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Abstract 

Iberian pig ham is one of several high value European food products that are the subject of 

significant attempts at fraud because of the high price differences between commercial 

categories. Iberian pig products are classified by the Spanish regulations into different 

categories, mainly depending on the feeding regime during the fattening phase and the race 

involved, being of Premium quality those products obtained from the animals fed with acorns 

and other natural resources. Most of the previous NIRS studies related to the Iberian pig have 

involved the use of at-line instruments to predict quantitative quality parameters. This paper 

explores the use of the NIR spectra (369 for training and 199 for validation) to classify 

samples according to the categories Premium (animals fed with acorn) and Non Premium 

(animals fed with compound feeds), using a MicroNIR™ Pro1700 microspectrometer to 

analyse individual carcasses in situ at the slaughterhouse line. Four discriminant methods 

were explored: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), 

Kernel Bayes and Logistic Regression. These are all discriminant methods that naturally 

produce classification probabilities to quantify the uncertainty of the results. Rules were tuned 

and methods compared using both classification error rates and a probability scoring rule. 

LDA gave the best results, attaining an overall accuracy of 93% and providing well-calibrated 

classification probabilities.  

 

Keywords: in situ NIRS analysis, portable microspectrometer, Iberian pig classification, 

carcass authentication, probabilistic discrimination 

 

 

 

 

 



 

1. Introduction  

The objective of the work reported here was to develop and evaluate classification rules based 

on NIR in situ spectral measurements for the classification of Iberian pig carcasses into 

Premium (acorn and other natural resources feeding) and Non Premium (compound feeds 

feeding) categories, with a focus on methods that return probabilities of group membership. 

The traditional rearing system of the Iberian pig, which produces the exclusive, delicious and 

healthy Iberian pig ham, is natural and seems simple. However, in practice, it is highly 

sophisticated and expensive to undertake. The high prices, ranging from hundreds to 

thousands of euros, paid for a cured leg of Iberian ham –– are an incentive for mislabelling 

and fraud.  

It is well known that the fatty acid content of the adipose tissue and the purity of the breed 

(percentage of Iberian pig blood) are the main factors affecting the final quality of the Iberian 

ham [1]. The official quality control systems for determining the feeding regime of the 

animals are based on on-farm inspection. In addition, sometimes the industry uses the analysis 

by gas chromatography of the fatty acid composition of samples of melted subcutaneous fat, 

pooled over animals for reasons of cost. However, these methods are high-cost, time-

consuming and only provide information on batches of animals, not on each individual piece 

of this expensive product. Previous research works have demonstrated that NIRS can be used 

not only for the prediction of the fatty acid profile, but also that the spectral signal per-se can 

be used to classify Iberian pig carcasses according to the feeding regime during the last 

fattening phase, and therefore according to commercial categories that command very 

different prices in the market [2,3,4,5,6]. 

There is also scientific evidence confirming that NIRS can be used not only at-line, but also 

on-site, using handheld NIR sensors - as an IoT (Internet of Things) device - to produce 

“digital and voluntary labelling systems” to inform producers, industrials, official inspection 

bodies and consumers about quantitative (fatty acids percentages) and qualitative (feeding 



 

category) attributes of each individual Iberian pig ham [7]. Recently, a new generation of 

portable, compact and extremely lightweight NIRS instruments has been developed, and these 

are ideally suited for taking in situ measurements. The fast progress in miniaturization of NIR 

spectrometers has been supported by the development of new micro-technologies such as 

MEMS (micro-electro-mechanical systems), micro-mirror arrays and LVF (linear variable 

filters). These technologies have enabled a drastic reduction of spectrometer size and weight 

while maintaining a good performance [8,9]. These instruments enable the user not only to 

take spectra at any time, but also to analyse single pieces/units of a food product, and thus 

obtain more information about the quality and safety of the given product. 

In developing an algorithm that converts the NIR spectrum into a classification in an 

authenticity application, there is a choice between so called one-class modelling, where the 

authentic class (Premium here) only is modelled and a threshold on this defines the 

classification, and a more traditional discriminant analysis involving two or more defined 

classes (Premium and Non Premium here). Oliveri and Downey [10] discuss this choice in the 

specific context of food authenticity and recommend one-class modelling when the alternative 

to authentic is ill defined, and discriminant analysis when, as here, there are well defined 

classes to work with.   

In most of the work undertaken for the development of qualitative NIRS classification 

models, and in most of NIRS food authentication papers, the algorithms used only return a 

class assignment, i.e. the sample belongs or does not belong to one or more classes. However, 

for most of the real-word application of NIRS to food authentication issues, and certainly in 

the case of the Iberian pig ham, it would be extremely valuable to also have information about 

the uncertainty of the prediction, i.e. to have probabilities associated with class memberships 

for any unknown predicted sample. There will always be samples for which the assignment is 

highly reliable and others for which it is relatively uncertain, and the identification of these 

adds considerable value to the classification. 



 

Probabilistic classifiers have received relatively little attention in NIRS classification work, 

despite the fact that it will be critical for food authentication, mislabelling or fraud detection 

issues to use methods that not only provide a prediction or classification result but also 

information about the uncertainty of the prediction. There are many different algorithms that 

can be used to build classification rules, too many to try them all on any one application. In 

deciding which to try here, the choice has been restricted to methods that naturally produce 

probabilities, as opposed to ones where outputs are, often arbitrarily, transformed to a 0-1 

scale and then treated as probabilities. This paper investigates three generative approaches 

[11] in which probabilistic models are built for the within-class distributions of the spectral 

data, and one discriminative approach, logistic regression, that directly models the probability 

of class membership as a function of the spectral data. 

 

2. Material and methods 

2.1. Sample sets and reference data 

The samples available for training, supplied by 45 different Iberian pig producers, were 

recorded in two consecutive years (66 samples in 2016 and 429 in 2017). The producers 

provided the information about the feeding regime of the animals that was used to classify the 

samples as Premium (animals fed with acorn and other natural resources) and Non Premium 

(animals fed with compound feeds). In addition, the samples were analysed by Gas 

Chromatography to determine their fatty acids profile, which is strongly related to the quality 

of the product and therefore to the feeding regime received by the animals. The final training 

set comprised 369 of these 495 samples, after those samples with a percentage in oleic acid 

lower than 52%, but considered by the producers as Premium, were eliminated from the set 

due to the inconsistency of the reference data. Thus, the distribution of classes in the training 

set was 139 of Premium and 230 of Non Premium grades.  



 

For the external validation of the models, a new set of 199 samples collected from 10 

producers (a subset of the original 45) in the 2018 season was used. The distribution of classes 

in this set was 105 samples of Premium and 94 of Non Premium grades. No samples were 

removed from this validation set. 

 

2.2. NIR spectra acquisition 

The NIR spectra of subcutaneous adipose tissue of each carcass were collected in the 

production line at the slaughterhouse, using a microspectrometer MicroNIR™ Pro1700 

(VIAVI Solutions, Inc., San Jose, California, USA). The measurements were taken directly in 

the transversal section of the intact subcutaneous fat beneath the tail insertion area of 

carcasses, around 2 hours post-slaughter chilled in a temperature controlled chamber (Figure 

1). 

This ultra compact instrument is based on thin film linear variable filter (LVF) technology for 

the light dispersing element. It is extremely light and has a window area of around 227 mm2. 

The instrument works in reflectance in the spectral region 910 to 1676 nm, taking 

measurements at 125 spectral points spaced by approximately 6.2 nm. A white reference 

measurement was obtained using Spectralon™, while a dark reference was obtained from a 

fixed point in the floor. The sensor integration time was 11 ms and each spectrum was the 

mean of 200 scans. Each carcass was analysed in duplicate at the slaughterhouse, with one 

spectrum taken in the inner and other in the outer layer of the subcutaneous fat. Then, before 

model development, the two spectra were averaged to obtain a single spectrum per sample.  

 

2.3. Classification methodology 

Discriminant models were developed to classify the carcasses directly in two quality groups, 

without going via a quantitative prediction of the fatty acid profile:  



 

- Premium category, i.e. those corresponding to animals fed with acorn and other natural 

resources. 

- NonPremium category, i.e. those corresponding to animals fed with compound feeds. 

In selecting discriminant methods, the focus was on methods that naturally produce 

classification probabilities, since there will be samples for which the classification is 

uncertain, and it was considered important to be able to quantify that uncertainty. 

Four methods were explored. Three of them, linear discriminant analysis (LDA), quadratic 

discriminant analysis (QDA) and kernel Bayes, model the within-class distributions of the 

spectral data, and use Bayes theorem to pass from probabilities of a spectrum given class 

membership to probabilities of class membership given the spectrum. With only two classes, 

it is simplest to use the odds form of Bayes theorem: 

𝑃(𝑐𝑙𝑎𝑠𝑠 = 1|𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚)

𝑃(𝑐𝑙𝑎𝑠𝑠 = 2|𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚)
=  

𝑃(𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚|𝑐𝑙𝑎𝑠𝑠 = 1)

𝑃(𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚|𝑐𝑙𝑎𝑠𝑠 = 2)
.
𝑃(𝑐𝑙𝑎𝑠𝑠 = 1)

𝑃(𝑐𝑙𝑎𝑠𝑠 = 2)
 

 

Expressed in words, this reads as posterior odds equals likelihood ratio times prior odds. For 

the results reported below, the prior probabilities of the two classes were taken to be equal, 

P(class=1) = P(class=2) = 0.5, so that the prior odds become 1. The three methods differ in the 

way they model the within-class probability distributions of the spectral data, P 

(spectrum|class=1) and P (spectrum|class=2).  

LDA uses multivariate Gaussian distributions with different means but a common covariance 

matrix, while QDA uses multivariate Gaussian distributions with different means and 

different covariance matrices, with all these parameters being estimated from the training data 

[11,12]. The kernel Bayes method builds more flexible models of the within-class 

distributions by centering a spherical Gaussian distribution (a kernel) on each data point in the 

training data and then averaging these distributions over each class to construct two 

probability distributions. This avoids the often unrealistic Gaussian assumption, but at the risk 



 

of over fitting the training data.  All three of these approaches are described in much more 

detail in Fearn et al. [13]. 

The fourth approach, logistic regression, directly models the probability of class membership 

as a function of the spectral data.  Specifically, the log odds are taken to be linearly related to 

the vector of spectral data so that: 

log𝑒 (
𝑃(𝑐𝑙𝑎𝑠𝑠 = 1|𝑥)

𝑃(𝑐𝑙𝑎𝑠𝑠 = 2|𝑥)
) =  𝛼 + 𝛽𝑇𝑥 

where x is the p × 1 vector of spectral data for a sample, α is an intercept and β is a p × 1 

vector of coefficients.  The coefficients are estimated by maximum likelihood as described in 

McLachlan [11]. 

 

2.4. Spectral pre-treatments 

Six spectral pre-treatments were compared. These comprised three levels of derivative 

treatment, none, first and second, applied to the log (1/R) spectra, without and with the 

application of the scatter correction SNV (Standard Normal Variate) pre-treatment in each 

case [14,15]. The first and second derivatives were calculated using a Savitzy-Golay filter, 

with a second order polynomial and a five-point window [15,16]. SNV was applied after the 

derivative.  

 

2.5. Dimension reduction 

None of the methods described above will work well with 125 highly correlated predictors, so 

a method of dimension reduction is needed. The obvious choices are to use either principal 

component analysis (PCA) or partial least squares (PLS) for this. Although it might be argued 

that PLS scores from a regression on a dummy variable indicating class membership would 

capture more of the relevant variability than the same number of PCA scores, it was chosen to 

use PCA. The rationale for this was twofold. Firstly, PCA is simpler and more well defined, 

in the sense that there is only one set of PC scores for given data whereas PLS scores will be 



 

algorithm dependent, and with plenty of samples there is no problem with using 20 PC scores, 

which will essentially capture all the relevant variability anyway. Secondly, the PLS factors 

are extracted to explain covariance, thus concentrating on linear relationships between spectra 

and class membership. PLS scores might well be a good starting point for LDA, but are not 

necessarily an improvement over PC scores for the other three methods investigated here. 

Thus the first q principal component (PC) scores for values of q ranging from 2 to 20 were 

considered for input to the classification algorithms. The PCA was carried out on the spectra 

(raw or pre-treated) for the training set only, with spectra for prediction samples being 

projected into this space. In the case of cross-validation, the PCA was done inside the cross-

validation loop.  

For the kernel Bayes method, but not for the others, the relative scaling of the PC scores 

matters. They were scaled to each have standard deviation equal to 1 for the samples used for 

the PCA.  

 

2.6. Tuning and validation 

In the case of LDA, QDA and logistic regression, tuning means selecting a spectral 

pretreatment and a number of PCs to retain. In the case of the kernel Bayes, there is an 

additional parameter to tune, the standard deviation (σ) of the kernels. This controls the 

smoothness of the probability distribution fitted to the spectral data, with larger σ giving 

smoother distributions. This tuning was carried out using cross validation on the training set. 

It is generally accepted that leave-one-out-sample cross validation tends to lead to over fitting, 

and that leaving out blocks is preferable [17].  

In this case, there are some natural blocks, as the samples came from 45 producers, and the 

cross-validation scheme employed was leave-out-one-producer cross validation (LOOPCV).  

Requiring the classification rule to predict samples from unseen producers makes the cross 



 

validation more like genuine predictions, and could be expected to lead to a more robust 

choice of parameters.  

All four approaches have as their output a probability p that the sample whose spectrum was 

input is of Premium quality. Two assessment criteria were used in the tuning and validation 

processes. One was to convert the probability into a yes/no classification by assigning the 

sample to the Premium class if p > 0.5 and to count the number of misclassifications. The 

other was to assess the probabilities themselves by calculating a log probability score: 

𝐿 =
1

𝑛
∑ log𝑒(𝑝𝑖)

𝑛
𝑖=1 , 

where the sum is over the n samples being predicted and pi is the probability assigned by the 

classification rule to the true class of the ith sample. The best possible score would be zero, 

achieved by giving probability 1 to the true class in each case. Giving probability 0.5 of being 

Premium to all samples would give a score of log𝑒(0.5) = −0.69, so any useful rule should 

have a score in the range from -0.69 to 0. This log score heavily penalizes a rule for being 

over confident. For example, assigning a probability of 0.999 to the class to which the sample 

does not belong will score log𝑒(0.001) = −6.9 for that sample. 

 

2.7. Computing  

The computations were programmed in Matlab software version 2016b (The MathWorks, 

Inc., Natick, MA, USA). The logistic regression was implemented using the Statistics and 

Machine Learning Toolbox, and the pretreatments via the PLS Toolbox version 8.7 

(Eigenvector Research, Manson WA, USA). 

 

3. Results 

3.1. Exploration of the data 

Figure 2 shows the SNV treated second derivative spectra for the training set of 369 samples, 

from 2016 and 2017. The Premium samples are plotted in grey, and the NonPremium samples 



 

in black. The NonPremium samples were plotted second, and cover many of the Premium 

ones, but there are regions, especially that between 1400 and 1450nm, where there appears to 

be some separation. Several authors have demonstrated that the region 1436-1442 nm, among 

others, is characteristic of CH2 absorptions related to fatty acid profile of vegetable and 

animal fats and oils [18]. It is well known that the main differences between the Iberian 

products coming from animals with different feeding regime (acorn vs compound feeds) are 

related to the fatty acid profile of the fat [1,5,19]. 

Figure 3 shows the scores on the first two PCs from a PCA of these 369 samples, with the 

Premium and NonPremium classes distinguished by plotting symbol and colour. Although 

there is overlap between the classes, there is enough separation to suggest that classification 

may be possible using these spectra, especially if more PCs are used. The other obvious 

comment here is that the with-class distributions do not look Gaussian, which may favour 

kernel Bayes over the methods that assume Gaussian distributions.  

 

3.2. LDA model 

The LDA model was trained on the 2016 and 2017 samples using leave-out-one-producer 

cross validation (LOOPCV). Six pretreatments, as described in the methodology section, were 

tried, as were numbers of principal components from 2 to 20. Table 1 shows the optimal 

number of PCs for each pretreatment, chosen to optimise either the number of incorrect 

classifications or the probability score. The training set has 369 samples, so the numbers of 

errors in the third column of the Table 1 correspond to error rates ranging from 7.6% (28/369) 

to 9.2% (34/369). Not surprisingly, the two criteria lead to different choices of optimal 

pretreatment and number of PCs. To look for good compromise choices, the plots in Figure 4 

were inspected. To get the results for both criteria onto comparable scales, they were 

expressed as % worse than the global best scores, which are 28 errors for raw spectra using 11 

PCs in the LDA and a probability score of 0.228 for second derivative spectra using 4 PCs. 



 

There are several possible candidates for a compromise choice. Second derivative plus SNV 

with 8 PCs, which gives 29 errors (7.9%) and a probability score of 0.240, was selected, 

partly because the performance seems fairly stable around this choice of number of PCs. For 

the main competitor, raw spectra with 13 PCs, one PC either more or less leads to a 

significant deterioration in performance on one or other criterion. 

The selected model was then used to predict the 2018 samples. It made 13 errors out of 199 

classifications, an error rate of 6.5%. Of the 13 errors, 2 involved the classification of 

Premium samples as Non Premium; 11 were in the other direction. 

To assess the calibration of the probabilities assigned by the LDA rule, the 199 predicted 

samples were classified into 10 bins according to the probability assigned to the Premium 

category. The bins are of unequal width, partly because the probability scale is intrinsically 

non linear, partly in order to avoid bins with very small numbers of samples. Table 2 shows 

the number of samples and the number and proportion of Premium samples in each bin. The 

results look quite reasonable, with 9 of the 13 errors occurring in the probability range 0.2 – 

0.8, and no errors in the bins where probabilities are less than 0.01 or greater than 0.99. The 

number of extreme probabilities near 1 is possibly a cause for concern. It is impossible to 

assess their accuracy without thousands of samples but this level of certainty, arising as it 

does from the use of light tailed Gaussian distributions in the model, may well be over 

confident.   

 

3.3. QDA model 

Training QDA in the same way as LDA gave the results shown in Table 3. 

Examination of plots like those in Figure 2 led to the selection of “second derivative + SNV” 

with 3 PCs as the best model. This gave 30 errors (8.1%) and a probability score of 0.326.  

Applied to the validation set of 199 samples, the QDA rule made 41 errors, with 15 Premium 

samples classified as Non Premium and 26 Non Premium samples classified as Premium. 



 

This is an error rate of 21%. The results in Table 4 suggest that although the probabilities in 

the midrange seem reasonable, the more extreme ones, especially as they approach 1, are over 

confident. 

 

3.4. Kernel Bayes 

Training this method involves optimising the pretreatment and the number of PCs used as for 

the other methods, but also the standard deviation σ of the kernels. Table 5 shows the optimal 

choices via cross validation of the number of PCs and σ for each pretreatment, again using 

both number of errors and the probability score as criteria to optimise.  

The model using “second derivative + SNV” pretreatment with 4 PCs and σ = 0.7 was chosen 

and used to predict the 2018 validation samples. This gave 39 errors, of which 13 were 

Premium classified as Non Premium and 26 Non Premium classified as Premium. This is an 

error rate of 20%, much higher than the 25/369=6.8% on the training set. The performance of 

the classification probabilities is shown in Table 6. This method gives much more 

conservative probabilities than either QDA or LDA. There are no errors for probabilities less 

than 0.01 or greater than 0.99, but only 20 of the 199 probabilities are in this range.  

 

3.5. Logistic regression model 

Training Logistic Regression in the same way as the other methods gave the results shown in 

Table 7. From the two obvious candidates (see Table 7), “second derivative + SNV” with 4 

PCs was chosen, because of its optimality for the other methods.  

Applied to the validation set there were 35 errors among the 199 samples, 23 of these being 

Premium samples misclassified as Non Premium and 12 being Non Premium misclassified as 

Premium. This is an 18% error rate, compared with only 7.9% on the training set. The 

performance of the probabilities, as shown in Table 8, is not unreasonable: there is only one 

error in the 63 samples with probabilities less than 0.01 or greater than 0.99 for example. 



 

 

3.6. Comparison of the 4 methods and discussion of the results 

Table 9 shows two measures of performance on the validation set for each of the 4 methods 

employed: the number of classification errors and the probability score. 

LDA is a clear winner on both criteria, with its relatively low probability score reflecting the 

fact that not only does it make fewer mistakes, it assigns moderate probabilities to the 

misclassified samples as can be seen from Table 2. That LDA beats the more sophisticated 

QDA and kernel Bayes on the validation set is probably due to over fitting on the part of the 

latter two. Simpler methods like LDA tend to extrapolate better to new situations, in this case 

to predictions for a year not seen. It is less obvious why the logistic regression, which is also 

relatively simple, fails to predict well. 

To produce a classifier for future samples, the obvious approach is to fix the method as LDA 

with 8 PC’s and apply it to the combined data for the three years. Doing this and assessing by 

LOOPCV gave 42 errors out of 568 classifications, equal in number to the 29 cross validation 

errors plus 13 validation errors reported above, for an overall error rate of 7.3%, i.e. a total 

percentage of correctly classified samples of 92.7%. 

The LDA model can be expressed in terms of a linear discriminant function (Figure 5). It can 

be appreciated that the main peaks at 1160, 1190 and 1380 nm are regions related with the 

absorption of CH2 bonds [20]. As has been commented earlier, this group is related with fat 

and the fatty acid profile of the product, this being one of the main effects of the different 

feeding regimes on the quality of Iberian pork products [1,19]. 

In a previous study, Zamora et al. [6] also analysed in situ Iberian pig carcasses, using in this 

case a MEMS handheld instrument and discriminating between three categories according to 

the old Spanish regulations. They reported percentages of total correctly classified samples of 

83.6 % in validation using PLS2 discriminant analysis, considerably lower than the 92.7% 

achieved in this work.  



 

No previous studies of this type have reported the uncertainty of the prediction in the 

classification models, as is done here. This is a key point for the implementation of NIR 

sensors in the industry for classification purposes. With any classification based on a rapid 

measurement, there will be some samples where the assignment is quite uncertain. If it is 

known which samples these are, they can be investigated further using more accurate (and 

more expensive) tests if the context merits it. Among the 169 validation samples assigned 

probabilities of less than 0.05 or greater than 0.95 of being Premium there are only 2 errors.  

When the rapid test says it is confident, it can be relied on. 

The overall error rate of 7% needs to be considered in the light of the probabilities. The 

majority of the errors (9/13) occur in the 15% of the validation samples assigned probabilities 

between 0.2 and 0.8. Of course it would be desirable to reduce the proportion of samples for 

which there is this much uncertainty about the classification. This might be achieved through 

improvements to the instrumentation and the measurement procedures as well as to the 

classification algorithms. However it should be remembered that the natural variation between 

animals and the possibility of feeding mixed diets will mean that there will always be 

borderline cases.  

The probabilities have been converted into classifications using the obvious cutoff of 0.5. For 

the validation set, this has resulted in 2 false negatives and 11 false positives, an unfortunate 

split in the context of consumer protection. Moving the threshold to 0.8 instead would give 9 

false negatives and only 4 false positives, i.e. 4 Non Premium samples classified as Premium.  

Such a threshold could be formally justified by introducing asymmetric classification error 

losses into the calculation. To do this with the current data risks over interpreting small 

numbers of errors, but it might be appropriate were many more validation samples to become 

available.   

 

4. Conclusions 



 

The portable NIR microspectrometer device enables the in-situ inspection of individual 

Iberian pig carcasses at the speed of the slaughtering process. The best classification model 

developed, based on the use of LDA, has shown the possibilities of this technology for 

classifying the carcasses according to the categories Premium and Non Premium, related to 

the feeding regime of the animals during the fattening phase (acorn vs compound feeds). The 

LDA model achieved an overall classification accuracy of 93% and was able to output 

classification probabilities that appeared to be well calibrated. The potential of this kind of 

application, able to give predictions with associated probabilistic uncertainty, opens new and 

enormous possibilities for the use of NIRS for food integrity and authenticity issues. 
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Table 1.  Optimal numbers of PCs chosen for LDA, either to minimise the number of errors 

or to maximise the probability score, using cross validation on the 2016 and 2017 samples. 

Pre-treatment   Minimise no. of errors   Maximise prob. score 

 PCs Errors PCs P score 

Raw 11 28 13 0.237 

SNV 2 31 16 0.251 

d1 6 31 12 0.230 

d1+SNV 19 34 13 0.254 

d2 9 30 4 0.228 

d2+SNV 3 or 8 29 7 0.236 

PCs: Principal Components; d1: first derivative; d2: second derivative; 

SNV: Standard Normal Variate 

 

 

 

 

 

 

 

  



 

 

Table 2. Proportion of true Premium samples in each of 10 ranges for the probability assigned 

to Premium by the LDA rule. 

Prob. Premium No. samples No. Premium Prop. Premium 

0 – 0.001 5 0 0.00 

0.001 – 0.01 14 0 0.00 

0.01 – 0.05 28 0 0.00 

0.05 – 0.2 23 0 0.00 

0.2 – 0.5 15 2 0.13 

0.5 – 0.8 15 8 0.53 

0.8 – 0.95 16 14 0.88 

0.95 – 0.99 27 25 0.93 

0.99 – 0.999 27 27 1.00 

0.999 – 1  29 29 1.00 

 

  



 

 

Table 3. Optimal numbers of PCs chosen for QDA, either to minimise the number of errors or 

to maximise the probability score, using cross validation on the 2016 and 2017 samples. 

Pre-treatment  Minimise no. of errors  Maximise prob. score 

 PCs Errors PCs P score 

Raw 4 38 2 0.366 

SNV 2 34 3 0.306 

d1 10 40 2 0.424 

d1+SNV 5 39 2 0.397 

d2 14 37 3 0.301 

d2+SNV 3 30 4 0.267 

PCs: Principal Components; d1: first derivative; d2: second derivative;  

SNV: Standard Normal Variate 

 

 

 

  



 

 

Table 4.  Proportion of true Premium samples in each of 10 ranges for the probability 

assigned to premium by the QDA rule. 

Prob. Premium No. samples No. Premium Prop. Premium 

0 – 0.001 6 0 0.00 

0.001 – 0.01 8 0 0.00 

0.01 – 0.05 21 3 0.14 

0.05 – 0.2 23 3 0.13 

0.2 – 0.5 25 9 0.36 

0.5 – 0.8 22 14 0.64 

0.8 – 0.95 20 11 0.55 

0.95 – 0.99 25 20 0.80 

0.99 – 0.999 18 14 0.78 

0.999 – 1  31 31 1.00 

 

 

 

 

  



 

 

Table 5. Optimal numbers of PCs and kernel standard deviation σ chosen for kernel Bayes, 

either to minimise the number of errors or to maximise the probability score, using cross 

validation on the 2016 and 2017 samples. 

Pre-treatment     Minimise no. of errors     Maximise prob. score 

 PCs σ Errors PCs σ P score 

Raw 2 0.6 30 2 0.5 0.358 

SNV 4 0.7 33 4 0.7 0.312 

d1 6 0.9 43 7 0.9 0.379 

d1+SNV 4 1.3 31 4 0.6 0.301 

d2 4 0.5 28 4 0.6 0.266 

d2+SNV 4 0.7 25 4 0.7 0.282 

PCs: Principal Components; d1: first derivative; d2: second derivative;  

SNV: Standard Normal Variate 

 

 

 

  



 

 

Table 6.  Proportion of true Premium samples in each of 10 ranges for the probability 

assigned to Premium by the kernel Bayes rule. 

Prob. Premium No. samples No. Premium Prop. Premium 

0 – 0.001 0 0 - 

0.001 – 0.01 1 0 0.00 

0.01 – 0.05 2 0 0.00 

0.05 – 0.2 28 1 0.04 

0.2 – 0.5 50 12 0.24 

0.5 – 0.8 45 30 0.67 

0.8 – 0.95 41 33 0.80 

0.95 – 0.99 13 10 0.77 

0.99 – 0.999 12 12 1.00 

0.999 – 1  7 7 1.00 

 

  



 

 

Table 7.  Optimal numbers of PCs chosen for Logistic Regression, either to minimise the 

number of errors or to maximise the probability score, using cross validation on the 2016 and 

2017 samples. 

Pre-treatment Minimise no. of errors Maximise prob. score 

 PCs Errors PCs P score 

Raw 13 33 11 0.320 

SNV 2 33 6 0.348 

d1 8 31 8 0.257 

d1+SNV 13 33 5 0.336 

d2 4 29 4 0.243 

d2+SNV 4 29 4 0.247 

PCs: Principal Components; d1: first derivative; d2: second derivative;  

SNV: Standard Normal Variate 

 

 

  



 

 

Table 8. Proportion of true Premium samples in each of 10 ranges for the probability assigned 

to Premium by the Logistic Regression rule  

Prob. Premium No. samples No. Premium Prop. Premium 

0 – 0.001 5 0 0.00 

0.001 – 0.01 24 1 0.04 

0.01 – 0.05 22 4 0.18 

0.05 – 0.2 20 7 0.35 

0.2 – 0.5 20 11 0.55 

0.5 – 0.8 19 13 0.68 

0.8 – 0.95 20 16 0.80 

0.95 – 0.99 21 19 0.90 

0.99 – 0.999 8 8 1.00 

0.999 – 1  26 26 1.00 

 

  



 

 

Table 9.  Performance of four methods on the 199 validation samples compared on two 

criteria, the number of errors and the probability score. 

 No. of PCs No. errors Prob. score 

LDA 8 13 0.176 

QDA 3 41 0.548 

Kernel Bayes 4 39 0.462 

Logistic Regression 4 35 0.407 

PCs: Principal Components 

 

 

 

 

 

  



 

 

 

 

Figure 1.  In-situ NIRS carcass analysis. 

 

 

 

 

 



 

  

Figure 2.  SNV treated second derivative spectra for the 369 samples in the training set (2016 

and 2017).  Grey = Premium, black = Non Premium.  

 

  



 

 

 

Figure 3. Scores on the first two PCs from a PCA of the SNV treated second derivative 

spectra of the 369 samples in the training set (2016 and 2017).  Red triangle = Premium, blue 

circle = Non Premium.  

 

  



 

 

 

Figure 4.  Scores on two criteria for 6 pretreatments as a function of numbers of PCs used in 

LDA. Solid red line = number of errors, dashed blue line = probability score, both expressed 

as % worse than the global best results of 28 errors (raw, 11PCs) and 0.228 (d2, 4PCs).   

 

 

 

 

 

 

 

 

  



 

 

 

 

Figure 5. Loading vector for linear discriminant function derived from LDA on 2016+2017 

samples using 8 PCs calculated from second derivative + SNV pretreated spectra. 

 

 

 

 

 

 

 

 


