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Abstract The frequentist statistical methods applied to
search for short-baseline neutrino oscillations induced by a
sterile neutrino with mass at the eV scale are reviewed and
compared. The comparison is performed under limit setting
and signal discovery scenarios, considering both when an
oscillation would enhance the neutrino interaction rate in the
detector and when it would reduce it. The sensitivity of the
experiments and the confidence regions extracted for specific
data sets change considerably according to which test statis-
tic is used and the assumptions on its probability distribution.
A standardized analysis approach based on the most general
kind of hypothesis test is proposed.

1 Introduction

A vast experimental program has been mounted in the last
decade to search for a new elementary particle named ster-
ile neutrino [1]. The sterile neutrino is a particular type of
neutrino that does not interact through the weak force. Since
Pontecorvo postulated its existence in 1967 [2], the sterile
neutrino has become increasingly popular and its existence
is nowadays often invoked to explain the mysterious origin of
neutrino masses and dark matter [3]. The discovery of sterile
neutrinos would hence be a milestone towards the develop-
ment of new theories beyond the Standard Model, with deep
repercussions in particle physics and cosmology.

The phenomenology of sterile neutrinos depends on their
hypothetical mass value. The main target of the ongoing
experimental efforts is sterile neutrinos with a mass of the
order of the eV, whose existence has been hinted at by var-
ious experiments [4–6] and is still under debate [1,7]. The
statistical data treatment for this kind of searches presents
various challenges and has not been standardized yet. Cur-
rently, different statistical methods are used in the field, each
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addressing a different statistical question, and thus providing
different results. This situation prevents a direct comparison
of the performance of the experiments and of their outcome.
In addition, approximations often adopted in the statistical
analysis can lead to significantly inaccurate results.

In this article we review the statistical methods used in the
search for sterile neutrinos at the eV mass scale, expanding
the discussion of Refs. [8–10] and performing a comprehen-
sive comparison of the analysis approaches in scenarios with
and without a signal. Section 2 describes the phenomenology
of eV-mass sterile neutrinos, the signature sought after by the
experiments, and the features of two toy experiments that are
used in this article to compare the analysis techniques. Sec-
tion 3 reviews the statistical methods and concepts used in
the field. The performance of the different methods are dis-
cussed in Sects. 4 and 5. Finally, in Sect. 6, the methods are
compared and a standardized analysis is proposed.

2 Phenomenology and experiments

Neutrinos of three different flavours have been observed: the
electron (νe), the muon (νμ) and the tau neutrino (ντ ) [11].
These standard neutrinos can be detected by experiments
because they interact through the weak force. Neutrinos can
change flavor as they move through space. This phenomenon,
called neutrino flavour oscillation, is possible because neu-
trinos of different flavours do not have a fixed mass but are
rather a quantum-mechanical superposition of different mass
eigenstates (i.e. ν1, ν2, and ν3), each associated to a distinct
mass eigenvalue (m1, m2 and m3).

A sterile neutrino (νs) would not interact through the
weak force and cannot be directly detected. However its
existence would affect the standard neutrino oscillations in
two ways. Firstly, a standard neutrino could oscillate into
an undetectable sterile neutrino, leading to a reduction of
the observed event rate within the detector. Secondly, the
mass eigenstate (ν4 with mass m4) primarily associated to
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the sterile neutrino would enhance the transformation proba-
bility between standard neutrinos, leading to the detection of
a neutrino flavor that is not emitted by the source. The experi-
ments looking for a reduction of the interaction rate are called
“disappearance” experiments while the ones seeking for an
enhanced neutrino conversion are called “appearance” exper-
iments. In principle, more than one sterile neutrino with mass
at the eV scale could exist. In this work we will focus on the
scenario in which there is only one eV-mass sterile neutrino.

The current-generation sterile-neutrino experiments are
designed to search for oscillations among standard neutrinos
at a short distance from the neutrino source, where the effect
of neutrino oscillations is expected to be negligible unless
eV-mass sterile neutrinos exist. The oscillation probability
expected by these so-called short-baseline experiments can
be approximated by:

P(να → να) = 1 − sin2 (2θαα) sin2
(
k · Δm2 · L

E

)
(1)

P(να → νβ) = sin2 (
2θαβ

)
sin2

(
k · Δm2 · L

E

)
(2)

where P(να → να) is the survival probability for a specific
neutrino of flavor α and P(να → νβ) is the probability for
a neutrino of flavor α to transform into the flavor β (να and
νβ indicate any of the standard neutrino flavors, i.e.: νe, νμ

and ντ ). The mixing angles (i.e. θαα and θαβ ) and the dif-
ference between the squared mass eigenvalues (i.e. Δm2)
are physical constants.1The experiments aim at extracting
these constants from the measurement of the oscillation prob-
ability as a function of the distance travelled by the neu-
trino before its interaction (L) and its initial energy (E). The
maximum value of the oscillation probability is proportional
to sin2(2θ) that acts as a scaling factor, while the modula-
tion of the probability is determined by Δm2. The constant
k = 1.27 MeV/eV2/m applies when Δm2 is expressed in
eV2, L in meters and E in MeV. The modulation of the oscil-
lation as a function of L/E is shown in Fig. 1a for a selection
of Δm2 values.

The features of various short-baseline experiments are
summarized in Table 1. Different kinds of neutrino sources
and detection technologies are used. The most common neu-
trino sources are nuclear reactors (producing electron anti-
neutrinos up to 10 MeV), radioactive sources (electron neu-
trinos and anti-neutrinos up to a few MeV), and particle
accelerators (muon neutrinos and anti-neutrinos up to sev-

1 Within the expanded oscillation phenomenology, sterile neutrinos are
described through additional non-interacting flavors, which are con-
nected to additional mass states via an extended PMNS matrix. The
sterile mixing angles can be expressed as a function of the elements
of the extended matrix: sin2(θαβ) = 4|Uα4|2

∣∣δαβ − |Uβ4|2
∣∣. The mass

squared difference is typically defined as Δm2 = m2
4 − m2

1 under the
approximation that m1,m2,m3 << m4. More details can be found in
Ref. [7].

2 = 0.1 eV2mΔ 2 = 0.5 eV2mΔ
2 = 2.0 eV2mΔ 2 = 10 eV2mΔ
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Fig. 1 a Normalized probability of a neutrino flavor oscillation as a
function of L/E for different Δm2 values. The absolute probability
is given by the product between the plotted normalized probability
and sin2(2θ). b, c Probability of neutrino oscillations as a function
of L rec/Erec for two toy experiments searching for a disappearance (b)
and an appearance (c) signal. The probabilities are shown assuming
the existence of sterile neutrinos at various possible sin2(2θ) and Δm2

values. The reconstructed probability from pseudo-data generated with
Monte Carlo simulations under the hypothesis that there are no sterile
neutrinos are also shown. The experimental parameters of the two toy
experiments are summarized in Table 1. The binning reflects the typical
experimental resolutions on L rec and Erec. The error bars account for
the statistical uncertainties before background subtraction

eral GeV). The detector designs are very different, but they
mostly rely on scintillating materials and light detectors, or
on liquid-argon time-projection chambers (LAr TPC) [1].

In order to extract the sterile neutrino parameters, both
L and E must be reconstructed for each detected neutrino.
The oscillation baseline L is well defined as either it is much
larger than the dimensions of the source and the detector –
as in accelerator-based experiments – or the source is rela-
tively compact and the detector is capable of reconstructing
the position of an event – as in experiments with radioactive
isotopes or reactors. The reconstruction of the event position
is achieved with the physical segmentation of the detector
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and/or with advanced analysis techniques based on the prop-
erties of the scintillation or ionization signal.

The strategy used to reconstruct E varies according to
the primary channel through which neutrinos interact in
the detector. Experiments using low energy anti-neutrinos
can measure E through a calorimetric approach thanks to
the fact that anti-neutrinos interact via inverse beta decay
and their energy is entirely absorbed within the detector. In
experiments with high energy neutrinos interacting through
charged-current quasi-elastic reactions, E is estimated from
the kinematic of the particles produced in the interaction.
Some experiments measure neutrinos that interact through
electron scattering and release only a random fraction of their
energy inside the detector. In this cases the energy cannot be
accurately reconstructed and monoenergetic neutrino sources
are typically used. In the following we will use L rec and Erec

to refer to the reconstructed value of baseline and energy.
Table 1 shows for each experiment the range and res-

olution of L rec and Erec. To maximize the sensitivity to
sterile neutrino masses at the eV-scale, the experiments are
designed to be sensitive to L rec/Erec values of the order of
1 m/MeV. The experiments can thus observe multiple oscil-
lations within the detector for Δm2 values at the eV scale. As
the sought-after signal is similar among the experiments, the
issues and challenges related to the statistical data treatment
are the same.

The analysis of an experiment can exploit two comple-
mentary pieces of information. When the neutrino energy
spectrum, flux and cross section are accurately known, the
integral number of neutrino interactions expected within the
detector can be computed for a given oscillation hypothesis
and compared with the observed one. This approach is often
called “rate” analysis. Alternatively, the relative change of
rate as a function of the interaction position and neutrino
energy can be compared with the expectations under differ-
ent oscillation hypotheses, leaving unconstrained the inte-
gral number of events. This second approach is known as
“shape” analysis. Rate and shape analysis are used simul-
taneously to maximize the experimental sensitivity, however
they are affected by different systematic uncertainties and for
a specific experiment only one of the two might be relevant.
In the following we will discuss these two analyses sepa-
rately. Results for a specific experiment can be estimated
by interpolating between these two extreme cases. Experi-
ments based on nuclear reactors sometimes use the so-called
“ratio” method [17], in which the energy spectrum measured
in a given part of the detector is normalized against what
observed in a reference section. The ratio method has fea-
tures similar to the shape analysis and it is not explicitly
considered in the following.

Two toy experiments are used in this work to compare
different analysis techniques. The first one is an example
of disappearance experiment representative of the projects

using nuclear reactors or radioactive isotopes as anti-neutrino
source. In these experiments, the electron anti-neutrinos par-
tially convert into sterile neutrinos with different probabili-
ties as a function of L rec and Erec. The anti-neutrino energy
spectrum is considered between 2 and 7 MeV and the range
of oscillation baselines accessible by the experiment is from
7 to 10 m (L rec/Erec= 1–5 m/MeV with a resolution vary-
ing between 5 and 10%). The second toy experiment is
an example of appearance experiment in which muon neu-
trinos transform into electron neutrinos with a probability
enhanced by the existence of sterile neutrinos. In this case,
typical for experiments based on particle accelerators, the
neutrino energy varies between 200 and 1200 MeV and the
oscillation baseline between 500 and 550 m (L rec/Erec= 0.4–
2.4 m/MeV with a resolution varying between 10 and 25%).

The toy disappearance experiment can observe an oscilla-
tory pattern in the event rate as a function of both energy and
baseline, whereas the appearance experiment can observe
it only in energy as the baseline can be regarded as fixed.
The energy distribution of both the neutrinos emitted by the
source and the background events is assumed to be flat. This
is not the case in real experiments where the initial neutrino
energy is peaked at some value and the background spectrum
depends on the background sources. However this approxi-
mation does not affect the study reported in this work. The
experimental parameters of our toy experiments, including
the number of signal and background events, are summarized
in the last two rows of Table 1. The uncertainties on the signal
and background rates are assumed to have the realistic values
of 10% and 5% for the appearance experiment, and of 2%
both for the signal and background rate in the disappearance
experiment.

An example of the oscillation probability reconstructed
from our toy experiments is shown in Fig. 1b, c as a function
of L rec/Erec. The probability is reconstructed from a set of
pseudo-data generated with Monte Carlo simulations from
a model with no sterile neutrinos. The oscillation probabil-
ity expected assuming the existence of sterile neutrinos is
shown for four mass values (Δm2= 0.1, 0.5, 2 and 10 eV2).
Given the L rec/Erec resolution of our toy experiments, an
oscillatory pattern can be observed only for Δm2 of 0.5 and
2 eV2. For higher Δm2 values, the frequency of the oscilla-
tion becomes too high and only an integrated change of the
rate is visible. For smaller Δm2 values, the oscillation length
approaches the full L rec/Erec range to which the experiment
is sensitive, resulting in a loss of sensitivity. In the appear-
ance experiments the discrimination power among different
oscillatory patterns relies only on Erec since L rec is fixed.

In this work we focus on short-baseline experiments.
We do not consider other oscillation experiments (e.g.
Daya Bay [24], Double Chooz [25], RENO [26], MINOS [27],
NOvA [28] and Ice Cube [29]) for which the oscillation prob-
ability cannot be approximated by Eqs. (1) and (2) as it is

123



Eur. Phys. J. C           (2020) 80:750 Page 5 of 22   750 

either complicated by the overlap between oscillations driven
by multiple mass eigenstates or by matter effects [7]. We also
do not consider approaches that are not based on oscillations
such as the study of cosmological structures [30], the high-
precision spectroscopy of beta-decays (e.g. KATRIN [31]),
or electron captures (e.g. ECHO [32]). The statistical issues
of these searches are different from those of the short-baseline
experiments and would require a specific discussion.

3 Statistical methods

The goal of short-baseline experiments is to search for a sig-
nal due to a sterile neutrino with mass at the eV-scale by
measuring the oscillation probability at different L and E
values. The parameters of interest associated to the sterile
neutrino are the mixing angle and its mass eigenvalue. How-
ever, because of the functional form of Eqs. (1) and (2), the
observables of the experiments are a function of the angle
and mass, i.e.: sin2(2θ) and Δm2. In the following we will
refer to sin2(2θ) and Δm2 as the parameters of interest of
the analysis.

The role of statistical inference applied to the data from
sterile neutrino searches can be divided into four tasks:

1. point estimation: the computation of the most plausible
value for sin2(2θ) and Δm2;

2. hypothesis testing: given a hypothesis on the value of
sin2(2θ) and Δm2, decide whether to accept or reject it
in favor of an alternative hypothesis. Among the different
tests that can be performed, testing the hypothesis that
there is no sterile neutrino signal (i.e. sin2(2θ) = 0 or
Δm2 = 0) is of primary interest for an experiment aiming
at a discovery;

3. interval estimation: construct a set of sin2(2θ) and Δm2

values that includes the true parameter values at some
predefined confidence level;

4. goodness of fit: estimate if the data can be described by
the model.

The statistical methods used by sterile neutrino experiments
are based on the likelihood function. The point estimation
is carried out using maximum likelihood estimators, i.e. by
finding the values of sin2(2θ) and Δm2 that correspond to the
maximum of the likelihood function. The hypothesis testing
is based on the ratio of likelihoods. The interval estimation is
carried out by inverting a set of likelihood-ratio based hypoth-
esis tests, and grouping the hypotheses that are accepted. The
goodness-of-fit test can be carried out assuming the most
plausible value of the parameters of the model (i.e. the max-
imum likelihood estimator for sin2(2θ) and Δm2) and using
for instance a Pearson χ2 or a “likelihood ratio” test [33,34].

While the procedures for point estimation and goodness
of fit are not controversial, the hypothesis testing differs sig-
nificantly among the experiments since multiple definitions
of the hypotheses are possible. Changing the hypothesis defi-
nition does not only affect the outcome of the hypothesis test
but also of the interval estimation, which is performed by run-
ning a set of hypothesis tests. The comparison of tests based
on different hypothesis definitions is the subject of Sects. 4,
5 and 6.

In this section we review the ingredients needed to build
the tests and the statistical concepts that will be used in the
following. Firstly, we consider the likelihood function and
derive a general form that can be applied to all experiments
(Sect. 3.1). Then we discuss the possible hypothesis defini-
tions and the resulting test statistics (Sect. 3.2). The properties
of the test statistic probability distributions are described in
Sect. 3.3. Finally, in Sect. 3.4 we examine the construction
of confidence regions and in Sect. 3.5 the concept of power
of a test and sensitivity.

Bayesian methods have not been applied in the search for
sterile neutrinos so far. Even if their usage could be advanta-
geous, we will not consider them in the following and keep
the focus on the methods that are currently in use.

3.1 The likelihood function

Short-baseline experiments measure the oscillation baseline
and the energy of neutrinos, i.e. a pair of {L rec, Erec} values
for each event. L rec and Erec are random variables whose
probability distributions depend on the true value of L and
E . Monte Carlo simulations are used to construct the prob-
ability distributions of L rec and Erec for a neutrino event
given a sin2(2θ) and Δm2 value, pe(L , E | sin2(2θ),Δm2),
and for a background event, pb(L , E). Additional quantities
are sometimes measured, however they are ultimately used
to constrain the background or the systematic uncertainties
and can be neglected in this work.

To our knowledge, all the experiments organize the data
in histograms and base their analysis on a binned likelihood
function. The use of histograms is motivated by the fact that
the number of neutrino events is large, between 104 and 106

as shown in Table 1. Binning the data leads to a new set of
random variables that are the numbers of observed events in
each bin: Nobs = {Nobs

11 , Nobs
12 , . . . , Nobs

i j . . .} where i runs
over the Lrec bins and j over the Erec bins. Consistently,
we indicate with hei j and hbi j the integral of the probability
distribution function for neutrino and background events over
each bin:

hei j =
∫
L ,E∈bini j

pe(L , E | sin2(2θ),Δm2) dL dE (3)
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hbi j =
∫
L ,E∈bini j

pb(L , E) dL dE . (4)

The generic likelihood function can hence be written as:

L(sin2(2θ),Δm2, Ne, Nb|Nobs) =
∏
i j

P(Nobs
i j |

Ne · hei j (sin2(2θ),Δm2) + Nb · hbi j ) (5)

where i and j run over L rec and Erec bins, P(N |λ) indi-
cates the Poisson probability of measuring N events given
an expectation λ, and Ne and Nb are scaling factors repre-
senting the total number of standard neutrino and background
events.

External constraints on the number of neutrino and back-
ground events related to auxiliary data are in this work
included as additional multiplicative Gaussian terms:

L → L · G(N̄ e(sin2(2θ),Δm2)|Ne, σ e) · G(N̄ b|Nb, σ b)

(6)

where G(N̄ |N , σ ) indicates the probability of measuring N̄
given a normal distributed variable with mean N and standard
deviation σ . The pull terms can be based on other probability
distributions (e.g. log-normal or truncated normal distribu-
tions), however their specific functional form is not relevant
for our study. It should be noted that the expected number
of neutrino counts N̄ e depends on the particular oscillation
hypothesis tested. Examples of the likelihood can be found
in Appendix A.

While sin2(2θ) and Δm2 are the parameters of interest
of the analysis, Ne and Nb are nuisance parameters. The
constraints on these parameters could follow different proba-
bility distributions and additional nuisance parameters could
also be needed to account for systematic uncertainties in the
detector response, neutrino source, and event reconstruction
efficiency. The actual number of nuisance parameters and
the particular form of their constraints in the likelihood does
not affect the results of our work. Systematic uncertainties
typically cannot mimic the expected oscillatory signal, even
though they can change the integral rate. Thus, in a pure rate
analysis a precise understanding of the systematic uncertain-
ties including those related to the background modeling is
mandatory.

To keep the discussion general, in the following we will
indicate with η = {Ne, Nb, . . .} a generic vector of nuisance
parameters. Each parameter has an allowed parameter space,
for instance the number of neutrino and background events
are bounded to non-negative values. The nuisance parameters
are assumed to be constrained in their allowed parameter
space even if not explicitly stated.

The general form of the likelihood given in Eq. (6)
accounts for a simultaneous rate and shape analysis. A pure
shape analysis will be emulated by removing the pull term

on the number of neutrino events. Conversely, a pure rate
analysis will be emulated by enlarging the size of the bins in
he and hb up to the point at which there is a single bin and
any information on the number of events as a function of L rec

or Erec is lost.

3.2 Hypothesis testing and test statistics

The hypothesis testing used nowadays in particle physics is
based on the approach proposed by Neyman and Pearson in
which the reference hypothesis H0 (i.e. the null hypothesis) is
compared against an alternative hypothesis H1 [35]. The test
is a procedure that specifies for which data sets the decision
is made to accept H0 or, alternatively, to reject H0 and accept
H1. Usually a hypothesis test is specified in terms of a test
statistic T and a critical region for it. The test statistic is a
function of the data that returns a real number. The critical
region is the range of test statistic values for which the null
hypothesis is rejected.

The critical region is chosen prior the analysis such that
the test rejects H0 when H0 is actually true with a desired
probability. This probability is denoted with α and called the
“size” of the test. In the physics community, it is more com-
mon to quote 1−α and refer to it as the “confidence level” of
the test. For instance, if H0 is rejected with α = 5% probabil-
ity when it is true, the test is said to have 95% confidence level
(CL). In order to compute the critical thresholds, the proba-
bility distribution of the test statistic must be known. In our
work, the distributions are constructed from large ensembles
of pseudo-data sets generated via Monte Carlo techniques.

In sterile neutrino searches a hypothesis is defined by a set
of allowed values for sin2(2θ) and Δm2. The null hypothesis
is defined as:

H0 : {sin2(2θ),Δm2 : sin2(2θ) = X,Δm2 = Y } (7)

where X and Y are two particular values. Since the mixing
angle and the mass eigenvalue are defined as non-negative
numbers by the theory and m4 ≥ m1, the most general ver-
sion of the alternative hypothesis is

H1 : {sin2(2θ),Δm2 : 0 ≤ sin2(2θ) ≤ 1,Δm2 ≥ 0}. (8)

A test based on these two hypotheses leads to a generalized
likelihood-ratio test statistic of the form [35]:

T = −2 ln

sup
η

L (
sin2(2θ) = X,Δm2 = Y, η|Nobs

)

sup
sin2(2θ),Δm2,η

L (
sin2(2θ),Δm2, η|Nobs

) (9)

where the denominator is the maximum of the likelihood for
the observed data set over the parameter space allowed for
the parameters of interest ({sin2(2θ),Δm2} ∈ H1) and the
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nuisance parameters. The numerator is instead the maximum
of the likelihood in the restricted space in which sin2(2θ) and
Δm2 are equal to the value specified by H0.

If the value of Δm2 or sin2(2θ) are considered to be
known because of theoretical predictions or of a measure-
ment, then the parameter space of the alternative hypothesis
can be restricted. Restricting the parameter space is concep-
tually equivalent to folding into the analysis new assumptions
and changes the question addressed by the hypothesis test.
The smaller is the parameter space allowed by the alternative
hypothesis, the greater the power of the test will be.

Three tests have been used in the context of sterile neutrino
searches and are summarized in Table 2. The most general
test is the one that we just described and that leads to the test
statistic given in Eq. (9). We will indicate this test statistic
with T2. This test is agnostic regarding the value of sin2(2θ)

or Δm2 and can be applied to search for a sterile neutrino
with unknown parameters.

The second test statistic used in the field can be traced
back to the situation in which the mass squared difference is
considered to be perfectly known and is equal to the value of
the null hypothesis (Δm2 = Y ). In this case the alternative
hypothesis and its related test statistic are:

H1 : {sin2(2θ),Δm2 : 0 ≤ sin2(2θ) ≤ 1,Δm2 = Y } (10)

T1 = −2 ln

sup
η

L (
sin2(2θ) = X,Δm2 = Y, η|Nobs

)

sup
sin2(2θ),η

L (
sin2(2θ),Δm2 = Y, η|Nobs

) .

(11)

While the numerator of T1 is the same of T2, the maximum
of the likelihood at the denominator is now computed over a
narrower parameter space, restricted by the condition Δm2 =
Y .

The third test corresponds to the simplest kind of hypoth-
esis test that can be performed. Both the null and alternative
hypothesis have the parameters of interest fully defined. The
alternative hypothesis is now the no-signal hypothesis and
this leads to a test of the form:

H1 : {sin2(2θ),Δm2 : sin2(2θ) = 0,Δm2 = 0} (12)

T0 = −2 ln

sup
η

L (
sin2(2θ) = X,Δm2 = Y, η|Nobs

)

sup
η

L (
sin2(2θ) = 0,Δm2 = 0, η|Nobs

) .

(13)

The numerator and denominator are the maximum likeli-
hoods for fixed values of the parameters of interest, where
the maximum is computed over the parameter space allowed
for the nuisance parameters. By construction, the no-signal
hypothesis is always accepted when it is used as H0, since
the test statistic becomes identically equal to zero.

Nowadays, the value of sin2(2θ) or Δm2 is still consid-
ered to be unknown and all the parameter space accessible
by the experiment is probed in search for a signal. This situ-
ation should naturally lead to the usage of T2. However the
maximization of the likelihood required by T2 is challenging
from the computational point of view. Reducing the dimen-
sionality of the parameter space over which the likelihood
is maximized can enormously simplify the analysis and, for
such a practical reason, T1 and T0 are used even if the restric-
tion of the parameter space is not intended.

In the neutrino community, the analysis based on T2 has
been called “2D scan” or “global scan” while the analysis
based on T1 is known as “raster scan” [8,9]. In the absence
of nuisance parameters, the definition of these test statistics
reduce to those discussed in Ref. [8]. T0 has been used in the
framework of a method called “Gaussian CLs” [10].

The search for new particles at accelerators presents many
similarities with the search for sterile neutrinos. For instance,
in the search for the Higgs boson, the sought-after signal is a
peak over some background. The two parameters of interest
are the mass of the Higgs boson, which defines the position of
the peak, and its coupling with other particles, which defines
the amplitude. Similarly, in the search for sterile neutrinos
Δm2 defines the shape of the signal and sin2(2θ) its strength.
When the Higgs boson is searched without assumptions on
its mass and coupling, a test similar to T2 is performed (i.e.
a “global p-value” analysis). When the mass is assumed to
be known, a test similar to T1 is used (i.e. a “local p-value”
analysis) [36]. Procedures for converting a local into a global
p-value analysis have been developed in the last years [37,38]
and are nowadays used to avoid the direct usage of T2 that
is computationally demanding. This procedure is known as a
correction for the “look-elsewhere effect”. We have studied
the correction described in Ref. [37] and found that it does
not provide accurate results for sterile neutrino experiments
because of the oscillatory nature of the sought-after signature.
Our studies are discussed in Appendix E.

3.3 Test statistic probability distributions

The test statistic T2 and T1 can assume any non-negative
value. If the absolute maximum of the likelihood corresponds
to H0, these test statistics are identically zero. The farther the
absolute maximum is from the parameter space of the null
hypothesis, the larger the test statistic value becomes. If the
null hypothesis is true, the probability distribution of this
kind of test statistic is expected to converge to a chi-square
function in the large sample limit, but only if the regular-
ity conditions required by Wilks’ theorem are met [39]. In
particular, given the ratio between the dimensionality of the
parameter space for the null and alternative hypothesis (i.e.
the number of free parameters of interest in the likelihood
maximization), T2 would converge to a chi-square with two

123



  750 Page 8 of 22 Eur. Phys. J. C           (2020) 80:750 

Table 2 Definition of the test statistics used for sterile-neutrino
searches in the presence of nuisance parameters (η). The null hypothesis
is H0 : {sin2(2θ),Δm2 : sin2(2θ) = X,Δm2 = Y } for all tests while
the alternative hypothesis H1 changes. The free parameters of interest

in H1 are shown in the second column. The name of the techniques
based on each test statistics and a selection of experiments using them
are listed in the last columns

Test Statistic Computed for
H0 : {sin2(2θ),Δm2 : sin2(2θ) = X,Δm2 = Y }

Free Parameters
of Interest

Associated Names Experiments

T2 = −2 ln

sup
η

L (
sin2(2θ) = X,Δm2 = Y, η|Nobs

)

sup
sin2(2θ),Δm2,η

L (
sin2(2θ),Δm2, η|Nobs

) sin2(2θ), Δm2 2D Scan
or global p-value

LSND, MiniBooNE,
PROSPECT

T1 = −2 ln

sup
η

L (
sin2(2θ) = X,Δm2 = Y, η|Nobs

)

sup
sin2(2θ),η

L (
sin2(2θ),Δm2 = Y, η|Nobs

) sin2(2θ) Raster Scan
or local p-value

NEOS, STEREO

T0 = −2 ln

sup
η

L (
sin2(2θ) = X,Δm2 = Y, η|Nobs

)

sup
η

L (
sin2(2θ) = 0,Δm2 = 0, η|Nobs

) — Simple Hypothesis Test
or Gaussian CLs

DANSS

degrees of freedom and T1 to a chi-square with one degree of
freedom. As discussed in Sect. 4.3, the conditions required
by Wilks’ theorem are not always valid in sterile neutrino
experiments and the assumption that the test statistic follows
a chi-square distribution can lead to significantly inaccurate
results.

The probability distributions of T0 are qualitatively differ-
ent from those of T2 and T1. T0 is negative when the tested
signal hypothesis is more likely than the no-signal hypothe-
sis, positive in the opposite case. The larger is the test statistic
value, the more the tested hypothesis is disfavoured. Under
mild conditions, the probability distribution of T0 converges
to a Gaussian function [10].

Our results are based on test statistic probability distribu-
tions constructed from ensembles of pseudo-data. Firstly a
grid in the sin2(2θ) vs. Δm2 space is defined. Secondly, for
each point on the grid an ensemble of pseudo-data is gen-
erated. The probability distributions are hence constructed
by computing the test statistic for the pseudo-data in the
ensemble. The pseudo-data are generated for a fixed value
of the nuisance parameters. More details on our procedure
are described in Appendix B.

3.4 Interval estimation and confidence regions

The results of a neutrino oscillation search are generally
summarized by a two-dimensional confidence region in the
sin2(2θ) vs. Δm2 space. The confidence region defines a set
of parameter values that are compatible with the data given
a certain confidence level. The construction of a confidence
region is formally referred to as an interval estimation.

One of the most popular statistical techniques to construct
a confidence region is through the inversion of a set of hypoth-
esis tests [35,40]. This is also the technique used by experi-
ments searching for sterile neutrinos. The construction starts

from the selection of a specific test and its resulting test statis-
tic. The parameter space considered for H1 is naturally the
space in which the region will be defined. Usually a grid is
fixed over this space and a test is run for each point. The tests
in this set have the same H1 but H0 is changed to the value
of the parameters at each point. This standard construction
guarantees that the properties of the test statistic carry over to
the confidence region and the confidence level of the region
is equal to that of the test [35].

Since the confidence region is constructed in the parame-
ter space considered by the alternative hypothesis, tests based
on T2 would naturally lead to two-dimensional confidence
regions in the sin2(2θ) vs. Δm2 space, tests based on T1

to one-dimensional regions in the sin2(2θ) space, and tests
based on T0 to point-like regions. As we already mentioned,
T0 and T1 are used even if the restriction of the parame-
ter space is not intended. To build two-dimensional regions
for T0 and T1 a non-standard procedure is used, i.e. the
final region is created as union of one-dimensional or point-
like regions. For instance, while T1 would require the value
of Δm2 to be known, one can technically construct a one-
dimensional sin2(2θ) region for a scan of “known” Δm2 val-
ues and then take the union of these regions. Assuming that
the true Δm2 is among the scanned values, the confidence
level of the union will be the same of the test.

The standard procedure for constructing confidence regions
ensures that inverting uniformly most powerful tests provides
uniformly most accurate confidence regions, i.e. regions with
minimal probability of false coverage [35]. This is not true for
the non-standard procedure described above, which indeed
produces regions with peculiar features and pathologies as
discussed in Sects. 4 and 5.
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3.5 Power of the test and sensitivity

The performance of the different kinds of hypothesis tests can
be studied by comparing their expected outcome under the
assumption that an hypothesis is true. The idea of expected
outcome is captured by the statistical concept of “power” of
a test. The power is defined as the probability that the test
rejects the null hypothesis when the alternative hypothesis is
true [35].

In high-energy physics the concept of power is replaced
by the idea of sensitivity of an experiment. The sensitivity
is defined as the set of hypotheses for which the test would
have a 50% power. The focus is thus shifted from the expected
outcome of a test to a set of hypotheses. Two kinds of sensi-
tivities are commonly used. The exclusion sensitivity is the
set of hypotheses that have a 50% chance to be excluded
assuming there is no signal (H0 is the oscillation signal for
which the test has a 50% power). The discovery sensitivity is
the set of hypotheses that, if true, would allow in 50% of the
experiments to reject the no-signal hypothesis (H0 is now the
no-signal hypothesis). More details on how the sensitivities
are defined and computed can be found in Appendix C.

Both sensitivities will be displayed as contours in the
sin2(2θ) vs. Δm2 parameter space and for a 95% CL test.
A larger confidence level is typically required for a discov-
ery, however we prefer to use the same value for the exclusion
and discovery sensitivity to ease their comparison.

4 2D and raster scan

In this section we compare the confidence regions built using
T2 and T1. The comparison is done using the toy experiments
introduced in Sect. 2: a disappearance experiment representa-
tive of searches based on reactor neutrinos and an appearance
experiment representative of the accelerator-based experi-
ments. First we focus on the sensitivity of the toy experiments
(Sect. 4.1) and then consider the results extracted for specific
sets of data (Sect. 4.2). Finally, in Sect. 4.3, we study the
impact of approximating the test statistic distributions with
chi-square functions. Our results and conclusions fully agree
with previous works [8,9].

4.1 Sensitivity

The exclusion and discovery sensitivities of our toy disap-
pearance experiment based on the statistic T2 are shown in
Fig. 2a. The exclusion sensitivity (black lines) delimits the
parameter space that has a 50% chance to be rejected by a
95%-CL test under the assumption that sterile neutrinos do
not exist. The discovery sensitivity (red lines) delimits the set
of hypotheses which, assuming those to be true, have a 50%
chance that the no-signal hypothesis is rejected by a 95%-

CL test. The figure shows separately the sensitivity for a rate
and shape analysis (dotted lines) that are useful to illustrate
which kind of information contributes most to the overall
sensitivity as a function of Δm2. Three Δm2 regions can be
identified in Fig. 2a:

– Δm2 > 10 eV2: the oscillation length is smaller than
the detector resolution on L rec and/or Erec, making the
experiment sensitive only to an overall reduction of the
integral rate (sensitivity dominated by the rate analysis);

– 0.1 eV2 < Δm2 < 10 eV2: the oscillation length is larger
than the experimental resolution and smaller than the
range of L rec and/or Erec values accessible by the detec-
tor, making the experimental sensitivity dominated by the
shape analysis;

– Δm2 < 0.1 eV2: the oscillation length becomes larger
than the detector dimensions. The experimental sensitiv-
ity decreases with the Δm2 value (i.e. with increasing
oscillation length) and larger sin2(2θ) values are needed
in order to observe a signal. The sensitivity is approxi-
mately proportional to the product sin2(2θ) × Δm2.

Example of the expected oscillations in these three regions
are shown in Fig. 1b, c.

The total sensitivity is given by a non-trivial combination
of the sensitivity of the rate and shape analysis. The rate and
shape analysis are emulated by considering only parts of the
likelihood function (see Sect. 3.1) that would otherwise have
common parameters. The sensitivity for the rate analysis is
higher than the total one for high Δm2 values. This feature is
related to the fact that sin2(2θ) and Δm2 are fully degenerate
parameters in a rate analysis based on T2. A rate analysis uses
a single piece of information and cannot fix two correlated
parameters. Given an observed number of events, the global
maximum of the likelihood function can be obtained for infi-
nite combinations of sin2(2θ) and Δm2 values. The degener-
acy is however broken when the rate information is combined
with the shape one. The number of effective degrees of free-
dom of the problem changes, and this results in a reduction
of sensitivity.

The sensitivities of our toy appearance experiment com-
puted for T2 is shown in Fig. 2b. The same Δm2 regions dis-
cussed for the disappearance experiment can be identified,
even if the relative weight of the shape and rate informa-
tion is different. In particular, in the appearance searches a
shape analysis can provide information on Δm2 but not on
sin2(2θ). The number of expected νe events is indeed pro-
portional to the product of the oscillation amplitude sin2(2θ)

and flux of νμ neutrinos. If the flux is left unconstrained in
the fit, no statement can be made about the oscillation ampli-
tude. This is the reason why the shape analysis contribution
is not displayed. The rate analysis accounts for the bulk of the
sensitivity and adding the shape information does not result
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Fig. 2 Exclusion and discovery sensitivity at 95% CL for a toy disap-
pearance and appearance experiment. The sensitivities are shown for
the test statistics T2 and T1. Whenever possible, the contribution of the
shape and rate analysis are displayed separately. The discovery sensi-

tivity is typically associated to a larger confidence level compared to the
exclusion sensitivity, however here we use the same value to highlight
their differences

in a net improvement, in the sense that the slight improve-
ment is compensated by the reduction of sensitivity due to the
increased number of effective degrees of freedom discussed
above. Having a sensitivity dominated by the rate analysis is
typical for experiments using accelerators as neutrino source.

The exclusion and discovery sensitivities are similar to
each other for both the disappearance and appearance exper-
iments. Some differences are however present. When com-
puting the discovery sensitivity, the hypothesis tested is the
no-signal hypothesis. Since sin2(2θ) = 0 or Δm2 = 0 are
points at the edge of the allowed parameter space, the number
of degrees of freedom of the problem decreases when testing
them and the power of the test increases. The exclusion sen-
sitivity is instead computed for values of the parameters far
from the edges. This is the reason why the discovery sensitiv-
ity is in general expected to be stronger than that the exclusion
one. However the situation is reversed in the shape analysis
because of a peculiar feature of the sterile neutrino signature.
Statistical fluctuations between bins mimic an oscillation sig-

nal and the maximum of the likelihood is always found far
from the no-signal hypothesis. This decreases significantly
the power of the test for a discovery while it does not affect
much the exclusion case. If the shape analysis dominates the
overall sensitivity, as in our disappearance experiment, its
features propagate also to the combined sensitivities.

Figure 2c, d show the sensitivities for our toy disappear-
ance and appearance experiments computed for T1. The over-
all features are similar to those of T2 and the weight of the
rate and shape information in the three Δm2 regions are also
consistent. However, since the parameter space of the alter-
native hypothesis is now restricted, T1 has greater power than
T2 for a given Δm2 value. This leads to sensitivities that are
stronger by up to a factor 2 in terms of sin2(2θ). This is par-
ticular evident for high Δm2 values where, differently from
T2, now the number of effective degrees of freedom in the
alternative hypothesis is always one (only sin2(2θ) is free)
and the total sensitivity is equal to the one of the rate analysis.
The restriction of the parameter space is also the reason why
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the maximum of the likelihood can now correspond to the
no-signal hypothesis and the discovery sensitivity is stronger
than the exclusion sensitivity even in a shape analysis.

It should be emphasized that the mixing angle in the plot
for the disappearance experiment is different from that of
the appearance experiment. The minimal value of sin2(2θ)

accessible by an experiment cannot be used as a figure of
merit to compare disappearance and appearance experiments.
A comparison can however be done assuming a specific
theoretical model that connects the value of sin2(2θee) and
sin2(2θμe) [7].

4.2 Results from observed data sets

The confidence region derived from an observed data set can
significantly differ from the expectations because of statis-
tical fluctuations on the number of signal and background
events. This issue is particularly relevant when no signal is
observed and an upper limit on a parameter is reported. Fre-
quentists upper limits can indeed become extremely strong
in case of background fluctuations.

In sterile neutrino searches, when no signal is observed,
the confidence region extends down to sin2(2θ) = 0 for most
of the Δm2 values and it is bounded by an upper limit on
sin2(2θ) that plays the role of the maximum signal strength.
It is hence informative to report the observed upper limit
along with its expected value and variance under the no-
signal hypothesis. This has been first proposed in Ref. [8]
and it is nowadays common practice.

Figure 3a shows the confidence region derived with T2

from a pseudo-data set generated for the toy disappearance
experiment under the no-signal hypothesis. In addition to the
confidence region, the expected distribution of the upper limit
is displayed in terms of its median value and 68%/95% cen-
tral intervals. The median is exactly the exclusion sensitivity
plotted in Fig. 2a. The observed upper limit fluctuates around
the median expectation. This is true for all possible realiza-
tions of the data as the likelihood is maximized for a specific
phase of the oscillatory pattern that matches the statistical
fluctuations between the bins of the data set. This phase is
reproduced at regularly spaced values of Δm2 over the full
parameter space. The limit gets weaker when the phase helps
describing the data, stronger when it does not. The overall
shift of the observed limit with respect to the median value
is instead due to the fact that the random number of events
injected in this particular data set is slightly above its median
expectation. The width of the green and yellow bands gives
an idea of the magnitude of the fluctuations at a given Δm2,
as they contain the upper limit on sin2(2θ) with a probability
of 68% and 95% respectively.

The results and expectations based on T1 are shown in
Fig. 3b. For a given Δm2 value, T1 has greater power than
T2 as the parameter space allowed under the alternative
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Fig. 3 Confidence regions at 95%-CL for a pseudo-data set generated
by the toy disappearance experiment under the no-signal hypothesis.
The top plot is obtained using T2 while the bottom plot using T1. The
probability distribution of the upper bound of the confidence region
expected under the no-signal hypothesis is displayed through its median
value (i.e. the exclusion sensitivity) and the 68% and 95% central inter-
vals

hypothesis is smaller. This leads to stronger limits in terms
of sin2(2θ). On the other hand, the non-standard construc-
tion of the confidence region can lead to accept the no-signal
hypothesis (i.e. sin2(2θ) = 0) at some Δm2 value and reject
it at others (see for instance Δm2∼1 eV2). This can happen
because the tests performed by T1 at different Δm2 values
are independent by each other.

The difference between T2 and T1 is more evident when a
signal is present in the data. Figure 4 shows the reconstructed
confidence regions for a pseudo-data set generated assuming
a sterile neutrino with sin2(2θ) = 0.04 and Δm2 = 1 eV2.
The confidence regions are shown for 68% and 95% CL along
with the discovery sensitivity. The analysis based on T2 is
able to properly pin down the signal and it returns a two-
dimensional confidence region surrounding the true parame-
ter values. T1 returns a sin2(2θ) region that is similar to that
of T2 for Δm2 values close to the true one. However it returns
an allowed region for any Δm2 value. This is again due to
the non-standard construction of the confidence region used
in combination with T1. As tests performed at different Δm2

123



  750 Page 12 of 22 Eur. Phys. J. C           (2020) 80:750 

)eeθ(22sin

]2
 [e

V
2

mΔ

2−10 1−10
1−10

1

10

1T 2T

68% CL 68% CL

95% CL 95% CL

Disappearance

rate + shape

6−10 3−10
p-value

1−10

1

10

σ1σ2σ3σ4σ5
Fig. 4 Confidence regions at 68% and 95% CL for pseudo-data gen-
erated by the toy disappearance experiment assuming the existence of
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discrepancy is due to the look-elsewhere effect

values are independent from each other, an allowed sin2(2θ)

interval is always found.
In summary, the greater power of T1 in terms of sin2(2θ)

comes at the cost of losing any capability in constraining
Δm2. This is consistent with the fact that this test statistic
originates from an hypothesis test in which Δm2 is consid-
ered to be a known and fixed parameter.

4.3 Validity of Wilks’ theorem

Constructing the probability distributions of the test statistic
through Monte Carlo methods can be computationally chal-
lenging and often it is avoided by invoking the asymptotic
properties of the generalized likelihood ratio test. If the regu-
larity conditions required by Wilks’ theorem are met [39,41],
T2 and T1 are indeed expected to follow a chi-square distri-
bution with a number of degrees of freedom equal to the
effective number of free parameters of interest [42]. Sterile
neutrino experiments do not typically fulfill these regularity
conditions. The parameter sin2(2θ) is often reconstructed
next to the border of its allowed range (only positive values
are physically allowed) or far from its true value when the
statistical fluctuations mimic a signal. This induces a bias in
its maximum likelihood estimator. In addition, for T2, the
alternative hypothesis becomes independent by Δm2 when
sin2(2θ) is equal to zero.

The impact of assuming Wilks’ asymptotic formulas has
been evaluated by studying the coverage probability, i.e. the
probability that the confidence region covers the true value of

the parameters of interest [35]. If the asymptotic formulas are
a good approximation of the actual test statistic distribution,
the coverage should be equal to the confidence level of the
test used to create the confidence region. A direct comparison
of the test statistic distributions is discussed in Appendix D.

The coverage probability computed for T2 assuming the
validity of Wilks’ theorem is shown in Fig. 5 for both our
toy disappearance and appearance experiments, considering
separately a rate and shape analysis. The test statistic dis-
tributions have been approximated by a chi-square with one
or two degrees of freedom, according to the number of non-
degenerate parameters of interest in the alternative hypothe-
sis (see insets in the figure). The coverage is generally correct
in the parameter space where the experiment is sensitive to
a signal. The rate analysis shows just a slight overcoverage
where the experiment is not sensitive. This is expected as
sin2(2θ) is bounded to positive values, causing an effective
reduction of the degrees of freedom of the test when the signal
is reconstructed close to the edge of the allowed parameter
space [43].

The shape analysis has instead a severe undercoverage
for sin2(2θ) values below the sensitivity of the experiment
and the coverage can be as low as 60%, while its nominal
value should be 95%. The undercoverage is connected to the
fact that when a binned analysis is performed, it is always
possible to find a sterile neutrino hypothesis whose oscil-
latory pattern helps reproducing the statistical fluctuations
between bins. As a result, even if no signal is present in the
data, the maximum of the likelihood always corresponds to
some oscillation hypothesis. This is conceptually equivalent
to overfitting and it artificially increases the degrees of free-
dom of the test and the test statistic values (see discussion
in Appendix D). A region of overcoverage is present also in
the parameter space within the sensitivity of the experiment
at low Δm2 values, where the oscillation length becomes
close to the dimension of the detector, creating a degeneracy
between the parameters of interest. Together with the restric-
tion of the parameter space (sin2(2θ) ≤ 1), the number of
effective degrees of freedom changes.

When the analysis includes both the rate and shape infor-
mation, the coverage shows a combination of the features
discussed above. In particular, in the parameter space beyond
the sensitivity of the experiment, the overcoverage of the rate
analysis partially compensates for the undercoverage of the
shape analysis. Severe undercoverage regions are however
still present, consistently with the results obtained in Ref. [8].

The difference between the outcome of a test based on
probability distributions constructed with Monte Carlo tech-
niques and their chi-square approximation is shown in Fig. 6.
Both the sensitivities and the confidence regions recon-
structed from pseudo data are significantly different, up to
70% in terms of sin2(2θ). For experiments with a sensitiv-
ity dominated by the shape analysis, the confidence region
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Fig. 5 Coverage of the 95%-CL confidence region based on the test
performed with T2 and assuming that this test statistic follows chi-
square distributions. The number of degrees of freedom of the chi-square
distribution is two (i.e. the number of free parameters in the likelihood)
unless these parameters are degenerate such as sin2(2θ) and Δm2 in
the rate analysis or sin2(2θ) and Ne in the shape analysis of the appear-
ance experiment. The top panels show the coverage probability for the

toy disappearance experiment, the bottom panels for the toy appearance
experiment. For each kind of experiment the coverage for a rate analysis
(left), a shape analysis (middle) and the full analysis (right panel) are
shown separately. The color palette used to show the coverage proba-
bility is the same in all plots. The 95% CL exclusion sensitivity is also
displayed to delimit the parameter space in which the experiment is
sensitive

can even switch from an upper limit to an island, leading
to an unjustified claim for a discovery. The probability for
this event to occur can be significant, up to 40% in our toy
experiment for the considered hypothesis. More details on
the probability distributions of T2 and the option to com-
pute exclusion sensitivities based on the Asimov data set are
discussed in Appendix D.

While the asymptotic approximation is not satisfactory
for tests based on T2, it is instead very good for tests based
on T1. The coverage of T1 has exactly the same features of
Fig. 5a, d and therefore it is not shown here. The coverage is
correct in the region in which the experiment is sensitive and
is slightly higher (97.5%) in the parameter space beyond the
experimental sensitivity. The possibility of avoiding a Monte
Carlo construction of the probability distributions of T1 is a

significant advantage and contributed to make T1 popular in
the sterile neutrino community.

5 Testing of simple hypotheses

The exclusion sensitivity based on T0 for our toy disappear-
ance experiment is shown in the first row of Fig. 6 separately
for the rate, shape and combined analysis. This test provides
a sensitivity significantly stronger than what obtained with
T2 and T1. This is expected as the test involves “simple”
hypotheses in which the parameters of interest are fixed.
The parameter space of the alternative hypothesis is now
even more restricted than for T1 and the test has maximum
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Fig. 6 Comparison of the sensitivity and confidence regions at 95% CL
for the toy disappearance experiment obtained with T2, T1 and T0. The
exclusion and discovery sensitivities (first and third row respectively)
have been computed using 10,000 pseudo-data sets. The confidence
regions for a concrete data-set have instead been calculated for a pseudo-
data set generated under the no-signal hypothesis (second row) and one

generated assuming a sterile neutrino signal with sin2(2θ)=0.04 and
Δm2=1 eV2 (fourth row). The rate (left) and shape analysis (middle)
are shown independently and combined together (right column). The
probability distribution of the test statistics are computed using Monte
Carlo techniques. Results obtained when approximating the distribu-
tions with chi-square functions are shown for T2
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power. The discovery sensitivity cannot be calculated as the
no-signal hypothesis is always accepted when used as H0.

The confidence regions extracted for specific pseudo-data
sets not containing a signal is shown in the second row of
Fig. 6. T0 can provide extremely stringent constraints on
sin2(2θ) that are orders of magnitudes beyond the sensitivity.
To mitigate this behaviour this test statistic is used in com-
bination with the CLs method [44] that penalizes constraints
stronger than the sensitivity by introducing an overcoverage
in the test. The combination of T0 and the CLs method is
known as “Gaussian CLs” [10].

The plots in the fourth row of Fig. 6 show the confidence
regions extracted for a pseudo-data set with an injected sig-
nal. These regions have two peculiarities. Similarly to T1, the
non-standard construction of the confidence region produces
an allowed sin2(2θ) interval for each Δm2 value. However,
differently from T1, the sin2(2θ) intervals are now always
connected to the no-signal hypothesis sin2(2θ)=0, even for
the true Δm2 value, as the alternative hypothesis in the test
is now fixed to the no-signal hypothesis.

In conclusion, while T0 has a greater power and can pro-
duce the strongest limits in terms of sin2(2θ), it produces
confidence regions that cannot constrain either of the param-
eters of interest. We confirm that the probability distribution
of T0 converges to a normal distribution for our toy appear-
ance and disappearance experiment as reported in Ref. [10].

6 Comparison and discussion

The main difference among the statistical methods applied
to the search for sterile neutrinos has been traced back to
the definition of the alternative hypothesis in the hypothesis
testing procedure. The considered definitions lead to three
different test statistics that are used to construct confidence
regions in the sin2(2θ) vs. Δm2 parameter space. The sensi-
tivities and confidence regions constructed for each test are
compared in Fig. 6.

In T2, the parameter space of the alternative hypothesis
covers all possible values of sin2(2θ) and Δm2. This test is
the natural choice when the values of the parameters of inter-
est are unknown and a generic search over the full param-
eter space is intended. Using this test for an interval esti-
mation procedure provides naturally two-dimensional confi-
dence regions in the sin2(2θ) vs. Δm2 space. The probability
distributions of this test statistic are not well approximated
by chi-square functions in the analysis of sterile neutrino
experiments, and such an approximation can lead to very
inaccurate confidence regions and even to erroneously reject
the no-signal hypothesis.

In T1, the value of Δm2 is assumed to be known prior
to the experiment and the parameter space of the alterna-
tive hypothesis is restricted to a unique Δm2 value. T1 nat-

urally generates one-dimensional confidence regions in the
sin2(2θ) space. Two-dimensional confidence regions can be
technically created as as union of sin2(2θ) intervals, each
computed for a different fixed value of Δm2. Such confi-
dence regions have proper coverage but also some patholo-
gies. In particular, while the constraints on sin2(2θ) are more
stringent than for T2, the test has no capability to constrain
Δm2 and the confidence region extends over any Δm2 value.
The conditions of Wilks’ theorem are almost fulfilled and its
probability distribution follows accurately a chi-square func-
tion except in the parameter space close to the physical border
where the probability distribution becomes half a chi-square
function and half a delta-Dirac function at zero [43].

The test statistic T0 compares two simple hypotheses with
a fixed value of the parameters of interest. The alternative
hypothesis is defined as the no-signal hypothesis. Thus, the
no-signal hypothesis is accepted by construction when used
as H0. The natural confidence regions constructed using this
test are point-like. Two-dimensional regions in the sin2(2θ)

vs Δm2 can be obtained as union of point-like confidence
regions, but this non-standard construction produces regions
that do not constrain the parameters of interest and only
set upper limits on sin2(2θ). These limits are consistently
stronger than for T1 and T2 as this test has maximum power.
The asymptotic formulas, namely Gaussian distributions,
seem to describe well the probability distribution of this test
statistic in a large set of conditions.

In summary, all the test statistics are conceptually correct
and have a natural scope of application. The more informa-
tion is available, the more we can restrict the parameter space
of the alternative hypotheses and the greater the power of the
test becomes. However, some issues arise when these tests
are used – regardless of what is their natural scope – to build
two-dimensional confidence regions in the Δm2 vs. sin2(2θ)

space. The regions produced by T1 and T0 do not constrain
Δm2 as they have an allowed sin2(2θ) interval for any Δm2

value. In addition, the regions produced by T0 do not even
constrain sin2(2θ) as the sin2(2θ) interval is always con-
nected to sin2(2θ)=0, even in the presence of a strong signal.
Since the primary goal of the current experiments is to find a
signal at unknown sin2(2θ) and Δm2 values, we find natural
to adopt an analysis that is able to pin down simultaneously
both oscillation parameters and recommend the usage of T2.

To ease the comparison of the performance and results
from different experiments, it would be convenient for the
field to adopt a standardized analysis procedure. Based on the
results presented in this article and expanding the proposal
of Ref. [8], such a standard analysis could follow these steps:

1. identification of the most likely value for sin2(2θ)

and Δm2 defined as the value corresponding to the
maximum of the likelihood function over the space
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{sin2(2θ),Δm2 : 0 ≤ sin2(2θ) ≤ 1,Δm2 ≥ 0} (i.e.
maximum likelihood estimators);

2. check that the data is compatible with the model cor-
responding to the most likely value of the parameters
of interest by using a “likelihood ratio” goodness-of-fit
test [34] whose probability distribution is verified or con-
structed with Monte Carlo techniques2;

3. construct the two-dimensional confidence region based
on T2. If the no-signal hypothesis is accepted, the con-
fidence region will extend down to vanishing sin2(2θ)

values and its upper limit can be plotted along with its
median value (i.e. the exclusion sensitivity) and 68/95%
central intervals expected under the no-signal hypothe-
sis (as in Fig. 3). If the no-signal hypothesis is instead
rejected, the confidence region can be plotted for differ-
ent confidence levels along with the discovery sensitivity
as in Fig. 4.

When the number of events observed by an experiment is
large and each bin of the data set contains tens of counts or
more, the Poisson probability in the likelihood function can
be approximated by a Gaussian probability. In this case, the
likelihood function can be converted into a chi-square func-
tion. This treatment can be regarded as a sub-case of what is
discussed in the previous sections. However, independently
by the number of events, Wilks’ theorem is not valid for
T2 because of the presence of physical borders and of the
statistical fluctuations in the data sample that mimic a ster-
ile neutrino signature. In addition, the alternative hypothesis
becomes independent by Δm2 when sin2(2θ) tends to zero.
The construction of the test statistic probability distribution
through Monte Carlo techniques is hence mandatory in order
to ensure accurate results. The Monte Carlo construction is
computationally demanding, but it is feasible as proved by
the experiments that are already performing it. Indeed, the
proposed analysis based on T2 is similar to the one used by
e.g. MiniBooNE and PROSPECT.

The inapplicability of Wilks’ theorem and the non-trivial
interplay between the rate and shape analysis have repercus-
sions also on the global fits for which the likelihood of each
experiment must be combined and the probability distribu-
tion of T2 must be computed by generating simultaneously
pseudo-data for all the experiments considered. For this rea-
son, it would be useful if the experiments would release in
addition to their likelihood fit function and their data, also the
probability distributions of the individual signal and back-

2 We studied the probability distribution of the likelihood-ratio
goodness-of-fit test for a large number of configurations of our disap-
pearance experiment and found that generally it can be approximated
with a chi-square function. Nevertheless, we also identified some situ-
ations, e.g. in a shape analysis, in which the distribution follows a chi-
square function with a number of degrees of freedom different from the
expected one.

ground components used in the fit and for the pseudo-data
generation.

7 Conclusions

The statistical methods used to search for short-baseline neu-
trino oscillations induced by an hypothetical sterile neutrino
with mass at the eV scale have been reviewed and compared.
Three hypothesis testing procedures are used in the field to
create confidence intervals. Each procedure is based on a spe-
cific test statistic. We identified how two out of the three tests
make implicit assumptions on the value of the parameters of
interest for sterile neutrinos, i.e. Δm2 and sin2(2θ). Making
different assumptions changes the question addressed by the
test and, consequently, changes the result of the analysis.

For the first time, the performance of the three tests have
been compared in a coherent way over a comprehensive set of
limit setting and signal discovery scenarios. In particular, we
considered both disappearance and appearance experiments
as well as rate- and shape-based analyses. For each scenario
we constructed the probability distributions of the test statis-
tic using Monte Carlo techniques and found that they can dif-
fer significantly from the usual asymptotic approximations.
The confidence regions reconstructed by the three tests can
be significantly different, making hard to compare the results
from experiments that adopt different analyses. Our results
are consistent with those obtained in Refs. [8–10] for specific
scenarios.

The current generation sterile-neutrino searches aim at
finding a signal anywhere in the parameter space available
to the experiment. This should naturally lead to an analysis
based on a test without any assumption on the value of the
oscillation parameters. In this way, the analysis will be able
to constrain both the value of Δm2 and sin2(2θ) when a
signal is observed. Thus, we recommend the use of T2 and the
construction of its probability distributions through Monte
Carlo techniques.
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Appendix A: The likelihood

The general form of the likelihood used in the analysis of
sterile neutrino experiments is given in Sect. 3.1. The com-
putational task of finding the maximum of the likelihood is
typically performed by minimizing the negative logarithm of
the likelihood (NLL). Moving to the logarithm space is con-
venient from the computational and numerical point of view.
This is one of the reason why the test statistics are defined as
the logarithm of the likelihood.

Figure 7 shows the NLL as a function of Δm2 and sin2(2θ)

for two sets of pseudo-data of the toy disappearance experi-

ment. The two sets of pseudo-data are respectively a realiza-
tion of the no-signal hypothesis and a realization of a hypoth-
esis with sin2(2θ)=0.04 and Δm2=1 eV2. They are the same
data sets used for the comparison of the performance of the
statistical methods in the previous sections. Local minima at
regularly-spaced Δm2 values are present for both data sets.
This feature is due to the oscillatory nature of the sought-after
signal and appears in any realizations of the data.

The presence of multiple minima makes it difficult for
a minimization algorithm to converge to the absolute mini-
mum, in particular for those algorithms relying on the deriva-
tive of the function (e.g. the algorithms known as SIMPLEX
and MIGRAD in the MINUIT software package [45]). To
reliably find the absolute minimum we adopt a scanning
approach in which Δm2 is increased progressively with uni-
form steps in the logarithmic space, each step having a length
of log(Δm2/eV2) � 0.01. At each Δm2 value a minimiza-
tion against sin2(2θ) is performed. This minimization is not
problematic because, when the value of Δm2 is fixed, the
likelihood function along sin2(2θ) is a smooth function with
a unique minimum.

The NLL for the pseudo-data generated under the no-
signal hypothesis shows another important feature: the abso-
lute minimum does not correspond to the no-signal hypoth-
esis. This is the case for all the realizations of the data of the
toy disappearance experiment. The sought-after oscillatory
signature is indeed mimicked by the statistical fluctuations
between adjacent bins and the data are described always bet-
ter by an oscillation hypothesis than by the no-signal hypoth-
esis. As discussed later in Appendix D, this leads to a defor-
mation of the test statistic probability distribution.

Appendix B: Generation of pseudo-data

The generation of pseudo-data is performed with Monte
Carlo techniques. The experimental parameters of the two
toy experiments used in this work are quoted in Sect. 2
and Table 1. Pseudo-data for a specific hypothesis H(X,Y) :
{sin2(2θ),Δm2 : sin2(2θ) = X,Δm2 = Y } are generated
according to the probability distribution of signal (hei j (X,Y))

and background (hbi j ) events as a function of the i-th bin in
L rec and j-th bin Erec. To construct a set of pseudo-data, a
Poisson random number is generated for each i j bin using as
expectation

λi j = Ñ e(X,Y) · hei j (X,Y) + Ñ b · hbi j

where Ñ e(X,Y) is the expected number of neutrino interac-
tions under the hypothesis H(X,Y) and Ñ b is the expected
number of background events. For each set of pseudo-data
also the external constraints N̄ e(X,Y) and N̄ b (see Eq. 6) are
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sampled from Gaussian distributions with means Ñ e(X,Y)

and Ñ b and standard deviations σ e and σ b respectively.
Ne and Nb are nuisance parameters in our analysis and

their true values Ñ e(X,Y) and Ñ b are regarded as fixed dur-
ing the construction of ensembles of pseudo-data. In contrast
to our construction, the expectation values of the nuisance
parameters could also be sampled from a prior probability
distribution. Ensembles generated in this way can be used to
construct the probability distribution of a test statistic tak-
ing into account the systematic uncertainties on the nuisance
parameters [11]. This construction leads to probability dis-
tributions that are the average over a set of models, each
model having different values of the nuisance parameters
and a weight proportional to the prior probability of those
specific values. This construction can be considered for T0.
In contrast, the asymptotic probability distribution for test
statistics based on the profile likelihood ratio such as T1 and
T2 does not depend on the value of the nuisance parameters.
To ease the comparison between test statistics, we generated
the ensembles of pseudo-data always assuming fixed values
of the nuisance parameters.

Appendix C: Hypothesis testing and sensitivity

The definition of the set of accepted/rejected hypotheses in
this work is based on a Neyman construction in which the
ordering principle is defined by the test statistic. The con-
struction follows the steps outlined in this section.

Let T be any of the three statistics in Table 2. T is used
to test a specific hypothesis H(X,Y) : {sin2(2θ),Δm2 :
sin2(2θ) = X,Δm2 = Y } given a set of data. We will use
the symbol TX,Y to make explicit which hypothesis is being
tested. The set of hypotheses accepted or rejected by the test
is defined according to how the observed value of the test
statistic Tobs

X,Y compares to its critical value Tcrit
X,Y. To this pur-

pose, the critical value is determined for a predefined test size
α as:

α =
∫ ∞

Tcrit
X,Y

f (TX,Y|H(X,Y)) dTX,Y

The probability distributions f (TX,Y|H(X,Y)) are constructed
by computing the test statistic for each data set in ensembles
of 104 pseudo-data sets produced under the true hypothesis
H(X,Y).

For each hypothesis to be tested the following steps are
carried out:

1. compute Tcrit
X,Y given the specific probability distribution

for H(X,Y) and a test size of 0.05;
2. Tobs

X,Y is evaluated for the considered data set;

3. the hypothesis is accepted if Tobs
X,Y ≤ Tcrit

X,Y, otherwise the
hypothesis is rejected.

Two definitions of sensitivity have been used in this arti-
cle: the exclusion sensitivity that defines the set of hypothe-
ses that would be rejected assuming the no-signal hypothesis,
and the discovery sensitivity that defines the set of hypothe-
ses for which we expect to reject the no-signal hypothesis.
The formal definition of these two quantities is based on
the median expected value of the test statistic under cer-
tain hypotheses that can be calculated using an ensemble
of pseudo-data.

The exclusion sensitivity is defined as the set of hypothe-
ses for which the test is expected to provide a median test
statistic value exactly of Tcrit

X,Y assuming the data were gener-
ated from the no-signal hypothesis. To find the set of hypothe-
ses fulfilling this requirement, the following steps are carried
out for each H(X,Y):

1. compute Tcrit
X,Y given the specific probability distribution

for H(X,Y) and a test size of 0.05;
2. compute med[TX,Y|H(0,0)], i.e. the median value of

f (TX,Y|H(0,0));

Since the set of hypotheses considered is usually discrete,
finding a hypothesis that meets perfectly the condition above
is not possible. The requirement is hence softened: for a
given Δm2 value, the hypotheses are tested for increasing
values of sin2(2θ) and the first one fulfilling the condition
med[TX,Y|H(0,0)] > Tcrit

X,Y is added to the set.
The discovery sensitivity is defined as the set of hypothe-

ses that, if true, would result in a rejection of the no-signal
hypothesis with a probability of 50%. To find the set of
hypotheses fulfilling this requirement, the following steps
are carried out for each H(X,Y):

1. Tcrit
0,0 is computed given the specific probability distribu-

tion for H(0,0) and a test size of 0.05;
2. compute med[T0,0|H(X,Y)], i.e. the median value of

f (T0,0|H(X,Y));

Similarly to the previous case, a softer requirement is typi-
cally applied when considering a discrete set of hypotheses.

Appendix D: Probability distributions of T2

Figure 8 shows the probability distributions of T2 computed
from an ensemble of pseudo-data generated assuming the no-
signal hypothesis and their expected asymptotic formulas.
The distributions are shown for the toy disappearance and
appearance experiments, assuming a rate analysis, a shape
analysis, and their combination.

The top panels show the distributions obtained when test-
ing the no-signal hypothesis (i.e. testing the same hypothesis
used to generate the pseudo-data). In this case, according to
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Fig. 8 Distributions of T2 computed from an ensemble of pseudo-
data generated assuming the no-signal hypothesis and their
asymptotic formulas. The distributions are shown for a test
of the no-signal hypothesis (panel a and b using 107 sets
of pseudo-data) and of an oscillation hypothesis (panel c and
d using 104 sets of pseudo-data). The oscillation hypothesis

has Δm2=1 eV2 and sin2(2θ)=0.002/0.02/0.07, respectively for
the appearance/disappearance(shape&combined)/disappearance(rate)
experiment. The value of the angle is chosen such that the hypothe-
sis is very close to the experimental sensitivity for each kind of analysis

Wilks’ theorem, the distributions should tend asymptotically
to a chi-square function. However, considering that sin2(2θ)

is bounded to positive values, the distributions are expected
to be described by a half chi-square [43]. The bottom panels
show the distributions obtained when testing an oscillation
hypothesis (i.e. testing an hypothesis different from the one
used to generate the pseudo-data). In this case, according to
Wald [46], the distributions should tend asymptotically to a
non-central chi-square. In both cases the number of degrees
of freedom of the chi-square function is given by the dif-
ference between the number of free parameters in the alter-
native and the null hypothesis. The non-centrality parame-
ter is defined through the Asimov data set as discussed in
Ref. [42].

The distributions for the rate analysis are to a first
approximation described by the asymptotic formulas. On
the contrary, the distributions for the shape analysis and
the combination of rate and shape differ significantly and
are deformed towards higher values of the test statis-
tic. This is due to the fact that the sought-after oscil-

latory signature is often preferred to the no-oscillation
hypothesis and the best fit does not correspond to the
true hypothesis. In other words, the extra flexibility of
a model with oscillations can always be used to better
describe the data and the statistical fluctuations between
bins.

The exclusion sensitivities based on the asymptotic for-
mulas are compared to those based on the distributions con-
structed through Monte Carlo techniques in Fig. 9. The
approximated sensitivities calculated using the asymptotic
formulas are accurate within 10%. This might seem incon-
sistent with the fact that the test statistic distributions are
not well described by the asymptotic formulas. However, the
distributions are consistently shifted at higher values for all
possible hypotheses and this coherent bias preserves the rela-
tionship between the distribution quantiles. This might not
be valid if the sensitivity is computed for an other confidence
level (i.e. an other quantile of the distribution) or if the exper-
imental parameters are changed.
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Fig. 9 Comparison between the 95% CL exclusion sensitivities com-
puted using the test statistic distributions generated through Monte
Carlo techniques and their analytical approximation based on Wilks and
Wald’s formulas and the Asimov data set. The sensitivities are shown
for the toy disappearance and appearance experiment, using the shape
and combined analysis. The sensitivities for a rate analysis fully agree
with each other and are not shown

Appendix E: Look-elsewhere effect

The statistical significance associated to the observation of a
sterile neutrino signal can be expressed through the p-value
computed for the no-signal hypothesis given the observed
data:

0 5 10 15 20 25 30
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lu
e
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1
extrapolation based on T
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Fig. 10 Global p-value computed for the no-signal hypothesis as a
function of the value of the test statistic T2. The distribution computed
from an ensemble of pseudo-data generated under the no-signal hypoth-
esis (MC) is compared with the extrapolation based on T1 and the pro-
cedure discussed in the text. The value of the parameters used for the
extrapolation are u0 = 1 and

〈
Nu0

〉 = 5.603, as estimated from 1000
sets of pseudo-data

p =
∫ ∞

Tobs
0,0

f (T0,0|H(0,0)) dT0,0

While T2 provides a unique p-value for the no-signal hypoth-
esis, T1 provides a p-value for each tested value of Δm2

(see Fig. 4). For this reason the p-value provided by T1 is
often called local p-value, while the p-value provided by
T2 is called global p-value. A procedure to estimate the
global p-value using the local estimation has been proposed
in Ref. [37] based on previous results from Davis [47]. The
procedure is based on a linear correction of the minimum
local p-value found:

pglobal ≈ min
Δm2

plocal + 〈Nu〉

where 〈Nu〉 is the mean number of “upcrossings” above the
level u in the range of considered Δm2 values for a test of
the no-signal hypothesis based on T1. Each upcrossing corre-
sponds to a Δm2 value for which the signal hypothesis is pre-
ferred over the no-signal hypothesis at a certain level u. The
mean number of upcrossings above the level u and lower level
u0 is connected by the relationship 〈Nu〉 = 〈

Nu0

〉
e−(u−u0)/2.〈

Nu0

〉
can be estimated from a small ensemble of pseudo-

data. The possibility of using a small ensemble is conve-
nient because if u0 is small the number of upcrossings per
data set becomes large. The approximation becomes valid for
u → ∞, an upper limit on the p-value is given otherwise.

Computing a global p-value from a local estimation could
be interesting for sterile neutrino searches as the local p-value
construction can be performed assuming the asymptotic for-
mula for the probability distributions of T1. The global p-
value estimated through the correction discussed above is
shown in Fig. 10 for the toy disappearance experiment. The
p-value computed from T2 using an ensemble of pseudo-
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data is also shown. The distributions have the same shape
for large values of the test statistic but a different offset. The
offset implies that the p-value extrapolated from T1 would be
overestimated by a factor of 1.4. This factor is not constant
and depends on the specific experiment.

While a correction can provide accurate results in prob-
lems such as a peak search, the oscillatory nature of the signal
sought-after by sterile neutrino experiments induces a corre-
lation in the number of upcrossings. Such a correlation is due
to the harmonics in Eqs. (1) and (2) occurring at different
values of Δm2. It might be possible to correct the number of
upcrossings to account for the spurious occurrences but this
requires additional studies.
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