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The Kibble-Zurek mechanism constitutes one of the most fascinating and universal phenomena in the
physics of critical systems. It describes the formation of domains and the spontaneous nucleation of
topological defects when a system is driven across a phase transition exhibiting spontaneous symmetry
breaking. While a characteristic dependence of the defect density on the speed at which the transition is
crossed was observed in a vast range of equilibrium condensed matter systems, its extension to intrinsically
driven dissipative systems is a matter of ongoing research. In this Letter, we numerically confirm the
Kibble-Zurek mechanism in a paradigmatic family of driven dissipative quantum systems, namely exciton-
polaritons in microcavities. Our findings show how the concepts of universality and critical dynamics
extend to driven dissipative systems that do not conserve energy or particle number nor satisfy a detailed

balance condition.
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One of the most intriguing universal phenomena
encountered in the physics of critical systems is the so-
called Kibble-Zurek (KZ) mechanism, which successfully
describes the spontaneous appearance of long-lived topo-
logical defects in complex systems that undergo a sponta-
neous symmetry breaking when crossing a critical point at a
finite speed [1,2]. This mechanism is general and spans
across vastly different physical realizations as well as
length and energy scales, with topological defects ranging
from monopoles and vortices to strings and domain walls,
depending on the symmetries and the spatial dimensions.
In spite of this variety, the density of topological defects has
an universal dependence on the rate of change of the control
parameter across the transition and on the critical exponents
of the system [1-5].

This phenomenon can be physically understood by
considering the different stages of critical dynamics when
the control parameter is scanned across the critical point. In
the initial stages of the dynamics, far from the critical point,
the system exhibits an adiabatic behavior, permitted by the
fact that the characteristic relaxation time 7 is much shorter
than the characteristic time of the control parameter ramp.
Later on, since the characteristic relaxation time 7 diverges
at the critical point, there must necessarily exist a time
after which the system is no longer able to readjust itself
adiabatically following the variation of the control param-
eter and thus enters into a so-called impulse regime.
According to the KZ picture, the density of the topological

0031-9007,/20/125(9)/095301(6)

095301-1

defects that are left behind at this point of the evolution is
determined by the correlation length of the system at this
“crossover time” [2].

This KZ mechanism, first proposed in the cosmological
context [1,2], has been studied in vastly different con-
texts spanning across superconducting junction arrays,
ion crystals, quantum Ising chains, classical spin systems,
holographic superconductors, fermionic and bosonic
atomic and helium superfluids, and cosmological scenarios
[6-16], with direct experimental confirmations in a broad
range of different physical systems [17-31]. A common
feature of these studies is that they mostly address cases
that are at, or close to, thermal equilibrium and conserve
energy and particle number.

Recent experimental progress in the study of exciton-
polaritons in semiconductor microcavities embedding quan-
tum wells [32—34]—henceforth referred to as polaritons—has
led to hybrid light-matter systems that exhibit a condensation
phase transition and the spontaneous appearance of a macro-
scopic coherence while being inherently in a strongly non-
equilibrium condition [32], as the system requires an external
pump to compensate for the losses by continuously injecting
new polaritons. Polaritons therefore constitute excellent
physical platforms to explore the influence that the non-
conservation of energy and particle number, and the breaking
of the detailed balance condition, may have on the critical
dynamics. Pioneering works have started addressing the
new features exhibited by the ordered state [35,36], by the
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nonequilibrium phase transition [37-40], the extension of the
adiabaticity concept to nonequilibrium scenarios [41-43],
the spontaneous formation of defects under a time-dependent
pump [44-46], and the late-time relaxation past a sudden
quench [47.48].

In this Letter, we investigate the KZ mechanism in the
nonequilibrium phase transition, focusing, in contrast to
previous studies [44—48], on the characteristic dependence
of the spontaneous vortex nucleation process on the switch-
on rate of the pump. Our numerical results provide a direct
evidence of the adiabatic-to-impulse crossover and confirm
the validity of the KZ picture also in the driven dissipative
context of a nonequilibrium phase transition. Compared to
a direct study of the number of vortices that are still present
at the end of the ramp as a function of the ramp speed, our
approach has the key advantage of being insensitive to
those vortex annihilation processes that may occur past the
critical point [5] and were shown to contribute to the late-
time phase ordering dynamics studied in [48].

The key idea for testing and demonstrating the KZ
mechanism is to numerically simulate the dynamical
evolution and extract from it the crossover time (sub-
sequently referred to as —7), after which the system is
no longer able to adiabatically follow the steady state
corresponding to the instantaneous value of the pump.
This value is then compared to the corresponding predic-
tion of the KZ model, i.e., to the time at which the speed
of variation of the control parameter starts exceeding
the characteristic relaxation time of the system. Similar
strategies were previously used for equilibrium scenarios
in [6-8,10].

In order to validate the universality of the critical
polariton dynamics, we perform two independent calcu-
lations for the two most celebrated pumping schemes,
which differ in their method of injection and subsequent
relaxation processes leading to condensation [32]; specifi-
cally, we consider the optical parametric oscillation (OPO)
scheme and the incoherent pumping (IP) scheme (see
Supplemental Material [49] for details).

Polariton phase transition and modeling.—As discussed
in the literature on spontaneous macroscopic coherence
and the nonequilibrium condensation phase transition of
polaritons [32,48,50-53,64,65], both the OPO and the IP
polariton systems show rich yet qualitatively very similar
phase diagrams, with two main distinct phases: (i) a
disordered phase displaying a low density of polaritons,
an exponential decay of spatial correlations and a plasma of
unbound vortices and (ii) a (quasi)ordered phase displaying
a significant density of polaritons, an algebraic decay of
spatial correlations (at least up to relatively long distances
[39,52,54]), and a low density of vortices, mostly bound in
vortex-antivortex pairs [48,52,65].

The intensity of the pump, namely f, (for OPO) and P
(for IP), acts as a control parameter and the system is driven
from one phase to the other by simply ramping up its value

in time at different rates. As usual in condensation phase
transitions, the transition from the disordered to the (quasi)
ordered phase is accompanied by the breaking of the
U(1) symmetry associated with the phase of the polariton
condensate. In the present 2D case, it can be pictorially
understood as being mediated by the unbinding of vortex-
antivortex pairs into a plasma of free vortices [39,52,66,67].
A schematic of the phase transition process, depicting our
quench sequence and typical initial and final snapshots of
the polariton field are shown in Fig. 1.

A powerful way to theoretically describe the collective
dynamics of the polariton field across the phase tran-
sition is based on a generalized stochastic Gross-Pitaevskii
equation. In this model, the nonlinearity arises from
the effective polariton-polariton interactions, with suitable
additional terms included to describe pumping and losses,
and stochastic noise which accounts for the quantum
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FIG. 1. Nonequilibrium phase transition in the polariton sys-
tem. Top: OPO case. Steady-state, noise-averaged densities for
the signal |y |? (blue solid line) and idler |y;|* (blue dashed line)
fields. Bottom: IP case. Steady-state, noise-averaged field density
[w|* (blue solid line). In both panels the red curves indicate the
steady-state, noise-averaged number of topological defects
(N,)®. All quantities are plotted as a function of the distance
to criticality e. Insets: typical snapshots of the field profile in the
initial and final states, as indicated by the thick green arrows at
the top of the panels. Typical final state profiles are displayed for
different ramp speeds of different timescale 7.
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fluctuations [32,36,50,68]. A detailed description of
such equations for the polaritons can be found in the
Supplemental Material [49]. In order to focus on the
intrinsic features of the KZ physics, we restrict our
investigation here to the simplest case of a spatially
homogeneous system with periodic boundary conditions.

Ramp protocol.—For the OPO (IP) case, we drive the
polariton system through the nonequilibrium phase tran-
sition by ramping in time the pump intensity f,(z) [P(t)]
across the critical value f9, (P.), starting from an initial
steady state at a pump intensity f ;, (P;) in the disordered

phase to a pump intensity f{, (P ) well in the (quasi)ordered
phase. The ramp follows a linear law of characteristic time
79. We characterize the phase transition in terms of the
distance to criticality, which is quantified by the time-
dependent parameter €(7) defined as
ap
() 0

where the a, = (f, —f{,)/f; (OPO) or a, = (P; - P;)/
P. (IP) parameter is chosen to have the same value for
all ramps within a given pumping scheme and the sign of
¢ =F 1 (for OPO or IP) is chosen for consistency with the
usual definition of the control parameter in the previous
literature on phase transitions. Note that this distinction is
required because for the OPO transition we are considering
the upper threshold [69], so we need to quench from high to
low values of the control parameter. For convenience, we
define the origin, t = 0, of the time axis, as the time when
the system crosses the critical point, i.e., ¢(t=0) =0
based upon f,(r=0) = f% (OPO) and P(t=0)= P,
(IP). Therefore, in both IP and OPO cases, the initial time
of the simulation has a negative value, i.e., #; < 0. Further
details of the finite-speed ramp adopted can be found in the
Supplemental Material [49].

Testing the KZ mechanism.—First, we need to numeri-
cally determine the crossover time 7, from the vortex
dynamics during a finite-speed ramp. The number of
vortices across the Berezinskii-Kosterlitz-Thouless transi-
tion at steady state is known to decrease gradually as the
transition is approached from the disordered side and to
exhibit a sharp decrease in a narrow region around the
critical point, as already analyzed for OPO polaritons in
[48,52,64]. This feature, in combination with a simulta-
neous study of the spatial correlation function is used to
precisely locate the critical point. This behavior is shown
for both OPO and IP cases in terms of the distance to
criticality € by the dashed red lines in Fig. 2 (with ¢ =0
denoted by vertical solid lines). When ramping the pump
intensity from the disordered phase, the vortex density
initially follows the steady-state density during the initial
stages of the dynamics, ¢ < 0. However, as the dynamical

L=l (for OPO)

P(1)-P,
e

c

e(t) =
(forIP)

system cannot follow the steady state through the critical
point, where the relaxation time diverges, the vortex density
eventually departs from its steady-state value, as shown
by the solid lines for different ramp timescales 7. From
this plot we directly extract the numerical crossover time,
foum < 0, at which each of the dynamical curves starts to
deviate from the steady-state one. Such times are high-
lighted for each value of 7, by a vertical dashed line in
Fig. 2. These lines clearly demonstrate a significant
increase in the deviation for smaller values of 7, i.e.,
for faster ramps. More details of the extraction of 7,,,, from
the data and the dependence of 7,,,, on 7 can be found in
the Supplemental Material [49].

300

"5 200
=

100

T T 0.000
—0.02 —-0.01 0.00
€

—0.06 -0.04 -0.02 0.0  0.02

1500 : .
] = = 1mq=45ns
12501 f —— m=8.1ns
— TQ:14.4 ns
1000 A — 1q=25.2ns
- — 1q=45.1ns
= 7501 — r=81.2ns
~ —— 7q=144.31s
500 A
(Ny)
250 : - o
~0.10 —0.05 0.00
0 s .
-0.10 -0.05 0.00 0.05 0.10
€

FIG. 2. Average number of vortices as a function of the distance
to criticality e for different ramp speeds of characteristic time 7,
(thin solid curves) and at steady state (red dashed curves) for OPO
(top) and IP (bottom) pumping schemes. Chosen values for OPO
(from right to left): 7o = 0.3 (blue curve), 0.6, 0.9, 1.2, 1.5, 1.8,
2.1,24,27,3,6,9, 12, 15, 18, 21, 24 ns (brown curve) (with
corresponding IP values indicated within figure). For each value
of 7, the dashed vertical lines indicate the point é,,, (7o) where
the number of vortices in the dynamical evolution starts departing
from the steady-state value (see Supplemental Material [49] for
details). Insets: red solid curves show the characteristic relaxation
time 7 of the vortices as a function of the distance to criticality e.
Dashed straight line indicates an example of the dependence of
the characteristic time €(z)/é(¢) on e for a specific choice of ramp
parameters, namely 7o = 1.2 ns (OPO) and 7y = 4.5 ns (IP)
with a,, = 0.1942 (OPO) and a, = 0.2 (IP).
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In order to explicitly verify the KZ mechanism, we
should now compare the above numerical prediction for
foum With the one extracted by the KZ hypothesis, denoted
here by 7x,. The KZ hypothesis states that the dynamical
results should start departing from the corresponding
steady-state ones at the time 7gx, at which the relaxation
time 7z equals the timescale of the pump variation.
Expressed in terms of the distance to criticality e(z)

e(1)

é(r)

Here, the dependence of the crossover time 7, on the ramp
speed is contained in the time derivative of the distance to
criticality e(7), and A is a constant parameter of order one.
The relaxation time 7 is known to diverge at the critical
point, and so the intersection of this with the straight line
€(r)/é(t) defines the crossover time at which the system
crosses from an adiabatic to an impulse behavior. This is
schematically represented in the insets of Fig. 2. Changing
the rate at which the pump intensity is varied will directly
affect, via (1), the ramp speed, and thus set a different slope
for e(t)/€(t). Dashed straight lines in the insets of Fig. 2
depict an example of the dependence of the characteristic
time €(z)/€é(r) on e (see caption of Fig. 2 for the exact
choice of parameters). Applying this protocol to different
values of 7, gives the KZ prediction for & = ¢(7), based on
Zurek’s expression (2) (with A = 1). In turn, this defines a
different intersection point with the relaxation time z(¢) in
the z(€) vs e plot (insets of Fig. 2). In order to extract the
intersection points for different ramp speeds, we thus need
to first extract the system relaxation time z(e) plotted by
the solid red line in insets of Fig. 2. For each value of € in
the disordered phase, this is obtained by considering the
relaxation time of the number of vortices N, to the steady-
state value N5° after an infinitely rapid quench of ¢ toward
the desired value,

(2)

tle()] g, = A

t=txz

N,(t) = Ny o exp[—t/1(€)] 3)

(see the Supplemental Material [49] for more details).
Validation of KZ mechanism for driven dissipative
systems.—The above procedure indicates a linear relation
between the numerical (3,,,,) and the predicted (fx,) time
for the crossover from adiabatic to impulse behavior, as
shown in Fig. 3. We have checked that such a linear relation
holds for different choices of the proportionality constant A
(beyond A = 1), thus confirming the independence of our
conclusions on its specific choice (see Supplemental
Material [49] for more details). Since the KZ mechanism
is based on the critical properties around the phase
transition point, one can naturally expect it to be restricted
to sufficiently slow ramps, for which the linear relation is
clearly defined. On the other hand, significant deviations
from the linear relation between 7, and 7x, are expected
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FIG. 3. Numerical prediction for the crossover time |7y
(corresponding to é,,, in Fig. 2) plotted with error bars [70]
as a function of the theoretical crossover time |ix| (see insets of
Fig. 2) predicted by the Zurek relation Eq. (2) (with A = 1) for
the OPO (top) and IP (bottom) pumping schemes. The observed
linear dependence between both variables is a clear indication of
the applicability of Zurek’s relation Eq. (2) and of the KZ
mechanism. We obtain a zero intercept (within the error bars) for
the OPO polariton system and a small nonzero intercept for the IP
case, which indicates nonuniversal subleading order corrections.

to arise for small values of 7, where nonuniversal correc-
tions become important. A hint at such deviations is visible
in the presented IP results. Note that the (nonuniversal)
intercept of the IP polariton system is highly sensitive to the
exact location of the critical point, since a tiny shift in the
identification of the critical point within the critical region
can shift the intercept toward, or away from, a zero value.

Conclusions.—We have investigated the open question
of the extension of the Kibble-Zurek phenomenon to driven
dissipative quantum systems. Specifically, we have con-
sidered the dynamics of the vortex density during a
spontaneous symmetry breaking process across a critical
point for a paradigmatic case of a nonequilibrium phase
transition, namely the condensation of exciton-polaritons in
semiconductor microcavities embedding quantum wells in
the strong light-matter coupling regime. Our numerical
findings, based on very accurate simulations of the
dynamical equations of the systems for experimentally
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relevant parameters, fully confirm the existence of a
crossover from an adiabatic to an impulse behavior at a
point that depends on the ramp speed and the validity of
Zurek’s relation [Eq. (2)]. Our analysis thus shows that the
KZ mechanism can maintain its validity even in the case of
nonequilibrium phase transitions.

The data that support the findings of this work are
available by following the link in [71].
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