r′i ∈ F . Since q′ ∈ γ(q, {|r1, . . . , rn|}), we conclude q U−→A

q′.

For the other inclusion, we prove that if q ∈ Q′ and q U−→A
q′ then q′ ∈ Q′ and q U−→A[Q′]

q′. The

proof proceeds by induction on →A. In the base, there are two cases.

• If U = 1 and q = q′, then q′ ∈ Q′ and q U−→A[Q′] q
′ immediately.

• If U = a for some a ∈ Σ, and q′ ∈ δ(r, a), then q′ �A q, and hence q′ ∈ Q′. It then follows

that q′ ∈ δ′(q, a), which allows us to conclude that q U−→A[Q′]
q′.
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For the inductive step, there are two cases to consider.

• Suppose that q U−→A q
′ because U = V ·W , and there exists a q′′ ∈ Q such that q V−→A q

′′ and

q′′ W−→A
q′. It follows that q′′ ∈ Q′ and q V−→A[Q′]

q′′ by induction. Similarly, we find q′ ∈ Q′

and q′′ W−→A[Q′]
q′, again by induction. We then conclude that q U−→A[Q′]

q′.

• Suppose that q U−→A
q′ because U = U1 ‖ · · · ‖ Un, and r1, . . . , rn ∈ Q and q′1, . . . , q

′
n ∈ F ′

such that for 1 ≤ i ≤ n we have qi Ui−→A
q′i, as well as q′ ∈ γ(q, {|r1, . . . , rn|}). When have

r1, . . . , rn �A q, and thus r1, . . . , rn ∈ Q′, as well as q′ ∈ Q′. By induction, we then find for

1 ≤ i ≤ n that r′i ∈ Q′ and ri Ui−→A[Q′] r
′
i. Since q′ ∈ γ′(q, {|r1, . . . , rn|}), also q U−→A[Q′] q

′.

Lastly, we note that for q, q′ ∈ Q, we have q �A[Q′] q
′ if and only if q �A q′ and q, q′ ∈ Q′; hence, if

A is fork-acyclic, then so is A[Q′]. Furthermore, if q ∈ Q′, then the support of q in A[Q′] is the

same as the support of q in A; hence, if A is bounded, then A[Q′] must also be bounded.

Lemma 7.36. If A = 〈Q,F, δ, γ〉 be a pomset automaton, then LA : Q→ 2SP is the least function

t : Q→ 2SP (w.r.t. the pointwise inclusion order) such that for all q ∈ Q the following hold:

q ∈ F

1 ∈ t(q)

a ∈ Σ q′ ∈ δ(q, a)

a · t(q′) ⊆ t(q)

q′ ∈ γ(q, {|r1, . . . , rn|})

(t(r1) ‖ · · · ‖ t(rn)) · t(q′) ⊆ t(q)

Proof. Let t be the least function satisfying the rules above. To show that for all q ∈ Q we have

t(q) ⊆ LA(q), it suffices to show that LA satisfies the same property as t. There are three cases.

• First, suppose that q ∈ F . In that case, q 1−→A
q ∈ F , whence 1 ∈ LA(q) immediately.

• Next, suppose that a ∈ Σ and q′ ∈ δ(q, a), and let U ∈ a · LA(q′). In that case, U = a · U ′ for

some U ′ ∈ LA(q′). Hence, there exists a q′′ ∈ F such that q′ U
′

−→A
q′′; since q′ ∈ δ(q, a) we

also have that q a−→A q
′, and therefore q U−→A q

′′ ∈ F , which means that U ∈ LA(q).

• Lastly, suppose that r1, . . . , rn ∈ Q and q′ ∈ γ(q, {|r1, . . . , rn|}), and let U ∈ (LA(r1) ‖ · · · ‖

LA(rn)) · LA(q′). In that case, U = (V1 ‖ · · · ‖ Vn) ·W such that for 1 ≤ i ≤ n we have

Vi ∈ LA(ri), and furthermore W ∈ LA(q′). This means that for 1 ≤ i ≤ n we have r′i ∈ F

such that ri Vi−→A
r′i and also q′′ ∈ F such that q′ W−→A

q′′. Since q′ ∈ γ(q, {|r1, . . . , rn|}) we

have that q V1‖···‖Vn−−−−−−→A
q′. In total, we find that q U−→A

q′′, and thus U ∈ LA(q).

For the converse, we show that if q U−→A
q′ and V ∈ t(q′), then U · V ∈ t(q), by induction on

q U−→A
q′. In the base, there are two cases to consider.

• If q U−→A
q′ because q = q′ and U = 1, then U · V = V ∈ t(q′) = t(q).
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• If q U−→A
q′ because U = a for some a ∈ Σ with q′ ∈ δ(q, a), then U · V ∈ a · t(q′) ⊆ t(q).

For the inductive step, there are again two cases to consider.

• Suppose that q U−→A
q′ because U = W ·X and there exists a q′′ ∈ Q such that q W−→A

q′′

and q′′ X−→A
q′. Applying induction twice, we find that U · V = W ·X · V ⊆W · t(q′′) ⊆ t(q).

• Suppose that q U−→A
q′ because U = U1 ‖ · · · ‖ Un and there exist r1, . . . , rn ∈ Q as well as

r′1, . . . , r
′
n ∈ F such that for 1 ≤ i ≤ n we have ri Ui−→A

r′i, and q′ ∈ γ(q, {|r1, . . . , rn|}). For

1 ≤ i ≤ n we have that 1 ∈ LA(r′i), and hence by induction it follows that Ui = Ui · 1 ∈ t(ri).

We can then conclude that U · V = (U1 ‖ · · · ‖ Un) · V ∈ (t(r1) ‖ · · · ‖ t(rn)) · t(q′) ⊆ t(q).

Concluding our proof of the first claim, we note that if U ∈ LA(q), then there exists a q′ ∈ F such

that q U−→A
q′. Since 1 ∈ t(q′) by definition, it follows that U = U · 1 ∈ t(q).

7.B Proofs about the syntactic pomset automaton

Lemma 7.25. Let e1, e2 ∈ T and U ∈ SP. The following are equivalent:

(i) There exists an f ∈ F such that e1 + e2
U−→SR

f .

(ii) There exists an f ∈ F such that e1
U−→SR

f or e2
U−→SR

f .

Proof. To show that (i) implies (ii), there are two cases, depending on the length ` of e1 + e2
U−→SR

f :

• If ` = 0, then e1 + e2
U−→SR

f is trivial. In that case, U = 1 and f = e1 + e2, and so ei ∈ F for

some i ∈ {0, 1}; if we choose f ′ = ei, we find ei U−→SR
f ′, and the claim is satisfied.

• Otherwise, if ` > 0, then U = U0 · U ′ and there exists a g ∈ T such that e1 + e2
U0−−→SR

g is a

unit run, and g U ′−→SR
f is of length `.

If e1 + e2
U0−−→SR

g is a sequential unit run, then U0 = a for some a ∈ Σ, and g ∈ δSR(e1 + e2, a).

Without loss of generality, let g ∈ δSR(e1, a); in that case, e1
U0−−→SR

g is a unit run. If we then

choose f ′ = f , we find that e1
U−→SR

f ′ is of length `. The case where e1 + e2
U0−−→SR

g is a

parallel unit run is similar.

To show that (ii) implies (i), we treat the case where e1
U−→SR

f ; the case where e2
U−→SR

f is similar.

There are again two cases, depending on the length ` of e1
U−→SR

f1.

• If ` = 0, then f1 = e1 and U = 1. We then choose f ′ = e1 + e2.
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• If ` > 0, then we find e′1 ∈ T and U = U0 · U ′ such that e1
U0−−→SR

e′1 is a unit run, and

e′1
U ′−→SR

f1. If e1
U0−−→SR

e′1 is a sequential unit run, then U0 = a for some a ∈ Σ, and

e′1 ∈ δSR(e1, a). But then e′1 ∈ δSR(e1 + e2, a) as well, and hence e1 + e2
U0−−→SR

e′1. Putting this

together, we find that e1 + e2
U−→SR

f1; choosing f ′ = f1 then satisfies the claim.

The case where e1
U0−−→SR

e′1 is a parallel unit run is similar.

Lemma 7.26. Let e1, e2 ∈ T , U ∈ SP, and ` ∈ N. The following are equivalent:

(i) There exists an f ∈ F such that e1 · e2
U−→SR

f of length `.

(ii) U = U1 ·U2, and there exist f1, f2 ∈ F with ei Ui−→SR
fi for i ∈ {1, 2}, of total length at most `.

Proof. To show that (i) implies (ii), we proceed by induction on the length ` of e1 · e2
U−→SR

f . In

the base, where ` = 0, we have f = e1 · e2 (hence e1, e1 ∈ F) and U = 1. We can then choose

f1 = e1 and f2 = e2 as well as U1 = U2 = 1, to find that e1
U1−−→SR

f1 and e2
U2−−→SR

f1, of length zero.

For the inductive step, let e1 · e2
U−→SR

f be of length ` + 1. We find U = U0 · U ′, and g ∈ T

where e1 · e2
U0−−→SR

g is a unit run, and g U ′−→SR
f is of length `. If e1 · e2

U0−−→SR
g is a sequential unit

run, then U0 = a for some a ∈ Σ, and g ∈ δSR(e1 · e2, a). This gives us two cases.

• If g ∈ δSR(e1, a) # e2, then g = g1 · e2 such that g1 ∈ δSR(e1, a). By induction we find f1, f2 ∈ F

and U ′ = U ′1 · U ′2 such that g1
U ′1−−→SR

f1, and e2
U ′2−−→SR

f2, of total length at most `. We choose

U1 = U0 · U ′1 and U2 = U ′2 to find U = U0 · U ′ = U0 · U ′1 · U ′2 = U1 · U2, such that e1
U1−−→SR

f1

and e2
U2−−→SR

f2 of total length at most `+ 1.

• If g ∈ e1 ? δSR(e2, a), then first note that e1 ∈ F , and g ∈ δSR(e2, a). We choose U1 = 1 and

U2 = U as well as f1 = e1 and f2 = f ′ to find that U = U1 ·U2 as well as e1
U1−−→SR

f1 of length

zero. Lastly, e2
U0−−→SR

g U ′−→SR
f ′ = f2, meaning e2

U−→SR
f2 of length at most `+ 1.

The case where e1 · e2
U0−−→SR

g is a parallel unit run can be treated similarly.

The proof that (ii) implies (i) consists of two phases; first, we verify the following.

Fact 7.B.1. We have that e1 · e2
U−→SR

f1 · e2, of the same length as e1
U−→SR

f1.

Proof of Fact 7.B.1. The proof proceeds by induction on the length ` of e1
U−→SR

f1. In the base,

where ` = 0 and f1 = e1 as well as U = 1, we the claim holds immediately.

In the inductive step, let e1
U−→SR

f1 be of length `+ 1. We find e′1 ∈ T and U = U0 · U ′ such

that e1
U0−−→SR

e′1 is a unit run, and e′1
U ′−→SR

f1 is of length `. By induction, e′1 · e2
U ′−→SR

f1 · e2.

If e1
U0−−→SR

e′1 is a sequential unit run, then U0 = a for some a ∈ Σ, and e′1 ∈ δSR(e1, a), meaning

e′1 · e2 ∈ δSR(e1 · e2, a), hence e1 · e2
U0−−→SR

e′1 · e2. We conclude that e1 · e2
U−→SR

f1 · e2.



156 CHAPTER 7. POMSET AUTOMATA

The case where e1
U0−−→SR

e′1 is a parallel unit run is similar.

Next, we note the following.

Fact 7.B.2. There exists an f ∈ F such that f1 · e2
V−→SR

f , of the same length as e2
V−→SR

f2.

Proof of Fact 7.B.2. There are two cases to consider, based on the length of e2
V−→SR

f1.

• If ` = 0, then we know that f2 = e2 and V = 1. We choose f = f1 · e2.

• In the inductive step, let e2
V−→SR

f1 be of length `+ 1. We find e′2 ∈ T and V = V0 · V ′ such

that e2
V0−→SR

e′2 is a unit run, and e′2
V ′−→SR

f2 is of length `. If e2
V0−→SR

e′2 is a sequential unit

run, then V0 = a for some a ∈ Σ, and e′2 ∈ δSR(e2, a), and thus e′2 ∈ δSR(f1 · e2, a). Hence,

f1 · e2
V0−→SR

e′2, meaning f1 · e2
V−→SR

f2; choosing f = f2 satisfies the claim.

The case where e2
V0−→SR

e′2 is a parallel unit run is similar.

Putting Facts 7.B.1 and 7.B.2 together, we find f ∈ F such that e1 · e2
U ·V−−−→SR

f .

Lemma 7.27. Let e1, e2 ∈ T and U ∈ SP. The following are equivalent:

(i) There exists f ∈ F such that e1 ‖ e2
U−→SR

f .

(ii) U = U1 ‖ U2 and there exist f1, f2 ∈ F such that ei Ui−→SR
fi for i ∈ {1, 2}.

Proof. To show that (i) implies (ii), there are two cases, based on the length ` of e1 ‖ e2
U−→SR

f .

• If ` = 1, then e1 ‖ e2
U−→SR

f is trivial, then U = 1 and e1 ‖ e2 = f ∈ F . Hence, e1, e2 ∈ F ;

we can choose f1 = e1, f2 = e2 and U1 = U2 = 1 to satisfy the claim.

• Otherwise, if ` > 0, then there there must exist U0, U
′ ∈ SP and g ∈ T such that U = V ·W

and e1 ‖ e2
V−→SR

g is a unit run, and g W−→SR
f .

We can discount the possibility that e1 ‖ V−→SR
g is a sequential unit run, because δSR(e1 ‖

e2, a) = ∅ for all a ∈ Σ. Hence, e1 ‖ e2
V−→SR

g is a parallel unit run, meaning that

V = V1 ‖ · · · ‖ Vn and there exists a φ = {|h1, . . . , hn|} ∈ M(T ) such that g ∈ γSR(e1 ‖ e1, φ),

and for 1 ≤ i ≤ n there exists an h′i ∈ F with hi Vi−→SR
h′i. By definition of γSR, it then follows

that n = 2 and g = 1 as well as (without loss of generality) e1 = h1 and e2 = h2. Since

g = 1, it must be that g W−→SR
f is trivial, and hence W = 1, meaning that U = V . We choose

f1 = h′1, f2 = h′2, U1 = V1 and U2 = V2 to satisfy the claim.

The other direction, i.e., that (ii) implies (i), holds by construction of the syntactic PA.

Lemma 7.28. Let e ∈ T and U ∈ SP. The following are equivalent:
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(i) There exists f ∈ F such that e∗ U−→SR
f .

(ii) U = U1 · · ·Un, such that for 1 ≤ i ≤ n there exists fi ∈ F with e Ui−→SR
fi.

Proof. The proof that (i) implies (ii) proceeds by induction on the length ` of e∗ U−→SR
f . In the

base, where ` = 0, we have that f = e∗ and U = 1; it suffices to choose n = 0.

In the inductive step, let e∗ U−→SR
f be of length ` + 1. We find g ∈ T and U = U0 · U ′ such

that e∗ U0−−→SR
g is a unit run, and g U ′−→SR

f is of length `. If e∗ U0−−→SR
g is a sequential unit run,

then U0 = a for some a ∈ Σ, and g ∈ δSR(e∗, a) = δSR(e, a) # e∗. Hence, g = g′ · e∗, with g′ ∈ δSR(e, a).

By Lemma 7.26, we find f ′′, f ′ ∈ F such that U ′ = V ·W as well as g′ V−→SR
f ′′ and e∗ W−→SR

f ′,

of length at most `. By induction, we find f2, f3, . . . , fn ∈ F such that W = U2 · U3 · · ·Un, and

for 1 < i ≤ n we have e Ui−→SR
fi. We choose f1 = f ′′ and U1 = U0 · V . For these choices,

U = U0 · U ′ = U ′0 · V ·W = U1 · U2 · · ·Un. Since e U0−−→SR
δSR(e, a) V−→SR

f ′, we also have e U1−−→SR
f1.

The case where e∗ U0−−→SR
g is a parallel unit run is similar.

To show that (ii) implies (i), we can assume w.l.o.g. that for 0 ≤ i < n it holds that e Ui−→SR
fi is

non-trivial. We proceed by induction on n. In the base, where n = 0, we can choose f = e∗.

For the inductive step, assume that the claim holds for n− 1. By induction, we find f ′ ∈ F with

e∗ U2·U3···Un−−−−−−−→SR
f ′. Since e U1−−→SR

f1 is non-trivial, we find e′ ∈ T and U1 = U0 · U ′1 with e U0−−→SR
e′

is a unit run, and e′ U ′1−−→SR
f1. By Lemma 7.26, we find f ∈ F with e′ · e∗ U ′1·U2·U3···Un−−−−−−−−−→SR

f . If

e U0−−→SR
e′ is a sequential unit run, then U0 = a for some a ∈ Σ, and e′ ∈ δSR(e, a). But then

e′ · e∗ ∈ δSR(e∗, a), and hence e∗ U0−−→SR
e′ · e∗. Thus, e∗ U0−−→SR

e′ · e∗ U ′1·U2·U3···Un−−−−−−−−−→SR
f .

The case where e U0−−→SR
e′ is a parallel unit run is similar.

Lemma 7.29. Let e, f ∈ T . The following hold:

LSR(e+ f) = LSR(e) + LSR(f) LSR(e
∗) = LSR(e)

∗

LSR(e · f) = LSR(e) · LSR(f) LSR(e ‖ f) = LSR(e) ‖ LSR(f)

Proof. We treat the claims case-by-case.

• To show LSR(e+ f) = LSR(e) + LSR(f), suppose U ∈ LSR(e+ f), i.e., e+ f U−→SR
g for g ∈ F .

By Lemma 7.25, we find g′ ∈ F with e U−→SR
g′ or f U−→SR

g′, and hence U ∈ LSR(e) + LSR(f).

For the other inclusion, suppose that U ∈ LSR(e). We then have that e U−→SR
g for some g ∈ F .

By Lemma 7.25, there exists a g′ ∈ F such that e+ f U−→SR
g′, and hence U ∈ LSR(e+ f). The

case where U ∈ LSR(f) can be treated similarly.



158 CHAPTER 7. POMSET AUTOMATA

• To show LSR(e · f) = LSR(e) · LSR(f), suppose that U ∈ LSR(e · f), i.e., e · f U−→SR
g for some

g ∈ F . By Lemma 7.26, we find g0, g1 ∈ F such that U = U0 · U1 as well as e U0−−→SR
g0 and

f U1−−→SR
g1. This means that U0 ∈ LSR(e) and U1 ∈ LSR(f), and thus U ∈ LSR(e) · LSR(f).

If U ∈ LSR(e) · LSR(f), then U = U0 · U1 such that U0 ∈ LSR(e) and U1 ∈ LSR(f). This means

that there exist g0, g1 ∈ F such that e U0−−→SR
g0 and f U−→SR

g1. By Lemma 7.26, there exists a

g ∈ F such that e · f U−→SR
g, and hence U ∈ LSR(e · f).

• To show LSR(e ‖ f) = LSR(e) ‖ LSR(f), suppose U ∈ LSR(e ‖ f), i.e., e ‖ f U−→SR
g for some

g ∈ F . By Lemma 7.27, we find g1, g2 ∈ F and U1, U2 ∈ SP such that U = U1 ‖ U2 as well as

e1
U1−−→SR

g1 and e2
U2−−→SR

g2. It then follows that U = U1 ‖ U2 ∈ LSR(e) ‖ LSR(f).

If U ∈ LSR(e) ‖ LSR(f), then U = U1 ‖ U2 such that U1 ∈ LSR(e) and U2 ∈ LSR(f). This means

that there exist g1, g2 ∈ F such that e U1−−→SR
g1 and f U2−−→SR

g2. By Lemma 7.27, we find that

e ‖ f U−→SR
1 ∈ F , and hence U ∈ LSR(e ‖ f).

• To show LSR(e
∗) = LSR(e)

∗
, suppose U ∈ LSR(e

∗), i.e., e∗ U−→SR
f for f ∈ F . By Lemma 7.28,

we find that U = U1 · · ·Un and f1, . . . , fn ∈ F such that for 1 ≤ i ≤ n we have e Ui−→SR
fi.

Hence, we know for 1 ≤ i ≤ n that Ui ∈ LSR(e), and therefore U = U1 · · ·Un ∈ LSR(e)
∗
.

For the other direction, let U ∈ LSR(e)
∗
. Then we can write U = U1 · · ·Un such that for

1 ≤ i ≤ n it holds that Ui ∈ LSR(e). We find for 1 ≤ i ≤ n an fi ∈ F such that e Ui−→SR
fi. By

Lemma 7.28, we find an f ∈ F such that e∗ U−→SR
f , and hence U ∈ LSR(e

∗).

Lemma 7.30. For all e ∈ T , we have LSR(e) = JeK.

Proof. We proceed by induction on e. In the base, there are three cases to consider.

• If e = 0, first suppose that U ∈ LSR(0). In that case, 0 U−→SR
e for some e ∈ F . Since 0 6∈ F , this

means that 0 U−→SR
e cannot be trivial. In that case, there exists an e′ ∈ T such that 0 U−→SR

e′

is a unit run. However, this contradicts that δSR(0, a) = ∅ for all a ∈ Σ, and γSR(e, φ) = ∅ for

all φ ∈M(T ). Therefore, our assumption must be false. We conclude that LSR(0) = ∅ = J0K.

• If e = 1, suppose that U ∈ LSR(1), i.e., 1 U−→SR
e for some e ∈ F . By an argument similar to

the previous case, we can argue that 1 U−→SR
e is trivial, and hence U = 1, which means that

U ∈ J1K. The other inclusion follows from the fact that 1 ∈ F and 1 1−→SR
1.

• If e = a for some a ∈ Σ, suppose U ∈ LSR(a), i.e., a U−→SR
e for some e ∈ F . Since a 6∈ F , we

know a U−→SR
e must be non-trivial. We can then write U = U0 ·U ′, and there exists an f ∈ T

such that a U0−−→SR
f is a unit run, and f U ′−→SR

e. A quick glance at δSR and γSR then tells us
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that f = 1. By the previous case, we know that f U ′−→SR
e must be trivial; hence U ′ = 1 and

f = e. Indeed, a U0−−→SR
f must be a sequential unit run, for γSR(a, φ) = ∅ for all φ ∈ M(T ).

Thus U = b and f ∈ δSR(a, b) for some b ∈ Σ; by definition of δSR, it follows that b = a.

For the other inclusion, let U = a; then a a−→SR
1 immediately, and hence a ∈ LSR(a).

For the inductive step, all cases follow by induction and Lemma 7.29. For instance, if e = e1 + e2,

then LSR(e1) = Je1K and LSRe1 = Je2K, and we can derive by said lemma that

LSR(e) = LSR(e1 + e2) = LSR(e1) + LSR(e1) = Je1K+ Je2K = JeK

Lemma 7.31. If e, f ∈ T such that e �SR f , then d‖(e) ≤ d‖(f).

Proof. It suffices to prove the claim for the rules that generate �SR; this gives us three cases.

• If e �SR f because there exists an a ∈ Σ with e ∈ δSR(f, a), then we proceed by induction on f .

In the base, f ∈ Σ and e = 1; but then d‖(e) = 0 ≤ d‖(f) immediately.

For the inductive step, there are four cases to consider.

– If f = f1 + f2, then assume without loss of generality that e ∈ δSR(f1, a). By induction,

d‖(e) ≤ d‖(f1); since d‖(f1) ≤ d‖(f), the claim follows.

– If f = f1 ·f1, then there are two subcases to consider. On the one hand, if e ∈ δSR(f1, a)#f2,

then e = f ′1 · f2 with f ′1 ∈ δSR(f1, a). By induction, d‖(f
′
1) ≤ d‖(f1). We then find

d‖(e) = max(d‖(f
′
1), d‖(f2)) ≤ max(d‖(f1), d‖(f2)) = d‖(f)

On the other hand, if e ∈ f1 ? δSR(f2, a), then e ∈ δSR(f2, a). By induction, d‖(e) ≤ d‖(f2).

Since d‖(f2) ≤ d‖(f), the claim follows.

– We can disregard the case where f = f1 ‖ f2, for δSR(f, a) = ∅.

– If f = f∗1 , then e = f ′1 · f∗1 with f ′1 ∈ δSR(f1, a). By induction, d‖(f
′
1) ≤ d‖(f1). We then

know that d‖(e) = max(d‖(f
′
1), d‖(f1)) = d‖(f1) = d‖(f).

• If e �SR f because there exists a φ ∈M(T ) with e ∈ γSR(f, φ), we proceed by induction on f .

In the base, where f ∈ {0, 1} ∪ Σ, the claim holds vacuously, because γSR(f, φ) = ∅.

For the inductive step, all cases except the one for parallel composition are similar to the

argument above. Now, if f = f1 ‖ f2, then e = 1, and hence d‖(e) = 0 ≤ d‖(f).

• If e �SR f because φ ∈ M(T ) with e ∈ φ and γSR(f, φ) 6= ∅, we proceed by induction on f ,

showing d‖(e) < d‖(f). In the base, where f ∈ {0, 1} ∪ Σ, the claim holds vacuously.

For the inductive step, there are four cases to consider.
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– If f = f1 + f2, then assume without loss of generality that γSR(f1, φ) 6= ∅. By induction,

we have d‖(e) < d‖(f1). Since d‖(f1) ≤ d‖(f), we are done.

– If f = f1 · f2, then there are two subcases to consider.

∗ If γSR(f1, φ) # f2 6= ∅, then γSR(f1, φ) 6= ∅. By induction, we have that d‖(e) < d‖(f1).

Since d‖(f1) ≤ d‖(f), we are done.

∗ If f1 ? γSR(f2, φ) 6= ∅, then γSR(f2, φ) 6= ∅. By induction, we have that d‖(e) < d‖(f1).

Since d‖(f1) ≤ d‖(f), we are done.

– If f = f1 ‖ f2, then without loss of generality φ = {|f1, f2|} and e = f1. By definition of

d‖(−), we then find that d‖(e) = d‖(f1) < d‖(f).

– If f = f∗1 , then γSR(f1, φ) 6= ∅. By induction, d‖(e) < d‖(f1) = d‖(f).

Lemma 7.32. Let e, f ∈ T . If f is a fork target of e in the syntactic PA, then d‖(f) < d‖(e).

Consequently, the syntactic PA is fork-acyclic.

Proof. The first part of the claim was shown as the last part of the proof of Lemma 7.31. For

the second part of the claim, we note that f �SR e by definition; meanwhile, e 6�SR e, since if this

were the case then d‖(e) ≤ d‖(f), which contradicts that d‖(f) < d‖(e). Hence we can conclude

f ≺SR e.

Lemma 7.34. For every e ∈ T , we have that e ∈ R(e) and R(e) is support-closed.

Consequently, the syntactic PA is bounded.

Proof. It suffices to verify that e ∈ R(e), and that for e′ ∈ R(e) the following hold:

• For all a ∈ Σ, we have δSR(e
′, a) ⊆ R(e).

• For all φ ∈M(T ), we have γSR(e
′, φ) ⊆ R(e).

• If f ∈ φ ∈M(T ) and γSR(e
′, φ) 6= ∅, then f ∈ R(e).

We proceed by induction on e. In the base, there are two cases to consider.

• If e ∈ {0, 1}, then e′ = e ∈ R(e) immediately. Furthermore, note that δSR(e, a) = ∅ for all

a ∈ Σ, and γSR(e, φ) = ∅ for all φ ∈M(T ) — hence, the three conditions above hold vacuously.

• If e = a for some a ∈ Σ, then e ∈ R(e) as well. We consider the case where e′ = a; the

case where e′ = 1 is covered above. First, for all b ∈ Σ, we have that δSR(a, b) ⊆ {1}, and

hence δSR(b, a) ⊆ R(e). Second, for all φ ∈ M(T ) we have that γSR(a, φ) = ∅, and hence

γSR(a, φ) ⊆ R(e). The case where f ∈ φ ∈M(T ) with γSR(a, φ) 6= ∅ cannot occur.



7.B. PROOFS ABOUT THE SYNTACTIC POMSET AUTOMATON 161

For the inductive step, there are four cases to consider.

• If e = e1 + e2, then e ∈ R(e) by construction. To see that R(e) is closed, it suffices to consider

the case where e′ = e, since R(e1) and R(e2) are closed by induction.

– For all a ∈ Σ, we have that δSR(e1 + e2, a) = δSR(e1, a)∪ δSR(e2, a). Now, since δSR(e1, a) ⊆

R(e1) and δSR(e2, a) ⊆ R(e2) by induction, we find that δSR(e1 + e2, a) ⊆ R(e) as well.

– For all φ ∈M(T ), we have that γSR(e1 + e2, φ) = γSR(e1, φ) ∪ γSR(e2, φ). By an argument

similar to the above, we find that γSR(e1 + e2, φ) ⊆ R(e).

– If f ∈ φ ∈M(T ) such that γSR(e1 + e2, φ) 6= ∅, then either γSR(e1, φ) 6= ∅ or γSR(e2, φ) 6= ∅.

Hence, either γSR(e1, φ) 6= ∅ or γSR(e2, φ) 6= ∅, and thus f ∈ R(e1) ∪R(e2) ⊆ R(e).

• If e = e1 · e2, then e ∈ R(e), because e1 ∈ R(e1). To see that R(e) is support-closed, it suffices

to consider the elements of R(e1) # e2, since R(e2) and R(e1) are already support-closed. Let

e′ = e′1 · e2 for some e′1 ∈ R(e1). We consider each of the three cases.

– For all a ∈ Σ, we have that δSR(e
′
1 · e2, a) = δSR(e

′
1, a) # e1 ∪ e′1 ? δSR(e2, a). Since

δSR(e
′
1, a) # e1 ⊆ R(e1) and δSR(e2, a) ⊆ R(e2) by induction, the claim then follows.

– For all φ ∈M(T ), we can show that γSR(e
′, φ) again occurs in R(e), by a similar argument.

– If f ∈ φ ∈ M(T ) such that γSR(e
′, φ) 6= ∅, then γSR(e

′
1, φ) # e2 6= ∅, or e′1 ? γSR(e2, φ) 6= ∅.

In the former case, f ∈ R(e1) ⊆ R(e), while in the latter case f ∈ R(e2) ⊆ R(e).

• If e = e1 ‖ e2, then e ∈ R(e) by construction. To see that R(e) is support-closed, it suffices to

consider the case where e′ = e1 ‖ e2.

– For all a ∈ Σ, we have that δSR(e1 ‖ e2, a) = ∅ ⊆ R(e).

– For φ ∈M(T ), we have that γSR(e1 ‖ e2, φ) ⊆ {1} ⊆ R(e) by definition.

– For f ∈ φ ∈M(T ) such that γSR(e1, ‖ e2, φ) 6= ∅, we have φ = {|e1, e2|}, and thus f = e1

or f = e2. In that case, f ∈ R(e1) or f ∈ R(e2) by induction, and hence f ∈ R(e).

• If e = e∗1, then again e ∈ R(e) by construction. To see that R(e) is support-closed, it suffices

to consider the case where e′ ∈ R(e1) # e∗1 ∪ {e∗1}. To this end, let e′ = e′1 · e∗1 with e′1 ∈ R(e1).
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– For all a ∈ Σ, we have that

δSR(e
′
1 · e∗1, a) = δSR(e

′
1, a) # e∗1 ∪ e1 ? δSR(e

∗
1, a)

⊆ δSR(e′1, a) # e∗1 ∪ δSR(e∗1, a)

= δSR(e
′
1, a) # e∗1 ∪ δSR(e1, a) # e∗1

⊆ R(e1) # e∗1 ⊆ R(e)

Furthermore, δSR(e
∗
1, a) ⊆ R(e) by a similar argument.

– If φ ∈M(T ), then γSR(e
′
1 · e∗1, φ) ⊆ R(e) and γSR(e

∗
1, φ) ⊆ R(e) by a similar argument.

– If f ∈ φ ∈ M(T ) and γSR(e
′
1 · e∗1, φ) 6= ∅, then γSR(e

′
1, φ) 6= ∅, hence f ⊆ R(e1) ⊆ R(e).

When γSR(e
∗
1, φ) 6= ∅, we have that f ∈ R(e) by a similar argument.



Chapter 8

Decision Problems

Reasoning about program equivalence using algebraic laws is intuitive, but it requires some creativity

on the part of the programmer. As programs grow in size, it may become quite cumbersome to

mentally work out a proof using pen and paper. Moreover, we may want to integrate equivalence

checking into a tool such as a compiler (to prove that an optimisation is correct), an editor (to

check whether a refactoring of the code preserves semantics) or a verifier (to see whether a program

matches its specification). Thus, the question arises: can we come up with an algorithm that

decides whether two series-rational expressions are equivalent? To do this, we could try to write

a program that searches the space of all possible proof trees for one that witnesses the desired

equivalence. However, for such a program to terminate, we would have to know when to stop

searching, for instance by bounding the possible size of a proof tree, and our analysis of the proof

theory of series-rational expressions does not yet provide any insights in this direction.

An alternative is to not compare the series-rational expressions themselves, but their semantics;

after all, completeness of ≡ w.r.t. J−K tells us that checking whether e ≡ f is the same as checking

whether JeK = JfK. The problem here is that JeK and JfK may, in general, be infinite, and therefore

will not fit in the finite memory of a machine. For this approach, we need a finite description of

these languages, and finite pomset automata provide exactly such a description. As we saw in the

previous section, we can in fact construct a finite and fork-acyclic pomset automaton with states

that accept JeK and JfK respectively. Thus, if we could find some way to decide, provided such a

PA, whether two given states accept the same language, then we would be able to decide whether

the expressions represented by those states have the same semantics, and hence whether they are

provably equivalent. The central topic of this chapter is a decision procedure for this problem.

163
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The result that equivalence of series-rational expressions is decidable is not new; Laurence and

Struth [LS14] proved, more generally, that equivalence of series-parallel rational expressions (i.e.,

including the “parallel star” operator) is decidable, based on purely syntactic reasoning. Brunet

et al. [BPS17] provided a decision procedure for equivalence of sr-expressions that relies on a

translation to 1-safe Petri nets. However, in addition to a (new) proof of the same result, our

investigation of pomset automata in this chapter will give us new insights into pomset automata,

providing new tools for the analysis of pomset automata and series-rational expressions alike.

8.1 Undecidability

Before we get started on the decision procedure, we first argue that fork-acyclicity is necessary to

be able to decide whether two states in a finite PA accept the same language. To get an intuition

as to why this may be the case, note that we have already demonstrated (in Example 7.10) that

pomset automata can be used to accept languages (of words) that are non-rational. Indeed, pomset

automata can be used to recognise a strictly more general class of languages, called context-free

languages. To make this precise, let us first recall the notion of a context-free grammar.

Definition 8.1 (Context-free grammars). A context-free grammar (CFG) is a tuple G = 〈V,→〉,

where V is a finite set of symbols not appearing in Σ, called non-terminals , and → ⊆ V × (V ∪ Σ)
∗

is a finite relation whose elements are called productions . The semantics of G, denoted J−KG , is the

least function t : (V ∪ Σ)
∗ → 2Σ∗ (w.r.t. pointwise inclusion) such that the following holds:

1 ∈ t(1)

a ∈ Σ

a ∈ t(a)

s→ w u ∈ t(w)

u ∈ t(s)

u ∈ t(w) v ∈ t(x)

u · v ∈ t(w · x)

A language L ⊆ Σ∗ is said to be context-free if L = JsKG for some CFG G = 〈V,→〉 with s ∈ V .

Example 8.2. The language L = {an · bn : n ∈ N} is context-free, because it is recognised by

the grammar G = 〈V,→〉, where V = {s}, and productions are given by s → 1 and s → a · s · b.

To see that L = JsKG , first note that if n = 0, then an · bn = 1 ∈ J1KG ; since s→ 1, we have that

1 ∈ JsKG . Next, if n > 0, then assume that the claim holds for n− 1. Since an−1 · bn−1 ∈ JsKG , it

follows that an · bn = a · an · bn · b ∈ Ja · s · bK, and since s→ a · s · b, it follows that an · bn ∈ JsKG .

The converse inclusion, i.e., that JsKG ⊆ L can also be proved.

To show that languages described by a CFG G = 〈V,→〉 can be accepted by a finite PA, we

create an infinite but bounded PA whose states are strings over V ∪ Σ; the language accepted by

each of these states is intended to be the language assigned by the semantics function J−KG .
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s a · s · b

s · b1 b

a

b

Figure 8.1: The PA support of s in the PA AG obtained from the CFG G in Example 8.2.

The intuition behind the construction of this PA is that it simulates the substitution caused

by the inference rules using unary forks, i.e., if we are in a state of the form s · w′ for s ∈ V , and

s→ x, then we can fork into x, read a word there, and then resume in w′.

Definition 8.3 (CFG to PA). Let G = 〈V,→〉 be a CFG. We define the pomset automaton

AG = 〈QG , FG , δG , γG〉, where QG = (V ∪ Σ)
∗

and FG = {1}; also, δG and γG are generated by

a ∈ Σ w ∈ QG

w ∈ δG(a · w, a)

s→ w x ∈ QG

x ∈ γG(s · x, {|w|})

Convention 8.4. We simplify subscripts by writing →G instead of →AG , et cetera.

Example 8.5. Let G be the CFG from Example 8.2. The support of s in AG is depicted in

Figure 8.1. Note that AG is not fork-acyclic, since s ·b � a · s ·b, while a · s ·b is a fork target of s ·b.

To see that JsKG ⊆ LG(s), first note that since 1 1−→G 1 and b ∈ γG(s · b, {|1|}) we have s · b 1−→G b.

Furthermore, since b b−→G 1, also s ·b b−→G 1. Now, because a ·s ·b a−→G s ·b, we have that a ·s ·b a·b−−→G 1.

More generally, one can show that for n ≥ 1 it holds that a ·s ·b an·bn−−−→G 1. Since 1 ∈ γG(s, {|a ·s ·b|}),

we then find for n ≥ 1 that s an·bn−−−→G 1. Lastly, since 1 ∈ γG(s, {|1|}), we also have s 1−→G 1, and

hence s an·bn−−−→G 1 for all n ∈ N. The converse inclusion, i.e., that LG(s) ⊆ JsKG , can also be shown.

The PA we considered in the example above had a fork cycle. In general, one can prove that

any CFG with a cyclic dependency between non-terminals (e.g., s appears on the right-hand side of

a production from s, as is the case for G discussed above) yields a PA with a fork cycle. For our

purposes, however, it suffices to observe that there exists CFGs G for which AG is fork-acyclic.

In the same example, we also saw that the support of the state s in AG was finite. This is true

in general; the key insight to prove this is that if w, x ∈ QG such that w �G x, then either the

length of w is bounded by the length of x (because w can reach x by a series of unit transitions) or

by the length of some right-hand side to a production rule in G (because x can be reached from a

fork target, which is always such a right-hand side). Formally, we can then prove the following.
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Lemma 8.6. Let G = 〈V,→〉 be a CFG. Then AG is bounded.

In the example we considered, the PA AG faithfully implemented the language of a given

non-terminal in the grammar. We can show that this is the case in general, by arguing as follows.

Lemma 8.7. Let G = 〈V,→〉 be a CFG. Then for w ∈ (V ∪ Σ)
∗

we have that LG(w) = JwKG.

Proof. For the inclusion from left to right, it suffices to show that LG satisfies the conditions that

define J−KG . There are four rules to consider.

• First, we observe that since 1 ∈ FG , we have that 1 ∈ LG(1) immediately.

• Second, we note that 1 ∈ δG(a, a), and thus a a−→G 1, which means that a ∈ LG(a).

• Next, suppose that s→ w and that u ∈ LG(w). In that case, we know that w u−→G 1. Since

1 ∈ γG(s, {|w|}), it then follows that s u−→G 1, and hence u ∈ LG(s).

• Lastly, suppose that u ∈ LG(w) and v ∈ LG(x). In that case, w u−→G 1 and v x−→G 1. A simple

argument by induction on the construction of →G then shows that w · x u−→G v, and hence

w · x u·v−−→G 1. This allows us to conclude that u · v ∈ LG(w · x).

For the other inclusion, we note that by Lemma 7.36 it suffices to show that for w ∈ QG , we have:

w ∈ FG

1 ∈ JwK G

a ∈ Σ w′ ∈ δG(w, a)

a · Jw′K G ⊆ JwK G

w′ ∈ γG(w, {|y1, . . . , yn|})

(Jy1K G ‖ · · · ‖ JynK G) · Jw′K G ⊆ JwK G

We validate each of the rules separately:

• Suppose that w ∈ FG . In that case, w = 1 by definition of FG ; since 1 ∈ J1KG , we are done.

• Suppose x ∈ Jw′KG with w′ ∈ δG(w, a). In that case we have w = a ·w′, and hence a ·x ∈ JwKG .

• Suppose x ∈ Jw′KG such that w′ ∈ γG(w, {|y1, . . . , ym|}), and that for 1 ≤ i ≤ m we have

xi ∈ JyiKG . By construction of γG , we then have that m = 1 and we obtain s→ y1 such that

w = s · w′. Since x1 ∈ JsKG and x ∈ Jw′KG , it follows that x1 · x ∈ Js · w′KG = JwKG .

Remark 8.8. Conversely, one can argue that if A = 〈Q,F, δ, γ〉 is a finite pomset automaton

where all forks are unary — i.e., such that whenever γ(q, φ) 6= ∅, also |φ| = 1 — then the languages

accepted by A can be described by a CFG. In [KBL+19], CFGs are augmented with parallel

composition to describe pomset languages proper. It can be shown that any CFG in this format

can be implemented by a PA, and that every PA can be represented by such a CFG. For simplicity,

we restrict our discussion here to the well-known context-free grammars over words.
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Having shown that a finite pomset automaton can implement a context-free language, we are

ready to prove that equivalence of states in finite pomset automata (possibly with a fork cycle) is

undecidable. To this end, we first recall the following well-known result about CFGs.

Theorem 8.9 [BPS61]. The following problem is undecidable:

CFG-Equiv: Given a CFG G = 〈V,→〉 with v, v′ ∈ V . Does JvKG = Jv′KG hold?

Corollary 8.10. The following problem is undecidable:

PA-Equiv: Given a finite PA A = 〈Q,F, δ, γ〉 with q, q′ ∈ Q. Does LA(q) = LA(q′) hold?

Proof. Suppose PA-Equiv were decidable. Then we could decide CFG-Equiv by computing AG

and restricting it to the support of v and v′, and checking whether the languages accepted by v

and v′ in the resulting finite pomset automaton are the same. By Lemmas 7.20 and 8.7, this holds

precisely when JvKG = Jv′KG , and hence our decision procedure would be correct. Since CFG-Equiv

is undecidable by Theorem 8.9, we conclude that PA-Equiv cannot be decidable, either.

Remark 8.11. In [BPS61], it is also shown that, given a CFG G = 〈V,→〉 with v ∈ V , it is

undecidable whether JvKG is a rational language. Since all series-rational languages of words are

in fact rational languages, the problem of deciding whether a given state in a given PA accepts a

series-rational language is therefore also undecidable. This also explains why fork-acyclicity is a

sufficient but not necessary condition for the translation of PAs to sr-expressions: any precondition

that completely characterises correctness of such a construction would be undecidable.

8.2 Well-structuredness

As we saw in the previous section, language equivalence of states in a pomset automaton is

undecidable. In this section, we therefore focus on fork-acyclic pomset automata, and ask whether

language equivalence is decidable there. To fully appreciate the complexity of this problem, we

start by illustrating the intricacies of PAs through a series of examples. These show how pomset

automata with heterogeneous structures can still accept the same language. Any procedure to

decide language equivalence for fork-acyclic PAs must take such cases into account.

Example 8.12 (Run confusion). The pomset automaton depicted in Figure 8.1 has the state s · b,

which may accept the pomset b by forking into the state 1, accepting and resuming computation in

the state b, where the pomset b can be read to arrive in the accepting state 1. Thus, s · b accepts b

by means of a composite run, whereas b accepts the same pomset by means of a sequential unit run.
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q1

q3

q4

q5

q6

q2

b

c

a

q′4

q′1

q′3

q′5

q′6

q′2

b

a

c

Figure 8.2: Associativity of parallelism in pomset automata.

More generally, a state could accept a more complicated pomset by means of a composite run,

while another state accepts the same pomset with a parallel unit run.

Alternatively, we may also consider forks into the empty multiset �; in a sense, these are

analogous to ε-transitions in NFAs, since the parallel composition of zero multisets is 1. This could,

for instance, allow a non-accepting state to accept the empty pomset.

From this example, we can take away that different types of runs may be labelled by the same

pomset, especially when fork targets are allowed to be accepting states, or when forking into the

empty or singleton multiset is permitted. The next example is about how nested forks may spread

out behaviour of a state in structurally different but semantically equivalent ways.

Example 8.13 (Associativity). Consider the PA in Figure 8.2, where both q1 and q′1 accept the

language {a ‖ b ‖ c}. In the transition from q1 to q2, the pomset a ‖ b is contributed by q3, and c

comes from q4, while in the transition from q′1 to q′2, we obtain a from q′4, and b ‖ c from q′3. The

language accepted by q3 is distinct from, and in fact incomparable with, the languages accepted by

q′3 and q′4. Hence, to compare LA(q1) to LA(q′1), we must consider not only the fork targets, but

also the fork targets of those fork targets, for second-level forks that point to an accepting state.

We can counteract the patterns exhibited in Examples 8.12 and 8.13, by preventing the structural

patterns that enable this kind of behaviour. This leads to the following definition.

Definition 8.14 (Well-structured). A pomset automaton A = 〈Q,F, δ, γ〉 is well-structured if for

all q, q′ ∈ Q and all φ ∈M(Q) with q′ ∈ φ and γ(q, φ) 6= ∅, the following three conditions hold:

|φ| ≥ 2 q′ 6∈ F ∀φ′ ∈M(Q). γ(q′, φ′) ∩ F = ∅
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Example 8.15. The PAs in Figures 7.1 and 7.3a are well-structured. On the other hand, a pomset

automaton with a state q such that γ(q,�) 6= ∅ — or γ(q, {|r|}) 6= ∅ for some state r — is not

well-structured (by the first condition). The PA in Figure 7.2b is not well-structured (by the

second condition) because γ(q1, {|q3, q4|}) 6= ∅, while q4 ∈ F . Finally, the PA in Figure 8.2 is not

well-structured (by the third condition) because γ(q1, {|q3, q4|}) 6= ∅, while q2 ∈ γ(q3, {|q5, q6|}) ∩ F .

Well-structuredness is a relatively mild restriction; it does not prevent us from expressing the

behaviour of fork-acyclic PAs that we have seen up to this point. For instance, the behaviour of

the PA discussed in Example 8.13 (see Figure 8.2) can be expressed using a ternary fork, and the

behaviour of the PA discussed in Example 8.12 (see Figure 7.2b) can be obtained by a sequential

transition. Indeed, as we shall formally prove in Section 8.3, any fork-acyclic pomset automaton

can be implemented by a well-nested and fork-acyclic pomset automaton. For now, we focus on

deciding equivalence of states in well-structured and fork-acyclic finite pomset automata. In the

remainder of this section, we fix one such pomset automaton A = 〈Q,F, δ, γ〉.

The benefit of well-structured PAs is that run type is uniquely determined by the pomset that

labels it. Furthermore, because forks cannot be nested and fork targets cannot accept, the pomsets

U accepted by a fork target must all be parallel primes (i.e., if U = V ‖W , then V = 1 or W = 1).

Lemma 8.16. If A is well-structured and q U−→A
q′, then the following hold:

(i) q U−→A
q′ is trivial if and only if U is empty.

(ii) q U−→A
q′ is a sequential unit run if and only if U is primitive.

(iii) q U−→A
q′ is a composite run if and only if U is sequential.

(iv) q U−→A
q′ is a parallel unit run if and only if U is parallel.

If q is a fork target and q′ ∈ F , then U is a parallel prime.

Even for well-structured PAs, there are still structural factors that can confound language

equivalence of states, and with which a decision procedure for equivalence will need to reckon.

Example 8.17 (Distributivity I). In Figure 8.3a, we have the state q1 which may fork into q2 and

q3, as well as q4 and q5. Now, q1 accepts the language {a ‖ b, a ‖ c}, where the former behaviour

stems from forking into q2 and q3, but the latter is obtained by forking into q4 and q5. On the other

hand, we have the state q′1, which may fork into q′2 and q′3; here, q′1 accepts the same language as q1,

but the two pomsets are due to the same fork. In a sense, this is a consequence of the distributivity

of parallel composition over union of pomset languages:

LA(q1) = a ‖ b + a ‖ c = a ‖ (b + c) = LA(q′1)
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(a) Distributivity of parallelism over union.
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b
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(b) Distributivity of sequential composition over union.

Figure 8.3: PAs where q1 and q′1 accept the same language, with different transition structures.

This example illustrates how behaviour of language-equivalent states may be spread out across

different parallel transitions, and that this division may differ locally. The last example stems

from an implicit kind of non-determinism that is supported by PAs (that we touched upon in

Remark 7.5), that can be a result of overlap between the languages accepted by fork targets.

Example 8.18 (Distributivity II). In Figure 8.3b, q1 we can read a ‖ b to arrive in q3 or q4. From

that point on, q3 can read a to reach an accepting state, while q4 can read b to do the same. In

contrast, q′1 can read a ‖ b to arrive in q′4 only, whence it can read a or b to arrive in q′5 and accept.

Nevertheless, q1 and q′1 accept the same language. Even though the behaviour implemented by

the forks from q1 is the same, where they land is not uniquely determined. In a sense, this is a

consequence of distributivity of sequential composition over union of pomset languages:

LA(q1) = (a ‖ b) · a + (a ‖ b) · b = (a ‖ b) · (a + b) = LA(q′1)

Examples 8.17 and 8.18 illustrate that there are many structurally different ways to express

parallel behaviour in a pomset automaton. It is not so clear how to choose one particular way of

representing parallel behaviour. Instead, we design our algorithm to directly deal with the these

phenomena. To understand how this can be done, we first shift perspective from deciding language

equivalence to finding out which states do and do not overlap in terms of their language [LS14].
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Definition 8.19 (Atoms). Let A be a PA or an NFA, with states Q and α ⊆ Q. We write

LA(α) =
(⋂
{LA(q) : q ∈ α}

)
\
(⋃
{LA(q) : q ∈ Q \ α}

)
When LA(α) 6= ∅, we say that α is an atom of A; we write AtA for the set of atoms of A.

Example 8.20. In the PA in Figure 8.3a, {q3, q
′
3} is an atom, as is {q5, q

′
3}; the set {q2, q4, q

′
2} is

also an atom. In fact, these are all atoms that contain fork targets of Figure 8.3a.

The PA in Figure 8.3b has {q3, q5, q
′
2, q
′
4} as an atom; similarly, {q2, q4, q

′
3, q
′
4} is an atom. These

are again all of the atoms that contain fork targets in Figure 8.3b.

The following lemma shows how atoms can be used to decide language equivalence.

Lemma 8.21. Let A be a PA or NFA with states q1 and q2. Then LA(q1) = LA(q2) if and only if

for all α ∈ AtA it holds that q1 ∈ α precisely when q2 ∈ α.

Thus, if we can compute the set of atoms a PA then we can decide language equivalence of

states. As it turns out, this is possible if the PA is finite, fork-acyclic and well-structured.

Lemma 8.22. If A is finite, fork-acyclic, and well-structured, then AtA is computable.

Proof. We proceed by induction on DA. In the base, where DA = 0, we know that Q = ∅, since if

q ∈ Q, then DA(q) ≥ 1; it is not hard to see that ∅ is the only atom in this case.1

For the inductive step, let DA > 0 and suppose that the claim holds for PAs of strictly lower

depth. We choose Q′ = {q ∈ Q : DA(q) < DA}, and note that Q′ is support-closed: if q′ �A q ∈ Q′,

then DA(q′) ≤ DA(q), and hence q′ ∈ Q′. By Lemma 7.20, we can restrict A to obtain A[Q′], which,

by construction, is of strictly lower depth than A. By induction, we can compute AtA[Q′].

To compute AtA, we shall construct an NFA A′ = 〈Q, δ′, F 〉 whose atoms are precisely those

of A; the claim then follows because we can compute the atoms of an NFA using a standard

algorithm such as the one by Brzozowski and Tamm [BT14]. The intuition behind A′ is to copy

the δ-transitions of A, and encode the γ-transitions by transitions labelled with symbols built from

AtA[Q′]. More precisely, we will have transitions labelled by symbols from the following alphabet:

∆ = Σ ∪

{|α1, . . . , αn|} ∈M(AtA[Q′]) :
∃q ∈ Q, q1 ∈ α1, . . . , qn ∈ αn.

γ(q, {|q1, . . . , qn|}) 6= ∅


Here, we assume without loss of generality that the two sets are disjoint, i.e., that none of the

multisets are already symbols in Σ. This alphabet is finite because AtA[Q′] is finite, and because by

definition of pomset automata there are finitely many multisets φ s.t. γ(q, φ) 6= ∅.
1The empty intersection is assumed to be the set of all sp-pomsets SP.
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(a) NFA created in inductive step of atom computation for Figure 8.3a.
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(b) NFA created in inductive step of atom computation for Figure 8.3b.

Figure 8.4: Examples of PAs obtained in the inductive step of atom computation.

We define the transition function of our NFA, δ′ : Q×∆→ 2Q, as follows.

δ′(q, a) = δ(q, a) δ′(q, {|α1, . . . , αn|}) =
⋃
{γ(q, {|q1, . . . , qn|}) : q1 ∈ α1, · · · , qn ∈ αn}

Example 8.23. Let A be the PA in Figure 8.3a. In Example 8.20, we saw that α1 = {q3, q
′
3},

α2 = {q5, q
′
3} and α3 = {q2, q4, q

′
2} are the atoms that contain fork targets. The resulting NFA

is drawn in Figure 8.4a. There, we see that q6 ∈ δ′(q2, a) because q6 ∈ δ(q2, a). Furthermore,

q6 ∈ δ′(q1, {|α3, α1|}) because q6 ∈ γ(q1, {|q2, q3|}) and q2 ∈ α3 while q3 ∈ α1.

Example 8.24. Alternatively, let A be the PA in Figure 8.3b. In Example 8.20, we found atoms

α1 = {q3, q5, q
′
2, q
′
4} and α2 = {q2, q4, q

′
3, q
′
4}. The resulting NFA is drawn in Figure 8.4b. There,

we see that q7 ∈ δ′(q1, {|α1, α2|}) because q7 ∈ γ(q1, {|q3, q2|}) with q3 ∈ α1 and q2 ∈ α2.

It remains to show that the atoms of A are the same as those of A′. To this end, we relate the

languages accepted by A′ to those accepted A, using the substitution ζ : ∆→ 2SP(Σ), given by:

ζ(a) = {a} ζ({|α1, . . . , αn|}) = LA(α1) ‖ · · · ‖ LA(αn)

We need the following two technical properties of ζ. The first of these relates the languages accepted

by the states of the NFA A′ to the languages accepted by the states of the PA A by means of ζ.
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Fact 8.25. For all q ∈ Q, it holds that LA(q) = ζ(LA′(q)).

The second property that we need says that ζ is compatible with a number of operators on

language; this is a consequence of the fact that A is well-structured, and hence if {|α1, . . . , αn|} ∈ ∆,

then n ≥ 2 and 1 6∈ LA(αi) for all 1 ≤ i ≤ n. Since each state in αi is a fork target, and the pomsets

accepted by fork targets must be parallel primes, ζ({|α1, . . . , αn|}) must consist of sequential primes.

Fact 8.26. The following hold for all L,K ⊆ SP(∆):

ζ(L ∪K) = ζ(L) ∪ ζ(K) ζ(L ∩K) = ζ(L) ∩ ζ(K)

ζ(L) \ ζ(K) = ζ(L \K) ζ(L) = ∅ ⇐⇒ L = ∅

Let α ⊆ Q; we can then use the facts above to calculate that

ζ(LA′(α)) = ζ
((⋂

{LA′(q) : q ∈ α}
)
\
(⋃
{LA′(q) : q ∈ Q \ α}

))
(def. LA′ on 2Q)

=
(⋂
{ζ(LA′(q)) : q ∈ α}

)
\
(⋃
{ζ(LA′(q)) : q ∈ Q \ α}

)
(Fact 8.26)

=
(⋂
{LA(q) : q ∈ α}

)
\
(⋃
{LA(q) : q ∈ Q \ α}

)
(Fact 8.25)

= LA(α) (def. LA on 2Q)

To wrap up, suppose α is an atom of A, i.e., LA(α) 6= ∅. By the derivation above, this holds

precisely when ζ(LA′(α)) 6= ∅; by Fact 8.26, this is equivalent to having that LA′(α) 6= ∅, i.e., α is

an atom of A′. This shows that AtA = AtA′ ; since we can compute the latter, the claim follows.

Lemmas 8.21 and 8.22 now give us a preliminary decidability result for equivalence in PAs.

Theorem 8.27. The problem PA-Equiv is decidable for well-structured and fork-acyclic PAs.

Remark 8.28. When deciding equivalence of two states in a well-structured and fork-acyclic PA

A = 〈Q,F, δ, γ〉, we do not need to compute the atoms of A proper. Instead, we can compute

the atoms of the PA one level below (i.e., A[Q′] where Q′ = {q ∈ Q : DA(q) < DA}) and check

equivalence of q and q′ in the NFA A′ built on Q using these atoms (as in the proof of Lemma 8.22).

8.3 Normalisation

In the previous section, we saw that language equivalence for states in a well-structured, fork-acyclic

and finite pomset automaton is decidable. In this section, we discharge the precondition that

the pomset automaton is well-structured, by showing that we can construct a well-structured,

fork-acyclic and finite PA that implements a given fork-acyclic and finite PA.
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We first decompose the definition of well-structured automata into three simpler properties.

Definition 8.29 (n-forking). Let n ∈ N. A pomset automaton A is n-forking if for every state

q ∈ Q and every multiset of states φ ∈M(Q) such that γ(q, φ) 6= ∅ we have |φ| ≥ n.

Definition 8.30 (Parsimony). A pomset automaton A is said to be parsimonious if, whenever

p ∈ Q and q ∈ φ ∈M(Q) such that γ(p, φ) 6= ∅, we have that 1 6∈ LA(q).

Definition 8.31 (Flat-branching). A pomset automaton A is flat-branching if for all states p, q ∈ Q

and every multiset φ ∈M(Q), if γ(q, φ) 6= ∅ and p ∈ φ then

∀ψ ∈M(Q). γ(p, ψ) ∩ F = ∅.

Example 8.32. The PAs displayed in Figures 7.1, 7.2b, 7.3, 7.4, 8.2 and 8.3 are 2-forking, but the

ones in Figures 7.2a and 8.1 are not. The automata in Figure 8.3 are parsimonious, but the ones in

Figures 7.2b and 7.3 are not; for instance, in Figure 7.2b, we have that γ(q1, {|q3, q4|}) 6= ∅, while

1 ∈ LA(q4). The automata in Figures 7.3 and 8.3 are flat-branching, but the one in Figure 8.2 is

not; in particular, there we have that γ(q1, {|q3, q4|}) 6= ∅, while q2 ∈ γ(q3, {|q5, q6|}) ∩ F .

One can prove that the above properties indeed guarantee well-structuredness.

Lemma 8.33. A PA A is well-structured if it is 2-forking, parsimonious, and flat-branching.

Thus, objective can be fulfilled by converting a given fork-acyclic and finite PA into an equivalent

fork-acyclic and finite PA that is also 2-forking, parsimonious and flat-branching. Note that these

properties can be at cross purposes: for instance, ensuring parsimony may introduce forks of smaller

sizes, which could make it so that the PA is no longer 2-forking. Similarly, eliminating forks into

the empty multiset may introduce new accepting states, which can invalidate flat-branching.

It should be clear, then, that ensuring all of these properties hold at the same time requires

some care. The remainder of this section is devoted to a series of transformations, each of which

establishes one property while maintaining the ones guaranteed by the previous step. More precisely,

our construction to ensure well-structuredness will consist of the following four steps:

(1) we first show how to implement A with a parsimonious pomset automaton A0;

(2) then we discuss how to implement A with a 1-forking pomset automaton A1;

(3) we proceed to show how to implement A with a 2-forking pomset automaton A2.

(4) finally, we show that A can be implemented by a flat-branching pomset automaton A3;
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Since each of these transformations preserves the established properties (e.g., A2 is still 1-forking

and parsimonious), we end up with a pomset automaton that implements A and is 2-forking,

parsimonious, and flat-branching, and hence well-structured by Lemma 8.33. Furthermore, since A

is finite (and therefore bounded), it follows that the resulting PA must also be bounded, and can

therefore be restricted to a finite pomset automaton by Lemma 7.20.

Before we get into the weeds, we discuss some technical properties that will help simplify the

constructions. First, note that we shall need to rule out a form of silent transitions that can occur

by forking into states accepting the empty pomset (if the pomset automaton is not parsimonious)

or by forking into the empty multiset (if the PA is not 1-forking). The result is a non-trivial run

labelled by the empty pomset. To reason about such transitions, we observe the following:

Lemma 8.34. For any finite pomset automaton A, the predicate p 1−→A
q is decidable.

Another useful notion for this section will be that of weak implementation. Essentially, a weak

implementation of a PA is another PA where the behaviour of each state of the first PA is spread

out across a set of states, rather than just one (as is the case for implementation).

Definition 8.35. A pomset automaton A′ weakly implements a PA A if the following hold:

(i) for every state q in A there is a finite set of states Qq in A′ s.t. LA(q) =
⋃
x∈Qq

LA′(x), and

(ii) if A is fork-acyclic (respectively bounded), then so is A′.

As it turns out, to prove that there exists a pomset automaton implementing A that satisfies some

of the properties above, it suffices to find one that weakly implements A with the same property.

We shall make use of this in the first three constructions to follow.

Lemma 8.36. If a PA A′ weakly implements a PA A, then there exists a PA A′′ implementing A.

Furthermore, if A′ is n-forking (respectively flat-branching, parsimonious), then so is A′′.

8.3.1 Parsimony

Let A = 〈Q,F, δ, γ〉 be a finite, fork-acyclic PA; we want to implement A with a fork-acyclic and

parsimonious PA A0. There are two key ideas to this translation:

• We introduce a new state >, which will be the sole accepting state of the PA; in fact, it

will be the only state accepting the empty pomset. This state will not have any outgoing

transitions, so its language is exactly {1}. We will modify the transition functions, such that

if a transition in A can lead to a state that accepts 1, it can also lead to > in A0.
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q1

q3

q4

q5

q2

a

(a) A PA A that is not parsimonious.

q1

q3

q4

>

q5

q2

a

a

(b) Part of the PA A0 obtained from A.

Figure 8.5: Example of construction to ensure parsimony.

• To ensure preservation of successful runs, we need to add parallel transitions to mitigate

the previous modification. Thus, if q ∈ Q can fork into φ t ψ ∈ M(Q) to reach q′ ∈ Q, i.e.,

q′ ∈ γ(q, φ t ψ), and all states in ψ accept the empty pomset in A, then we make sure that,

in A0, q can fork into φ to reach q′, simulating the acceptance of 1 from states in ψ.

Doing so, we obtain a pomset automaton weakly implementing A — as a matter of fact, if 1 6∈ LA(q),

then LA(q) = LA0(q), and otherwise LA(q) = LA0(q) ∪ LA0(>). Since > cannot be a fork target,

and any other state cannot accept the empty pomset, this new pomset automaton is parsimonious.

Finiteness and fork-acyclicity are also maintained by this construction.

Definition 8.37 (A0). The pomset automaton A0 is given by the tuple 〈Q0, F0, δ0, γ0〉 where

Q0 = Q ∪ {>} (with > 6∈ Q), and F0 = {>}. Furthermore, δ0 is generated by the rules

q′ ∈ δ(q, a)

q′ ∈ δ0(q, a)

q′ ∈ δ(q, a) 1 ∈ LA(q′)

> ∈ δ0(q, a)

Also, γ0 is generated by the following rules for all q ∈ Q and φ ∈M(Q):

q′ ∈ γ(q, φ t ψ)

∀r ∈ ψ. 1 ∈ LA(r)

q′ ∈ γ0(q, φ)

q′ ∈ γ(q, φ t ψ) 1 ∈ LA(q′)

φ 6= � ∀r ∈ ψ. 1 ∈ LA(r)

> ∈ γ0(q, φ)

Lastly, δ0(>, a) = ∅ for all a ∈ Σ and γ0(>, φ) = ∅ for all φ ∈M(Q0).

Example 8.38. Consider the pomset automaton A depicted in Figure 8.5a, which is not parsimo-

nious. The resulting pomset automaton A0 is drawn in Figure 8.5b. Since q5 ∈ δ(q3, a) in A, we

have q5 ∈ δ0(q3, a) by the first rule generating δ0; since 1 ∈ LA(q5), we also have > ∈ δ0(q3, a) by the

second rule generating δ0. Furthermore, since 1 ∈ LA(q4) and q2 ∈ γ(q1, {|q3, q4|}) while 1 ∈ LA(q2),

we have that > ∈ γ0(q1, {|q3, q4|}) as well as > ∈ γ0(q1, {|q3|}) by the second rule generating γ0.



8.3. NORMALISATION 177

q1

q3

q4

q5

q2 q6

a

b

(a) A PA A with nullary forks.
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(b) The PA A1 obtained from A.

Figure 8.6: Example of nullary fork removal.

Note that even though in the example above A was 2-forking, A0 was not, as a result of the

fact that > ∈ γ0(q1, {|q3|}). We will remedy the appearance of unary forks later on.

Our construction is correct, in the following sense.

Lemma 8.39. A0 is parsimonious and weakly implements A.

8.3.2 Removing nullary forks

Let A = 〈Q,F, δ, γ〉 be a finite, parsimonious, and fork-acyclic pomset automaton. We want

to (weakly) implement A with a 1-forking PA A1 while maintaining finiteness, parsimony and

fork-acyclicity. As mentioned, the nullary forks that we want to eliminate — i.e., those where

q′ ∈ γ(q,�) — essentially furnish silent transitions q 1−→A
q′, analogous to classic NFAs. We proceed

eliminate these by saturating the transition functions with 1−→A
[HU79, Chapter 2.4].

Definition 8.40 (A1). The pomset automaton A1 is defined to be 〈Q,F, δ1, γ1〉, where δ1 and γ1

are generated by the following inference rules for all a ∈ Σ and φ ∈M(Q) with φ 6= �.

p 1−→A
q r ∈ δ(q, a) r 1−→A

s

s ∈ δ1(p, a)

p 1−→A
q r ∈ γ(q, φ) r 1−→A

s

s ∈ γ1(p, φ)

Example 8.41. Suppose A is the pomset automaton in Figure 8.6a. This pomset automaton

has two nullary forks: q5 ∈ γ(q3,�) and q6 ∈ γ(q2,�). We have drawn the pomset automaton A1

obtained from A in Figure 8.6b. Here, q6 ∈ δ1(q3, a), because q3
1−→A

q5, q6 ∈ δ(q5, a) and q6
1−→A

q6.

Similarly, q6 ∈ γ1(q1, {|q3, q4|}) because q1
1−→A

q1, q2 ∈ γ(q1, {|q3, q4|}) and q2
1−→A

q6.

We conclude by stating correctness of our translation, in the following sense.

Lemma 8.42. A1 is 1-forking, parsimonious, and weakly implements A.
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(b) Part of the automaton A2 obtained from A.

Figure 8.7: Example of unary fork removal.

8.3.3 Removing unary forks

We now show that, given a fork-acyclic, finite, parsimonious and 1-forking PA A = 〈Q,F, δ, γ〉,

we can implement it using a 2-forking PA A2 that retains the properties of A. The main idea

is to simulate unary forks by keeping a “call stack” in the state. When A follows a unary fork,

e.g., q′ ∈ γ(q, {|r|}), A2 will push q′ on the stack to “remember” where we should continue after

completing the computation in r; once we reach an accepting state, the transitions of q′ will become

available. Because we put no upper limit on the size of the stack, the resulting PA will have

infinitely many states; this is not a problem, however, since we prove that A2 weakly implements

A, and hence A2 is bounded when A is — meaning that A2 can be made finite if necessary.

To keep track of this call stack, we need to know which unary forks can occur in sequence from

any given state. This is captured by the following.

Definition 8.43. The relation ↑, is the least subset of Q×Q∗ satisfying the following rules:

q ↑ q

r ↑ w q′ ∈ γ(q, {|r|})

q ↑ w · q′

Intuitively, if q ↑ q1 · · · qn, then q can perform a series of unary forks leading to state q1; once the

computation starting in q1 reaches an accepting state q′1, we can pop q′1 off the stack and continue

in q2, and so on. The first rule covers the case where no fork takes place, while the second rule

allows to extend an existing series of forks with one more.

Example 8.44. Suppose A is the PA in Figure 8.7a. We first note that q6 ↑ q6 by the first rule;

hence, since q4 ∈ γ(q3, {|q6|}), we have q3 ↑ q6 · q4 by applying the second rule. Furthermore, since

q2 ∈ γ(q1, {|q3|}), we find that q1 ↑ q6 · q4 · q2, again by the second rule. Hence, q1 can fork into q6,

and after completing a computation there and in q4, we can carry on in q2.

We can now define our transformation, as follows.
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Definition 8.45 (A2). The PA A2 is defined to be 〈Q2, F2, δ2, γ2〉, where Q2 = Q∗ and F2 = F ∗.

Also, δ2 and γ2 are generated by the following rules for a ∈ Σ and φ ∈M(Q) with |φ| ≥ 2:

q ↑ r · w q′ ∈ δ(r, a)

q′ · w · x ∈ δ2(q · x, a)

w′ ∈ δ2(w, a) q ∈ F

w′ ∈ δ2(q · w, a)

q ↑ r · w q′ ∈ γ(r, φ)

q′ · w · x ∈ γ2(q · x, φ)

w′ ∈ γ2(w, φ) q ∈ F

w′ ∈ γ2(q · w, φ)

The first rule allows us to look at the state q on top of the stack, and see where it can fork to; if

the state r where we end up in allows a δ-transition to q′, we push q′ onto the stack, along with the

unresolved states w gained from the unary fork.2 The second rule says that we can also look at

states further up the stack, provided that they are preceded by accepting states only. This allows

us to pop accepting states off the stack, while continuing in the next state. The latter two rules

work analogously to the first two rules, but for parallel unit transitions.

Example 8.46. Let A be the pomset automaton in Figure 8.7a. We have drawn the support of q1 in

the pomset automaton A2 obtained from A in Figure 8.7b. There, we have q2 ·q2, q5 ·q2 ∈ F2 because

q2, q5 ∈ F . Also, since q1 ↑ q3 · q2 (see Example 8.44) and q2 ∈ δ(q3, a), we have q2 · q2 ∈ δ2(q1, a)

by the first rule above. Furthermore, since q1 ↑ q6 · q4 · q2 (see Example 8.44) and q5 ∈ δ(q6, b), we

have q5 · q4 · q2 ∈ δ2(q1, b), again by the first rule above. Lastly, q4 ↑ q4, so q5 · q2 ∈ δ2(q4 · q2, c) by

the first rule. Since q5 ∈ F , we find that q5 · q2 ∈ δ2(q5 · q4 · q2, c) by the second rule.

Our transformation is correct, in the following sense.

Lemma 8.47. A2 is parsimonious, 2-forking, and implements A.

8.3.4 Flat-branching

In this section, we enforce flat-branching. We start from a PA A that is assumed to be fork-acyclic,

finite, parsimonious, and 2-forking, and we want to construct a flat-branching PA A3 that weakly

implements A, while keeping the properties of A.

The first idea of this construction is fairly obvious: to remove chains of forks while retaining the

same language, we will saturate the parallel transitions by unfolding every possible chain of forks.

For instance, if q ∈ γ(p, {|q1, q2|}) and γ(q1, {|r1, r2|})∩F 6= ∅, we want to have q ∈ γ3(p, {|r1, r2, q2|}).

Fork-acyclicity is instrumental for this construction to terminate, as fork cycles could introduce

infinitely many φ ∈M(Q) such that γ(p, φ) 6= ∅. We make this idea formal as follows:

2Note that since q ↑ q, we have that q′ · x ∈ δ2(q · x, a) whenever q′ ∈ δ(q, a).
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Definition 8.48. We define J as the smallest reflexive relation on M(Q) satisfying:

γ(p, χ) ∩ F 6= ∅ φ J ψ t {|p|}

φ J ψ t χ

Intuitively, φ J ψ when a fork into φ can be expanded to a fork into ψ, by forking from one or

more of its states, provided the new fork reaches an accepting state.

Example 8.49. Recall the left half of the pomset automaton in Figure 8.2, depicted in Figure 8.8a.

Since J is reflexive, we have {|q3|} J {|q3|}. Then, because γ(q3, {|q5, q6|}) ∩ F 6= ∅, we have that

{|q3|} J {|q5, q6|} applying the rule. Similarly, we have that {|q1|} J {|q3, q4|}. Combining these two

using the rule above then tells us that {|q1|} J {|q5, q6, q4|}. Thus, any fork into {|q1|} to reach some

q′ can be expanded to a fork into {|q5, q6, q4|} to reach q′.

Next, we want to make sure that the original forks cannot be executed in succession, by forcing

all forks to expand maximally before continuing with some non-forking transition. The main idea is

to split each state q into qs and qp. The state qs will ensure that γ3(qs, φ)∩ F = ∅ for any multiset

φ, i.e., no forks are allowed. We leverage this property to get flat-branching, by making sure that

for any state p ∈ Q3 of the new pomset automaton, γ3(p, φ) 6= ∅ implies that every state in φ is of

the qs variety. On the other hand, from the state qp, one cannot perform δ-transitions, and also for

any multiset φ we have γ3(qp, φ) ⊆ {>}, where > is the unique accepting state of A3.

Definition 8.50 (A3). The pomset automaton A3 is the quadruple 〈Q3, F3, δ3, γ3〉, where

Q3 = {qp : q ∈ Q} ∪ {qs : q ∈ Q} ∪ {>} F3 = {>}

with > a fresh state, such that for all a ∈ Σ and φ ∈ M(Q3) we have δ3(>, a) = γ3(>, φ) = ∅.

Furthermore, the action of δ3 and γ3 on states different from > is generated by the following rules

for all a ∈ Σ and all ψ, φ ∈M(Q) with ψ J φ:

q ∈ δ(p, a)

qs, qp ∈ δ3(ps, a)

δ(p, a) ∩ F 6= ∅

> ∈ δ3(ps, a)

q ∈ γ(p, ψ)

qs, qp ∈ γ3(ps, φs)

γ(p, ψ) ∩ F 6= ∅

> ∈ γ3(pp, φs)

in which φs = {|q1
s, . . . , qn

s|} whenever φ = {|q1, . . . , qn|}.

Example 8.51. Let A be the PA in Figure 8.8a. Part of the support of q1
p is drawn in Figure 8.8b.

There, we find that, since q2 ∈ γ(q1, {|q3, q4|}) ∩ F and {|q3, q4|} J {|q4, q5, q6|} (refer to the previous

example), also > ∈ γ3(q1
p, {|q4

s, q5
s, q6

s|}) by the last rule. Furthermore, since q2 ∈ δ(q5, a)∩ F , we

have that > ∈ δ3(q5
s, a) by the second rule, but also q2

s, q2
p ∈ δ3(q5

s, a), by the first rule.
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(b) Part of the PA A3 obtained from A.

Figure 8.8: Example of construction to ensure flat-branching.

Not drawn are the transitions q2
s, q2

p ∈ γ3(q1
s, {|q3

s, q4
s|}) which would result from applying

the third rule. These do not contribute to the language: they lead to states without accepting runs.

We conclude this transformation by stating the desired correctness.

Lemma 8.52. A3 is 2-forking, parsimonious, flat-branching, and weakly implements A.

8.3.5 Wrapping up

Lemmas 8.39, 8.42, 8.47 and 8.52 combine with Lemma 8.36, to prove this section’s objective:

Theorem 8.53. Let A be a finite and fork-acyclic PA. We can construct a finite and fork-acyclic

PA A′ that is well-structured and implements A.

As a corollary, we can strengthen Theorem 8.27 to the following:

Corollary 8.54. The problem PA-Equiv is decidable for fork-acyclic PAs.

Because of the Kleene theorem derived in the previous chapter, we also have a new proof of

Theorem 3.42, which we record as the following corollary:

Corollary 8.55. Given e, f ∈ T , it is decidable whether JeK = JfK.

Summary of this chapter Because PAs can recognise context-free languages, language equiva-

lence of states is undecidable in general. On the other hand, for fork-acyclic PAs satisfying certain

structural properties we could derive an algorithm to decide language equivalence. We furthermore

proved that these structural properties can be guaranteed while preserving both fork-acyclicity and

the accepted language, thus establishing that language equivalence is decidable for fork-acyclic PAs.
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8.A Proof that PA for a CFG is bounded

Lemma 8.6. Let G = 〈V,→〉 be a CFG. Then AG is bounded.

Proof. For w ∈ QG , let R(w) be the smallest set satisfying the following rules

w ∈ R(w)

s→ w

x ∈ R(w)

x · y ∈ R(w)

y ∈ R(w)

In other words, R(w) is the smallest suffix-closed subset of QG that contains w as well as the

right-hand side of any production in G. It should be clear that this set is finite. It now suffices to

show that R(w) is support-closed — after all, if this is the case, then R(w) must contain πG(w),

and hence the latter is finite. It suffices to check the following for all x ∈ R(w):

• Suppose that a ∈ Σ; we should show that δG(x, a) ⊆ R. By construction of δG , we know that

if x′ ∈ δG(x, a), then x = a · x′. Since R is suffix-closed, it follows that x ∈ R.

• Suppose that φ ∈M(QG); we should show that γG(w, φ) ⊆ R. The argument here is similar:

if x′ ∈ γG(x, φ), then x is a suffix of w, and hence x ∈ R.

• Suppose that x is a fork target of w; we should show that x ∈ R. By construction of γG , we

have that x is the right-hand side of some production in G, and thus x must occur in R.

8.B Proofs towards correctness of decision procedure

Lemma 8.16. If A is well-structured and q U−→A
q′, then the following hold:

(i) q U−→A
q′ is trivial if and only if U is empty.

(ii) q U−→A q
′ is a sequential unit run if and only if U is primitive.

(iii) q U−→A
q′ is a composite run if and only if U is sequential.

(iv) q U−→A
q′ is a parallel unit run if and only if U is parallel.

If q is a fork target and q′ ∈ F , then U is a parallel prime.

Proof. We start by treating (i) in detail. Here, we note that the implication from left to right holds

by definition. For the implication from right to left, we proceed by induction on the construction of

q U−→A q
′. In the base, q U−→A q

′ is already trivial, in which case U = 1 holds immediately. For the

inductive step, there are two cases to consider.
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• Suppose that U = V ·W and there exists a q′′ ∈ Q such that q V−→A
q′′ and q′′ W−→A

q′, then

V = W = 1. By induction, we then know that q V−→A
q′′ and q′′ W−→A

q′ are trivial, and hence

q = q′′ = q′. We conclude that q U−→A
q′ must also be trivial.

• Suppose that U = U1 ‖ · · · ‖ Un and there exist r1, . . . , rn ∈ Q as well as r′1, . . . , r
′
n ∈ F

such that for 1 ≤ i ≤ n we have ri Ui−→A
r′i, and furthermore q′ ∈ γ(q, {|r1, . . . , rn|}). Then

necessarily U1, . . . , Un = 1. Since A is well-structured, we also know that r1, . . . , rn 6∈ F ,

and furthermore that n ≥ 2. However, by induction, we know that for 1 ≤ i ≤ n it holds

that ri Ui−→A
r′i is trivial, and hence it would follow that ri = r′i. We have now reached a

contradiction, for r1 ∈ F while also r1 6∈ F . We can therefore disregard this case.

We treat the implications from left to right for the remaining claims as follows.

(ii) If q U−→A
q′ is a sequential unit run, then U is primitive by definition of sequential unit runs.

(iii) Suppose that q U−→A
q′ is composite. We then know that U = V ·W and there exists a q′′ ∈ Q

such that q V−→A
q′′ and q′′ W−→A

q′ are nontrivial. By (i), we then know that V and W must

be non-empty, and hence U is sequential.

(iv) Suppose that q U−→A
q′ is a parallel unit run. Then U = U1 ‖ · · · ‖ Un and there exist

r1, . . . , rn ∈ Q and r′1, . . . , r
′
n ∈ F , such that for 1 ≤ i ≤ n we have ri Ui−→A

r′i, and

furthermore q′ ∈ γ(q, {|r1, . . . , rn|}). By the premise that A is well-structured, we know that

r1, . . . , rn 6∈ F and n ≥ 2. Thus, for 1 ≤ i ≤ n, the run ri Ui−→A
r′i is non-trivial, and hence Ui

is non-empty. From this and the fact that n ≥ 2, we can conclude that U is parallel.

The implications in the other direction follow from the fact that a pomset cannot be both sequential

and parallel, or empty and primitive, and so forth. For instance, if U is primitive, then q U−→A
q′

can be a sequential unit run only, for if it were trivial then U would be empty, if it were composite

then U would be sequential, and if it were a parallel unit run then U would be parallel.

Lemma 8.21. Let A be a PA or NFA with states q1 and q2. Then LA(q1) = LA(q2) if and only if

for all α ∈ AtA it holds that q1 ∈ α precisely when q2 ∈ α.

Proof. First, suppose LA(q1) = LA(q2), and let α ∈ At with q1 ∈ α. Then q2 ∈ α, because otherwise

LA(α) ⊆ LA(q1) \ LA(q2) = ∅, even though α is an atom. Similarly, q2 ∈ α implies q1 ∈ α.

For the other implication, let U ∈ LA(q1). Choose α = {q ∈ Q : U ∈ LA(q)}, and note that α

is an atom, since U ∈ LA(α). Because q1 ∈ α, we find q2 ∈ α, and thus U ∈ LA(q2). This shows

that LA(q1) ⊆ LA(q2); the other inclusion follows by symmetry.
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Fact 8.25. For all q ∈ Q, it holds that LA(q) = ζ(LA′(q)).

Proof. It suffices to prove that, for q, q′ ∈ Q as well as U ∈ SP(Σ), it holds that q U−→A
q′ is a unit

run if and only if there exists an a ∈ ∆ with U ∈ ζ(a) and q′ ∈ δ′(q, a); straightforward inductive

arguments on run length (for the forward inclusion, using Lemma 7.8) and word length (for the

backwards inclusion) complete the proof. First, suppose q U−→A q
′ is a unit run. We have two cases.

• If q U−→A q
′ is a sequential unit run, then U = b for some b ∈ Σ, and q′ ∈ δ(q, b). We can then

choose a = b to find that q′ ∈ δ′(q, a) by definition of δ′.

• If q U−→A
q′ is a parallel unit run, then U = U1 ‖ · · · ‖ Un and we obtain q1, . . . , qn ∈ Q

such that q′ ∈ γ(q, {|q1, . . . , qn|}) as well as Ui ∈ LA(qi). For 1 ≤ i ≤ n, we then choose

αi = {r ∈ Q′ : Ui ∈ LA(r)} ∈ AtA[Q′], and set a = {|α1, . . . , αn|} ∈ ∆. We now find that

U ∈ ζ(a) as well as q′ ∈ δ′(q, {|α1, . . . , αn|}).

Conversely, suppose a ∈ ∆ such that U ∈ ζ(a) and q′ ∈ δ′(q, a). We have two cases to consider.

• If a ∈ Σ, then q′ ∈ δ(q, a) and U = a. Hence q U−→A
q′ is a sequential unit run.

• If a = {|α1, . . . , αn|}, then q′ ∈ γ(q, {|q1, . . . , qn|}) with qi ∈ αi. Since U ∈ ζ(a), also U = U1 ‖

· · · ‖ Un with Ui ∈ LA(qi). Thus, q U−→A
q′ is a parallel unit run.

Fact 8.26. The following hold for all L,K ⊆ SP(∆):

ζ(L ∪K) = ζ(L) ∪ ζ(K) ζ(L ∩K) = ζ(L) ∩ ζ(K)

ζ(L) \ ζ(K) = ζ(L \K) ζ(L) = ∅ ⇐⇒ L = ∅

Proof. The first equality holds for substitutions in general. For the remainder of the claim, we start

by observing that ζ has the following properties:

(a) for all a ∈ ∆, we have that ζ(a) consists of sequential primes exclusively, and

(b) for all a, b ∈ ∆, we have that ζ(a) ∩ ζ(b) 6= ∅ if and only if a = b, and

(c) for all U ∈ SP(Σ), there exists at most one w ∈ ∆∗ such that U ∈ ζ(w).

We prove these claims as follows:

(a) If a ∈ ∆ and U ∈ ζ(a), then U = b for some b ∈ Σ, or a = {|α1, . . . , αn|} and U ∈ LA(α1) ‖

· · · ‖ LA(αn) for atoms α1, . . . , αn ∈ AtA[Q′]. In the former case, U is primitive, which means

it is a sequential prime. In the latter case, we know that none of these atoms contain the

empty set and n ≥ 2 (since A is well-structured); it follows that U is a sequential prime.
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(b) Furthermore, suppose a, b ∈ ∆ such that U ∈ ζ(a) and U ∈ ζ(b). By (a), we know that U is

either primitive and a, b ∈ Σ, or U is parallel and a, b ∈ ∆ \ Σ.

In the former case, it follows that a = U = b by definition of ζ. In the latter case, we

know that U = U1 ‖ · · · ‖ Un and U = U ′1 ‖ · · · ‖ U ′n′ as well as a = {|α1, . . . , αn|} and

b = {|α′1, . . . , α′n′ |}, such that for 1 ≤ i ≤ n we have that Ui ∈ LA(αi) and for 1 ≤ i ≤ n′

we have that U ′i ∈ LA(α′i). Because A is well-structured, each of the Ui and U ′i is a parallel

prime; by Lemma 3.17, we then find that n = n′, and without loss of generality we have that

Ui = U ′i . Since Ui ∈ LA(αi) ∩ LA(α′i), it follows that αi = α′i, and hence a = b.

(c) Suppose that w,w′ ∈ Σ∗ such that U ∈ ζ(w) and U ∈ ζ(w′). This means that we can write

w = a1 · · · an and w′ = a′1 · · · a′n′ , as well as U = U1 · · ·Un and U = U ′1 · · ·U ′n′ such that for

1 ≤ i ≤ n we have Ui ∈ ζ(ai), and for 1 ≤ j ≤ n′ we have U ′j ∈ ζ(a′j). Indeed, since these Ui

and U ′j are sequential prime (by the first property of ζ), Lemma 3.17, tells us that n = n′,

and that for 1 ≤ i ≤ n we have that Ui = U ′i . This also means that for 1 ≤ i ≤ n we have

that Ui ∈ ζ(ai) ∩ ζ(a′i); the second restriction on ζ then tells us that for 1 ≤ i ≤ n we have

that ai = a′i, which entails that w = w′. Hence, we conclude that w = w′.

We now treat the claims in the order given.

(i) First suppose that U ∈ ζ(L ∩ L′); then there exists a w ∈ L ∩ L′ such that U ∈ ζ(w). We

then have that U ∈ ζ(L) and U ∈ ζ(L′), meaning that U ∈ ζ(L) ∩ ζ(L′).

For the other inclusion, let U ∈ ζ(L) ∩ ζ(L′). Then there exist w ∈ L and w′ ∈ L′ such that

U ∈ ζ(w) and U ∈ ζ(w′); by (c), we conclude that w = w′, and hence w ∈ L ∩ L′, which

means that U ∈ ζ(L ∩ L′).

(ii) For the third equality, first suppose U ∈ ζ(L ∩ L′). There exists a w ∈ L \ L′ such that

U ∈ ζ(w). This means that w ∈ L and hence U ∈ ζ(L). Furthermore, suppose that U ∈ ζ(L′);

we then find a w′ ∈ L′ such that U ∈ ζ(w′). By (c), this would mean that w = w′, and hence

w ∈ L′ — a contradiction. We therefore know that U 6∈ ζ(L′), and hence U ∈ ζ(L) \ ζ(L′).

For the other inclusion, let U ∈ ζ(L) \ ζ(L′). Then we obtain w ∈ L such that U ∈ ζ(L),

and furthermore there cannot be a w′ ∈ L′ with U ∈ ζ(w′), which in particular means that

w 6∈ L′. We conclude that w ∈ L \ L′, and hence U ∈ ζ(L \ L′).

(iii) Lastly, if L = ∅, then ζ(L) = ∅ by definition. For the other direction, suppose that L 6= ∅, i.e.,

that w ∈ L. By definition of ζ, we have that ζ(a) 6= ∅ for all a ∈ Σ, and hence ζ(w) cannot

be empty, which means that ζ(L) cannot be empty either.
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8.C Proofs towards correctness of normalisation

The following characterisation of runs labelled by the empty pomset will be useful.

Fact 8.C.1. Let  A be the smallest relation on Q satisfying the rules

q  A q

q  A q
′′ q′′  A q

′

q  A q
′

q′ ∈ γ(q, {|r1, . . . , rn|}) ∀1 ≤ i ≤ n. ri  A r
′
i ∈ F

q  A q
′

Now q  A q
′ holds if and only if q 1−→A

q′.

Proof. The first inclusion is proved by induction on the construction of  A. In the base, q  A q
′

because q = q′, thus q 1−→A
q′ holds immediately. In the inductive step, there are two cases.

• If q  A q
′ because there exists a q′′ ∈ Q such that q  A q

′′ and q′′  A q
′, then by induction

we have that q 1−→A
q′′ and q′′ 1−→A q

′. It then follows that q 1−→A q
′.

• Suppose that q  A q
′ because there exist r1, . . . , rn ∈ Q such that q′ ∈ γ(q, {|r1, . . . , rn|}) and

there exist r′1, . . . , r
′
n ∈ F such that for 1 ≤ i ≤ n we have that ri 1−→A

r′i. By induction, we

find for 1 ≤ i ≤ n that ri 1−→A r
′
i. We can then conclude that q 1−→A q

′.

For the other inclusion, we proceed by induction on the construction of →A. In the base, we have

q 1−→A
q′ because q = q′, and so we are done. The case where p 1−→A

q is a sequential unit run cannot

occur. For the inductive step, there are two cases to consider.

• If q 1−→A
q′ because 1 = U · V and there exists a q′′ ∈ Q such that q U−→A

q′′ and q′′ V−→A
q′,

then note that U = V = 1. Hence q  A q
′′ and q′′  A q

′ by induction, meaning q  A q
′.

• Suppose that q 1−→A
q′ because there exist r1, . . . , rn ∈ Q such that q′ ∈ γ(q, {|r1, . . . , rn|}) and

there exist r′1 . . . , r
′
n ∈ F such that 1 = U1 ‖ · · · ‖ Un, and for 1 ≤ i ≤ n we have ri Ui−→A

r′i.

By induction, we find for 1 ≤ i ≤ n that ri  A r
′
i. We can then conclude that q  A q

′.

To prove Lemma 8.33, the following is useful.

Fact 8.C.2. Let A = 〈Q,F, δ, γ〉 be a 1-forking automaton without accepting fork targets. For any

states q, q′ ∈ Q, we have q 1−→A q
′ if and only if q = q′. Furthermore, 1 ∈ LA(q) if and only if q ∈ F .

Proof. For the first part, the implication from right to left holds by definition of →A. For the other

implication, note that q 1−→A
q′ is equivalent to q  A q

′ by Fact 8.C.1. We proceed by induction on

the derivation q  A q
′. In the base, we have that q  A q

′ because q = q′, and we are done. In the

inductive step, there are two cases to consider.
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• If q  A q
′ because q  A q

′′ and q′′  A q
′ for some q′′ ∈ Q, then by induction q = q′′ = q′.

• If q  A q
′ because there exist r1, . . . , rn ∈ Q such that q′ ∈ γ(q, {|r1, . . . , rn|}), and r′1, . . . , r

′
n ∈

F such that for 1 ≤ i ≤ n we have that ri  A r′i, then by induction we have for 1 ≤ i ≤ n

that ri = r′i. Since A is 1-forking, it follows that r1 = r′1 ∈ F . But this contradicts our

premise, because r1 is a fork target; we can therefore exclude this case.

For the second part, the implication from right to left holds immediately. For the other implication,

note that if 1 ∈ LA(q), then q 1−→A
q′ with q′ ∈ F . Since q = q′ by the first part, q ∈ F .

Lemma 8.33. A PA A is well-structured if it is 2-forking, parsimonious, and flat-branching.

Proof. By definition, an automaton is well-structured if and only if it is 2-forking, flat-branching,

and satisfies the property that for all q ∈ Q and r ∈ φ ∈ M(Q) with γ(q, φ) 6= ∅, it holds that

r 6∈ F . If the automaton is parsimonious, then this property is satisfied. By Fact 8.C.2, if A is

well-structured, then q 6∈ F is equivalent to 1 6∈ LA(q), so it is in particular parsimonious.

Lemma 8.34. For any finite pomset automaton A, the predicate p 1−→A
q is decidable.

Proof. By Fact 8.C.1, it suffices to show that  A is decidable. Since A finite, we can build  A by

saturation, starting from the identity and adding pairs until we reach a fixpoint.

Lemma 8.36. If a PA A′ weakly implements a PA A, then there exists a PA A′′ implementing A.

Furthermore, if A′ is n-forking (respectively flat-branching, parsimonious), then so is A′′.

Proof. Let A = 〈Q,F, δ, γ〉, and A′ = 〈Q′, F ′, δ′, γ′〉. We can assume without loss of generality that

Q and Q′ are disjoint. We define A′′ = 〈Q′′, F ′′, δ′′, γ′′〉 as follows:

Q′′ = Q′ ]Q F ′′ = F ′ ] {q ∈ Q : 1 ∈ LA(q)}

δ′′(q′′, a) =


δ′(q′′, a) q′′ ∈ Q′

⋃
x∈Qq′′

δ′(x, a) q′′ ∈ Q
γ′′(q′′, φ) =


γ′(q′′, φ) q′′ ∈ Q′

⋃
x∈Qq′′

γ′(x, φ) q′′ ∈ Q

Here, Qq′′ is the set of states of Q implementing q′′ ∈ Q, by weak implementation. Note that if

q′′ ∈ Q, then there are finitely many φ ∈M(Q′′) such that γ′′(q′′, φ) 6= ∅, because Qq′′ is finite, and

for each x ∈ Qq′′ there are finitely many φ ∈M(Q′) such that γ′(x, φ) 6= ∅.

We now prove that A′′ implements A. First, we show that for q ∈ Q we have LA(q) = LA′′(q).
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• For the inclusion from left to right, suppose that U ∈ LA(q). If U = 1, then q ∈ F ′′ by

definition of F ′′, and thus U = 1 ∈ LA′′(q′′) immediately.

On the other hand, suppose U 6= 1. There exists an x ∈ Qq such that U ∈ LA′(x), because A′

weakly implements A. Hence, there must exist a q′ ∈ F ′ such that x U−→A′
q′; a straightforward

inductive argument then shows that x U−→A′′
q′. Now, since U 6= 1, the latter run must be

non-trivial. We thus find x′ ∈ Q′′ and U = V ·W such that x V−→A′′
x′ is a unit run, and

x′ W−→A′′
q′. By construction of A′′, it follows that q V−→A′′

x′ is a unit run too, and hence

q U−→A′′
q′. Since q′ ∈ F ′′, it follows that U ∈ LA′′(q).

• For the inclusion from right to left, suppose that U ∈ LA′′(q). There must then exist a

q′ ∈ F ′′ such that q U−→A′′
q′. Now, if this run is trivial, then q = q′ and U = 1. This means

that q ∈ F ′′; since q ∈ Q, it follows that q 6∈ F ′, and hence U = 1 ∈ LA(q).

Otherwise, if q U−→A′′
q′ is non-trivial, then there exists a q′′ ∈ Q′′ and U = V ·W such that

q V−→A′′ q
′′ is a unit run, and q′′ W−→A′′ q

′. By construction of A′′, we find an x ∈ Qq such that

x V−→A′′
q′′ is a unit run, and hence x U−→A′′

q′. A simple inductive argument then shows that

x U−→A′
q′ and q′ ∈ F ′, and thus U ∈ LA′(x). Because A′ weakly implements A, we conclude

that U ∈ LA(q).

To argue preservation of boundedness and fork-acyclicity, we first observe the following.

(a) For any q ∈ Q′ and q′ ∈ Q′′, we claim that if q′ �A′′ q then q′ ∈ Q′ and q′ �A′ q. To show

this, it suffices to argue that if q′ �A′′ q arises from one of the rules that generate �A′′ , then

q′ ∈ Q′ and q′ �A′ q. This is straightforward, for if q ∈ Q′ then δ′′(q, a) coincides with δ′(q, a)

for all a ∈ Σ, and γ′′(q, φ) coincides with γ′(q, φ) for all φ ∈M(Q′′).

(b) For any q ∈ Q and q′ ∈ Q′′, we claim that if q′ �A′′ q, then q = q′, or q′ ∈ Q′ such that

q′ �A′ x for some x ∈ Qq. To see this, we proceed by induction on the construction of �A′′ .

In the base, either q = q′ by reflexivity, or one of three cases applies.

• If q′ �A′′ q because q′ ∈ δ′′(q, a) ⊆ Q′ for some a ∈ Σ, then q′ ∈ δ′(x, a) for some x ∈ Qq,

and therefore q′ �A′ x.

• If q′ �A′′ q because q ∈ γ′′(q, φ) for some φ ∈M(Q′′), then q′ ∈ γ′(x, φ) ⊆ Q′ for some

x ∈ Qq, and therefore q′ �A′ x.

• If q′ �A′′ q because there exists a φ ∈ M(Q′′) such that q′ ∈ φ and γ′′(q, φ) 6= ∅, then

φ ∈M(Q′) and there exists an x ∈ Qq such that γ′(x, φ) 6= ∅, and hence q′ �A′ x.
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For the inductive step, q′ �A′′ q because q′′ ∈ Q′′ and q′ �A′′ q′′ and q′′ �A′′ q. By induction,

either q = q′′ (in which case the claim follows by applying induction to q′ �A′′ q′′ = q), or

q′′ �A′ x for some x ∈ Qq, in which case q′ �A′ q′′ by (a).

For boundedness, note that by (b) we have that the support of q ∈ Q in A′′ is given by {q} ∪⋃
x∈Qq

πA′(x); if A′ is bounded, this set must be finite. Furthermore, by (a), we know that the

support of q ∈ Q′ in A′′ is given by the support of q in A′, which is finite if A′ is bounded. Thus, if

A is bounded, then so is A′, and by the above it follows that A′′ must also be bounded.

For fork-acyclicity, suppose that A is fork-acyclic; then A′ is fork-acyclic, as well. Let r, q ∈ Q′′

and φ ∈ M(Q′′) with r ∈ φ and γ′′(q, φ) 6= ∅. By construction of A′′, we have that r ∈ Q′. If

q �A′′ r, then by (a) we have that q ∈ Q′ and q �A′ r. In that case, also γ′(q, φ) 6= ∅, and hence

r �A′ q. This, however, contradicts the premise that A′ is fork-acyclic; we thus have that r ≺A′′ q.

We may conclude that A′′ must be fork-acyclic as well.

We now prove that our construction preserves n-forking, parsimony and flat-branching.

• If A′ is n-forking, let φ ∈M(Q′′) and q ∈ Q′′ such that γ′′(q, φ) 6= ∅. By construction there

exists q′ ∈ Q′ such that γ′(q′, φ) 6= ∅. Since A′ is n-forking we may conclude |φ| ≥ n.

• Assume, towards a contradiction, that A′′ is not parsimonious. Then there exist q ∈ Q′′ and

r ∈ φ ∈M(Q′′) such that γ′′(q, φ) 6= ∅ but 1 ∈ LA′′(r). By construction there exists q′ ∈ Q′

such that γ′(q′, φ) 6= ∅. We also know that it must be the case that r ∈ Q′, hence 1 ∈ LA′(r).

This contradicts the premise that A′ is parsimonious.

• Assume, towards a contradiction, that A is not flat-branching. There must then exist q ∈ Q′′

and φ, ψ ∈M(Q′′) with r ∈ φ such that γ′′(q, φ) 6= ∅ and γ′′(r, ψ) ∩ F 6= ∅. By construction

of A′′, we find that φ ∈ M(Q′), and there exists a q′ ∈ Q′ such that γ′(q′, φ) 6= ∅. Also by

construction of A′′ and the fact that r ∈ φ (and hence r ∈ Q′), we find that ψ ∈M(Q′) and

γ′(r, ψ) ∩ F ′ 6= ∅. This contradicts the premise that A′ is flat-branching.

8.C.1 Proof of correctness for parsimonification

Lemma 8.39. A0 is parsimonious and weakly implements A.

Proof. We relate runs in A to runs in A0 and vice versa, as follows:

Fact 8.C.3. If q U−→A
q′, then q U−→A0

q′. If also 1 ∈ LA(q′) and U 6= 1, then q U−→A0
>.

Proof of Fact 8.C.3. We proceed by induction on q U−→A q
′. In the base, there are two cases. On the

one hand, if q U−→A
q′ because q = q′ and U = 1, then q U−→A0

q′; the second claim holds vacuously.
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On the other hand, if q U−→A
q′ because U = a for some a ∈ Σ and q′ ∈ δ(q, a), then q′ ∈ δ0(q, a) by

construction, so indeed q U−→A0
q′. If 1 ∈ LA(q′), then > ∈ δ0(q, a) as well, so q a−→A0

>.

For the inductive step, we have two more cases.

• If q U−→A
q′ because U = V ·W and there exists a q′′ ∈ Q such that q V−→A

q′′ and q′′ W−→A
q′,

then by induction we know that q V−→A0
q′′ and q′′ W−→A0

q′, so q U−→A0
q′′.

If furthermore 1 ∈ LA(q′) and V ·W 6= 1, then we distinguish two subcases.

– If W = 1, then V = U , and 1 ∈ LA(q′′); therefore by induction we get q U−→A0
>.

– If W 6= 1, then by induction we get q′′ W−→A0
>, hence q V ·W−−−→A0

>.

• Suppose that q U−→A
q′ because there exist r1, . . . , rn ∈ Q with q′ ∈ γ(q, {|r1, . . . , rn|}), and

there exist r′1, . . . , r
′
n ∈ F such that U = U1 ‖ · · · ‖ Un and for 1 ≤ i ≤ n we have ri Ui−→A

r′i.

We then partition {|r1, . . . , rn|} into φ and ψ such that for all 1 ≤ i ≤ n we have that ri ∈ φ

implies Ui 6= 1, and ri ∈ ψ implies Ui = 1. By construction of γ0, we have q ∈ γ0(q, φ). By

induction, since for all 1 ≤ i ≤ n with ri ∈ φ we have Ui 6= 1, we obtain that for all 1 ≤ i ≤ n

with ri ∈ φ we have ri Ui−→A0
>. We may therefore conclude that q U1‖···‖Un−−−−−−→A0

q′.

If additionally 1 ∈ LA(q) and U1 ‖ · · · ‖ Un 6= 1, then there must exist a 1 ≤ i ≤ n with

Ui 6= 1, so we know that φ 6= �; hence, > ∈ γ0(q, φ). As result, we get q U1‖···‖Un−−−−−−→A0
>.

Fact 8.C.4. If q ∈ Q and q U−→A0
q′, then the following hold:

(i) If q′ ∈ Q, then q U−→A
q′.

(ii) If q′ = >, then U ∈ LA(q) but U 6= 1.

Proof of Fact 8.C.4. In the base, there are two cases.

• If q U−→A0
q′ because U = 1 and q = q′, then q U−→A

q′ immediately.

• If q U−→A0
q′ because U = a for some a ∈ Σ and q′ ∈ δ0(q, a), then there are two subcases:

(i) If q′ ∈ Q, then q′ ∈ δ(q, a), and hence q U−→A
q′.

(ii) If q′ = >, then there exists a q′′ ∈ δ(q, a) such that 1 ∈ LA(q′′). In particular, this means

that q U−→A
q′′, whence U ∈ LA(q). Since a 6= 1, we rightfully get U 6= 1.

For the inductive step, there are again two cases.

• Suppose q U−→A0
q′ because U = V ·W and there exists a q′′ ∈ Q0 with q V−→A0

q′′ and

q′′ W−→A0
q′. We distinguish two cases based on q′′:
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(i) If q′′ = >, then by construction of A0 we have W = 1 and q′ = >, so by induction it

follows that U = V ∈ LA(q) while U = V 6= 1;

(ii) If q′′ ∈ Q, then by induction we have q U−→A
q′′. We distinguish two cases:

– If q′ ∈ Q, then by induction q′′ V−→A
q′, so q U ·V−−−→A

q′.

– If q′ = >, then by induction W ∈ LA(r) while W 6= 1, so U ∈ LA(q) while U 6= 1.

• Suppose q U−→A0
q′ because there exist r1, . . . , rn ∈ Q0 such that q′ ∈ γ(q, {|r1, . . . , rn|}), and

U = U1 ‖ · · · ‖ Un such that for 1 ≤ i ≤ n we have ri Ui−→A0
>. By construction of γ0, we also

know that for 1 ≤ i ≤ n we have ri ∈ Q. By induction, we then know that for 1 ≤ i ≤ n we

have r′i ∈ F such that ri Ui−→A
r′i but Ui 6= 1. We distinguish the two cases for q′:

(i) If q′ ∈ Q, then by construction of γ0 there exists ψ ∈M(Q) such that ψ = {|rn+1, . . . , rm|}

and q′ ∈ γ(q, {|r1, . . . , rn|} tψ), and furthermore for all n < i ≤ m there exists an r′i ∈ F

such that ri 1−→A
r′i. We may then complete the run by choosing for n < i ≤ m that

Ui = 1 and r′i = ri, which allows us to conclude that q U1‖···‖Un‖Un+1‖···‖Um−−−−−−−−−−−−−−−→ q′. Since

Un+1 ‖ · · · ‖ Um = 1 ‖ · · · ‖ 1 = 1, we are done.

(ii) If q = >, then n > 0 and there exist ψ ∈M(Q) and q′′ ∈ Q such that ψ = {|rn+1, . . . , rm|}

and q′′ ∈ γ(q, {|r1, . . . , rn|} t ψ), and 1 ∈ LA(q′′). As in the previous case, we find

q U1‖···‖Un−−−−−−→A
q′′. Since 1 ∈ LA(q′′), this implies U1 ‖ · · · ‖ Un ∈ LA(q). To conclude,

note that for 1 ≤ i ≤ n we have Ui 6= 1; since n > 0, we have U = U1 ‖ · · · ‖ Un 6= 1.

Together, the above facts imply that LA(q) \ {1} = LA0
(q). So, if 1 6∈ LA(q), then we have

LA(q) = LA0
(q), and otherwise LA(q) = LA0

(q) ∪ LA0
(>). Therefore, A0 weakly implements A,

since boundedness and fork-acyclicity are clearly preserved by this construction.

To show that A0 is parsimonious, notice that by construction, if γ0(q, φ) 6= ∅ and r ∈ φ, then

r ∈ Q. As we showed above, this implies 1 /∈ LA0
(r).

8.C.2 Proof of correctness for nullary fork elimination

Lemma 8.42. A1 is 1-forking, parsimonious, and weakly implements A.

Proof. The condition φ 6= � in the definition of γ1 ensures that A1 is 1-forking. Before we show

that A1 is parsimonious, note that if we have r ∈ φ and γ1(q, φ) 6= ∅, then there is a state q′ such

that q 1−→A
q′ and γ(q′, φ) 6= ∅. By parsimony of A, we have 1 /∈ LA(r), hence r 6∈ F . By Fact 8.C.2,

we conclude that 1 6∈ LA1(p), hence A1 is parsimonious.

We now check that A1 weakly implements A, by relating their runs.
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Fact 8.C.5. If q 1−→A
p U−→A

p′ 1−→A
q′ with U 6= 1, then q U−→A1

q′.

Proof of Fact 8.C.5. We proceed by induction on the construction of p′ U−→A
q′. In the base, we

can exclude the case where p′ = q′ and U = 1, because it contradicts the premise. This leaves the

case where p U−→A
p′ because U = a for some a ∈ Σ and p′ ∈ δ(p, a). By construction of δ1, we then

find that q′ ∈ δ1(q, a), hence q U−→A1
q′. For the inductive step, there are two cases:

• Suppose p U−→A
p′ because U = V ·W and there exists p′′ ∈ Q such that p V−→A

p′′ and

p′′ W−→A
p′. We distinguish four subcases:

– If V = 1 = W , then U = V ·W = 1, contradicting the premise; we disregard this case.

– If V 6= 1 = W , then p′′ 1−→A
q′ and U = V ; by induction, we find that q U−→A1

q′.

– If V = 1 6= W , then q 1−→A
p′′ and U = W ; by induction, we find that q U−→A1

q′.

– If V 6= 1 6= W , then induction we get q V−→A1
p′′ and p′′ W−→A1

q′, hence q U−→A1
q′.

• Suppose p U−→A
p because there exist r1, . . . , rn ∈ Q such that p′ ∈ γ(p, {|r1, . . . , rn|}), and

U = U1 ‖ · · · ‖ Un such that for 1 ≤ i ≤ n there exists r′i ∈ F with ri U1−−→A
r′i. By parsimony

of A, we know that each of the Ui is different from 1. Hence, U1 ‖ · · · ‖ Un is itself non-empty,

and we have n > 0. Therefore q′ ∈ γ1(q, {|r1, . . . , rn|}). By induction we have for every

1 ≤ i ≤ n that ri Ui−→A1
r′i ∈ F , so we may conclude q U−→A1

q′.

Fact 8.C.6. If q U−→A1
q′, then q U−→A

q′.

Proof of Fact 8.C.6. We proceed by induction on q U−→A1
q′. In the base, there are two cases.

• If q U−→A1
q′ because q = q′ and U = 1, then q U−→A

q′ immediately.

• If q U−→A1
q′ because U = a for some a ∈ Σ and q′ ∈ δ1(q, a), then there exist p, p′ ∈ Q such

that q 1−→A
p and p′ 1−→A

q′ with p′ ∈ δ(p, a), by construction of δ1. We can string these

together to find that q 1−→A
p a−→A

p′ 1−→A
q′, hence q U−→A

q′.

In the inductive step, there are again two cases:

• Suppose q U−→A1
q′ because U = V ·W and there exists a q′′ ∈ Q such that q V−→A1

q′′ and

q′′ W−→A1
q′. By induction, q V−→A

q′′ and q′′ W−→A
q′, and hence q U−→A

q′.

• Suppose q U−→A1
q′ because there exist r1, . . . , rn ∈ Q with q′ ∈ γ1(q, {|r1, . . . , rn|}), and

U = U1 ‖ · · · ‖ Un and for 1 ≤ i ≤ n there exists r′i ∈ F with ri Ui−→A1
r′i. By induction, it

must be the case that for 1 ≤ i ≤ n we have ri Ui−→A
r′i. By construction of γ1, we know that
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there are p, p′ ∈ Q such that q 1−→A
p, p′ 1−→A

q′, and p′ ∈ γ(p, {|q1, . . . , qn|}). We then know

that p U1‖···‖Un−−−−−−→A
p′, and hence q U1‖···‖Un−−−−−−→A

q′.

We can now wrap up by showing that, for q ∈ Q, we have LA(q) =
⋃
q 1−→A

p
LA1

(p).

• Let U ∈ LA(q), meaning there is q′ ∈ F such that q U−→A q′. On the one hand, if U = 1,

then 1 ∈ LA1
(q′); since q 1−→A

q′, U is contained in the right-hand side. On the other hand, if

U 6= 1, then q U−→A1
q′ by Fact 8.C.5, hence U ∈ LA1

(p). Since q 1−→A
q, we are done.

• Let p ∈ Q such that q 1−→A
p, and let U ∈ LA1(p). This means there is p′ ∈ F such that

p U−→A1
p′, and hence p U−→A

p′ by Fact 8.C.6. Therefore q U−→A
p′ ∈ F , so U ∈ LA(q).

Since boundedness and fork-acyclicity are preserved, A1 weakly implements A.

8.C.3 Proof of correctness for unary fork elimination

Lemma 8.47. A2 is parsimonious, 2-forking, and implements A.

Proof. We start by showing that our construction preserves fork-acyclicity and boundedness. For

preservation of fork-acyclicity, we first verify the following.

Fact 8.C.7. The following hold for all w = q1 · · · qn ∈ Q2 and w′ = q′1 · · · q′m ∈ Q2:

(i) If q ∈ Q such that q ↑ w, then for all qi we have qi �A q.

(ii) If w′ ∈ δ2(w, a), then for every q′i there exists a qj with q′i �A qj.

(iii) If w′ ∈ γ2(w, φ), then for every q′i there exists a qj with q′i �A qj.

(iv) If γ2(w, φ) 6= ∅ with r ∈ φ, then there exists a qi with r ≺A qi.

(v) If w′ �A2
w, then for every q′i there exists a qj with q′i �A qj.

Proof of Fact 8.C.7. We treat the claims in the order given.

(i) We proceed by induction on the construction of ↑. In the base, where q = q1, the claim holds

vacuously. For the inductive step, we have r ∈ Q such that r ↑ q1 · · · qn−1 and qn ∈ γ(q, {|r|}).

In that case, qn �A q and r �A q immediately. Also, we find by induction that for all

1 ≤ i < n it holds that qi �A r, and hence qi �A q.

(ii) We proceed by induction on the construction of δ2. In the base, we have w′ ∈ δ2(w, a) because

w′ = q′ · x · y and w = q · y, and there exists an r ∈ Q such that q ↑ r · x and q′ ∈ δ(r, a).

By (i), we know that q′1 = q′ �A r �A q = q1. Furthermore, if q′i appears in x, then also by (i)
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we know that q′i �A q = q1. Lastly, if q′i appears in y, then note that it also appears in w,

and hence we can conclude by q′i �A qj for some j. In the inductive step, w = q · x such that

q ∈ F and w′ ∈ δ2(x, a). The claim then follows immediately by induction.

(iii) This proof proceeds analogously to the one above.

(iv) We proceed by induction on the construction of γ2. In the base, we have that w = q1 · x and

w′ = q′1 · y · x such that there exists an p ∈ Q with q1 ↑ p · y and q′1 ∈ γ(p, φ). Since A is

fork-acyclic, it follows that r ≺A p; because p �A q1 by (i), the claim follows.

For the inductive step, we have that γ2(w, φ) 6= ∅ because w = q · x such that q ∈ F and

γ2(x, φ) 6= ∅. By induction, we then find a qi such that r ≺A qi.

(v) This can be shown by induction on �A2
, noting that the base cases are covered by (ii)–(iv).

For the inductive step, it suffices to note that the claimed property is transitive in nature.

Now, if w ∈ φ ∈M(Q2) and x ∈ Q2 with γ2(x, φ) 6= ∅, we should show that w ≺A2
w. First, note

that w = r ∈ Q for some r ∈ Q by construction of γ2. By Fact 8.C.7(iv), we know that w = q1 · · · qn,

and there exists a 1 ≤ i ≤ n with r ≺A qi. Suppose, towards a contradiction, that w �A2 r; then

by Fact 8.C.7(v) we also know that qi �A r, contradicting that r ≺A qi.

To argue that A2 is bounded, we first record the following.

Fact 8.C.8. Let w = q1 · · · qn ∈ Q2 and x = q′1 · · · qn′ ∈ Q2. If w �A2 x, then for every 1 ≤ i ≤ n

there exists a 1 ≤ j ≤ n′ such that n+DA(qi)− i ≤ n′ +DA(q′j)− j.

Proof of Fact 8.C.8. It suffices to verify the claim for the pairs generating �A2 .

• If w ∈ δ2(x, a) for some a ∈ Σ, then we proceed by induction on the construction of δ2. In

the base, there exist r ∈ Q and 1 ≤ k ≤ n such that q′1 ↑ r · q2 · · · qk and q1 ∈ δ(r, a), while

n′ + k − 1 = n, and for k < i ≤ n′ we have qi = q′i−k+1. We now consider two cases.

– When 1 ≤ i ≤ k, we choose j = 1; since n ≤ n′ and i ≥ 1 and DA(qi) ≤ DA(q′1) by

Fact 8.C.7(i), we find that n+DA(qi)− i ≤ n′ +DA(q′1)− 1.

– Otherwise, when k < i ≤ n, we choose j = i − k + 1 to find that n + DA(qi) − i =

n+DA(q′j)− i = n′ + k − 1−DA(q′j)− i = n′ +DA(q′j)− j

In the inductive step, q′1 ∈ F and w ∈ δ2(q′2 · · · q′n′ , a). The claim then follows by induction.

• If w ∈ γ2(x, φ) for some φ ∈M(Q2), then the proof is similar to the previous case.
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• If there exists a φ ∈M(Q2) such that w ∈ φ and γ2(x, φ) 6= ∅, then note that φ ∈M(Q) by

construction of γ2, and thus that w = r for some r ∈ Q. The proof proceeds by induction

on γ2, where it suffices to show that DA(r) < DA(q′j) for some 1 ≤ j ≤ n′. This is a direct

consequence of Fact 8.C.7(iv).

Now, suppose that A is bounded. To see that A2 is bounded, let q1 · · · qn ∈ Q2 and choose

m = max1≤i≤nDA(qi). If q′1, . . . , q
′
n′ ∈ Q such that q′1 · · · qn′ �A q1 · · · qn, then by Fact 8.C.8, we

find 1 ≤ j ≤ n′ such that n′ ≤ n′ + DA(q′1) − 1 ≤ n + DA(qj) − j ≤ n + m. By Fact 8.C.7(v),

q′1, . . . , q
′
n ∈ πA(q1) ∪ · · · ∪ πA(qn); the latter set is finite. Hence, the states supporting q1 · · · qn in

A2 are words of length at most n+m over a finite alphabet; thus πA2
(q1 · · · qn) must be finite.

To show that A2 can accept the same languages as accepted by A, the following facts are useful.

Fact 8.C.9. If q ∈ Q and q ↑ q1 · · · qn such that for 1 ≤ i ≤ n there exist q′i ∈ Q and Ui ∈ SP with

qi Ui−→A
q′i, and for 1 ≤ i < n it holds that q′i ∈ F , then q U1···Un−−−−−→A

q′n.

Proof of Fact 8.C.9. The proof proceeds by induction on the construction of ↑. In the base, we

have that q = q1 and n = 1; it then follows immediately that q = q1
U1−−→A

q′1 = q′n.

For the inductive step, we have q ↑ q1 · · · qn because there exists r ∈ Q with r ↑ q1 · · · qn−1

and qn ∈ γ(q, {|r|}). By induction, we then know that r U1···Un−1−−−−−−→A
qn−1; since qn−1 ∈ F and

qn ∈ γ(q, {|r|}) it follows that q U1···Un−1−−−−−−→A
qn Un−−→ q′n, and hence q U1···Un−−−−−→ q′n.

Fact 8.C.10. If w ∈ Q2 and w′ ∈ F2 and U ∈ SP such that w U−→A2
w′, then w = q1 · · · qn and

U = U1 · · ·Un such that for 1 ≤ i ≤ n there exists a q′i ∈ F with qi Ui−→A
q′i.

Proof of Fact 8.C.10. We proceed by induction on the length ` of w U−→A2
w′. In the base, where

` = 0, we have U = 1 and w = w′ ∈ F2. We choose for 1 ≤ i ≤ n that Ui = 1 and q′i = qi ∈ F .

For the inductive step, we have that U = V ·W and w′′ ∈ Q2 such that w V−→A2
w′′ is a unit

run, and w′′ W−→A2
w′ of length `− 1. By induction, w′′ = r1 · · · rm and W = W1 · · ·Wm such that

for 1 ≤ i ≤ m there exists an r′i ∈ F with ri Wi−−→A
r′i. Suppose that w V−→A2

w′′ is a sequential unit

run. Then V = a for some a ∈ Σ, and w′′ ∈ δ2(w, a). We proceed by induction on δ2.

In the base, we have that w = q1 · · · qn and w′′ = q′ · v · q2 · · · qn such that there exists an r ∈ Q

with q1 ↑ r · v and q′ ∈ δ(r, a). Note that q′ · v = r1 · · · rk for some k ≤ m, and that ri+k−1 = qi

for 2 ≤ i ≤ n. We choose U1 = a ·W1 · · ·Wk. Since r a·W1−−−→A
r′1 ∈ F and for 2 ≤ i ≤ k we have

ri Wi−−→A
r′i ∈ F , it follows that q1

U1−−→A
r′k by Fact 8.C.9; we set q′1 = r′k. For i ≥ 2, we choose

q′i = r′i+k−1 and Ui = Wi+k−1, to find that ri+k−1
Wi+k−1−−−−−→A r

′
i+k−1, and hence qi Ui−→ q′i. Finally,

we note that U1 · · ·Un = a ·W1 · · ·Wk ·Wk+1 · · ·Wm = V ·W = U .
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In the inductive step, w = q1 · · · qn and w′′ ∈ δ2(q2 · · · qn, a), with q1 ∈ F . By induction,

U = U2 · · ·Un where, for 2 ≤ i ≤ n, q′i ∈ F with qi Ui−→A
q′i. Here, U1 = 1 and q′1 = q1 suffices.

The case where w V−→A2
w′′ is a parallel unit run can be treated similarly.

Fact 8.C.10 tells us that for q ∈ Q we have that LA2(q) ⊆ LA(q). After all, if q U−→A2
w for

some w ∈ F2, then we find q′ ∈ F such that q U−→A
q′, and hence U ∈ LA(q).

For the converse inclusion, the following facts tell us how we can compose runs in A2.

Fact 8.C.11. If w U−→A2
w′ and x ∈ Q2, then w · x U−→A2

w′ · x.

Proof of Fact 8.C.11. We proceed by induction on the length ` of w U−→A2
w′. In the base, where

` = 0, we have that w = w′ and U = 1. We then know that w · x = w′ · x; hence w · x U−→A2
w′ · x.

For the inductive step, let ` > 1. We then find w′′ ∈ Q2 and U = V ·W such that w V−→A2
w′′ is

a unit run, and w′′ W−→A2
w′ is of length `−1. Hence, w′′ ·x W−→A2

w′ ·x by induction. If w V−→A2
w′′

is a sequential unit run, then V = a for some a ∈ Σ, and w′′ ∈ δ2(w, a). By construction of δ2, we

have w′′ · x ∈ δ2(w · x, a), which means that w · x V−→A2
w′′ · x. In total, we have w · x U−→A2

w′ · x.

The case where w V−→A2
w′′ is a parallel unit run can be treated similarly.

Fact 8.C.12. Let q, r ∈ Q with q′ ∈ γ(q, {|r|}), and let r U−→A2
w be nontrivial. Then q U−→A2

w · q′.

Proof of Fact 8.C.12. Since r U−→A2
w is nontrivial, U = V ·W and x ∈ Q2 such that r V−→A2

x is a

unit run, and x W−→A2
w. If r V−→A2

x is a sequential unit run, then V = a for some a ∈ Σ, and

x ∈ δ2(r, a). By construction of δ2, we obtain q′′, r ∈ Q and y ∈ Q2 such that x = q′′ ·y and r ↑ r′ ·y

as well as q′′ ∈ δ(r′, a). By definition of ↑, also q ↑ r′ · y · q′, and thus x · q′ = q′′ · y · q′ ∈ δ2(q, a). We

then find that q V−→A2
x · q′. Since x · q′ W−→A2

w · q′ by Fact 8.C.11, we conclude that q U−→A2
w · q′.

The case where r V−→A2
is a parallel unit run can be argued similarly.

Fact 8.C.13. Let w U−→A2
w′ be nontrivial, and x ∈ F2. Then x · w U−→A2

w′.

Proof of Fact 8.C.13. Since w U−→A2
w′ is non-trivial, we find that U = V ·W and w′′ ∈ Q2 such

that w V−→A2
w′′ is a unit run, and w′′ W−→A2

w′. If w V−→A2
w′′ is a sequential unit run, then V = a

for some a ∈ Σ, and w′′ ∈ δ2(w, a). A simple inductive argument on the length of x then tells us

that w′′ ∈ δ2(x · w, a) as well. From this, it follows that x · w V−→A2
w′′, and thus x · w U−→A2

w′.

The case where w V−→A2
w′′ is a parallel unit run can be argued similarly.

Finally, we can use the above to show that A2 can simulate the unary forks of A.

Fact 8.C.14. If q U−→A
q′, then there exists x ∈ F2 such that q U−→A2

x · q′.
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Proof of Fact 8.C.14. We proceed by induction on q U−→A
q′. If q U−→A

q′ is trivial, then the claim

is satisfied by choosing x = 1. Otherwise, suppose q U−→A
q′ is a sequential unit run, i.e., U = a for

some a ∈ Σ, and q′ ∈ δ(q, a). Since q ↑ q, we then have that q′ ∈ δ2(q, a), and hence q U−→A2
q′.

For the inductive step, there are again two cases to consider.

• Suppose q U−→A
q′ because U = V ·W and there exists q′′ ∈ Q such that q V−→A

q′′ and

q′′ W−→A
q′. By induction, we obtain x′′, x′ ∈ F2 such that q V−→A2

x′′ · q′′ and q′′ W−→A2
x′ · q′.

Without loss of generality, q′′ W−→A
q′ is non-trivial, and hence neither is q′′ W−→A2

x′ · q′. By

Fact 8.C.13, we find that x′′ · q′′ W−→A2
x′ · q′. In total, we find that q U−→A2

x · q′.

• Suppose q U−→A
q′ because U = U1 ‖ · · · ‖ Un, and there exist r1, . . . , rn ∈ Q and r′1, . . . , r

′
n ∈ F

such that for 1 ≤ i ≤ n we have ri Ui−→A
r′i, and q′ ∈ γ(q, {|r1, . . . , rn|}). There are two subcases.

– If n = 1, then by induction we find x1 ∈ F2 such that r1
U1−−→A2

x′1 · r′1. By Fact 8.C.12,

we then find q U−→A2
x′1 · r′1 · q′. Choosing x′ = x′1 · r′1 satisfies the claim.

– If n ≥ 2, then q′ ∈ γ2(q, {|r1, . . . , rn|}). By induction, we find for 1 ≤ i ≤ n an xi ∈ F2

with ri Ui−→A2
x′i · r′i ∈ F2. Thus q U−→A2

q′; choosing x′ = 1 satisfies the claim.

The above allows us to prove that, for q ∈ Q, we have LA(q) ⊆ LA2
(q). To this end, suppose

U ∈ LA(q); then there exists a q′ ∈ F with q U−→A
q′. By Fact 8.C.14 we find x′ ∈ F2 with

q U−→A2
x · q′ ∈ F2, and hence U ∈ LA2(q). Since LA2(q) ⊆ LA(q), it follows that LA(q) = LA2(q).

Note that it is 2-forking by construction. For parsimony, observe that if w ∈ φ ∈ M(Q2) and

x ∈ Q2 such that γ2(x, φ), then φ ∈M(Q) by definition of γ2, and hence w = q for some q ∈ Q. A

simple inductive argument then tells us that there exists an r ∈ Q such that γ(r, φ) 6= ∅. Since A is

parsimonious, we know that 1 6∈ LA(q); since LA(q) = LA2
(q), it follows that 1 6∈ LA2

(q).

8.C.4 Proof of correctness for flat-branching

Lemma 8.52. A3 is 2-forking, parsimonious, flat-branching, and weakly implements A.

Proof. The proof of this statement consists of several steps. In the sequel, we will write Qp =

{qp : q ∈ Q} and Qs = {qs : q ∈ Q}. We start by making the following observations:

Fact 8.C.15. The following hold for all ψ ∈M(Q):

(i) If φ J ψ, then |φ| ≤ |ψ|.

(ii) If p ∈ Q3 and φ ∈M(Q3) such that γ3(p, φ) 6= ∅, then φ ∈M(Qs).

(iii) If p ∈ Q and φ ∈M(Q3), then γ3(ps, φ) ⊆ Qs ∪Qp.
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Proof. We treat the claims in the order given.

(i) This claim is proved by induction on J. In the base, φ J ψ because φ = ψ, and so the claim

holds immediately. For the inductive step, we have that φ J ψ because ψ = ψ1tψ2, such that

φ J ψ1, and γ(p, ψ2) ∩ F 6= ∅ with φ J ψ1 t {|p|}. By induction, we have that |φ| ≤ |ψ1|+ 1.

Since A is 1-forking, we have that |ψ2| ≥ 1; hence, we conclude that |φ| ≤ |ψ1|+ |ψ2| = |ψ|.

(ii) If p ∈ Q3 and φ ∈M(Q3) such that γ3(p, φ) 6= ∅, then by definition of γ3 we have that φ = ψs

for some ψ ∈M(Q). Hence, φ ∈M(Qs).

(iii) Suppose that p ∈ Q and φ ∈M(Q3), and let q ∈ γ3(ps, φ). By definition of γ3, we have that

q ∈ {rs, rp} such that r ∈ γ(p, ψ) for some ψ ∈M(Q). Hence, q ∈ Qs ∪Qp.

We are now set to prove that A3 indeed satisfies the right properties.

Fact 8.C.16. A3 is 2-forking, parsimonious, and flat-branching.

Proof. For 2-forking, suppose p ∈ Q3 and φ ∈M(Q3) such that γ3(p, φ) 6= ∅. Then by definition of

γ3 we find χ, ψ ∈M(Q) and r ∈ Q, such that φ = χs, ψ J χ, and γ(r, ψ) 6= ∅. Since A is 2-forking,

we can conclude by Fact 8.C.15(i) that 2 ≤ |ψ| ≤ |χ| = |φ|.

For parsimony, suppose γ3(p, φ) 6= ∅ and q ∈ φ. Then by Fact 8.C.15(ii) we know that q ∈ Qs,

so q 6∈ F3. Since A3 is 1-forking, 1 6∈ LA3
(q) by Fact 8.C.2, hence A3 is parsimonious.

For flat-branching, suppose p ∈ Q3 is a fork target. Then by Fact 8.C.15(ii), we know that

p ∈ Qs. By Fact 8.C.15(iii), we can then conclude that γ3(p, ψ) ∩ F3 ⊆ (Qp ∪Qs) ∩ F3 = ∅.

We can now relate the runs of A3 to those in A as follows.

Fact 8.C.17. If p U−→A3
q, then the following hold:

(i) If p = p′
s

and q ∈ {q′s, q′p}, then p′ U−→A q
′.

(ii) If p ∈ {p′s, p′p} and q = >, then there exists a q′ ∈ F with p′ U−→A
q′.

Proof. We proceed by induction on p U−→A3
q. In the base, the case where p U−→A3

q is trivial holds

vacuously. Otherwise, if p U−→A3
q because U = a for some a ∈ Σ and q ∈ δ3(p, a), then we know

that p 6∈ Qp by definition of δ3. Therefore, assume p = p′
s

for some p′ ∈ Q. There are two cases.

• If q ∈ {q′s, q′p}, then it must be the case that q′ ∈ δ(p′, a), so p′ a−→A q
′.

• If q = >, then δ(p′, a) ∩ F 6= ∅. Choose q′ ∈ δ(p′, a) ∩ F to find that so p′ a−→A q
′.

For the inductive step, there are again two cases.
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• Suppose p U−→A3
q because U = V ·W and there exists an r ∈ Q3 such that p V−→A3

r and

r W−→A3
q. Furthermore, we may assume w.l.o.g. that neither of these runs is trivial. Since

> does not permit nontrivial runs, we have r ∈ Qp ∪Qs. Furthermore, p 6∈ Qp, because if

p ∈ Qp then r = >; we set p = p′
s
. We do a case analysis on r.

– If r = r′
p
, then necessarily q = >. By the induction hypothesis we get that p′ V−→A

r′

and we find q′ ∈ F such that r′ W−→A
q′, hence p′ U−→A

q′.

– If r = r′
s
, then by induction we get that p′ V ·W−−−→A

r′. We now look at q:

∗ If q ∈ {q′s, q′p}, then by induction we have r′ W−→A
q′, so p′ V ·W−−−→A

q′.

∗ If q = >, then induction gives us q′ ∈ F such that r′ W−→A
q′, and thus p′ V ·W−−−→A

q′.

• Suppose p U−→A3
q because q1, . . . , qn ∈ Q3 with q ∈ γ3(p, {|q1, . . . , qn|}), and U = U1 ‖ · · · ‖ Un

such that for 1 ≤ i ≤ n we have qi Ui−→A3
>. Since A3 is 1-forking and parsimonious, each Ui

is non-empty by Fact 8.C.2. By definition of γ3, for each 1 ≤ i ≤ n there exists a q′i ∈ Q such

that qi = q′i
s
. By induction, we obtain for each 1 ≤ i ≤ n a q′′i ∈ F such that q′i

Ui−→A q
′′
i .

On the one hand, suppose p = p′
s

for p′ ∈ Q. In that case, q ∈ {q′s, q′p} for some q′ ∈ γ(p′, φ),

with φ J {|q1, . . . , qn|}. We show p′ U−→A q
′ by induction on J. In the base, φ = {|q1, . . . , qn|},

and so the claim follows. In the inductive step, {|q1, . . . , qn|} = {|q1, . . . , qk|} t {|qk+1, . . . , qn|}

and there exists an r ∈ Q such that γ(r, {|qk+1, . . . , qn|}) ∩ F 6= ∅ and φ J {|q1, . . . , qk|} t {|r|}.

In that case, r Uk+1‖···‖Un−−−−−−−−→A
r′ for some r′ ∈ F ; hence, by induction, p′ U1‖···‖Un−−−−−−→A

q′.

On the other hand, if p = p′
p

for some p′ ∈ Q, then q′ = > by definition of γ3. Furthermore,

there exists q′ ∈ γ(p′, φ) ∩ F for some φ ∈M(Q) with φ J {|q1, . . . , qn|}. A similar inductive

argument to the previous case then shows that p′ U−→A q
′.

Fact 8.C.18. If p U−→A q is nontrivial, then ps U−→A3
qs and ps U−→A3

qp.

Furthermore, if q ∈ F , then either ps U−→A3
> or pp U−→A3

>.

Proof. We proceed by induction on p U−→A
q. In the base, p U−→A

q because U = a for some a ∈ Σ,

and q ∈ δ(p, a). Thus qs, qp ∈ δ3(ps, a), and hence ps U−→A3
qs and ps U−→A3

qp. Furthermore, q ∈ F ,

then > ∈ δ3(ps, a), and hence ps U−→A3
>. In the inductive step, there are two cases.

• If p U−→A
q because U = V ·W and there exists an r ∈ Q with p V−→A

r and r W−→A
q, then we

can assume without loss of generality that neither of these runs is trivial. By induction, we

then find that ps V−→A3
rs and ps W−→A3

rs, as well as rs W−→A3
qs and rs W−→A3

qp. Putting

this together, we have that ps U−→A3
qs and ps U−→A3

qp.
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Furthermore, if q = >, then it suffices to prove that rs W−→A3
> or rp W−→A3

>, which we

obtain from r W−→A
q by induction.

• Suppose p U−→A
q because there exist q1, . . . , qn ∈ Q such that q ∈ γ(p, {|q1, . . . , qn|}), and

U = U1 ‖ · · · ‖ Un such that for 1 ≤ i ≤ n there exists a q′i ∈ F with qi Ui−→A
q′i. Since A is

parsimonious, we can assume without loss of generality that none of these runs is trivial.

We then claim that, for 1 ≤ i ≤ n, there exists a φi = {|qi,1, . . . , qi,ni |} ∈ M(Q) such that

{|qi|} J φi, and Ui = Ui,1 ‖ · · · ‖ Ui,ni
, such that for 1 ≤ i ≤ ni we have that qi,j

s Ui,j−−→A3
>.

Applying the induction hypothesis to each qi Ui−→A
q′i ∈ F , there are two cases to consider:

– If qi
s Ui−→A3

>, then we choose ni = 1 and qi,1 = qi and Ui,1 = Ui.

– If qi
p Ui−→A3

>, then by construction of A3 this must be a parallel unit run. Consequently,

there exist qi,1
s, . . . , qi,ni

s ∈ Qs with > ∈ γ3(qi
p, {|qi,1, . . . , qi,ni

|}), and Ui = Ui,1 ‖ · · · ‖

Ui,ni such that for 1 ≤ j ≤ ni we have that qi,j
s Ui,j−−→A3

>. By definition of γ3, we then

obtain ψ ∈M(Q) such that γ(qi, ψ)∩F 6= ∅ and ψ J {|qi,1, . . . , qi,ni
|}. A straightforward

inductive argument on the definition of J shows that it is transitive; hence, since

{|qi|} J ψ, we have that {|qi|} J {|qi,1, . . . , qi,ni
|}.

Using the above, it follows that {|q1, . . . , qn|} J {|q1,1, . . . , qn,nn
|}. Hence,

qs, qp ∈ γ3(ps, {|q1,1
s, . . . , qn,nn

s|})

Since U = U1,1 ‖ · · · ‖ Unn , it follows that ps U−→A3
qs and ps U−→A3

qp.

Furthermore, if q ∈ F , then > ∈ γ3(pp, {|q1,1
s, . . . , qn,nn

s|}), and hence pp U−→A3
>.

We are now ready to show that our construction preserves languages. More specifically, Facts 8.C.17

and 8.C.18 together imply that for p ∈ Q, we have

LA1
(q) = LA3

(qp) ∪ LA3
(qs) ∪

LA3(>) q ∈ F

∅ otherwise

To see that our construction preserves fork-acyclicity and boundedness, one can show that if

p, q ∈ Q are such that ps �A3 q
s, ps �A3 q

p, pp �A3 q
s or pp �A3 q

p, then p �A3 q. A fork cycle

in A3 thus gives rise to a fork cycle in A, which means that if A is fork-acyclic, then so is A3.

Furthermore, the support of a state qs or qp in A3 is contained in {ps, pp : p ∈ πA(q)}∪{>}; since

the latter is finite when A is bounded, it follows that A3 must also be bounded.



Chapter 9

Parallel Star

The iteration operator of series-rational expressions, denoted (−)
∗
, takes a program e and turns it

into the program e∗, which runs e some number of times. This is useful for describing loops; for

instance, we have seen that it can be used to implement conditional loops of the form (b · e)∗ · b,

where b is the assertion that guards the loop. As we alluded to several times before, there is a

parallel analogue to this operator, denoted (−)
†

(referred to as parallel star or sometimes dagger).

The intuition to this operator is that it takes a program e and turns it into the program e†, which

runs some number of parallel copies of e. While such a pattern may be rare in typical program

constructs, it can still occur; for instance, think of a web server that has to run some number of

parallel threads to serve requests, or a distributed program that starts some number of agents to

complete a certain task. In this chapter, we investigate the consequences of adding the parallel star

operator to series-rational expressions with regard to the Kleene theorem that we saw in Chapter 7.

In a nutshell, it turns out that this theorem can be extended to include a parallel star, provided that

we also relax the restriction of fork-acyclicity. Before we get into the details of this construction, let

us start by formally defining this extended syntax as well as its semantics.

Definition 9.1 (Syntax). The set of series-parallel rational expressions, or spr-expressions for

short, is denoted by TSPR and generated by the grammar

e, f ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e ‖ f | e∗ | e†

We can extend the semantics J−K : T → 2SP to J−KSPR : TSPR → 2SP as follows:

J0K SPR = ∅ JaK SPR = a Je · fK SPR = JeK SPR · JfK SPR Je∗K SPR = JeK ∗SPR

J1K SPR = {1} Je+ fK SPR = JeK SPR + JfK SPR Je ‖ fK SPR = JeK SPR ‖ JfK SPR

q
e†
y

SPR = JeK †SPR

201
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where the parallel star of a pomset language L ⊆ Pom is given by

L† =
⋃
n∈N

L(n) where L(0) = {1} and L(n+1) = L(n) ‖ L

It should be clear that when e ∈ T , also e ∈ TSPR, and furthermore JeK = JeKSPR. Thus, if e, f ∈ TSPR
do not include any occurrences of (−)

†
, we can soundly (and completely) reason about them using

≡. The question then arises: how do we reason about equivalence between spr-expressions where

the new operator does occur? The intuitive thing to do is to add new axioms that are analogous to

the axioms for the Kleene star operator. More concretely, we have the following.

Definition 9.2 (Extended bi-Kleene algebra). An extended bi-Kleene algebra congruence, or EBKA

congruence for short, is a BKA congruence ≈ on TSPR w.r.t. all operators, such that for all e, f, g ∈ T :

1 + e ‖ e† ≈ e† e+ f ‖ g / g =⇒ f† ‖ e / g (where e / f ⇐⇒ e+ f ≈ f)

We write ≡SPR for the smallest EBKA congruence, and e 5SPR f whenever e+ f ≡SPR f .

Analogous to previous notation, we define the relation
.
=SPR on TSPR(2SP) as relating expressions

over pomset languages involving the operators of spr-expressions that have the same interpretation.

For instance, we have for L,K ⊆ SP that L ‖ K .
=SPR K ‖ L, and it is also not hard to show

that 1 + L ‖ L† .=SPR L
†. Laurence and Struth [LS14] showed that their completeness result for

series-rational expressions (Theorem 3.51) can be stated more generally as follows.

Theorem 9.3 [LS14]. The relation
.
=SPR is an EBKA congruence on TSPR(2SP); in particular, if

e, f ∈ TSPR such that e ≡SPR f , then JeKSPR = JfKSPR. Conversely, if JeKSPR = JfKSPR, then e ≡SPR f .

Remark 9.4. In [LS14] it is also shown that equivalence of spr-expressions is decidable.

Finally, the results about series-rational systems and their solutions can similarly be extended to

series-parallel expressions quite easily — the proof of Theorem 3.60 can be copied almost verbatim.

Definition 9.5 (Series-parallel rational systems). Let Q be a finite set. A series-parallel rational

system, or spr-system for short, on Q is a tuple S = 〈M, b〉, where M : Q2 → TSPR and b : Q→ TSPR.

Let ≈ be a EBKA congruence on TSPR(∆) with Σ ⊆ ∆. We call s : Q→ TSPR(∆) a ≈-solution to S

if for every q ∈ Q, it holds that:

b(q) +
∑
q′∈Q

M(q, q′) · s(q′) / s(q)

Lastly, s is the least ≈-solution if, for every ≈-solution s′ to S and every q ∈ Q we have s(q) / s′(q).

Theorem 9.6. Let S = 〈M, b〉 be an spr-system on Q. We can construct an s : Q→ TSPR that is

the least ≈-solution to S for any EBKA congruence ≈ on TSPR(∆) with Σ ⊆ ∆.
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9.1 Well-nested pomset automata

Before we embark on our quest to establish a Kleene theorem for series-parallel rational expressions

w.r.t. pomset automata, let us take a moment to establish the boundary conditions of this corre-

spondence. For one thing, fork-acyclic and finite pomset automata are not expressive enough. To

see why this is the case, note that if any series-parallel rational expression could be implemented by

a fork-acyclic and finite pomset automaton, then our Kleene theorem for series-rational expressions

(specifically, Theorem 7.41) implies that it could be implemented by a series-rational expression.

The latter cannot be true; intuitively, this is because the parallel star allows an unbounded number

of events to occur in parallel. To formalise this, we use the notion of width [LW00].

Definition 9.7 (Pomset width). The width of a finite pomset U = [u] ∈ Pom is the size of the

largest ≤u-antichain, i.e., the maximal n ∈ N s.t. there exist u1, u2, . . . , un ∈ Su unrelated by ≤u.

Example 9.8. Let U = a ‖ b · c; then U has width 2, because the nodes labelled by a and b are

unrelated, and the third node (labelled by c) is related to the node labelled by b.

One can show that for every series-rational language L there exists an n ∈ N such that for

U ∈ L, the width of U is bounded from above by n [LW00, Lemma 1.7]. On the other hand, there

exist series-parallel rational languages — such as a† — that do not have this property; after all,

for every n ∈ N we can simply take the n-fold parallel composition of a to find a pomset of width

n+ 1 in a†, and hence such an upper bound cannot exist. From this, it follows that series-parallel

rational languages are strictly more expressive than series-rational languages, and we will need

something more expressive than fork-acyclic and finite pomset automata in our Kleene theorem.

On the other hand, general pomset automata are too powerful to correspond to spr-expressions;

after all, the languages of words expressed by spr-expressions are simply rational languages, whereas

pomset automata can be used to express non-rational languages, as we saw in Chapter 8.

Orthogonally, some pomset languages cannot be expressed by series-parallel rational expressions

for structural reasons. To explain this, we need the notion of depth; intuitively, the depth of a

pomset is a measure for the nesting between parallel and sequential composition.

Definition 9.9 (Pomset depth) [LS14]. The depth of U ∈ SP, denoted d(U), is defined inductively:

• If U is empty or primitive, then d(U) = 0.

• If U is sequential with sequential factorisation U1, . . . , Un, then d(U) = 1 + max1≤i≤n d(Ui).

• If U is parallel with parallel factorisation {|U1, . . . , Un|}, then d(U) = 1 + max1≤i≤n d(Ui).
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q1

q3

q2

q4

a

b

(a) A0.

q1

q3

q2

q4

a

b

(b) A1.

q1

q3

q2

q4

a, b

(c) A2.

Figure 9.1: Pomset automata accepting languages of unbounded depth.

Example 9.10. The pomset a · b has depth one, while a · (b ‖ c) has depth two, as does a ‖ (b · c).

One can show that for every series-parallel rational language L there exists an n ∈ N such that

for U ∈ L, the width of U is bounded from above by n [LS14, Lemma 13]. On the other hand,

pomset automata can be used to express a litany of languages where there is no upper bound on

the depth of accepted pomsets; for instance, consider the automata in Figure 9.1. As we argued in

Example 7.9, the pomset automaton A0 in Figure 9.1a accepts the pomsets {Un}n∈N where

Un =

1 n = 0

(a · Un−1) ‖ b n > 0

Similarly, we can show that A1 (Figure 9.1b) and A2 (Figure 9.1c) respectively accept the families

of pomsets {Vn}n∈N and {Wn}n∈N, defined inductively by

Vn =

1 n = 0

(Vn−1 ‖ a) · b n > 0

Wn =

1 n = 0

(Wn−1 · a) ‖ b n > 0

It is not hard to show that, for n ∈ N, we have that d(Un) = d(Vn) = d(Wn) = 2n, which shows

that the depth of these pomset languages cannot be bounded from above.

We thus have to walk a tightrope: on the one hand, we want PAs to express languages of

unbounded width, but not languages of unbounded depth. The PAs from Figure 9.1 already give us

some idea of the patterns that we may want to exclude, which we semi-formally describe as follows:

• forks into states that transition back to their origin (as is the case in Figure 9.1a),

• destinations of fork transitions having their own transitions (as is the case in Figure 9.1b), or

• mutual forks (as seen in Figure 9.1c as well as the PAs that model CFGs in Chapter 8).
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q1 q2 q3
a

Figure 9.2: A pomset automaton implementing the language a†.

For a positive example, i.e., a PA that implements a language of unbounded width but bounded

depth, consider the PA in Figure 9.2. Here, we see a fork cycle in state q1 (but this cycle is as short

as can be), the destination of the fork (q2) does not have any further transitions, and there are no

mutual forks between states. Thus, the PA from Figure 9.2 does not run afoul of the antipatterns

for unbounded depth from Figure 9.1. We can formalise this distinction as follows.

Definition 9.11 (Recursive states). Let A = 〈Q,F, δ, γ〉 be a PA. We call q ∈ Q recursive if:

(i) for all a ∈ Σ and φ ∈M(Q), if q′ ∈ δ(q, a) or q′ ∈ γ(q, φ), then q′ ≺A q, and

(ii) if φ ∈M(Q) with q′ ∈ γ(q, φ), then either (a) φ = {|q|} t ψ, such that for all r ∈ ψ we have

r ≺A q, and q′ does not have any outgoing transitions, or (b) for all r ∈ φ we have r ≺A q.

In other words, recursive states are states that transition only into strictly supporting states (as in

req. (i)), and where forks either have a tight loop and continue in states without outgoing transitions

(case (a) of req. (ii)) or where all fork targets are strictly supporting (case (b) in req. (ii)).

Example 9.12. In Figures 9.1a and 9.1c, q1 is not recursive because the parallel transition from

q1 violates the last requirement. In Figure 9.1b, q1 is not recursive, because q3 allows a further

(sequential) transition to q2. On the other hand, q1 in Figure 9.2 is recursive.

Of course, having recursive states exclusively would mean that there cannot be any cycle in the

support of states, which would severely limit expressiveness. Thus, we also need to allow states

that do not implement a parallel star of a language; for this, we mimic fork-acyclicity. Pomset

automata where states can be labelled as either of these are the ones we are aiming for.

Definition 9.13 (Progressive states and well-nested PAs). Let A = 〈Q,F, δ, γ〉 be a PA. We call

q ∈ Q progressive if, whenever φ ∈M(Q) is such that γ(q, φ) 6= ∅, we have for all r ∈ φ that r ≺A q.

We say that A is well-nested if every state is either progressive or recursive.

Example 9.14. The states q2 and q3 in Figure 9.2 are progressive. Since q1 is recursive, this pomset

automaton is well-nested. On the other hand, since the state q1 in all of the pomset automata from

Figure 9.1 is not progressive (on account of the fork), none of these PAs are well-nested.
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9.2 An extended Kleene theorem

In the previous section, we proposed well-nested and finite pomset automata as a putative operational

model for series-parallel rational expressions. In this section, we show that the languages recognised

by spr-expressions are precisely those described by well-nested and finite pomset automata. We do

this by means of a Kleene theorem, as in Chapter 7, which is similarly split between a translation

from expressions to automata, and automata to expressions.

In comparison with other works, the result presented here is the first two-way correspondence

between spr-expressions and an operational formalism. In particular, Lodaya and Weil [LW00]

provided a translation from spr-expressions to branching automata, but not the other way around,

while Jipsen and Moshier [JM16] do not include the parallel star at all. In comparison with [LW00],

the same differences as in Chapter 7 apply: our conversion from spr-expressions to pomset automata

is based on Antimirov’s partial derivatives rather than Thompson’s inductive approach, and may

therefore be more suitable for lazy exploration of the state space. Lastly, 1-safe Petri nets as used

in [Gra81; LRR03; BPS17] are not suitable for capturing pomset languages of unbounded width;

conceptually, this is because these Petri nets have at most one token per place, and recognising a

pomset of unbounded width means that there cannot be an upper bound on the number of tokens

active — which would mean that the Petri net would need an unbounded number of places.

9.2.1 Expressions to automata

To translate series-parallel rational expressions to well-nested and finite pomset automata, we

take the same approach as in Section 7.2: we define a transition structure on the space of all

series-parallel rational expressions, show that the resulting automaton is well-nested and bounded,

which means that we can restrict any one state/expression to a well-nested and finite PA.

For this strategy to work, we must first ascertain that the restriction of a well-nested pomset

automaton to a support-closed set preserves well-nestedness. This turns out to be the case.

Lemma 9.15. Let A be a PA, with Q′ be support-closed in A. If A is well-nested, then so is A[Q′].

In Section 7.2, we chose F as the set of accepting states, because these were the expressions

whose semantics contains the empty pomset. We can extend this to spr-expressions as follows.

Definition 9.16. We define FSPR as the smallest subset of TSPR satisfying the following rules

1 ∈ FSPR

e ∈ TSPR f ∈ FSPR

e+ f, f + e ∈ FSPR

e, f ∈ FSPR

e · f, e ‖ f ∈ FSPR

e ∈ TSPR

e∗, e† ∈ FSPR
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(a + b · c∗)†

a + b · c∗ 1 · c∗

1

b

a

c

Figure 9.3: Part of the series-parallel rational syntactic pomset automaton.

Convention 9.17. We extend our earlier notational conventions about constructing sets of series-

rational expressions to series-parallel rational expressions. Concretely, when S ⊆ TSPR and e ∈ TSPR,

we use e ? S to denote S when e ∈ FSPR and ∅ otherwise, and we use S # e to denote {e′ · e : e′ ∈ S}.

We can now define a transition structure on series-parallel rational expressions. The intuition

is analogous to the previous construction: every state e ∈ TSPR is meant to accept the language

JeKSPR, and transitioning from e to e′ reading U means that every pomset V ∈ Je′KSPR can be used to

complete U into a pomset accepted by e. In particular, since every e ∈ FSPR can trivially transition

to itself, and JeK for e ∈ FSPR contains the empty pomset, we choose FSPR as accepting states.

Definition 9.18 (Derivatives). We define δSPR : TSPR × Σ→ 2TSPR inductively, as follows

δSPR(0, a) = ∅ δSPR(e · f, a) = δSPR(e, a) # f ∪ e ? δSPR(f, a)

δSPR(1, a) = ∅ δSPR(e ‖ f, a) = ∅

δSPR(b, a) = {1 : a = b} δSPR(e
∗, a) = δSPR(e, a) # e∗

δSPR(e+ f, a) = δSPR(e, a) ∪ δSPR(f, a) δSPR(e
†, a) = ∅

We also define γSPR : TSPR ×M(TSPR)→ 2TSPR inductively, as follows:

γSPR(0, φ) = ∅ γSPR(e · f) = γSPR(e, φ) # f ∪ e ? γSPR(f, φ)

γSPR(1, φ) = ∅ γSPR(e ‖ f, φ) = {1 : φ = {|e, f |}}

γSPR(b, φ) = ∅ γSPR(e
∗, φ) = γSPR(e, φ) # e∗

γSPR(e+ f, φ) = γSPR(e, φ) ∪ γSPR(f, φ) γSPR(e
†, φ) =

{
1 : φ = {|e, e†|}

}
The (series-parallel rational) syntactic PA is then given by ASPR = 〈TSPR,FSPR, δSPR, γSPR〉.

Example 9.19. We have drawn part of the series-parallel rational syntactic PA, specifically, the

support of e = (a + b · c∗)†, in Figure 9.3. There, we see that 1 ∈ γSPR(e, {|a + b · c∗, e|}). The other

states are sr-expressions, and their transitions match the series-rational syntactic PA.
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It remains to show that the syntactic PA faithfully implements the language of each spr-

expression, and that it is well-nested and bounded. For the former, we start by noting that, because

the transition functions from the series-parallel rational syntactic PA are set up similarly to the

series-rational syntactic PA, the proofs of Lemmas 7.25 to 7.28 go through for series-parallel rational

expressions. It remains to prove a similar statement for expressions of the form e†, as follows.

Lemma 9.20. Let e ∈ TSPR and U ∈ SP. The following are equivalent:

(i) There exists f ∈ F such that e† U−→SPR
f .

(ii) U = U1 ‖ · · · ‖ Un, such that for 1 ≤ i ≤ n there exists fi ∈ FSPR with e Ui−→SR
fi.

With these in hand, we can then prove a statement analogous to Lemma 7.29, as follows.

Lemma 9.21. Let e, f ∈ TSPR. The following hold:

LSPR(e+ f) = LSPR(e) + LSPR(f) LSPR(e · f) = LSPR(e) · LSPR(f) LSPR(e
∗) = LSPR(e)

∗

LSPR(e ‖ f) = LSPR(e) ‖ LSPR(f) LSPR(e
†) = LSPR(e)

†

A straightforward inductive proof then leads to the desired statement of language correctness.

Lemma 9.22. For all e ∈ TSPR, we have LSPR(e) = JeKSPR.

To show that the syntactic PA is bounded, we can employ the same tactic as before, that is,

we find a finite and support-closed set for every state e; since this overestimates the support of e,

πSPR(e) must be finite. The overestimation we choose is a simple extension of the one used before.

Definition 9.23. We define R : TSPR → 2TSPR inductively, as follows

R(0) = {0} R(e1 + e2) = R(e1) ∪R(e2) ∪ {e} R(e∗1) = R(e1) # e∗1 ∪R(e1) ∪ {e∗1}

R(1) = {1} R(e1 · e2) = R(e1) # e2 ∪R(e1) ∪R(e2) R(e†1) = R(e1) ∪ {e†1, 1}

R(a) = {a, 1} R(e1 ‖ e2) = R(e1) ∪R(e2) ∪ {e1 ‖ e2, 1}

It should be clear that for e ∈ TSPR, R(e) is finite. It is also support-closed; since the definition

of R extends Definition 7.33, the proof of the following is a simple extension of Lemma 7.34.

Lemma 9.24. For every e ∈ TSPR, we have that e ∈ R(e) and R(e) is support-closed.

Consequently, the series-parallel rational syntactic PA is bounded.

To argue well-nestedness, we need a proxy to argue that a state does not support another state,

like the parallel depth d‖(−). In this case, we have two such proxies; one is an extension of the

†-depth to spr-expressions, and another is its analogue for the parallel star.
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Definition 9.25 (†-depth). We extend the domain of d‖(−) to TSPR by setting d‖(e
†) = d‖(e).

Furthermore, we define the †-depth d†(−) : TSPR → N inductively, as follows:

d†(0) = 0 d†(e0 · e1) = max(d†(e0), d†(e1))

d†(1) = 0 d†(e0 ‖ e1) = max(d†(e0), d†(e1))

d†(a) = 0 d†(e0 + e1) = max(d†(e0), d†(e1))

d†(e
∗
0) = d†(e0) d†(e

†
0) = d†(e0) + 1

Both depth functions can be related to support by noting that the depth of a state is at most

the depth of a state it supports. Formally, we have the following.

Lemma 9.26. For e, f ∈ TSPR such that e �SPR f , we have d‖(e) ≤ d‖(f) and d†(e) ≤ d†(f).

Because of how the derivatives for spr-expressions of the form e† are set up, mutual support

involving such an spr-expression must be trivial. More precisely, we can prove the following.

Lemma 9.27. Let e, f ∈ TSPR. If e �SPR f
† and d†(e) = d†(f

†), then e = f†.

Proof. We proceed by induction on �SPR. In the base, there are three cases to consider:

• If e ∈ δSPR(f†, a) for some a ∈ Σ or e ∈ γSPR(f
†, φ) for some φ ∈M(TSPR), then by definition of

our derivatives we know that e = 1. In that case, d†(e) < 1 +d†(f) = d†(f), which contradicts

the premise that d†(e) = d†(f); we can therefore disregard this case.

• If e ∈ φ such that γSPR(f
†, φ) 6= ∅, there are two subcases. On the one hand, if e = f†, then

the claim holds immediately. On the other hand, if e = f , then d†(e) = d†(f) < d†(f
†), which

contradicts the premise that d†(e) = d†(f
†); we can therefore disregard this case as well.

For the inductive step, assume that e �SPR f
† because e �SPR g �SR f

† for some g ∈ TSPR. By

Lemma 9.26, we know that d†(e) ≤ d†(g) ≤ d†(f
†) = d†(e), and hence d†(g) = d†(f

†) = d†(e). By

induction, we then find that g = f†; applying induction to e �SPR g, we find that e = g = f† as well.

Since the main claim implies that e �SPR f
† and d†(e) = d†(f

†) by Lemma 9.26, we are done.

Using Lemma 9.26, we can also show that the structure of the series-parallel rational syntactic

PA is such that every fork has its targets either strictly supporting the origin, or exactly one of the

fork targets supports the origin, and is of the form e†. Formally, we have the following.

Lemma 9.28. Let e ∈ TSPR and φ ∈ M(TSPR) such that γSPR(e, φ) 6= ∅. Then φ = {|f, g|} such that

either (i) f ≺SPR e as well as g ≺SPR e, or (ii) f ≺SPR e and g = h† for some h ∈ TSPR.

With this property in hand, we are ready to prove well-nestedness.
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Lemma 9.29. Every e ∈ TSPR is either a recursive or progressive state in ASPR.

Consequently, the series-parallel rational syntactic PA is well-nested.

Proof. Let e ∈ TSPR be non-progressive; it suffices to show that e is recursive. By Lemma 9.28,

we know that there exists φ ∈ M(TSPR) such that γSPR(e, φ) 6= ∅, where φ = {|f, g†|}, with f ≺SPR e.

Furthermore, g† ≺SPR e does not hold (otherwise e would be progressive) and therefore e �SPR g
†

must hold. Since g† �SPR e as well, we conclude by Lemma 9.27 that e = g†. Since the conditions

on recursive states hold for spr-expressions of the form g†, we conclude that e is recursive.

In total, we conclude with the expressions-to-automata direction of our extended Kleene theorem.

Theorem 9.30 (Expressions to automata). For every e ∈ TSPR, we can obtain a well-nested and

finite PA A with a state q such that LA(q) = JeKSPR.

Proof. Take the series-parallel rational syntactic pomset automaton ASPR and restrict it to the

support of e. By Lemmas 9.15 and 9.24, we then obtain a finite and well-nested pomset automaton

A′ = ASPR[πSPR(e)]; by Lemma 7.20, we can conclude that LA′(e
′) = JeKSPR.

9.2.2 Automata to expressions

We now go on to extend our earlier conversion of fork-acyclic and finite PAs to sr-expressions

(Theorem 7.41) into a conversion from well-nested and finite PAs to spr-expressions. We first extend

the machinery of solutions to pomset automata to spr-expressions, as follows.

Definition 9.31 (Solution of a PA). Let A = 〈Q,F, δ, γ〉 be a PA, and let ≈ be a EBKA congruence

on TSPR(∆) with Σ ⊆ ∆. We say s : Q→ TSPR(∆) is a ≈-solution to A if, for every q ∈ Q:

[q ∈ F ] +
∑

q′∈δ(q,a)

a · s(q′) +
∑

q′∈γ(q,{|r1,...,rn|})

(s(r1) ‖ · · · ‖ s(rn)) · s(q′) / s(q)

Also, s is a least ≈-solution to A if for every ≈-solution s′ we have s(q) / s(q′) for all q ∈ Q. We

call s : Q→ TSPR the least spr-solution to A if it is the least ≈-solution for any EBKA congruence ≈.

Example 9.32. Let A = 〈Q,F, δ, γ〉 be the PA in Figure 9.2, and let ≈ be a BKA congruence on

T (∆) with Σ ⊆ ∆. The constraints on a ≈-solution s : Q→ T (∆) to A can then be written as

1 + (s(q1) ‖ s(q3)) · s(q2) / s(q1) 1 / s(q2) a · s(q2) / s(q3)

Like the least solution gave us series-rational expressions to describe the languages accepted by

a PA, the least spr-solution gives us series-parallel rational expressions that describe the languages

accepted by a PA. The proof of this is completely analogous to that of Lemma 7.39.
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Lemma 9.33. Let A = 〈Q,F, δ, γ〉 be a pomset automaton. If s : Q→ TSPR is the least spr-solution

to A, then for q ∈ Q it holds that LA(q) = Js(q)KSPR.

The idea is that, since spr-expressions are strictly more expressive than sr-expressions, more PAs

should be solvable. Sure enough, such a solution exists for finite and well-nested PAs, as follows.

Lemma 9.34. Let A be a well-nested and finite PA. We can construct the least spr-solution to A.

Proof. We proceed by induction on the depth of A = 〈Q,F, δ, γ〉. In the base, where DA = 0, we have

Q = ∅, and thus the claim holds vacuously. For the inductive step, assume that the claim holds for

well-nested and finite pomset automata of depth DA− 1. We choose Q′ = {q′ ∈ Q : DA(q) < DA},

and note that Q′ is support-closed by construction. Let A′ = A[Q′]; it is not hard to see that

DA′ < DA. By induction, we then obtain s′ : Q′ → T as the least spr-solution to A′.

We now construct an spr-solution s : Q → TSPR to A; to this end, we should choose an

spr-expression s(q) for any q ∈ Q. To this end, we divide Q into the following sets:

• Qstp, the states in Q without any outgoing transitions, and

• Qind, the states in Q′ that do have outgoing transitions, and

• Qrec, the recursive states in Q \Q′ with outgoing transitions, and

• Qpro, the progressive (and non-recursive) states in Q \Q′ with outgoing transitions.

Since A is well-nested, these cover Q′, i.e.,, we have Q = Qstp ∪Qind ∪Qrec ∪Qpro. Moreover, they

are disjoint by construction. This allows us to choose s(q) ∈ TSPR on a case-by-case basis, as follows:

• When q ∈ Qstp, there are no outgoing transitions on q, and hence the constraint on s(q)

simplifies into [q ∈ F ] / s(q). We can therefore choose s(q) = [q ∈ F ] to satisfy this constraint.

• For q ∈ Qind we choose s(q) = s′(q). To see that this satisfies the constraint on s(q), first

suppose q′ �A q. Since q ∈ Qind ⊆ Q′ and Q′ is support-closed, q′ ∈ Q′. Hence, if q′ ∈ Qind,

then s(q′) = s′(q′); otherwise, if q′ ∈ Qstp, then s(q′) = [q ∈ F ] = [q ∈ F ′] / s′(q′), because s′

is a solution to A′. Thus, in either case, s(q′) / s′(q′). We can then derive that

[q ∈ F ] +
∑

q′∈δ(q,a)

a · s(q′) +
∑

q′∈γ(q,{|r1,...,rn|})

(s(r1) ‖ · · · ‖ s(rn)) · s(q′)

/ [q ∈ F ′] +
∑

q′∈δ(q,a)

a · s(q′) +
∑

q′∈γ(q,{|r1,...,rn|})

(s′(r1) ‖ · · · ‖ s′(rn)) · s′(q′)

≈ [q ∈ F ′] +
∑

q′∈δ′(q,a)

a · s(q′) +
∑

q′∈γ′(q,{|r1,...,rn|})

(s′(r1) ‖ · · · ‖ s′(rn)) · s′(q′)

/ s′(q) = s(q)
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In the second step, we use that if q ∈ Qind ⊆ Q′, then for all a ∈ Σ we have δ(q, a) = δ′(q, a),

and for all φ ∈M(Q) we have γ(q, φ) = γ′(q, φ) when φ ∈M(Q′), and γ(q, φ) = ∅ otherwise.

• Next, let q ∈ Qrec. Since q is recursive, it admits two kinds of transitions: (a) sequential and

parallel transitions to states in Q′, where the fork targets are from Q′ as well; and (b) parallel

transitions to states in Qstp, where exactly one fork target is q itself, and the others are states

from Q′. Hence, we can rewrite the constraint on s(q) for any EBKA congruence / into

[q ∈ F ] +
∑

q′∈δ(q,a)

a · s(q′) +
∑

q′∈γ(q,{|r1,...,r1|})∩Q′
(s(r1) ‖ · · · ‖ s(rn)) · s(q′)

+
∑

q′∈γ(q,{|q,r1,...,rn|})∩Qstp

(s(q) ‖ s(r1) ‖ · · · ‖ s(rn)) · s(q′) / s(q) (9.1)

Now, since for q′ ∈ Qstp we have chosen s(q′) = [q′ ∈ F ], it follows that in the last sum only

the terms where q′ ∈ F matter. Thus, eq. (9.1) is equivalent to

[q ∈ F ] +
∑

q′∈δ(q,a)

a · s(q′) +
∑

q′∈γ(q,{|r1,...,r1|})∩Q′
(s(r1) ‖ · · · ‖ s′(rn)) · s(q′)

+
∑

q′∈γ(q,{|q,r1,...,rn|})∩Qstp∩F

s(q) ‖ s(r1) ‖ · · · ‖ s(rn) / s(q) (9.2)

By distributivity of ‖ over +, we can show that eq. (9.2) is equivalent to

[q ∈ F ] +
∑

q′∈δ(q,a)

a · s(q′) +
∑

q′∈γ(q,{|r1,...,r1|})∩Q′
(s(r1) ‖ · · · ‖ s(rn)) · s(q′)

+ s(q) ‖
( ∑
γ(q,{|q,r1,...,rn|})∩Qstp∩F 6=∅

s(r1) ‖ · · · ‖ s(rn)
)
/ s(q) (9.3)

Using the fixpoint axiom for parallel star, eq. (9.3) implies that eq ‖ f†q / s(q), in which

eq = [q ∈ F ] +
∑

q′∈δ(q,a)

a · s(q′) fq =
∑

γ(q,{|q,r1,...,rn|})∩Qstp∩F 6=∅

s(r1) ‖ · · · ‖ s(rn)

Now, because q is recursive, all of the s(q′) and s(ri) in the above are already defined in

the previous two steps; we have definite values for eq and fq. We choose s(q) = eq ‖ f†q for

our putative solution. To see that this indeed satisfies the requirement on s(q), note that

eq + eq ‖ f†q ‖ fq ≈ eq ‖ (1 + f†q ‖ fq) ≈ eq ‖ f†q = s(q). Hence, our choice of s(q) satisfies

eq. (9.3), and therefore the constraint on s(q) in eq. (9.1).

• It remains to find candidate values for q ∈ Qpro. To this end, we create the series-parallel

rational system S = 〈M, b〉 on Qpro, defined as follows:
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M(q, q′) =
∑

q′∈δ(q,a)

a +
∑

q′∈γ(q,{|r1,...,rn|})∩Qpro

s(r1) ‖ · · · ‖ s(rn)

b(q) = [q ∈ F ] +
∑

q′∈δ(q,a)\Qpro

a · s(q′) +
∑

q′∈γ(q,{|r1,...,rn|})\Qpro

(s(r1) ‖ · · · ‖ s(rn)) · s(q′)

Note that in the above, if q′ ∈ γ(q, {|r1, . . . , rn|}) then r1, . . . , rn ∈ Q′, and therefore s(ri) is

defined for 1 ≤ i ≤ n; this shows that M is well-defined; similarly, b is well-defined.

Let s′′ : Qpro → TSPR be the least solution to S, obtained through Theorem 9.6. For q ∈ Qpro,

we choose s(q) = s′′(q). To see that this satisfies the requirement on s(q), we calculate:

[q ∈ F ] +
∑

q′∈δ(q,a)

a · s(q′) +
∑

q′∈γ(q,{|r1,...,rn|})

(s(r1) ‖ · · · ‖ s(rn)) · s(q′)

≈ [q ∈ F ] +
∑

q′∈δ(q,a)\Qpro

a · s(q′) +
∑

q′∈γ(q,{|r1,...,rn|})\Qpro

(s(r1) ‖ · · · ‖ s(rn)) · s(q′)

+
∑

q′∈δ(q,a)∩Qpro

a · s′′(q′) +
∑

q′∈γ(q,{|r1,...,rn|})∩Qpro

(s(r1) ‖ · · · ‖ s(rn)) · s′′(q′) (def. s)

≈ b(q) +
∑

q′∈δ(q,a)\Qpro

a · s′′(q′) +
∑

q′∈γ(q,{|r1,...,rn|})∩Qpro

(s(r1) ‖ · · · ‖ s(rn)) · s′′(q′) (def. b)

≈ b(q) +
∑

q′∈Qpro

M(q, q′) · s′′(q) (def. M)

/ s′′(q) = s(q) (s′′ is a ≈-solution to S)

Thus, s satisfies the constraints on every q ∈ Q; hence, s is a solution to A.

To see that it is the least solution to A, let ≈ be an EBKA congruence, and let t : Q→ TSPR be

a ≈-solution to A. To show that s(q) / t(q) for q ∈ Q, we distinguish three cases:

• If q ∈ Qstp, then s(q) = [q ∈ F ] / t(q), since t is a solution to A.

• If q ∈ Qind, then let t′ be the restriction of t to Q′. We claim that t′ is a solution to A′. To

see this, we calculate for q ∈ Q′ that

[q ∈ F ] +
∑

q′∈δ′(q,a)

a · t′(q) +
∑

q′∈γ′(q,{|r1,...,rn|})

(t′(r1) ‖ · · · ‖ t′(rn)) · t′(q′)

/ [q ∈ F ] +
∑

q′∈δ′(q,a)

a · t′(q) +
∑

q′∈γ(q,{|r1,...,rn|})

(t′(r1) ‖ · · · ‖ t′(rn)) · t′(q′)

≈ [q ∈ F ] +
∑

q′∈δ′(q,a)

a · t(q) +
∑

q′∈γ(q,{|r1,...,rn|})

(t(r1) ‖ · · · ‖ t(rn)) · t(q′)

/ t(q) = t′(q)
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Since s′ is the least ≈-solution to A′, we have for q ∈ Q′ that s′(q) / t′(q). Thus, if q ∈ Qind,

then we can derive that s(q) = s′(q) / t′(q) = t(q).

• If q ∈ Qrec, then t(q) satisfies the same constraint as s(q) in eq. (9.3); concretely, we have

[q ∈ F ] +
∑

q′∈δ(q,a)

a · t(q′) +
∑

q′∈γ(q,{|r1,...,r1|})∩Q′
(t(r1) ‖ · · · ‖ t(rn)) · t(q′)

+ t(q) ‖
( ∑
γ(q,{|q,r1,...,rn|})∩Qstp∩F 6=∅

t(r1) ‖ · · · ‖ t(rn)
)
/ t(q) (9.4)

By the fixpoint axiom for parallel star, it then follows that gq ‖ h†q / t(q), in which

gq = [q ∈ F ] +
∑

q′∈δ(q,a)

a · t(q′) hq =
∑

γ(q,{|q,r1,...,rn|})∩Qstp∩F 6=∅

t(r1) ‖ · · · ‖ t(rn)

But, since q is recursive, the q′ and r′i must belong to Q′. Since by the previous cases we have

for q′ ∈ Q′ that s(q′) / t(q′), it follows that eq / gq and fq / hq; hence, we derive

s(q) = eq ‖ f†q / gq ‖ h†q = t(q)

• If q ∈ Qpro, then let t′′ be the restriction of t to Qpro. It is not hard to show that t′′ is a

≈-solution to the series-parallel rational system S. Since s′′ is the least ≈-solution to S, we

have for q ∈ Qpro that s(q) = s′′(q) / t′′(q) = t(q). This completes the proof.

We can then surmise that the languages accepted by any well-nested and finite PA can be described

by series-parallel rational expressions, which we record as follows.

Theorem 9.35 (Automata to expressions). If A = 〈Q,F, δ, γ〉 is a well-nested and finite PA, then

we can construct for every q ∈ Q an spr-expression e ∈ TSPR such that LA(q) = JeKSPR.

Proof. Apply Lemma 9.34 to obtain a solution s : Q→ TSPR to A. By Lemma 9.33, we know for

q ∈ Q that LA(q) = Js(q)KSPR. Hence, given q ∈ Q, we can choose e = s(q) to satisfy the claim.

This allows us to conclude this chapter with the desired Kleene theorem that relates series-parallel

rational expressions to finite and well-nested pomset automata, as follows.

Corollary 9.36 (Extended Kleene theorem for pomset languages). Let L ⊆ SP. Then L is

series-parallel rational if and only if it is accepted by a finite and well-nested pomset automaton.

Summary of this chapter Series-rational expressions can be extended to series-parallel rational

expressions, which include the “parallel star” operator. We showed that languages expressed by

series-parallel rational expressions are precisely the languages accepted by a structurally restricted

fragment of PAs. This further generalises the Kleene theorem established in an earlier chapter.
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9.A Proofs for expressions-to-automata translation

Lemma 9.15. Let A be a PA, with Q′ be support-closed in A. If A is well-nested, then so is A[Q′].

Proof. Recall from the proof of Lemma 7.20 that for q, q′ ∈ Q′ we have that q �A[Q′] q
′ if and

only if q �A q′. It is then straightforward to show that for q ∈ Q′, we have that q is recursive

(respectively progressive) in A if and only if it is recursive (respectively progressive) in A[Q′]. Since

very state in A is recursive or progressive, it follows that the same holds for A[Q′].

Lemma 9.20. Let e ∈ TSPR and U ∈ SP. The following are equivalent:

(i) There exists f ∈ F such that e† U−→SPR
f .

(ii) U = U1 ‖ · · · ‖ Un, such that for 1 ≤ i ≤ n there exists fi ∈ FSPR with e Ui−→SR
fi.

Proof. To show that (i) implies (ii), note that if e† U−→SPR
f , then this run must either be trivial

or a parallel unit run. Now, if e† U−→SPR
f is trivial, then we can choose n = 0 to satisfy the

claim. Otherwise, if e† U−→SPR
f is a parallel unit run, then f = 1 and U = V ‖ W such that

e V−→SPR
e′ and e† W−→SPR

f ′ for some e′, f ′ ∈ FSPR. By induction, we find that W = W1 ‖ · · · ‖ Wn′

such that for 1 ≤ i ≤ n′ there exists fi ∈ FSPR with e Wi−−→SPR
fi. If we then choose n = n′ + 1

and set for 1 ≤ i < n that Ui = Wi and fi = f ′i , as well as Un = V and fi = e′, then

U = W ‖ V = W1 ‖ · · · ‖Wn′ ‖ V = U1 ‖ · · · ‖ Un, and for 1 ≤ i ≤ n we have e Ui−→SPR
fi.

To show that (ii) implies (i), we proceed by induction on n. In the base, where n = 0, we have

that U = 1; we can choose f = e† to satisfy the claim. For the inductive step, let n > 0 and assume

that the claim holds for n−1. By induction, we then find an f ′ ∈ FSPR such that e† U1‖···‖Un−1−−−−−−−−→SPR
f ′.

Since 1 ∈ γSPR(e
†, {|e, e†|}), we can then choose f = 1 to find that e† U1‖···‖Un−1‖Un−−−−−−−−−−→SPR

f .

Lemma 9.21. Let e, f ∈ TSPR. The following hold:

LSPR(e+ f) = LSPR(e) + LSPR(f) LSPR(e · f) = LSPR(e) · LSPR(f) LSPR(e
∗) = LSPR(e)

∗

LSPR(e ‖ f) = LSPR(e) ‖ LSPR(f) LSPR(e
†) = LSPR(e)

†

Proof. Since Lemmas 7.25 to 7.28 apply to the series-rational syntactic PA as well, the first four

equalities follow by the same argument as in Lemma 7.29. Similarly, the last equality follows the

same structure as the arguments in Lemma 7.29, where we apply Lemma 9.20.

Lemma 9.22. For all e ∈ TSPR, we have LSPR(e) = JeKSPR.
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Proof. The proof proceeds similarly to Lemma 7.30; indeed, the base cases are argued similarly,

and the inductive cases follow from Lemma 9.21.

Lemma 9.24. For every e ∈ TSPR, we have that e ∈ R(e) and R(e) is support-closed.

Consequently, the series-parallel rational syntactic PA is bounded.

Proof. The proof proceeds by induction on e. For the base, the same arguments as in Lemma 7.34

apply. In the inductive step, the same holds for all operators except the parallel star, which is new.

Thus, let e = e†1, and suppose the claim holds for e1. By construction, we have that e†1 ∈ R(e).

We should show that if e′ ∈ R(e), then the support of e′ is included in R(e). If e′ = 1, this holds

immediately, and if e′ ∈ R(e1), then the claim follows by induction. It remains to consider the case

where e′ = e†1. As in Lemma 7.34, it suffices to show that if f �SPR e
†
1 is a consequence of one of the

rules generating �SPR, then f ∈ R(e). This gives us three cases to consider.

• The case where f ∈ δSPR(e†1, a) for some a ∈ Σ can be disregarded, for δSPR(e
†
1, a) = ∅.

• If f ∈ γSPR(e
†
1, φ), then f = 1 by construction of γSPR. Hence f ∈ R(e).

• If f ∈ φ ∈ M(T ) and γSPR(e
†
1, φ) 6= ∅, then either f = e†1 or f = e1. In the former case,

f ∈ R(e) by definition; in the latter case, f ∈ R(e1) ⊆ R(e) by induction.

Lemma 9.26. For e, f ∈ TSPR such that e �SPR f , we have d‖(e) ≤ d‖(f) and d†(e) ≤ d†(f).

Proof. It suffices to verify the claim for the pairs that generate �SPR. This gives us three cases.

• If e �SPR f because there exists an a ∈ Σ such that e ∈ δSPR(f, a), then we proceed by induction

on f . In the base, necessarily f ∈ a and e = 1; but then d‖(e) = d†(e) = 0 ≤ d‖(f), d†(f)

immediately. For the inductive step, we consider only the case where f = f†1 ; all other cases

follow by an argument similar to the one in the proof of Lemma 7.31. This case can be

disregarded, for δSPR(f
†
1 , a) = ∅ by definition of δSPR.

• If e �SPR f because there exists a φ ∈M(T ) such that eγSPR(f, φ), then we proceed by induction

on f , then the claim follows by an argument similar to the previous case.

• If e �SPR f because e ∈ φ ∈ M(T ) and γSPR(f, φ) 6= ∅, then we proceed by induction on f .

In the base, where f ∈ Σ ∪ {0, 1}, the claim holds vacuously, because γSPR(f, φ) = ∅ for all

φ ∈M(T ). In the inductive step, we consider only the case where f = f†1 ; all other cases can

be treated with an argument similar to the one in the proof of Lemma 7.31. We then find

that either e = f1 or e = f†1 ; in either case, d‖(e) ≤ d‖(f1) = d‖(f) and d†(e) ≤ d†(f).
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Lemma 9.28. Let e ∈ TSPR and φ ∈ M(TSPR) such that γSPR(e, φ) 6= ∅. Then φ = {|f, g|} such that

either (i) f ≺SPR e as well as g ≺SPR e, or (ii) f ≺SPR e and g = h† for some h ∈ TSPR.

Proof. We proceed by induction on e. In the base, either e = 0, e = 1, or e = a for some a ∈ Σ. In

that case, the claim holds vacuously, since for all φ ∈M(TSPR) we have that γSPR(e, φ) = ∅. For the

inductive step, we have five cases to consider.

• If e = e1 + e2 or e = e1 · e2, then either γSPR(e1, φ) 6= ∅ or γSPR(e2, φ) 6= ∅. Similarly, when

e = e∗1, we have γSPR(e1, φ) 6= ∅. In any of these cases, the claim follows by induction.

• If e = e1 ‖ e2, then φ = {|e1, e2|}; in that case d‖(e1), d‖(e2) < d‖(e), and hence e1, e2 ≺SPR e,

which means that the first possibility is satisfied.

• If e = e†1, then φ = {|e1, e
†
1|}. Since d‖(e1) < d‖(e

†
1), we have that e1 ≺SPR e by Lemma 9.26.

This means that the second possibility is satisfied.



Further Work

We conclude the second half of this thesis by listing questions that arise from the results in the

previous three chapters, accompanied by some preliminary observations.

Coalgebra Universal coalgebra [Rut00] provides a uniform toolset to develop operational models;

we wonder whether it can be applied to pomset languages, too. In such an approach, an operational

description of a pomset language would be a coalgebra for a fixed functor F , and the semantics in

terms of pomsets would arise from the unique F -coalgebra homomorphism into the final F -coalgebra.

The added value of such an approach would be that it gives a natural way to compare coalgebras

for language equivalence using a notion of bisimulation arising from the functor F [Rut98]. The

decision procedure arising from this can then be optimised, guided by the functor [BP13; RBR13].

For such an approach to work, one would have to find a functor F such that the set of (series-

parallel) pomsets can be equipped with an F -coalgebra structure in some natural way. However,

the functors that we tried to use in modelling pomset languages did not admit a final coalgebra for

cardinality reasons, as a consequence of Lambek’s lemma [Lam68]. Another approach could be to

try and describe pomset automata coalgebraically; the problem here is that the non-local nature of

the parallel transition function also has no obvious coalgebraic description. Further work could try

to tackle this problem by looking at functors in categories with more structure.

Completeness The proof that ≡ is complete w.r.t. J−K does not involve any operational descrip-

tion of pomset languages [LS14]. We would like to find out if this result can be obtained through

pomset automata, instead. A proof like this would first represent language-equivalent sr-expressions

as finite and fork-acyclic pomset automata having those expressions as solutions. The second step

would be to use language equivalence of those pomset automata to argue that they must have the

same solution. This technique can be seen as the core of Kozen’s completeness proof of completeness

for Kleene algebra [Koz94], and also appears in more recent coalgebraic accounts [Jac06].

218
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Reduction The construction that allowed us to reduce the hypotheses in exch to the empty set

of hypotheses in Chapter 5 was phrased in terms of finding a solution to a series-rational system for

each level of nesting of parallel composition, i.e., we had to solve a series-rational system at each

level. We would like to return to this constriction and phrase it in terms of solutions to fork-acyclic

and finite pomset automata, in effect hiding the nested solving of series-rational systems in an

appeal to Lemma 7.40. The added benefit of this is that it would also give us another (possibly

more efficient) way to check equivalence w.r.t. ≡exch, by comparing the pomset automata.

Systems At multiple points, we have constructed an sr-expression or spr-expression by construct-

ing a system of equations, and invoking a result that allowed us to obtain a solution to that system.

In a sense, our Kleene theorems tell us that we have reached the limits of this formalism: every

series-rational system is the solution of some finite and fork-acyclic pomset automaton, and likewise

every series-parallel rational system is the solution of some finite and well-nested pomset automaton.

Checking fork-acyclicity or well-nestedness, however, is not always easy. It would be helpful to

create an even more generic formats for systems that solve to sr-expressions or spr-expressions.

Expressions There exists another class of pomset languages, called recognisable pomset lan-

guages [LW00], which is strictly more general than series-parallel rational pomset languages. More

specifically, languages in this class can be described by a morphism into a finite bi-monoid, and

may have unbounded depth. We are curious which class of pomset automata this class of pomset

languages would correspond to. Additionally, it would be interesting to come up with an extension

of spr-expressions whose semantics would correspond exactly to recognisable pomset languages,

and try to find out if equivalence of these expressions can be axiomatised as well.

Complexity Our investigation in Chapter 8 focused on showing that equivalence of pomset

automata is decidable. The repeated use of the inverse powerset construction [BT14] in our

procedure suggests that it may not be very efficient. It has also been shown that deciding

equivalence of sr-expressions is expspace-complete [BPS17], which furthermore suggests that

deciding equivalence of pomset automata is a hard problem. Further analysis is necessary to find

out a tight complexity bound on our procedure, especially with regard to how much effort goes into

the conversion to a well-structured pomset automaton. Experience has shown that while equivalence

of non-deterministic finite automata is pspace-complete in general, there are still procedures that

can practically be used to decide equivalence [BP13]; the same might be true for our algorithm. We

would like to implement and benchmark our algorithm to get a feeling for its efficiency.
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Decidability In Chapter 8, we showed that language equivalence of finite and fork-acyclic pomset

automata is decidable, thereby giving a novel proof of decidability of equivalence for sr-expressions.

Equivalence of spr-expressions is also be decidable [LS14], but no algorithm based on a operational

perspective is known. One way to obtain such a proof could be to generalise the decision procedure

for fork-acyclic and finite pomset automata to well-nested and finite pomset automata. Presumably,

we would first need to show how this procedure would work for well-structured, well-nested and

finite pomset automata, before showing how we can guarantee well-structuredness.

Context-free languages In Chapter 9, we showed that any context-free language can be imple-

mented by a pomset automaton with unary forks, and remarked that the converse would not be too

hard to show. A somewhat tangential but still interesting followup to this correspondence would

be to investigate the connection between context-free languages and unary pomset automata even

further. For instance, is there a class of unary pomset automata that corresponds to deterministic

context free languages? Since equivalence in this class of languages is decidable [Sén01], we wonder

whether this putative class of unary pomset automata may give rise to a novel decision procedure.

Bisimilarity A common way to compare operational representations of behaviour is to check

whether they are bisimilar, i.e., whether computational steps in one such representation can be

mimicked by the other, and vice versa. It is not hard to derive a notion of bisimilarity for pomset

automata, and to show that bisimilarity is sufficient (but not necessary) for language equivalence.

Bisimilarity of pomset automata might be a good preliminary check for equivalence — if two states

are bisimilar, then their languages coincide, and thus a (possibly resource-intensive) algorithm to

compare languages need not be called. For this to work, one would need to derive a procedure for

checking bisimilarity in pomset automata, analyse its complexity, and benchmark it.
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[ÉN04] Zoltán Ésik and Zoltán L. Németh. “Higher Dimensional Automata”. In: Journal of

Automata, Languages and Combinatorics 9.1 (2004), pp. 3–29. doi: 10.25596/jalc-

2004-003.
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[KBL+17] Tobias Kappé, Paul Brunet, Bas Luttik, Alexandra Silva, and Fabio Zanasi. “Brzo-

zowski Goes Concurrent — A Kleene Theorem for Pomset Languages”. In: CONCUR.

Sept. 2017. doi: 10.4230/LIPIcs.CONCUR.2017.21.

https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1145/27651.27653
https://doi.org/10.1007/978-3-642-04081-8_27
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/359576.359585
https://doi.org/10.1016/j.jlamp.2015.09.012
https://www.worldcat.org/isbn/978-0201029888
https://doi.org/10.1007/11780274_20
https://doi.org/10.1007/11780274_20
https://doi.org/10.1016/j.jlamp.2015.12.005
https://doi.org/10.4230/LIPIcs.CONCUR.2017.21


BIBLIOGRAPHY 225
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