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Abstract: Deep-learning (DL) network has emerged as an
important prototyping technology for the advancements of
big data analytics, intelligent systems, biochemistry,
physics, and nanoscience. Here, we used a DL model
whose key algorithm relies on deep neural network to
efficiently predict circular dichroism (CD) response in
higher-order diffracted beams of two-dimensional chiral
metamaterials with different parameters. To facilitate the
training process of DL network in predicting chiroptical
response, the traditional rigorous coupled wave analysis
(RCWA) method is utilized. Notably, these T-like shaped
chiral metamaterials all exhibit the strongest CD response
in the third-order diffracted beams whose intensities are
the smallest, when comparing up to four diffraction orders.
Our comprehensive results reveal that by means of DL

network, the complex and nonintuitive relations between
T-like metamaterials with different chiral parameters (i. e.,
unit period, width, bridge length, and separation length)
and their CD performances are acquired, which owns an
ultrafast computational speed that is four orders of
magnitude faster than RCWA and a high accuracy. The
insights gained from this study may be of assistance to the
applications of DL network in investigating different
optical chirality in low-dimensional metamaterials and
expediting the design and optimization processes for hy-
per-sensitive ultrathin devices and systems.

Keywords: circular dichroism; deep learning neural net-
works; diffractive chiral metamaterials; optical chirality;
polarization-selective devices.

1 Introduction

A renewed research interest has been focused on optical
chirality, whose structure shape cannot be superimposed
on its mirror image [1, 2], inspiring a plethora of interesting
and intriguing phenomena [3]. It has been evidenced that
the immense and promising application prospects of op-
tical chirality involve the fields of chemistry [4], life science
[5], pharmaceutical synthesis [6], spectroscopy [7], spin-
tronics [8], quantum computing [9, 10], sensitive detection
and imaging [11]. Circular dichroism (CD) spectroscopy is
one of the most successful approaches to efficiently char-
acterize the chiroptical response of chiral materials, which
measures the differential absorption between the right-
(RCP) and left- circularly polarized (LCP) light [12]. Notably,
the enantiomers of chiral materials would interact differ-
ently with LCP and RCP light, determined by the structure
handedness [13]. Though the chirality is an omnipresent
part of nature, the chiroptical response of these natural
materials is generally very weak, caused by the small
electromagnetic interaction volume [14], creating diffi-
culties in its high sensitivity detection and hindering the
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future perspectives. Thanks to the recent progress of
modern nanofabrication techniques, it is feasible to alter
the chirality parameters of different artificial chiral mate-
rials and equip them with superior optical chirality than
their natural counterparts [15]. One salient example is the
chiral metamaterial [16], in which the localized surface
plasmon (LSP) resonances would greatly boost the light–
matter interaction and then largely enhance the chiroptical
responses [17, 18]. When compared with the three-dimen-
sional chiralmetamaterials, the two-dimensional (2D) ones
seem to be a better candidate for the exploration of optical
chirality, considering their exceptional intrinsic properties
that benefit the manufacturing of nano-devices requiring
small optical losses, compact size, and high compatibility
with the complementary metal–oxide–semiconductor
(CMOS) foundries [19–22]. Equally important, the dif-
fractive chiral metamaterials have also emerged as signif-
icant platforms to study optical chirality, whose CD
responses at higher-order diffracted beams are usually far
larger than the case of zeroth-order [3, 23]. However, the
complete investigation of diffractive metamaterials with
plenty of geometry parameters is rarely found in literature
[24]. A key issue in this context, which has yet to be
explored, is the study of 2D chiral metamaterials with
numerous chiral parameters via a highly-accurate and
significantly-fast approach, as the simple cases of optical
chirality in 2D chiral metamaterials with fixed dimensions
have been previously addressed [3, 25].

Recent trends in artificial intelligence have led to a
proliferation of studies on deep learning (DL) algorithm and
its utilization in diverse fields, such as biology [26–28],
chemistry [29–31], and physics [32–34]. In particular, one
important aspect pertaining to DL is its capability of char-
acterizing and predicting the physical properties for pho-
tonic structures [35–37], including the reconstruction of
ultrashort pulses [38, 39], the wave-front sensing [40], and
the design ofmetasurfaces [41], chiralmetamaterials [42, 43]
and electromagnetic nanostructures [44–47]. Furthermore,
the DL scheme has also penetrated into computational
physics, covering the areas of estimating stress distribution
[48], assisting computational mechanics [49], capturing
nonlinear material behaviors [50] and predicting plasmonic
colors [51], whose main advantages over the conventional
finite element method are that it not only speeds up the
investigation process, but also creates many nonintuitive
designswith distinguished performance. It isworth noticing
that DLmodel is a supervised form inmachine learning (ML)
that usually adopts backpropagation to train its network
[52]. In the above studies, DL can perform end-to-end
learning [53], extract features automatically [54], discover

hidden features [55] and improve model accuracy [56]. The
category of DL algorithms includes the deep neural network
(DNN) containing fully-connected layer [57], recurrent neu-
ral network commonly used in contextual data [58], con-
volutional neural network most used in image recognition
[59], stacked autoencoder frequently used in feature mining
[60], and generative adversarial network regularly used in
sample generation [61].

In this work, a DL network based on the DNN algo-
rithm, namely the fully connected neural network (FC-NN),
is proposed to automatically study and predict the chi-
roptical response of 2D diffractive chiral metamaterials
with various geometry parameters. In the metamaterials, a
gold array of T-like shaped molecules in the left handed-
ness are fabricated and then deposited on the oxidized
silicon (Si) substrate. To detailly study the influence of
chiral parameters comprising the unit period, width,
bridge length, and separation length, on the CD charac-
teristics of the T-like metamaterials, both the rigorous
coupled wave analysis (RCWA) method and the FC-NN
approach are employed. Particularly, by calculating the CD
spectra for 7358 intermediate geometries via the RCWA
method, the FC-NN network is well trained and capable of
predicting the chiroptical response of T-like metamaterials
with different chiral parameters. Our work reveals that the
T-like chiral metamaterials show the strongest CD perfor-
mances in the third-order diffracted beams when consid-
ering up to four diffraction order beams, although the
scattered intensities at third-order beams are far smaller
than the second-order case. Furthermore, the CD spectra’s
bisignate feature, which represents the positive and
negative signs of CD response, varies nonlinearly with the
chiral parameters including the unit period, width, bridge
length, and separation length, opening up new possibil-
ities for the engineering of optical chirality. More impor-
tantly, the FC-NN network is confirmed to be a promising
and powerful technique that can characterize the chirop-
tical response of diffractive chiral nanostructures with
different geometry in a high accuracy and an ultrafast
computational speed. This study set out to assess the
feasibility of DL network in the characterization and engi-
neering of 2D chiral metamaterials for the next generation
hyper-sensitive detecting nano-devices.

2 Computational methods

The intensity of higher order diffracted beams for the T-like
chiral metamaterials under LCP and RCP light irradiation
are numerically calculated via the RCWA method imple-
mented in Synopsys RSoft DiffractMOD. Notably, the
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wavelength-dependent permittivity of Au, Cr, SiO2, and Si
is fully incorporated in the RCWA calculations. The four
geometric parameters, including the gold length, gold
width, bridge length, and separation length, exhibit uni-
form distributions in the selected ranges. The investigated
incident light is in the wavelength region of 0.2–1.775 μm,
which is discretised uniformly into 64 points. Next, the CD
response prediction of the chiral metamaterial can be
switched to a regression problem, the purpose of which is
to associate the 1 × 4 structure parameter vector with the
2 × 64 spectra vector. Using the RCWA method, we have
gathered 7358 samples and used 5886 of them for training,
with the left 1472 for testing. The model is built under the
open-source DL framework of TensorFlow.

3 Results and discussion

3.1 2D chiral metamaterials samples

The schematic illustration and optical properties of the T-
like chiral metamaterials are shown in Figure 1. To begin
with, the schematics of T-like metamaterials under the
circularly polarized light excitation are presented in
Figure 1(a), in which the higher order diffraction beams
are observed. Next, one can see the unit cell of the T-like
metamaterials in Figure 1(b), where its dimensions are
evidently illustrated: the T-like sample is in a gold length
of l, a gold width of w, a gold bridge length of ls, and a

separation length between two adjacent nanoparticles of
g, resulting in a unit period of a = 2l + 2g. It is important to
mention that the other three geometric parameters (i. e.,
w, ls, g) will be represented by the gold length l in what
follows, leaving the unit period a in a certain proportion
to l. This simplifies the investigation of the influence of
unit period on the CD performance to the dependence of
CD on the gold length. In addition, the depth profiles of
the T-like metamaterials are declared here: the 30 nm
gold arrays are fabricated and then transferred to an
oxidized Si substrate whose SiO2 layer is 200 nm in
thickness. Additionally, a 10 nm Cr film is inserted be-
tween the gold layer and SiO2 layer, operating as the
spacer. It is noticeable that the left-handed T-like meta-
materials possess the LSP resonances, which can
dramatically enlarge the optical chirality of meta-
materials.

Figure 1(c) describes the normalized intensities of the
n = 1–4 diffracted beams, irradiated by LCP light. Notably,
all the traditional numerical simulations in the work are
conducted via the RCWA approach. It is apparently seen
from this figure that the second-order diffraction beam
exhibits the largest normalized intensity, whereas the in-
tensity is the smallest in third-order beam. The corre-
sponding CD responses in cases of up to four diffraction
order beams are presented in Figure 1(d). Surprisingly, it is
found that the third-order diffraction beam exhibits the
strongest CD response, in spite that this diffraction order
owns the weakest normalized intensity. Thus, it is

Figure 1: Characterization of the T-like
shaped chiral metamaterials. (a) Schematic
illustration of the diffractive T-like
metamaterial under the circularly polarized
light excitation. (b) Schematics of the T-like
metamaterial’s unit cell. Its geometric
parameters are presented as follows: a gold
length of l, a goldwidth ofw, a bridge length
of ls, and a separation length between two
adjacent nanoparticles of g, leading to a
unit period of a = 2l + 2g. (c) The calculated
intensities under LCP light excitation and
(d) the CD response of the T-like
metamaterials, in terms of the n= 1–4 order
diffraction beams. In these two cases, the
unit period is a = 2.4 μm, with the gold
length to be l = 1 μm, the gold width of
w = 0.2 μm, the separation length of
g = 0.2 μm and the gold bridge length of
ls = 0.4 μm.
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foreseeable that the CD characteristics can be engineered
with an additional flexibility by changing the chirality
parameters of T-like metamaterials. We propose two
crucial concepts in this context: (1) the spatial distribution
of diffraction order beams, satisfying the grating diffrac-
tion equation of a sin θ = nλ, where θ is the diffraction angle
and n is the diffraction order [3]; (2) the normalized CD,
denoted as CD = (IRCP−ILCP)/(ILCP + IRCP), represents the
relative difference between the intensities of third-order
diffracted beams irradiated by LCP (ILCP) and RCP (IRCP).

3.2 Deep learning network

The FC-NN model is constructed to study the correlation
between the four chiral parameters of the T-like meta-
materials and their chiroptical response. Firstly, we collect
7358 pairs of LCP/RCP spectra obtained via the RCWA
method as the dataset. Then we pre-process the dataset and
shuffle it randomly. More details about the first two steps are
provided in the in Supplementary Material (SM) section.
Finally, we divide it into the training dataset and test dataset
with the ratio of 4:1 randomly. The schematic illustration of
the FC-NN is demonstrated in Figure 2(a), which consists of
six layers, namely an input layer, an output layer and four
hidden layers. Specially, the gold length, gold width, bridge
length, and separation length of the metamaterials are the
input data to be fed into the input layer, corresponding to the
four neurons in the left green box. Next, the output layer
contains 128 neurons, with the first 64 neurons representing
predicted LCP results and the other ones standing for the

predicted RCP spectra (see the right green box). In this work,
we denote the number of neurons in ith hidden layer as Ni,
where i = 1, 2, 3 or 4, corresponding to the hidden layer.
Notably, N1, N2, N3 and N4 (Ni∈{128, 256, 512, 1024, 1536,
2048, 3072, 4096}, i = 1,2,3,4) are viewed as the hyper-
parameters. The activation layer with a leaky ReLU activa-
tion function (alpha = 0.2) is inserted between every two
adjacent hidden layers and behind the output layer. The
mean absolute error (MAE) is used as the loss function for
our regression task, which is mathematically expressed as,

loss � 1
m

∑
m

i�1

∣
∣
∣
∣
∣
speci pred − speci real

∣
∣
∣
∣
∣

(1)

where specpredi and specreali are the predicted spectra per-
formed by the neural network and the labeling spectra
simulated by RCWA of the outcome i, respectively, and
m = 16 is the size of batch data.

Before proceeding to the training process of the FC-NN
network, it is important to stress that the four hyper-
parameters, N1, N2, N3 and N4, are optimized through the
Genetic Algorithm (GA) [62], whose flow diagram is
depicted in Figure 2(b). Notably, the construction of GA is
detailly presented in SM section. These four parameters are
treated as chromosomes of the population, which means
that each population has four chromosomes. The gene
length of chromosomes is set to three, since a chromosome
has eight different possible values. To balance the global
optimization and computational complexity, the size of
population is selected to be 30. The fitness value of the
population is defined as,

Figure 2: Fully connected deep learning
network. (a) Schematics of the proposed FC-
NN. The number of neurons in each hidden
layers (see the blue box), N1, N2, N3, and N4

are regarded as hyperparameters; (b)
Schematics of the GA. Initialize: initialize
the population where the hyperparameters,
N1, N2, N3, and N4, act as chromosomes;
Fitness: calculate the population’s new
fitness according to the chromosomes;
Threshold: check if the new fitness is less
than the expected threshold or current
iteration is greater than the maximum
iteration; Selection: choose those
chromosomes whose fitness perform
better; Crossover: swap the gene between
different chromosomes to generate new
chromosomes; Mutation: change partial
gene to generate new chromosomes.
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fitness � loss10 (2)

where loss is defined in Equation (1), and the subscript ‘10’
indicates that the loss is obtained after the model un-
dergoes 10 epochs of training. Under the optimization of
GA, the optimal values of N1, N2, N3 and N4 are extracted to
be 512, 1024, 2048, and 1024, respectively. During the
running of the GA, we find that the FC-NN tends to spend
more time to reach the low MAE with a smaller value of Ni.
As for a larger Ni that usually induces more complexity for
the neural network, it is more likely to overfit though less
computational time is required. Here, the TensorFlow
framework is utilized to build the regression network. The
training, GA optimization and prediction processes were
performed using a graphic card (NVIDIA GeForce GTX
2080Ti) with CUDA 10.0 on the Win10 OS.

3.3 Estimation of FC-NN model

After the construction of the FC-NN model, we start to
evaluate the performance of this network in predicting the
chiroptical response of 2D chiral metamaterials, with the
results shown in Figure 3. Firstly, the CD properties of T-like
nanostructures with different gold length (1–2μm) and
bridge length (0.4–0.8l) are calculated by using both the
RCWA and FC-NN methods, as demonstrated in Figures
3(a)–(i). It is clearly seen that the predicted spectra by DL
model coincide well with the RCWA simulated results (i. e.,
the labeling spectra) in all cases. Additionally, the LCP/RCP
excited resonant wavelength increases with the unit period
(or gold length), which is determined by the selective exci-
tation of available modes. Furthermore, these T-like left-
handed metamaterials can be excited by either LCP or RCP
light. In particular, the modes that are excited by LCP light
dominate in Figure 3(i), whereas in other figures the modes
irradiatedbyRCPplaya key role. Thus, it is safely concluded
that the geometry or incident wavelength rather than the
structure handedness is responsible for the above phe-
nomenon. This provides excellent potentials for the optical
chirality engineering at a specific electromagnetic mode,
enabling the applications of the chiral metamaterials in
sensitive chiroptical detectors. Conversely, it is found that
large normalized CD responses are not necessarily contrib-
uted by large diffracted intensity irradiated by LCP/RCP
light. For instance, with the gold length being 1.5 μm, the
maximumCDof T-likemetamaterials is obtained to beabout
0.93, 0.9, and 0.84 at 0.95 μm, 0.73 μm, and 0.7 μm,
respectively, whose resonance locates around 1.15 μm.

We use the Adam optimization algorithm [63] with an
initial learning rate of 0.001 to train our FC-NN network.
The learning rate decays to 0.0003, 0.0001, and 0.00003 at

epoch of 200, 500, and 1000, respectively. Finally, our FC-
NN network converges at MAE of 0.02 for the train dataset,
whose value slightly increases to 0.03 for the test dataset,
after the training process of 2000 epochs with the batch
size of 16. Here, we use themean absolute percentage error
(MAPE) [64, 65] whose definition is given in SM section and
the Pearson product moment correlation coefficient (R)
between the labeling spectra and the predicted spectra to
evaluate the accuracy of the FC-NN model, as shown in
Figure 3(j) and (k). Importantly, the predicted spectra with
MAPE <5% and R > 99% are usually assumed to be of high
accuracy. The most striking observation from Figure 3(j) is
that the portion of MAPE<5% (red bar) is above 95%, which
occupies most of the test data. Meanwhile, as shown in
Figure 3(k), the portion of R > 99% (see red bar) is found to
take up nearly 97%, indicating the high correlation be-
tween the predicted spectra and the labeling spectra. On
the other hand,we compare the FC-NNnetworkwith RCWA
and other ML methods, including k-Nearest Neighbor
(KNN) [66], Decision Tree [67], Random Forest [68], and
generalized regression neural network (GRNN) [69], to es-
timate their efficiency and accuracy. The brief description
for these four ML methods is presented in SM section. As
presented in Table 1, although RCWA has obvious advan-
tage on MAPE, but it is such time-consuming that needs
about 5.5 h to generate 100 samples. Though the entire ML
model have a good performance on the minimum MAPE,
our FC-NN network exhibits the best index with the mean
MAPE of 1.07%. Regarding the computational time, our
proposed FC-NN only requires 1ms to generate 100 sample,
which is four orders of magnitude faster than RCWA and at
least 2-fold faster than other ML methods. Thus, FC-NN is
proved to be a better choice considering the accuracy and
the computational time. To verify that FC-NN has learned
the rules instead of memorizing the training spectra, we
utilize the lookup tables (i.e., Lagrange interpolation) to
make predictions for CDs, which turns to break down on
our dataset, with the comparison illustrated in Table 1.

3.4 Prediction of CD response

By means of the FC-NN model, it is feasible to study the
nonintuitive dependence of CD response from chiral met-
amaterials on the incident wavelength and chiral param-
eters in an efficient and accurate manner. In order to
quantify the contribution of the geometric parameters to
the CD effect, we first investigate the influence of unit
period on CD response. Importantly, by changing unit
period of 2D metamaterials, it is able to alter its resonant
wavelength and diffraction angle following a simple
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relation of a sinθ = nλ. More specifically, we consider the T-
like chiral metamaterials with the separation length of
g = 0.2l, the bridge length of ls = 0.5l, and four different
widths (0.15l, 0.2l, 0.25l, 0.3l), whose period is a = 2.4l, and
utilize the DL network to predict the CD response for
different values of wavelength and gold length l. These
results are summarized in Figure 4. One significant finding
is that a series of gold widths of the T-like nanostructures
would induce different CD behaviors. Precisely, much
stronger CD responses are exhibited in cases of w = 0.15l
andw = 0.2l compared to the other twowidths. In addition,

one can acquire the bisignate CD feature for almost every l
in these four cases, indicating the highly nonlinear
dispersion of chiroptical responses with the gold length or
unit period. Especially for the case of w = 0.2l, though
comprising more red-dominant modes than that in
Figure 4(a), its CD signals show multiple-bisignate char-
acteristics. Alternatively, it is achievable to control and
tailor the spatial properties of higher order diffraction
beams by changing the unit period of T-likemetamaterials.

We now consider the CD performance at different sepa-
ration length for T-like nanostructures via the FC-NN network.

Figure 3: Comparison of the third-order diffracted chiroptical responses calculated by RCWA and FC-NNmethods. (a)–(i) The simulated third-
order diffraction spectra via the RCWA (solid lines) and FC-NN (dotted lines) approaches, under the LCP (red) and RCP (blue) excitation. The top,
middle and bottom panels represent the cases of l= 1 μm, l= 1.5 μm, and l = 2 μm, respectively. While from left to right, these panels stand for
the bridge lengths of ls = 0.4l, ls = 0.6l, and ls = 0.8l. Here, w = 0.2l, and g = 0.2l. (j) MAPE between the labeling spectra and the predicted
spectra. The portion of MAPE <5% is presented as dark red bars. (k) Pearson product moment correlation coefficient, R, between the labeling
spectra and predicted spectra. Importantly, the portion of R > 0.99 is shown as dark red bars.
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An important term, space ratio = g/l, is introduced here to
characterize the quantity of separation length, enabling the
unit period awritten in form of l. We investigate CD spectra of
T-likemetamaterialswithdifferent space ratios andotherfixed
parameters (l = 2 μm, ls = 0.4l,w = 0.15l–0.3l), as presented in
Figure 5. It is found from this figure that, as expected, smaller
separation lengthsbetween twoadjacentnanoparticles lead to
stronger CD responses. This indicates that optical chirality of
metamaterials originates from the chiral coupling of all indi-
vidual molecules. Moreover, the bisignate feature is discov-
ered for most space ratios in all cases, implying that this
behavior is not determined by the separation length.

Surprisingly, the large positive CD responses seem to shift to
the parameter space with smaller space ratios and λ, when
increasing thewidthw. Thismay be explained by the fact that
T-like metamaterials with larger widths support different
electromagneticmodeswhen comparedwith the case of small
width, considering that the chiroptical response in third-order
diffracted beams is determined by the superposition of all
excited electromagnetic modes. Also, there are more large
negative values of CDs in parameter space with larger space
ratios and λ, indicating that the modes irradiated by LCP
dominate under these conditions.

Another key parameter that influences the CDs in the
third-order diffracted beams is the bridge length, as it
partially determines the shape of T-like nanostructures.
Therefore, by using the FC-NN algorithm, we investigate
the dependence of the CD responses on the normalized ls,
which is denoted as the ratio between the bridge length ls
and gold length l, under the conditions of l = 1.6 μm, g = 0.2l
and four different w, as shown in Figure 6. It is seen that T-
like metamaterials with w = 0.2l (see Figure 6(b)) present
the maximum CDs at each normalized ls, accompanied by
the most complicated bisignate characteristics. Addition-
ally, the negative CD responses seem to dominate over the
whole parameter space in gold width of w = 0.15l, whereas
the opposite is true for w = 0.25l. The positive and negative
CD values in Figure 6(d) suggest that the modes in T-like
metamaterials at w = 0.3l can be excited by both LCP and
RCP light. Furthermore, it can be concluded that the CD
responses vary nonlinearly with the normalized ls in all
cases. Here, the unit period is fixed at a = 2.4l (l = 1.6 μm),
which indicates that the wavelength of resonances be-
tween the incident LCP/RCP light and the electromagnetic

Table : Algorithm comparison among RCWA, FC-NN and other ML
method.

Algorithm/Model Timea MAPEb(%)

min max mean

RCWA . h   

KNN . ms .  .
Decision Tree  ms .  .
Random Forest . ms .  .
GRNN . min .  .
Proposed FC-NNc

 ms .  .
Lookup Method . ms .  .

The aim of “italics” values is to emphasize the key parameters
obtained by using our FC-NN model.
aThe time is equal to / of the time to generate all the test
dataset.
bThe minimum, maximum, and mean of MAPE are calculated among
the test dataset.
cExcept for the proposed FC-NN, the MAPE of the other algorithms or
models is acquired by conducting the postprocess for the raw data.
The detailed information is depicted in the SM section.

Figure 4: Maps of the third-order diffracted
CD response versus the wavelength and
length of a separate gold nanoparticle,
considering four widths of (a) w = 0.15l, (b)
w=0.2l, (c)w=0.25l, and (d)w=0.3l. Here,
the separation between two adjacent
nanoparticles is fixed at g = 0.2l, and the
bridge length is set to ls = 0.5l. These
results are predicted by the DL model.
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modes of T-like chiral metamaterials are smaller than
1.3 μm, causing that their CD responses are also below this
wavelength. An alternative important observation is that
some wavelengths (e.g., 800 nm) present the bisignate CD
performance, while other wavelengths only exhibit one
sign of CDs. This makes possible for tailoring the CD
response at a specific wavelength and then optimizing
chiral metamaterials, shedding new light on sensitive
chiroptical detecting devices.

Aiming at gaining a deeper insight into the chiroptical
responses of the T-like nanostructures, we determine the
values of the gold length l and normalized ls for which the

CD characteristics are in the near-infrared region. The re-
sults of this investigation are summarized in Figure 7. In
this analysis, we consider the T-like nanostructures with
four differentw and the separation length of g = 0.3l, under
the excitation of circular polarized light at λ = 0.8 μm. One
conclusion derived from these contour CD maps predicted
by the FC-NN model is that the CD responses exhibit a
nonlinear variationwith the gold length l. Additionally, the
dispersion diagram of the CD responsewith the normalized
ls is also not in a linear relation. Precisely, Figure 7(a)
presents the strongest CD responses both in positive and
negative values, with the electromagnetic modes excited

Figure 5: The dispersion of the third-order
diffractedCD response in termsof the space
ratio and wavelength, calculated by the DL
network. Here, four widths of the T-like
structure are included, namely (a)w = 0.15l,
(b)w= 0.2l, (c)w= 0.25l, and (d)w= 0.3l. In
all cases, the length of a separate gold
nanoparticle is l = 2 μm, and the bridge
length is ls = 0.4l.

Figure 6: Contour maps of the third-order
diffracted CD performance versus the
normalized ls and wavelength, predicted by
the FC-NNmodel. (a–d) correspond to the T-
like structure with four widths of w = 0.15l,
w = 0.2l, w = 0.25l, and w = 0.3l,
respectively. Here, the length of a separate
gold nanoparticle l = 1.6 μm, and the
separation length between two adjacent
nanoparticles is fixed at g = 0.2l.
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by LCP light determining in parameter area of (l = 1.3–
1.5 μm, normalized ls = 0.6–1.0), leaving the RCP modes
dominant in the rest space. However, the influence of LCP
modes on the CD responses decreases dramatically when
the gold width of the T-like metamaterials turns larger.
Especially for the case of w = 0.2l (see Figure 7(b)), the
negative values of the CD are only observed in small re-
gions, such as the area of (l = 1.3–1.4 μm, normalized
ls = 0.48–0.52), indicating the significant degradation of
bisignate feature at λ = 0.8 μm. On the other hand, the CD
performance with negative values occurs at the bottom
space of Figure 7(c) and Figure 7(d), which may suggest
that stronger LCP modes exist under these circumstances.

Since both the gold length and the separation length
between two adjacent nanoparticles determines the unit
period of the T-like metamaterials, a pertinent question is
how the CD responses are affected by the changes of these
two parameters. To answer this question, we consider the
T-likemetamaterialswith different l and g, irradiated by the
LCP and RCP light at a wavelength of λ = 0.8 μm, with the
results being shown in Figure 8. One interesting finding is
that when increasing the gold width w, the large negative
CD responses seem to gradually decrease. Moreover, in
case ofw= 0.15l, the negative values of CD response appear
below the limit of space ratio = 0.35, whereas for the other
widths the negative CD responses can push the limitation

Figure 7: Color maps of the third-order
diffracted CD response versus the length of
a separate gold nanoparticle and the
normalized ls, accounting four different
widths of T-like nanostructures: (a)
w = 0.15l, (b) w = 0.2l, (c) w = 0.25l, and (d)
w = 0.3l. In all cases, the separation
between two adjacent nanoparticles is
g = 0.3l, and the incident wavelength is
fixed at λ = 0.8 μm. The presented results
are predicted by the FC-NN model.

Figure 8: Contour maps of the third-order
diffracted CD response versus the length of
a separate gold nanoparticle and space
ratio, in cases of four different widths of T-
like nanostructures: (a) w = 0.15l, (b)
w=0.2l, (c)w=0.25l, and (d)w=0.3l. Here,
the bridge length is set to ls = 0.5l, and the
wavelength is fixed at λ = 0.8 μm. These
results are predicted utilizing the FC-NN
network.
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and occur at the upper parameter spaces of Figure 8(b)–(d).
A reasonable explanation for the above phenomena is that
the electromagnetic modes induced by LCP light are highly
likely to be excited in these dimensions of T-like meta-
materials. Additionally, it is obvious that larger absolute
values of CD are acquired when the space ratio is smaller
than 0.5 in four cases, which is due to the fact that a larger
separation length cause a weaker coupling effect between
the gold nanoparticles. On the other hand, for most l the
bisignate feature of CD performance is discovered, exhib-
iting a nonlinear dependence on the gold length. Particu-
larly, at the space ratio of 0.2 in Figure 8(b), the strength of
CD response seems to turn larger with a larger l. To
conclude, this figure offers a clear picture of how the
change of CD response is associated with unit period,
providing a new understanding of chiroptical response
engineering in chiral metamaterials via DL network.

4 Conclusion

In summary, we have proposed and utilized a DNN-based
DL model to investigate the optical chirality of various 2D
chiral metamaterials in the higher diffraction order beams.
Both the traditional RCWA method and the DL model are
employed to characterize the CD responses of T-like met-
amaterials with different chirality parameters, with the
former algorithm assisting the training process for the
latter. Particularly, we have addressed the sophisticated
nonlinear dispersion of CD responses on the unit period,
width, bridge length, and separation length of the chiral
metamaterials using the DL network. It should be stressed
that our proposed DL model is capable of predicting and
optimizing the CD responses of diffractive chiral molecules
in an ultrafast, highly-efficient, and exceedingly-accurate
manner, which dramatically reduces the computational
resources spent on numerically solving the electromag-
netics equations regarding optical chirality, and switches
this solution into a data-driven approach. These findings
reported here shed new light on the future perspectives
of DL network in accelerating the development of meta-
materials and nanophotonic devices with complicated
light–matter interactions involved.
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