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Abstract

We introduce a mean-field model for analysing the dynamics of human consciousness. In par-

ticular, inspired by the Giulio Tononi’s Integrated Information Theory and by the Max Tegmark’s

representation of consciousness, we study order-disorder phase transitions on Curie-Weiss models

generated by processing EEG signals. The latter have been recorded on healthy individuals un-

dergoing deep sedation. Then, we implement a machine learning tool for classifying mental states

using, as input, the critical temperatures computed in the Curie-Weiss models. Results show that,

by the proposed method, it is possible to discriminate between states of awareness and states of

deep sedation. Besides, we identify a state space for representing the path between mental states,

whose dimensions correspond to critical temperatures computed over different frequency bands of

the EEG signal. Beyond possible theoretical implications in the study of human consciousness,

resulting from our model, we deem relevant to emphasise that the proposed method could be

exploited for clinical applications.

∗ marcojavarone@gmail.com
† these two authors contributed equally
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I. INTRODUCTION

Consciousness is one of the most complex and fascinating phenomena in the brain, attract-

ing the interest of a variety of scholars, spanning from neuroscientists to mathematicians, and

from physicists to philosophers [1–8]. In addition, consciousness, as well as other complex

systems as those we find in biology, social science, finance and artificial intelligence [9–15],

has strongly benefited from the introduction of cross-disciplinary approaches. Despite a huge

number of investigations, a lot of its aspects and mechanisms still require to be clarified.

Given these observations, we focus on the challenge of quantifying consciousness, putting

attention on the transition between mental states. So, we introduce a method for gener-

ating Curie-Weiss models [16, 17] from EEG signals, and then we analyse its outcomes by

a machine learning classifier. As discussed later, although the spirit of this work is mostly

theoretical, we conceive a framework that could support clinicians in some relevant tasks,

e.g. in calibrating the optimal amount of anaesthetic for patients, and in assessing the cogni-

tive conditions of unresponsive individuals. Nowadays, a number of devices allow studying

the brain structure and its dynamics. Usually, the choice of a specific tool reflects both

clinical needs and patient conditions. Here, we use recordings obtained by EEG analyses for

two main reasons, i.e. its cheaper cost compared to other technologies and its non-invasive

nature. At the same time, it is worth to report that the EEG is less advanced than other

diagnostic tools, as fMRI, that generate images of higher quality (e.g. higher spatial reso-

lution). Notwithstanding, stimulated by the above reasons, we aim to improve as much as

possible the value of the information content of EEG signals, concerning the dynamics of

human consciousness. Before moving to the proposed method, we very briefly introduce two

seminal works on this topic, the Integrated Information Theory (IIT hereinafter) developed

by Giulio Tononi [18] and the Max Tegmark’s manuscript on the physical representation

of consciousness as a state of matter [3]. Both works contain ideas an observations that

inspired us during our investigation. The IIT is based on the core concept that human

consciousness results from integrated information, generated by an ensemble of interacting

elements. So, information emerges from collective action, and its content is extremely much

richer than that one can obtain just by a simple summation of the individual contributions,

like those provided by the elements belonging to the same ensemble. More in general, the

concept of collective effect pervades the field of complex systems, as effectively explained by
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Anderson in ’More is different’ [19]. Under that light, Tegmark proposed a computational

description of consciousness [3], trying to address the IIT by the language of Physics, and

developing both a classical and a quantum representation of this phenomenon. From his

work [3], we take into account the ’classical’ description of IIT, achieved via the Ising model,

where a ’conscious’ regime emerges only within a very restricted range of values. Such re-

stricted range refers to the collective phenomena occurring when a spin system gets close

to its critical temperature, and it is in full agreement with the Damasio’s observations [20]

on the conditions required for the reaching of homeostasis (i.e. some physical parameters,

in the brain, have to be kept within a narrow range of values). Therefore, following ideas

and insights of the above-mentioned authors, we propose a method for building a mean-field

model from EEG data. Then, we analyse its behaviour by implementing Monte Carlo sim-

ulations, whose outcomes are expected to provide the information we need to quantify the

transitions between mental states of individuals undergoing deep sedation. In particular,

we consider the critical temperature computed in the various realisations of the model, e.g.

those achieved on varying the frequency of the EEG signal. Details about the proposed

model and the method for classifying mental states are provided in the next section. Here

we take the opportunity for highlighting that, despite the increasing interest for modelling

brain dynamics by networked approaches (e.g. [21–23, 25–32]), the present investigation is

based on the modelling and the analysis of the distribution of electrical activity recorded

in the scalp. Moreover, to each frequency band of the signal, as δ for 1 − 4 Hz and θ for

4−7 Hz, corresponds a Curie-Weiss model whose interactions depend on the recorded phase

differences across scalp locations. It is worth to note that previous studies showed that the α

(8− 12 Hz) band can be useful for quantifying transitions between mental states (e.g. [31]),

as well as other signal components. At the same time, most of these works consider networks

generated by avoiding to include ’weak’ interactions. Notably, to remove weak interactions

a threshold needs to be defined, and such practice has received some fair criticisms [33].

Remarkably, to the best of our knowledge, the definition of a suitable threshold is currently

based only on rules of thumb. So, it is important to remark that the proposed model does

not require to filter out, or to cut off, weak interactions. Eventually, let us observe that

while from a neuroscience perspective the human consciousness might be investigated con-

sidering the full set of frequency bands of an EEG signal, those of major interest seem to

be the δ, the α, and the β band. However, due to the influence that has been reported
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between the propofol, i.e. the drug administered in our individuals during the examination,

and the behaviour of the β band [34, 35], we decided to take into account only the bands

δ and α. A more detailed list of features, for analysing consciousness, can be found in [36].

Summarising, our goal is to quantify consciousness, looking also at potential clinical appli-

cations. Notably, the EEG signal, as currently processed, provides some information about

the state of consciousness of a patient, but it has some limitations. For instance, assessing

the level of unconsciousness, or understanding why some individuals report having been

fully aware (even if, obviously, unable to communicate) during surgery, is currently difficult

by inspecting only the EEG signal. Therefore, under the assumption that the latter might

contain more information than those currently extracted, we propose a method to improve

its content (see also [37]). Notably, in mathematical terms, the proposed model can be

thought of as a more rich representation of the EEG signal, being mapped to a novel vector

space that we define state space of mental states. In relation to that, the Curie-Weiss model

represents the tool to generate that space of states, by identifying the critical temperatures

of each individual during an examination. Here, while critical temperatures are computed

to generate the state space of mental states, they have no meaning with what is occurring in

the brain of individuals. It is also worth to remark that our choice of using a model (i.e. the

Curie-Weiss) usually adopted to describe collective phenomena, as phase transitions, aims

to build a direct link with the IIT framework, where the concept of collective behaviour

is central. The remainder of the paper is organised as follows: Section II introduces the

proposed model. Section III shows results of numerical simulations. Eventually, Section IV

ends the paper providing an overall discussion on this investigation, from its goal to the

main outcomes, and on some possible future developments.

II. MODEL

In this section, we describe a framework for classifying mental states, whose variation is

represented as a phase transition. In statistical mechanics, the most simple representation

of phase transitions is achieved by the Ising model, and the latter has been used in [3] for

showing how, in terms of information content, the set of states reachable by that model, at

the critical temperature, contains suitable candidates for representing states of consciousness.

Therefore, we aim to evaluate with data (i.e. EEG recordings) whether that theoretical
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insight can be exploited for quantifying consciousness and performing classification tasks. It

is worth to add that the Ising model has been used also by other authors for investigating

different dynamics of the brain (see for instance [21, 23, 24, 38–40]). As above mentioned,

the EEG signal can be decomposed into frequency bands and different measures can be

adopted for its analysis, usually selected according to specific needs. For our purposes, a

particularly useful parameter is the weighted Phase Lag Index [32] (wPLI hereinafter) that

quantifies the correlation between pairs of sensors in the scalp. In general, considering two

time series a(t) and b(t), the wPLI is defined as

wPLI = |
∑n

t=i |im(Pab,t)| sgn im(Pab,t)∑n
t=i |im(Pab,t)|

| (1)

where sgn indicates the signum function, im indicates the imaginary part, and Pab,t the

complex cross-spectral density, of a(t) and b(t), at time t. Notably, given the power spectral

densitities of the two signals Paa and Pbb, i.e. the distribution of the power across the

frequency components of a(t) and b(t), respectively, the cross-spectral density quantifies the

correlation between them. Then, for each frequency band, the interactions of the resulting

Curie-Weiss are computed by scalar multiplication of the wPLI index with the relative power

of the signal. A quick inspection of 1 shows that the wPLI and the power of the signal are

strongly correlated. However, we found beneficial to combine them for realising the mean-

field model. In doing so, inspired by the Tegmark’s approach for studying the IIT by a simple

physical system, and remaining in the land of the classical physics, we build a Curie-Weiss

from EEG recordings assigning a spin to each sensor and computing interactions by the

combination of the indexes above mentioned (i.e. wPLI and Power). Thus, starting with

randomly assigned values of spins (σ ± 1), and quenching interactions [17, 41], we study

the dynamics of the system towards equilibrium. Following this method, it is possible to

compute a critical temperature for each frequency band of the EEG signal, as Tαc for the α

band. However, since this signal varies over time, node interactions can vary as well. Here,

actually, the variation of interactions is expected to be useful for detecting variations of

mental states. For instance, as reported in [31], networks built using the wPLI index show

variations as individuals undergo sedation and then recover to their original conscious state.

To tackle this aspect, the EEG signal is sampled into four different points labelled as C,

S, DS, R, representing consciousness, sedation, deep sedation, and recovery, respectively.

Mental states C and DS are both classified as states of consciousness, in agreement with
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[42], while S and R are labelled as transition states. Also, C and DS can be viewed as two

equilibrium states (although the deep sedation, i.e. DS, in our individuals has been induced

by a drug). Let us now proceed to the formal definition of spin interactions. Recalling that

the EEG signal is decomposed into 5 main frequency bands and that we extract 4 samples per

recording, for each individual we can generate up to 20 mean-field models. Since the wPLI

quantifies the correlation between pairs of nodes, we indicate with wPLIxi,j the correlation

between sensors i and j in the xth frequency band. Accordingly, the interaction term J

reads

Jxi,j(s) = P x(s) · wPLIxi,j(s) (2)

with s sample (or mental state) and P x(s) power of the xth band for that specific sample.

Thus, the Hamiltonian of the system is

H = − 1

N

N∑
i,j=1,j 6=i

Ji,jσiσj (3)

with N number of sensors and σ spin assigned to them. While the spin is a quantum property

of particles, it finds large utilisation in non-physical models, typically for representing binary

features. For instance, in social dynamics the spin can represent a binary opinion [43], in

evolutionary game theory a strategy [44, 45], and in neural models it can indicate firing (+1)

and resting (−1) states [46]. The proposed model does not define explicitly a connection

between the value of the spin and the underlying neural activity since the spin dynamics

is implemented only to obtain theoretical insights about the activity distribution recorded

in the scalp. In particular, the studying of the order-disorder phase transitions, occurring

in each model realisation, allows computing the set of critical temperatures Tc associated

to every mental state. To this end, for each configuration (i.e. an individual in a given

state), spin interactions J are considered as quenched, so one can analyse the dynamics

of spins starting from a random distribution. Here, since our efforts are directed towards

quantifying the human consciousness, we put the attention on the α and δ bands that,

according to previous clinical studies (e.g. [47, 48]), seem to be quite relevant for investigating

this complex phenomenon, as well as others as psychotic disorders [49]. The described

method allows observing the motion that individuals take in the space of mental states. Such

motion is defined along a path on a bidimensional plane, whose axes are (Tαc , T
δ
c ). Moreover,

since recordings terminate once individuals recover their original cognitive state, the resulting
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path forms a closed cycle. Then, we implement a Machine Learning tool to exploit the

resulting paths (or cycles) for classification tasks, as for identifying the correct label of a

point (e.g. DS) in the mental state space. In particular, a classifier able to assign a label to

each point takes as input vectors with components (Tαc , T
δ
c ). As a huge literature suggests,

classifiers can be realised by many algorithms, e.g. neural networks [50]. However, given the

small size of our dataset, we implemented a Support Vector Machine (SVM hereinafter) [50]

—see also A. Summarising, starting from EEG recordings, the proposed model generates

bidimensional vectors, whose entries correspond to the critical temperatures computed in

the α and δ frequency bands, state by state. These vectors constitute the input of an SVM

designed to discriminate between the two states of consciousness C and DS.

III. RESULTS

The proposed model has been tested with a dataset of EEG signals obtained by record-

ing 8 healthy volunteers [51] undergoing sedation induced by propofol —see Appendix B

for details. So, each recording started with individuals in the conscious state and termi-

nated after their complete recovery. Four main mental states can be identified: awareness,

sedation, deep sedation, and recovery, and for each of them, one sample is extracted from

the recording. The resulting amount of samples (based on 173 sensors), available for all 5

frequency bands, allows generating 20 Curie-Weiss configurations per individual. However,

for the reasons reported above, only the α and δ bands are considered, therefore the number

of configurations in this investigation is limited to 8. A model configuration has specific

values of spin interactions. Let us remind that spins are the mathematical representation of

the sensors in the scalp, and their value (i.e. ±1) is randomly assigned as below described.

Instead, the interactions are computed by Eq. 2. Before proceeding showing results of the

simulation, we compare the average value of interactions obtained by using the above equa-

tion (i.e. Eq. 2) with those (average) values that can be achieved by using the spectral power

(P ) and by the wPLI, individually. This comparison is performed over the 4 mental states

and the outcomes have been averaged over all individuals. Results are shown in Figure 1,

which reports also the related standard error of the mean, i.e. SEM = σ√
N

with σ standard

deviation and N number of individuals. A quick inspection of Figure 1 suggests that our

method enhances in good extent the difference between the states C and DS, embedding
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the contribution of the spectral power and that of the wPLI index. Let us highlight that our

FIG. 1. Average value of the interaction terms, over 4 different mental states, in Curie-Weiss

built using three different approaches. In particular, the interactions have been defined by using

a) the power spectrum 〈J〉 = 〈P (s)〉, b) the wPLI index, i.e. the correlation 〈J〉 = 〈wPLI(s)〉

between pairs of sensors, and c) the scalar product of the power with wPLI index (i.e. 〈J〉 =

〈P (s) ·wPLI(s)〉). The legend indicates the considered frequency bands: red line for the δ and the

green line for the α, and the related diamonds and squares represent the average value for each

label. The error bars have been calculated using the standard error of the mean (SEM). Then,

semi-transparent points (i.e. red stars for δ and green circles for α) represent the single individuals.

goal is now to extract information related to the mental states of individuals by processing

the resulting Curie-Weiss models. So, the next step is focused on the identification of the

critical temperature for the different configurations of the Curie-Weiss model. This process

allows us to build a ’state space’ of mental states, where we can quantify, and also visualise,

the path followed by individuals across the clinical examination. Then, the paths of mental

states are used to train a simple machine learning tool whose goal is to classify conscious

states of our individuals.
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A. Mental States I: Building the State Space

All numerical simulations have been performed on Curie-Weiss configurations related to

every single individual, i.e. spin interactions have not been averaged as (instead) it has

been done for the analysis shown in Figure 1. While spin interactions J are quenched, we

study the dynamics of spins that, at the beginning of each simulation, are randomly set

to ±1. Notably, simulations are implemented for studying order-disorder phase transitions,

and more specifically for identifying the critical temperature of each configuration. For that

purpose, a useful parameter is the absolute value of the average magnetization of the system.

The latter strongly depends on the system temperature T , despite its definition does not

include the temperature explicitly, and it reads

〈M〉 =
N∑
i

|σi|
N

(4)

It is worth to observe that beyond identifying the critical temperature Tc for each case, it is

possible to assess if Tc ≈ 〈J〉. The latter, as further explained later, can be a relevant feature

for designing clinical applications based on the proposed model. Figure 2 reports the results

obtained on one individual, randomly chosen among those available. To assess whether

a temperature is ’critical’, the variance of M (indicated as σ2) is analysed in function of

the inverse temperature β since the highest value of σ2 is reached at T = Tc —see inset

of Figure 2. Then, once computed the critical temperature for all considered cases, we

focus on the numerical difference between these values and the average interaction term

(i.e. 〈J〉) of each Curie-Weiss realisation. In doing so, we found that approximating the

Tc with the 〈J〉 gives small errors, limited to the 12.5% of Tc (see for instance the lines

red and green, indicating the 〈J〉 and the Tc, respectively, in figure 2). Finally, results

of the mean-field model are shown in Figure 3. Notably, plotting the values of the critical

temperatures computed in the band δ (T δc ) versus those computed in the band α (Tαc ) allows

us to visualise the path from the initial point C to the point DS, and that of return. So,

we have now a state space that contains ’mental paths’, whose evolution (or motion) can be

further analysed. Before proceeding to the classification of mental states, we highlight that

the order-disorder phase transition studied in the resulting Curie-Weiss model has not a

biological meaning in this context. Notably, it is a process simulated to extract information

from the resulting model, that we assume can be useful for understanding the dynamics of
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FIG. 2. Average magnetization in function of the system temperature. A pictorial of a Curie-Weiss

model is shown close to the main line, while the inset shows the variance of M in function of the

inverse temperature β (on a semi-logarithmic scale). The critical temperature is indicated by the

green line (both in the main picture and in the inset), while the average interaction term for the

system (〈J〉) is indicated by a red dotted line (both in the main picture and in the inset).

mental states. In addition, the value of critical temperatures has been computed on a finite

size system, while phase transitions occur in the thermodynamic limit. Therefore, further

investigations with bigger systems can be useful also to evaluate if the critical temperatures

we obtained in our analyses are much different from those one would find scaling the size of

the model.
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FIG. 3. Diagram 〈Tαc 〉, 〈T δc 〉, with an inset showing the results obtained on a single individual

(randomly chosen). Notably, the points in the diagram (and in the inset) represent the 4 different

mental states during the clinical experiment: C, S, DS, and R, i.e. consciousness, sedation, deep

sedation, and recovery, respectively. The black line indicates the path followed by each individual,

undergoing sedation and then recovering to the initial state.

B. Mental States II: Classification

Each path obtained by the previous method characterises an individual, thus we use this

representation for implementing a Machine Learning tool for classifying mental states. In

our investigation, paths are composed of 4 points in bi-dimensional state space. Therefore,

we can identify a vector, whose entries are the critical temperatures computed for the bands

α and δ, for each mental state. The goal is to assess whether these vectors are useful for

generating a confident boundary able to separate different mental states. So, for the sake

of simplicity, we build a classifier for discriminating between the state C and the state DS.

Due to the small size of the dataset, we use an SVM implemented by a kernel based radial

basis function (as commonly adopted in classification tasks). The outcomes are shown in
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Figure 4, where the axes refer to the two critical temperatures of each individual (i.e. one

per frequency band), not to their average values (as in the main plot of Figure 3). Let us

FIG. 4. Results of SVM applied to the EEG dataset on the plane Tαc vs T δc . Different symbols refer

to different individuals. The green colour indicates the conscious state (C), while the red colour

indicates deep sedation (DS). The black line identifies the edge between the two classes, i.e. C

and DS.

briefly describe the procedure for training and testing the SVM. Notably, given a dataset

of 8 individuals, the training has been performed on 7 out of them, and the testing on the

excluded one. This process was then repeated excluding each time one different individual.

In doing so, we can evaluate 8 different testing phase results. Following the above procedure,

now a further analysis compares the results that an SVM achieves when fed with vectors

obtained by three different approaches. Notably, in all cases, vectors resulted from a mean-

field model (with the method above described), but its interactions can be defined by Eq. 2,

or by the power spectrum and the wPLI, individually. This comparison, shown in Figure 5,

is quite relevant because we want to evaluate in which extent the utilisation of Eq. 2 provides

an actual benefit for our purposes. Remarkably, we found that our method produced the

smallest error rate in the task of classifying mental states —see Figure 6. In particular, the

SVM trained and tested with our method did only one error, over 8 tests (i.e. 12%), while
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FIG. 5. Comparison between the results of SVM model built with data coming from three different

methods: a) Using spectral power; b) Using wPLI; c) Critical temperatures obtained by using

Eq. 2. Different symbols refer to different individuals. The green colour indicates the conscious

state (C) and red one that of deep sedation (DS). The black line identifies the edge between the

two classes, i.e. C and DS in the mental state space. Then, points with the same symbol, but a

different colour (e.g. blue and black), indicate an error in the classification process.

those trained with data coming from the two other methods did more errors (i.e. 33% and

25% by using power spectrum and wPLI, respectively). Before to conclude this section, we

deem important to mention that actual measures might be used to compare outcomes of

different models, as the AUC. At the same time in this investigation, considering the number

of samples, we found beneficial to evaluate the error rate.
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FIG. 6. SVM error rate computed by data coming from three different methods: Critical temper-

atures (Tc) obtained by Eq. 2, Spectral power, and wPLI. Note: the lesser the better.

IV. DISCUSSION AND CONCLUSION

In this manuscript, we propose a method for quantifying human consciousness and classi-

fying mental states using EEG signals (see also [36, 52]). Notably, we introduce a mean-field

model of the distribution of electrical activity in the brain, whose outcomes are used for

training a Machine Learning classifier. Inspired by the Tegmark’s work [3] about the IIT,

we study order-disorder phase transitions occurring in Curie-Weiss models whose interac-

tions depend on the phase differences across scalp locations. This analysis allows computing

the critical temperatures achieved for different configurations of the model, i.e. on varying

the mental state and the considered frequency band of the signal. Here, the interactions

between spins are computed by the scalar product of the power spectrum with the wPLI

index, for each specific band. The benefits coming from this choice are reported in Figure 5

and Figure 6. Remarkably, the critical temperatures, computed by means of numerical

simulations, allow defining a state space where we can observe the path of mental states.

It is worth to mention that, according to Giulio Tononi [42], consciousness emerges also

during dreamlike phases of the sleep. Therefore, considering previous investigations stating

that some individuals reported dreamlike activity, during an induced deep sedation [53],
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both awareness and deep sedation in principle should be considered as conscious states (see

also [54]). The path between awareness and deep sedation shows, in the middle, the transi-

tion states (S and R). Thus, summarising, we have two conscious states and two transition

states. It is relevant to clarify that we are not using the formal meaning of ’transition state’,

as usually adopted in stochastic models (e.g. the voter model [55]), otherwise also the ’deep

sedation’ state would be defined a transition state since it lasts only for the duration of

the drug effect. At the same time, these considerations could be extended further since, for

instance, states of coma could be properly classified as absorbing states, and so on. Hence,

our definitions have not that level of formality, despite we find interesting to investigate more

on this. So, once defined a mental state space, we use an SVM for tracing the boundary

between states C and DS. We remind that the dataset for performing the investigation

has been obtained with 8 individuals wearing EEG sensors. Then, the EEG recordings have

been used for building the mean-field model (i.e. Curie-Weiss) and generating a training

dataset. The actual choice of the frequency bands, i.e. α and δ, actually depends also on

the clinical settings of examinations (e.g. the utilisation of propofol for inducing the se-

dation). Results suggest that the critical temperatures are useful to perform classification

tasks, discriminating between the two conscious states. Therefore, thinking about the po-

tential use of the proposed model, at clinical level, we conceive a framework composed of

two elements: one devised for computing the average interaction term in different bands,

that, as we proved, approximates the critical temperature in the related Curie-Weiss con-

figuration, and the other based on an SVM (or on another Machine Learning algorithm).

The fact that the average interaction can be approximated by the critical temperature, in

principle, is not too surprising. Notably, the critical temperature of the 2D Ising model is

Tc = 1 for J = 1. However, it has been worth, for the reasons above described, to confirm

that hypothesis. Beyond the theoretical analysis, which requires further investigations to

confirm our achievements, the framework that we conceive could support, after appropriate

testing, clinicians in different scenarios. For instance, it could be useful for defining the

optimal amount of drug for sedating a patient, or for classifying the level of unconsciousness

of unresponsive patients. Also, it is interesting to observe that the mean-field model realised

by EEG recordings might be conceptually related to the ’classical’ Tegmark’s description of

consciousness (i.e. that based on the Ising model). Notably, it would be useful to evaluate

how to obtain only one model, across the different bands, and to study its behaviour at dif-
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ferent temperatures. Furthermore, we highlight the possibility to extend further this work

trying to improve the connection with the IIT framework, in order to develop mathematical

tools able to analyse the human consciousness from a perspective supported by the Tononi’s

insights. Finally, we deem interesting to provide a comment on the method implemented

to represent the path of mental states. Notably, as above reported, each state is described

by a vector of critical temperatures (one per frequency band). So, like for other kinds of

models, as those based on network theory, the proposed approach can find application in

various contexts, in particular when the strength of interaction among the elements of a

system is relevant. In our case, the interaction strength clearly shows a time dependency,

however that is not a mandatory requirement to implement and analyse a system by means

of a Curie-Weiss model. Moreover, the method might provide interesting insights also when

built considering interactions defined by meaningful semantic relations among elements of

a system, i.e. abstracting from a physical system and therefore increasing its potential ap-

plicability to a much wider set of cases. We conclude emphasising that our results indicate

that the EEG signal might be further exploited both for obtaining a deeper understanding

of human consciousness, and for implementing novel tools to support clinicians in many

complex and critical activities. To this aim, there are some important aspects to consider in

future investigations. Firstly, here we focused on two frequency bands (α and δ), however it

is important to assess if our choice is the optimal one. Notably, although previous literature

suggests that these two bands are particularly relevant for the human consciousness, finding

the way to exploit also other frequency bands might be useful (as before mentioned, the

choice can depend also on the anesthetic drug). Then, interactions among sensors have been

identified by means of the wPLI index. However, also other correlation measures could be

taken into account. Eventually, we identified transient states, i.e. those states between C

and DS. We deem that their role, dynamics and properties need to be further analysed, as

well as a classification algorithm for their detection could be useful.
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Appendix A: Data Classification

Here we briefly present the algorithm used for classifying mental states, i.e. the Support

Vector Machine (SVM). The latter receives as input vectors generated by using the output

of the Curie-Weiss model. In doing so, the input vectors contain the critical temperature

computed for each frequency band, across the different mental states. For instance, consid-

ering the bands δ and α, a vector representing one individual in the conscious state contains

the two related critical temperatures, i.e. Vi(c) = [Tcδ, T cα]. The collection of these vectors

is used for training and testing the SVM. Notably, since an SVM is a supervised learning

model, it requires a training set for the learning process and, usually, such training set is

based on a fraction (randomly selected) of the dataset under investigation. For instance, a

generic dataset D contains n elements, i.e. D = {(x1, y1), (x2, y2), ..., (xn, yn)}, so that for

each input vector xi one has the associated output yi, i.e. a label or class of belonging (in

our case xi is a temperature vector, while yi is the corresponding mental state). The dimen-

sion of the input vector depends on the number of features which describe the system, so in

our case corresponds to the number of considered frequency bands. Accordingly, a binary

classification task can be implemented considering as outputs two possible values, e.g. +1

and −1. Similarly, for a multi-label case, one has to identify proper values for the output.

Then, an SVM aims to identify the ’maximum-margin hyperplane’ that separates input vec-

tors according to their corresponding output. In the bidimensional case, the hyperplane is a

simple line. The SVM can be both linear and non-linear, depending on the function (defined

as Kernel) used to separates vectors into the related classes. Also, the closest vectors to the

hyperplane are called ’support vectors’. For instance, in the linear case, a bidimensional

hyperplane can be identified by the equation ŵx̂+ b = 0, with ŵ vector of weights, b (small

constant) bias, and x̂ feature space of the input vectors. Therefore, the SVM tries to iden-

tify the most suitable ŵ and b to maximise the margin, i.e. the distance, between vectors

belonging to the two (or more) different classes. Following the above example, in a binary

classification, input vectors located above the computed hyperplane belong to one class (e.g.

+1), while those located below the hyperplane belong to the other class (e.g. −1).
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Appendix B: Clinical Information

The full description of the experimental setup implemented to acquire the dataset, used

in this investigation, is reported in [51]. However, for the sake of completeness, here we

provide some relevant details related to the participants and to the experimental protocol.

First of all, we emphasise that the investigation was approved by the Ethics Committee of

the Faculty of Medicine of the University of Liege. Also, the group of participants, with

mean age 22 ± 2 y, includes 4 males. All participants gave written informed consent, so

an appropriate examination, including anamnesis, has been performed to assess potential

issues related to the anaesthesia, as pregnancy, mental illness, drug addiction, asthma,

and so on. Experiments are based on fifteen-minute spontaneous 256-electrode hd-EEG

recordings, that can be divided into 4 different states: normal wakefulness, sedation (slower

response to command), loss of consciousness with clinical unconsciousness (i.e. no response

to command), and recovery of consciousness. The total experimental procedure lasted about

5 hours, including both the positioning of the 256-electrode hd-EEG cap and the recovery

time of participants.
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