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A bstract

This thesis documents an experimental investigation into the map-building and explo­

ration capabilities of a mobile robot. A map enables a robot to  predict the state of its 

environment and plan its actions accordingly. This ability is essential in a wide range of 

practical applications.

The map-building research begins with a thorough experimental evaluation of the robo t’s 

ultrasonic rangefmder, leading to a model which minimises the uncertainty caused by the 

wide beam  and uneven signal strength of the sensor.

Two types of map are used: a set of line and point features, and a grid-based free- 

space map. Potential features are extracted from the processed sonar data and classed as 

‘confirmed’ if detected repeatedly. The free-space map is derived from the set of confirmed 

features. A distance transform algorithm is then used to plan paths on this map.

This research places exceptioned stress on the need for practical experimentation and 

quantitative, statistical, evaluation of the results. For this to be possible, it is essential to 

have a clearly-defined measure of map quality. A novel metric is defined which predicts the 

effectiveness of the robot if it were to use the map to execute a set of test tasks. This metric 

is shown to correspond closely to an intuitive understanding of quality.

The confirmed features are used by a Kalman filter to estimate the robot’s position 

relative to known objects. This locahsation algorithm is shown to produce dram atic im­

provements in map quality in the later stages of exploration.

Exploration strategies are tested experimentally in a range of environments and starting 

positions. The results are evaluated and compared statistically. The tested strategies range 

from totally reactive to primarily map-based. The most promising results are observed from 

hybrid exploration strategies which combine the robustness of reactive navigation and the 

directive power of map-based strategies.
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C hapter 1

Q uestion, C ontext and M ethod

1.1 T he Q uestion - W hat is This T hesis About?

This thesis examines the process by which an autonomous mobile robot constructs a map 

of its operating environment. This process can be considered as two distinct topics. First, 

the robot has to interpret the findings of its sensors so as to make accurate deductions 

about the state of its environment. This is the problem o f ‘map-building’. Second, it has to 

select its viewpoints so that the sensory measurements contgdn new and useful information. 

This is the problem of ‘exploration’. This thesis describes a practical and experimental 

investigation into both of these issues.

This document is structured as a large number of short chapters. This reflects the wide 

range of subjects which had to be examined in order to build an effective working robot for 

map-building and exploration experiments. For ease of reading, the chapters are grouped 

into three parts; P art I (Chapters 2 to 4) examines the principal areas of previous research 

upon which this thesis is built; Part II (Chapters 5 to 10) describes the components of 

the map-building system; and finally P art m  (Chapters 11 to 20) reports on experiments 

to  evaluate the effectiveness of a range of exploration strategies. The closing chapters of 

P a rt m  summarise the results and conclusions and suggest directions for further research.

The remaining sections of this introductory chapter serve as an overview of the thesis 

and put the later chapters into context.

Section 1.2 begins with a brief review of the history of mobile robots and then describes 

some of the issues which are currently occupying researchers. Section 1.3 outhnes the 

hardware and software which make possible the experiments described in this thesis and also

14



C H APTER 1. QUESTION, C O N TEXT AND METHOD  15

explains some of the key implementation decisions. Section 1.4 summarises the contributions 

of this research.

1.2 T he C ontext - W hy Make Maps?

It can be difficult to devise watertight definitions of research topics. Take, for example, 

‘robotics’. Many researchers have suggested definitions, usually agreeing about the core of 

the subject but disagreeing about the inclusion of topics such as teleoperation and prosthe- 

ses. This thesis makes no attem pt to provide a definition, but it may prove worthwhile to 

examine some views of the topic and to see what they have in common.

The fascination of robotics lies in its attem pt to create machines which have something 

in common with human beings. The layman’s idea of a robot is dominated by the fictional 

examples seen in films and on television, reinging from the first movie robot in ‘Metropolis’ 

in 1929 through ‘C 3 P 0 ’ in ‘Star W ars’ to D ata in ‘Star Trek’. These machines not only 

have hum an skills such as language and reasoning but they also look like people. W ith this 

expectation it can be disappointing to visit a robot lab and see mobile robots tha t look 

more like dustbins on wheels.

If humanoid appearance is not im portant, then what is? Consider a few attem pts at 

definition:

A robot is a programmable, multi-function manipulator designed to move m ate­

rial, parts, or specialized devices through variable programmed motions for the 

performance of a variety of tasks. (Schlussel 1983)

A robot is a machine which can be programmed to do a variety of tasks, in the 

same way that a computer is an electronic circuit which can be programmed to 

do a variety of tasks. (McKerrow 1991, page 8)

Robotics is the intelligent connection of perception to action. (Brady 1985)

These definitions raise questions of course (Are mobile robots ‘m anipulators’? W hat 

does ‘intelligent’ mean? . . . )  but they share the requirement tha t a robot must be able to 

perform a variety of tasks. If a machine blindly repeats the same set of actions, with no 

possibility of variation, it does not qualify as a robot.

The first industrial robot began operation in the early 1960’s. Since then robots have 

gained wide acceptance in the manufacturing industry, specifically in the manufacture of
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vehicles and electric machine tools. By 1988 the world population of industrial robots had 

grown to 280,000 (Kennedy 1993, page 88),

Early industrial robots operated in environments which were specifically designed around 

the robot. Each component was supplied to the robot in a predefined position and orienta­

tion so th a t the robot knew exactly where to find it. The robot could indeed be programmed 

to perform different tasks, but the changeover could be a costly and time-consuming pro­

cess. As the range of potential applications has expanded over the last 30 years, there has 

been increasing interest in robots which are able to identify variations in their environment 

and to  react to them without human intervention. It would, for example, be useful for an 

assembly robot to be able to pick up components from a conveyor belt, however they may 

be positioned. This interest in tolerance of variation has also been fuelled by the trend 

towards shorter production runs. A manufacturer may need to produce several products 

and m ay not be willing to incur the costs of frequent reprogramming and recalibration of a 

robot. For example, it was recently reported (Hallahan 1994) tha t these pressures led IBM 

to scrap the robots in an automated factory and to replace them with hum an workers. The 

result was an increase in productivity.

Environmental variation increases rapidly when robots become mobile. The appropriate 

action for the robot depends upon where it finds itself, it may be uncertain about its exact 

location, and it may have to share its environment with unpredictable hum an beings. In 

recent years, a growing amount of research effort has been invested in the problems peculiar 

to mobile robots, A rough indication of the rate of growth of this research effort can be 

obtained by counting the number of published papers about^ ‘robots’ and ‘mobile robots’ 

in the last 10 years, according to the Bath Information and D ata Services (BIDS), In 1983 

there were 313 publications about robots, of which 5 were about mobile robots. By 1993 

the to ta l number of robot publications had grown to 775 (a factor of 2,5) of which 99 were 

about mobile robots (a growth factor of 19,8). By this measure 12,8% of robot research in 

1993 was concerned with mobile robots.

Mobile robot research is generally taken to have started in the 1960’s, although there 

were occasional earlier examples (e.g. Shannon’s maze-runner in 1940 and Grey W alter’s 

‘tu rtle ’ robot in 1953), The first mobile robot to use vision was Shakey, built in 1969 at 

the Stanford Research Institute, Its objective was to use its cameras to recognise objects.

^Thc selection was based simply upon the inclusion of the words ‘robot’ or ‘mobile robot’ in the paper’s 
title.
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approach them, cmd perform an action such as pushing them  over (McKerrow 1991, pages 

4-6).

A successor to  Shakey was the Stanford Cart (Moravec 1983). This again used vision, 

and built a world model which it used to  plan paths whilst avoiding obstacles. Despite 

some successes, it was found to be unreliable (being confused by changes in the quality of 

daylight at different times of day) and was extremely slow.

U ntil the mid 1980’s it was taken as axiomatic tha t a mobile robot should use its sensors 

to  build a world model and then use the world model to plan its actions. Then several 

researchers, frustrated by the limited achievements of these robots, began to question the 

need for a world model. W hat types of behaviour could arise from a robot which simply 

reacted to its sensory inputs? ‘Behaviour-based’ robotics was born.

Early experiments with behaviour-based robots had impressive results. It was shown, 

by Brooks (1986) and others, tha t behaviour similar to tha t observed in simple animals, 

such as insects, could be produced by robots with very little, if any, internal state. Robots 

could avoid obstacles, approach targets, and follow walls by reacting rapidly to the input 

from their senses. An architecture, the subsumption architecture, was designed to make it 

easier to  build these robots so that the most appropriate behaviour would be used at each 

moment.

Advocates of behaviour-based robots invoked evolutionary theory to  support their cause. 

It clearly took much longer for nature to evolve the ‘basic’ skills, such as walking and 

avoiding threats, than the ‘higher’ skills, such as language and reasoning. Therefore, the 

argum ent runs, it makes sense to focus first on the acquisition of the simpler skills. Once 

these are mastered, cognition will be much easier. The use of evolution to  support the 

cause is very much in keeping with a recent ‘back to nature’ trend. Supporters of artificial 

neural networks continue to cite neuroscience as their inspiration and justification; genetic 

algorithms evolve problem solutions in a Darwinian way; the new field of ‘Artificial Life’ is 

concerned with the study of artificied systems which exhibit lifehke behaviours.

The debate between the supporters of ‘behaviour-based’ robotics and the proponents of 

world models has been heated, giving the impression tha t the way forward would be either 

behaviour-based or model-based. Although these extreme positions have helped to  clarify 

the issues, opinion now appears to be settling in the middle ground. For example, at a 

recent workshop provocatively entitled ‘Models or Behaviours - Which Way Forward For 

Robotics?’, 12 of the 17 speakers favoured a hybrid approach. (AISB 1994)
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World models are only useful if they continue to m atch the true state of the world. A 

model is then used to predict the state of the environment so that effective plans can be 

made. The value of a world model is therefore directly linked to the degree of predictability 

of the robot’s environment. If the environment is completely under the control of the robot 

(an autom ated warehouse, for example), then a world model would be very useful. If, 

on the other hand, the robot has very little control over its environment (negotiating a 

busy high street, for example), then a world model would be much less useful them a quick 

set of reflexes. Most applications lie somewhere between these two extremes, suggesting 

the wisdom of a hybrid architecture in which the predictable features of the world are 

incorporated into a world model and the world model is used to guide the behaviour-based 

components.

The debate about the need for a world model has spawned discussions about the type of 

world model tha t is appropriate. In particular, a number of behaviour-based projects have 

decided to reject detailed metric maps in favour of distributed, topological maps. Chapter 2 

reviews the different types of map which have been used by mobile robots and argues tha t 

the selection of a type of map depends strongly on the intended application of the robot. 

The different types of map are presented in a hierarchy, ordered by the ‘strength’ of the 

map. ‘Strength’, in this context, refers to the range of geometric properties which can be 

derived from the map. The categories are:

R eco g n isab le  L ocations The map consists of a Ust of locations which can be reliably 

recognised by the robot. No geometric relationships can be recovered.

T opo log ical M ap  In addition to the recognisable locations, the map records which loca­

tions are connected by traversable paths. Connectivity between visited locations can 

be recovered.

M e tr ic  T opological M aps This term is used for maps in which distance and angle infor­

m ation is added to the path descriptions. Metric information can be recovered about 

paths which have been travelled.

F u ll M e tr ic  M ap s Object locations are specified in a fixed co-ordinate system. Metric 

information can be recovered about any objects in the map

The preceding discussion argues that the decision whether to use a world model and, if 

so, what type to use depends strongly on the intended application of the robot. One of the
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first steps in the research was therefore to choose an application. The selected application 

was indoor delivery. Examples of such an application could be office m ail delivery, an 

intelligent wheelchair for disabled people, or even a domestic robot. Chapter 3 describes 

the properties of such an application in detail and argues tha t a full metric map would be 

needed.

The robot could get a metric map in two ways; a human operator could give it the map 

or the robot could build its own. Advantages of the la tter solution include:

C h an g es  in  th e  R o b o t’s E n v iro n m e n t Over time the robot’s environment wiU change. 

It could periodically re-map the world.

M a tc h in g  th e  M ap  to  th e  Sensors It is difficult for a user to predict which features of 

the world will be easily recognisable by the robot’s sensors. A user-supplied map may 

therefore be of limited value to the robot.

E ase  o f  U se It would be a more attractive commercial proposition for a purchaser of a 

robot to be able to put it to work without having to measure its new environment or 

otherwise obtain a map.

L evel o f  D e ta il For some purposes the level of detail required might be higher than tha t 

obtained from a readily-available architectural drawing.

In the light of these advantages, it was decided to pursue the goal of autonomous map 

construction.

In all but the simplest environments, some objects will be hidden by other, nearer, 

objects. The robot wiU then have to move to gather knowledge about its entire work area. 

One is therefore left with the question of how it should move.

Exploration strategies have not been extensively examined in the literature. It is, how­

ever, possible to identify a number of categories into which the existing work falls:

H u m a n  C o n tro l Many researchers report the results of map construction while the robot 

was under the control of a human operator.

R e a c tiv e  C o n tro l As mentioned earlier, supporters of behaviour-based robotics have, in 

situations in which some type of world model is needed, favoured topological maps. 

To obtain such a map, the robot will typically navigate under the control of a re­

active algorithm, such as wall-following, which is well-suited to the behaviour-based 

architectures.
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A p p ro ach in g  th e  U nknow n A reasonable exploration strategy is for the robot to  ap­

proach those regions of its environment about which it knows least.

O p tim a l S earch  S tra teg ies  Under the heading of ‘terrain acquisition’, researchers have 

provided mathematical analyses of strategies which are guaranteed to find all objects 

in the robot’s environment. Emphasis is placed on minimising the length of the path  

travelled by the robot during exploration. This work typically makes simplifying 

assumptions about ideal sensors.

Chapter 4 describes previous exploration research in more detail and discusses a number 

of examples.

One of the objectives of this thesis is to provide quantitative comparisons between a 

representative sample of exploration strategies. In the light of the discussion of behaviour- 

based robotics, a key question is:

How much should the robot use its developing map to guide the exploration? 

When, if at aU, does the robot’s map contain enough information to justify using 

it to guide further exploration, instead of using a reactive, representation-free 

strategy?

1.3 The M ethod - How W ill the Q uestion be Addressed?

Examination of mobile robot research shows two distinct approaches; simulation and im­

plementation. Some researchers build computer models of the performance of a robot and 

then use the model to test theories and algorithms. Others choose to build a real-world 

robot. It was necessary to choose between these two approaches. Simulation has advantages. 

One can see the results of an algorithm much more quickly by applying it to  a computer 

simulation than to the real robot. The researcher is able to test new ideas without the 

constraints of time and expense associated with using a real robot. In addition, simulations 

allow the researcher to focus more tightly on the precise aspect of the problem in which he 

or she is interested. If, for example, the research is centred on path  planning there may be 

little value in worrying about the mechanical engineering problems of building a physical 

robot. But the advantages are outweighed by disadvantages. To build a computer model, 

the researcher has to abstract the essential features of the system being modelled. This 

abstraction necessarily involves some degree of simplification. In mobile robotics this is
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m ost often noticeable in the modelling of sensors. For example, analysis of terrain acquisi­

tion problems (Lumelsky, Mukhopadhyay, & Sun 1991) assumes a sensor which can reliably 

detect the boundaries of any object that falls within a given radius of the robot. This is a 

highly idealised model of a sensor. Research based on such simplifications may well produce 

useful results, but there is always the danger that, in the simplification process, one has ig­

nored a vital property of the robot so tha t the results wiU not be valid when tested on a real 

robot. Another im portant disadvantage has been summarised as ‘simulations are doomed 

to  succeed’ (Miller et al. 1989). Since the same person is modelling both  the problem and 

its solution, it is very tempting to include into the model of the problem just those features 

which Ccin be handled by the solution. This is not to suggest any dishonesty on the part of 

the researcher. It may simply be that the model and the solution are built upon the same 

set of assumptions. The work described in this thesis tests exploration strategies on a real 

robot. However, in order to keep the time savings of a simulation, a Trace/Replay mech­

anism was implemented. This meant tha t all the sensor and movement information which 

was generated during an exploration by the real robot could be stored and subsequently 

replayed at will. This was found to be extremely useful throughout the research. Whenever 

a new idea was being implemented, a large amount of authentic information was available 

for testing.

Recent research, especiedly that motivated by behaviour-based robotics, has emphasised 

the creation of completely stand-alone robots, shunning the use of ‘umbilical cords’ to 

connect the robot to a stationary computer. The approach adopted in this research was, 

however, just that. A small mobile robot was constructed with a serial cable link to a Sun 

workstation on which the map construction and exploration control were performed. The 

following points are given in support of this decision:

• A real-world robot was implemented to  tackle two real-world problems which are often 

oversimplified in simulations: sensing and localisation. Neither of these problems is 

diminished by the presence of an umbilical cord.

• Given the objective of testing exploration strategies, the smaller the robot the better. 

If the robot were enlarged to be able to  carry the equivalent power of the Sun work­

station on-board, it would not only be much more expensive but would also need a 

larger area of lab space in which to create varied environments for exploration.

• In parallel with the communications cable, it was practical to supply constant power
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to the robot. This made it possible to have lengthy experimental sessions without 

having to  worry about keeping batteries charged.

• The graphics workstation was ideal for the display of the generated maps and for the 

examination of the exploration paths selected by the robot. If the robot had been 

stand-alone, one would either have had to follow it around to examine the map or 

implement a periodic download to a static display.

• The separation of hardware mirrored a corresponding separation of function. The 

workstation operated with high-level commands such as ‘Move Forwaird 1000 m m ’ or 

‘Turn Left 90 Degrees’, leaving the robot to concern itself with the low-level details 

such as motor control and obstacle avoidance. The robot itself had no world model. 

W ith this separation it was straightforward to test the same high-level software with 

a different robot, and vice versa.

The robot, ARNE^, is described in detail in Chapter 5.

A simple dialogue was defined for communication with ARNE. This could then be used 

for direct control, through a termiucd for example, or for control by the exploration and 

m ap construction software. The diedogue is described in Appendix D.

A key choice was the type of range sensor to be used on ARNE. The most commonly used 

range sensors in mobile robotics are vision, laser rangefinders, and ultrasonic time-of-fiight 

sensors (sonar). The use of each of these sensors is an active research topic. Ultrasound 

was chosen for ARNE partly because of its low cost (many delivery applications are Hkely 

to be at the cheaper end of the market) and also because of recent work which suggested 

th a t ultrasonic sensing had been under-rated. Many researchers, frustrated by problems 

of wide beam width and unwanted refiections, have decided that ultrasonic sensing is only 

suitable for short-range obstacle avoidance. However, recent work (Zelinsky 1991b; Leonard 

& Durrant-W hyte 1992; Curran & Kyriakopoulos 1993) has suggested tha t sonar’s bad 

reputation may not be justified and that reliable range readings can be obtained from sonar 

if a  realistic model of the sensor’s behaviour is used. ARNE was therefore equipped with a 

Polaroid ultrasonic rangefmder.

A suite of software modules was designed and implemented on the Sun workstation to 

perform  the tasks hsted below. The block diagram in Figure 1.1 summarises the communi-

^Autonomous Robot for Navigation and Exploration. Also named for Arne Saknussemm, Jules Verne’s 
explorer who was first to reach the centre of the earth. (Pronounced ‘Arnie’).
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ARNE
_______ ( Command ^

\  Status y Commands ^Raw Sonar 
ReturnsOdometry

SUN WORKSTATION

Localise Interpret
Sonar

Explore

Build
M ap

Measure 
Map Quality

Figure 1.1: The Main Modules of the W orkstation Software
The boxes represent the main software modules which were implemented on the workstation. The arrows 

indicate data flow between the modules and the robot. The uneven size and spacing of the boxes is to 
allow detail to be added as each module is explained. Path planning does not appear as a separate task on 

this diagram because, as will be seen later, it plays a part both in exploration and in the map quality
calculations.

cation links among these tasks and between them and ARNE.

In te r p r e t  S onar The range values generated by ARNE take the deceptively simple form 

of an angle (relative to the robot’s orientation) and a distance. Unfortunately the 

sonar beam is wide and there is no guarantee tha t the object tha t caused the echo 

was in the centre of the beam. Preprocessing of the sonar returns can reduce some 

of the uncertainty. Chapter 6 describes some experiments to test the performance of 

ARNE’s sonar sensor and uses the results of the experiments to model the sensor’s 

behaviour.

B u ild  M ap  This is the core of the system software. Position and range information are 

merged to generate a representation of the world which can be used to plan ARNE’s 

actions. The representation is formed in three layers; first the range information 

is analysed to suggest features which could have caused the given readings; these
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hypothetical features are then gathered into mutually-supportive clusters to create 

‘confirmed’ features; finally the confirmed features are used to construct a grid-based 

free-space map. The entire map-building process is described in detail in Chapter 7,

P la n  P a th s  The free-space map can be used for path planning. The problem is to generate 

a sequence of movement commands which wiU, according to the map, move ARNE 

efficiently from a known stéirting position to a specified target position without collid­

ing with any obstacles. A path planner is implemented using the technique of distance 

transforms. This is described in Chapter 8. The pa th  planner is used in two places in 

this thesis. As one would expect, it is used to plan exploratory movements. It is also 

used when measuring the quêdity of the maps produced by these movements.

L ocalise To translate sensor readings into information about the world, it is essentiéd to 

know where ARNE was when the readings were taken. This information comes from 

two sources. The first, and simpler, source is the odometry information returned by 

ARNE which converts measurements of the amount of wheel rotation into an esti­

m ate of the distance moved or the angle turned. Odometry is notoriously unreliable 

because of uneven floors or wheel slippage. It is therefore necessary to augment the 

odometry by measuring ARNE’s position relative to known objects in the environ­

ment. Chapter 9 gives details of the chosen localisation method. It uses a Kalman 

filter to determine the best estimate of ARNE’s position, given all the information 

available from odometry, range sensors, and the latest map.

M e a su re  M ap  Q u ality  The investigation described in this thesis has placed great em­

phasis on the need for practical experiments and quantitative, statistical, evaluation 

of the results. For this to be possible, it was essential to have a clearly-defined mea­

sure of map quality. The technique employed here is to define a set of ‘benchmark’ 

tasks and predict how successful the robot would be at performing those tasks if it 

used its latest map. Chapter 10 gives some background to the question of quality 

measurement and describes the metrics used in this thesis.

E x p lo re  How should the robot choose the next position from which to examine its environ­

ment? The majority of Part HI of the thesis is concerned with this question. A range 

of exploration strategies are designed, implemented, and subm itted to experimental 

evaluation.
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1.4 Contributions

This thesis describes an experimental investigation into the complementary issues of map- 

building and exploration.

The novel contribution of this research consists of:

• The integration of a physical robot, a sonar model, map construction algorithms, and 

a localisation algorithm into an effective working system;

• The definition and implementation of a novel quantitative measure of map quality;

• A thorough quantitative and statistical evaluation of the map-building and explo­

ration capabilities of the system, using the quality metric and a variety of exploration 

strategies. Each strategy is tested in a range of environments.

The system components cind the quality metric have been outlined in the previous 

section and will be described fully in Part II of this thesis. The exploration strategies and 

the experimental results are described in Part IH.

But first. Part I reviews the previous research upon which this thesis is built.



Part I

Starting P oints
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Chapter 2

M aps U sed in Previous R esearch

Map construction is an essential component of the research reported in this thesis. This 

chapter examines the reasons why a mobile robot might need a map and reviews the variety 

of types of world model which have been devised and implemented by previous researchers.

Early research work into mobile robots (Moravec 1983; Crowley 1985) took it as ax­

iomatic tha t an effective mobile robot would need an environment model. The process of 

control was viewed as two steps: first the robot uses its sensors to build a world model and 

then it uses the world model to plan and execute its actions. The details could vary (dif­

ferent sensor modalities, different data structures for the world model) but the underlying 

two-step process was not questioned.

In the mid-1980's a number of researchers, most prominent among them  being Rodney 

Brooks (1986), became frustrated with the perceived slow progress in mobile robotics and 

began to search for an alternative approach to the ‘traditional’ dependence on environment 

models. The intention was to minimise the processing between sensing and action. Robots 

were built in which there was an almost immediate link between the robot’s sensors and 

its actuators. (Braitenberg’s excellent book ‘Vehicles’ (1984) describes, in the form of 

thought experiments, what could be achieved by such robots.) The robots were able to 

perform tasks such as approaching beacons, avoiding obstacles, and following walls. These 

behaviours were found to be very robust. Brooks’s robots could operate in unmodified office 

environments, sharing their world with unpredictable humans. This contrasted starkly with 

the model-based robots which had operated in carefully constructed environments and were 

easily confused by people or moving objects.

The growth in ‘reactive’ robotics, as it came to be known, raised questions about the 

value of environment models. There were two main questions, which often become confused 

in discussions of this topic:

27
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• Does a mobile robot need an environment model?

• If it does, what type of model is best?

The slogans adopted by the reactivists, such as ‘Use the world as its own model’ (Brooks 

1991b, page 140) suggest that the robot does not need a model at aU. Section 2.1 examines 

this position and discusses the circumstances in which a world model is useful.

Section 2.2 addresses the second question. It categorises the maps th a t have been used 

by previous researchers and considers the strengths and weaknesses of each type. The 

advantages and disadvantages of each type are very closely linked to the purpose for which 

the map is being used.

Discussion of the model used in this thesis is postponed until Chapter 3.

2.1 Is an Environm ent M odel Necessary?

2 .1 .1  W h a t is a m od el?

Precisely what is meant by ‘an environment model’ ? If it is taken to  mean a set of as­

sumptions about the world which are used in the design and operation of the robot then, 

in a trivial sense, every robot can be said to be using an environment model. Take, for 

example, one of the simplest ‘creatures’ in Braitenberg’s thought experiments (1984, page 

6). The robot has two optical sensors on its front, one at each side. It is driven by two side 

wheels, each of which is connected to the sensor on the same side so tha t the brighter the 

light falling on the sensor, the faster the wheel turns. This very simple robot moves away 

from light sources. It is an implementation of the designer’s world model, which included 

the facts that the world contains light sources and tha t it is beneficial to move away from 

them . This is clearly too broad an interpretation of ‘environment modelling’ for any useful 

discussion.

A more fruitful approach is to equate ‘environment model’ with ‘environmental repre­

sentation’ in the mathematical sense discussed by GaUistel (1990, Page 15). Substituting 

robotics terminology for neuroscience gives:

A robot is said to represent an aspect of the environment when there is a 

functioning isomorphism between some aspect of the environment and a robot 

process that adapts the robot’s behaviour to it.
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If, for example, the robot is modelling the occupancy of a region of its environment, 

there will be a one-to-one correspondence between the state of tha t region (occupied or 

free) and some portion of the state of the robot (1 or 0 in a cell of the map). The robot will 

use this correspondence to adapt its behaviour to the environment (for example, executing 

paths which avoid the occupied region).

It is in this sense that environment models will be considered in the remainder of this 

thesis.

2 .1 .2  T h e  S ign ifican ce o f  S ta te

An environment model forms part of the internal state of the robot. (See (G at 1993) for a 

full discussion of the role of internal state in mobile robots.) In any robot which has a time- 

delay between sensing and acting, this internal state is used to predict some aspect of the 

environment. If, for example, sonar is being used to prevent coUisions with obstacles, there 

is a time-delay, albeit possibly very short, between the storing of the sonar reading which 

indicates the obstacle and the stopping of the motors. During this period, the internal state 

is acting as a prediction that the obstacle wiU still be there when the robot stops. In this 

example, the prediction is too short-range to be significant, but the prediction property is 

true whenever internal state is used.

There is clearly a danger with using internal state; the world may no longer m atch 

the prediction. This is especially true in rapidly-changing environments. It is in such 

environments tha t reactive, minimum-state, robots perform very well when compared with 

planning, model-using, robots. A key aspect of the robust behaviour of reactive robots in 

changeable environments is that they assume very little about their world. They operate 

on the basis tha t anything which needs to be known can be sensed immediately.

On the other hand, there is a wide range of robot tasks for which internal state is 

necessary. Consider the problem faced by a delivery robot which has to find a specific room 

in a large office building. Unless the building is extensively modified to make the robot’s 

task easier, there will not be pointers to all offices at all corridor intersections. When the 

robot arrives at an intersection, it can not use its sensors to  decide what to do. There must 

be some part of the robot’s state which is accessed to tell it what to do. There is, of course, 

a risk th a t the world has changed between the acquisition of the state and its use (maybe 

a door which used to be open has now been closed), but the robot has no alternative but 

to believe its internal state until events prove that the state is incorrect.
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Unpredictab 
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Figure 2.1: The Predictability Continuum
Robot applications operate in environments with a mixture of predictable and unpredictable features. The 

predictable features can be represented in a world model, and used as the basis for planning. Reactive 
behaviours can respond to the unpredictable features.

In some situations, the robot can sense what it needs to do by examining the world 

but only because the robot has made changes to the world for itself to find. A comparable 

human example would be the technique of exploring a maze by unrolling a ball of string to 

show which alleys have been tested. Dudek et al. (1991), for example, describe the use of 

markers to indicate which paths have been explored while constructing a graph-based map. 

Sometimes the robot examines part of its own hardware to avoid the use of internal state. 

Connell (1990), describes his robot, Herbert, which, in an attempt to minimise the use of 

internal state, examines a gripper in order to determine whether the robot is outward or 

homeward bound. If the modification to the world is useful only to the robot and is not 

part of the robot’s task, then the changes can be viewed as part of the robot’s state. It has 

simply been stored externally or mechanically.

The value of stored internal state is directly related to the degree of constancy of the 

robot’s environment. If the world is changing rapidly (an interactive video game, for example 

(Agre & Chapman 1987)), then there is httle value in the predictive power of the model. 

If the world is essentially static (a deserted warehouse, for example), then the predictive 

power of the model gives great efficiency improvements.

There is a continuum of predictability, as represented in Figure 2.1, on which the previous 

examples are the extremes. Most applications lie somewhere in the middle. In recognition 

of this fact, there has recently been a growth of interest in hybrid systems which attempt
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to combine the rapid response of the reactive approach with the benefits of planning. The 

low-level, reactive components of the system effectively filter out the highly changeable 

aspects of the world, leaving the higher-level, model-based, components to deal with the 

constant or slowly changing features. An interesting research topic is the interface between 

the reactive and the model-based components (the region marked with question marks in 

the diagram). Connell (1992) has proposed the ‘SSS’ architecture (Servo, Subsumption, 

Symbolic) and defined interfaces between the three levels. Payton et al. (1991) propose 

‘Plan Guided Reaction’, using intemahsed plans as additional sources of sensory input to 

the real-tim e control behaviours. Slack (1993) uses ‘navigation tem plates’ to provide, as he 

says, qualitative guidance and quantitative control.

2 .1 .3  R o b u stn e ss  and F lex ib ility

The supporters of reactive architectures often cite ‘robustness’ as a strength of the approach. 

For example, reactive robots have operated successfully for long periods in unaltered, busy, 

office environments. This is contrasted with early model-based robots which operated in 

environments designed to suit the robot. It is useful to examine the idea of ‘robustness’ a 

little further.

Biology and evolution are commonly used as support for the reactive approach. Cogni­

tive skills evolved much later than more reactive skills like locomotion and threat avoidance. 

Robots w ith very little internal state can perform insect-level tasks. Leaving aside discus­

sion of the relevance of this comparison (Etzioni 1993, pages 8-9), the parallel suggests 

tha t the robustness of reactive robots arises from the fact that they are precisely matched 

to specific environmental features. Insects have evolved sensory apparatus and processing 

methods to detect and react to exactly those aspects of the environment which are essen­

tial for their survival. For example, moths have learned to  detect light and to move at a 

constant angle to that light in order to fly in a straight line (Baker 1984, pages 92-94). 

This is a simple reactive technique which provides very robust behaviour as long as the 

light source is far enough away. However, the number of moths which circle and crash into 

porch lights is clear evidence tha t this is not a reliable technique in modern urban envi­

ronments. Similarly, reactive mobile robots often employ a simple wall-following algorithm. 

This is a very effective technique i f  the goal can be reached by following the current wall. If 

a wall-following robot finds itself next to a free-standing pillar in the middle of an open-plan 

office, it is hkely to circle it forever. The robust behaviour arises from a strict reliance on
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enviroiunental cues. This reliance becomes a handicap when the cues are no longer present.

As a contrast, consider how a human being, equipped with a world model, would deal 

w ith the situations described above. Imagine a man trying to move in a straight line, maybe 

to  escape from a forest. He can see a number of lights. Some are stars, some are man-made 

and much closer. Some might even be caused by a passing aircraft. He might make some 

experimental movements while tracking the position of each light source. An elementary 

type of dead-reckoning would enable him to determine which lights were close and which 

were distant (and which kept moving even when he was still). He could then adopt the 

m oth’s approach but based on a world model that tells him which light sources to trust. 

Similarly, imagine a woman who is trying to find the door in a pitch-black, closed room. 

Wall-following would be a good initial strategy. She could walk gingerly forward until she 

encounters a wall. She could then foUow the wall by keeping her right hand in contact 

w ith the wall, checking for door handles as she goes. As she moves, however, she would 

be building a rough world model, based on her own estimates of distance covered. This 

would enable her to check whether she had completed a circular path  around an object and 

returned to her starting point without finding the door. She could then decide to  move away 

from the object, in search of another wall. The use of a world model makes the behaviours 

more robust, in tha t prior experience can be used to interpret and validate the sensory 

input, allowing the agent to be effective in a wider range of situations.

A world model also gives a robot additional flexibility. If the robot has an accurate world 

model, a human operator can specify the task he wishes the robot to perform. If objects 

in the environment have been identified and labelled, the user could say, for example, ‘Go 

to the postroom’ or ‘Clean the living room floor’. Alternatively, if the objects have not 

been labelled, the user could indicate a location by pointing at the map (with a mouse, for 

example) or by specifying co-ordinates. Similarly the robot can use the map as a convenient 

way to return information to the user. The robot has the flexibility to  perform any task 

from the large number that could be selected by the user. In contrast, reactive robots 

typically have one task to perform. From the moment they are switched on they go about 

their business, whether it be aimless wandering or collecting soda cans (Connell 1990). It 

would not be possible, for example, to ask the robot to collect specifically the soda can that 

was left in the post-room.
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2.2 M odel T ypes - The Strength Hierarchy

If the robot’s objective and environment make a world model necessary, what type of model 

should be used?

Most mobile robot research aims to make robots more effective at a particular task. 

‘Task’ typically refers to an aspect of the robot’s competence (path planning, obstacle 

avoidance, localisation) but it is also im portant to consider the real-world application (office 

cleaning, planetary exploration, security patrolling). The choice of task and application 

strongly influences the choice of model. This section reviews the types of world model 

which have been studied and considers the applications to which they are best suited.

For the purpose of discussion, this chapter wiU categorise maps by their ‘strength’. 

‘Strength’ is a geometric concept, stated by Galhstel (1990, page 105) to be ‘the range of 

geometric relations among the mapped points that could in principle be recovered from 

the m ap’. The list of categories from page 18 is repeated here to introduce the following 

sections:

R eco g n isab le  L ocations The map consists of a Hst of locations which Ccin be reliably 

recognised by the robot. No geometric relationships can he recovered.

T opo log ical M ap  In addition to the recognisable locations, the map records which loca­

tions are connected by traversable paths. Connectivity between visited locations can 

he recovered.

M e tr ic  T opological M aps This term is used for maps in which distance and angle infor­

m ation is added to the path  descriptions. Metric information can he recovered about 

paths which have been travelled.

F u ll M e tr ic  M aps Object locations are specified in a fixed co-ordinate system. Metric 

information can he recovered about any objects in the map

W ithin these categories, there Ccin be significant variation in the degree of precision with 

which the information is held.

The concept of map strength is used to organise the discussion of map construction 

techniques in the rest of this section.

The final section. Section 2,3, examines a number of research projects which use mobile 

robots as a test-bed for biological models of brain function. This work is discussed separately
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from the map strength categories because it includes many different types of map. In this 

work the objective is not so much to make a robot especially effective at a task, but to show 

tha t the robot can emulate basic animal skills with a biologically plausible technique.

2 .2 .1  R eco g n isa b le  L oca tion s

The recognition of landmarks is a fundamental navigational skill. Lynch (1960) provides 

experimental evidence of the extent to which people use landmarks when finding their way 

around cities. Piaget (1956, pages 3-9) shows that children represent space as separate 

places before they begin to add distance information. Several researchers have therefore 

investigated techniques which enable robots to recognise distinct locations.

Kuipers and Byun (1989) use the concept of distinctive places. Selected properties of 

the sensory input are defined to be distinctiveness measures and the distinctive place is 

found by a hill-climbing control strategy which is designed to maximise the distinctiveness 

measures. Distinctiveness measures could include the degree of symmetry or the amount 

of discontinuity in one or more sensors when a small step is made. The critical task is the 

design of effective distinctiveness measures, given the sensory capabilities of the robot. An 

attraction of the hiH-climbing control strategy is that it counteracts the effects of cumulative 

position error by consistently returning the robot to the same position.

It is possible to use a combination of input from several sensors to recognise a location. 

Donnett (1992), for example, systematically placed his robot at a number of positions in 

its environment. At each position, the robot measured the properties (intensity, direction, 

range) of a variety of sonic, ultrasonic, and infrared beacons. The robot could then recognise 

its location on subsequent visits to the environment by matching its sensor readings against 

the stored properties. The matching is performed by a Bayesian process which effectively 

computes the probability of the robot being at each of the positions.

Locations can also be recognised by monitoring the movements made by the robot. 

Nehmzow and Smithers (1991) describe such a method. Range sensors are not used directly 

in the recognition process, although the robot’s movements themselves are made in response 

to the sensory input. The robot adopts a simple wall-following navigation strategy and 

monitors the time taken by turning movements (such as small adjustments to the robo t’s 

direction) until a ‘significant turn  action’ occurs. These significant actions correspond to 

corners in the environment. When these locations are detected, information about the most 

recent tu rn  actions is used to train a self-organising neural network. After a few circuits
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of the room, this network is sufficiently traiined to be able to recognise individual corners 

when presented with descriptions of the most recent tu rn  actions. The network performs 

well, only becoming confused when the room contains multiple regions of similar shape.

Other researchers have also used self-organising maps to identify locations. Kurz (1993) 

uses the term  situation areas to describe regions of space in which sensor data are similar. 

A self-organising map is trained to recognise these groupings of sensor data. An interesting 

part of this technique is the pre-processing that is applied to the sensor data before it is 

presented to the neural network. Dependencies on the orientation of the robot are eliminated 

by shifting the data as if the robot were facing in a standard direction. Different results 

are obtained if this standard direction is defined by an on-board compass or by pointing 

the robot in the direction with the most obstacles. For example, the former technique will 

distinguish left and right walls of a room whereas the la tter will not.

M ataric (1990b) reports results in which a wall-following strategy is used and landmarks 

are defined as combinations of the robot’s motion and its sensory input. (A corridor is 

a combination of straight movement and short lateral distance readings.) An on-board 

compass is used so that the orientation of landmarks can also be recorded (e.g. ‘a corridor 

heading N orth’).

If a robot is able to recognise Izindmarks, it can approach a chosen leindmark and perform 

appropriate actions (e.g. connecting itself to a power supply). If all of its landmarks are 

constantly visible and not obstructed, then this may be all the robot needs. If, however, 

the robot needs to approach a landmark which is not currently visible, it may have to plan 

a route with a number of intermediate landmarks. It then needs to know which landmarks 

are connected by paths. A topological map gives this information. The information about 

connections between landmarks may also enable the robot to distinguish between landmarks 

which are otherwise indistinguishable. The next section examines topological maps.

2 .2 .2  T o p o log ica l M aps

Most of the researchers whose landmark-detection techniques were discussed in the previous 

section subsequently Hnk these landmarks to build a topological map.

A link on the topological map means that the robot can successfully travel between the 

two landmarks. A hnk can only be added to the map if the robot has made the corresponding 

journey.

In some instances the hnks are estabhshed at the same time as the landmarks are identi­
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fied. M ataric’s robot (1990b) navigates by wzill-followmg and Icindmarks are discovered in a 

sequence which corresponds to their topological relationship. This makes the construction 

of the topological map straightforward. Kurz (1993), on the other hand, constructs the 

topological map in two stages. First the situation areas are identified and then the robot 

explores the environment, looking for transitions between situation areas. Each transition 

corresponds to a link on the topological map.

Dudek et al. (1991) report an interesting technique whereby a robot w ith very limited 

sensing capabihties can construct a topological map of its environment. The assumption 

is made th a t every time the robot arrives at a given landmark via a given path, it can 

enum erate the potential departure paths in a consistent sequence. No angular or distance 

information is available. The authors show that, in general, such a robot could not construct 

a topological map without one further crucial ability; the robot can deposit markers at 

landmarks and can detect them on return visits. One marker is sufficient, although the 

algorithm ’s efficiency can be improved by using multiple markers. Although a robot would 

typically have more powerful sensory capabihties, this algorithm provides an interesting 

‘base case’.

2 .2 .3  M etr ic  T opo log ica l M aps

Topological maps are often extended by the addition of some metric information, typically 

including the estimated lengths of the paths between landmarks and the orientations of 

those paths. Benefits of the added information include:

E ffic ien t P a th  P lan n in g  A purely topological map may include multiple routes between 

the same two landmarks. W ith the addition of path length information, the robot can 

select the shortest available route.

A d d itio n a l L an d m ark  D isam b ig u a tio n  Topological maps are often based on simple 

landmark descriptions (e.g. ‘wall on left’). This description may not be unique across 

the whole environment. The connectivity between Icindmarks may be enough to  re­

move any ambiguity (only one ‘wall on left’ is connected directly to a ‘corridor’), but 

approximate metric information can be used to resolve any remaining uncertainties.

The source of the metric information is usually on-board odometry. This information 

is notoriously unreliable when attem pting to construct a full metric map, but is usually 

adequate for the purposes described above.
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It is common for metric topological maps to include the lengths and orientations of paths 

(Kuipers & Levitt 1988; Kurz 1993). However, an alternative approach is to focus instead 

on the metric properties of the landmarks themselves (M ataric 1990b). The landmarks 

m ight be chosen so that they are contiguous and there is no sense of a pa th  between them. 

If, for example, the map represented walls as landmarks, there could be an immediate 

transition between two walls. In maps such as this, the odometry can be used profitably 

to  measure the approximate dimensions of the landmark (e.g. the length of the wall). If 

the approximate size and orientation of each landmark are known, it is then possible to 

calculate the approximate position of each landmark.

2 .2 .4  Full M etr ic  M aps

Topological maps are well-suited to environments with the following properties:

• Landmarks dominate the environment. Throughout the environment there are reliably 

recognisable distinctive locations. The robot’s task is to move between these locations.

• Landmarks are linked by clear, unambiguous paths. If the robot knows tha t it is near 

one landmark and wants to approach another, there is a clear path  tha t it must follow. 

The path can be followed by using a local navigation strategy such as waU-foUowing.

As a contrast, imagine a robot operating in a large open space in which there are a 

number of obstacles (a large warehouse or a dock area, perhaps). The robot has to be able 

to  move from any unoccupied place to any other unoccupied place, avoiding obstacles. There 

would be nothing about an individual location to make it distinctive, except its metrical 

relationships to objects in the environment. Landmarks could be used, but they would serve 

only as objects whose location was known and which could be sensed remotely (maybe as 

a basis for triangulation). The robot would not routinely approach the landmarks. The 

rob o t’s path would be calculated to be as efficient as possible, while avoiding obstacles. 

This path  could not be followed by using a local control strategy.

For such environments, the robot would need to be equipped with a map showing the 

full, metric relationships between all objects in the environment. This information can be 

stored compactly by describing objects and free space in terms of an external co-ordinate 

system. Cartesian co-ordinates are most frequently used.

Metric maps describe the environment by subdividing it in one of two ways:
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B y  F e a tu re  The map consists of a list of primitive features (corner, wall, cylinder) and 

the properties of each (location, orientation, size).

B y  A re a  The environment is divided into a number of regions. These regions axe typically 

square and usually of equal size. The properties of each region are then listed. Most 

frequently the only property of interest is the occupancy state of the region (free or 

occupied).

The choice of which type of metric map to use is not simple. Significant research work 

is continuing on both types. There are, however, some generalisations which can be made:

• Subdividing by area creates more compact representations of dense environments. If 

the environment contziins a large number of obstacles, the storage space for feature 

descriptions may be much larger than that required for occupancy information. Con­

versely, a feature-based representation would provide a more compact description of 

a large open space with a smôJl number of features.

• Area-based maps are typically used when the application is focussed on the use of free 

space. Area-based maps provide a natural representation for planning obstacle-free 

paths through space. By contrast, the user of a feature-based map would usually be 

paying more attention to the obstacles themselves. Feature-based maps are often used 

for robot localisation.

The following sections review previous research into each type of metric map. 

F ea tu re -B ased

One of the earliest mobile robots to construct and use its own world model was the Stanford 

Cart (Moravec 1983). The Cart used stereo vision to  determine the location of features in 

3-D space, with associated ellipsoids to represent positional uncertainty. The polygonal 

obstacles in its environment thus appeared as clusters of overlapping ellipsoids. The Cart 

used this map to plan and execute a path  to a user-specified destination. The system was 

unreliable, often failing to notice obstacles, and it suffered from, in Moravec’s own words, 

‘excruciating slowness’ (20 metres in 5 hours). It did, however, demonstrate the benefits to 

be gained by testing out one’s theories of intelligence on a real-world mobile robot platform.

Research into map construction for mobile robots often makes the assumption tha t the 

world can be adequately modelled in 2 dimensions. Just as humans use 2-dimensional floor
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plans, the robot uses a map which projects all features into 2 dimensions. The complexity 

of the m ap is thereby greatly reduced. The simplification is often reasonable in practice, 

especially in man-made environments.

Crowley (1985) made the 2-D assumption and modelled the world as a collection of line 

segments. The robot analysed the data from a rotating sonar sensor and used a recursive 

line-fitting technique to extract line segments. These line segments were then matched with 

those which had been observed previously. A confidence measure was m aintained with each 

line segment; the segments which were observed most frequently had the highest associated 

confidence. Early work used a discrete number of confidence levels. Later work (Crowley 

1989) also recorded variances of, and covariances between, the properties of the segments 

(co-ordinates, orientation, length). He then used a Kalman filter to estim ate the robot’s 

position. (A Kalman filter will be used for the same purpose in this thesis. See Chapter 9 

for details.)

Cox (1991) also chose to describe the world in terms of line segments, although his 

robot, Blanche, used an infrared rangefinder. The robot was given an a priori map of the 

environment. Its objective was then to match the sensor readings with the map in order to 

estim ate its position. Unlike Crowley, Cox did not extract line segments from the sensor 

data, but chose to match the sensor readings directly against the given map. An iterative 

procedure was used which converged on a new position estimate. No attem pt was made to 

update the robot’s world model.

Leonard and Durrant-W hyte (1992) also assumed tha t the world could be effectively 

represented in 2 dimensions but extended the set of primitive features to include points, 

lines and arcs (although axes were only discussed briefiy). The subject of the research was 

localisation and they treated each of the features as a ‘geometric beacon’ (an object which 

could be reliably detected by the robot’s sensors and tracked as the robot moved throughout 

its environment). Statistical measures were again associated with the features, to refiect 

the confidence which could be attached to each feature’s properties, given the sensor data 

on which it was based.

It is common for the features in the map to correspond to objects in the environment, 

although this is not always the case. Najand, Lo and Bavarian (1992) propose an interesting 

representation in which the key features are points in the middle o f an area o f free space. 

A Kohonen self-organising map is trained using the co-ordinates of places which are known 

to  be unoccupied. The network learns to represent points which are close to centroids
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of regions of open space. A nearest-neighbour technique can then be used to plan paths 

between these points.

A rea-B ased

Area-based maps appear under a variety of names, including ‘Occupancy Grids’ (Elfes 

1989), ‘Certainty Grids’ (Moravec 1988; Cho 1990), ‘Probability M aps’ (Lim & Cho 1992), 

‘H istogram  Grids’ (Borenstein 1991) and ‘Inference Grids’ (Elfes 1991). In all of these 

examples, space is divided exhaustively into distinct regions and each region has one or 

more numbers associated with it. Each number represents a property of tha t region. (The 

property represented is usually ‘occupancy’.) The differences between the methods arise 

from different answers to the questions:

• W hat shape should the regions be?

• W hat numbers should be stored for each region?

• How should the numbers be updated?

Most area-based maps use a grid of equal-sized square regions, since this provides a 

simple tessellation and is readily described by Cartesian co-ordinates. The requirement 

th a t the cells be of equal size does not, however, generate a compact representation of a 

sparse environment; too many cells are required to represent a large open space. Zelinsky 

(1992) and others discuss the use of ‘quadtrees’. The quadtree is constructed iteratively. 

F irst, the entire environment is divided into 4 square regions. Each of these regions is then 

examined and is in turn divided into 4 but only if  it is partially occupied and partially free. 

If a region is completely empty or completely occupied, no further processing is applied 

to th a t region. This process is continued iteratively until the smallest region is of a pre­

determined minirmiTn size. This provides a much more efficient representation for sparse 

environments. Zelinsky (1991a, Chapter 6) gives guidelines for when a quadtree should be 

used instead of a regular grid.

The numbers held for each region typically indicate the occupancy of the region. In his 

early work Elfes (1987) used a discrete occupancy status (unknown, empty, or occupied) and 

an associated ‘certainty factor’ in the range from zero to one. In his later work (1989; 1991; 

1992) the certainty factors were treated more formally as occupancy probabilities. Lim 

and Cho (1992) adopted a similar approach but, in recognition of the difficulties caused by
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sonar signals reflecting from sloping surfaces, added an orientation probability for each cell. 

Borenstein (1991) was especially interested in high-speed obstacle avoidance and represented 

occupancy with a set of integer ‘certainty values’ in the range from 0 to  15. The robot could 

then avoid obstacles by summing a ‘repulsive force’ from each cell; the higher the certainty, 

the stronger the force. Zelinsky (1991a) includes an occupancy status and a ‘confidence’ 

value with each region of his quadtree. The confidence corresponds to the percentage of the 

region which has been visited during exploration.

Area-based maps are updated by merging the latest information received from the 

robo t’s sensors with the information currently in the map. If the map represents occu­

pancy probabilities, it is im portant to have a probabilistic model of the sensors. The most 

commonly used sensor in this research is the sonar transducer, which has significant lateral 

uncertainty because the sonar beam width can be 30 degrees or more.

Various sonar sensor models have been proposed (Elfes 1987; Moravec 1988; Lim & Cho 

1992; Elfes 1989; Cho 1990), each of which translates the sonar reading into occupancy 

probabilities of the grid cells within the sonar’s range. These probabilities are based purely 

on the sensor reading and do not take into account the occupancy probabihties on the map. 

In early work (Elfes 1987), the new and old probabilities were merged by simple addition 

rules. This approach has recently been superseded by a more rigorous Bayesian update rule 

(Moravec 1988; Elfes 1989; Cho 1990; Lim & Cho 1992).

The process of merging the sensor data with the existing map is computationally inten­

sive and may not provide adequate performcince for rapid avoidance of obstacles. Borenstein 

(1991) therefore adopted a simphfication which ignored the problem of sonar beam spread 

and updated only those cells which were directly in front of the sensor. (In common with 

Elfes and Moravec, he assumed that the probability of detection of an object was higher in 

the centre of the beam than at the sides. The cell that actually contained the object was 

therefore the most likely to be updated by this process.)

The probabilistic sensor models described above are designed to represent the uncer­

tain ty  caused by the wide beam of the sonar sensor. Zelinsky (1991a) chose to minimise 

this uncertainty by examining obstacles at close range. His robot used a sonar sensor cind 

a wall-following action to scan the perimeter of all obstacles it encountered. The obstacle 

description was then added to the map by adjusting the quadtree structure to describe the 

obstacle as a number of occupied regions.
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2.3 Biologically-Inspired M odels

This review concludes by looking at biologically-inspired research into map construction. 

This work varies greatly in the contribution made by biology. At one extreme there is 

work which, although motivated by general biological principles, makes no attem pt to be 

biologically plausible at a detailed level or to contribute to  biological knowledge. At the 

other extreme there is work whose primary motivation is to increase biological knowledge. 

Such work may use robots or computer simulations to test theories, but the research is 

focussed on understanding the mapping mechanisms of animals.

A large part of the research into neural networks falls into the first category. The 

growth of interest in neural networks in the 1980’s (the work of Rumelhart and McClelland 

(1986), for example) was fuelled by their similarity to networks of neurons in the brain 

(large numbers of highly-interconnected processing units, each of which performs a relatively 

simple task). The impressive pattern-matching abihties of these networks led to  their use 

in a wide range of research areas, including mobile robotics (as described earher in this 

chapter). The emphasis is typically on the power of the appHcation, not on the biological 

relevance of the solution.

Similarly, proponents of reactive robots refer to biology to support their position. Brooks 

(1991b, page 141) takes the history of evolution on Earth  as evidence tha t researchers should 

concentrate their effort on the fundamental skills of mobihty and survival before worrying 

about the ‘pretty simple’ issues of problem-solving behaviour, language, expert knowledge 

and its appHcation, and reason. Brooks also invokes biology impHcitly by caUing his robots 

‘C reatures’. Again the emphasis is on the effectiveness of the robot, not on its similarity to 

a Hving creature.

There are, however, a number of research projects which use computer simulations of 

mobile agents to test specific neurological models. These models are, in turn, derived from 

numerous practical experiments. A widely-referenced model concerns the existence and 

function of place cells in the hippocampus of the ra t. Extensive work by O’Keefe et al. 

(summarised by O’Keefe (1990) and Speakman (1987)) shows the existence of individual 

neurons in the hippocampus whose firing is restricted to a contiguous patch of the environ­

m ent. These neurons are known as ‘place cells’.

M ataric (1990b) draws parallels between place cells in the hippocampus and landmarks 

in her robot’s world model. She associates an activation with each landmark in her topolog­
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ical map so that the robot’s location is represented by a landmark with a high activation, 

analogous to  the firing of a place cell. The research was not originally designed with the 

biological results in mind. The biological results have been subsequently enlisted to provide 

support for the choice of representation.

Hippocampal modelling was also performed by Sharp (1991). She describes experiments 

to simulate the behaviour of a rat in an experimental environment. The simulation is built 

on the assumption that, from any location in the environment, the ra t can detect the angle 

and distance to a small number of cues. This information provides the input to a three- 

layer neural network each layer of which corresponds to a type of neuron (neocortical cells, 

entorhinal cells, and hippocampal cells). As the simulated ra t moves about its environment, 

the ‘hippocampal cells’ show a pattern of activation similar to  tha t observed in real place 

cells.

Prescott and Mayhew (1992) concern themselves with the abiUty of animals to construct 

a cognitive map which uses ‘aliocentric’ (world-centred) co-ordinates (see also (O ’Keefe 1990, 

page 304)). They suggest that the building-block of the map is a set of three visible cues (an 

‘L-trie’). When any particular set of cues is visible, the animal defines its location relative 

to them. The L-tries are assembled into a network in which the links axe obtained by 

specifying the position of a landmark relative to each neighbouring L-trie. Target location 

and path  planning are then performed by spreading activation through the net (a similar 

technique to that of Mataric (1990b)),

The idea tha t the cognitive map might be formed from a number of small pieces is a t­

tractive because it eliminates the need for large-scale localisation. (It is then only necessary 

to know your position within the current piece of the map.) Worden (1992) also proposes 

tha t the cognitive map consists of multiple small pieces, which he calls ‘fragments’. How­

ever, unlike Prescott and Mayhew, he does not specify tha t each piece contains exactly 

three cues. He hypothesises that fragments include two to eight objects and the geomet­

ric relationships between them. There is a large fragment store and a number of separate 

processes, the ‘fragment fitters’, which dynamically select the sequence of fragments as the 

animal moves about its environment. He discusses in detail how such a technique could be 

implemented in the hippocampus and suggests practical experiments which would test his 

theory.

In recent work, Burgess, O’Keefe, and Recce (1993) have developed a computational 

model of ra t navigation which builds on the results of the research on place cells. It starts
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from the known structure and connectivity of the hippocampus and then hypothesises roles 

which the various types of hippocampal neuron might play during navigation. In simulations 

the model has generated goal-seeking behaviour similar to tha t observed in rats. The model 

is currently being implemented on a mobile robot platform.

2.4 Conclusions

This chapter has sum m arised the types of map which have been used by previous researchers. 

It argues tha t the type of map needed by a robot depends upon its proposed application. 

Indeed there are many applications for which a map is not needed at all.

Maps have been grouped by the concept of ‘strength’, ranging from lists of recognisable 

landmarks through topological maps to full metric maps. Each increase in strength expands 

the range of tasks that the robot can perform, but the increased power comes at a cost. 

The more information that is held in the map, the more difficult the process of building 

and maintaining the map.

The next chapter describes the type of map that was chosen for this thesis, and explains 

the reasons for the choice.



C hapter 3

T he M aps U sed in This R esearch

Chapter 2 described numerous maps which have been used by mobile robots. This chapter 

considers which type of map to use in the current research.

The choice of map type is strongly constrained by the proposed application of the robot. 

In Chapter 1 a delivery application was chosen. Section 3.1 describes such an apphcation 

in  detail.

Section 3.2 uses the knowledge of the application to  choose the maps to be used in 

this thesis. One of the most im portant choices was between probabilistic grid-based maps 

and feature-based maps. Section 3.3 explains why feature-based maps were selected. The 

chapter concludes in Section 3.4 by explaining why the robot will build its own map, instead 

of being given one by its operator.

The details of the map construction algorithm can not be described without knowledge 

of the robot and its sensors. This description is therefore postponed until Chapter 7 to 

follow the descriptions of the hardware and the sensor model in Chapters 5 and 6.

3.1 The Application

The choice of world model is strongly influenced by the proposed application of the robot. 

Indeed, as was discussed in Chapter 2, some applications do not require a world model at 

all. It is therefore vital to be precise about the intended apphcation of one’s robot before 

designing the world model.

This thesis addresses the construction of maps for use in an apphcation with the foUowing 

features;

1. The intended apphcation is delivery. The robot wiU be required to carry a payload 

to a location in its environment. Typical apphcations include mail dehvery within

45
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an office building, component transfer in a factory, or ‘intelligent’ wheelchairs to give 

increased mobihty to the handicapped.

2. The robot will operate indoors in man-made environments. Such environments typi­

cally contain horizontal floors and vertical walls.

3. The environment will include open regions. The robot wiU have to  select routes 

through regions of open space. Different routes wiU be talcen through the same space, 

depending upon the locations of the starting position and the goal.

4. The environment will be dominated by static objects. Most features of the environ­

ment will either be stationary or will move infrequently.

5. The robot will function in an unmodified environment. Beacons or underfloor wires 

will not be added to make the robot’s task easier.

6. The robot’s target location for each dehvery wiU be user-specified. The specification 

will be independent of the robot’s position.

7. The robot wiU have to foUow many paths. For each dehvery, the goal location wiU be 

selected from numerous alternatives.

8. The goal location wiU be specified with a relatively coarse resolution (a few centime­

tres). If necessciry, a local approach mechanism wiU be used.

9. The robot must foUow efficient paths. The dehvery must be made without unnecessary 

delay.

3.2 The Im pact of the Application on th e Choice o f Map

W hat type of map, if any, should the robot use when performing the apphcation described 

in Section 3.1? The foUowing sections answer this question. (Numbers in parentheses refer 

to the apphcation properties hsted in section 3.1.)

3 .2 .1  T h e  R o b o t Does N e e d  a W orld  M o d e l

The robot must approach a specified location efficiently (9). To do this, it must predict 

the effects of its actions (e.g. to avoid wasting time by entering and leaving dead-ends). A 

world model enables it to make such predictions. Given the static nature of its environment 

(4), these predictions are hkely to be correct.



CH APTER 3. THE MAPS USED IN  THIS RESEARCH  47

The user will wish to specify gocil locations in a way which is independent of the robot’s 

location (6). The value of the robot would be limited if the user had to supply commands 

such as ‘Move 1 metre to your left’ instead of ‘Go to Landmark 9’ (for a topological map) 

or ‘Go to co-ordinates (10,20)’ (for a metric map). To interpret and act upon commands 

which are independent of the robot’s position, it needs a world model in which to represent 

its location and the goal location.

It is not possible to modify the environment to remove the need for a world model (5).

3 .2 .2  T h e  R o b o t N eed s  a M etr ic  M ap

The large number of potential starting points and destinations (7) implies tha t the robot 

wiU often be following a path which it has not followed before. Topological maps are useful 

when the environment consists of a number of distinct, recognisable locations with fixed 

paths between them. This would not be adequate in this apphcation.

If the robot is to plan efficient paths across open space (9,3), it must be able to take 

‘short cuts’. Such behaviour is not possible with a topological map. If, for example, the 

robot has constructed a topological map of a room by following walls (M ataric 1990b) and 

is then asked to move from one comer of the room to the other, it will do so by following 

the walls along two sides of the room, in preference to the more direct diagonal route.

W hen the robot is in an open space (3), its location can only be defined in terms of 

m etric relationships. These could be the angles and distances to known objects or they 

could be expressed in a co-ordinate system.

3 .2 .3  T h e  R o b o t N eed s  a F ree-S p ace  M ap

The dehvery apphcation (1) means that the robot’s primary concern is free space. It needs 

to  know where it can safely go without colhsions. Goal locations are specified using the 

co-ordinate system of the metric map. The identity of objects is therefore not im portant; 

their only significance is that they occupy space which would otherwise be free.

3 .2 .4  T h e  R o b o t W ill U se  a 2 -D im en sio n a l M ap

This work uses a 2-dimensional projection to model the obstacles in the robot’s environment. 

This simplifying assumption is usually acceptable in man-made environments (2).
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3 .2 .5  T h e  F ree-S p ace  M ap  W ill U se  a R eg u la r  G rid

Grid-based maps have resolution limited to the size of the smallest represented area. The 

application is well-suited to a grid-based representation because it requires only a hmited 

resolution (8).

There are well-established techniques for planning efficient paths on a grid-based map 

(9). (Latombe 1991, Chapter 6)(McKerrow 1991, pages 462-472)

Zelinsky (1991a, Chapter 6) examined the use of quadtrees instead of regular grids. 

He compared path planning efficiency in environments of various sizes (compared to the 

selected resolution) with various numbers of obstacles. He found that quadtrees were more 

efficient if the map area was greater than 128 by 128 cells. Delivery applications which 

cover a wide area (e.g. office delivery) or which require high precision (and therefore would 

benefit from a small grid) would need maps that large, whereas others (e.g. intelligent 

wheelchair) would probably not. For simpUcity it was decided to use a regular grid.

3 .2 .6  T h e  G r id -B ased  M ap  w ill b e  D er iv ed  from  a F ea tu re -B a se d  M ap

A common way to construct grid-based maps is to use occupancy probabilities. Since 

this seemed at first to be an attractive idea, the techniques of Elfes (1989) and Lim and 

Cho (1992) were implemented and tested. A probabilistic sensor model was used to build 

an occupancy grid, using Bayesian updating rules. After testing these algorithms, it was 

decided instead to construct a feature-based map first and then to derive a free-space map 

from it. The reasons for this decision are discussed in full in Section 3.3.

3.3 Probabilistic Grid Maps and Feature M aps

Section 2.2.4 described two distinct types of metric map, feature-based and area-based, 

and reviewed the considerable research effort which has been invested in each type. It was 

necessary to decide which map-building techniques to use in this research.

Probabilistic grid-based maps (PGMs) (Elfes 1989; Moravec 1988; Cho 1990; Lim & 

Cho 1992) appeared to be attractive at first because they use a representation which is very 

similar to that ultimately needed by the robot. (The robot needs a grid-based free-space 

m ap. This can be derived from the PGM by selecting only those cells with a low occupancy 

probability.)

The implementation and testing of a PGM raised a number of issues which cast doubt 

on the value of the probabihstic approach cind ultimately led to its replacement by the
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construction of a feature-based map. These issues are listed below and then expanded in 

later sections. These concerns led to the decision to use a feature-based representation for 

the prim ary map and then to derive the free-space map from the features.

The following observations were made about the probabilistic maps:

A m b ig u ity  a b o u t th e  m ean in g  o f p ro b ab ility . Repeating a sensor reading from the 

same location gives unreasonable results, due to  a confusion about the type of uncer­

tainty which is being represented by the probabilities.

P re m a tu re  use o f  p robab ility . Probability is being used when it would be possible to 

extract more information with a better model of the sensor.

N o  m o d e llin g  o f d a ta  dependence . Some unreasonable results arise from the assump­

tion tha t the occupzincy probabihty of a cell is independent of those of its neighbours.

P re m a tu re  loss o f p recision . D ata precision is lost early in the construction of a PGM, 

making tasks such as localisation unnecessarily difficult.

3 .3 .1  A m b ig u ity  A b o u t T h e  U se  o f  P r o b a b ility

W hen the robot was creating a PGM, it was observed tha t the measured probability of 

a particular cell being occupied could be increased by repeating exactly the same sensor 

reading from the same location. For example, assume tha t the robot takes one sensor 

reading in a static environment and updates its map. The new map might show an increased 

occupancy probability for a cell 1 metre directly in front of the robot. If, without moving, 

the robot now repeats the sensor reading and updates the map, the occupancy probability 

of th a t cell wiU increase. The robot’s confidence in the occupancy of the cell will continue 

to  increase each time it repeats the sensor reading. This is unrealistic since, in practice, the 

sensor reading is almost totally determined by the physical environment around the robot. 

One would expect repeated readings to be very similar, with a very small unpredictable 

variation in range. The additional information gained by repeated readings should be 

minimal.

The difficulty here arises from an ambiguity about the type of uncertainty which is 

being modelled by probabihty. The difference is best illustrated by the following ‘thought 

experiments’.
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1. Imagine tha t you have a box. I ask you whether there is something in your box. 

Before answering, you roll a die. If the die lands on a 6, you lie to  me. Otherwise you 

tell me the truth.

2. Again you have a box and I ask my question. Now, however, you decide whether 

to lie by looking at my position when I asked the question. (You could imagine, for 

example, tha t the floor is marked in a way tha t only you can interpret.) The effect is 

tha t for one sixth of my possible positions, you will lie to me.

In the first case, I can use standard Bayesian update techniques to estim ate the prob­

ability tha t the box is full. (See the work of Moravec (1988, pages 70-73) for an example 

of the application of these techniques to PGMs.) It would be beneficial for me to stand in 

one spot and repeat my question over and over. Probability is being used to represent an 

uncertainty in how you answer the question.

In the second case, I can still use Bayesian techniques to obtain my estimate, but I would 

be wasting my time to repeat my question from the same spot; the answer will always be 

the same. It is, of course, a good idea for me to ask my question from multiple locations. 

In this case the uncertainty is related to how I  ask the question.

The ‘increasing probability’ result that was described at the beginning of this section 

arises because probability is being used primarily in the second way in PGMs, to represent 

an uncertainty in how the question is being asked.

Feature maps, on the other hand, often use probabihty in the first way. For example, 

the locahsation scheme in Chapter 9 uses a probabihstic representation of the unpredictable 

variation in sonar range readings.

3 .3 .2  P r e m a tu r e  U se  o f  P ro b a b ility

There are two complementary ways to model a physical process; physics and probabihty. 

Some aspects of the process can be well described and predicted by physical laws. Other 

aspects may fall outside the realm of physics. The physics may not yet be weU understood 

or the process may be too complex for physical modeUing to be worthwhile. These la tter 

aspects of the process are commonly modeUed by probabihty.

A variety of models have been used to describe sonar sensors. These models vary in 

the balance between physics and probabihty. Some build on a thorough understanding of 

ultrasonic energy propagation and the behaviour of transducers. Probabihty is used, if at



CHAPTER 3. THE MAPS USED IN THIS RESEARCH 51

<obot

Figure 3.1: Interpreting Sonar Returns in a PGM
The convex corner at the top of the diagram has been detected by sonar scans from the two positions at 

the bottom of the diagram. The dotted lines from the robot’s positions mark the edges of the sonar beam. 
The shading of the grid ceils near the corner represents their occupancy probability - the darker the cell, 

the higher the probability. The highest probability is assigned to the cell which actually contains the 
corner, but increased probabilities are also assigned to all of the cells at the measured range from the robot

positions.

all, to model less-significant details such as the variation in range reading due to air currents. 

Others describe the sensor almost totally in probabilistic terms. The probabilistic model 

may be based on some elementary physical knowledge of the sensor, but in this work the 

balance has swung firmly towards probabihty and away from physics.

The better the physics of a sensor is understood, the more information can be extracted 

from that sensor. The premature apphcation of probabihty hmits unnecessarily the amount 

of information that can be obtained from the sensor.

To construct a probabihstic map, one needs a probabihstic sensor model. The models 

used here axe therefore from the ‘low physics, high probabihty’ class and suffer from the 

hmitations described above. As an example consider the situation in which two sonar 

readings have been taken near a convex corner of two waUs. A probabihstic model, such 

as that of Cho (1990) would increase the occupancy probabihty in a number of ceUs at the 

measured range from the sensing positions (see Figure 3.1).

Each reading would be processed separately in this way. The end result would be a 

higher occupancy probabihty in the ceU in which the arcs intersected (a reasonable result)
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together with increased occupancy probabilities in a number of other cells (a less reasonable 

result). By contrast, a feature extraction technique such as tha t of Leonard and Durrant- 

W hyte (1992) uses a more detailed physical knowledge of the sensor to hypothesise the 

existence of an object which could have caused the two readings tha t were obtained. The 

end result of this method is a single hypothesised point object. This object may yet need 

to be confirmed by subsequent readings, but more precise information has been extracted 

from the two sensor readings.

3 .3 .3  N o  M od ellin g  o f  D a ta  D e p e n d e n c e

The probabilities which are recorded in the cells of a PGM  are usually treated as indepen­

dent. A number of difficulties were observed to arise from this assumption:

U n rea lis tica lly  Low C o m p o u n d  P ro b a b ilitie s  To calculate the probability tha t a robot 

can move forward 1 metre, it is necessary to examine all the cells through which the 

robot would have to pass. Each cell contains the probability p  of tha t ceU being full. 

The probability of all of the cells being free is then f l ( l  —p). In practice this continued 

multiplication of probabilities leads to unrealistically small results.

D ep en d en ce  on  an  A rb itra ry  C ell Size The number of cells involved in the calculation 

described above depends on the size of the cells. A smaller cell size would require 

more probabilities to be multiplied together. Unless the probabilities were in some 

way related to the cell size, the resulting probability of being able to move forward 1 

m etre would be smaller. This is nonsense since the choice of cell size is arbitrary and 

can not change the probability of achieving a result in the world.

D ifH culty  in  C hoosing  In it ia l  P ro b a b ilitie s  The robot starts with no knowledge of the 

objects in its environment. Each ceU in the grid map m ust, however, be given an initial 

probability value. A tempting approach is to look at typical environments in which 

the robot will find itself and to estimate what fraction of the floor space is covered 

with obstacles. If, for example, the value was 0.20 an initial occupancy probability of 

0.20 could be assigned to all the cells. Such an approach generates the same starting 

probability for all sizes of cell, leading to the problems of low compound probabilities 

and dependence on an arbitrary cell size.

N o C o n cep t o f th e  Scale o f  th e  W orld  Imagine two environments, ‘box world’ and 

‘needle world’. In ‘box world’, objects are typically about 1 metre wide and the
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gaps between objects are of a similar scale. In ‘needle world’ the objects and the gaps 

axe about 1 millimetre wide. Prior knowledge of which of these worlds a robot was 

in would clearly be very useful when interpreting sensor readings and making plans. 

These axe, of course, extreme cases but it does seem to be an omission tha t there 

is nothing in the prior information or the update rules to tell the robot tha t it is 

operating in a human-scale environment.

Most of these problems can best be understood by observing tha t the occupancy proba­

bilities of individual cells are not independent. If a specified cell is known to  be empty, this 

increases the probability that its neighbours axe also empty. Likewise, if the first and third 

cells in a line axe known to be full, then it is more likely tha t the intermediate second cell 

is also fuU.

The degree of dependence between cells would vary with the choice of grid size and on 

the ‘scale’ of the world. Modelling the interdependence between cells could eliminate the 

changes in real-world probabilities when changing the grid size.

Elfes (1989) notes that his occupancy grids axe Markov random fields of order 0 (in­

dependent) and states tha t it would be possible to use ‘computationally more expensive 

estim ation procedures’ for higher-order Markov fields. No examples of such higher-order 

PGMs appear to have been published.

3 .3 .4  P r e m a tu r e  L oss o f P rec is io n

The robot does not need high precision in its free-space map. It is therefore reasonable 

to construct a grid-based free-space map which can be used for efficient path  planning. 

However it is im portant to recognise that the map is being constructed from data with a 

higher precision, such as sonar returns with a precision of 1 cm. Information is being lost 

when the low-precision map is generated from the higher-precision data. A good rule of 

thum b is th a t this loss of information should be delayed as long as possible, within the 

constraints of the available storage space.

PGMs axe constructed by reducing the data precision as soon as the sensor return is 

processed. Once the sonax reading has been used to update the map, the reading is discarded 

and the only remaining information is limited to the precision of the grid map. By contrast, 

features in a feature-based map are described with a precision which is limited only by the 

precision of the computer which is storing the map.

The loss of precision is especially apparent when one considers the use of the map
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for robot localisation. Using a PGM, localisation becomes a problem of seeking the best 

correlation between the robot’s local map (a grid) and the larger map (also a grid). The 

precision of the localisation is limited by the precision of the grid (Elfes 1989). On the 

other hand a feature-based map can be used for localisation by seeking the position which 

minimises the error between the robot’s current sensor readings (high precision) and the 

previously measured positions of features (also high precision). Chapter 9 shows how such 

a m ethod was used in this thesis.

3.4 W hy Build Maps?

The previous sections of this chapter have argued that ARNE will use two maps, a feature- 

based map and a grid-based free-space map which will be derived from the features. It is 

a goal of this thesis to investigate techniques by which ARNE can construct these maps 

autonomously. It is reasonable to consider whether this is a worthwhile aim. Why not 

simply give the robot maps which have been obtained by hand measurement, or from 

architectural plans? A number of researchers have indeed adopted this approach (Cox 

(1991), for example). There are, however, some drawbacks with giving the robot a pre­

constructed map:

• F irst, the environment of an operational robot will often change. Over a period of 

days or weeks, objects wiU be moved (furniture will be changed, office walls may be 

added or removed). If the robot is working from user-specified maps, the user wiU 

often need to provide corrections. This could soon become tedious. Why not let the 

robot re-map the world itself periodicaUy?

• Second, it is difficult to generate by hand a map which wiU correspond reliably with 

the world that the robot wiU experience via its sensors. It is, for example, difficult to 

predict which objects in a room wiU be most significant for a robot th a t uses sonar.

• Third, from a commercial point of view it would be better to give users a robot which 

can immediately be put into operation without the user having to  create or obtain a 

m ap of the robot’s new environment.

• Fourth, for some purposes the level of detail required might be higher than tha t 

obtained from a readily-available architectural drawing.

For these reasons it was decided to make ARNE build its own maps.
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A pproaches to  Exploration

Published work shows a variety of approaches to exploration for mobile robots, ranging from 

disregarding the issue completely through to detailed mathem atical éinalysis of exploration 

algorithms. This chapter reviews this work in the context of the recent debate between 

‘reactive’ and ‘model-based’ robotics (as discussed in Section 2.1).

Many of the published papers on the map-building and navigation of mobile robots do 

not consider the question of exploration at all. This is, of course, often just a choice of 

research focus; effort is expended on the mechanics of map construction from sensor data 

w ithout worrying about how the sensing positions were selected. On the other hand there 

are theoretical reasons why some researchers have chosen not to study exploration. A robot 

will not need to explore if its application is such that it does not need a map (Brooks 1990, 

pages 8-9) or if the map is to be supplied by the operator (Crowley 1985; DrumheUer 1987). 

Neither of these arguments apply in the context of this thesis. Section 2.1 argued tha t a 

map was needed for the proposed delivery application and Section 3.4 explained the reasons 

for allowing ARNE to build its own maps.

Some researchers (Engelson (1992), for example) have adopted a strategy of ‘passive’ 

mapping, in which the map is built while the robot carries out its normal activities. In 

contrast, the current research proposes an initial exploration period during which the robot’s 

objective is simply to leam about its environment. In a practical delivery application such 

exploration would take place before the robot began its operational duties. The robot could 

then be effective as soon as it began work instead of, for example, spending its first day 

delivering mail very slowly because it had to build its map at the same time.

The debate between the ‘reactive’ and the ‘model-based’ camps has its echoes in the 

area of exploration. Reactivists like their robots to have the minimum of internal state and 

to  respond rapidly to their sensed environment. Therefore in circumstances in which they

55
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concede tha t some form of world model is useful, they still prefer an exploration strategy 

which emphasises the current sensor readings when mahing its choices. On the other hand, 

the modellers focus on the value of a world model for prediction and planning. It is then 

natural for them to define exploration strategies which lean heavily on the information in 

the world model, adding some extra processing if necessary to deal with situations in which 

the information coming from the sensors doesn’t m atch the predictions of the model.

By far the most widely-used exploration strategy to emerge from the reactive camp is 

wall-following. Section 4.1 analyses the reasons for its popularity and gives examples of its 

use.

Model-based exploration strategies vary with the type of model being used. However, 

although they may superficially appeeir to be very different, these strategies are usually 

based on the same underlying idea: go to the least-explored region. Section 4.2 compares a 

number of these methods.

Section 4.3 builds on the review of the individual research projects to give a preview of 

the investigation of exploration tha t will be described in P art HI of this thesis.

4.1 T he W all-Following B oom

Wall-following is a navigation method which became popular among roboticists as the 

interest in reactive robotics grew in the late ’80s. To illustrate the idea with the simplest 

case, imagine that the robot is next to a long, straight wall. To follow the wall, it simply 

has to move forward whilst maintaining a fixed distance from the wall. If its range sensors 

tell it th a t it is too far from the wall, it turns towards the wall; if i t ’s too close, it turns 

away from the wall. Such a strategy can be implemented either step-by-step (move, look, 

tu rn  . . .  ) or in a tight real-time control loop.

Such an approach seems fine for long, straight walls but robot environments are typically 

more complex. For example, how does wall-foUowing cope with comers? If the robot is only 

sensing the distance to an object on one of its sides, then corners are indeed a problem. But 

this can be overcome by a simple extension: let the robot take a complete 360° scan and 

assume th a t the shortest range reading corresponds to a wall. If the robot then turns so 

as to  keep this hypothetical wall to its side and moves to m aintain the ideal distance from 

it, then it will manoeuvre successfully cilong straight walls and around both convex and 

concave corners. This is a good example of the way in which apparently complex behaviour 

can result from the application of simple rules. This property of emergence is a strength of
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the reactive or behaviour-based approach to robotics (Brooks 1991a, page 3).

Wall-foUowing requires very little internal state. Each navigational decision is made on 

the basis of the robot’s latest sensor information only. The robot’s internal state is only 

used to keep the range readings until the decision has been made.

The lack of internal state makes the behaviour of a wall-foUowing robot easy to  predict. 

W hen the robot encounters a set of objects in its environment, its behaviour is determined 

by those objects, not by some mysterious internal state. The robot wiU therefore make the 

same choices each time it encounters those objects. If a robot goes around a room several 

times it wiU foUow approximately the same path on each circuit^. There wiU be no sense 

of the ‘drift’ associated with accumulating odometry error. Such a robot has little use for 

odometry during navigation; it does not care where it is on a global m ap, only how far away 

it is from the objects that it can sense.

The predictability of wall-foUowing czin be put to good use even if one’s robot is building 

a map. As wiU be seen in Chapter 13, a predictable path  can be an asset when testing the 

parameters of the locahsation process.

There are many examples of waU-foUowiug robots in the hterature. For example, Con- 

neU’s robot, Herbert, (ConneU 1990) was designed to minimise the use of internal state and 

used wall-foUowing as it searched for soda cans. Van Turennout (1992) has investigated the 

accuracy of sonar-controUed waU-foUowing. He describes a controUer which maintains the 

ideal distance from the wall, to within a few millimetres as the robot moves at a constant 

speed of 0.4 m /s.

Koza (1991) has recently demonstrated the possibihty of evolving wall-foUowing be­

haviour by Genetic Programming. Using a simple fitness function and random  mutations, 

his system evolved a LISP program which, in simulation, successfuUy guided a robot around 

the edge of an irregular room. The intent of Koza’s work is to show tha t such an evolution 

is possible, not to develop a high-quahty wall-foUowing algorithm. It is unhkely th a t an 

evolved program wiU outperform one written by a human with a fuU understanding of the 

robot and the objective.

Section 2.1 argued the case for world models in predictable environments. After ex­

perimenting to see what robots can achieve with no internal state, some researchers (such 

as M ataric (1990b)) began to investigate how these achievements can be enhanced by the

^The paths will be only approxim ately  the same because of minor differences in sensor readings and small 
differences in the positions from which the sensor readings are taken.
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addition of maps. Reactive robotics began as a movement against complex metric world 

models, which were viewed as an unnecessary bottleneck. When world models were added 

to  reactive robots it was therefore natural that models from the lower end of the strength 

hierarchy were selected. Topological maps were an attractive choice.

The growth in interest in topological maps added further to the popularity of wall- 

following. A topological map does not record how the robot travels between linked nodes 

on the map. The map simply indicates that there is a path  between the nodes. The 

predictability of the path selected by wall-foUowing is attractive in these circumstances. 

Imagine th a t, while mapping a static environment, the robot began waU-foUowing at Node 

A and subsequently found itself at Node B. If it later finds itself at Node A and again 

begins to foUow the same wall, it wiU again find itself at Node B. Wall-foUowing therefore 

continues to be an effective navigation strategy when the robot is using a topological map.

Although odometry does not influence the movements made during wall-foUowing, it 

may stiU prove useful to record the odometric information gathered during waU-foUowing 

exploration. M ataric, for example, (1990a) uses approximate metric information, derived 

from odometry, to distinguish between nodes of the topological map.

The work of Nehmzow and Smithers (1991) used waU-fbUowing in an unusual way. The 

robot learned to recognise places by monitoring its own movements as it foUowed the walls 

of its environment. (See page 34 for details.) The idea of ciUowing the robot to behave 

reactively while another process monitors its behaviour is an interesting one. The strategy 

of ‘Supervised WaU-FoUowing', which wiU be introduced in Chapter 14, uses a similar idea.

Wall-foUowing has a number of attractions as an exploration strategy. F irst, it is easy 

to implement; a few simple rules can generate effective behaviour in a wide variety of 

circumstances. Second, the behaviour is robust; a waU-foUowing robot isn’t misled by a 

faulty world model into making bad choices. (It either has no world model at all or it ignores 

it when choosing its next movement.) Third, it recovers weU from temporary distractions. If 

a moving object passes close to a waU-foUowing robot, the robot may change its behaviour, 

possibly treating the object as a waU to be foUowed, but once the object goes away the 

robot wiU doggedly return to its waU-foUowing.

On the other hand, this very doggedness can also be viewed as a weakness, possibly 

generating a fruitless path through a fuUy-mapped region. If a robot has some, albeit 

partial, knowledge of its environment, other researchers have argued tha t the exploration 

should be controUed by that knowledge. This view has motivated the research tha t is
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discussed in the next section.

4.2 Go W here I t ’s Interesting

This section examines some of the research into exploration strategies which base the ex­

ploration decisions totally on the latest map.

Examination of the map-based strategies reveals th a t they are mostly variants on a 

simple idea: examine the regions of space about which least is currently known. Such a 

strategy will systematically reduce the uncertciinty in the robo t’s map. W ithin this shared 

approach, however, individual researchers differ in the details of their implementations. As 

the following review will show, different researchers have chosen different ways to  answer 

the following questions:

• How does the robot decide which areas are the least known? Different types of map 

suggest different ways to measure the extent to which a region is ‘known’.

• How should the next unknown region be selected for examination? It may be that 

the robot should always choose to examine the least-known region, regardless of the 

difficulty of reaching a point from which to make the examination. Alternatively, it 

might be more efficient to examine partly-explored regions first if they are easier to 

reach.

• How should the robot move to exEunine a particular region? A common strategy 

is to  make the robot move into the unknown region in order to examine it. This 

may be appropriate if the robot is equipped with only short-range sensors, but long- 

range sensors might make it more appropriate to examine the unknown region from 

a distance.

To start with an example of the use of exploration to build a non-metric map, consider 

the work of Dudek et al. (1991) on the construction of topological maps by a robot with 

minimal sensing capability. In it there is an explicit separation between the explored and 

unexplored edges of the graph. An edge is considered to be unexplored until the robot has 

established correspondences between both ends of the edge and vertices in the explored 

graph. Before exploring the edge, the robot knows where the edge starts but not where it 

finishes. This work has a simple, binary, knowledge measure. The edge is either explored 

or it is not.
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It is common for an exploring robot to choose a single region of the map upon which to 

focus its attention. The work of Dudek et al. is unusual in tha t the algorithm requires the 

robot to select several unexplored edges at once. The robot is equipped with a number of 

distinguishable markers and it places a single marker at the unknown end of each unexplored 

edge. It then searches the entire explored graph to see whether any of the markers are 

actually at known nodes. For efficient exploration, it is im portant tha t a set of unexplored 

edges is selected so that they can all be covered in a short path. A search algorithm is used 

to find the shortest path between the ‘known’ ends of a set of unexplored edges. This work 

shows tha t efficient exploration strategies can be defined for robots with elementary sensory 

abilities. It is, however, not apphcable to a robot equipped with long-range sensors or to 

the construction of a metric map.

The projects described in the remainder of this section have all used full metric maps. 

More information can be extracted from a metric map than, say, a topological map and 

this information can then be used in a variety of ways to focus the robo t’s attention on the 

next region to be explored. Among the different types of metric maps, grid-based maps 

are convenient for the investigation of exploration strategies. The environment is already 

divided into discrete regions; the key problem is then to decide which region is the best 

candidate for exploration.

In some of the early work with probabilistic grid maps, Moravec (1988) proposed a 

knowledge metric which could guide exploration. The mapping algorithm starts by assign­

ing to  each cell in the grid a default probability, P j, that it contains an obstacle. These 

probabilities are then adjusted (up or down) during exploration, to give a value Pa, for each 

cell. Moravec suggested that a function such as $^(Px — Pd)^ should be computed over 

an appropriate-sized window to determine how well-known a region is. Such a function 

measures the to tal amount by which the information about a region differs from the de­

fault assumption. Moravec then suggests tha t the ‘lowest-knowledge’ region should then be 

explored by gomg directly to it.

In later work Elfes (1991), still using probabilistic grids, put Moravec’s intuitions on 

a sounder theoretical basis. He proposed a similar measure to Moravec’s, but using the 

concepts of information theory. The entropy of a cell on the map is defined as:

«i

where the summation is over the possible states, Sj, of the cell (empty or occupied) and
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P(si)  is the probability of that state. The cell entropy can then be summed to give the 

entropy of a region. A region is then a candidate for exploration if it has high entropy. 

(Allowing for a change of sign, this measure is similar to  Moravec’s function with Pj  =  

0.5.) Elfes also proposed two other theoretical concepts, ‘Observability’ and the ‘Locus 

of In terest’. The Observability of a cell is the highest probability of being able to detect 

an object in that cell, across all possible viewpoints. It takes into account not only the 

probability tha t an object wiQ be detected from a viewpoint but also the probabihty tha t 

the robot will be able to reach that viewpoint. The ‘Locus of Interest’ defines a region of 

the grid which is relevant to the task in hand; if the robot is exploring, the Locus of Interest 

is taken to  be the entire map. Regions within the Locus of Interest can then be selected 

for exploration if they have high average entropy and high average Observabihty. Because 

path  difficulty is bundled into the definition of Observabihty, the robot wiU therefore choose 

first the region that it can examine most easily. Although it is not stated exphcitly. Elfes’ 

interest in Observabihty would suggest that the robot would not necessarily move into the 

chosen region but to a viewpoint from which it could be examined.

Thrun (1993) was also concerned with building grid-based maps by autonomous naviga­

tion but he chose quite different techniques to estimate the occupancy of the ceUs and the 

confidence associated with the estimates. Two neural networks were used. The first, the 

sensor interpretation network, was trained to predict the occupancy of a ceU, given a set of 

sensor readings from a nearby location. The second, the confidence network, was trained to 

predict the hkely error in the results of the sensor interpretation network. The confidence 

values served two purposes. F irst, they could be used as multiphcative weights when com­

bining the occupancy predictions from multiple viewpoints, giving an aggregate occupancy 

prediction for each ceU. Second, zind more important in the context of exploration, the 

confidence values from multiple viewpoints could be combined to give a cumulative confi­

dence value for each cell in the grid. The lower the confidence value, the more attractive 

the cell as a target for exploration. Thrun then proposed an unusual way to  select the 

next region for exploration. To determine the path that the exploring robot should follow, 

each cell was assigned an exploration utility. This was initially set to the negative of the 

cumulative confidence value. All the exploration utility values were then updated by an 

iterative method similar to that used in distance-transform path-plcinning (as described in 

Chapter 8). In Thrun’s procedure the utihty of each cell is adjusted to be the maximum 

utility of its neighbours, less a cost associated with moving from the cell to its neighbour.
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The robot can then plan exploration paths by following paths of steepest ascent in utility. 

This is an attractive way to combine exploration control and path planning. Unfortunately 

the environments in the pubhshed work had reasonably simple shapes, making it difficult 

to  determine the effectiveness of the strategy. In practice the results appeared superficially 

similar to those obtained by waU-foUowing.

Zelinsky (1992) uses grid-based maps which take the form of quadtrees (see page 40). He 

also considers a robot which has only tactile sensors; the only way that the robot can know 

th a t a region is free is to have visited the region and not touched anything. He therefore 

defines a measure of ‘confidence’ in a map quadrant to  be the fraction of the area of the 

quadrant which has been visited by the robot. This confidence measure is applied only to 

quadrants in which no obstacle has been detected. The regions with the lowest confidence 

values can then be selected as interesting regions for exploration. The choice of exploration 

p a th  has two parts. First, Zelinsky proposes a variation on the distance transform method 

of p a th  planning to favour paths which pass through regions with a low confidence of being 

empty. He then selects low-confidence regions as goals. (If the distance treinsfbrm method 

is given multiple goals, the planned path wiU go to the goal which is easiest to  reach.) The 

robot then approaches the most accessible low-confidence area by an ‘adventurous’ path. 

This is an imaginative approach but it is not applicable to robots which are equipped with 

long-range sensors.

The previous examples have used a grid-based map and the attention has focussed more 

on free space than on obstacles. If, on the other hand, the robot is building a feature-based 

m ap, it can monitor the extent to which each individual feature has been explored. For 

example, Moutarher and Chatila (1991) describe the behaviour of a ‘curious’ mobile robot 

which investigates new objects which appear on its feature-based map. If hne segments are 

detected which correspond to an incomplete object, the robot moves to viewpoints from 

which it can discover the complete outline of the object. There is no sense of degree of 

uncertainty in this work; an object is either complete or not. Although this appears to 

provide the basis for an exploration strategy, there are questions left unanswered. For 

example, how should the robot choose between multiple incomplete objects? And does 

exploration terminate when there are no remaining incomplete objects? (Might there not 

still be unexplored regions in which no objects have yet been detected?)

lijim a (1989) also proposed that the robot should aim to complete the boundaries of 

observed objects but he extended the exploration strategy by constructing a free-space grid
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m ap from the feature-based map (a similar technique to tha t implemented in this thesis). 

The free space map serves two main purposes. First, it enables the robot to  select viewpoints 

from which to continue its examination of an incomplete object. Second, it is used to control 

exploration when there are no further incomplete objects on the map. The robot will then 

approach the nearest unknown region on the free-space map. (If there are no incomplete 

objects and no unknown regions, then exploration is deemed to be complete.)

W ith the exception of Dudek’s work, the strategies discussed in this section so far 

have had a practical focus, usually being tested on real robots. The authors have made 

no attem pt to perform any mathematical analysis of the effectiveness of their strategies. 

A much more mathematical approach is adopted in the study of 'Terrain Acquisition’. 

Researchers in this area design algorithms which are guaranteed to detect all of the objects 

in a robot’s environment. Mathematical expressions are then derived which link the cost 

of the exploration (usually in terms of the distance covered by the robot) to, for example, 

the to tal number of objects in the environment. The focus of the research is on designing 

strategies with small upper bounds on the cost of planning or executing the exploration. A 

common criterion is to minimise the exploration path length.

To make the mathematics tractable, terrain acquisition research has to make some 

simplifying assumptions about the robot and its environment. Lumelsky, Mukhopadhyay, 

and Sun (1991), for example, require that the robot be able to detect exactly the boundaries 

of any unoccluded object within a limited ‘radius of vision’. (Shieh (1992) makes a similar 

simplification but, for most of his work, also assumes tha t the radius of vision is greater 

than  the maximum distance that would be encountered during exploration.) A laser range- 

finder might go some way towards meeting this ideal, but it is certainly not an assumption 

which can be used about an ultrasonic sensor. He also requires tha t the robot have perfect 

localisation. This assumption is shared by many other researchers (Zelinsky, for example) 

and may not be unreasonable in practice. One could imagine, for example, a beacon-based 

localisation system giving enough positional accuracy for the algorithm to be effective. An 

assumption which does not appear in Lumelsky’s work (unlike the research of lijima, for 

example) is that the objects must be polygonal. All tha t is required is tha t the perimeters 

form simple closed curves.

Lumelsky proposes two terrain acquisition strategies: the ‘Sightseer’ and the ‘Seed- 

Spreader’. The ‘Sightseer’ strategy is similar to some of the strategies discussed earlier in 

th a t the robot circumnavigates objects in order to ‘acquire’ their complete boundaries. After
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completing the boundary of an object, the robot then moves to the nearest visible incomplete 

object. Under the assumptions of the research, the upper bound on the exploration path 

length can be shown to be linear in the number of obstacles.

One of the assumptions of the ‘Sightseer’ strategy is tha t the obstacles are mutually 

visible; any pair of obstacles are connected through a sequence of obstacles th a t are visible 

from each other. Since no constraints are imposed on the overall size of the environment, this 

assumption is essential to allow the algorithm to term inate. If all detected obstacles have 

been circumnavigated, then the exploration is complete. If the m utual visibility criterion 

is relaxed then it is necessary to impose another restriction; the environment must be 

within known size limits. The ‘Seed-Spreader’ strategy is designed to operate in these 

circumstances.

To use the ‘Seed-Spreader’ strategy, the robot’s environment is divided into a number 

of parallel rectangular strips and the robot then moves backwards and forwards along the 

edges of these strips. If an obstacle is encountered which crosses the edge of a strip, the 

robot has to circumnavigate the obstacle before continuing its path  along the edge of the 

strip. If, on the other hand, the robot detects an obstacle which does not cross the edge of 

a strip but which is not completely visible from the edge of the strip, then it must deviate 

from its standard path and circumnavigate the obstacle before returning to its path  along 

the edge of the strip. The upper bound on the exploration path  length for this algorithm can 

be shown to be quadratic in the number of obstacles (compared with the linear performance 

of the ‘Sightseer’). This would suggest tha t, in situations in which both  strategies could 

be used, the ‘Sightseer’ would be a clear favourite. Lumelsky emphasises, however, the 

worst-case nature of the upper bounds and shows tha t the ‘Seed-Spreader’ can compete 

well with the ‘Sightseer’ if, for example, most of the path  generated by the ‘Sightseer’ is 

used in circumnavigating objects.

Shieh (1992) provides a detailed mathematical analysis of the problem of selecting view­

points so tha t a patrol robot could see all of the free space in a given environment. He 

starts from the case in which the environment is completely known and moves on to the 

case in which the environment has to be explored. The difference is th a t, in the second 

case, viewpoints are selected to examine the unexplored regions instead of the free regions. 

Perhaps the most significant difference between this work and Lumelsky’s is tha t the focus 

is on minimising the time required to plan the optimum set of viewpoints instead of the 

time (or path  length) required to execute the exploration. Lumelsky’s criterion appears to
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be the more practical.

Sankaranarayanan and Masuda (1992) build on Lumelsky's work by introducing the 

possibility tha t the robot can interrupt its circumnavigation of one obstacle to go and visit 

another. They introduce a parameterised algorithm in which a single param eter controls 

the likelihood tha t such interruptions will occur. By choosing the param eter value so that 

interruptions never occur, Lumelsky’s ‘Sightseer’ strategy emerges as a special case of this 

more general algorithm. They propose the idea of ‘Hierarchical Map Making’ in which the 

control param eter is gradually modified so that the robot first builds a coarse, approximate, 

map and subsequently fills in the details.

The terrain acquisition research proposes some interesting exploration strategies but 

they are not directly applicable to the problems of exploring with ARNE. A single sweep 

of a sonar sensor does not reveed the boundaries of all obstacles within a given ‘radius of 

vision’.

This section and the previous one have described a variety of ways in which researchers 

have investigated the exploration problem. The next section makes some general observa­

tions about this body of work and uses these observations to motivate the investigations 

which will form Part III of this thesis.

4.3 T he Approach in th is Thesis

The research papers described in the last two sections do not show the results of many 

practical exploration experiments. This is of course to be expected in the case of the 

terrain acquisition research which is mathematical and abstract. But even those papers 

which include experiments do not present mziny results. For example, Moutarlier and lijim a 

each give one experimental result and Thrun gives two. Nehmzow does evaluate the map 

quality several times during circuits of a test room, but the reported results are still limited 

to a single room. Elfes shows the likely targets for exploration at a single moment during 

exploration but does not present a complete exploration.

Even when results are presented, they are usually not quantitative. lijim a and M outar­

her each show a single picture of the viewpoints that the algorithm selected and the resulting 

map. In both cases a single object has been successfully identified, but there is no measure 

of the quality of the rest of the map or the efficiency of the exploration path. Although 

Nehmzow does use quantitative measures of recognition success, he makes no attem pt to 

measure the cost of exploration. Thrun presents his results purely visually. Elfes, although
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proposing quantitative measures of map quality, does not present any examples of their use.

The shortage of quantitative experimental results makes it impossible to gain an im­

pression of the relative strengths of alternative exploration strategies.

The research presented in Sections 4.1 and 4.2 shows a clear correlation between the 

type of map a robot has and the exploration strategy it uses. Wall-following is used by 

robots with no map or with topological maps. If the robot has a full metric map, wall- 

following is rejected in favour of a totally map-based strategy. This rejection seems to be 

unreasonable given that wall-following is reported as being easy to implement and robust. 

An incomplete map might also contain inconsistencies and default assumptions (see, for 

example. Section 7.4.3), A strategy which is based completely on the developing map could 

generate inefficient explorations. Perhaps better results could be obtained by a mixture of 

reactive and map-based strategies.

These observations have led to the following decisions which have motivated the research 

described in Part III of this thesis.

• Exploration strategies will be evaluated experimentally.

• Strategies wiU be tested in multiple environments.

• Strategies will be tested from multiple starting positions in each environment.

• Strategies wiU be evaluated quantitatively, using clearly-defined measures of map qual­

ity  and exploration cost.

• The value of alternative strategies will be compared statistically.

Finally, which exploration strategies wiU be tested? Given the reports of its ease of 

implementation and robustness, wall-foUowing is clearly a strong candidate. WaU-foUowing 

wiU therefore be used as a ‘base case’. Other strategies wiU be introduced to make increasing 

use of the robot’s incomplete world model. The research focus wiU be to determine how 

much the use of a partiaUy-formed world model can improve the effectiveness of a robo t’s 

exploration.
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Chapter 5

The Robot
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Figure 5.1; ARNE

Figure 5.1 shows ARNE, the mobile robot that was developed during the research re­

ported in this thesis. This chapter describes ARNE. Section 5.1 describes ARNE’s physical 

construction, sensors and electronic hardware. Section 5.2 then examines the on-board 

control software.

68
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5.1 Hardware

ARNE’s key physical component is a 300 mm diameter disc which supports the control 

electronics and the rotating sonar sensor. Below the disc is a chassis which holds the 

motors and shaft encoders to control the two drive wheels.

ARNE has a drive wheel on each side of the chassis and a low-friction castor at the 

back. It moves holonomicaUy, turning the wheels in the same direction to move forward or 

in opposite directions to rotate on the spot. Shaft encoders with a precision of 1024 steps 

per revolution determine the distance travelled by each wheel to a precision of 0.2 mm.

At the lowest level, the wheel movements are controlled by two dedicated HCTL-1100 

m otion control chips (Hewlett-Packard 1992, pages 1-77 to  1-115) which generate and ex­

ecute trapezoidal velocity profiles. The length, acceleration and peak velocity of these 

movements are specified by the on-board CPU, a 68000-compatible ‘Mini-Module’ micro 

controller from PSI Systems Limited (P S I1991).

ARNE’s only range sensor is a single rotating Polaroid ultrasonic rangefinder (Polaroid 

1991) which can be seen in Figure 5.1 on top of the box which houses the CPU and other 

control electronics. The transducer is rotated by a 1.8°/step stepper motor. A full 360° 

scan is performed in twenty 18° steps.

Section 1.3 explained the decision to connect ARNE to a stationary workstation. A 

9600-baud connection to the Mini-Module’s RS485 serial port was used for this purpose. 

The cable was suspended from the ceiling of the laboratory and ARNE was given a long 

vertical ‘ta il’ to avoid the cable hanging in front of the sonar sensor. The tail obstructs the 

sonar measurement which looks directly backwards. The remaining 19 measurements are 

unaffected.

The time between the emission of the sonar pulse and the triggering of the echo threshold 

is measured by an 8-bit timer and passed to the digital I/O  ports of the Mini-Module. (See 

Section 6.1 for a full description of the sonar rangefinder.) A range precision of 1 cm is 

used, giving a maximum range of 2.53 m^. The minimum range tha t can be measured is 

21 cm. (After the transmission of the pulse, there is a ‘blanking period’ during which no 

echoes can be detected. This gives the transducer time to  settle before listening for the 

echo. The minimum range is a function of the blanking period.)

Power is supplied to ARNE by cable from a mains power supply. An on-board 6V

^The theoretical maximum range from the 8-bit counter would be 2,55 m. Calibration of the sensor 
required a 2 cm fixed offset, giving a practical maximum of 2.53 m.
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battery supplies the short bursts of high current required by the ultrasonic transducer and 

is kept charged by the remote power supply.

ARNE has one more sensor, in addition to the sonar and the shaft encoders. A piezo­

electric bumper around the circumference of the main disc is used to detect collisions. The 

interrupt mechanism of the Mini-Module is used to stop ARNE as soon as a collision is 

detected.

The next section reviews the way in which ARNE’s actuators and sensors are co­

ordinated by the on-board control softwcire.

5.2 Software
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Figure 5.2: A Schematic Representation of ARNE’s Control Architecture

Figure 5.2 is a schematic representation of ARNE’s control architecture. It shows a 

number of modules, implemented on the micro-controller, which communicate with the



C H A P T E R  5. THE ROBOT 71

rem ote workstation and with the electronics dedicated to the sensors and actuators. These 

modules also communicate with one another. The arrows in Figure 5.2 show the main lines 

of communication.

The processes on the mini-module comprise about 1500 lines of Modula-2 code. The 

rem ainder of this section considers each of the modules in tu rn  and reviews the decisions 

which were made during their design.

5 .2 .1  C o m m u n ica tio n s  C on tro ller

This module accepts commands and issues responses through the RS485 serial port. For 

m ost of the research a Sun workstation was on the other end of the line. However, the 

dialogue was designed to be easily readable so that an operator could communicate directly 

w ith ARNE through a dumb terminal.

Appendix D lists the key commands understood by ARNE. There are, in addition to 

these, commands to configure the system cind to provide help and debug information to an 

operator.

The data  transfer rates necessary during ARNE’s operation are low enough tha t it was 

not necessary to compress the data. The longest message (the response to the request for 

an ultrasonic scan) is at most only 209 bytes long.

The Communications Controller parses the incoming commands and forwards requests 

to  the Sonar Controller or the Movement Controller. It then formats the results of the 

requested operations and writes them back to the serial port.

5 .2 .2  S on ar C ontro ller

This module is responsible for both the sonar transducer and the motor tha t changes the 

transducer’s direction.

Requests for sonar information come from two sources; the Communications Controller 

may request a scan in response to input from the serial port or the Movement Controller 

may require the sonar sensor to look out for obstacles during a movement.

Standard electronics which detect the sonar echo were purchased with the transducer. 

A signal from this threshold detector is used to stop a timer, giving the delay between 

the transmission of the pulse and the detection of the echo. This delay is passed to the 

Sonar Controller which then converts the time into a range reading. This conversion was 

calibrated experimentally.
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4

Figure 5.3: The Sonar Scan P attern  During Forward Movements
As ARNE moves forward, the sonar sensor scans for obstacles. This figure shows the sequence in which 

readings are taken. The sensor rotates in steps of 18°. Reading 7 is looking directly ahead. Readings 1 and 
4 are included to detect walls which are approximately parallel to the direction of motion.

Sonar scans alternate their sense of rotation to prevent broken transducer wires.

5 .2 .3  M o v em e n t C ontro ller

The Movement Controller is the largest component of ARNE’s control software. It has to 

co-ordinate the action of the sensors and actuators during a movement.

The movement is initiated by writing the target ‘final positions’ for each wheel to the 

Memory-Mapped Interface to the motion controllers. These positions are expressed not 

in metric units such as millimetres but in steps of the shaft encoders. The Movement 

Controller therefore has to use knowledge about the dimensions of the robot (wheel size, 

encoder steps per revolution, distance between wheels . . .  ) to convert from millimetres to 

steps.

Before beginning a forward movement, ARNE uses the sonar sensor to check whether 

the movement is safe. The same check is performed repeatedly during the movement to 

prevent collisions. A full sonar scan would not be useful here because it would waste time 

looking behind ARNE during the forward movement. It is im portant to focus attention 

in the direction of the movement. It is, however, also im portant to check to the sides to 

prevent glancing collisions with smooth walls which are almost parallel to the direction of 

movement. (The front readings could all be reflected away from the transducer.) Figure 5.3 

shows the scan pattern which was implemented. This pattern  was found to be effective at 

avoiding collisions.
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Tolerances for the range readings during these obstacle checks were determined exper­

imentally. (How close must an object be before the move is abandoned?) The tolerances 

are strongly dependent on ARNE’s speed; the faster the movement, the greater the safety 

m argin tha t is needed. Reasonable values were found to be 350 mm for the front readings 

and 300 mm for the two side readings.

If  an obstacle is detected, ARNE must stop immediately. Emergency stops were dif­

ficult to  implement with the trapezoidal velocity profile mode of the HCTL-1100 motion 

controllers. Once the movement has started, it can only be interrupted by an emergency 

stop which releases control of the wheels, allowing them  to drift. To compensate for this 

drift, the Movement Controller was designed to measure the positions of both  wheels just 

before the emergency stop and then to bring ARNE back to tha t position. Although this 

is not an ideal solution, the results were good enough to prevent m ajor localisation errors 

on the rare occasions that emergency stops were necessary.

After an emergency stop, the Movement Controller repeats the scan five times to verify 

th a t the obstruction is stiU there, and was not, for example, someone crossing ARNE’s path. 

If the obstacle has disappeared, the movement is continued. Otherwise, the movement is 

abandoned.

W hen the movement has been completed or abandoned, the Movement Controller re­

turns a status code to the Communications Controller, indicating whether the movement 

was successful and, if not, why not. It also reads from the Memory-Mapped Interface 

the actual distance travelled (in steps), converts it into millimetres and passes it to  the 

Communications Controller.

Turn movements are simpler in that there is no need to check for obstacles before or 

during the turn. The required and actual turn angles are specified in degrees.

5 .2 .4  M em o ry -M a p p ed  In terface

The HCTL-1100 motion control chips use a bi-directional multiplexed address/data bus. 

The Memory-Mapped Interface was designed to hide this complexity from the Movement 

Controller. It emulates the mechanism, often implemented in hardware, which enables a 

higher process simply to write values to, and read values from, specific memory locations 

without being concerned about the low-level protocols.
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5 .2 .5  C ollision  D e te c t io n

The Collision Detection module is interrupt-driven. If the piezoelectric bumper detects a 

collision, the current movement is stopped immediately. It was found necessary to limit the 

sensitivity of this mechanism; in early experiments the inevitable vibration which occurs 

during movements was interpreted as a collision.
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Figure 6.1: The Sonar Interpretation Module

This chapter presents the sonar sensor model that was developed in this research. Fig­

ure 6.1 shows tha t the model is used to interpret the raw sonar returns from ARNE before 

the information is passed on to the the other modules on the workstation.

Section 6.1 outlines the operation of the Polaroid ultrasonic rangefinder used by ARNE. 

Section 6.2 then describes initial experiments to measure the range to a smooth wall in the 

test environment. The experiments highlight two key features of the sonar sensor: its wide 

beam  and its uneven signal strength. Section 6.3 proposes a sonar model to mitigate the 

effect of these features by grouping neighbouring range readings. Section 6.4 then describes 

experiments to  verify tha t the model will be applicable when measuring the range to the 

variety of objects that ARNE wiU encounter in the test environment. Section 6.5 then 

summarises the model.
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Figure 6.2: The Operation of the Polaroid Ultrasonic Transducer

6.1 T he Polaroid U ltrasonic Sensor

Time-of-flight sonar is used in this thesis; distance information is derived from the time 

taken for a pulse of sound to travel to an object and be reflected back to the sensor.^

Figure 6.2 is a simphfied diagram of the rangefinder. Voltage pulses are sent to the 

transducer, which emits 16 cycles of square wave sound at about 50 kHz. As the sound 

begins, a timer is started. For a short period after transmission, the transducer is disabled 

(to give enough time for the vibration to die away) and it is then used to listen for an echo. 

W hen an echo is detected, the timer is stopped and the time-of-flight is measured. This 

time-of-flight can then be multiplied by the speed of sound in air to obtain a measurement 

of the round-trip distance to the object that caused the reflection. The most difficult, and 

potentially error-prone, part of the process is the detection of the echo. This is achieved 

by waiting until a signal is detected whose strength exceeds a predefined threshold. This 

is, however, complicated by the loss of strength of a sound signal as it passes through air; 

the further the signal has had to travel, the weaker it will be. To compensate for this, the

 ̂There has been recent work on the construction of more ‘intelligent’ sonar sensors which analyse the 
shape of the waveform of the echo. This work is reviewed in Section 20.3.
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Figure 6.3: Sonar Returns from a Smooth Wooden Wall
Sonar scans with a step of 1.8® were taken at several distances from a smooth wooden waü. An angle of 0® 
is directly in front of the robot. Notice the sharp increase in range reading at about —22® and -|-22®. There 

are also transient increases at about —15® and +15®.

rangefinder electronics include an amplifier the gain of which increases over time.

6.2 Experimental Evaluation

This section presents the results of experiments to determine the behaviour of the sonar 

sensor when confronted with a smooth wooden wall.

The robot was placed roughly 1.5 m from the wall, approximately facing it. The robot 

then performed a complete 360° scan, using the smallest available step size between sonar 

returns. This produced 200 returns at steps of 1.8° (although some of the returns behind the 

robot were obstructed by its ‘tail’). The robot then moved 100 mm forward and performed 

another scan. This step-and-scan process was repeated a total of ten times to test the 

behaviour of the sensor at a variety of ranges. (The same technique was used when testing 

other objects in Section 6.4.)

Figure 6.3 shows the returns from 40° either side of the robot’s centre-hne. Points to
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Figure 6.4: Typical Signal Strength of a Polaroid Ultrasonic Transducer
The signai strength is greatest directly in front of the transducer (in the centre of the graph). It reaches a 

local minimum at about 15° either side of centre before increasing again to create weaker ‘side lobes’.
(Polaroid 1991)

note include:

• All of the scans show a flat central region from roughly -10° to +10°, in which the 

range reading changes very Little. This is consistent with the findings of Kuc (1991) 

and others that the measured range is actually the normal distance from the sensor 

to the wall.

• To either side of the central region, at about ±15°, the measured range increases. In 

some instances the increase is substantial, causing the obvious ‘spikes’. In other cases 

the increase is only a few centimetres.

• Beyond the regions of increased range, between 18° and 22° and between —17° and 

—23°, there are additional flat regions. The range in these regions appears to be 

slightly higher than in the centre of the beam.

Figure 6.4 helps to explain these results. It shows the significant variation in signal 

strength at different angles from the centre of the ultrasound beam. The results in Figure 6.3 

showed that the wall can be detected through a total angle of about 45°. The wall can



CH APTER 6. MODELLING THE SONAR SENSOR  80

therefore be detected by the strong central lobe and by the first side lobes. Contact is then 

lost as the strength of the side lobes decreases beyond ±25°.

The transient overestimates are caused by the low signal strength between the central 

and side lobes. The very long readings arise when the echo is too weak to exceed the 

threshold. The detection mechanism then times out, returning a maximum reading, or is 

triggered by a multiple reflection, giving a long false reading. Leonard and Durrant-W hyte 

(1992) have shown tha t the smaller overestimates occur when the signal is still strong enough 

to trigger the detection mechanism, but too weak to trigger it promptly. The echo detection 

hardware relies upon the charging of a capacitor. A weak signal takes longer to  charge the 

capacitor, causing an overestimate of range.

These experimental results have shown that the ultrasonic sensor has a wide beam and 

can overestimate the range if a weak echo is received. These two properties both  contribute 

to the positional uncertainty associated with a sonar return. The next section examines 

techniques to lessen this uncertainty,

6.3 Proposed Sonar M odel

A number of researchers have shown that the position of an object can be measured with 

greater precision by combining the results from multiple ultrasonic range readings. Some 

(Nagashima & Yuta 1992; Peremans, Audenaert, & Van Campenhout 1993; Wilkes et al. 

1993) use more than one transducer and make multiple time-of-flight measurements simul­

taneously. Others (Leonard & Durrant-W hyte 1992) use a single rotating sensor to make 

multiple measurements sequentially. Since ARNE is equipped with a single transducer, the 

la tter approach has more relevance to the current research.

Leonard and Durrant-W hyte (1992) used dense sonar scans (with only 0.588° between 

readings) and looked for flat regions Hke those in Figure 6.3, which they called ‘Regions 

of Constant Depth (RCDs)’. An ROD was defined to be a contiguous set of sonar returns 

which differed no more than 1 cm. By imposing a minimiim width on these RCDs (typically 

10°) they guaranteed that the returns all came from the strong central lobe of the beam. 

This eliminated the problems caused by weak returns. They were also able to decrease 

the angular uncertainty by using the multiple returns in the ROD to constrain the possible 

direction to the object.

The creation of RCDs has been shown to be an effective way to eliminate the problem of 

weak returns. The practical limitation of the method is the scanning time. Each dense scan
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in  Leonard and Durrant-W hyte’s work took roughly 2 minutes, which they adm it to be ‘a 

very im practical length of time’. They propose to overcome this problem by using multiple 

‘tracking sonars’ each of which focuses its attention on a single feature of the environment. 

This option is not available to ARNE, with its single sensor. This section therefore considers 

how the positional uncertainty can be reduced by intelligent interpretation of the returns 

from a sparse scan (in which a full set of 19 returns is obtained in 3 seconds).

W ith  the limited amount of data in a sparse scan, it is impossible to eliminate weak 

returns entirely. If an object is detected by only one return  it is impossible to  tell whether 

th a t re turn  was strong or weak. It is, however, possible to increase the quality of the sensor 

da ta  whenever an object is detected by more than one return. One can then decrease the 

likelihood of a range overestimate by taking the minimum range of all the returns. The 

angular uncertainty can also be decreased because the detected object m ust be in the area 

in which all of the sonar beams overlap. Both of these techniques will be explained further 

in this section.

Returns are taken to have been caused by the seime object if they are adjacent in the 

scan and their ranges differ by no more than a threshold value. To discuss the grouping of 

adjacent sonar returns, it is necessary to define some terminology. In this thesis, the word 

return  will be used to denote the numeric value returned by a single firing of the sonar 

sensor, whereas a reading will be taken to mean the result of grouping together one or more 

adjacent returns.

The threshold for grouping the returns can be determined from the results tha t were 

presented in Figure 6.3. They show that the range readings in the flat regions (during 

which an echo is being detected from the wall) differ by no more than 4 cm. This value 

can also be supported by calculation. The sonar pulse consists of 16 cycles at 50 kHz. 

Leonard and Durrant-W hyte (1992, page 34) report th a t a strong return  triggers the echo 

detection mechanism after 3 cycles. The greatest overestimate would therefore occur if the 

mechanism were triggered by the 16th cycle, 13 cycles too late. Taking the speed of sound 

in air to be 343 m/sec, this delay corresponds to an overestimate (in metres) of:

13 X 343
= 0.045

The experimental results also showed tha t the returns from the strong central lobe often 

overestimated the range by 1 cm. W ith this in mind, the threshold for grouping returns 

was set to  3 cm. The grouping procedure then erred on the side of caution, including



CH APTER 6. MODELLING THE SONAR SENSOR 82

Effective 
Beam Width (w)

Figure 6.5: Effective Beam W idth for a Reading of 3 Returns
Three sonar returns (rl,r2,r3) are grouped into a reading. The angle between adjacent returns is 5, giving 
an angle of 2a between the extreme returns. If the object’s visibility angle is v , then the direction to the 

object must lie within the central overlap region (indicated by the thick arc). The effective beam width, uj,
of the reading is therefore given hy  w  =  v  — 2a.

fewer rather than more returns into a reading. This was found to be useful to prevent the 

unrealistic narrowing of the effective beam width.

Each reading is assigned a range value equal to the minimum  range of its component 

returns, thereby eliminating the overestimates from weak returns. Notice tha t the angular 

difference between the weak returns on either side of the beam is at least 20°, which is greater 

than the 18° step between adjacent returns, and tha t the width of each weak region is less 

than 10°, which is much less than the step size. These two properties make it impossible 

for two adjacent returns both to be weak. Therefore if a reading is formed from at least two 

returns, any overestimates from weak returns are guaranteed to be eliminated.

Figure 6.3 showed a difference of about 45° between the extreme angles at which the 

sensor could detect the smooth wall. This difference is known as the visibility angle of the 

object. This is the amount of angular uncertainty in a single sonar return  from the wall. If a 

reading is composed of multiple returns, the directions of the returns and the visibility angle 

of the object can constrain the direction to the object. This has the effect of narrowing the 

effective beam width of the reading.

Figure 6.5 illustrates the calculation of the effective beam width for a reading formed 

from three returns. In general, the effective beam width w(vyS,Craad) is given by:
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S, C^eacf) — V Ç^read  l ) ^  ( 6 .1 )

where v is the object’s visibility angle, 5 is the angle between adjacent returns (18° in 

this implementation) and c^cad is the number of returns in the reading.

The effective beam of the reading is symmetrical around the average direction of the 

returns. The average direction is therefore taken as the direction of the reading.

AU of the results in this chapter so far have been concerned with one type of object, 

a smooth waU. The next section considers the other types of object which ARNE wiU 

encounter in the test environments.
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Figure 6.6: Sonar Returns from a Convex Edge
Sonar scans with a step of 1.8® were taken at several distances from a 90° convex edge. An angle of 0° is 

directly in front of the robot. Notice the sharp increase in range reading at about ±10°.

6.4 Other Types of Object

ARNE’s test environment was designed to be heterogeneous. As Bozma and Kuc (1992) 

have pointed out, sonar experiments typically use either smooth surfaces or rough ones. 

The environment used in this research has some smooth walls (constructed from card or 

smooth wooden board) and some rough painted brick walls. Thin cylindrical pillars^ were 

used as free-standing obstacles. The test environments are described in Appendix B. This 

section repeats the experiment from Section 6.2 for each type of object to determine each 

object’s visibility angle and to check that the proposed sonar model can be applied in all of 

these circumstances.

As a first example, consider the convex edge^ formed by two waRs meeting at 90°. 

Figure 6.6 shows the results. The central flat region is much narrower than for the walls. 

In this case the flat region extends from approximately —10 to +10 degrees. The region

^actually sand-filled potato chip cartons 7 cm in diameter
^In this thesis, unless otherwise stated, an ‘edge’ should be taken to refer to a convex edge and a ‘corner’ 

will be a concave corner.
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Figure 6.7: Sonar Returns from a Smooth Corner
Sonar scans with a step of 1.8® were taken at several distances from a 90° concave corner formed by two 
smooth walls. An angle of 0° is directly in front of the robot. Sharp increases in range reading occur at 

about ±12°. After these ‘spikes’ the range drops as the sensor begins to measure the distance to a single
wall instead of to the corner.

becomes a little wider as the robot approaches the edge. For this object it is clear that the 

echo can only be detected if the signal comes from the powerful central lobe of the beam. 

The edge is more difficult to detect than the smooth wall because the echo from the edge is 

diffuse whereas the echo from the wall is specular (Hallam 1986; Kuc & Viard 1991). The 

strength of the diffuse echo decreases more rapidly than that of the specular echo, making it 

harder to trigger the detection mechanism. This effect becomes more pronounced at greater 

ranges, causing a slight narrowing of the flat region at greater ranges.

The returns from the smooth corner (Figure 6.7) show, with two exceptions, a flat 

central region between -12 and +12 degrees. Throughout this region the ultrasonic signal 

reflects specularly from both walls before returning to the transducer. This central region is 

delimited by range increases (either ‘spikes’ or small increases) corresponding to the troughs 

in signal strength at the side of the central lobe. After this, at about -22° and 20°, the 

range drops to about 70% of its central vsJue as the side lobes begin to measure the normal



CHAPTER 6. MODELLING THE SONAR SENSOR 86

Range (cm)

260.00

240.00

220.00 ^

160.00 - t H-----

140.00

120.00

100.00

80.00

60.00

40.00

20.00

0.00
Angle (degrees)

- 20.00 0.00-40.00 20.00 40.00

Figure 6.8: Soucir Returns from a Thin Cylinder
Sonar scans with a step of 1.8° were taken at several distances from a 7 cm diameter smooth cylinder. An 

angle of 0° is directly in front of the robot. Sharp increases in range reading occur at about —10° and 
-f 15°. (The exact position of the flat region varies as the robot moves nearer to the object because the

cylinder was not exactly in front of the robot.)

distance to the side walls. The exceptions are the scans taken at 160 cm and 100 cm. 

Both of these scans show a more gradual change from the central value to the side value. 

This behaviour is similar to that of a corner between rough walls (see later in this section), 

indicating that the sensor may have detected some surface texture on one of the walls.

Figure 6.8 shows the test results with the cyHndrical object. A specular reflection occurs 

at the point at which the surface of the cylinder is normal to the transducer (Hallam 1986). 

Once again there is a flat central region between approximately —10° and -f 15°. Beyond 

that the sensor fails to detect the echo. The only exception occurs when the robot is close 

to the cylinder and an echo from a side lobe is detected.

All of the experimental results presented so far have been very similar, the main differ­

ence being in the visibihty angle of the object. The proposed model describes the operation 

of the sensor well in all of these cases. The last two objects to be examined, the rough 

corner and the rough wall, generate noticeably different results which merit discussion.
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Figure 6.9: Sonar Returns from a Rough Corner
Sonar scans with a step of 1.8° were taken at several distances from a concave 90° corner formed by two 

rough walls. An angle of 0° is directly in front of the robot. The measured range decreases as soon as the
sensor turns away from the corner.

The results from the rough comer are shown in Figure 6.9. This graph is strikingly 

different from the others in this chapter, all of which showed a pattern of a shorter range 

reading in the centre with longer readings further away from the centre. These results are 

the opposite. The sensor is actually measuring the distance to surface features of the rough 

wall, each of which is generating diffuse echoes. The experiments with the convex edge 

earlier in this section showed that the diffuse echoes could only be detected from the central 

lobe. In a rough corner the sensor is therefore in effect measuring the distance to the wall 

along the shorter side of the central lobe. For illustration, consider the arrangement shown 

in Figure 6.10.

Figure 6.11 compares the range values predicted by Figure 6.10 (with d set to 75 cm 

and P set to 6.6 degrees) with the values obtained by experiment. The model matches the 

observed results well. (A narrow beam width is reasonable in this case since a very strong 

signal would be necessary to detect the weak diffuse echo.)
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Rough Wall

Robot

Figure 6.10: An Idealised Sonzir Sensor in a Rough Corner
The robot takes a return at an oblique angle from a rough wall. The direction of the centre of the beam is 
shown by the arrow, and the shaded area represents the beam width. The length of the short side of the 
beam is given by r(a,/3,d) =  dsec(45 — — |a |) where a. is the angle between the sensor and the mid-line

of the corner, /3 is half the beam width (all angles in degrees) and d is the normal distance to the wall.

Figure 6.11: Theory and Practice of Range Readings from a Rough Corner
A comparison of the actual measured range to a rough corner (solid line) and the range predicted by the 

method shown in Figure 6.10. The model matches the observations closely.

These results show that the rough corner can not be treated as a single object which 

can be detected by sonar from a variety of angles. The sonar wiU instead detect surface 

features in the vicinity of the corner. The rough corner wiU therefore be excluded from any
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Figure 6.12: Sonar Returns from a Rough Brick WaR
Sonar scans with a step of 1.8* were taken at several distances from a rough wall. An angle of 0° is directly 
in front of the robot. The measured range shows a flat region between about ±25** with a gradual increase 

to the sides. The range increase is sharper the further the robot is &om the wall.

further discussion of visibihty angles.

The final object to be tested is the rough wall. Figure 6.12 shows the results. As with the 

smooth wall, there is a flat region in the centre of the graph. The most striking difference 

from the earher results is the absence of ‘spikes’ corresponding to the troughs in signal 

strength at about ±15°. It seems likely tha t, when the sensor is oriented so th a t the normal 

reflection would be too weak to be detected, the central lobe detects some surface features 

at an obHque angle. (The range to the detected features is not very much greater than 

the norm al distance.) As the sensor turns more, the normal echoes again become strong 

enough to  be detected. The range finally begins to increase significantly as the sensor turns 

beyond about 25° and the normal echo again becomes too weak to be detected. The central 

lobe then begins to detect surface features which are much further away than  the normal 

distance.

The difference between the results from smooth and rough walls may help to resolve a
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Object Type Mean Visibility Angle Standard Error Max. Visibility Angle
Convex Edge 18.0° 0.57° 21.6°
Thin Cylinder 23.4° 0.24° 25.2°
Smooth Comer 25.2° 0.29° 27.0°
Smooth Wall 43.2° 0.97° 45.0°
Rough Wall 54.0° 1.46° 61.2°

Table 6.1: Visibility Angles by Object Type

difference of opinion which appears in the literature about ultrasonic rangefinding. Some 

researchers (Brown 1985; Kuc & Viard 1991) report tha t sonar measures the normal distance 

to a wall, whereas others (Crowley 1985; Song & Chang 1993) state tha t sonar measures 

the distance along the short side of the beam. It may simply be tha t the first group is using 

smooth waUs and the latter group is using rough walls.

Table 6.1 lists the mean visibility angles from the experiments in this chapter. The 

objects fall into two groups. The edge, corner and cylinder have similar visibility angles, 

whereas the two types of wall both have much larger visibility angles. This grouping cor­

responds to the way the objects wiU be represented on the feature map to be described in 

the next chapter. The objects in the first group wiU all be represented as point features 

and the second group as line features.

The map building algorithm uses a single visibility angle for each of the two types of 

feature. To prevent the rejection of valid readings, the maximum  mean visibility angle of 

the objects in each group was used. A visibility angle of 25.2° was therefore used for point 

features.

Preliminary map-building experiments used a visibility angle of 54.0° for line objects. 

This led to the rejection of a large number of valid readings from close to rough walls. 

At close range the transition from the flat central region to the increasing side regions is 

difficult to  detect, allowing more returns to fall within the 3 cm limit. This problem was 

overcome by using the maximum  visibility angle of a rough wall instead of the mean. A 

visibility angle of 61.2° was therefore used for line features.
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6.5 Sum m ary

Using the data  element names from Tables A.3 and A.4 in Appendix A, the procedure for 

grouping sonar returns into readings can be summarised as:

1. Returns w ith range (rrow) equal to the maximum range of the sensor (2.53 m) are 

discarded. These returns have h t tie value because they mean only tha t the nearest 

object is at least 2.53 m  away.

2. The remaining returns are sccinned for groups of adjacent returns whose range values 

differ by no more than 3 cm. Each group forms a reading. The range of the reading 

(vread) is Set to the minimum range of the returns, the direction of the reading {oread) 

is set to  the average angle of the returns, and a count {cread) is kept of the number of 

returns which formed this reading.

The effective beam width is r  -  {cread -  l)s  where v is the object’s visibihty angle, and 

s is the angle between adjacent returns (18° in this implementation).

A visibihty angle of 25.2° wiU be used for point features and 61.2° for hnes.

The model described in this chapter is similar to Leonard and D urrant-W hyte’s (1992) 

RCD work, and was indeed inspired by it. There are, however, a number of im portant 

differences:

• Weak returns are dehberately included in the groupings in order to decrease the 

angular uncertainty. Grouping them with strong returns also prevents the use of the 

overestimated range readings,

• This is an opportunistic approach, grouping returns wherever possible. However, all 

of the sonar returns are used, even if they have not been included in a group. The 

only exception is that maximum-range returns are discarded.

• Different visibihty angles are used for different types of object. Leonard and Durrant- 

W hyte used the same visibihty angle for all objects.

• ARNE’s sparse sonar scan is 40 times faster than the dense scan th a t is used to 

generate RCDs.

This model of the sonar sensor Ccin now be used as a starting point for the map-building 

described in Chapter 7.
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Figure 7.1: The Map Construction Module

This chapter describes the map-building algorithms which were designed and imple­

m ented in this research. Figure 7.1 shows tha t the sonar readings (as described in Chapter 6) 

and knowledge of ARNE’s position are combined to generate a sequence of feature-based 

representations and a free-space map.

The sensor model that was developed in Chapter 6 showed tha t positional uncertainty 

in the sonar returns could be decreased by grouping multiple returns from the same view­

point. But uncertainty, especially angular uncertainty, still remains. The objective of the 

algorithms in  this chapter is to reduce the uncertainty further and build an accurate repre­

sentation of the environment.

More value can be derived from a sensor reading by examining it in the context of pre­

existing information about the world. This information comes from two sources; either the 

latest m ap or sensor data which has not yet contributed to the map. As an example of 

the first type, imagine that the current map shows tha t there is a wall directly in front of 

the robot. If a sensor reading is then obtained which is consistent with a sonar reflection 

from th a t wall, the range reading can be used to update the estimated position of the wall. 

The uncertainty due to beam width has been eliminated and the new range reading can be
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averaged with the existing knowledge to limit the impact of unpredictable errors.

Unfortunately map-building is not quite this simple. First, there is the ‘bootstrap’ 

problem of gathering enough initial information so tha t sensor readings can be matched 

with known objects. This problem can be addressed by seeking matches between sensor 

readings, without reference to known objects. Section 7.1 describes the process by which 

these matches are used to generate potential features and Section 7.2 then explains how these 

features become confirmed when they have been observed repeatedly. The second difficulty 

is the correspondence problem; how does the robot determine which features have caused the 

readings tha t it is obtaining? Section 7.3 explains how these correspondences are established 

and how the properties of the confirmed features are updated. Finally, Section 7.4 describes 

how a grid-based free-space map is constructed from the set of confirmed features.

7.1 D etecting Potential Features

In this section we examine the process of creating new features on the map. This has to 

be done whenever a sensor reading is obtained which can not be associated with any of the 

known features. This will usually be because the feature is being observed for the first time. 

It is also possible tha t the feature has already been observed, but not enough times for it 

to have been confirmed.

To build a feature-based map, one has to decide what features to use to  describe the 

robot’s environment. It is necessary to choose a set of features which can be reliably detected 

by the robot’s sensors.

Hallam (1986) defined a set of six 3-dimensional echo sources which can be detected 

by ultrasonic sensors: concave comers, concave hnear sources, planar sources, cylindrical 

sources, spherical or ellipsoidal sources, and convex hnear or corner sources. In this thesis 

the environment is modelled as a 2-dimensional projection, thereby restricting the set of 

features to those which are orthogonal to the horizontal plane on which the robot moves. 

These features are a vertical plane, a vertical cyfinder, a concave vertical comer, and a 

convex vertical edge. The 2-dimensional projections of these features are the line (plane), arc 

(cylinder) and point (concave comer or convex edge). Many researchers have used only fine 

segments (Crowley 1985; DrumheUer 1987; Nagashima & Yuta 1992; Song & Chang 1993; 

Zelinsky 1991b). Others have built maps containing hnes and points (Kuc & Viard 1991; 

Leonard & Durrant-W hyte 1992; Peremans, Audenaert, & Van Campenhout 1993). Arcs
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axe raxely included in the feature set. Whereas two sonar readings are usually^ enough to 

determine the position of a point or the position and orientation of a line, three readings 

are required to describe an arc of unknown radius. For this reason only lines and points 

have been used in this thesis. In this representation, th in  cylinders can be approximated as 

points. Cylinders of larger radius can be approximated as a set of tangential line segments.

I t is not possible to use a single time-of-flight sonar reading to distinguish between 

lines and points or to measure the precise direction to the feature from the robot. A 

number of researchers have therefore recognised the need to combine sonar readings from 

multiple viewpoints. The viewpoints can be obtained from multiple transducers on the 

robot (Nagashima & Yuta 1992; Peremans, Audenaert, & Van Campenhout 1993; Brown 

1985) or by moving the robot between readings (Leonard & Durrant-W hyte 1992; Zelinsky 

1991b). The second method has been used in this thesis because ARNE has only a single 

sensor. The feature extraction algorithms described in this thesis are modelled on the work 

of Leonard and Durrant-W hyte (1992).

There is value in combining multiple readings if the readings are caused by the same 

object. The angular uncertainty in the readings can then be eliminated and the position of 

the object can be determined. In work with multiple transducers (e.g. (Nagashima & Yuta 

1992)) there is usually an implicit assumption that the echoes received at the transducers 

have all come from the same object. This assumption may be reasonable in practice because 

the transducers are close together and facing in the same direction. If, on the other hand, 

the robot has moved a significant distance between the readings, one has to adopt a more 

tentative approach and hypothesise the existence of features to explain multiple readings. 

These hypotheses can then be tested by subsequent readings. In this implementation the 

hypothetical features are sought by examining the readings in pairs.

In the search for explanations of pairs of readings, one could consider trying to m atch 

each of the most recent readings against all of the readings from all of the earlier view­

points. However, in the current implementation the pairings are limited to  readings from 

two consecutive viewpoints for the following reasons:

• Consecutive viewpoints are frequently close together and it is therefore likely tha t the 

same features will be observed from both viewpoints.

• If all ezirlier viewpoints were tested, map-building would take longer as ARNE visited

the angular uncertainty in the readings is high enough, there may be two mirror-image interpretations.
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Figure 7.2: Circle Test for Elementary Point Features
The robot has taken range readings from viewpoints VI and V2. The circles centred on each position have 
radius equal to the measured range. If both readings are caused by the same point feature, it must be at 

position P i or P2, at a point of intersection of the circles.

more viewpoints. This loss of performance would be unacceptable for long explo­

rations.

• The odometry error between consecutive viewpoints is less than between viewpoints 

more widely separated in time. Consecutive viewpoints therefore form a more tru st­

worthy baseline for the triangulation process by which new features are detected.

The first step of feature detection has been named the ‘Circle Test’ (Leonard & Durrant- 

W hyte 1992, page 99), For each location, a circle is drawn, centred on the location, with 

radius set to  the value of the sonar reading.

If the returns were from a point, the reflection will be diffuse and the hypothesised point 

will be at an intersection point of the two circles (Points P I  and P2 in Figure 7.2).

The direction, 0, to the point can then be determined by the cosine rule:

2 _7"2 = Ti d -  2rid  cos(^)

or

eos(») =  n i ± ^  (7.1)

Equation 7.1 gives two solutions for 0; one with the point above the line of travel and 

the other below.
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VI

L2

Figure 7.3: Circle Test For Elementary Line Features
The robot has taken range readings from viewpoints VI and V2. The circles centred on each position have 
radius equal to the measured range. If both readings are caused by the same line, it must be at position L l

or L2, tangential to both circles.

Note tha t there are some cases in which no solution is possible. If d =  0 (ARNE hasn’t 

moved between sensor scans), then there is no baseline for the triangulation. If d > +  rg

or I?*! — rg| > d then the circles do not intersect.

The direction to the point from vg can be derived in a similar way (or by using the sine 

rule once Û is known).

If the returns were from a Hne, the reflections will have been normal to the surface and 

the hypothesised line will be tangential to both circles (Hnes L l and L2 in Figure 7.3).

In this case Û is given by:

cos(^) = —-  (7.2)

Again there are solutions for 6 above and below the direction of travel and there are 

circumstances under which no Hne exists. If d =  0 there is again no baseline and if |r i —Tg| > 

d there is no Hne tangential to both circles.

It was shown in Section 6.4 that the visibihty angle of any Hne feature is much greater 

than  the 18° step size of the sonar scan. Therefore, if the robot has an unoccluded view of a 

Hne feature, the Hne wiU be detected by more than one adjacent return  (i.e. there wiU be a 

reading with a return count, Cread, greater than one). These readings are guaranteed not to 

be affected by the problem of inaccurate range values caused by weak returns (see page 82). 

To improve the accuracy of the map-building, a restriction was implemented to  the effect
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th a t a reading was considered to have been caused by a line feature only if Cj-ead > 2.

The Circle Test generates zero, two or four alternative explanations for the two sensor 

readings. The number of hypotheses can be decreased by considering the sensor orientation 

when the readings were taken (the ‘Sensor Orientation Test’). For each possible interpreta­

tion, contact points are defined on the hypothesised object (one for a point, two for a line). 

By connecting these points to the sensor positions, two contact lines axe created. For each 

hypothesised object, a check is made that both  contact lines fall within the effective beam 

width of the reading (see Figure 7.4). The beam width is calculated by equation 6.1. Note 

tha t the effective beam width is different for line and point features.

Effective 
\Beam Width

Robot

Line

Elementary 
Line Feature

Figure 7.4: The Contact Line Falls W ithin the Effective Beam of the Reading

Viewpoints

Figure 7,5: Is it a Line or a Point?
The robot takes range readings to m  the two viewpoints on the left of the diagram. Two contact lines from 
each viewpoint are possible, one if the readings were caused by a line, the other if the readings were caused 

by a point. If both contact lines from a viewpoint run in approximately the same direction, the Sensor 
Orientation Test is unlikely to be able to resolve the ambiguity. The longer the range readings, the more

likely such an ambiguity is to arise.
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Alcove

Robot Positions 

Figure 7.6: The Risk of ‘Closing’ an Alcove
The two sensor readings do not come from the same line segment but from separate lines on either side of 

the alcove. A maximum line length is imposed to prevent misinterpretation of the readings.

If both contact lines are accepted, the hypothesised object is accepted provisionally, 

awaiting support from later sensor data. This test reduces the number of possible objects, 

often to only one. It is, however, common for an ambiguity to exist between a line and a 

point, especially when the range readings are long (see Figure 7.5).

If the candidate features He approximately in ARNE’s direction of travel, the Sensor 

Orientation Test may be unable to distinguish between the above- and below-the-Hne in­

terpretations. In this situation, neither interpretation is accepted.

If the Circle Test and the Sensor Orientation Test suggest the existence of a line segment, 

it is necessary to check the length of that segment. Situations could arise in which the two 

sensor readings do not in fact come from a single line segment but from a broken line such 

as a doorway or an alcove (see Figure 7.6).

Modelling such an environment as an unbroken line would suggest that the robot can 

not pass through the doorway or into the alcove. This problem is eliminated by imposing a 

maximum length restriction on the line segment. A maximum length of 600 mm was used, 

the width of the narrowest gap through which ARNE could safely pass.

7.2 Clustering Potential Features

The process described in Section 7.1 generates possible interpretations of pairs of sonar 

readings. However it is still possible that these interpretations are false. There could be
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alternative explanations for the same pair of readings. Or both  readings could have been 

caused by multiple specular reflections, suggesting the existence of a ‘ghost’ feature. Further 

support is needed before multiple sensor readings can be trusted to correspond to the same 

object in  the world. This support is obtained by gathering the hypothetical features into 

m utually supportive clusters.

All of the elementary features within a cluster are of the same type. There are therefore 

‘po in t’ clusters and ‘line’ clusters. An elementary feature is added to a cluster if it shares 

a reading with a feature which is already in the cluster.

A cluster remains ‘tentative’ until enough features have been included in the cluster 

to justify its promotion to a status of ‘confirmed’. The meaning of ‘enough features’ was 

determined experimentally by performing a set of wall-following explorations and measuring 

the m ap quality tha t resulted from the use of a number of different thresholds. (The 

experiments will be described in Section 13.4 after the quality metric, waU-foUowing, and 

localisation have all been introduced.) These experiments showed tha t a cluster should 

be promoted to ‘confirmed’ when it includes two features (equivalent to three consistent 

readings). This choice of threshold is the same as tha t used by Leonard and Durrant- 

W hyte (1992).

At the confirmation stage a contact point is deflned for each reading in the cluster. Since 

a reading could be linked with more than one elementary feature, the x and y co-ordinates 

of the contact point axe calculated by averaging the points of contact between the reading 

cind its associated elementary features.

The properties stored for a confirmed line and point are documented in Tables A.9 

and A.10 in Appendix A. The slope of the line (ad) is calculated by finding the best-fit 

fine through the contact points by orthogonal regression (see Appendix C). The end-points 

(^czDj^c/O) axe found by a normal projection of the contact points onto the infinite line at 

angle ad.

The co-ordinates of the confirmed point (jCcpj^cp) axe simply the averages of the co­

ordinates of the contact points.

For both types of confirmed feature, a number of ‘sum’ values axe held which speed up 

the la ter changes to the feature.
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7.3 U pdating Existing Features

Consider the stage at which the robot’s map includes several confirmed features. One of 

the robo t’s objectives then is to use its range readings to  improve its knowledge about 

those confirmed features. Before it can do this it is faced with the correspondence problem: 

Which readings correspond to which features?.

The problem can be solved by examining each confirmed feature in tu rn  to decide 

whether tha t feature could explain any of the range readings. The decision is based on the 

following factors:

• Is the object observable from the robot’s current location? It may be, for example, 

tha t the object is occluded; the contact line from the robot to the object would pass 

through another confirmed object. For line objects, a check is also made tha t the line 

is being observed from the correct side.

• Is the observed object within the effective beam width of the reading?

• Does the predicted range to the object approximately m atch the measured range? A 

‘validation gate’ is used to check this. This is discussed further in Section 9.3.

• The ‘Alcove Test’ (page 99) is apphed to line features. If the contact point with a 

line feature would be too far beyond the endpoint of the line, then the correspondence 

is rejected, to prevent open regions being falsely mapped as closed. This helps to 

overcome one of the criticisms often levelled at sonar (Zelinsky 1991b) tha t it fails to 

detect doorways.

The result of this matching process is that each sonar reading has been associated with 

zero or more confirmed objects. If the reading matches exactly one object, it is used to 

update the properties of the object. If no matching objects have been found, the reading 

is used as input to the ‘new object’ processing described in Section 7.1. If more than one 

matching object is found, no further processing is apphed to  the reading.

The properties of the matched features are updated as follows:

L ines A contact point is obtained by taking a point at the measured distance from the 

robot in a direction normal to the line. This contact point is added to the hst of 

contact points associated with the line (cpcf[])- The ‘sum’ properties {sigXci^ sigyd, 

sigx2cij sigy2ci, sigxyd) are then updated with the co-ordinates of the contact point
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and the ‘geometric’ properties (aci,Xci[]^yd[]) are updated by orthogonal regression 

(see Appendix C).

P o in ts  A contact point is obtained by taking a point at the measured distance from the 

robot in a direction towards the confirmed point. This contact point is added to the 

list of contact points associated with the confirmed point (cpcp)- The ‘sum ’ properties 

{sigXcpi sigvcp) are then updated with the co-ordinates of the contact point and the 

‘geometric’ properties {xcp,ycp) are updated by simple averaging.

7.4 Free Space

Section 3.2 explained the need for a grid-based free-space map. This section describes the 

derivation of this map from the feature-based map of Sections 7.1 and 7.3.

The size of a grid square was chosen to be 100 mm by 100 mm. This satisfied the 

resolution requirements of the proposed application while giving a reasonably compact data 

structure.

In subsequent discussion the word ‘cell’ wiU be used to  describe a square on the free-space 

map. It will be used interchangeably to denote either an element in the map data-structure 

or a small region of the robot’s environment which is being represented by tha t element.

Each cell has one of four possible states:

U n k n o w n  Nothing is known about the contents of this cell.

O ccu p ied  This ceU contains at least one confirmed feature. A point could be completely

contained in the cell, whereas a line would be more likely to pass through the cell.

F ree  This cell has been determined to be free of obstacles.

D an g e ro u s  This cell is free of obstacles but is close enough to an obstacle th a t the robot 

would be risking a collision (or at least an emergency stop) if it were to enter this cell.

The following sections discuss some of the issues arising from each of these classifications 

and describe the construction of the map in more detail.

7 .4 .1  U n k n o w n  C ells

‘Unknown’ is the default status of a cell. Whenever a new map is created, all cells are set 

to ‘Unknown’.
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It would have been possible to avoid the use of the ‘Unknown’ status by making a strong 

default assumption such as that all cells cire free until a feature is discovered (the ‘Innocent 

until proven guilty’ approach). The acceptability of such an assumption is tightly linked to 

the navigation techniques which the robot wiU use; if the robot treats unknown and free 

space identicaUy when planning paths, then there is no need for the map to distinguish 

between them.

The objective of the work described in this thesis is to  examine a number of alternative 

exploration strategies; some may need to distinguish between free and unknown space; some 

may not. The inclusion of the ‘Unknown’ status aUows this flexibility.

7 .4 .2  O ccu p ied  C ells

If any part of a confirmed feature faUs within a ceU, tha t ceU is labeUed ‘Occupied’. A 

peril of the loss of resolution at this stage is tha t the map wiU over-represent the fraction 

of the environment which is occupied. This could be significant if, for example, the grid 

squares were large and a point feature was in the extreme corner of the square. Gaps between 

features might appear to be closed. This effect has not created any problems in this research 

since the grid size is smaU compared to the size of the robot and its environment.

7 .4 .3  Free C ells

A ceU is labeUed as ‘Free’ if the robot has passed through the ceU or the robot has determined 

th a t the ceU is free while it was detecting a confirmed feature. These alternatives are 

discussed in more detail in the foUowing sections.

T h e  R o b o t’s P a th

Each movement that the robot makes determines tha t a band of the environment is free 

of obstacles. The width of the band is 600 mm (the width of the smaUest gap through 

which ARNE can move). TheoreticaUy, the free region should have round ends. For ease of 

implementation it has been implemented as a rectangular area extending 300 m m  beyond 

the start-point and end-point of the movement.
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T he R egion Seen to  be Free

Free
Space

Figure 7.7: A Simple Sector of Free Space

A naïve approach to determining which parts of the environment are free of obstacles 

would be to assume that each sonar reading defines a sector of free space, centred on the 

robot, with radius equal to the measured range, direction equal to the direction of the 

reading, and base angle equal to the effective width of the reading (see Figure 7.7).

Free

Space

Figure 7.8: Free-Space Sector is Too Long Due to Multiple Reflections

The most significant difficulties with this approach arise because of multiple reflections. 

See, for example. Figure 7.8. In this instance there is actually no feature at the range 

indicated by the sonar; the range reading is entirely due to multiple reflections. To declare 

a large sector of the environment to be free would hugely over-estimate the amount of free 

space. This problem is overcome by selecting which readings to use as a basis for determining 

free space. Only those readings which have been matched to a confirmed feature are used
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Free

Space

Figure 7.9: Free-Space Sector is Too Wide

in this process.

Unfortunately this does not completely solve the problem of multiple reflections. Con­

sider Figure 7.9. In this case the sonar reading is caused by a feature in the environment, 

but it would still be wrong to decide that the entire sector is free space. In particular, the 

sector extends into and beyond the wall at the top. A strict solution of this problem might 

be to abandon the idea of a sector of free space and to accept that only a line is known to 

be free; the line between the robot and the contact point with the confirmed feature. This 

does, however, seem to be unnecessarily strict and leads to a very slow growth in knowledge 

of free space. A compromise solution, and that adopted in this thesis, is to continue to use 

a sector of free space but not to extend the sector beyond any other confirmed features (see 

Figure 7.10).

Free

Space

Figure 7.10: Free-Space Sector is Constrained by Other Features

This has the effect that some regions wiU initially be falsely described as free but the 

number and extent of these errors will decrease as the number of confirmed features in­

creases.
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How wide should the sector be? The answer depends on Cread, the number of raw sonar 

returns which have been combined to give the reading. In Section 7.1, Cread was used to 

restrict the angle from which a potential elementary feature could be detected; the lower 

the value of Cread} the greater the angle. In this case Cread is used to derive the angular 

w idth of the sector. The larger the value of Creadt the wider the sector in which no other 

features have been detected. The sector width w{s, Cread) is given by:

^ e a d )  — ( ^ e a d  l ) ^  “f" ^  ( 7 . 3 )

where s is the angle between adjacent returns, 18° in this implementation, and m  is the 

miniTmim visibility angle of point and line features. (The minimum width is used to ensure 

tha t the sector is free of all features.)

7 .4 .4  D a n g e ro u s  C ells

The principal use of the free-space map is path-planning. The path-planning algorithm 

to be employed (described in Chapter 8) treats the robot as a point feature. In order to 

avoid generating paths which would cause collisions with obstacles (or emergency stops), 

the features are ‘expanded’ by an amount equal to the minimum cleeirance required between 

the centre of the robot and the obstacles. A minimum clearance of 300 m m  was found to 

be necessary.

Each ‘Occupied’ cell is examined in turn  and all ‘Free’ cells in a surrounding region are 

labelled as ‘Dangerous’. This region should ideally be circular, but the limited resolution 

of the grid makes it necessary to approximate a circle with a pattern  such as tha t shown in 

Figure 7.11.

7.5 M ap Construction in Practice

Sections 7.1 to 7.4 have described the map construction techniques used in  this thesis. 

Figure 7.12 shows the graphical user interface that was designed and implemented to show 

the maps. For many purposes, the most im portant part of this interface is the confirmed 

feature map. Figure 7.13 describes this region in more detail.

7.6 Conclusion

This chapter has shown how the sonar readings obtained by ARNE are treinslated into an 

environment model. The sonar model from Chapter 6 is used as the starting point for the
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Occupied Cell

Danger Area

Figure 7.11: The Danger Area Around an Occupied Cell
Each square represents a cell of the free-space map. The pattern of cells shown here approximates a circle

around the occupied cell.

construction of a feature-based map.

The feature-based map is then in turn translated into a grid-based free-space map which 

will be used for the path planning in Chapter 8 and the map quality measures in Chapter 10.
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Figure 7.12: The Map Display
An example of a map created by ARNE. The large square windows show the hypothesised elementary 

features (at the top) and the confirmed features (at the bottom). The buttons and text fields on the left of 
the display are used to select the contents of the windows and to highlight individual features or 

viewpoints. The ‘thermometer’ on the right indicates the quality of the map (as explained in Chapter 10).
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Figure 7.13: The Details of the Confirmed Feature Map
The annotations explain the symbols that are used in this image.
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P a th  Planning

ARNE’s application requires it to follow efficient paths to user-specified delivery points. 

This chapter describes how these paths are planned.

P a th  planning serves two purposes in this thesis. F irst, it is obviously necessary to  move 

during exploration and, although some of these movements (e.g. during wall-following) may 

be completely reactive and not use the map, others will require ARNE to go to a specified 

viewpoint while avoiding known obstacles. These movements will need to  be planned.

Another, less obvious, need for path planning is in the measurement of map quality. As 

will be seen in Chapter 10, map quality is measured by predicting how successful ARNE 

would be at a number of test tasks, given the latest map. P a th  planning is needed to make 

this evaluation.

Section 7.4 described the construction of a free-space map from the hst of confirmed 

features. P a th  planning is based totally on this map.

The planning technique used in this thesis was first presented by Jarvis and Byrne and 

is described by McKerrow (1991). A ‘distance transform ’ is calculated which indicates, for 

any given cell in the free-space map, which of the neighbouring cells is closest to the goal. 

This information can be used repeatedly to generate a hst of ceUs through which the robot 

can reach the goal.

Section 8.1 gives a brief overview of the technique and Section 8.2 gives the implemen­

ta tion  details.

The paths derived from the distance transform are often unnecessarily jerky, giving a 

zigzag pa th  to  the goal. Section 8.3 describes a simple algorithm which was devised to 

sm ooth the path  by converting it into a smaller number of longer, straight, sections.

110
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8.1 T h e  B asic  Id ea

111

Figure 8.1: An Environment for Path  Planning
‘G’ marks the goal cell. The shaded cells represent an obstacle.

Figure 8.1 gives a simple example of a situation in which path planning is needed. The 

room contains a single obstacle and the goal position is marked ‘G’. (The starting position 

for the movement is not important when calculating the distance transform. The transform 

can be used to find a path from any starting ceU to the goal cell.)

OO oo oo oo oo
00 oo 0 00
00 00 oo oo
00 00 oo
00 00 00 00 oo

Figure 8.2: Initial values for the Distance Transform

Figure 8.2 shows the first stage of the algorithm. AU the free ceUs are assigned a high 

value (marked ‘oo’) except the ceU containing the goal. The goal ceU is given a value of 

zero.

The distance transform assigns each free ceU a number which represents the shortest 

distance from that ceU to the goed cell. Consider first the free ceUs immediately surrounding 

the goal cell. Some of these are horizontal or vertical neighbours and some are diagonal. 

To keep the distance values integrcd, take the distance between horizontal and vertical 

neighbours to be 10 units and the distance between diagonal neighbours to be 14 (roughly 

10\/2). The transform values can then be assigned to the neighbours as shown in Figure 8.3.
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00 14 10

00 00 00 00

Figure 8.3: An intermediate stage in the Distance Transform
Values have been assigned to all cells which border the goal, indicating the distance to the goal. See the 

text for discussion of the value to be given to the outlined cell.

One could then continue to assign distance values to the neighbours of the neighbours 

and so on. The only comphcation is that the distance transform is required to be the 

smallest distance from a cell to the goal. For example, consider the cell marked with the 

thick outline in Figure 8.3. What distance value should it be given? It is a distance of 10 

units from the cell above it (giving a total distance to the gocd of 20 units) and a distance 

of 14 units from the ceU diagonally above it (giving a total distance to the goal of 28 units). 

The cell is assigned the smaller total distance, 20 units. The general rule is that each ceU 

should be assigned a value by calculating, for each of its free neighbours, the sum of the 

neighbour’s transform value and the distance to the neighbour. The smallest such sum is 

then chosen as the transform value for the cell. Figure 8.4 shows the distance transform 

calculated by this method for the whole map.

34 24 14 10 14

38 28 0 10

42 10 14

52 ■ m 20 24

54 44 34 30 34

Figure 8.4: The Complete Distance Transform
All cells have been assigned a vcdue which represents the shortest distance to the goal from that cell.

Once the transform is complete, the task of planning a path is simple. Starting at 

the ceU which contains the robot, one simply chooses the neighbouring cell which has the
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smallest transform value and extends the path into that cell. This process can be repeated 

from the new cell until the path reaches the goal cell. (CeUs from which there is no path to 

the goal can be easily detected because they keep the high value assigned to them at the 

start of the algorithm.) Figure 8.5 shows such a path superimposed on the calculated grid. 

The next section considers the implementation of this algorithm in more detail.

34 24 M 10

38 2:8

Figure 8.5: Using the Distance Transform to Plan a Path
From each cell, the path goes to the neighbouring cell with the smallest distance value.

8.2 Implementation

The overview of distance transforms presented in Section 8.1 skips over some of the details 

of the process, the most significant being the need for an iterative calculation procedure. 

The difficulty arises because of the interdependencies among the transform values; each 

value can depend upon the values of any of its 8 neighbours. For example, in the transform 

shown in Figure 8.4, it was impossible to settle on a value for the ceUs in the bottom left of 

the room (particularly the value ‘52’) until the transform had spread both clockwise around 

the bottom  of the obstacle and anticlockwise around the top.

The algorithm presented by McKerrow deals with the interdependencies by a form of 

‘relaxation’; repeated sweeps of the room are made, adjusting incorrect transform values 

until the entire network of values stabihses and no further cheinges are needed.

The transform grid is scanned in two different ways. In a ‘forward scan’, cells are pro­

cessed in order of increasing column number within increasing row number and changes 

are determined by examining only those neighbouring cells to the bottom and left (see 

Figure 8.6). In a ‘backward scan’, ceUs are processed in order of decreasing column num­

ber within decreasing row number and only ceUs to the top and right are considered (see 

Figure 8.7). Forward and backward scans are alternated until no further changes are made.
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Figure 8.6: A Forward Scan Through the Distance Transform Grid

Scan Sequence

Cells to be 

Examined

A*'-

Cell to be 

Updated

Figure 8.7: A Backward Scan Through the Distance Transform Grid

The full algorithm for generating the transform (McKerrow 1991, page 467) is presented 

in Figure 8.8.
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{
The algorithm acts on two two-dimensional eurrays : free-space [] [] and 
transforme] □  . The snbscripts on both run from 0 to %-meuc and from 
0 to y-max. The elements of free-space[] [] are set to *free’ if the 
corresponding map cell is free, blank otherwise. All of the elements 
of transforme] e] sure set to a large number (x-max * y-maix) except the 
goal cell, which is set to 0.

}

REPEAT
changes = 0;

{Forward Scan}
FOR y=0 TO max-y STEP 1 DO 

FOR x=0 TO max-x STEP 1 DO
IF (free-spaceex]ey] = ‘free’)

FOR {3 neighbours below and 1 to the left} DO 
IF ({neighbour free})

temp = neighbour value + distance; {distance = 10 or 14} 
IF (temp < transformer] ey] ) 

transformex]ey] = temp; 
changes = changes + 1;

END-IF 
END-IF 

END-FOR 
END-IF 

END-FOR 
END-FOR

{Backward Scan}
FOR y=max-y TO 0 STEP -1 DO 

FOR x=max-x TO 0 STEP -1 DO 
IF (free-spaceex]ey] = ‘free’)

FOR {3 neighbours above and 1 to the right} DO 
IF ({neighbour free})

temp = neighbour value + distance; {distance = 10 or 14} 
IF (temp < transformer] ey] ) 

transformer] ey] = temp; 
changes = changes + 1;

END-IF 
END-IF 

END-FOR 
END-IF 

END-FOR 
END-FOR 

UNTIL (changes = 0)

Figure 8.8: The Distance Transform Algorithm
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It should perhaps be emphasised at this point that distance transform values axe assigned 

to free cells only. This stops a path being planned through any of the dangerous cells 

described in Section 7.4,4. Since the planned path is actually a trajectory for the centre of 

the robot, this prevents collisions or panic stops.

Once the transform has been calculated for all free cells in the map, the path  can be 

generated as described, with path segments running between centres of cells. The only 

exceptions occur at the beginning and end of the path. The first path  segment starts at the 

robo t’s actual position; the last path segment ends at the goal position.

The final complication to be examined is path smoothing. It can be seen from Figure 8.5 

tha t the path  resulting from the transform can be unnecessarily jerky. (Why not move 

directly from 52 to 28?) Path  smoothing is the topic of the next section.

8.3 P ath  Sm oothing

The paths generated from distance transforms typically consist of a large number of small 

steps between neighbouring free cells. This section describes an algorithm which was devised 

to generate a smoother path by grouping these small steps into a smaller number of longer, 

straight, segments.

In summary, the technique starts at the first cell on the path  and examines subsequent 

cells in tu rn  to see whether that cell can be reached directly from the start cell in a straight 

movement which stays within free space. A smoothed path  segment is then created from 

the s ta rt cell to the furthermost cell which can be reached directly from it. This process is 

repeated until the target cell is reached. Figure 8.9 gives an example of a jerky path  and 

the resulting smoothed version. The cells are labelled with their distance transform values. 

In this simple example the number of turns is cut from four to two.

A smoothed path  segment may end for one of three reasons:

• The end of the path can be reached directly from the start of the smoothed segment. 

The path has been completely smoothed.

• The end of the path can be reached directly from the position currently being exam­

ined. This segment can then be ended and a new segment created from the current 

position to the goal, completing the smoothed path. For example, in Figure 8.9, the 

second smoothed segment is ended (and the third segment created) when the goal 

comes into view at cell 24.
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68

Figure 8.9: Smoothing the Path
The original path (dotted line) is converted to a smoother path with fewer turns (solid line). The number

of turns is reduced from four to two.

• The next position to be examined can not be reached from the start of the smoothed 

segment. The current position is the last position which can be reached directly from 

the start of the smoothed segment. A new segment must be started. For example, cell 

34 can not be reached directly from the start of the first segment, making it necessary 

to end the first segment at ceU 44.

To describe the smoothing algorithm precisely, some definitions are needed:

• The original path is represented as an array of locations, p a th [] , with the array 

subscript running from 0 to max-p.

• The smoothed path is also represented as an array of locations sm oothed-path[] , 

with the subscript again running from zero. The maximum subscript value is one 

of the products of the algorithm. The variable smooth-sub holds the index of the 

element of smoothed-path which is currently being determined.

• A boolean function, d i r e c t - l i n e (), determines whether one location can be reached 

directly from another while staying in free space throughout.

• The variable s e g -s ta r t  indicates which element of p a th [] corresponds to the start 

of the smoothed segment under construction.

• The variable seg-index is added to s e g - s ta r t  to indicate which element of p a th f] 

is being considered for inclusion in the current smoothed segment.
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• The boolean flag seg-com plete indicates whether a reason has yet been found to 

complete the current smoothed-segment.

W ith these preliminaries in hand, the smoothing algorithm is presented in Figure 8.10.

8.4 Conclusion

The path  planning and smoothing algorithms that have been described in this chapter are 

used in two distinct ways in this research. The first, and most obvious, use occurs during 

exploration. Some of the exploration strategies that are implemented and tested in P art m  

of this thesis use the free-space map to plan paths to interesting areas of the environment. 

The second use of these algorithms is as part of the map quality metric to be introduced in 

Chapter 10.
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smooth,-sub = 0; 
seg-start = 0;

smoothed-path [smooth-sub] = path [seg-start] ;

WHILE (smoothed-path[smooth-sub] NOT = path[mar-p] )
IF (direct-line(path[seg-start] , 

path [mar-p] )
)
smooth-sub = smooth-sub + 1; 
smoothed-path [smooth-sub] = path[meLX-p]

ELSE
seg-complete = FALSE; 
seg-index = 1;
WHILE (NOT seg-complete)

IF (direct-line(path[seg-start + seg-index], 
path[mar-p])

)
smooth-sub = smooth-sub + 1;
smoothed-path [smooth-sub] = path [seg-stert + seg-index] ; 
smooth-sub = smooth-sub + 1; 
smoothed-path[smooth-sub] = path[mar-p]; 
seg-complete = TRUE;

ELSE
IF (NOT direct-line(path[seg-start],

path[seg-start + seg-index +1])
)
smooth-sub = smooth-sub + 1;
smoothed-path[smooth-sub] = path[seg-start + seg-index] ;
seg-complete = TRUE;
seg-start = seg-start + seg-index;

END-IF
ELSE

seg-index = seg-index + 1;
END-IF

END-WHILE
END-IF

END-WHILE

Figure 8.10: The P ath  Smoothing Algorithm
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Figure 9.1: The Localisation Module

This chapter describes the design and implementation of a localisation scheme for ARNE. 

W ithout such a technique ARNE’s estimated position, based only on odometry, would 

gradually diverge from its true position.

The essence of locahsation is to m atch recent sensory information against prior knowl­

edge of the environment. Some researchers build a ‘local’ map from the latest sensor read­

ings and then look for the best match between the local map and a global map. The 

correspondence can then determine the robot’s position in the global co-ordinate system. 

Elfes (1989) does this by seeking the best correlation between local and global probabilistic 

grids. Crowley (1989) and DrumheUer (1987) both extract line segments from the sensor 

data  and compare the position, orientation and length of the each Hne with lines in the 

global model.

The experiments in Chapter 6 showed tha t it is impossible to determine either the type 

or position of environmental features from a single scan of ARNE’s sensor. It is therefore 

not possible to construct a local map from each viewpoint. Instead, the technique adopted 

in this thesis is to find immediate correspondences between sensor readings and known
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features, and to use the range readings to known objects to estimate ARNE’s position. 

Published examples of this approach include Curran (1993), Leonard and Durr ant-W hyte 

(1992), Rencken (1993) and Kleeman (1989). The process of matching ARNE’s sensor 

readings to  known objects has already been described in Section 7.3.

The revised estimate of ARNE’s position is derived from odometry and multiple range 

readings to  known objects. A Kalman filter has been implemented to  generate a position 

estim ate by weighing and combining all of these uncertain pieces of information. (Maybeck 

(1990) provides a clear and concise introduction to benefits and use of the Kalman filter.) 

K alm an filters have been widely used for localisation in mobile robotics. (See, for example, 

Ayache (1990), Cox (1991), Crowley (1989), Hallam (1989), Leonard and Durrant-W hyte 

(1992), and Kriegman (1990).)

Section 9.1 gives an opening description of the component parts of the localisation 

system. Each of these components is then described in detail in Sections 9.2 to 9.4.

The presentation of results is delayed until Chapter 13, when the benefits of localisation 

can be seen in the context of a simple exploration strategy.

9.1 A n O utline of the Process

The Kalm an filter uses two models to characterise the behaviour of the robot. The plant 

model describes the changes in the robot’s position in response to the movement commands 

it receives. It also tracks the uncertainty associated with each position estimate. The plant 

model is described in Section 9.2.

The measurement model uses knowledge of the robot’s position and the position of the 

confirmed environmental features to predict the range readings from the robo t’s sensors. It 

also calculates the uncertainty which should be associated with each range reading. The 

measurement model is described in Section 9.3.

The challenge of localisation is to weigh these two types of uncertainty to get a best 

estim ate of the robot’s position. The Extended Kalman Filter is a probabilistic tool which 

is specifically designed to extract a best estimate from multiple sources of information which 

are corrupted by Gaussian noise..

The key contribution of the Extended Kalman Filter lies in the way in which the plant 

and measurement models are combined to  derive a best estimate of the robot’s actual 

position. The steps in this process are documented in Section 9.4.
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9.2 T he Plant M odel

A RNE’s trajectory is represented as a sequence of viewpoints. The plant model represents 

the way in which the properties of one viewpoint axe derived from the previous viewpoint 

and the movements made by the robot.

F irst, some notation and terminology. The robot’s position^ at viewpoint k is expressed 

as a state vector K(k) = [x{k),y[k),9[k)]'^ with respect to a global co-ordinate frame. (The 

orientation, is measured in the standard mathematical sense with 0° being parallel to the 

positive x-axis, and values increasing anti-clockwise.) Each state vector x(fc} has a degree 

of uncertainty which is represented as a 3 by 3 covariance m atrix P ( t ) .  A more detailed 

notation, P(àj -f 1|A;) is used to represent the covariance of state vector x ( t  -|-1) given all the 

sensory information up to and including viewpoint k. (The objective of localisation is then 

to  decrease the uncertainty about x ( t  -f 1) by taking into account the sensory information 

gathered at viewpoint k + 1.)

The control input, u{k),  represents the movement commands which are acted upon 

by the robot to take it from viewpoint k to viewpoint t  4- 1. In this implementation 

u{k)  =  [T(A;), A^(A;)]^ represents an anti-clockwise rotation through angle A^(fc) followed 

by a translation through distance T{k).  The state transition function, f(x(A;), u(À;)), uses 

the state  vector and control input at one viewpoint to determine the state vector at the 

next viewpoint.

Using these pieces of notation, the plant model can be expressed as:

x(fc 4- I j t )  =  f(x(fc|Â;), u ( t) )  4- v(A;) (9.1)

The additive term  v(&) represents unpredictable noise. (If this were not present, there 

would be no need for localisation.) The noise is assumed to be Gaussian with zero mean 

and covariance Q(A;).

The plant model can be used to determine how the position, and the associated uncer­

tainty, change between viewpoints. The first step is to specify the state transition function. 

Elem entary trigonometry gives:

x{k) + T{k)cos(e(k) + A.e(k)) 
y{k) + T{k]sm{e{k) + A.0(k)) 

6{k) + Aff(ife)

(9.2)

^In this context ‘position’ is taken to refer to an (z ,y)  co-ordinate and an orientation.
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The noise covariance, Q(k), was modelled on the assumption tha t there are two inde­

pendent sources of error, angular and translational. Experience when configuring ARNE 

showed that the angular error was proportional to the angle turned and tha t the transla­

tional error was independent of the distance travelled. The error variances were modelled 

on this basis.

Equations 9.1 and 9.2 show how x (k  -f l \k)  depends upon x(fc|fc), A6{k)  and T{k).  

Partia l differentials of Equation 9.2 with respect to A9{k)  and T{k)  yield the Jacobian, 

V f, which can be used to translate the uncertainty in A6[k)  and T{k)  into uncertainty in 

yi(k -I-1|&).

- T { k )  sm{9(k) +  A9{k)) cos{9{k) +  A^(Jfc))

V f(4 )=  T(k)cos(e(k) + Ae{k)) sm{e{k) +A${k)) (9.3)

1 0 

The complete expression for Q (t)  is then:

A9{kya\g 0
Q{k) = Vf(&)

0
Vf(&)' (9.4)

where a\g  and are system constants to be determined experimentally (see Chap­

ter 13).

Q{k)  measures the uncertainty in x(A; -f l | t )  due to errors in T{k)  and A9[k).  There is, 

however, another source of uncertainty. The uncertainty in the position and orientation of

viewpoint k, P(A;|A;), is carried forward to viewpoint A; -|- 1. Another Jacobian is needed to

determine how the uncertainty is transferred between the viewpoints. The starting point 

is again Equation 9.2 but this time the partial differentials are with respect to x(k),  y(fc), 

and 9[k). The resulting Jacobian, Vf'(A:), is given by:

1 0 -r(Jfe)sin(0(ifc) +A0(Jb))

Vf'(A;)= 0 1 T(k)cos{9{k) + A9(k))  (9.5)

0 0 1

Combining the results from Equations 9.4 and 9.5 gives the (pre-localisation) covariance 

m atrix for x ( t  +  1|A;):

P(ife + 1|&) =  Vf'(ib) P (t  +  1|&) + Q(*) (9.6)

This result shows how the positional uncertainty grows if no localisation system is in­

troduced. (Figure 13.1 gives a graphical illustration of this process.) The next section 

examines the extent to which ARNE’s range sensors can limit the growth of uncertainty.
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9.3 T he M easurem ent M odel

Section 7.3 described the process which establishes correspondences between sensor readings 

and map features, taking into account the effective beam  width of the readings and the pos­

sibilities of occlusion. It also stated tha t the measured range must ‘approximately m atch’ 

the predicted range. The measurement model makes this criterion explicit by predicting 

both  the measured range and the uncertainty associated with the measurement. The ac­

ceptable difference between the predicted and measured ranges is then directly proportional 

to  the measurement uncertainty.

From each viewpoint ARNE can therefore establish correspondences with, and measure 

the distance to, a number of confirmed features. This information can be used to estimate 

ARNE’s position on the map.

ARNE makes a full sensor scan at each viewpoint. As described in Section 6.3, the raw 

returns are grouped into readings. For the remainder of this section, imagine tha t ARNE is 

at viewpoint k + 1 and attempting to update its estimate of the location of th a t viewpoint. 

The readings can be denoted as set Z{k  -f-1) where:

Z{k  4-1) =  {zj(k + 1)|1 < j <  n(k + 1)} (9.7)

Each confirmed feature on the map can be described by a param eter vector p^. The exact 

form of Pi differs for point and line features. For points p,- =  (xcp,ycp) (See Table A.10) 

and for lines p^ =  (aci,Xci[l],yd[l]) (See Table A.9). The map can then be denoted as set 

M  where:

M  = {pi|l < 2 < m} (9.8)

For the zth feature there is measurement function, hi{x{k+l\k) ,  p j ,  which takes ARNE’s 

position and the position of the feature and predicts the measured range to the feature. For 

points, the form of the function is:

hi(x{k 4- l\k),Pi) =  yj(xcp -  x{k + l \ k ) y  4- (pcp -  y(k + l|fc))2 (9.9)

and for lines:

hi{x{k 4- l | t ) , p j  = {y{k 4- l \k) -  ycz[l]) cosa^ -  {x{k 4- l \k)  -  Zcf[l]) sinUcZ (9.10)
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The measurement model then uses these functions to relate a range reading to the 

geometry of the feature that caused it:

Z j { k )  =  h i { x ( k  +  l|fc),Pi) + W j ( k ) (9.11)

The term  wj(k)  represents measurement noise. It is assumed to be Gaussian with zero 

mean and variance rj(k).

The term  wj(k)  represents noise in the sensing process which could cause the actual 

range reading to differ from the prediction. There is another possible source of error: the 

robot may not be in the exact position indicated on the map. Equation 9.6 expresses the 

uncertainty in the robot’s position. This uncertainty can be translated into measurement 

uncertainty by the measurement Jacobian Vhj. The Jacobians are derived from Equa­

tions 9.9 and 9.10 by partial differentiation with respect to x(k  -j- 1|&), y(k  +  1|A;) and 

û(k 4- 1|A;). For points:

V hj =  —= = = = = = = = = =
y/{Xcp -  x(k  +  l|fc))2 + {y^  -  y{k + l \ k ) y

For lines the Jacobian is given by:

x(k  +  l \k)  -  Xcp 

y(k  -f- l \k)  -  yep 

0

(9.12)

Vhi =  d (9.13)

— sin del 

cos del 

0

where d takes the value of ±1, depending upon which side of the line the viewpoint hes. 

To determine d, a vertical is constructed from point (z(& +  l ) , y{k  4- 1)), meeting the line 

at {xint,yint)- Then d is selected so that dcosucz has the same sign as {y(k 4-1) -  2/int)- 

It is now possible to compute the variance in range tha t would result if the j t h  reading 

were due to the ith  confirmed feature. The variance, Sij{k 4- 1), includes the uncertainty 

due to  the measurement process and the robot’s position.

Sij{k 4-1) = Vht P(k  4- l|A;)Vhf 4- Vj{k + 1) (9.14)

To decide whether feature i is likely to have caused reading j ,  the first step is to compute 

the difference between the predicted rzinge reading to the feature and the actual measured 

range. This difference is known as the innovation^ Vij(k + 1). (For this reason Sij(k 4-1) is, 

in general, known as the innovation covariance.)

i/ij{k 4-1) = Zj{k 4-1) -  hi{y:{k 4- l|A:),p,) (9.15)
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The feature is then accepted as a cause of the reading if:

where g indicates the acceptable difference between the measurement and the prediction, 

expressed as ‘a number of standard deviations’. Test 9.16 is known as a validation gate. 

A correspondence is accepted if there is one and only one feature to explain a particular 

reading.

If correspondences are found with two or more confirmed features, the algorithm pro­

ceeds to  compute a new location estimate. This is the subject of Section 9.4.

9.4 A pplying the E xtended Kalm an Filter

The validation gate test generates a set of readings (from viewpoint A; -|- 1) which corre­

spond to  confirmed features. The localisation process uses all of the matched readings in 

parallel. The first step is therefore to create composite vectors and matrices which include 

the properties of all of the matched readings.

The range measurements, Z j [ k  + 1), are simply stacked vertically into a single measure­

ment vector z ( t  -|-1). Similarly the innovation and the measurement Jacobians are stacked 

to give u { k  + 1) and Vh.

The composite measurement noise m atrix R( A;-1-1) is a diagonal m atrix  with the rj(A;-|-l) 

values on the diagonal. The composite innovation covariance matrix, S(A; -f-1), can then be 

computed in the same way as Equation 9.14:

S{k +  1) =  VhP(ife + l|ib)Vh^ +  R(ife +  1) (9.17)

The form of the Extended Kalman Filter is:

x(A; -j- l|A; -1-1) = x(& -f- l|A;) -j- Ŵ (A; 1)%/(A; -|-1) (9.18)

In other words the new position estimate, taking the latest range readings into account, 

is the position estimate without the range readings plus a multiple of the innovation. The 

term  W(A; -j-1) is known as the Kalman gain and can be calculated as follows (Gelb 1974, 

page 188) :

W(lfe + 1) = P (*  +  l |i )V h ^ S - '( fc  +  1) (9.19)
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The final step in the localisation process is to determine the variance of the new position 

estimate. The Kalman gain is used again to give (Gelb 1974, page 188):

P(ib + l|ife +1) = P(k + 1|&) -  W(fc + l)S(k + + 1) (9.20)

9.5 C onclusion

This chapter has presented the localisation technique which was implemented on ARNE. 

The Extended Kalman Filter balances the information from the odometry and range sensors 

to generate an optimal position estimate.

The results of this process, and the setting of the error variances, are discussed in 

Chapter 13.
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Figure 10.1: The Quality Measurement Module

This research places great emphasis on practical experimentation and quantitative eval­

uation of the results. To do this it is essential to have a precise measure of map quality. It 

is then possible to tune the map-building algorithms or to evaluate an exploration strategy 

by monitoring the quality of the map as exploration progresses. This chapter examines the 

issue of measuring the quality of a robot’s map.

As an introduction, Section 10.1 examines some of the properties which one would expect 

to  find in a useful quality metric, illustrating with examples of quality measures used by 

other researchers. The properties are that:

1. The metric must be clearly defined.

2. The metric must be multi-valued.

3. The metric must reflect the purpose of the map.

4. The metric must balance coverage and detail.

5. The metric must be applicable during the construction of the map.
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Section 10.2 discusses the need for an ‘omniscient’ observer. Is it possible for the robot to 

determine the quality of its map independently or can quality only be judged by comparison 

with a perfect map held by an external observer? It concludes tha t some quality measures 

can indeed by created by the robot independently but tha t measures derived from an ideal 

map are the most useful for the current purpose.

Section 10.3 surveys previous research in map-building, documenting the types of metrics 

which have been used. No ready-made metric was found which could be used in the current 

research. It was therefore necessary to construct a novel quality metric. Section 10.4 

describes this metric. The idea is to generate a set of tasks which the robot will have to 

perform and to use the map to predict the robot’s effectiveness if it were to use its map 

when executing the task.

Once the metric has been defined, Section 10.5 checks whether the metric fulfills the 

requirements in Section 10.1.

Section 10.6 summarises the results of this chapter.

10.1 Requirem ents of a M etric

1 0 .1 .1  T h e  M etr ic  M u st B e  C lea r ly -D efin ed

A clearly-defined metric is essential if we are to make objective statements about the 

quality of maps. This may seem obvious but it is common for published work to use 

no quality metric whatsoever (Ayache & Faugeras 1990; Crowley 1989; Moravec 1988; 

Thrun 1993). Images of maps are often presented, leaving the reader to judge their quality 

by visual inspection. Such an approach is highly subjective since different readers will react 

differently to the same map. The lack of a quantitative measure also presents problems. 

Even if all readers agreed about the quality of a particular map, they would only be putting 

it into a qualitative category (‘useless’,‘adequate’,‘wonderful’ . . . ) .  It would then be ex­

tremely difficult to determine the exact moment at which the map changed from ‘useless’ 

to  ‘adequate’. W ithout a clear link between exploration events and changes in map quality 

it win be impossible to evaluate exploration strategies.

1 0 .1 .2  T h e  M etr ic  M u st B e  M u lti-V a lu ed

Some researchers have implicitly used metrics with a small number of discrete values. For 

example, in the the mathematical approach to terrain acquisition (Lumelsky, Mukhopad- 

hyay, & Sun 1991), interest is focused on the computational effort needed to obtain a perfect
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map. In this work the metric is binary: perfect or not. Dndek et al. (1991) used a similar 

all-or-nothing measure for their topological maps.

Alternative exploration strategies will increase the map quality at different rates at 

different stages of the exploration. W ith this in mind, we need a multi-valued m etric which 

reflects the gradually increasing quality of the map. When metrics are described in published 

work, they are usually of this form (e.g. (Cho 1990; Engelson & McDermott 1992)).

1 0 .1 .3  T h e  M etr ic  M u st R eflec t  th e  P u rp o se  o f  th e  M ap

It is im portant to be clear about the potential uses of the map; a high-quality map for one 

purpose may be useless for another purpose.

Leonard and Durrant-W hyte (1992) warn against judging by appearances:

We feel that the ultimate test of a map is not ‘does it look good?’ but ‘how 

accurately, adequately, or quickly can X be performed with it? ’ (X in our case 

stands for localization, . . .  ).

Elfes (1991) makes a similar point:

To guide the perceptual activities of a robot, we need metrics to evaluate the 

robot’s world knowledge. The specific metric used depends on the robot task 

and the particular kind of information required for successful execution of the 

task.

W hen these authors talk about ‘w hat’ the map will be used for, they are usually mean 

‘which robotic task’ (path planning, obstacle avoidance,. . .  ). To design a meaningful metric, 

we may also have to consider the eventual application envisaged for the robot (domestic 

cleaning, security patrol, mail delivery, . . . ) .  The research described in this thesis focuses 

on the production of a map for path-planning in a delivery application. (The impact of this 

choice of application was discussed in Section 3.1.)

1 0 .1 .4  T h e  M etr ic  M u st b e  A p p lica b le  D uring  E x p lo ra tio n

One way to evaluate the quality of the map would be to allow the robot to  use the map 

and measure the quality of the robot’s performance. This approach would be easy to apply 

once exploration was complete, but is less useful as a way to  measure map quality during 

exploration. The quality metric is thus required to be a predictor of the performance quality 

which win be obtained by using the map.
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1 0 .1 .5  T h e  M etr ic  M u st B a la n ce  C overage  and D e ta il

Imagine two people who explore a house. The first person moves quickly around the house, 

checking all the doors in all the rooms. He is soon confident tha t he has visited all the 

rooms in the house, that he knows how the rooms are interconnected and th a t he knows 

the purpose of each room. Meanwhile the second person is still in the first room. She 

has examined the room in detail. She knows precisely what furniture is in the room, what 

colour the carpet and walls are and what books are on the bookshelf.

This example is intended to highlight the difference between coverage and detail. The 

first m ap is ‘complete’ in the sense tha t it covers the entire environment but it lacks the 

detail of the second map. Given that both aspects seem to be im portant, how should we 

decide how much weight to attach to each factor in our quality metric?

The extent to which detail is useful in a map is directly linked to the precision with 

which the robot is required to execute its task. At one extreme one could imagine a robot 

whose objective is to go to a specified room in a building, without caring precisely where 

in the room it is. The other extreme could be a robot to perform intricate assembly tasks. 

Clearly the second task requires a much more detailed world model than  the first. A metric 

should reflect the fact that, beyond the appropriate level for the task in hand, excessive 

detail becomes worthless.

To be effective, the robot must have a map which covers all of its operational environ­

ment. This could vary from a tiny workspace, through a room or building, to  a country or 

even a planet. Once the environment size has been decided, the metric should indicate the 

fraction of the environment that has been mapped.

In some of the pubHshed work on map construction, attention is focused on the accuracy 

with which the map represents individual features and not on the coverage of the map. 

Leonard and Durrant-W hyte (1992), for example, list the location errors in points and line 

segments but do not combine these to give an overall map quality.

10.2 D o W e N eed an Om niscient Observer?

The quality of a map can be judged in two different ways. In the first approach, an observer 

examines the robot’s map and decides how good a representation it is of the true world. It 

is assumed tha t the observer has complete knowledge of the world. In the second approach, 

the robot has to  judge the quality of its own map without the benefit of knowledge about
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the true state of the world.

The first approach can answer the question ‘what fraction of the environment has been 

covered?’. (W ith the second approach, the robot can not know how much of the environment 

remains to  be explored until it has explored it all.) The degree of coverage is im portant 

when evaluating an exploration strategy. An omniscient observer is therefore essential.

There is, however, useful information which the robot can glean without knowing the 

true state  of the world (Am I stiU adding to my knowledge of this room? Do I have any 

ambiguities in my map? Is there sensor information tha t I ’ve not yet used? . . . ) .  For 

example, a useful measure of the rate at which new information is being added to  the map 

could be obtained by comparing the map at the present moment with the map from an 

earlier stage. Sharp (1991, pages 107-108) uses a pixel-by-pixel correlation to  compare 

earlier and later versions of her ‘place cell’ maps. Another map property which can be 

measured without reference to an ideal map is ‘closure’. When the robot has completely 

explored its environment, the free space will be a closed region bounded by obstacles (or 

dangerous areas caused by obstacles). In the earher stages of exploration, there will be 

points at which the free space comes into contact with unknown regions. Closure could 

possibly be used as a criterion for stopping the exploration. (See, for example. Chapter 17.)

A practical use of these two types of information would be for the robot to use its own 

knowledge to  direct its exploration strategies and for an observer to use knowledge of the 

true state of the world to judge the success of those strategies.

10.3 Q uality M etrics used In Previous Research

Section 10.1 gave a number of examples of published work in which the requirements of 

a quality m etric had, or had not, been satisfied. This section provides a more systematic 

review of pubhshed work in map-building, reporting the types of quality metric which have 

been used and the extent to which each quality metric satisfies the criteria.

Table 10.1 lists a number of representative pubhcations on map-building, indicating 

w hether an explicit quality metric was used and, if so, whether it satisfies each of the 

criteria.

The m ost striking observation is tha t less than half of the pubhcations (10 out of 22) 

use any exphcit, objective measure of qucdity. The judgement of quahty is usually left to 

visual inspection.



R eference M ap  T ype E xplic it M etric  T ype M u lti D uring C over

(Ayache & Faugeras 1990) 3D Metric Feature No - - -

(Borenstein 1991) Vector Field Histogram Yes Average Run Speed Yes No No

(Bozma & Kuc 1992) Metric Feature No - - -

(Cho 1990) Probability Grid Yes Mean Square Error Yes Yes Yes

(Chung, Choi, & Lee 1992) Probability Grid No - - -
(Cox & Leonard 1991) Multiple Metric Feature No - - -

(Crowley 1989) Metric Feature No - - -

(Dudek cf al. 1991) Topological Yes All Nodes and Paths Found No No Yes

(Elfes 1991) Probability Grid Yes Average Entropy Yes Yes Yes

(Engelson & McDermott 1992) Metric Topological Yes Rate of Map Correction Yes Yes No

(lijima, Asaka, & Yuta 1989) Feature and Grid No - - -

(Leonard & Durrant-Whyte 1992) Metric Feature Yes Individual Feature Positions Yes Yes No

(Lim & Cho 1992) Probability Grid Yes Weighted Probability Match Yes Yes Yes
(Moravec 1988) Probability Grid No - - -
(Moutarlier & Chatila 1991) Metric Feature No - - -

(Nagashima & Yuta 1992) Metric Feature No - - -

(Nehmzow, Smithers, & HaUam 1991) Topological Yes Landmark Recognition Yes No No

(Sankaranarayanan & Masuda 1992) Full Metric Yes All Obstacles Detected No No Yes

(Sharp 1991) Neural Net No - - -

(Shieh & Calvert 1992) Full Metric Yes All Obstacles Detected No No Yes

(Thrun 1993) Neural Network Grid No - - -

(Zelinsky 1992) Free-space Grid No - - -

I
I
;u

«0

I
I
I

Table 10.1: Quality Metrics in Previous Research
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Of the 10 publications that did specify an explicit metric, only 5 were multi-valued 

measures which could be applied during the construction of the map. The others were 

either binary-valued or needed a completed map.

The only metrics which were found to satisfy all of the criteria were those proposed by 

Lim (1992), Cho (1990) and Elfes (1991), all of which used a probabilistic grid representa­

tion. Unfortunately these metrics cire dependent on the probabilistic approach and are not 

applicable to the free-space map tha t was described in Section 7,4. They also suffer from 

the lim itation, which will be described further in Section 10.5.2, that they fail to  talce into 

account the geometry of the environment.

In summary, no metric was found which satisfied all of the criteria and was applicable 

to the type of grid-based free-space map to be used in the current research. It was therefore 

decided to design and implement a new quality measure. This measure is described in the 

following section.

10.4 T he M easure to Be Used in This Work

The m etric implemented in this research is designed to predict the robot’s effectiveness if it 

were to  use its map to perform a set of test tasks. In summary, the main steps in deriving 

the m etric are:

1. Using an ideal map of the test environment, generate a set of test journeys for the 

robot.

2. For each journey, use the robot’s map to plan a route between the start and end point 

of the journey.

3. Examine each route planned by the robot and, using the ideal map, determine how 

successful the robot would be if it were to execute the plan.

4. Summarise the above results across all the test journeys to give a number of quality 

metrics for the whole map.

Sections 10.4.1 to 10.4,3 describe these steps in detail and discuss the reasons for design 

decisions which have been made.
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Grid Size (mm) Calculation Time (sec)
100 206.0
200 13.5
300 4.0
400 2.1
500 0.9

Table 10.2: Quality Calculation Times for Differing Sizes of P a th  Grid 

10 .4 .1  H ow  A re T h e  T est J o u rn ey s  S e lected ?

If one knew in advance the exact application for which the robot and map were destined, it 

would be possible to select a set of test journeys which gave a representative sample of the 

robot’s intended workload. The current research is seeking general results and has therefore 

not restricted the test apphcation to a predefined set of paths in a single environment. The 

exploration strategies will be tested in a variety of environments and it is necessary to find 

a way to generate a set of test routes which provide good coverage of any environment.

Each journey is defined by selecting a start and an end point. The chosen method was 

to superimpose a square grid over the ideal map and to view each grid point as a candidate 

start or end point. The set of test journeys is then generated by selecting all pairs of grid 

points such that a journey between those points is possible (according to the ideal map). 

Note tha t each journey is made in one direction only. The maximum number of journeys 

between n points is therefore n(n  — l) /2 .

How should the superimposed grid be determined? Since the free-space map already 

uses a grid, it was decided to build the test grid on top of the free-space cells. If one 

could place a test grid point in the middle of each 100 mm map cell, it would be possible 

to test all journeys, using the same granularity as the free-space map. Unfortunately the 

time necessary to evaluate all of these paths was impractical. Table 10.2 shows the time 

to determine the quality of a typical map, with a range of grid sizes. A 100 mm grid 

would require more than 3 minutes for each quality calculation (or nearly 6 hours to plot 

the quality of an exploration with 100 viewpoints). A grid size of 3 map cells (300 mm) 

was selected to give a large number of test journeys while keeping the calculation time less 

than 12 seconds, the time needed for a typical 300 mm movement and sonar scan. W ith a 

300 mm grid, the most complex test environment, ‘Walls’ (see page 242), stiU includes over 

400 test journeys. This was found to be enough to give a fme-grained quahty metric.
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The ideal map is used to plan a path  between each pair of grid points, (See Chapter 8 

for details of the path  planner.) If both points are in free space and a path  between them  is 

possible, then the pair of points are used as a test journey. The time required for the journey 

is calculated and stored for later comparison with the predicted journey time, according to 

ARNE’s map.

1 0 .4 .2  H ow  A re T h e  P a th s  E va lu a ted ?

Each journey in the test set is specified as a pair of locations. The next step is then, for 

each journey, to use ARNE’s free-space map to plan a path  between the locations. But 

before this can be done, ARNE’s map and the ideal map have to be ahgned.

Each of ARNE’s explorations starts from a predefined position in the room. ARNE 

is placed by hand at the required position and orientation and a command is sent to the 

Mapmaker to initialise the map with ARNE at that position. The actual physical position is, 

however, only accurate to within about 5 cm and 5 degrees. Before the test journeys can be 

planned on ARNE’s map, it is necessary to make sure tha t ARNE’s map and the ideal map 

are using the same co-ordinate system. To do this, the operator examines ARNE’s map and 

establishes correspondences between lines on ARNE’s map and lines on the ideal map. Each 

correspondence is expressed as a pair of numbers (the hue number in ARNE’s map and the 

corresponding line number on the ideal map). The Mapmaker uses the information about 

two non-parallel corresponding lines to calculate the translation and rotation tha t would 

be necessary to bring ARNE’s map into alignment with the ideal map. The translation 

and ro tation  are expressed as a starting point for ARNE in the co-ordinate system of the 

ideal map. Before the quality can be calculated, the Trace file is edited to include the new 

starting  position and orientation.

Once ARNE’s map has been aligned correctly with the ideal map, paths can be planned 

on ARNE’s map for each of the test journeys. For each journey, one and only one of the 

following conditions is true:

• At least one of the end points of the journey is in a cell which is marked as occupied, 

dangerous, or unknown or both end points are free but there is no path  between them. 

The journey is categorised as impossible.

• The map indicates that there is a safe path between the two points but, by super­

imposing the path onto the ideal map it can be shown tha t the path  would actually
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result in a collision or an emergency stop. If any segment of the smoothed path  passes 

through a cell on the ideal map which is occupied, dangerous, or unJmown, the journey 

is categorised as a collision.

• The map indicates that there is a safe path between the two points and the ideal map 

confirms that it is indeed safe. The journey is then categorised as safe.

Counts are kept of the number of journeys which faU into each of the categories.

Totals are also kept of the to tal time required for all of the safe journeys, according 

to  bo th  the ideal map and ARNE’s map. Comparison of these totals gives an indication 

of the ‘efficiency’ of the safe paths. If, for example, the safe journeys took substantially 

longer according to ARNE’s map than the ideal map, it would be likely tha t ARNE’s paths 

included unnecessary diversions to avoid non-existent obstacles.

1 0 .4 .3  H o w  A re T h e R esu lts  S u m m arised  A n d  U sed ?

Which of the measurements described in the previous section should be used to measure 

map quality? The most obvious interpretation is tha t the quality of a map corresponds to 

the num ber of safe paths which can be planned using tha t map. This is in fact the measure 

which is used in the remainder of this thesis. Unless otherwise stated the expression ‘map 

quality’ is equivalent to ‘percentage of the test journeys which are safe’.

In some contexts, however, other measures may be useful. Again one has to consider 

the details of the robot’s intended application. If the robot is to operate alone, making all 

of the required deliveries, them it is clearly im portant th a t it can plan paths for as many 

journeys as possible. The percentage of safe journeys would then be a key measure.

On the other hand, imagine tha t the robot is to work in tandem  with a human. The 

hum an could then make the deliveries tha t the robot had found to be impossible. In this 

situation it would make sense to pay attention to the to tal journey time for the safe journeys. 

This would indicate whether the robot was finding efficient paths for the deliveries it was 

making.

Similarly, consider an application in which the robo t’s payload was fragile. (An intel­

ligent wheelchair would fit into this category.) It would then be im portant tha t the robot 

did not have any collisions or sudden stops. It could be preferable for the robot to refuse to 

try  a journey (classing it as impossible) instead of trying it and having a collision. In this 

situation, a high-quality map would be one which led to a small number of collisions.
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It seems that the majority of delivery applications would require the robot to operate 

alone and that occasional panic stops would not be a significant problem. For these reasons 

the measure of ‘percentage of safe journeys’ was chosen.

10.5 How G ood Is This Metric?

The measure of map quality defined in the previous sections appears to  be intuitively 

reasonable in that a higher quality value means tha t the robot can do a greater number of 

useful things with its map. But how well does this metric satisfy the criteria for a quality 

m etric tha t were listed in Section 10.1? Section 10.5.1 examines the ‘safe journeys’ metric 

in the light of these requirements.

The following criticisms can be levelled at the proposed metric:

• Surely this measure is unnecessarily complicated. Since an accurate representation of 

free-space is essential for a delivery application, why not simply measure the amount 

of free space tha t the robot has successfully detected?

• This measure does not deal correctly with false positives; there is no penalty associated 

with incorrectly believing that a region of space is free. Surely a high quality score 

would be given to a map which showed all of the environment to be free?

These comments are discussed in Sections 10.5.2 and 10.5.3.

1 0 .5 .1  D o e s  T h is  M etr ic  S a tis fy  O ur C riteria?

Section 10.1 listed five requirements of a map quality metric. How well does the ‘safe 

journeys’ metric satisfy these requirements?

Firstly, this chapter has described a clearly-defined, precise algorithm by which the map 

quality can be calculated. The measure is quantitative and objective.

The metric is multi-valued, with the number of test journeys in each test environment 

varying from 406 to 1540, depending upon the amount of free space. This was found to be 

enough journeys to measure the gradual increase in map quality during exploration.

The map is intended to be used for path planning in a delivery application. The metric 

measures the number of such deliveries that the robot would be able to  perform successfully 

if it were to use its map. The metric therefore reflects the purpose of the map precisely.
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Ideal M inor Error M ajor Error

Figure 10.2: The Significance of the Location of a Mapping Error
The figure on the left represents an ideéJ map of an environment (white cells are free space, black cells are 
occupied). In the other two figures the map-maker has made a single error, marking a free cell as occupied 

(grey cell). The error is much more damaging in the map on the right.

The metric was explicitly designed to be predictive. It predicts the results of using the 

map to execute a number of journeys. It can therefore be used at any time during the 

exploration process.

The number of safe journeys detected is always considered as a fraction of the total 

number of safe journeys in the environment. This means that the metric directly measures 

the coverage of the map. The degree of detail is inversely related to the grid size of the map 

and the spacing of the test points. The metric is therefore adaptable to any required level 

of detail.

10 .5 .2  W h y  N o t J u s t  M e a su re  F ree  S pace?

This appears to be an attractive argument. Why not just count the number of cells which 

have been correctly identified as free? This would surely give an indication of map quality.

Such an approach fails to recognise one fact: not all cells are equally important.

For example, consider Figure 10.2 which shows an ideal map of a simple room and two 

alternative maps of the same room. Both maps have correctly identified 42 out of 43 free 

cells. The important difference is in the location of the erroneous cell. In the first map 

the error is in the corner. This error would only be significant if the robot were required 

to start or finish a journey in that cell. In the second map, the error closes the doorway 

between the two halves of the room. A robot using this map would be unable to plan any 

journeys between different halves of the room. This is a much more significant error. The 

quality metric proposed in this thesis would recognise the difference in quality between the
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np points

n(l - p) points

Figure 10.3: The Impact on Quality of Environmental Geometry
This figure represents an environment in which there are, in total, n points from which a test journey could 
start or end. These points are split between two halves of the room, as shown. What would be the loss of 

map quality if the doorway (marked *?’) were erroneously closed? The result is derived in the text.

two maps; a simple count of free space would not.

To expand upon the previous example, consider Figure 10.3. It shows a room divided 

into two regions with a doorway between them. The room includes a to tal of n end-points 

for test journeys. Of these points, np are in the top region and n ( l  — p) are in the bottom  

region (0 < p < 1). Consider the loss of map quality tha t would be caused by the doorway 

between the regions being incorrectly mapped as closed.

The to ta l number of journeys in the whole room is n(n  — l ) /2 ,  of which np(n (l — p)) 

go between the two regions. If the doorway were incorrectly mapped as closed, the loss of 

quality would therefore be:

2np(n(l -  p)) 
n(n  -  1)

For large n, this expression is approximately 2p(l — p). The quality loss is therefore at 

a maximum of 50% when p = 0.5. The metric nicely captures the intuition that a closed 

door would be most significant if it divided the room into equal portions. Again, a simple 

count of free space would not show this.

The quality metric proposed in this thesis refiects the fact tha t the importance of a 

map-making error depends both on the location of the error and the configuration of the 

environment.

1 0 .5 .3  W h a t A b o u t False P o sitiv es?

The first point to note about false positives is that the ‘safe journeys’ metric is deliberately 

designed to take false positives into account if the error is significant for one or more of the
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test journeys. This is exactly the motivation behind taking a path  out of the ‘safe’ category 

and classing it as a ‘collision’. Collisions occur when a cell is falsely classified as free space.

On the other hand, it is true tha t the ‘safe journeys’ metric does not take into account 

false positives which do not afiect the planned path for any of the test journeys. If, for 

example, ARNE had mistakenly ‘seen through’ a wall and had mapped an unknown area 

behind the wall as free space, this would not decrease the measured map quality. This 

can best be explained by again considering the target application. One of the application 

assumptions made in Section 3.1 was that the robot’s target location for any movement will 

be user-specified and expressed in a co-ordinate frame independent of the robo t’s position. 

The user is only going to specify journeys which the user knows to he possible. The fact 

tha t the robot erroneously believes that some unknown space is free is not going to  tem pt 

the user to request a movement into that region.

To clarify this point, consider the opposite extreme. Imagine tha t the robot were build­

ing a m ap to be used by an autonomous vacuum cleaner. The cleaner’s objective would 

be to  move systematically over all free floor space in the environment. It would effectively 

be choosing its own journeys. In such a situation an area of space which was erroneously 

thought to be free would be a significant problem. One could imagine the cleaner trying 

repeatedly to enter the ‘free’ region, encountering an obstruction every time. This would 

greatly reduce its operational efficiency. The ‘safe journeys’ metric would not be applicable 

in such an application.

One observation made when this question was being outlined in Section 10.5 was ‘Surely 

a high quality score would be given to a map which showed all of the environment to be 

free?’. This is an interesting point. In fact, in some environments a completely free map is 

indeed a high-quality map. If the free space were a solid area with a convex boundary (an 

empty rectangular room, for example), then the robot’s best path  to any specified point is to 

go directly to it. In such a case, a completely free map would be perfect. The more the room 

deviates from this simple ideal (adding a non-convex boundary, internal obstructions,.. . )  

the more value can be derived from a map which marks the obstructions th a t the robot will 

encounter. The robot can then avoid collisions.

10.6 Conclusion

This chapter began by considering the properties that one would expect to find in a measure 

of m ap quality and examined a range of published work in search of a m etric tha t could
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be used in this research. Since no suitable metric was found, a novel measure was defined, 

based on the idea of using the map to predict the robot’s effectiveness at a set of test tasks. 

This m etric was shown to satisfy the requirements of this research and to correspond closely 

to  an intuitive sense of ‘quality’.

The principal use of the metric will be to monitor the quality of maps during the 

exploration experiments tha t will be reported in P art DI of this thesis. Chapter 13 will 

show th a t the metric can also be used to tune the control parameters of the map-making 

and localisation algorithms.
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Figure 1 1 .1 : The Exploration Modules

Chapters 12 to 17 will examine individual exploration strategies and compare their 

results. This chapter introduces this part of the thesis by examining some general issues 

which are im portant whichever strategy is being tested.

Figure 1 1 .1  shows the possible links between exploration algorithms and the rest of 

the system software. Two extreme types of exploration are represented on the diagram. 

The top portion of the ‘Explore’ box depicts reactive exploration in which the movement 

commands are based solely on the most recent sonar readings and the result of the previous 

command. In contrast, the lower portion depicts exploration which is totally map-driven. 

The experiments described in this part of the thesis investigate the potential benefits of 

striking a balance between these two extremes.

W hat would it mean to say that one exploration strategy is better than  another? A 

reasonable interpretation would be that the first strategy produced a higher quality map 

than  the second, for the same cost of exploration. One then has to decide how to measure 

the ‘cost of exploration’. Section 1 1 .1  considers some alternatives and selects ‘the to tal time 

taken by the robot’s movement and sensing actions’.

To make a fair comparison, the strategies must be tested in a variety of circumstances.
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The effectiveness of a strategy can depend on the environment being explored and on 

the starting position of the robot within tha t environment. Each of ARNE’s strategies is 

therefore tested in at least 3 different environments and from 10 starting positions spread 

throughout each environment. The test environments are described in Appendix B.

Section 1 1 .2  describes the tests of statistical significance which were used to decide 

whether one strategy was indeed better than another. The tests determine whether, at a 

specific stage of exploration, the mean quality Vcdue from one strategy is significantly higher 

than  the m ean quality value from another. Two different types of t-test are used, depending 

on whether or not the experiments can be put into pairs in which both started from the 

same position.

The experimental results can best be presented graphically. A graph enables the reader 

to see how the strategies compare at different stages of exploration. Graphs are used in 

later chapters to show the variation of quality and the significance of the quality differences 

over time.

11.1 T he Choice o f Exploration Cost M easure

One exploration strategy can be argued to be better than another if it produces higher 

quality maps for the same cost (or equal quality maps for less cost). The meaning of 

‘quality’ has been discussed in Chapter 10. This section considers the interpretation of 

‘cost’.

Three possible meanings of ‘cost’ can be found in the hterature:

• The to ta l distance travelled during exploration.

• The energy expended on movement and sensing actions during exploration.

• The tim e spent on exploration.

W hen watching a robot explore, one’s attention is focussed on the movements the robot 

makes. The most obvious signs of inefficient exploration are wasted movements. It is 

therefore very attractive to compare exploration strategies in terms of the distance that 

the robot travels. For example, Lumelsky (1989; 1991) devises exploration strategies which 

minimise the distance that an idealised robot would have to travel to detect all the obstacles 

in its environment. But the robot has to do more than just move around its environment; it
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also has to use its sensors. The cost of sensing must therefore be included in an exploration 

cost measure.

If movements and sensing actions are both to be included in the cost of exploration, it 

is essential to be able to describe the cost of each type of action in the same way. It would, 

in general, be of little use to state that one strategy achieved a certain map quality after 

travelling m  metres and making n sensing actions whereas the other strategy required a 

journey of p metres and q sensing actions. A common currency is needed.

One idea for a common currency is supported by work in the field of animal behaviour. 

Research into foraging strategies (McFarland 1992) suggests close parallels with robot ex­

ploration. In this work, the energy expending during foraging is offset against the energy 

gained from any food that is found. It would be straightforward to measure the electrical 

energy consumed as the robot makes a sensing action or moves a given distance. The to tal 

energy consumption would then provide a useful cost measure, especially in situations where 

battery life was the primary constraint on the operating period of the robot.

Energy is not the only cost of foraging considered by biologists. Time can also be 

critical. Animals may have a limited time period during which conditions are right for 

foraging (when the risk of attack by predators is low, for example). Similarly, time may be 

a more im portant constraint than energy for an exploring robot. W hether or not it is the 

primary constraint depends on implementation details such as the robot’s power supply. If 

the robot were likely to spend a lot of time recharging batteries, it would make sense to 

conserve power. If, on the other hand, the robot had a ready source of power (e.g. a supply 

of pre-charged batteries), then time becomes the key constraint. Time also appears to be a 

reasonable measure of exploration cost because one would expect tha t the user of a robot 

would want to gain benefits from it in its operational environment as soon as possible.

In general there seems to be little to choose between time and energy as exploration 

cost measures. Both include the cost of movements and sensing actions; both  are likely 

to be linear functions of the distance travelled or the angle turned. The choice depends in 

practice upon implementation details. Time was selected for use in this thesis.

In this thesis, the ‘exploration tim e’ includes the time taken by movement and sensing 

actions only, and explicitly excludes the time taken by the computations to interpret the 

sensor results and to build the map. The reasons for this exclusion are twofold:

• The computations often proceed in parallel with movement and sensing actions.
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• Com putation speeds have increased, and will continue to increase, dramatically with 

advances in computer technology. Computation times are therefore unpredictable. In 

contrast, the time taken by a ultrasonic rangefinder is limited by physical constants 

such as the speed of sound.

Experiments derived the following expressions for the time taken by each type of move­

m ent.

The tim e tt{9), in seconds, for a turn of 6 degrees is:

tt{e) = 1.56-^0.017^

The tim e tm{d)^ in seconds, for a straight movement of d millimetres is:

t^ (d ) = 6 .10-h O.OlOd 

Each 360° sonar scan takes 3.1 seconds.

These functions are used to maintain a cumulative exploration cost which is recorded 

with the map quality at each viewpoint.

11.2 T ests for Statistical Significance

This section describes the statisticéd tests which are used in this thesis to decide whether 

one exploration strategy is significantly better than another in a given test environment.

For each strategy, explorations are usually performed from the same set of starting points 

in each room. The effectiveness of an individual exploration could therefore depend on the 

the exploration strategy and the starting point. (One could easily imagine a particular 

starting location, maybe tucked away in a cluttered corner of a large environment, which 

would cause problems for any strategy.) These experiments are described statistically as 

‘paired d a ta ’ (Ryan, Joiner, & Ryan 1985, page 101), requiring a slightly different statistical 

treatm ent from unpaired data.

There are therefore two distinct cases to consider:

P a ir e d  R ead in g s  Each of the two strategies is tested from the same set of starting points. 

The results can therefore be taken in pairs, where the members of the pair come from 

explorations which started at the same place, but with different strategies.
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U n p a ire d  R ead ings Alternatively, it may be that there is no reasonable way to pair the 

readings. This could occur, for example, if all of the explorations begcin from the 

same location or if a different set of starting positions were used for each strategy.

The m ajority of the experiments reported in this thesis fall into the ‘Paired Readings’ 

category. ‘Unpaired Readings’ have arisen occasionally when testing which strategy per­

forms best from  a given starting point. In this case all of the experiments have the same 

starting point and there is no reason to assume, for example, tha t the effectiveness of the 

first exploration with one strategy would be correlated with the first exploration with the 

other strategy.

In each of these cases, one needs to  test whether, at a number of times during the 

exploration, the mean quality generated by one strategy is significantly higher than the 

mean quality generated by the other strategy. The statistical technique used in both cases 

is S tudent’s t-test, although the exact calculations vary between the cases. The details are 

given in Sections 1 1 .2 .1  and 1 1 .2 .2 .

There is, however, some preliminary processing which is needed before the t-tests can be 

applied. During each exploration, the quality measurements are taken each time the robot 

stops and performs a sensor scan. The times at which the measurements are taken therefore 

differ for each exploration. But the t-tests are designed to compare the mean qualities of the 

two strategies at the same time during exploration. The results are therefore pre-processed 

to give the quality values for all explorations whenever any quality value changes.

1 1 .2 .1  P a ired  R ead in gs

At a given time during exploration^, the results to be evaluated consist of 2  sets of n  quality 

percentages, (g ii,g i2 , • • • ,?in) and (921 , 9 2 2 ,. 92n), one set for each strategy. For each of

the 71 starting points, qu and 92» are paired readings.

The question to be asked is:

How significant are the differences between the paired values? Specifically, is the 

mean of the first set of values significantly greater than the mean of the second 

set?

Following the procedure for paired data described in (Ryan, Joiner, & Ryan 1985, pages

^Sections 11.2.1 and 11.2.2 describe the test of significance at a single moment. This test is repeated 
every time one of the raw quality measurements changes.
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181-184), the Student’s t distribution is used to derive a confidence interved for the mean 

of the difference between the two sets of results.

First calculate the sample differences (di, d2 , d a , , dn) where d* =  {qu — gai) for i =

1 , . . , Th.

The sample mean, d, and variance, s^, are then:

t=n
d =  ^  d i/n

t = i

E (*  -  4 '
n — 1

The confidence interval for the difference between the means then runs from d — h to 

d + h where:

h =  t a f 2 { n - l ) y j s ^ l n

where ta /2 (^ — 1 ) is the t-test statistic with n — 1 degrees of freedom and the confidence 

level is 1 — a .

If the entire confidence interval falls above zero, it can be stated with confidence 1 — a  

tha t, at the time under test, strategy one is outperforming strategy two. The converse can 

be stated if the entire interval falls below zero. If zero falls within the confidence interval, 

no conclusion can be reached at the required level of confidence.

1 1 .2 .2  U n p a ired  R ead in gs

When the results are unpaired, the t-test is again used to derive a confidence interval for 

the difference between the means, but the variance and degrees of freedom are calculated 

differently (Ryan, Joiner, & Ryan 1985, pages 185-190).

The starting point is again 2 sets of n  quahty percentages, (gii, gi2 > • • • > ?in) and 

(?2i j Î 2 2 j ..  ?2n)j one Set for each strategy.

A sample mean, and variance, Si are calculated for each set of results:

j=n9i =
3=1

E(îO- -  A)'

n — 1
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The confidence intervsdfor the difference between the means then runs from {qi — Ô2 ) — h 

to  {qi -  Ç2 ) + h where;

h = ta/2(d){Vsi 2 +  42 

The degrees of freedom, d, is approximated by the following:

As in Section 1 1 .2 .1 , conclusions can be drawn depending upon whether the confidence 

interval lies above, hes below, or includes zero.
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W all-Following

Section 4.1 described the attraction of wall-following as an exploration strategy and gave 

examples of its use in a number of research projects. It was argued in Section 4.3 tha t 

wall-following should be the first strategy to be implemented and tested because it will give 

an indication of what can be achieved when ARNE acts only on the basis of immediately- 

available information and does not use the map to guide its exploration. This chapter 

describes the way in which wall-foUowing was implemented on ARNE and presents the 

results of some explorations using this strategy.

12.1 Im plem entation

Wall-following has been implemented in two stages. First, ARNE approaches the nearest 

object tha t it can detect and positions itself ready for wall-following proper to start. The 

bulk of the exploration is then a repetitive process of ‘scan,turn,move’ actions in which 

ARNE moves so as to maintain an ideal distance from the nearest detected object. The 

remainder of this section describes the implementation of these two stages.

The first stage is quite simple. ARNE performs a complete sensor scan and groups the 

raw returns into readings, as described in Section 6.3. ARNE then selects the smaUest 

range reading and moves so as to be at a standard distance, I D E A L - W A L L - C L E A R A N C E ,  

from the object. If the minimum range is greater than I D E A L - W A L L - C L E A R A N C E ,  this 

means turning in the direction of the minimum reading. Otherwise ARNE turns directly 

away from the shortest reading. ARNE then moves forward a distance equal to the absolute 

difference between I D E A L - W A L L -C L E A R A N C E  and the minimum range. A value of 400 mm 

was used for I D E A L - W A L L -C L E A R A N C E  to keep ARNE close to the wall, while exceeding 

the minimum side clearance (300 mm) by a reasonable safety margin. Once the starting 

position has been reached, ARNE turns through 90° to place the detected object at the side

154
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Figure 12.1: The Direction of a Wall-Folio wing Step
T he direction of m ovem ent, 9, is given by 0 =  arcsin where r is the m inim um  range, i is 

ID E A L -W A L L -C L E A R A N C E ,  and s is the length of the step.

of the robot. Whether this turn is to the left or right depends upon the rotational sense 

of the exploration. In the experiments described in this thesis, ARNE moved to the left of 

the object that was being followed. The 90° turn was therefore to the left if ARNE was 

initially too far from the detected object, and to the right otherwise.

There is, of course, no guarantee that a single range reading actually corresponds to an 

environmental object. A false, long, range reading could be caused by multiple reflections 

of the sonar signal. However, selecting the shortest range reading decreases the risk that 

ARNE win move in the direction of a multiple reflection. In all of the experimental tests, 

ARNE started by approaching a real object.

Once ARNE is positioned correctly, wall-foUowing proper can start. This consists of 

multiple steps, each of which is designed to move ARNE forward while maintaining an ideal 

distance from the object that it is foUowing.

At each step ARNE makes a fuU sonar scan, groups the returns, and selects the shortest 

range reading. This reading is assumed to correspond to a waU. ARNE then chooses the 

direction for its next step so that it wiU end the step at distance ID E A L -W A L L -C L E A R A N C E  

from the waU. Figure 12.1 shows how the direction of movement is calculated.

The step size was set to ARNE’s diameter. This choice was motivated by the need 

to strike a balance between map detail and coverage. A smaU step could outUne objects
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in detail, but at the expense of exploration time. Conversely, a large step could map the 

environment rapidly but would miss details. The ‘Alcove Test’ (page 99) also gives an upper 

bound on the step size; if the steps were longer than the maximum line segment length, 

then a wall would not be detected as ARNE moved parallel to it. Equating the step size 

and the robot diameter is a good compromise.

Elfes (1991, page 8 6 ) has suggested tha t the robot could modify its step size according to 

the complexity of its environment. He proposes the application of a Fast Fourier Transform 

to a region of the occupancy grid to determine the complexity of the environment. Such 

ideas can not be apphed to simple wall-following, since the map is explicitly excluded from 

the navigation decisions. The step size therefore stays constant. (A later strategy (see 

Chapter 14) includes the possibility of changing the step size.)

In the absence of obstacles, ARNE’s step size is always the same. However, situations 

do arise in which a full-sized step is not possible (when ARNE has followed a wall into a 

comer, for example). After turning, êind before moving forward, ARNE examines the most 

recent sonar scan to determine the range reading in the direction in which it is now facing. 

ARNE uses this range reading to decide whether a standard-sized step would bring it too 

close to the object in front of it. If the range reading minus the standard step size is greater 

than  a specified minimum clearance, M I N - W A L L -F O L L O W IN G - R A N G E ,  then ARNE can safely 

make a full-sized step. Otherwise, the step size is decreased so tha t ARNE ends up at the 

minimum clearance from the object in front.

It might at first appear more sensible to approach the object in front to the ideal distance 

instead of the minimum. If, however, the robot were following a wall into a corner and 

approached the wall in front to the ideal distance, it would then find itself at approximately 

the same distance from both walls. It might then become ‘stuck’, trying to follow the same 

wall but unable to move forward. Moving a Httle closer to the wall in front makes tha t wall 

the nearest object so that the robot begins to follow tha t wall and negotiates the corner 

successfuRy.

The value of the minimum cleeirance (350 mm) was the same as the value used by 

ARNE’s collision-avoidance software for obstacles in the direction of travel. This was, in 

turn, set by experiments to determine a safe clearance, given ARNE’s speed of movement 

and rate of sensing.

The preceding discussion has emphasised the power of this wall-following to negotiate 

straight walls and concave corners. The strategy also copes well with ‘po in t’ features, such
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{
Wall-Following

}
ap p ro a c h -n e a x e s t-o b je c tO  ;

step-size = WALL-FOLLOWING-STEP;

s e n s o r- s c a n O  ; 
f  ind-m inim tua-range ( ) ; 
m a k e -b e s t- tu rn O  ;

WHILE (NOT {exploration complete})

m a k e - s te p ( s te p - s iz e ) ;

se n so r-sc a n O  ; 
f  ind-m inim nm -range() ; 
m a k e -b e s t- tn m O  ;

END-WHILE

Figure 1 2 .2 : The Wall-Following Algorithm

as convex edges and small free-standing objects. The effect of the calculation in Figure 1 2 .1  

is th a t ARNE’s steps form an approximate arc, centred on the point. Examples of this 

behaviour will be seen in the results presented in the next section.

The experiments described in this chapter did not use any localisation scheme; ARNE’s 

position estimate was based solely on odometry. (The locaHsation method described in 

Chapter 9 is in place for all the experiments described in later chapters.) The validation 

gate described on page 127 could therefore not be used in these experiments to determine 

whether a range reading corresponded to a confirmed feature. Instead, a simple threshold 

was used. The match was accepted if the measured and predicted ranges differed by no 

more than the 4 cm error associated with a weak sonar return (see Section 6.3).

The wall-foUowing algorithm is summarised in Figure 1 2 .2 . The procedure ‘make-best- 

tu m ’ performs the calculation from Figure 1 2 .1  and then executes the turn. Procedure 

‘make-step’ limits the step size if the latest sensor reading indicates tha t a full step would 

bring ARNE too close to an obstacle.

12.2 Experim ents

Figure 12.3 shows the confirmed features detected when the wall-following strategy was 

used in the ‘Em pty’ environment. ARNE moved to a to tal of 1 0 0  viewpoints in the room.
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Figure 12.3: Features Detected by Wall-Following (Without Localisation)
Note the apparent variation in the trajectory of repeated circuits and the duplication of walls. These are

both caused by inaccurate position estimates.

making nearly 3 circuits of the room.

The strategy has worked well, guiding ARNE successfully along straight walls and 

around convex and concave corners.

Given that the navigation is driven by the environment and not by an internal rep­

resentation, multiple circuits of the room follow approximately the same path in the real 

world. But the traced path in Figure 12.3 diverges from the first track on subsequent 

circuits. As the odometry errors accumulate, the estimate of ARNE’s position becomes 

increasingly inaccurate. When the error becomes large enough, range readings no longer 

appear to match the confirmed objects that caused them. The Mapmaker then decides that 

the readings must have been caused by objects which are not yet on the map. It therefore 

creates new objects to explain the readings. This effect is clearly visible on Figure 12.3; 

multiple confirmed lines appear, all of which correspond to a single waU in the real world.

To quantify the performance of wall-following, ARNE was set to explore the ‘Empty’ 

environment from the set of 10 starting positions marked on Figure B .l in Appendix B. 

Map quality was measured during all 10 explorations. Figure 12.4 shows the mean quality 

during these explorations.
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Figure 12.4: Map Quality During Wall-Following (Without Localisation)
Note the decrease in map quality after about 700 seconds as odometry errors accumulate.

The map quality can be seen to change in three distinct phases:

T he F irs t  M ovem ents For a short period at the start of the exploration (until about 

50 seconds), the quality stays close to zero. During this period, ARNE is awaiting 

confirmation of the first features that it has detected.

R ap id  G ro w th  Once features begin to be confirmed, there is a period (from 50 to 600 

seconds) of rapid growth in quahty. The quahty peaks at a value of about 93%.

D e te r io ra tio n  After the map quahty has peaked, the effect of odometry errors begins 

to dominate. From 600 seconds until the end of the exploration period, the quahty 

decreases, ending at about 82%.
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Starting Point Quality (%)
0 89.5
1 36.4
2 5.0
3 72.3
4 16.4
5 89.5
6 26.4
7 73.2
8 76.4
9 46.3

Table 12.1: The Impact of Starting Position on Quality Values After 240 Seconds of Explo­
ration of the ‘Em pty’ Environment

Figure 12.4 also shows the standard error of the mean quality. This reaches its peak 

after about 240 seconds, reflecting differences in exactly when the period of rapid growth 

occurred. Table 1 2 .1  hsts the quality values after 240 seconds of exploration from all 1 0  

starting points. It confirms that there is a wide variation in quality at tha t time. The 

explanation can be found by considering the path followed by ARNE during those flrst 

240 seconds. In aU cases, the distance travelled is about 4 m. The most rapid quality 

increase occurs when ARNE is moving along either the left or the right wall and is able 

to  map both side walls simultaneously, thereby discovering leirge areas of free space. (This 

does not happen with the top and bottom  walls because they are further apart than the 

maximum sonar range.) Starting point ‘O’, for example, achieves a high quality after 240 

seconds because ARNE’s first movements are down the left wall. In contrast, a low quality 

is achieved from starting point ‘2 ’ because the 4 m  path  keeps ARNE within the narrow 

region at the bottom  of the room. The other results can be explained in a similar way. 

This confirms the importance of the starting position of an exploration and supports the 

analysis of the exploration results as ‘Paired’ data. (See page 150.)

After the peak at 240 seconds, the standard error drops and stays low for the rest of 

the exploration period, showing that the loss of quahty occurs consistently across all of the 

explorations.
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12.3 Conclusions

These experiments confirmed that waU-foUowing is a simple, reliable, navigation strategy. 

ARNE tracked the edges of the room well, coping with convex and concave comers. No 

collisions or panic stops occurred during the 1 0  explorations.

High-quahty maps can be produced reasonably quickly by wall-foUowing. For a fixed 

step size, the longest hne segment can be found if the robot moves paraUel to the waU. 

WaU-foUowing is therefore weU-suited to  the chosen m ethod of map construction.

These advantages are, however, somewhat masked by the quahty degradation due to 

odometry errors. For this reason, no further experiments were performed without a locah- 

sation algorithm. Chapter 13 demonstrates the benefits of locahsation and then shows the 

results of waU-foUowmg in other environments.
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T he R esults o f Localisation

Chapter 1 2  showed the loss of map quality which arises as odometry errors accumulate 

and ARNE’s position estimate becomes increasingly inaccurate. Chapter 9 presented a 

m ethod by which ARNE can improve its position estimate by measuring the distance to 

known objects in its environment. The following sections describe the implementation of 

this localisation method and show the results of experiments to test its effectiveness.

A key component of the localisation method, the plant model, models the growth in 

positional uncertainty as ARNE moves. The plant model requires param eter values which 

are specific to the individual robot. Section 13.1 describes experiments to check tha t the 

param eters were approximately right for ARNE.

Section 13.2 then repeats the experiments from Chapter 1 2 , but this time with the 

localisation system in place, and compares the results. The loss of quality in the later 

stages of exploration is eliminated.

After the benefits of localisation have been demonstrated. Section 13.3 presents the 

results of wall-following with localisation in two other, more complicated, environments. 

The quality is shown to increase more slowly and to reach a lower maximum value in more 

cluttered environments. The reasons for this loss of quality are discussed.

The results of waU-foUowing are then used to determine the best value for one of the 

central parameters of the map construction process, the confirmation threshold. Section 13.4 

describes the experimental basis on which this choice is made.

Section 13.5 summarises the results of the chapter.

162
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13.1 Setting the U ncertainty Param eters

The localisation process is controlled by a nnmber of parameters which are specific to 

the robot implementation. This section describes the values which were chosen as being 

reasonable for ARNE. The selections were based on intuition and informal experimentation; 

time constraints have not perm itted a thorough experimental search for the ideal values. 

The selected values do, however, work well and produce the practical results presented in 

Section 13.2.

Section 9.2 defined a plant model to represent the way in which ARNE’s position and 

orientation change in response to movement commands. An im portant feature of the plant 

model is the covariance matrix, P(t|A;), which represents the uncertainty associated with 

the position and orientation estimates at viewpoint k.

The derivation of P(A;|t) is built on the assumption that each movement introduces 

additional uncertainty into the position and orientation estimates. In Equation 9.4 this 

additional uncertainty is defined in terms of two system constants, cr  ̂ and

The first of these parameters, Cj., represents the variance in the translational component 

of the movement. Experience while configuring ARNE showed that this error was small and 

independent of the to tal distance travelled. It was assigned a standard deviation of 1 mm.

The second parameter, represents the variance in the rotational component of the 

movement. This error appeared to be larger for larger turns. The standard deviation of the 

error was therefore taken to be proportional to the turn  angle. A standard deviation of 3° 

per 360° turn  was used in the experiments described below.

These two parameters can be shown to be reasonable by re-examining the exploration 

presented in Section 1 2 .2 . It was observed there that the actual path  followed by ARNE 

on repeated circuits of the room was approximately the same and tha t the apparent path 

variation was due totally to odometry error. It would therefore seem reasonable tha t the 

uncertainty associated with viewpoints on later circuits should include the possibility that 

ARNE is actually in the position shown on the first circuit.

Figure 13.1 shows the same results as Figure 12.3 but with single-(T error ellipses super­

imposed to show the positional uncertainty at each viewpoint. One would expect ARNE’s 

true position to He within the eUipse approximately 68.3% of the time. It can be seen that 

the position from the first circuit Hes within the error eUipse of most of the later viewpoints. 

This supports the choice of error peirameters.
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Figure 13.1: Growth of Positional Uncertainty During Wall-Following
Single-(T error ellipses at each viewpoint represent the positional uncertainty, which can be seen to grow on

repeated circuits of the room.

Two parameters remain to be set. The first, r(k),  represents the variance in the sonar 

range readings. The experimental results in Section 6.3 showed that a weak return could 

lead to an error of up to 4 cm. (Grouping of adjacent returns ehminates many of the 

errors caused by weak returns, but errors may still arise with single returns.) The standard 

deviation was therefore set to 4 cm.

The final parameter is g, the number of standard deviations accepted in the vahdation 

gate (Equation 9.16). A appropriate value for this parameter was determined experimen­

tally, using the results of waU-foUowing and locahsation in the cluttered environment ‘WaUs’ 

(to be presented in fuU in Section 13.3). The sensory data from these explorations was re­

played with a range of values of g to determine which value produced the highest map 

quaUty. (The most cluttered environment was chosen so that the locahsation algorithm 

would have to use a wide variety of confirmed features.) The results are summarised in 

Table 13.1. (The reasons for the general low quaUty values in this environment wiU be 

discussed in Section 13.3.1.) The results show very httle variation for different values of g, 

indicating that the choice is not crucial. However, the highest mean quaUty value occurs 

when g is 3. This is the value that was used in this research.
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9 Mean Quality (%) Standard Error of Mean (%)
1 48.6 6.5
2 51.6 7.7
3 56.1 7.1
4 47.7 5.0
5 51.9 5.3
6 47.7 4.2
7 50.7 5.9
8 43.0 5.2

Table 13.1: Mean Quality After Exploring the ‘Walls’ Environment with a Range of Values 
for the Validation Gate Parameter g

13.2 E x p e r im e n ta l  R e su lts

Figure 13.2: Features Detected by Wall-FoUowing (With Localisation)
With the localisation system in operation, repeated circuits are correctly shown to follow similar paths. 

Comparison with Figure 12.3 shows that the duplication of walls has been eliminated.

To test the localisation algorithm, Trace/Replay mechanism (as described in Section 1.3) 

was used to re-analyse the exploration results from Chapter 12 with the algorithm in op­

eration. Figure 13.2 shows the result. Comparison with Figure 12.3 shows a much closer 

agreement about ARNE’s position during the repeated circuits. Each wall is now repre­

sented as a single hne segment, with none of the duphcation seen in Figure 12.3.
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The positional uncertainty has also been decreased. Figure 13.3 shows the uncertainty 

ellipses for each viewpoint now that localisation is being used. The ellipses are much smaller 

and their size remains approximately constant throughout the exploration.

s

Figure 13.3: Limited Positional Uncertainty with Localisation
The positional uncertainty is much less, and shows no sign of growing during multiple circuits of the room.

A quantitative comparison of map quality was obtained by replaying aU 10 explorations 

from Chapter 12. Figure 13.4 compares the quality with and without localisation. The 

following points should be noted:

1. Little difference can be observed until about 500 seconds. During this period the map 

quahty is growing quickly enough to mask any locahsation problems.

2. After about 500 seconds, the rate of quahty growth decreases and the benefits of 

locahsation become apparent. The quahty reaches a higher peak value (about 95%) 

with locahsation and does not decrease as exploration continues.

3. The 95% confidence interval shows when the difference between the two quahty graphs 

is statisticaUy significant. Until about 800 seconds the confidence interval includes 

zero (apart from one very brief period at about 200 seconds). This means that it is 

impossible to argue with confidence that either result is better than the other during 

that period. However, from 800 seconds onwards, the entire confidence interval hes
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Environm ent: Empty

Q uality (%)

Localised

Without Localisation100

95% interval

-1 0  —

-20  —

Seconds x 10
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Figure 13.4: The Impact of Localisation on Map Quality
The mean quality for 10 wall-following explorations of the ‘Empty’ environment, with and without 

localisation. The characteristic loss of quality due to accumulated odometry errors has been eliminated by 
the localisation algorithm. The quality is significantly higher from about 800 seconds onwards.

above zero. One can therefore state, with at least 95% confidence, that the localisation 

results are better.

These results clearly show the value of the localisation technique. The Extended Kalman 

Filter performs well, despite the fact that its normality requirements may not fit perfectly in 

this application. For example, the path shown in Figure 13.1 suggests that there is probably 

a systematic odometry error during turn movements; the path shows a gradual anticlockwise 

‘tw ist’. The sonar range measurements are also more likely to be overestimates (due to 

isolated weak returns) than underestimates. However, despite these deviations from the 

assumptions of the Kalman Filter model, the localisation method still provides substantial 

quality improvements in the later stages of exploration.

It is interesting to note how the Extended Kalman Filter handles orientation errors.
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Environment: Columns
Q uality (%)

W all-Following 

Standard Error o f Mean100

Seconds x 10-
1.50 0.5 1

Figure 13.5: WaU-FoUowing in the ‘Columns’ Environment

Orientation errors are a particularly destructive type of odometry error because they can 

add significant positional errors to subsequent movements. It is therefore important that 

the localisation method can correct orientation errors. It might seem that the method im­

plemented here is incapable of doing this because the sensor orientation is not used directly 

in the Kalman Filter. The sensor orientation is used to restrict the matches between read­

ings and confirmed objects but thereafter the fUter uses only range information to estimate 

ARNE’s position. However, the orientation can be corrected indirectly because there is a 

correlation between ARNE’s position and its orientation; certain position errors can only 

have occurred with corresponding orientation errors. A position correction therefore impUes 

an orientation correction.

Since the locahsation algorithm has proved to be successful, it wiU be used in aU ex-
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Environment: Walls

Q uality (%)

W all-Following
100 Standard Error o f Mean

Seconds x 10-
0 0.5 1.51

Figure 13.6: Wall-Following in the ‘Walls’ Environment

périments reported in the remainder of this thesis. The next section completes the set of 

wall-following explorations by showing the results in more complex environments.

13.3 Wall-Following in More Cluttered Environments

Figures 13.5 and 13.6 show the results of wall-following (with localisation) in two other 

environments, ‘Columns’ and ‘Walls’ (see Appendix B for plans of these environments). 

Each figure shows the mean quality across explorations from 10 different starting positions. 

In each case, ARNE visited 100 viewpoints.

‘Columns’ is a slightly more complex environment than ‘Empty’ in that free-standing 

objects have been added to the central region of the room. Comparison with the results for 

‘Empty’ (Figure 13.4) shows that:
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• The quality grows more slowly. In ‘Empty’ the quality has reached about 92% after 

500 seconds whereas, after the same time, the exploration of ‘Columns’ has reached a 

quality of only 80%. Exploration takes longer because of occlusion by the free-standing 

objects.

• The quality reaches a shghtly lower peak value (93% versus 95%).

‘Walls’ is a much more complex environment than ‘Columns’ (partitioning walls have 

been added as well as more free-standing objects). The explorations of ‘Walls’ demonstrate 

the above results more strikingly. After 500 seconds the quality has reached only 32% and 

the peak value is about 56%.

In both ‘Empty’ and ‘Columns’ the quahty shows very httle increase beyond about 750 

seconds (50 viewpoints). It was therefore decided to hmit subsequent explorations of these 

environments to 50 viewpoints. In ‘WaUs’ 100 viewpoints were stiU used.

13 .3 .1  M ap  Q u a lity  an d  E n v iro n m e n ta l C o m p le x ity

Figure 13.7: An Example Map of the ‘Empty’ Environment
See Figure 7.13 on page 109 for an annotated example of this type of map.

The results of waU-foUowing in the ‘Columns’ and ‘WaUs’ environments showed that the 

map quahty peaked at a lower value in more complex environments. This section considers 

the reasons for this.
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»* w A

Figure 13.8: An Example Map of the ‘Walls’ Environment 
See Figure 7.13 on page 109 for an annotated example of this type of map.

Figures 13.7 and 13.8 show typical maps of the ‘Em pty’ and ‘Walls’ environments. Vi­

sually, both maps show a reasonable correspondence to the ideal maps (see Appendix B). 

However, the metric reveals significant differences in map quality; the ‘Empty’ environment 

scores 96% whereas ‘WaUs’ scores only 48%. Similar differences were observed across multi­

ple explorations of these environments; the maps of the more complex ‘WaUs’ environment 

were typicaUy of lower quaUty than the maps of the ‘Em pty’ room.

Classification Empty (%) WaUs (%)
Safe 94.9 56.1
Impossible 4.9 24.0
CoUisions 0 .2 19.9

Table 13.2: Route Classifications in the ‘Empty’ and ‘WaUs’ Environment

Table 13.2 shows the classifications of the test routes, averaged across 1 0  maps of each 

environment. The fraction of ‘Impossible’ paths has increased from 4.9% to 24.0% and the 

fraction of ‘Collisions’ has increased even more dramaticaUy from 0 .2 % to 19.9%. As an 

example of the ‘Collision’ classification, Figure 13.9 shows aU 194 of the collisions which 

were detected while measuring the quaUty of the map in Figure 13.8. The grid pattern
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Collisions in the Walls Environment
mm X 10^
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Figure 13.9: CoUisions in the ‘WaUs’ Environment
The rectangular grid represents the cells which are free, according to the ideal map. Each dotted line is a 

path segment which was planned using ARNE’s map and which has been classified as a ‘Collision’ because 
it goes outside the free space on the ideal map. There are a number of ‘hotspots’ at which many collisions 

would occur, most noticeably near the top of the vertical wall in the centre of the room (at about
x=2200 mm, y=3300 mm).

shows the free space ceUs, according to the ideal map. Each dotted Une is a Une segment 

from a smoothed path which, according to ARNE’s map, is an efficient implementation of 

the test journey. Each Une segment shown has strayed into a region which, according to the 

ideal map, is occupied, dangerous, or unknown, thereby causing ARNE’s proposed path to 

be classified as a ‘CoUision’.

There are clearly ‘hotspots’ in which many coUisions would occur, the main one being 

at the top of the vertical waU in the centre of the room. SmaU errors in the mapped 

position of such an obstacle can lead to a large number of coUisions. The more complex 

the environment, the more Ukely such points are to exist, Umiting the map quaUty. The 

sensitivity of the quaUty metric to smaU errors in the mapped position of these hotspots 

causes a higher variance in map quaUty in more complex environments.

The existence of hotspots also explains the sudden increase in map quaUty that can be
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Confirmation Threshold Mean Quality (%) Standard Error o f Mean (%)
1 19.5 2.6
2 56.1 7.1
3 44.2 4.4
4 40.7 4.1

Table 13.3: The Variation of Map Quality with Confirmation Threshold

seen in Figure 13.6 after about 1200 seconds. By this point, most of the strategies had 

already reached their peak value, generating the plateau from about 750 seconds onwards. 

However, two of the explorations, starting from viewpoints 2 and 6, had been making re­

peated circuits of Hmited regions of the environment (in the top left and bottom  of the 

environment respectively). Both explorations chanced to escape from these circuits after 

about 1200 seconds, enabling ARNE to examine the central vertical wall from new view­

points. These examinations led to a more accurate mapping of the hotspots at the top and 

bottom  of the wall and to a significant increase in quality.

Section 2.1.2 described the recent growing interest in hybrid architectures which mix 

reactive and planned behaviours. The examples presented here give support to such an 

approach. Many of the path segments illustrated in Figure 13.9 could be implemented by, 

for example, taking the direct route until an obstacle is encountered, then switching to 

reactive wall-following for a period before continuing along the direct route. Such a hybrid 

architecture is beyond the scope of the research reported here, but is an interesting topic 

for further investigation.

13.4 Tuning the Confirmation Threshold

Section 7.2 described the technique of building clusters of observed elementary features. 

These clusters are promoted to a status of ‘confirmed’ when they include enough elemen­

tary  features. It was stated there that the meaning of ‘enough’ would be determined ex­

perim entally once the localisation algorithm had been implemented. This section describes 

experiments to decide which value to use for this threshold.

The range readings that were obtained by wall-following in the ‘Walls’ environment were 

replayed with a number of alternative values for the confirmation threshold. This made it 

possible to see which threshold gave the highest mean quality at the end of the exploration. 

The results are presented in Table 13.3.
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Paired t-tests (as described in Section 11.2.1) were performed between the results for 

consecutive values of the threshold. These showed firstly tha t the quality improvement when 

the threshold changes from 1 to 2 was significant at a confidence level of 99.8%. This gives 

very strong support to the idea of clustering the elementary features instead of accepting 

them  immediately.

The second t-test showed that the drop in quality when the threshold was increased from 

2 to 3 was significant at a confidence level of 94%. Finally, the quality dropped again as the 

threshold was increased to 4 (although the drop was only significant at a 60% confidence 

level).

These results indicate that the quality peats at a threshold value of 2 and decreases as 

the threshold value is increased. A value of 2 was therefore used in this research.

13.5 Conclusion

The experiments reported in this chapter have clearly shown tha t higher-quality maps 

can be produced by using a Kalman filter to improve ARNE’s position estimate. This 

localisation method will be used during all of the exploration experiments to be reported 

in the remainder of this thesis.

This chapter has also reported the results of using wall-following to explore three test 

environments. These results will form a ‘base case’ against which alternative exploration 

strategies will be compared. The map quality was found to be lower in more complex 

environments because small mapping errors can lead to significant increases in the number 

of coUisions.

The results of wall-following in a more complex environment were then used to determine 

the best value for the confirmation threshold.

The next chapter considers some of the limitations of wall-following as an exploration 

strategy and examines ways in which they can be overcome.
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Supervised W all-Following

Chapters 12 and 13 showed the results of exploring by wall-following. How, if at all, can 

th a t performance be bettered? This chapter begins by describing, in Section 14.1, some 

circumstances in which wall-following appears to be inefficient and then, in Section 14.2, 

proposes a new strategy. Supervised Wall-FoUowing, to eliminate these inefficiencies.

Section 14.3 presents the results of experimental tests of Supervised Wall-Following. Its 

value is shown to be higher in more complex environments.

Section 14.4 summarises the results and suggests some directions in which the cdgorithm 

could be developed.

14.1 Shortcom ings o f W all-Following

In the wall-following experiments described in the previous two chapters, ARNE was specif­

ically denied access to the map while making navigational decisions. A consequence of this 

was tha t a human observer watching the exploration (and looking at the map) would become 

frustrated by ARNE’s indexibihty. In certain circumstances ARNE would make movements 

which, to the human observer, would simply appear to be ‘stupid’. Three of the most ob­

vious circumstances are: falling into traps, re-examining known objects, and repeating 

fruitless examinations. The remainder of this section considers each of these problems in 

turn , illustrating with examples.

Figure 14.1 shows a simple example of a wall-foUowiug trap. ARNE began at position 

6 in room ‘Columns’, close to one of the free-standing cylinders. It began to circulate 

around the cylinder and continued to do so for the entire exploration period. This obviously 

restricted its view of the environment and limited the quality of the map.

In this example ARNE did not escape from the trap. In other cases, the exploration 

path  went around the cylinder several times before small variations in position chanced

175
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Figure 14.1: A Simple Trap for a WaU-Following Robot

to bring ARNE nearer to one of the walls than to the cylinder. ARNE then escaped. 

This symmetry-breaking is a good example of the type of behaviour that can occur with a 

real-world robot but which might not occur in a simulation.

Bottom Wall Becomes 

The Nearest Object

Top Wall Becomes 
The Nearest Object

Figure 14.2: A Two-Object Trap for a Wall-Following Robot

This is, of course, a very simple example of a trap in that it only involves a single 

object. A slightly more complicated example can be seen in Figure 14.2. The robot starts 

by following the lower wall and finds itself caught in an endless alternation between the two 

walls.

As an example of the second type of problem, consider the situation in Figure 14.3.



CHAPTER 14. SUPERVISED WALL-FOLLOWING 177

Figure 14.3: ARNE About to Re-Examine a Known Wall

ARNE is part-way through the first circuit of the ‘Empty’ environment and has detected 

the long waU on the left and the shorter wall on the far right. ARNE is about to continue the 

exploration by foUowing the wall on the far right. This sequence of movements is unlikely 

to extract much new information. It would surely be more effective to focus attention on 

the regions in which no objects have yet been found.

The third problem is illustrated by Figure 14.4. ARNE is part-way through its second 

circuit of the room and is about to repeat a sequence of movements which previously failed 

to gather any information. On the first circuit of the room, no details were obtained about 

the region in the top right corner of the room. ARNE is about to duplicate those movements 

and is therefore unlikely to learn anything new.

14.2 Implementation

The inefficiency of the above behaviours is apparent to a human observer precisely because 

he or she has access to the developing map. This suggests the possibility of allowing ARNE 

to continue to follow the boundaries of objects, but to add a supervisory process which, 

by examining the map, can detect situations in which wall-following is inefficient. The 

Supervisor can then interrupt the wall-following to make corrective movements or change 

the parameters which control the wall-following (e.g. step size). This forms the basis of
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Figure 14.4: ARNE About to Repeat a Fruitless Examination

Supervised Wall-FoUowing, as represented in Figure 14.5.

The Supervisor described in this thesis is designed to detect and mitigate the problems 

discussed in Section 14.1. Sections 14.2.1 to 14.2.3 consider each problem in turn, examining 

how the situation can be detected and what corrective actions can be taken. Section 14.2.4 

then summarises the algorithm.

14.2 .1  A v o id in g  T rap s

The traps described above are examples of the difficulties that arise when an agent enters 

a temporal cycle of actions. A recent paper by Mali and Mukerjee (1994) gave a formal 

characterisation of temporal cycles in purely reactive systems. The paper iUustrates with a 

problem from CoimeU’s can-coUecting robot (1990) which attempted to re-coUect cans that 

it had just deposited in the destination area. Mali and Mukerjee discuss the prevalence 

of such temporal cycles and consider ways in which they can be eUminated. One method, 

which they call 'stimulus specialisation’, requires addition of memory so that the robot can 

check whether it has recently performed a particular task. A similar approach is adopted 

in the implementation described in this chapter, in that the map can be used to check for 

cycles of movements.

Since the map includes a record of ARNE’s movements, the exploration path can be
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Figure 14.5: The Concept of Supervised Wall-Following

divided into ‘circuits’. A circuit can be considered to be complete when a movement brings 

ARNE close to the position from which the circuit started. (In this implementation, a 

movement was considered to have come ‘close’ to the starting position if, at any point 

during the movement, the circle of the robot physically passed over the starting position.) 

The first circuit was taken to have started after ARNE had made the initial approach to 

the nearest object.

W hen a circuit is completed, it might be that ARNE has just circumnavigated a free- 

standing obstacle and therefore needs to escape from a trap . On the other hand, the circuit 

might have been around the perimeter of the room, in which case a different action would 

be appropriate. To distinguish between these two cases, circuits are classified as ‘Interior 

Circuits’ or ‘Perimeter Circuits’. The algorithm classifies a circuit by monitoring the to tal 

angle turned by ARNE during the circuit. If the wall-following is trying to keep the nearest 

object to ARNE’s right (the default case), then a positive (anticlockwise) to tal tu rn  angle 

characterises a perimeter circuit and a negative (clockwise) angle characterises an interior 

circuit.

If an interior circuit is detected, ARNE is in a trap  and the Supervisor should interrupt 

with an escape action. The action selected in this implementation was to move ARNE to 

the nearest end of an unvisited wall, positioned at distance IDEAL-WALL-CLEARANCE  from 

the wall. Wall-following can then continue, starting a new circuit. In a large environment 

w ith several free-standing obstacles, this strategy would generate a very similar trajectory 

to Lumelsky’s ‘Sightseer’ strategy (page 63); ARNE would circumnavigate each obstacle in 

turn, moving on to the nezirest unvisited obstacle after completing each circumnavigation.
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1 4 .2 .2  S k ip p in g  P a st  K n ow n  O b jec ts

The matching process described in Section 7.3 attem pts to associate a confirmed map feature 

w ith each sonar reading. These matches can be used during wall-following to  determine 

whether a confirmed feature is being followed at any moment. It may, of course, be tha t the 

feature has just been added during ARNE’s current visit. In this case there is no problem 

and the Supervisor does nothing. On the other hand, ARNE may just have begun to follow 

a feature tha t was added to the map at an earlier stage of the exploration. In this case the 

Supervisor can intervene to prevent a wasteful duplication of effort. This decision has to be 

made whenever ARNE begins to follow a new wall.

If ARNE is following a previously confirmed line, then the Supervisor can initiate a 

movement which takes ARNE to the fax end of the Une and positions it at distance IDEAL- 

WALL-CLEARANCEîrom.  the wall. In this implementation, no action is taken if the confirmed 

object is a point; it is not clear where ARNE should go in such a situation to avoid re­

examining the point.

1 4 .2 .3  A v o id in g  F ru itless E x a m in a tio n s

This situation arises when ARNE has already completed one circuit of the environment 

and is coming back for a second look. In the terminology of Section 14.2.1, the first circuit 

would be a ‘Perimeter Circuit’. If the Sîzpem'sor detects tha t one perimeter circuit has been 

completed and that ARNE is about to embark upon another, it alters the wall-following 

process by decreasing the step size. This, combined with the process of skipping past known 

objects, ensures that ARNE will focus attention on the unknown regions of the perimeter 

on the next circuit.

An outcome of the processes of feature extraction and clustering (as described in Chap­

ter 7) is tha t a feature must be detected at least three times before it can become confirmed. 

W ith this in mind, the step size for the detailed examination was taken to  be one third of 

the original value.

Once ARNE has completed a second perimeter circuit, the Supervisor adds a movement 

to  the nearest end of an un visited line (as in Section 14.2.1). This is useful when ARNE has 

failed to pass through a small gap and has passed twice around the perimeter of part of the 

environment. (This situation arises in the ‘Walls’ environment.) Exploration terminates if 

there are no un visited lines left.
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Supervised Wall-Following
>
approach-nearest-objectO ; 

circuits = 0;
store-circuit-start-positionO ; 
total-tum-angle = 0;

clear-visited-flagsO ; 
step-size = WALL-FOLLOWING-STEP;

sensor-scanO ; 
f ind-minimum-r ange(); 
make-best-tumO ;

WHILE (NOT {exploration complete})
IF ({latest movement came close to start of circuit}) {Circuit Complete} 

IF (circuits = 0 AND total-tum-angle > 0) 
circuits = circuits + 1; 
step-size = DETAIL-WALL-FOLLOWING-STEP;
IF ({visiting confirmed line}) 

leap-to-line-end();
ELSE

make-step(step-size);
END-IF 

ELSE
circuits = 0;
step-size = WALL-FOLLOWING-STEP; 
go-to-nearest-unvisited-line();

END-IF
store-circuit-start-position(); 
total-tum-angle = 0;

ELSE-IF (visiting confirmed line) 
leap-to-line-end();

ELSE
make-step(step-size);

END-IF

{}
{}
{First}
{Perimeter}
{Circuit}
{}
{}

{Interior Circuit}
{or Second}
{Perimeter Circuit}

{Start New Circuit}
{}

{Skip Confirmed Line} 

{Normal Step}

u p d a te - v is i te d - f la g O  ; 
u p d a te - to ta l - tu r n - a n g le ( ) ;

se n so r-sc a n O  ; 
f  ind-m inim um -r ange( ) ; 
m a k e -b e s t- tu m O  ;

{Flag Current Object}

{}
{Prepaire Next Move} 
{}

END-WHILE
Figure 14.6: The Supervised Wall-Following Algorithm
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14.2.4 T he  A lgorithm

The Supervised Wall-Following algorithm is summarised in Figure 14.6. For ease of im­

plementation, the algorithm is implemented as a single physical process instead of the two 

suggested by Figure 14.5. Comparison with Figure 12.2 shows that the essential loop struc­

ture of the wall-following algorithm has not changed. Instead, a collection of supervisory 

tests have been inserted before each movement, giving the Supervisor the opportunity to 

execute a corrective action before wall-following continues.

14.3 E x p e r im e n ts

Environment: Empty
Quality (%)

supervised

waTl-following100

• 95%  interval

-10

-20

-30
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Figure 14.7: Supervised WaU-Following vs WaU-Following. Room: Empty.

This section reports the results of Supervised WaU-FoUowing in different test environ­

ments.
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Environment: Columns
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Figure 14.8: Supervised WaU-FoUowing vs WaU-FoUowing. Room: Columns.

The first experiments were performed in the ‘Empty’ room. Figure 14.7 shows the 

results. As usual, explorations were initiated from 10 starting positions and the average map 

quaUty was plotted over time. The quaUty values alone would suggest that Supervised WaU- 

FoUowing performs sUghtly better than simple waU-foUowing. However, the 95% interval 

includes zero throughout the entire exploration period, making it impossible to argue with 

confidence that either strategy is better.

The results from the ‘Columns’ environment (Figure 14.8) were very similar. The quaUty 

graphs show a preference for Supervised WaU-FoUowing throughout most of the exploration 

period, but the difference is not enough to be significant.

The results from the ‘WaUs’ environment (Figure 14.9) present a much stronger case 

for Supervised WaU-FoUowing. The mean quaUty values are comparable for the first 200
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Environment: Walls
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Figure 14.9: Supervised WaU-Following vs WaU-FoUowing. Room: WaUs.

seconds but thereafter they diverge widely for the remainder of the exploration. The con­

fidence interval shows that Supervised WaU-FoUowing is significantly better than simple 

waU-foUowing from about 250 seconds to 1200 seconds. The increase in the variance among 

the waU-foUowing results at about 1200 seconds (as described on page 173) makes it impos­

sible to be confident about comparisons in the last seconds of the exploration.

Supervised WaU-FoUowing clearly performed better in the ‘WaUs’ environment than in 

‘Em pty’ or ‘Columns’. It is interesting to consider why this might be.

One might at first have expected that the ‘trap-avoidance’ feature would have shown 

benefits in ‘Columns’. However, two factors have decreased its impact. First, notice that 

only 4 of the 10 starting points (3,4,6 and 7) are Hkely to trap ARNE. Second, experience 

showed that ARNE often escaped when started from the two lower positions because the



CH APTER 14. SUPERVISED WALL-FOLLOWING  185

steps axoimd the obstacle sometimes brought ARNE close enough to one of the walls. The 

im pact of the traps was therefore greatly diluted by the other explorations which avoided 

traps.

‘Em pty’ and ‘Columns’ are both  very open environments with very little occlusion. The 

walls and obstacles are easy to see and so the map quality grows quickly. One consequence 

of this is tha t ARNE can see most of the environment even when caught in a trap. Another 

is th a t the quality has already reached a high value before the Supervisor begins to take 

effect. Very little benefit can then be derived from the Supervisor.

In contrast, ‘Walls’ is a much less open environment with considerable occlusion. The 

quality grows more slowly, leaving time for the Supervisor to make an impact. Although 

there are no free-standing traps in the environment, ARNE did sometimes feiil to detect the 

gaps during wall-following, with the result tha t it would be caught in the type of ‘Perimeter 

T rap’ introduced in Section 14.2.3. The Supervisor can escape from these traps.

The significance of traps is clearly related to the size of the environments. The envi­

ronments used in this thesis were constrained to be fairly small and the damage caused by 

traps was consequently limited. At the other extreme one could imagine a robot getting 

trapped by a waste bin when it was supposed to be exploring an entire floor of an office 

building. The effect of falling into such a trap would be huge.

The ‘Trap’ environment was specifically designed to illustrate a more significant trap 

than  the ones in ‘Columns’; the obstacle and the wall were deliberately positioned so that a 

trapped robot would have a more restricted view. All 10 explorations began from the same 

location so that they would all fall into the trap. The results are presented in Figure 14.10^. 

There is no significant difference in mean quality until about 200 seconds, but thereafter the 

m ean quality by wall-following increases only slowly whereas the mean quality from Super­

vised Wall-Following increases very significantly faster. After 200 seconds the supervised 

ARNE has escaped from the trap.

14.4 Conclusions

Supervised Wall-Following has been shown to be a significant improvement over simple 

wall-following in an environment which contains traps or in which there is considerable 

occlusion.

^Note that this is a situation in which an ‘unpaired’ comparison is more appropriate (see page 152).
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Figure 14.10: Supervised Wall-FoUowing vs WaU-FoUowing. Room: Trap.

The algorithm described above has been designed to overcome some of the more ob­

vious inefficiences of waU-foUowing. Further experimental analysis of waU-foUowing may 

reveal additional undesirable behaviours which can be recognised and eUminated within the 

framework of Supervised WaU-FoUowing.

A shortcoming of the current implementation was observed during experimentation. 

Although the trap-detection algorithm described above successfuUy detects ‘simple’ traps, 

such as that iUustrated in Figure 14.1, it does not reUably detect more complex traps which 

occasionaUy arise mid-way through a circuit. A later version could perhaps remove this 

restriction with a more thorough ‘loop detection’ algorithm.

The experiments in this chapter showed that Supervised WaU-FoUowing was not sig­

nificantly better than basic waU-foUowing in the simple environment ‘Em pty’. This raised
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the question of whether these two sets of results are approximately the best tha t can be 

achieved in  tha t environment or whether there is still room for improvement. The next 

chapter describes experiments with human-guided exploration which attem pt to answer 

this question.



C hapter 15

Can a H um an D o A ny B etter?

15.1 M otivation

This chapter describes a brief digression from autonomous exploration into human-guided 

exploration. The results in Chapter 14 showed Supervised Wall-FoUowing to be an effec­

tive exploration strategy in environments with occlusion and traps. It was not, however, 

significantly better than simple wall-following in the ‘Em pty’ environment. This raised the 

question:

Is it possible to improve the exploration performance in the ‘Em pty’ environment 

or is Supervised Wall-Following generating the best possible results, given the 

physical robot and its sensors?

To answer this question, experiments were performed to see whether a human operator, 

guided only by the developing map, could direct ARNE’s movements so as to produce better 

results than Supervised WaU-Following. Similar experiments were performed in the more 

complicated ‘WaUs’ environment.

15.2 Procedure

The exploration software includes an X-Windows interface which enables an operator to 

send commands (‘move forward’, ‘turn left’, ‘turn righ t’, and ‘scan’) directly to ARNE. 

This interface was used in the experiments described in this section. The interface also has 

the faciUty for the user to indicate, using the mouse, a position on the map to which ARNE 

should move. The system then plans and executes such a path. This faciUty was used for 

the longer movements between regions of interest.

Consideration was given to the choice of operator for these experiments. It was felt 

tha t a volunteer would have no experience of the way in which ARNE senses the world

188
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Figure 15.1: Human-Guided vs Supervised. Room: Empty.

and builds the map and would therefore be unable to explore efficiently. Since the object 

of the experiments was to get an approximate idea of the best performance that could be 

expected, it was important that the operator fully understand the operation of the robot. 

The author therefore took the job.

As with previous experiments, 10 starting points were used in each environment. Each 

exploration consisted of at most 50 viewpoints. After each movement and sensor scan the 

operator examined the current map to choose the next viewpoint.

15.3 Experiments

Figure 15.1 compares the mean results of human-guided exploration cind Supervised 

Wall-Following in the ‘Empty’ environment. Two observations can be made:
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Figure 15.2: Human-Guided vs Supervised. Room: Walls.

• The human-guided exploration performs significantly better than Supervised Wall- 

Following for about the first 300 seconds. There is clearly scope to improve the 

effectiveness of the early stages of autonomous exploration.

• The human-guided exploration reaches a peak quahty of 96% after about 380 seconds. 

Supervised WaU-Following catches up with this quaUty value at about 450 seconds. 

The two strategies achieve the same maximum quality.

Figure 15.2 shows the same comparison, but in the ‘WaUs’ environment. No signifi­

cant difference between the strategies appears until before 600 seconds. Supervised WaU- 

FoUowing appears to be a difficult strategy to beat in the early stages of the exploration of 

a cluttered environment.

It is not possible to teU from these results whether human-guided exploration might
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have peaked at a higher quality than Supervised Wall-Following. In this environment, 

Supervised Wall-Following reaches a méLximum quahty of nearly 70% after about 1100 

seconds (Figure 14.9). The human-guided experiments, being labour-intensive, were limited 

to 50 viewpoints (about 600 seconds), by which point the mean quahty had not exceeded 

60%.

15.4 Conclusions

These experiments show that it is possible to obtain better exploration results than those 

generated by Supervised Wall-Following. Supervised Wall-FoUowing has clearly not reached 

the lim it of ARNE’s information-gathering rate. It is unlikely, however, tha t ARNE wiU 

be able to achieve results as good as those of a human operator. F irst, a hum an can use 

visual skiUs to extrapolate from the information on the map to the likely geometry of the 

environment, a difficult task for a computer. Second, the human operator is not in practice 

working exclusively from the map; his decisions are influenced to some extent by knowledge 

of the true shape of the environment^.

Even if one does not expect an autonomous exploration strategy to m atch the perfor­

mance of the human operator, it is stUl useful to see whether any lessons can be learned from 

the human-guided exploration. Examination of the exploration paths reveals the foUowing:

• A useful technique is to direct ARNE through the middle of regions which are likely 

to be free space. In particular, if the map suggests two normal waUs which meet at 

a corner, a path  away from the corner, diagonal to both waUs is a good idea. Such a 

pa th  enables ARNE to ‘triangulate’ effectively on both of the waUs.

• Standard, ARNE-diameter, steps are generally effective when gathering information 

about unknown regions. Longer steps can be used when passing though a known 

region to get to the next region of interest.

• The interesting regions of the map are those in which the free space ‘leaks’ into the 

unknown region. A complete map would contain a contiguous region of free space, 

bordered only by the dangerous regions around obstacles. If free space is bordering on 

the unknown area, this ideal has not yet been achieved and the border region should 

therefore be investigated.

^This is a point in favour of using a number of inexperienced volunteers, who could perform the explo­
rations remotely, without having seen the test environment. This advantage was, however, outweighed by 
the need to understand ARNE’s operation.
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These insights have been used as the basis for the strategies to be described in Chap­

ters 16 and 17.



C hapter 16

Longest Lines o f Sight

16.1 M otivation

Experience with human control of the exploration process suggested that map quality could 

be increased rapidly in the early stages of exploration by heading into open regions of space 

instead of staying close to one of the walls (Section 15.4). The ‘Longest Lines’ strategy 

described in this chapter was motivated by this observation. The essential idea is to perform 

a full sensor scan and head in the direction of the longest reading. As many steps as 

possible are then taken in that direction until an obstacle is encountered. The algorithm 

then continues by heading in the direction of the longest reading from this new position.

This strategy shares with waU-foUowing the fact tha t it is totaUy reactive. Navigational 

decisions are made solely on the basis of the latest sensor readings.

Section 16.2 gives the details of the implementation and Section 16.3 compares the 

results to those of WaU-FoUowing and Supervised WaU-FoUowing. Section 16.4 summarises 

the experimental results and considers the strengths and weaknesses of the strategy.

16.2 Im plem entation

The strategy, as described in the previous section, is straightforward. The only sUght 

compUcation is the problem of multiple reflections. WaU-foUowing used the shortest range 

readings from each viewpoint; multiple reflections were not a problem because they typicaUy 

cause long range readings. On the other hand, the ‘Longest Lines’ strategy is psirticularly 

interested in the long readings. It is therefore necessary to acknowledge the likelihood of 

multiple reflections and to compensate for them.

The approach adopted here is to try each range reading in turn, working down from 

the longest, until a direction is found in which ARNE can safely move. ARNE’s on-board

193
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{
Following the longest lines

}
step-size = WALL-FOLLOWING-STEP; 

sensor-scanO ;

WHILE (NOT {exploration complete})

DO
tum-to-f ace ({longest -untried reading}); 
flag-direction-as-tried(); 
move-statns = move-forward(step-size); 
sensor-scanO ;

WHILE (move-stat-us NOT = ‘snccessfnl’ AND
cnrrent-position = previous-position)

END-DO

WHILE (move-statns = ‘successful’ AND 
NOT {object too close in front}

)
IF (NOT {object too close in front})

move-status = move-forw2urd(step-size) ; 
sensor-scanO ;

END-IF
END-WHILE

END-WHILE

Figure 16.1: The ‘Longest Lines’ Algorithm

controller wiU not allow a movement to begin if objects are detected which are too close 

either in front or to the side. If objects are preventing the movement, a status code is 

returned to indicate this. The strategy is therefore to turn  in the direction of the longest 

reading and to attem pt to move forward. If the ‘blocked’ status is received and ARNE has 

been unable to move at all, the next longest reading is tried and so on until a safe direction 

is found.

ARNE moves in the safe direction in standard steps equal to ARNE’s diameter (300 mm) 

until an emergency stop occurs or one more step would bring ARNE within a diameter of 

the object in front. A full 360'’ sensor scan is performed after each step.

The algorithm is summarised in Figure 16.1.

16.3 Experim ents

The strategy was tested in the ‘Em pty’, ‘Columns’ and ‘WaUs’ environments from 10 

starting positions in each room. The explorations were limited to 50 viewpoints in the first



CHAPTER 16. LONGEST LINES OF SIGHT 195

Environment: Empty
Quality (%)

100

-10

-20

-30

0 200 600400

longest lines 

wall-foiiowing 

95% interval

Seconds

Figure 16.2: Longest Lines vs Wall-Following. Room: Empty.

two environments and 100 viewpoints in the last environment.

The first comparisons to be made are between this strategy and its reactive partner, 

Wall-FoUowing. The comparisons are made in Figures 16.2, 16.3 and 16.4. In the ‘Empty’ 

environment the new strategy performs significantly better than WaU-FoUowing in the early 

part of the exploration, between about 80 and 250 seconds. Thereafter ‘Longest Lines’ loses 

its advantage and the final map qualities are practicaUy identical.

In the ‘Columns’ environment the new strategy starts weU again, outperforming WaU- 

FoUowing between about 150 and 350 seconds. After this, WaU-FoUowing comes back into 

its own and the exploration ends with the quaUty due to WaU-FoUowing steadily higher 

than that from ‘Longest Lines’ (although the final difference is not quite enough for 95% 

confidence).

The ‘WaUs’ environment shows a similar result to ‘Columns’, although the differences
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Figure 16.3: Longest Lines vs Wall-Following. Room: Columns.

are not enough for 95% confidence.

The other comparison which should be made here is between the ‘Longest Lines’ strategy 

and Supervised WaU-Following. The results of this comparison are shown in Figures 16.5, 

16.6 and 16.7.

The same general shape can be seen in all three environments. ‘Longest Lines’ starts 

by producing higher quality maps than Supervised Wall-Following; but the situation is 

reversed in the later stages. The benefit of Supervised WaU-Following is most noticeable in 

the ‘Walls’ environment.
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Figure 16.4: Longest Lines vs Wcill-Following. Room: Walls.

16.4 Conclusions

The intuition gained in Chapter 15 does indeed seem to be valid; ‘Longest Lines’ is an 

effective strategy in the early stages of exploration.

It is perhaps not surprising that ‘Longest Lines’ becomes less effective as the exploration 

goes on. Supervised WaU-FoUowing is designed to move ARNE systematicaUy throughout 

the whole environment. (This is usuaUy also true for WaU-FoUowing although there is 

the dcinger of traps.) In contrast, ‘Longest Lines’ does not expUcitly direct ARNE to aU 

regions of the environment. In several of the test explorations, ARNE repeated a sequence 

of movements back and forth between the same viewpoints, effectively trapped in a smaU 

part of the environment.

The more cluttered the environment, the greater the danger of the ‘Longest Lines’ strat­
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Figure 16.5: Longest Lines vs Supervised Wall-Following. Room: Empty.

egy becoming trapped and examining only a fraction of the environment. In the experiments 

reported here, ‘Longest Lines’ was at its most effective in the ‘Empty’ room and at its least 

effective in ‘Walls’. One could easily contrive situations in which ‘Longest Lines’ would be 

extremely ineffective. Consider the task of exploring an office area with many rooms. If the 

robot were to start in a large, empty room with a doorway leading into a narrow corridor, 

the longest readings would always be within the room. The robot would never leave the 

first room. This is another example of a reactive strategy being trapped into an ineffective 

cycle of actions because of its lack of persistent state.

The next chapter examines whether better results can be obtained by applying the other 

insight from Chapter 15 and focusing on the open boundaries of free space.
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Figure 16.6: Longest Lines vs Supervised Wall-Following. Room: Columns.
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Figure 16.7: Longest Lines vs Supervised Wall-Following. Room; Walls.



C hapter 17

Free Space Boundaries

17.1 M otivation

The exploration strategies presented so far in Part HI of this thesis have differed in the 

extent to which the map has been used to control the navigational choices. Wall-Following 

(Chapter 12) and Longest Lines (Chapter 16) were both totally reactive, not using the map 

at ah. Supervised WaU-FoUowing (Chapter 14) used the map to detect circumstances in 

which wah-foUowing was becoming ineffective. Chapter 15 showed the results tha t could 

be obtained when a human operator used the map to guide the exploration. This chapter 

wiU present an exploration strategy in which ARNE’s decisions are driven primarily by the 

information present in the paxtiaUy-formed map.

The implementation described in Section 17.2 builds on the ideas presented in Sec­

tion 4.2; ARNE approaches the interesting regions of the environment. The central issue is, 

of course, the definition of ‘interesting’. The definition adopted here focuses on the edges 

of free space, the regions in which free cells are next to unknown cells.

Section 17.3 presents the results of experiments to evaluate this strategy and Section 17.4 

summarises the results.

17.2 Im plem entation

The first step in this implementation was to identify the cells on the free-space map which 

were to  be examined. The decision was made that ARNE should approach unknown regions 

bu t, to  avoid collisions or panic stops, it should not actually enter unknown regions. The 

interesting cells are therefore those on the boundary between free and unknown space.

The Mapmaker was modified to add another status, ‘boundary’, to the free-space map. 

The boundaries are determined at each viewpoint after the occupied, free and dangerous

201
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Figure 17.1: Examples of Boundary Regions

cells have already been identified. A cell is classed as a ‘boundary’ if it is a free cell with 

at least one of its 8 neighbours unknown. Figure 17.1 shows an example of a map with 

boundary cells.

Given that the boundary cells are interesting candidates for exploration, how should 

ARNE move between them? A first idea is simply to move repeatedly to the nearest 

boundary cell. Preliminary experiments suggested two problems with this simple approach:

M u ltip le  V isits There is a danger that ARNE will visit the same ceU repeatedly without 

increasing the map quality. An implicit principle in the ‘go where i t ’s interesting’ 

school of exploration strategies is that the region wiU cease to be interesting after the 

robot has visited it. One might hope, for example, that a boundary ceU would cease 

to be a boundary ceU after ARNE had visited it; new information would be added 

to the map so that the ceU was no longer next to an unknown cell. Unfortunately 

this can not be guaranteed with a real-world robot. Circumstances were observed in 

which ARNE moved back and forth amongst a set of boundary cells without changing 

the status of those cells. It was therefore felt to be necessary to add a restriction that
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ARNE should not visit the same cell twice during an exploration.

S tep  Size Wall-Following used a step size equal to ARNE’s diameter. Other strategies 

tested in this thesis have used the same step size to  enable direct comparisons to be 

made between strategies. The map-based strategy should therefore have a standard 

step size equal to  ARNE’s diameter. Moving directly to the nearest boundary cell 

would generate much smaller steps.

The problem of multiple visits is solved simply by associating a ‘visited’ flag with each 

cell in the free-space map. A cell may not be visited again once the flag has been set by an 

earlier visit.

The second issue, step size, was addressed in the following way. At each viewpoint, the 

free cell containing ARNE is treated as a goal cell and a distance transform is propagated 

as described in Section 8.2^. The distance transform then indicates how far each cell on the 

map is from ARNE’s current position. (The distance transform values are multiphed by 10 

to  give distances in millimetres.) The ideal would then be to find an unvisited boundary 

cell which was exactly ARNE’s diameter away from the current cell. This is, of course, not 

always possible. The selected cell h therefore the unvisited boundary cell which is as far 

as possible from ARNE but no furtler than ARNE’s diameter. ARNE then moves directly 

to  the selected cell. This method of choosing the next cell to visit has the effect of making 

ARNE explore a cluster of boimdéuy cells. If there are no unvisited boundary cells within 

the maximum step distance, then ATNE plans and executes a path to the nearest un visited 

boundary cell. This moves it on to :he nearest cluster of boundary cells.

The m ap plays a dominant rob in the ‘Boundaries’ algorithm. However, there are 

two circumstances in which it was decided to make reactive movements; at the start of 

the exploration and when the incomplete map proposes invalid actions. Each of these 

circumstances will now be examinee in turn.

ARNE starts the exploration w.th a completely empty map; no a priori knowledge is 

supplied. There are therefore no bomdary cells to be used as targets for exploration. An 

alternative navigation method is needed until enough information has been added to the 

m ap for the boundary-seeking behadour to be effective. The results in Section 16.3 showed 

th a t the strategy of following the bngest lines of sight is effective in the early stages of

ARNE was not in a free cell • if, forexample, it had strayed into a dangerous area - the goal cell was 
taken to be the nearest free cell.
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Figure 17.2: ARNE About to Make an Invalid Action

exploration. ARNE therefore begins the ‘Boundary’ exploration by following the longest 

lines of sight until the map contains one or more confirmed objects.

Figure 17.2 shows a circumstance in which total reliance on the map causes ARNE to 

make an invahd movement. A waR can be seen at the top left of the map. In reality this 

waU runs aR the way to the right beyond ARNE’s current position, but the map does not 

yet show this. If ARNE now moves forward into the boundary region, it wiR come too close 

to the waR and wiR have to make an emergency stop if it is not to collide with the waR.

Emergency stops indicate a disagreement between the map and the world. Although 

ARNE can recognise that its path is blocked by an obstacle, it is unable to determine the 

type or exact position of the obstacle from only one viewpoint. ARNE therefore has to 

move if it is to add the obstacle to the map.

When an emergency stop occurred, early implementations of this algorithm simply 

switched to the next best target and tried again. This was found to be inefficient because 

the neighbours of an unreachable cell are usually also unreachable. The technique adopted 

in the final implementation reported here was to revert to reactive behaviour for a period 

after an emergency stop. The ‘Longest Lines’ strategy was used until a new confirmed 

object was added to the map. This was found to have two benefits:

1. ‘Longest Line’ movements head away from obstacles, into large regions of free space. 

During these movements the obstacle was frequently detected and added to the map.
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{
Investigating the Boundaries of Free Space

}

{Flag all cells as ‘unvisited’}

longest-linesO ; {Until a new confirmed feature}

WHILE ({unvisited boundary cells remain})

{Find nearest free cell to robot’s current position}
{- to use as the goal for a distance transform }

distance-transform(nearest-free-cell);

majc-transf orm = 0;

FOR ({all cells})
IF (NOT cell-visited(ezamined-cell) AND 

boundary-cell(eiamined-cell) AND
trzinsform <= threshold AND {Path length <= ARNE diameter}
transform > mai-transform

)
mar-transform = transform; 
target-cell = exarained-cell;

END-IF
END-FOR

IF ({nearby point found})
flag-cell-as-visited(target-cell); 
go-directly-to(target-cell);
IF ({emergency-stop})

longest-linesO ; {Until a new confirmed feature}
END-IF 

ELSE
{Find nesurest boundary cell}
IF ({boundeury cell found})

IF ({robot not in free cell})
go-directly-to(neairest-free-cell) ;

END-IF
flag-cell-as-visited(nearest-boundary-cell); 
follow-path-to(nearest-boundary-cell);
IF ({emergency-stop})

longest-linesO; {Until a new confirmed feature}
END-IF 

END-IF 
END-IF 

END-WHILE

Figure 17.3: The Boundary Algorithm
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2. At the end of the period of reactive exploration, ARNE was usually closer to a new 

boundary region. If the uncertainty about the region which contained the obstacle 

had not been resolved, ARNE would move on to examine a new boundary region, 

returning to the original region later in the exploration.

The ‘Boundaries’ algorithm is summeirised in Figure 17.3.

17.3 Experiments

Environment: Empty
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Figure 17.4; Boundaries vs Longest Lines. Room: Empty.

The ‘Boundaries’ strategy was investigated by the same experiments as previous strate­

gies; 10 starting points in each of the ‘Empty’, ‘Columns’, and ‘Walls’ environments.

The performance of the ‘Boundaries’ strategy is similar to that of ‘Longest Lines’. Fig­

ure 17.4 compares the performance in the ‘Empty’ room. The quality graphs are almost
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Figure 17.5: Boundaries vs Longest Lines. Room: Columns.

identical; the only noticeable difference is the slightly higher finishing quality for the ‘Bound­

aries’ strategy, cdthough this difference is not significant at a 95% confidence level.

In the other two test environments, the quality graphs of the two strategies differ more 

noticeably, although again the differences are not statistically significant (Figures 17.5 

and 17.6)^. In each environment the final quahty values for the two strategies are simi­

lar, with the differences arising in the early stages of the exploration. The surprising result 

was that ‘Boundaries’ appeared to perform better in ‘Walls’ but worse in ‘Columns’. One 

would have expected that a map-based strategy would come into its own the more cluttered 

the environment became and that it would therefore also do better in ‘Columns’. Further

^The average duration of the ‘Boundaries’ explorations of the ‘Walls’ environment was only 1036 seconds, 
less than the duration of the other autonomous strategies. The comparative graphs are therefore limited to 
this period.
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Figure 17.6: Boundaries vs Longest Lines. Room: Walls.

experiments would be necessary to determine whether this apparent difference is significant.

Supervised Wall-Following is the most promising algorithm from the previous experi­

ments. How does the ‘Boundaries’ strategy compare to it? In ‘Em pty’ (Figure 17.7) there 

is a brief early period (until about 150 seconds) during which ‘Boundaries’ significantly 

outperforms Supervised WaU-FoUowing. Thereafter the two strategies do not differ signifi­

cantly.

The differences are also not significant in the ‘Columns’ environment (Figure 17.8) 

although the quaUty graphs do suggest that ‘Boundaries’ performs better in the early stages 

of the exploration, but is overtaken by Supervised WaU-FoUowing in the later stages.

In the ‘WaUs’ environment (Figure 17.9), Supervised WaU-FoUowing significantly out­

performs the ‘Boundaries’ strategy from about 900 seconds onwards.
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Figure 17.7: Boundaries vs Supervised. Room: Empty.

17.4 C onc lusions

The ‘Boundaries’ strategy was designed to make extensive use of the map to guide the 

exploration. The experiments were intended to test whether this more map-based strategy 

could outperform the totally reactive strategy of ‘Longest Lines’ or the mixed strategy of 

Supervised Wall-Following.

The experiments have shown no significant difference between ‘Boundaries’ and ‘Longest 

Lines’ in any of the test environments. It would, however, be interesting to continue this 

series of experiments in larger and more complicated environments in which the ‘Longest 

Lines’ strategy is hkely to keep the robot trapped in a small part of the environment. It 

seems hkely that ‘Boundaries’ would be more valuable than ‘Longest Lines’ in such an 

environment.
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Environment: Columns
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Figure 17.8: Boundaries vs Supervised. Room: Columns.

Section 17.2 explained that the reactive ‘Longest Lines’ strategy would be used whenever 

emergency stops occurred or ARNE was unable to move in the planned direction. The simi­

larity in the results of ‘Boundaries’ and ‘Longest Lines’ strategies raises the question of how 

often these reactive movements happened during the ‘Boundaries’ experiments. Analysis of 

the Trace files of these experiments reveals the results shown in Table 17.1. Across the three 

environments, the average number of ‘Longest Line’ episodes per exploration varied from 

5.2 to 8.1 with the highest number, surprisingly, occurring in the ‘Columns’ environment. 

The percentage of viewpoints which were due to ‘Longest Line’ episodes ranged from 31.1% 

to 35.1%. The ‘Longest Line’ movements appear to be more effective than the ‘Boundaries’ 

movements; although they make up only about one-third of the total viewpoints, they seem 

to dominate the strategy, producing results similar to those from ‘Longest Lines’ alone.
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Environment: Walls
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Figure 17.9: Boundaries vs Supervised. Room.: Walls.

Supervised Wall-Following was shown to outperform 'Boundaries' in the ‘Walls’ envi­

ronment, reaching a significantly higher final quality value. Two factors contributed to this 

better performance:

S y stem a tic  E xam ination  of O bjects The wad-following step size was chosen to be less 

than the maximum dne segment length (page 155). An effect of this is that ARNE 

adds length to dne features quickly when wad-fodowing. In contrast, the long move­

ments between boundary regions which are made by the ‘Boundaries’ strategy are 

not constrained to end at an ideal distance from the end of incomplete line features. 

These movements do not increase the map quadty so efficiently.

S im ultaneous D iscovery of R ela ted  O bjects A wad-fodowing robot examines neigh­

bouring objects at approximately the same time. For example, a convex corner (a
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Environment All Viewpoints LL Episodes LL Viewpoints Viewpoint
Mean Std. Err. Mean Std. Err. Mean Std. Err. Percentage

Empty 50.7 3.4 5.2 0.7 17.8 3.5 35.1
Columns 72.9 8.0 8.1 1.3 25.5 5.7 35.0

Walls 74.7 5.6 7.4 1.2 23.2 4.3 31.1

Table 17.1: ‘Longest Line’ Episodes
This table shows how much of the ‘Boundaries’ explorations was taken up by episodes of ‘Longest Line* 
navigation. For each of the three main environments, it shows the mean and standard error of: the total 

number of viewpoints, the number of ‘Longest Line’ episodes, and the number of viewpoints in those 
episodes. Finally it presents the number of ‘Longest Line’ viewpoints as a percentage of the total.

point object) and the walls which form the corner (line features) will be discovered 

at approximately the same time. This helps to minimise misinterpretations of the 

sonar readings. To continue with the example, consider the situation in which the 

walls have been confirmed but the comer has not yet been confirmed. Sonar readings 

which actually originate from the corner could be matched with one of the confirmed 

lines, possibly causing that Une to be extended incorrectly beyond the true comer. 

However, once the comer has been confirmed, ambiguous readings (which could have 

been caused by the confirmed point or a confirmed Une) wiU be rejected. If the robot 

makes larger steps around the environment it is more Ukely that neighbouring objects 

wiU be discovered at different times, increasing the UkeUhood of misinterpretations.
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Sum m ary o f E xperim ental R esults

This chapter smmnarises the results of the experiments tha t were reported in P art HI of 

this thesis.

Section 18.1 examines the performance of the sensor model by analysing the results 

of the waU-foUowing explorations tha t were presented in Chapter 13. Section 18.2 uses 

the same experimental data to consider the effectiveness of the feature-based map-building 

algorithm.

Chapters 12 to 17 described a variety of exploration strategies and presented the re­

sults of experiments to evaluate those strategies. Section 18,3 collects those experimental 

results together in order to compare aU of the autonomous strategies across the set of test 

environments.

18.1 The Sensor M odel

Environment Readings (by number of grouped returns)
1 2 3 4 5 6

Empty 8836 (79.4%) 1447 (13.0%) 755 (6.8%) 88 (0.8%) 6 (0.1%) 1 (0.0%)
Columns 10287 (78.5%) 2174 (16.6%) 594 (4.5%) 48 (0.4%) 5 (0.0%) 0 (0.0%)
Walls 10984 (80.2%) 2080 (15.2%) 576 (4.2%) 53 (0.4%) 8 (0.1%) 1 (0.0%)

Table 18.1: Distribution of Reading Sizes

Section 6.3 introduced a sensor model in which adjacent sonar returns of similar range 

were grouped into ‘readings’ to decrease the uncertainty caused by the width and uneven 

strength of the sonar beam. Table 18.1 shows the number of readings of each size tha t were 

taken during the waU-foUowing explorations of the three main test environments. It can be 

seen th a t approximately 20% of the readings contained two or more returns. Expressed in 

term s of the raw returns instead of the readings, the results show tha t 37.5% of the returns 

were included into groups of size two or more. (Maximum-range returns are excluded from

213
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the grouping process and from this calculation.) This supports the opportunistic nature of 

this approach, grouping the returns where possible but using all of the available information. 

An insistence tha t groups contain at least two returns would have eliminated almost two- 

thirds of the returns.

The distribution of reading sizes appear to be consistent across the three test environ­

m ents. One might perhaps have expected a greater proportion of single-retum readings in 

the ‘Walls’ environment because of the larger number of point features, with their narrower 

visibility angles.

The experiments in Chapter 6 found tha t the largest visibihty angle, for any object, was 

61.2°. This fact, combined with the effective beam width calculation on page 83, imphes 

th a t a reading could contain at most four returns. More than 99.9% of the readings do 

indeed include four returns or less. The remainder may be due to  incorrect grouping of 

returns from more than one object.

Environment
Explained

Returns
Unexplained Maximum Range

Empty 6984 (36.0%) 7399 (38.2%) 4997 (25.8%)
Columns 8480 (43.8%) 8154 (42.1%) 2746 (14.2%)
Walls 8787 (45.3%) 8343 (43.0%) 2250 (11.6%)

Table 18.2: Explained, Unexplained, and Maximum-Range Readings

The sonar returns are used to provide information about environmental features. Ta­

ble 18.2 shows how many of the returns were ‘explained’ by being associated with confirmed 

features on the map. Returns at the maximum range of the sensor are discarded before 

the remainder are grouped into readings. As one would expect, the greatest proportion of 

maximum-range returns is found in the open ‘Em pty’ environment and the smallest propor­

tion is found in the cluttered ‘Walls’ environment. After excluding these returns, roughly 

half of the remainder half been explained. Many of the unexplained returns are Hkely to 

have been false readings caused by multiple reflections.

18.2 The Feature Map

Table 18.3 shows the number of confirmed features detected during the wall-following 

explorations of the three main test environments.

The number of confirmed Hnes is roughly 8 in all three environments. The floor plan of 

the empty room (Figure B .l in Appendix B) shows 12 Hne segments. Some of these are, 

however, very short (the edges of the brick pillar) or infrequently seen (the lower waR of
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Environment Z
Mean

jines 
Std. Err.

P
Mean

oints 
Std. Err.

Empty 7.7 0.5 19.5 1.1
Columns 7.5 1.0 19.1 1.3
Walls 7.9 0.5 26.9 1.9

Table 18.3: Conftrmed Features In Each Environment

the region in the top right corner). The greater number of lines in the ‘Walls’ environment 

appears to be offset by the greater likelihood of occlusion.

The floor plan of the empty room shows 12 point features, less than  the number of 

confirmed points. The extra confirmed points were often found to be caused by surface 

irregularities on the walls. As would be expected, the number of confirmed points is highest 

in  the ‘Walls’ environment, the floor plan of which shows 22 point features.

18.3 Exploration Strategies

The exploration strategies that were presented in Chapters 12 to 17 differ in the extent to 

which the map is used during the exploration. They range from Wcdl-Following and ‘Longest 

Lines’ (totally reactive) through Supervised Wall-Following (basically reactive with map- 

based interventions) to ‘Boundaries’ (map-based with reactive episodes). In comparing 

strategies, this section is indirectly examining the issue of how the map information and 

the immediate sensory data should be balanced to create an efficient exploration strategy.

The section begins with a brief review of the individual strategies and then presents 

some graphical comparisons.

The first strategy to be tested was wall-following. By reacting to its immediate sensory 

input, the robot was able to execute collision-free paths which enabled it to examine large 

regions of its test environments. The strategy was simple to implement and coped well with 

temporary obstructions.

Simple wall-following was, however, found to have some significant limitations. The 

most striking was its tendency to become trapped in one part of the environment, repeat­

ing a sequence of actions from which very little new information could be obtained. The 

strategy of Supervised Wall-Following was designed and implemented to overcome such 

limitations. A supervisory process, with access to the developing map, detects ineffective 

wall-following actions and intervenes to direct the robot’s attention to a more profitable 

region of the environment. The benefits of Supervised Wcdl-Following were most apparent 

in environments in which there was considerable occlusion.



C H APTER 18. SU M M ARY OF EXPERIM ENTAL RESULTS  216

Ideas for additional exploration strategies were generated by a brief digression into 

hmnan-guided exploration. An operator, looking at the latest map, selected the next view­

point for the robot. Experiments showed tha t a human operator could easily outperform 

Supervised Wall-Following in the open ‘Em pty’ environment, but no significant difference 

could be detected in the more cluttered ‘Walls’ environment. The human operator was 

found to be using two heuristics: ‘head for the open spaces’ and ‘examine the boundaries 

of unknown areas’. These ideas formed the basis for the last two strategies to be tested.

The ‘Longest Lines’ strategy, like simple wall-following, is completely reactive, making 

decisions exclusively from the most recent sensory information. However, in contrast to waU- 

foUowing, it seeks the longest range reading from any position and heads in tha t direction 

until it encounters an obstacle. This policy takes it way from waUs and through regions of 

open space. This strategy performed significantly better than waU-foUowing in the early 

stages of exploration of the ‘Em pty’ and ‘Columns’ environments. The benefit was less 

pronounced in the ‘WaUs’ environment. The ‘Longest Lines’ strategy also outperformed 

Supervised WaU-FoUowing early in the explorations of ‘Em pty’ and ‘Columns’, although 

Supervised WaU-FoUowing came into its own in the later stages. Supervised WaU-FoUowing 

was much more successful than ‘Longest Lines’ in the ‘WaUs’ environment, suggesting, as one 

would expect, that the ‘Longest Lines’ strategy is best suited to more open environments.

The second heuristic from the human-guided exploration gave rise to the ‘Boundaries’ 

strategy. The robot, basing its decisions on the partly-formed map, makes smaU movements 

along the boundary regions between ‘free’ and ‘unknown’ space. This strategy is designed 

to detect objects in the unexplored area. Total reliance on the map was found to cause 

difficulties when the robot encountered obstacles which had not yet been mapped, or when 

the map contained errors. In these circumstances, the robot reverted to the reactive ‘Longest 

Lines’ strategy untU the map changed. The results of the ‘Boundaries’ strategy were not 

significantly different from those o f‘Longest Lines’ alone, suggesting th a t it was the ‘Longest 

Line’ movements which were the most effective in the test environments.

Figure 18.1 shows the results obtained when exploring the ‘Em pty’ environment, using 

each of the four autonomous strategies just described. The overaU shape of the graph is 

similar for aU strategies; a short period of very low quaUty foUowed by a rapid increase to 

a plateau. The final qualities are very similar with aU strategies peaking at about 95%.

During the early stages the strategies appear to form two distinct pairs. ‘Boundaries’ 

and ‘Longest Lines’ show a more rapid increase in quality than the two strategies based on
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Figure 18.1: Summary of Exploration Results in the ‘Empty’ Environment

waU-foUowing.

Figure 18.2 shows the same comparison for the ‘Columns’ environment. Again the 

general shapes are similar. ‘Boundaries’ and ‘Longest Lines’ again show a faster increase 

in quality at the start of the exploration (although the pairing is less pronounced than in 

Figure 18.1). In this environment, however, their final quality is lower than that of the 

wall-following strategies. The final qualities are aU lower than in the ‘Em pty’ environment. 

(See Section 13.3.1 for a discussion of the causes of lower map quality in more complex 

environments.)

To complete the set. Figure 18.3 shows the comparison for the ‘Walls’ environment. If 

one temporarily disregards Supervised Wall-Following, the observations from the previous
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Figure 18.2: Summary of Exploration Results in the ‘Columns’ Environment

two environments can also be applied here. ‘Longest Lines’ and ‘Boundaries’ outperform 

Wall-Following in the early stages but Wall-Following ends with a higher quality. But it is 

Supervised WaU-Following which provides the difference from the other environments. For 

the first 200 seconds the results are very similar to simple Wall-Following but thereafter 

Supervised Wall-FoUowing comes into its own. It diverges from WaU-Following and produces 

similar results to those of ‘Boundaries’ until about 700 seconds, when ‘Boundaries’ begins to 

level out. The quahty from Supervised WaU-FoUowing continues to improve, ending much 

higher than any of the other strategies.

How can these results be quantified and used to select an appropriate strategy? It seems 

reasonable to ask two questions about an exploration strategy:
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Figure 18.3; Summary of Exploration Results in the ‘Walls’ Environment

1. W hat quality of map can be expected if this strategy is used?

2. How long will it take to produce the map?

These questions are the motivation behind Figures 18.4, 18.5 and 18.6. There is one 

graph for each of the three main test environments. On each graph there is a single marker 

for each strategy, indicating the peak average quality achieved by that strategy and the 

time taJken to reach 99% of that maximum value. (A value of 99% was used to eliminate 

distortions due to very small fluctuations in the quality.) An ideal strategy would, of course, 

obtain the highest quahty and do so in the minimum time, placing its marker towards the 

top left of the graph.

The experimental results did not indicate that a single strategy was superior in all of
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Strategy Comparison - 'Empty' Environment
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Figure 18.4: Comparison of Exploration Strategies in the ‘Em pty’ Environment
For com parison purposes this figure and the next two figures show the peak mean quality achieved by each 

exploration strategy in the specified environm ent, plotted against the tim e taken to reach 99% o f that
value.

the test environments. It is therefore necessary to consider each environment in turn.

First, consider the ‘Empty’ environment (Figure 18.4). The first point to note is that 

there is only a small difference (2.5%) between the greatest and smallest peak quality values. 

All of the strategies generate roughly the same final quality result. As for timing, simple 

wall-following (peaking at 950 seconds) is noticeably slower than the other three strategies, 

aU of which reach peak quahty at roughly the same time (between 450 and 600 seconds). 

Supervised WaU-FoUowing comes out shghtly ahead, in both quahty and timing.

The ‘Columns’ environment (Figure 18.5) shows a larger spread of peak quahty values 

(6.7%) and again shows simple wah-fohowing taking longer than the other three strategies to 

reach its peak value. The significant difference here is that simple wah-fohowing generates 

the highest peak value. A user choosing a strategy would have to weigh the increased quahty
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Strategy Comparison - 'Columns' Enrironment
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Figure 18.5: Comparison of Exploration Strategies in the ‘Columns’ Environment
See Figure 18.4 for an explanation of this graph.

value against the extra time needed to obtain that quality. Of the other three strategies, 

aU of which reach peak quahty after approximately 600 seconds, Supervised Wall-FoUowing 

gives the highest quahty.

The greatest spread in peak quahty readings (15.8%) comes from ‘WaUs’, the most 

complex environment (Figure 18.6). Supervised WaU-FoUowing reaches a peak quahty of 

69% while the other three strategies peak at roughly 55%.

The results presented in this section show clezirly how difficult it is to choose an ex­

ploration strategy. The effectiveness of an individual strategy varies not only between 

environments but also at different stages of the exploration. Chapters 12 to 17 and the 

summary at the start of this section do, however, provide some general guidance about the 

strengths and weaknesses of each strategy.

It is perhaps worth commenting on the promising performance of Supervised WaU-
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Strategy Comparison - 'Walls’ Environment
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Figure 18.6: Comparison of Exploration Strategies in the ‘Walls’ Environment 
See Figure 18.4 for an explanation of this graph.

Following. This strategy appears to merit further investigation because:

• It generated the highest peak quality in two of the three test environments.

• It generated a much higher peak quality than the other strategies in the most compli­

cated environment. The more complicated the environment, the more useful a map 

will be and therefore the more important it is to have an effective exploration strategy.

• The only strategy to achieve a higher peak quality was simple wall-following (in the 

‘Columns’ environment). Simple waU-foUowing has been seen to be vulnerable to 

‘traps’, which can greatly restrict the map quaUty (page 185). The potentiaUy lower 

peak quaUty from Supervised WaU-FoUowing in some environments could prove to be 

an acceptable price for trap-avoidance.
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• Supervised Wall-Following is a flexible exploration framework which could be extended 

by the addition of new pairs of triggers and actions.

Given the difficulty of deciding in advance which strategy will be most successful in a 

particular environment, it is tempting to consider the possibility of allowing the robot to 

switch between strategies as the exploration progresses. This idea is considered further in 

Section 20.2.
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Conclusions

This thesis has described cin investigation into the complementary problems of map-building 

and exploration by a mobile robot. This chapter highlights the most significant results of 

this investigation.

The novel contribution of this research can be summarised as:

• The integration of a physical robot, a sonar model, map construction algorithms, and 

a localisation algorithm into an effective working system;

• The definition and implementation of a novel quantitative measure of map quality;

• A thorough quantitative and statistical evaluation of the map-building and explo­

ration capabilities of the system, using the quahty metric and a variety of exploration 

strategies.

The system components and the quality metric were described in P art II of this thesis. 

Sections 19.1 to 19.4 briefly review these topics. The experimental evaluation of exploration 

strategies formed the bulk of Part HI of this thesis. The results of this work have already 

been summarised in Chapter 18.

Chapter 2 described the continuing debate between the ‘traditional’ supporters of model- 

based robotics and the proponents of behaviour-based robotics. An outcome of the current 

research has been an awareness of the need to balance these two approaches. The value of 

reactive navigation became more apparent as the research progressed. Section 19.5 reviews 

the course of the research in the context of the ‘models versus behaviours’ debate.

224
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19.1 T he Ultrasonic Sensor M odel

C hapter 6 presented a set of experimental results which showed how the Polaroid ultrasonic 

rangefmder detected each type of object that would be encountered in the test environments. 

These results demonstrated the positional uncertainty tha t arises from the wide beam and 

uneven signal strength of the transducer. A sonar model was presented in which this 

uncertainty is decreased by grouping multiple overlapping sensor returns which are likely 

to  have been caused by the same object.

The experiments revealed a wide variation in the ‘visibility angles’ of different objects. 

Point objects, such as convex edges, could only be detected if they were close to  the central 

axis of the sonar beam. In contrast, flat surfaces, such as smooth walls, could be detected 

at much greater angles from the centre of the beam. This variation was included in the 

model.

The performance of this sensor model has been summarised in Section 18.1.

19.2 T he Feature-Based and Area-Based M aps

The review of previous map-building research in Chapter 2 categorised metric maps as 

either feature-based or area-based (page 38). The research in this thesis used both types of 

m ap.

The sonar model from Chapter 6 was used to construct a feature-based map. Ele­

m entary objects were hypothesised to explain the sonar readings, these elementary objects 

were gathered into mutually-supportive clusters, and the clusters were then promoted to 

confirmed objects when they had been detected enough times.

An area-based map was developed to represent the free space available to the robot. A 

square grid indicated whether a region was free space, occupied by an object, dangerous 

(too close to  an object), or unknown.

The two types of map were found to be an effective combination. The high precision 

of the feature-based map was useful for explaining sonar readings and for localisation, 

whereas the discrete nature of the free-space map enabled efficient path planning and quality 

judgem ents.
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19.3 Localisation

The robo t’s estimate of its own position becomes increasingly inaccurate the more move­

m ents it mahes. A localisation algorithm was necessary to prevent a corresponding loss of 

m ap quality.

A key component of the map construction algorithm is the establishment of correspon­

dences between sonar readings and confirmed features. These correspondences make a useful 

starting point for a localisation scheme. An Extended Kalman Filter was used to derive an 

estim ate of the robot’s position from the differences between the expected and the measured 

distances to  confirmed features of the environment.

This localisation technique was shown to be highly effective, significantly increasing map 

quality in the later stages of exploration.

19.4 T he Map Q uality M etric

The map-building and exploration research described in this thesis have placed an excep­

tional emphasis on the need for practical experimentation and quantitative evaluation of 

the results. An essential component of the research was therefore a measure of map quality.

The central idea of the metric was to predict the robo t’s behaviour if it were to use 

its free-space map to plan a number of test journeys. The metric could then indicate how 

successful this behaviour would be. In this context ‘successful’ refers to the number of test 

journeys which would be completed safely, the number which would result in collisions, and 

the number which would be deemed by the path planner to  be impossible.

This measure was shown to satisfy the practical and intuitive requirements of a quality 

m etric. It was put to two main uses;

• The map building and localisation algorithms were tuned by experimentation with a 

range of control parameters. The parameters which generated the highest map quality 

were used.

• Map quality was measured repeatedly during experiments to  evaluate exploration 

strategies.
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19.5 Mo del-Based and Sensor-Based N avigation

The research described in this thesis began from the premise that mobile robots need maps. 

Although the behaviour-based research of Brooks and others had shown tha t a surprising 

am ount could be achieved without representations, the fact remained tha t certain tasks 

would require the robot to plan its actions with reference to  a world model. The dehvery 

appHcation which was selected as the target for this research (see Section 3.1) would need a 

full m etric model. It seemed unlikely that reactive navigation would play a significant part 

in this research.

Once the sensor model and map construction algorithms had been implemented, they 

were subm itted to extensive testing. These tests were initially performed by a hum an 

operator specifying the exact movements required from ARNE. It was, however, soon found 

to be necessary to implement a simple exploration strategy so tha t large amounts of test 

data  could be gathered quickly. Wall-following was selected for its ease of implementation. 

At this stage it was viewed as a ‘base case’ which was likely to be easily outperformed by 

more ‘intelhgent’ exploration strategies which were driven by the current state of the map.

The more wall-foUowing was used, the more impressive it appeared. A few adjustments 

to the control parameters were needed at first to prevent ARNE from becoming stuck in 

corners (see page 156) but once the algorithm was tuned it proved to be reHable, gathering 

data during many hours of experimentation.

It proved to be surprisingly difhcult to achieve the same robustness in a map-based ex­

ploration strategy. The ‘Boundaries’ strategy described in Chapter 17 evolved from several 

attem pts to formahse the type of strategy which would be used by a hum an operator. Typ­

ically such attem pts would start with a simple guiding principle (e.g. ‘explore the largest 

boundary region’) which would be implemented and tested. Exceptions and difficult cir­

cumstances would arise during the tests. For example, the map could change as the result 

of sensor scans made during the journey to the boundary region, altering the shape of the 

region. That region might then no longer be the largest region. Should ARNE then con­

tinue to explore the region as planned, or go to the region which has become the largest? 

As another example, consider the situation in which an error in the map causes ARNE to 

plan a path  which proves to be impossible. ARNE may not yet have enough information 

to add the obstruction to the map, but it is necessary to take the failed path  into account 

when deciding which region to examine next. It is possible to devise strategies to cope with



C H APTER 19. CONCLUSIONS 228

any one of these difficulties, but the exploration algorithm rapidly becomes complex as pro­

cessing is added to deal with more and more special cases. In the light of this experience, 

the simplicity of wall-following became increasingly attractive.

It was, however, clear that simple wall-foUowing was too limited to  be a general ex­

ploration strategy. Chapter 14 described some of the pitfaUs of purely reactive behaviour 

(traps, re-examining known objects, and repeating fruitless actions). The design and imple­

m entation of Supervised WaU-FoUowing were motivated by the desire to keep the robustness 

and simplicity of wall-foUowing whilst eliminating some of its most obvious shortcomings.

The general conclusion of the exploration experiments was tha t effective exploration 

requires a combination of map-based and reactive navigation. This thesis therefore supports 

the recent work (see page 30) which attem pts to develop hybrid systems which combine the 

strengths of both approaches.

It is interesting to consider whether this conclusion is valid only during exploration or 

whether it can be extended to the day-to-day operation of the robot. Can reactive navigation 

be abcindoned once the robot has a complete map? In response to this question, it is worth 

reconsidering the idea of the ‘predictability continuum’ tha t was proposed in Chapter 2 

(page 30). It was argued there that the mix of model-based and reactive navigation should 

be linked to the degree of predictability of the robot’s environment. The results presented 

in Section 13.3.1 suggest that the idea of ‘predictability’ should be extended to encompass 

the possibility of errors in the map; smaU errors in the map were shown to decrease the 

effectiveness of the map for path planning. If the robot were equipped with a perfect map 

of an unchangmg environment, then it could base aU of its decisions on the map. A reactive 

component would be of value if the environment were likely to change or the map were likely 

to contain errors. In either case, the reactive component is able to cope with disagreements 

between the internal representation êind the external environment.



C hapter 20

D irections for Further R esearch

The experience gained during the development of this thesis has suggested a number of 

directions in which the research could be extended. This final chapter examines these ideas 

under four groupings:

• Mixing planning and reactive navigation.

• Modifying the exploration method as the exploration progresses.

• Testing new sensors and new environments.

• Examining the feature map for inconsistencies.

A section is devoted to each of these areas.

20.1 M ixing Planning and R eactive N avigation

The Supervised WaU-FoUowing strategy has shown tha t effective exploration can arise from 

a combination of reactive and model-based decisions. The appUcation of the quaUty metric 

to  maps of the ‘WaUs’ environment showed that smaU errors in the map could lead to 

coUisions unless the robot’s movements took into account the latest information from the 

robo t’s sensors. These results suggest tha t it would be useful to extend the current research 

by implementing a navigation strategy which combines planning and reactive components.

There are clear paraUels between this idea and the concept of compliance in autom ated 

assembly (McKerrow 1991, page 293). In both cases the robot uses its stored understanding 

of the state of the world to plein its actions, but it has to adjust its behaviour if sensory 

input disagrees with that understanding.

The work of Payton, Rosenblatt, and Keirsey (1991) is attractive in this context. They 

propose the use of ‘internaUzed plans’ which act as information resources to guide the
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reactive behaviour of the robot. The plan might indicate tha t a goal can be reached by 

heading in a certain direction, but the robot’s movements could be influenced by a coUision- 

avoidance behaviour which would change the heading. Payton et al. argue tha t such an 

approach would be robust in the presence both of mapping errors and dynamic obstacles.

The representation proposed by Payton et al. for their internalized plans is a grid-based 

m ap sim ilar to the free-space map that has been used in this thesis. They also advocate 

the use of a distance transform algorithm  as was described in Chapter 8. Their approach 

is therefore highly compatible with the work described in this thesis.

An interesting research direction would be to extend ARNE’s navigation algorithm in 

this way and to modify the quality metric to predict the m ap’s effectiveness if it were used 

as an internalized plan instead of as a source of detailed, unchangeable, paths. The metric 

would have to predict the robot’s path if it used the constructed map as an internalized 

plan whilst avoiding the objects that were shown on the ideal map. The strategies from this 

thesis could then be tested in this new context to discover any differences in their relative 

strengths.

20.2 A n Evolving Exploration Strategy

The experimental results in P art E l of this thesis showed tha t different strategies were 

at their most effective at different stages of the exploration. For example, the results in 

Chapter 16 showed that the ‘Longest Lines’ strategy was more effective than Supervised 

Wall-Following in the early stages of exploration of the ‘Em pty’ and ‘Columns’ environ­

m ents, but that the dominance was reversed in the later stages.

This suggests the possibility of implementing and testing strategies which change as 

the exploration progresses. For example, a strategy which changed from ‘Longest Lines’ to 

Supervised Wall-Following at an appropriate stage could perhaps outperform either strategy 

alone. Testing such a mixed strategy would form an interesting extension to the current 

research.

The difficulty lies of course in choosing when to switch between strategies. Such a 

choice would have to be autonomous, made by the robot without the aid of the ‘omniscient 

observer’ tha t was used to make quality judgements.

One could imagine two different types of criteria for changing strategies. The first would 

be to  monitor the rate at which new information was being added to the map. Exeimples 

could include the rate at which features or free-space were being detected, A drop in this
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rate would suggest that the current strategy was becoming ineffective and th a t a change 

was due. Alternatively, the robot could examine the map as a whole to  determine which 

type of strategy to use. If, for example, the map showed a high degree of clutter, it might 

be more effective to  use Supervised Wall-Following than  ‘Longest Lines’.

20.3 Different Sensors

The results in this thesis show what can be achieved with a single Polaroid range sensor 

with off-the-shelf echo detection hardware. It would be interesting to repeat the research 

either using vision or a more ‘intelligent’ sonar sensor.

Recent interest in the construction of smarter sonar sensors has taken two distinct 

forms. Some researchers have focussed on the use of multiple transducers while others have 

emphasised the value of analysing the complete echo, not just triggering a threshold. Both 

techniques could have an impact on the current research.

Nagashima and Yuta (1992) provide an example of the former approach. Using a set of 

one transm itting and two receiving transducers, they measure the position and orientation 

of segments of smooth wall. Such a method could detect elementary Hne segments from 

a single position instead of the two positions currently required by ARNE. A limitation 

of their approach is that it does not attem pt to distinguish between specular reflections 

from walls and diffuse reflections from point or edge sources. Further verification would be 

necessary to  check whether the reading was indeed caused by a smooth wall.

Manyika and Durrant-W hyte (1993) use a pair of Polaroid sensors to localise the robot 

on a given feature map. The two transducers are m ounted on a common baseline and 

attached to  a high-speed servo. One of the transducers transm its and both of them  receive. 

The two time-of-fhght readings are used to determine the distance and direction to  the echo 

source. The servo is used to rotate the pair of sensors until the difference between the two 

time-of-flight readings is zero, ensuring that the sensor is facing directly towards the echo 

source. The detected echo is then guaranteed to be caused by the strong central lobe of the 

beam, avoiding any problems with weak returns, and the direction to the object can be used 

as an input to the localisation algorithm. As the robot moves, the sensor continues to face 

towards a single object, effectively overcoming the correspondence problem. Interestingly, 

repeated firings of the sensor from the same position did not give the same difference between 

the time-of-flight readings, making it necessary to use a Kalman filter to estimate the true 

difference. It would be interesting to extend the research described in this thesis to  include
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this type of sensor. A practical approach might be to equip the robot with a number of 

ro tating  sensors, some of which track confirmed objects for localisation, as in Manyika and 

D urrant-W hyte’s work. The remaining sensors could then rotate to focus attention on the 

unknown regions of the environment.

A prominent source of research in the ‘complete echo’ camp is the Intelligent Sensors 

Laboratory at Yale University. Bozma and Kuc (1992) propose the ‘ENDURA’ method 

which uses the energy, duration and range information in a dense scan to  characterise 

the roughness and orientation of the reflecting surfaces. The roughness is determined by 

m atching against templates for the energy and duration of the echoes from different surface 

types. The direction to the surface is taken to be in the centre of the m atched template. 

This m ethod, like Leonard and Durrant-W hyte’s work with RCDs, requires a dense scan 

of the environment (Bozma and Kuc appear to be taking about 300 readings in 360°). It 

would be interesting to see whether the roughness information could be derived from the 

sparser scans used in this thesis. If so, the map construction process might be improved by 

relating the visibility angle of a feature to its roughness.

Bozma and Kuc state that, with their system, it is impossible to distinguish a smooth 

surface from a smooth corner from a single location. In contrast, Sasaki and Takano (1992) 

present results which suggest that the type of the reflecting object can be decided by ex­

amining the ‘acoustic transfer function’ of the object. The acoustic transfer function of 

an object determines how the transm itted waveform is changed to give the echo waveform. 

Sasaki and Takano’s results are presented as graphs of the transfer functions from a variety 

of objects. Further research would be required to determine whether this m ethod could 

form the basis of a rehable, automatic, classification system. If so, it could eliminate one of 

the most troublesome ambiguities in the map construction in this thesis: line objects versus 

point objects.

20.4 Elim inating Am biguities and Inconsistencies

An essential property of the sonar model and the map construction algorithms described in 

this thesis is that sensor data is interpreted in terms of previously-obtained knowledge. A 

sonar reading is used to update the properties of a matching confirmed object, if such an 

object has been found; otherwise, it could be used to create a new object. Each reading is 

explained in the context of earlier readings.

It became clear during the map-building experiments tha t it would sometimes be useful
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to  re-examine earlier readings in the context of later ones. For example, it is possible tha t 

a ‘ghost’ feature could be created in the early stages of map building because of multiple 

reflections from a smooth wall. That smooth wall would later be added to the map, making 

it obvious to  a human observer tha t the original feature was a ghost. Re-examining the 

early conclusions in the light of the later findings could eliminate tha t ghost object. Zelinsky 

(1991a, page 15) uses a similar idea to identify false reflections when tracking the boundary 

of an object.

A s i m i l a r  situation was observed when ARNE was mapping a wall which lead to  a convex 

corner. The wall had already been confirmed and ARNE was gradually extending the Hne 

towards the corner. If ARNE then steps beyond the comer it could detect the comer for 

the first time. At this stage there would not be a confirmed point to explain the confirmed 

reading and the reading might be consistent with an echo from the wall. ARNE would then 

sHghtly over-extend the Hne beyond the comer. Later in the exploration, the corner might 

be detected and confirmed from elsewhere in the room. Re-examination of the wrongly- 

interpreted reading would now show that it could have been caused by the corner or by the 

wall. This ambiguity would justify reversing the earHer interpretation and shortening the 

Hne.

It would, of course, not be practical to  keep old sensor data indefinitely, but a small 

store could prove useful in cases such as those described above.

Table 18.2 showed that roughly half of the sonar retum s tha t were taken during the 

waU-foUowing explorations remained unexplained. It is Hkely tha t ideas such as these could 

decrease th a t fraction.
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T he Feature-M ap D ata  Structure

Figure A .l is a simplified entity-relationship diagram which shows the mmn components of 

the feature-based map and the relationships between them.

Tables A .l to A.11 list the data elements owned by each of the entities in Figure A .I. 

Note th a t all of the entities are contained, either directly or indirectly, within the “M ap” 

entity. This reflects the fact that the map is implemented as a single shared data structure 

w ithin C \
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Map

A
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A
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Reading

/ \ A
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Grouped
Lines

Confirmed
Line

A  /
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/

Grouped
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Confirmed
Point

Contact
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Figure A .l: Entity-Relationship Diagram of The Feature-Based Map
The relationships between the entities within the feature-based map. The “crow’s feet” are used on the

‘many’ end of a one-to-many relationship.
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M ap
up[] Array of viewpoints
e/[] Array of elementary lines

Array of grouped lines
cl[] Array of confirmed lines
ep[] Array of elementary points
9P[] Array of grouped points
cp[] Array of confirmed points

Table A .l: D ata Elements of the “M ap” Entity

V iew po in t
Xyp X co-ordinate of robot
Vvp Y co-ordinate of robot
Oyp Orientation of robot
raw^[] Array of raw sonêir returns
7*e(id̂ p[] Array of sonar readings

Table A.2: D ata Elements of the “Viewpoint” Entity

R aw  S onar R e tu rn

0>raw Angle of the return (relative to the robo t’s orientation)
T’raw Range of the return
Sraw Status

Table A 3: Data Elements of the “Raw Sonar Return” Entity
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S onar R ead ing

^read Angle of the reading (relative to the robot’s orientation)
^read Range of the reading
clptr fgadW Array of pointers to the elementary lines which explain the reading

Array of pointers to the elementary points which explain the reading
^read Count of the number of raw sonar returns which have been 

merged to produce the reading
^read Status

Table A.4: D ata Elements of the “Sonar Reading” Entity

E le m e n ta ry  L ine

Xel[2] X co-ordinates of end-points of line
ye/[2] Y co-ordinates of end-points of line
vpptrei[2] Pointers to viewpoints from which the line was seen
rdptr^l[2] Pointers to readings by which the line was seen
Sel Status

Table A.5: D ata Elements of the “Elementary Line” Entity

E le m e n ta ry  P o in t

®e/ X co-ordinate of the point
Vel Y co-ordinates of the point
VpptTel[2] Pointers to viewpoints from which the point was seen
rdptr^i[2] Pointers to readings by which the point was seen
Sel Status

Table A.6: D ata Elements of the “Elementary Point” Entity

G ro u p ed  Lines
elptTgil] Array of pointers to the elementary hnes which form this group

^gl Status

Table A.7: D ata Elements of the “Grouped Lines” Entity

G ro u p ed  P o in ts
epptVgil] Array of pointers to the elementary points which form this group
Sgl Status

Table A.8: D ata Elements of the “Grouped Points” Entity
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C onfirm ed  L ine
ad Angle of the hne
Xd[2] X co-ordinates of the end-points of the line
yd[2] Y co-ordinates of the end-points of the line
sigxd Sum of the x co-ordinates of all contact points
sigVd Sum of the y co-ordinates of all contact points
sigx2d Sum of the squares of the x co-ordinates of all contact points
sigy2d Sum of the squares of the y co-ordinates of aU contact points
sigxyd Sum o f  X * y  for aU contact points
CUdW Array of contact points for this hne
glptvd Pointer to the originating grouped hne
Scl Status

Table A,9: D ata Elements of the “Confirmed Line” Entity

C onfirm ed  P o in t

®cp X co-ordinate of the point
yep Y co-ordinate of the point
^igxcp Sum of the x co-ordinates of ah contact points
sigycp Sum of the y co-ordinates of ah contact points
CTlcpO Array of contact points for this point
gpptTcp Pointer to the originatmg grouped point
Sep Status

Table A.10: D ata Elements of the “Confirmed Point” Entity

C o n ta c t P o in t

®cn X co-ordinate of the contact point
yen Y co-ordinate of the contact point
VpptTcn Pointer to the viewpoint associated with the contact point
rdptvcn Pointer to the reading associated with the contact point

Table A.11: D ata Elements of the “Contact Point” Entity
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T est R oom s

Figures B .l to B.8 show the test environments for the exploration experiments. Two figures 

are given for each environment. The first diagrzim shows the walls and objects in the envi­

ronm ent. It also shows the positions and orientations from which exploration experiments 

were started. The second diagram for shows the ‘ideal’ free-space map which would result 

from complete knowledge of the objects in the environment.
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Figure B.l: A Diagrammatic Map of the ‘Empty’ Environment

Figure B.2: The Ideal Free-Space Map of the ‘Em pty’ Environment
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Figure B.3: A Diagrammatic Map of the ‘Columns’ Environment

fm

Figure B.4: The Idezil Free-Space Map of the ‘Columns’ Environment
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Figure B.5: A Diagrammatic Map of the ‘Walls’ Environment

Figure B.6: The Ideal Free-Space Map of the ‘W alls’ Environment
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Figure B.7: A Diagrammatic Map of the ‘Trap’ Environment

Figure B.8: The Ideal Free-Space Map of the ‘Trap’ Environment
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Finding the B est-F it Line

This Appendix gives the details of the calculations by which a line is fitted to a set of sonar 

observations.

It is initially necessary to distinguish two cases; the creation of a new confirmed line 

and the updating of an existing confirmed line. In both cases the confirmed Hne is fitted to 

a number of contact points, one for each sonar reading which corresponds to the line. The 

only difference is in the way the contact points are determined.

A confirmed Hne is created by ‘upgrading’ a cluster of elementary Hne segments. As 

explained in Section 7.1, each Hne segment has two contact points. Since segments are 

added to the cluster if they shcire a sonar reading with a segment already in the cluster, 

it is common for a single sonar reading to correspond to more than one segment. To 

avoid giving unnecessary weight to these ‘multiple’ readings, the confirmed Hne is fitted 

to a single contact point for each sonar reading. It is therefore necessary to calculate an 

‘average contact point’ if the sonar reading corresponds to multiple segments.

If, on the other hand, the confirmed Hne is to be updated then the Hne already has a 

number of contact points and a new one is to be added. As explained in Section 7.3, a 

contact point is obtained by talcing a point at the measured distance from the robot in a 

direction normal to the Hne.

In either of these cases, the Hne-fitting process begins with an array of n contact points, 

cpciW, each of which has co-ordinates {xcp, ÿcp)- (See Appendix A for Hstings of the attributes 

of the feature-map.)

The chaHenge of Hne fitting is to find a Hne such that the sum of the squared perpen­

dicular distance from aH the points to the Hne is minimised.

The best-fit Hne passes through the centroid of the contact points {x,ÿ). Its gradient.
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Qj is computed in stages. F irst, the variances and covariance are calculated:

<r„ =  -  ^ (»cp[i] -  x f  (C .l)
^  t = i

^yy-~Z “  ÿ)  ̂ (^-2)
^  i=i

=  7  -  x){y^[i\ -  y) (C.3)

The gradient is then given by:

n
t = i

,  = (C.4)

where

d =  (C.5)
(Txy

There is, however, one remaining check to be made. In Equation C.4 one could choose 

the positive or negative value of the square root. One of these values gives the best fit 

hne through the centroid and the other gives the worst. If one takes the positive root in 

Equation C.4 one can then check whether it is the best fit by evaluating:

h =  axy{2g^ — 6g) + {<Txx ~ ^yy){^9^ ~  1) (^'®)

If h <  0 then g gives the best fit, otherwise the gradient of the best fit Hne is given by 

g‘ where g’ =  —1/g. For the remainder of this Appendix, g wiU be taken to denote the 

gradient of the best fit Hne. The angle of the Hne, Ocf, is then arctan^.

The end-points of the Hne are found by projecting each contact point normally on to the

best fit Hne. The normal from the ith  contact point meets the best fit Hne at (®tnt[i]j yint[i\)

where:
+ +  (C.7)

and

yint[i\ =  ÿ + g(xint[i] -  x) (C.8)

If the minimum value of occurs when i =  imin, then Xcz[l] =  Xint[imin] and

yd[I] =  yint[imin]- Likewise if the maximum value of Xint[i] occurs when i =  imax, then

®cf[2] =  ®tnt[®max] and ycz[2] =  yint[^max\'



A ppendix D

A R N E ’s Standard D ialogue

The table on page 247 lists the input commands to ARNE’s control software. The responses 

to each command are also listed.
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Command Meaning Response
u Ultrasonic Scan (U a d) * 19 

S 0
1 a Turn Left S 0 

H pa
r a Turn Right S 0 

H pa
i d Move Forward S 0 (Move Successful) or 

S 1 (Obstacle Detected) or 
S 2 (Collision Occurred)
D pd

Table D .l: Commands and Responses of ARNE’s Control Software

Legend

a Angle (degrees)

d Distance (mm)

pa Precision Angle (units of 0.1 degree)

pd Precision Distance (units of 0.1 mm)

N otes

• Spaces are optional between the command mnemonic and its parameters.

• AU angles are measured in the standard mathematical way: angles increase anticlock­

wise and zero degrees is directly in front of the robot.

• Angles returned by turn  movements (‘H pa’) indicate the change in orientation caused 

by the movement.

• The ultrasonic scan moves in steps of 18 degrees. Only 19 values are returned because 

one reading is obstructed by the ‘ta il’.
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