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Abstract of the Thesis.

This Thesis studies the limits of applicability of state of the art electronic structure calculations,
for predictive modelling and simulation of properties of dielectric materials. These materials play a
fundamental role in microelectronics technology, as gate insulators in MOS devices.

Current devices are largely based on the properties of the Si/SiO2 system. Large attention
has been paid to the change in the energy barrier experienced by carriers at the junction, as the
oxide layer becomes thinner. We have calculated the valence band offset at the Si/SiO2 interface,
directly from first-principles calculations of different models of Si/SiO2 junction. We studied the
dependence of the results on the choice of Hamiltonian and basis set, and found that the best results
are obtained when using the B3LYP scheme and basis sets containing polarisation functions. We
have shown that the interface states are confined in a region of the oxide whose dimensions do not
depend on the thickness of the dielectric layer.

Hydrogen is believed to play a fundamental role in the processes that lead to the breakdown of
the dielectric. We have calculated the stable sites for atomic hydrogen inside silica using a Density
Functional Theory scheme. We found two shallow but stable minima in the same channel of the
quartz structure, indicating that some type of interaction exists between the impurity and the host.
We found that Hydrogen actually becomes polarised. The results, however, are critically affected by
two of the approximations of the method: the approximative treatment of the exchange-correlation
interaction, and the classic treatment of hydrogen nuclei. We have also calculated the isotropic
hyperfine interaction parameters for H inside quartz, that can be compared directly with data from
EPR experiments. The results, however, appeared to be very sensitive to the quality of the basis
set.

Materials with higher dielectric constant than that of SiO2 are being considered as alternative
gate dielectrics. Their reliability of the material, however, depends critically on how easily defects
can be generated, and on the ability of these defects to trap charge carriers that can then tunnel
through the material. We have studied the energies of formation and the ionization potential and
electron affinities of cation and anion vacancies, as well as substitutional Zr inside HfO2. All these
properties are defined as ground-state properties, and corrected for the underestimation of the band
gap, typical of the Density Functional Theory scheme employed. Energy of formation of O vacancies
is much lower than that of cation vacancies. The O vacancies are shown to be able to trap electrons
when positively charged, and holes when neutral.

First-principle techniques are very computationally demanding methods. Alternatively, semi-
empirical methods can be employed to explore the properties of systems whose sizes are out of the
range of the ab initio schemes. We have updated an implementation of the INDO method in order
to allow the study of systems containing several hundreds of atoms in single processor machines. A
set of parameters for studying compounds containing Si, O, N and H using this technique has also
been developed and tested. It allows the description of bulk structures of Si/SiO2, SizN4 and SiON
with differences of 0.1 A and 5° with respect to experimental bond-lengths and angles, respectively.
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Aim of this Thesis.

Many problems that are believed will interfere with the progress of miniaturization of
microelectronic planar devices have been linked to the loss of reliability of the gate
dielectric in MOSFET transistors. Currently, silicon dioxide is almost exclusively
employed as a gate dielectric, but most of the problems are actually linked to the
use of this material.

The relatively low dielectric constant of silica requires using very thin layers
in order to maintain device performance. At such a small thickness, the material
loses its insulating properties, since the probability of tunnelling of carriers increases
dramatically. Charge trapping caused by point defects may also trigger breakdown
processes.

Quantum mechanical modelling allows one to relate the properties of the ma-
terials to their microstructure. There are, however, important limitations in the
application of these techniques. The cost of the calculation imposes a strong con-
straint on the size of the models that can be used, therefore making the stage of
modelling of the structure crucial.

The overarching aim of my studies has been testing the limits of applicability
of several quantum mechanical methods, for predictive modelling and simulation of
properties in dielectric materials. This research has been funded by Fujitsu Labo-
ratories Japan, and benefited from close collaboration with Dr. C. Kaneta, and her
colleagues.

The three topics selected for the study have been the Si/SiO9 interface, atomic
hydrogen inside a-quartz, and some point defects inside zirconia and hafnia.

The first study intends to find a simple way to monitor the change in the electronic
structure across the interface. The aim is to understand how the height of the
barrier found by the carriers at the interface changes as the thickness of the oxide
layer is reduced (this is a main concern for the developers of MOSFET technology).
We also have studied the dependence of the height of the barrier on computational
parameters, like the Hamiltonian or the basis sets that determine the accuracy of the
calculation.

The second study intends to contribute to the understanding of the behaviour of
hydrogen inside silica (also an old problem in microelectronics). Special attention
will be paid to understand the effect of some of the approximations that are assumed
in the techniques, like the classical treatment of the hydrogen nuclei (within the
Born-Oppenheimer approximation) or the approximate treatment of the exchange

13
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and correlation interaction by the DFT techniques.

The third topic is the modelling of defects inside alternative dielectrics that could
substitute silica as gate insulator. Before this could happen, the reliability of the
materials should be carefully asserted. The trapping ability of the defects inside
the materials is one of the factors to study. This requires one to consider further
corrections for the error introduced while calculating the position of the unoccupied
states. A correction of this type will be presented and discussed.

There is, finally, a part of the Thesis that has focused on the development of
computational tools rather than on its application. The aim has been to develop
a program for calculation of the electronic structure of solids that will allow very
fast calculations, ideally concerning systems with many atoms. The intention was
to use such a tool on a first analysis of potentially interesting systems, prior to the
employment of more accurate, but also more computing demanding, techniques.

We considered that semi-empirical techniques are interesting candidates for this
type of task.The work presented here consists on an updating of a code implement-
ing an INDO technique. This included an optimisation of the algorithms, and the
addition of new features, that improved the range of applicability and accuracy. The
parameterization required by the INDO method was also developed and tested for
systems containing silicon, oxygen and nitrogen.

Structure of the text.

The text is organised as follows. The first chapter provides an introduction to the
MOS technology, and to the problems that interfere with its development. The aim
is to give an idea of the relevance of the problems studied along this Thesis.

The second chapter provides theoretical background. Special attention is paid
here to describe very specific issues of the techniques and codes employed in this
research, which may not be of common knowledge.

Chapter 3 describes several issues concerning the data analysis. This chapter
focuses of describing how the physical properties of interest here are calculated from
the information extracted in the electronic structure calculations.

Chapters 4, 5, 6 and 7 are devoted to present and discuss the research. Each
chapter covers one of the topics already listed, and contains an introduction to the
problem, a review of the research done so far, a presentation of the result, and an
analysis and discussion of the results.

Last chapter contains the conclusions, where the relevance of the results of the
study is discussed.

14
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Chapter 1

Motivation and technological

context

1.1 Semiconductor technology. Reaching the limits.

Micro-integrated circuits (micro-chips) are among the most transcendental human
inventions of all times. These devices are able to perform logical and arithmetic
operations at much faster rate than any other known device. In addition, its pro-
duction reports very attractive benefits. This has triggered the development of a
powerful industry and required a very active research in order to keep a sustained
rate of development; the performance of the devices has doubled in periods of two
or three years !. As impressive as the rate of evolution and the rate of benefits of
microelectronics industry is the fact that it is entirely based in a single, and simple
strategy: reducing the size of the circuits.

The reason why miniaturization has such deep impact is that by reducing the
size of the circuits a reduction both of the amount of material employed and of the
energy consumed by the device when operating is achieved, all this without essentially
modifying the nature of the process of manufacturing.

The research teams have found several difficult problems during the forty years of
activity, and have many times managed to overcome them. Despite this, the oracles
of the industry predict that the rate of development will suffer a drastic slowdown
in approximately ten years time, since (yet another) fundamental problem will be
found. Are these truly fundamental limits?

1This empirical rule was actually established by Moore [1] in the early days of the industrial
production of micro-chips. The law, that has been so far fulfilled, describes the exponential growth
of the complexity of the circuits due to the decrease of the size of the devices. This influences circuit
speed, memory capacity and cost per unit.

16



ﬁ. CHAPTER 1. MOTIVATION AND TECHNOLOGICAL CONTEXT

1.2 The importance of the Si/SiO; system.

The reliance, almost exclusively, on the miniaturization process for improving the
technology is due to the nature of the process of manufacturing?, and this in turn is
possible because of the properties of the Si/SiO2 system.

The basic building block of the logical circuits is the transistor, which can be
operated as a controlled switch and therefore process binary information. The most
efficient design of transistor so far is the Metal-Oxide-Semiconductor Field Effect
Transistor (MOSFET). A schematic representation of the cross-section of a MOSFET
is shown in Figure 1.1. In this device, the flow of current (main current) between the
source region and the drain region is controlled by means of a bias applied to the gate.
The source and drain are built as to have a different density of charge carriers (i.e.
holes and/or electrons) than the channel region that separates them. This density
of carriers can be, however, modified by applying the gate bias. All this process is
possible thanks to the existence of a dielectric layer separating the gate from the
channel, and preventing carriers from escaping through the gate. This dielectric
is silicon dioxide. The reason is that silica displays high resistivity and dielectric
strength, a large band gap, and a very low density of defects at the interface with
silicon. However, some other features of the material present many problems that
seem difficult to solve, but should be present soon in the microelectronics landscape.

1.3 The problem of the ultimate width. Exploring the

interface properties.

Silicon dioxide has a relatively low dielectric constant (x = 3.9). This forces one to
use thin dielectric layers in the transistor in order to achieve capacitance enough as
to produce the required main currents. If the present design of a transistor is kept,
then the oxide gate layer is by far the thinnest in the whole structure (as it can be
seen in figure 1.1). Predictions are that this thickness should be less than 1.0 nm for
the year 2012 [2].

The main problems detected when constructing ultra-thin layers of silica are im-
purity penetration through the oxide, enhanced scattering of the carriers, reliability
degradation, high gate leakage current and the need to grow very controlled uniform
layers [3, 2]. In fact, most of the works that try to predict the ultimate width of the
dielectric layer center their attention on the tunneling problem [4, 5, 6].

The wide band gap of bulk silica prevents the appearance of a carrier current be-
tween the gate and the channel regions. However, basic quantum mechanics predicts

2The structure of the micro-integrated circuits is built by overlapping layers of materials with
different electrical properties. These properties are accurately controlled by means of doping and oxi-
dation processes. The layers have different patterns that are implanted following a photo-lithography
process. A reduction of the size of the circuits can be achieved, in principle, by reducing the size of
the patterns implanted. The basis of the lithographic process is the use of masks to protect specific
regions of the circuit. Silicon oxide is often used as masking material because it can easily be grown
over the silicon substrate as native oxide, and it is chemically and mechanically stable over it.
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Figure 1.1: Schematic representation of a MOS system.
The (dielectric layer (in red) is usually made of silicon dioxide, and is the thinnest structure inside
this type of device. Predictions are that the thickness of the silica layer will be as small as a
few atomic layers. In the magnified region, a schematic representation of the microstructure of
the system is shown. The red tetrahedra are the fundamental SiO” structural units of the oxide,

whose structure lacks of long-range order.

that the tunneling probability increases exponentially with the decrease of the oxide
layer width [7]. Furthermore, layers with a thickness of around 1 nm contain around
five atomic layers, from which two have been reported by experiments to belong to
the interface [5]. The materials in the interface region do not display bulk properties,
and therefore predictions based on bulk data are probably inaccurate. This problem
is very representative: the devices are becoming so small that the quantum nature
of the materials starts to manifest (in this case, as tunneling of carriers) and also
structures that at the beginning constituted a small part of the MOS system (like
the interface), are now an important part of it, and determine its properties. Both
reasons justify that this time the researchers may be right in saying that the problems
are truly fundamental.

It is becoming essential to obtain a clear picture of the evolution of the electronic
structure at the interface, in order to be able to predict with accuracy the behavior
of devices based on ultra-thin oxide layers, and understand which mechanisms are
involved, and how parameters like the roughness of the interface, the structure of the
oxide or the density of defects affect to it.

The study presented in chapter 4 gives an overview of the capacity of state of
the art first principles techniques to describe the electronic structure at the interface.
A fundamental parameter, the valence band offset, has been chosen as a case study,
and a comparative performance of different techniques, basis sets and models of the

interface is shown.
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1.4 Solutions for the tunneling problem. High-« dielectrics.

The need to scale down the gate dielectric thickness at the same rate as the rest of
the device is due to the low dielectric constant of silica. If the present structure of
MOSFETs is kept, then the most easy solution for allowing further scaling down is
the substitution of the gate dielectric.

One of the fundamental physical limits that the scaling down process is going to
reach soon is the tunnelling of electrons between the channel and the gate electrode
[7]. Experimental [5] and theoretical [8] studies predict a limit to that thickness (for
the case of SiO9) in a range between 7 and 14 A. Tt is also known that the tunnelling
current will contribute substantially to the overall leakage current at these scales.

The tunnel effect has explanation only in the framework provided by quantum
mechanics. Two main factors determining the size of the effect are the thickness of
the layer, and the barrier heights between the SiO2 and the Si. In fact, both factors
are interrelated as a thin layer presents a lower barrier, so it should be expected that
the ultimate thickness should be a compromise between the thickness giving both
acceptable tunnelling current and barriers [8].

The MOSFET device acts as a capacitor, and therefore the capacitance depends
directly in the thickness of the dielectric. Capacitance is given by:

C= A4 (1.1)

t
where & is the dielectric constant, A is the area, and t the thickness. It is straightfor-
ward to conclude from this expression that a material with higher dielectric constant
will allow to employ thicker layers without decreasing the capacitance. The increase
in the thickness will, on the other hand, avoid the undesired tunnelling. In the

microelectronics community the concept of equivalent thickness is used frequently:

KSi0
teqy = ——2t (1.2)
Kz

here t, and k; are the thickness of the layer and the dielectric constant of the
alternative material. The equivalent thickness Z.qy is the thickness of a layer of Si0;
that will be required to obtain the same capacitance as that given by the layer of
alternative material. If the new material has a higher dielectric constant « than that
of silicon dioxide, then a thicker gate layer can be used without losing the required
capacitance. The bigger thickness will prevent the appearance of direct tunneling
current between the gate and the channel.

The search for alternative dielectrics has been active for many years. The task is
not so simple, because the materials have to fulfill many other characteristics apart
from displaying a high [9]. The new dielectric should be mechanically stable over the
silicon substrate, and the growth of too thick interlayers of SiO; should be avoided.
These requirements constrain the group of materials to those shown in colour over the
periodic table in figure 1.2. Additional conditions are the possibility of controlling
the quality of the interface with Si, and the resistance to diffusion of oxygen, dopants
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Figure 1.2: High-/c dielectrics.
The oxides of the elements that appear coloured are being considered as possible substitutes for
silica as gate dielectrics. These oxides are the only ones that are stable over silicon substrate,

and do not get reduced to form Si02 interlayer.

and impurities, and the reliability of the dielectric. The degradation of'the dielecric it
is directly related to the accumulation of charge inside the material [3]. It is therefore
important to understand the mechanisms by which the materials become charged.

Historically, the search for a new dielectric started by considering materials which
were familiar for the MOS community. Silicon nitride was the first material in the
list, because it can be easily grown in a process similar to silicon oxide. Silicon
nitride has a dielectric constant k=7.0, while silicon oxide has k=3.9. Silicon nitride
presents, however serious disadvantages: lower barriers for the carriers, and a density
of defects several orders of magnitude higher than the oxide [10]. Surprisingly, this
is not the case of the oxynitride. Incorporation of nitrogen into the oxide network by
annealing in NHs reduced the defect generation rate, while allowing one to increase
the thickness of the layer. The effect of controlling defect formation is believed to
be due to the ability of nitrogen of controlling hydrogen diffusion™ [9j. Nitrogen has
also been found to be efficient in controlling the diffusion of Boron ions from the
doped Silicon layers [9], but for this effect to happen efficiently a high concentration
of Nitrogen is required. A Si-N-0 compound with a high concentration of Nitrogen
is difficult to achieve without causing a decrease in device performance, because
threshold voltage shifts appear. This is due to a positive charging of the layer as
Nitrogen incorporates to the SiOg network, and to a non-homogeneous distribution
of Nitrogen while this incorporation takes place.

The experience with Nitrogen pointed out the need to impose more selection
rules on the search for the dielectric. Certainly the density of charge traps is another
important parameter, since they are precursors for the dielectric breakdown process.
The next materials tested, Tazos, Tio2 and (Baa;Sr2;_i)Tios (short-named BST),

were also familiar to the MOS community from their use in some related devices, like

AThe relationship between hydrogen and the formation of defects in silicon oxide is explored in
more depth in chapter 6.
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bulk-capacitors, and DRAM memories. All of them presented problems of stability
when grown over the Silicon substrate, outlining yet another important parameter
to consider.

Despite its low dielectric constant, silicon dioxide displays almost unique struc-
tural characteristics 4, which are not exhibited by any other candidate, so far. Po-
tential candidates like Ta20s, TiO2 and BST show tendency to react with Si at the
interface. Despite these problems, heavy work has been done in developing TazOs-
based technology and it seems that at least two generations of memory devices can
be based on it [11]. Predictions from the industry [2] suggest that TagOs could also
be used in the development of a generation of transistors, and the next can make use
of BST materials. Calculations of the barriers for carriers at the interface of each
one of these materials with Silicon done by Robertson [12] suggest that the height
of the barriers is too small, making them poor gate oxides. This is especially true if
the density of dopants on the Silicon layers is increased.

Also with the status of known temporary solution is Al2O3, a well-characterized
and familiar oxide (Aluminium has been widely used as gate electrode material),
which presents wide gap (8.8 eV [12]) and high barriers, but not very big dielectric
constant. Such a material could also be used in next generation, providing a thickness
big enough as to avoid tunnelling, and with a capacitance similar to a layer of SiOq
around 10-15 A wide. Further scaling would present similar problems to silicon
dioxide.

One of the characteristics that make silicon dioxide so attractive is its flexible
amorphous structure. Amorphous structures show no grain boundaries or facets,
which favour leakage current and cause fluctuations of the electrical properties. Often
they also present very low density of defects at the interfaces, because of their capacity
to adapt their structure, as to saturate most of the dangling bonds that are present
at the junction®.

In chapter 5 I study the electrical properties of some point defects inside two
materials that are being considered as possible alternative dielectrics: Hafnia and
Zirconia. The ability of defects to act like point charges and substitutional impuri-
ties is discussed in terms of their ionization potentials and electron affinities. Some
work presented in chapter 7 concerns the electronic structure calculations (at semi-
empirical level) of silicon nitride and silicon oxynitride, which have been considered
for long time as possible alternative dielectrics[3]. Nitrogen is indeed used in cur-
rent MOS systems to improve reliability of the gate dielectric, and stop diffusion of
boron [9], and therefore there is interest in obtaining a clear understanding, at the
microscopic level, of the role played by this species when introduced inside silicon
dioxide.

“A more detailed description of the properties of SiO2 can be found in section 4.2.1 .

5The dangling bonds appear due to the change in the density of species with a given coordination
on each material forming the junction. In the particular case of the Si/SiO2 interface, the density
of four-fold coordinated Si atoms is approximately three times bigger in the crystalline Si than in
the oxide.
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1.5 Dielectric reliability. The role of hydrogen.

The electrical stress caused by operation of the devices degrades the microstructure of
the oxide, modifying its properties. Breakdown processes are triggered if the charge
accumulates excessively, causing the device to fail [3].

The mechanisms of breakdown are complex and still further research is required
for full understanding. In the initial step of charge trapping, one possible mechanism
involves the presence of Hydrogen and its diffusion through the oxide.

Hydrogen is always present in the MOS systems, due to its use as a gas (Hz)
in annealing processes during the manufacturing of the device. Hydrogen has been
reported to passivate defects at the interfaces and therefore reduce structural strain.
This interfacial hydrogen can be freed by electrons tunneling through the oxide, and
then diffuse through the dielectric, generating electron traps.

Many different computational methods have been employed in the study of these
processes. The success of theoretical modelling on justifying Hydrogen’s behavior
inside silica very much depends on the charge state of the ion. Both H* and H~
interact strongly with the host, creating chemical bonds that limit the mobility of
the ions, and allow simulating the system even using cluster models [13, 14, 15,
16]. Neutral Hydrogen (H°) constitutes a much more difficult target, given its weak
interaction with the host. Hydrogen is also the lightest element, making it necessary
to account for its quantum nature.

Current DFT implementations make use of approximate functionals that intro-
duce a certain error, especially when describing the exchange and correlation interac-
tions. Hydrogen constitutes once more the extreme case, given that it only contains
a single electron. Despite this limitation, there are already several works that have
used DFT techniques for studying neutral hydrogen inside silica [17, 18, 19]. In my
opinion, all these works are assuming that neutral Hydrogen can be described using
DFT with the same accuracy as any other element of the periodic table, without
considering the points just outlined above. The study presented in chapter 6 tries
to fill this gap, analyzing in detail the results and also trying to contrast them with
experimental data.

The paramagnetic character of neutral hydrogen makes it ideal for Electron Para-
magnetic Resonance (EPR) experiments, which provide useful structural informa-
tion. Fortunately, several EPR measurements have been done for neutral Hydrogen
in a-quartz [20]. The choice of a crystalline host has many advantages for the char-
acterization of the system, since many of the sites where Hydrogen can stay inside
the crystal become equivalent by symmetry. In the amorphous systems, on the other
hand, the disorder of the structure makes any possible site virtually different from
all the others, and therefore the study has to include statistical sampling. From
the point of view of computational methods, translational symmetry can also be
employed to reduce the cost of the calculation to within affordable limits (see next
section). Both because of economy of the calculations and possibility to compare with
the experimental data, we have also considered a-quartz as the host for hydrogen.
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1.6 Computational methods as a tool for research.

In the struggle for achieving faster and cheaper devices, computational methods are
gaining weight as research tools, for the simulation of new materials or the interpreta-
tion of complex experimental data concerning the action of defects or the relationship
of microstructural features with electrical properties.

The three chapters referred to up to now in this introduction (4, 5 and 6) make
use of first principles Hartree-Fock and/or Density Functional theory techniques,
which are among the most popular for electronic structure calculations. They can
be successfully applied to the study of point defects (see chapter 5 on point defects
in hafnia and zirconia), although there are some intrinsic limitations due to the
approximations implemented in the methods (see chapter 6 on diffusion of hydrogen
in quartz), and therefore results should always be analyzed critically.

Another important limitation of the first principles techniques is the computa-
tional cost associated with them. On its application to solid state physics and chem-
istry, translational symmetry has been exploited for the simulation of crystalline sys-
tems. It is well known, however, that gate dielectrics display an amorphous structure,
and therefore modelling these systems using periodic models is an approximation.
There has been a long discussion about the effect of long range disorder in the prop-
erties of materials (see, for instance [21, 22, 23, 24]), and the discussion still remains
open.

The use of semi-empirical techniques allows a remarkable reduction of the com-
putational cost, although the accuracy and transferability is lower than in the first-
principle methods. This makes semi-empirical methods ideal for carrying out exten-
sive exploratory calculations. The remaining chapter of results (chapter 7) follows
the latter approach. The INDO semi-empirical technique is basically an implementa-
tion of the Hartree-Fock scheme, where further approximations have been made for
achieving computational efficiency. These approximations are based on neglecting
selectively some integrals representing electron-electron interaction. These integrals
are replaced by parameterized values. The price paid is that the results become
parameter-dependent and are also affected by the new approximations, but in ex-
change systems with many more atoms can be simulated. The work presented in
chapter 7 concerns the set up of a code for performing INDO calculations, and also
the fitting of a set of parameters for studying some dielectric materials: silicon diox-
ide, silicon nitride and silicon oxynitrides.

These targets were fixed as part of a collaboration project with Fujitsu Japan,
who showed interest in developing a tool that will allow a quick simulation of new
materials, previous to more detailed analysis. The character of this chapter focuses
in the development and improvement of the INDO scheme in the program. Several
calculations of systems of interest are presented to prove the validity of the tech-
nique, and a possible application for determining the presence of localized states in
amorphous networks is shown at the end.
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Chapter 2

Methods of calculation

2.1 First-Principles techniques and codes.

All the studies concerning gate oxides that will be presented in this Thesis are based
on results from first principles electronic structure calculations performed using either
Hartree-Fock (HF) or Density Functional Theory (DFT). Both theories are widely
employed in both computational chemistry and solid state physics, they have been
extensively described elsewhere, and their capabilities and limitations have been
explored for tens of years.

Since solids can be seem as “big molecules”, the distinction between chemistry
and solid state may seem arbitrary, but it is actually necessary and defines two big
areas of research, with remarkably different approaches. The use of periodic models
is more popular in the solid state disciplines, because this allows taking into account
the long-range interactions and to avoid the surface effects of the cluster models.
This approach has been widely employed here, and its advantages and disadvantages
will be discussed in 2.2.

There are several texts devoted to the introduction of electronic structure cal-
culation techniques, containing brief introductions to each one of the methods, and
often present comparative studies. I have found particularly interesting and useful
the texts by Springborg [25] and Ohno et al. [26]. It is also worth mentioning the
book by Pisani, that focuses attention on the difficulties found while studying the
electronic structure of extended systems [27]. An interesting comparative study of
the accuracy of the different techniques in the specific case of (semiconductor) solid
systems can be found in the work by Muscat et al. [28].

In what concerns the Hartree-Fock method, a very exhaustive derivation can be
found, for instance, in the book by Szabo and Ostlund [29]. The implementation of
the HF theory for the case of periodic systems turns out to be particularly compli-
cated, mainly because of the non-local character of the exchange operator. This is
also the reason why there are very few codes based on the HF technique for studying
periodic systems. A detailed discussion on the evaluation of the exchange interaction
at HF level will be given in 2.3.

All the HF calculations in this work have been carried out using the CRYS-
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TAL 98 package, developed at Torino University (Italy) and Daresbury Laboratory
(UK) [30]. This program is also unique in allowing switching between many different
Hamiltonians, therefore opening the possibility to evaluate the accuracy of different
techniques. An example of this type of comparative study is given in chapter 4. The
CRYSTAL 98 package employs Gaussian basis sets for generating Bloch functions,
that can be used as basis sets of systems with translational symmetry. There are
several differences between the Gaussian basis sets used in molecular systems and
those used in periodic systems. This topic will be addressed in detail in 2.4.1. Unfor-
tunately, the CRYSTAL 98 package does not allow one to perform efficient geometry
optimization of the atomic structures. This has constituted the biggest drawback
when using this software.

The Density Functional Theory has been one of the main tools for the studying of
extended systems, due to very efficient implementations based on plane wave basis
sets. A relevant text describing this theory is that by Parr and Yang [31]. The
denomination DFT is, however, too general, since there are many different schemes,
that differ essentially in the way exchange and correlation interactions are calculated.
Probably the most relevant techniques used in solid state have been the Local Density
Approximation (LDA), and the Generalized Gradient Approximation (GGA). A brief
description and further references can be found, for instance, in [25] and [27].The LDA
has been the first and simplest approach. Both exchange and correlation of a given
electron distribution are assumed to have the same value as that of a homogeneous
gas of electrons with the same density. The GGA approach is able to account for
the inhomogeneity of the electron distribution, through the information contained
in the gradients of the density. The concept underlaying the GGA approach is to
expand the expressions that describe the exchange and correlation as a truncated
series, including terms containing the gradients of the density. Despite the gain in
accuracy with respect to the LDA in many applications, it is worth noting that
further improvements based in expansions that consider terms of higher order have
not lead to any significant improvement.

I have employed the VASP 4.4 code [32], for performing first principles electronic
structure calculations at DFT-GGA level, using plane wave basis sets, whose main
characteristics are discussed in 2.4.2. This program becomes particularly efficient due
to the use of ultra-soft pseudo-potentials to simulate the presence of core electrons.
A detailed description of this is given in 2.4.3. The VASP package allows performing
very efficient geometry relaxation.

The HF and DFT schemes are somehow complementary in what concerns some
of their limitations. The HF technique does not account for electron correlation
effects, but provides a way for evaluating exactly the exchange interaction. The DFT
schemes, on the other hand, evaluate both exchange and correlation interactions, but
in an approximate way. Recently, several hybrid methods have been presented, that
aim to exploit the advantages of both HF and DFT schemes. One of the hybrid
methods that has provided best results is the B3LYP scheme [33], which basically
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allows one to evaluate the exchange and correlation interactions through a weighed
sum of the exact HF exchange and the DFT functionals. This scheme has been
employed here (as implemented in the CRYSTAL 98 code) for part of the studies,
mainly due to its accuracy on the prediction of band gaps of semiconductors and
oxides [28].

2.2 Models used to calculate properties of solids.

Solids constitute a challenge for computational science, since they require one to
describe the contribution due to the long-range interaction. Brute force modelling,
where a huge number of atoms is considered, is currently out of the range of state of
the art methods 1. Very briefly, the different methodologies that have been applied,
so far, for studying properties of solids are:

e Molecular cluster model. A specific region of the solid (like, for instance,
a point defect) is modelled as a molecule. The broken bonds that connect the
cluster with the rest of the solid are saturated with hydrogen atoms. Long-range
interaction is obviously not reproduced, but the mechanical constraint caused
by the presence of the lattice can be partially reproduced if the saturating
hydrogen atoms are kept in fixed positions. Examples of this approach can be
found in the work by Pacchioni and co-workers [34].

e Embedded cluster model. A region of the solid is modelled as a molecular
cluster, and the rest of the solid is modelled at a lower level of theory (classic
model). The broken bonds are saturated using a more or less sophisticated
scheme. Interesting examples of embedding technique can be found in the
works by Shluger and Sushko[35].

e Periodic model. Following the concepts developed for the description of
crystalline systems, a solid is constructed by periodic translation of a cell. The
model, therefore, displays translational symmetry, but the unit cell does not
need to be necessarily a basic crystallographic cell. This opens the possibility
to model complex structures, like defects or amorphous systems, using the
periodic approach, although several factors need to be considered (see below).
Several examples of periodic models will be shown here.

e Perturbed cluster model. This technique is based in the Green Function
Theory. The electronic structure of a “perfect” solid is calculated first (in
practice, using a periodic model). Then a region of the solid is selected and
its structure modified (creation of the defect). The electronic structure of this
region is re-calculated, considering the interaction due to the rest of the solid
as a perturbation. Exchange of charge density between the host and the cluster

!The only exception to this statement will be the so called order-N DFT schemes. Practical
implementations of this schemes were just starting to be available while I was performing the work
presented in this Thesis.
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is allowed. An example of this type of approach can be seen in the work by
Pisani and co-workers [36].

The use of periodic models allows one to obtain a full quantum mechanical descrip-
tion of the system, which is homogeneously consistent , i.e. the electron density is
described with equal accuracy in the whole volume of the cell. Cluster models, on
the contrary, are always affected by the propagation of the perturbation caused by
surface bonds, and reliable descriptions can be obtained only in the most internal
region of the cluster. Perturbed cluster models, which are the only other method
that offers a consistent quantum mechanical description of an isolated defect inside
a solid, have in practice very drastic limitations, that constrain the quality of the
basis sets that can be used. In this work, periodic models have been used almost
exclusively. There are several difficulties and problems with these models, which will
now be discussed in detail in the rest of this section.

2.2.1 Modelling defects in periodic systems. Interaction between im-
ages.

When a periodic model of a point defect is built, there is a contribution to the total
energy of the system due to the interaction between the defect and its images in
neighboring cells. This defect-defect interaction, mainly of electrostatic nature, has
full physical sense. However, it is often not possible to reproduce a system with a
realistic density of defects (i.e. number of defects per unit of volume), since the cost
of the calculations constrains us to employ too small cells. Since the electrostatic
interaction has long-range character, there is a slow convergence of the total energy
with the size of the cell. It is then necessary to substract the contribution due to the
defect-defect interaction, in order to obtain properties of the system that will not
depend on the size of the simulation cell. This is equivalent to obtain a description
of an isolated defect.

Care should then be paid to understand how strong is the interaction between a
defect and its images, and how this interaction affects to the total energy and the
wavefunction. Several studies have focussed their attention to this problem (see, for
instance, [37, 38] and references therein).

In order to estimate the contribution of the electrostatic energy, we consider the
system to be an assembly of point charges (the set of nuclei), together with a contin-
uous charge distribution (electron density). Since it is periodic, the system should
display translational symmetry, an therefore it is possible to find a representative
unit cell (in principle of arbitrary shape). The charge density of the system is then

p(r)= Zzié (r—r;))+n(r) (2.1)

and verifies p(r+ L) = p(r) where L is a lattice vector, and r is a vector in the
three-dimensional space. The electrostatic potential is then given by
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where the sum over the set of lattice vectors is equivalent to an integration over the
whole volume occupied by the system. If the system is infinite, so is the sum (this is
equivalalent to introduce the periodic boundary conditions). In the asymptotic limit
L — o0, the terms of the sum in the right hand side of equation 2.2 have the form
gnPr, cos(6) |L|_("+1) where n is the order of the lowest non-zero multipole gy, of the
charge distribution, and P, are the Legendre functions. It is then possible to proof
[37] that the exact summation of the potential in an infinite lattice is:

é(r) = Z / d*r'p (v {¢(r r)—s—vrﬂ] (2.3)

G2
N , 4m e a7 iG(r-r))
Y (r,r) XL:erfc(n|r r +L|)+ 7 GZ#) re® (2.4)
where V is the volume of the simulation cell, and is a G reciprocal lattice vector.
The result just shown assumes that the unit cell does not contain any significant
non-vanishing multipole. If, for instance, it contains a non-vanishing dipole moment,
an additional term appears in the potential. Such term corresponds to a constant
electric field, whose magnitude and shape depend in the shape of the boundary
conditions and the way the unit cell is defined. This causes ambiguity in the results,
and has been subject of extensive discussion.
In the approach followed here, we have subdivided the density inside a unit cell

containing a defect in two terms:

p(r) = pperfect () + Paefeut (T) (2.5)

where the first density pper fect (T) is that of an unpertured solid (i.e. the solid without
the defect) and the second one pgefeyt (r) is that of the defect itself. We can asume,
without loss of generality, that the density of the perfect solid displays translational
symmetry (Pperfect (¥)=Pperfect (* + L)), and does not have any non-vanishing mul-
tipole. Such splitting of the density can be achieved in practice by performing two
different calculations employing the same simulation cell, but with and without the
defect inside. pperfect (r) corresponds to the density of the supercell without defect,
while pgefeut (r) can be found by substracting the density of the cell containing the
defect from that of the “perfect” cell (the density of the defect is “cutted out” of the
solid).

There are three different contributions to the electrostatic energy. The first one
is the interaction of the unperturbed structure with itself, and the second the in-
teraction between the density of the defect with that of the unperturbed structure.
Both contributions are independent of the size of the unit cell.

The third contribution is due to the interaction between the density of the defect
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and its images, which depends on the size of the cell as discussed. It is possible
to estimate this contribution by an appropriate choice of the boundary conditions.
In the work by Makov and Payne, it was shown that, for cubic unit cells, the total
energy becomes

2 P2
3V

where P is the dipole moment of the defect, and Fgs is the electrostatic energy

Erot = Edef + (2'6)

without any correction, of the cell containing the defect. For a detailed derivation of
the expressions, where the dipole moment is expressed in terms of the point charges
and the uniform density as decomposed in Equation 2.1, we refer to the original
paper and appendix by Makov and Payne. A generalization of the equations for any
Bravais lattice has been presented recently by Kantorovich [38].

Only dipole-dipole interaction has been considered here. For the sizes of cells con-
sidered in our studies, the contribution due to higher order multipoles (quadrupole-
quadrupole) showed to be independent of the size of the cell.

In this expression, the problem of the ill-definition of the dipole moment remains
latent: different choices of supercell will give different dipoles, and therefore different
values of the energy. However, if the supercell chosen contains the defect density in
the same configuration as in the bulk limit (that is, for an infinitely large unit cell),
then the dipole becomes invariant to the choice of supercell. In practice, we have
chosen supercells where the density of the defect was entirely contained within the
box, i.e. the density was not splitted by any of the surfaces limiting the cell.

The expressions just presented account for the changes in the charge distribution
induced by interaction of the defect with its images. There is, however, another source
of cell-size-dependence of the energy, which is the dielectric response of the medium to
the presence of the defect. In this case there is a non-electrostatic contribution to the
energy, which prevents us to be able to estimate the contribution by means of the
methods just presented. Instead, a phenomenological approach is often employed
(and we have used it here), consisting on scalling the potential by the dielectric
constant of the material, .

1
Erot = Edef - ;Edip (2'7)

In principle, the dielectric constant that should be employed in the calculation
should be that deduced from first-principles calculations. When this value is not
available, we have made use of the experimental one.

2.2.2 Charged systems in periodic models.

The total energy of a periodic system where the cell is not neutral is divergent. The
reason is to be found in the contribution of the long-range electrostatic interaction
between the different cells forming the system. Similarly to the case described in
previous section, it is possible to substract such contribution from the total energy
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of the system.

Studying a charged defect using a periodic model involves dealing with unit cells
whose charge state is not neutral. Then it is convenient to consider the subdivision
of the density in the density of the unperturbed lattice, plus that associated to the
defect, as showed in Equation 2.5. In this case, we assume that the unperturbed
density corresponds to that of a neutral system, and that the unbalanced charge is
due to the defect only.

In order to cancel the effect of the charge g of the defect, one can add a charged
background of equal magnitude but opposite sign (—¢), uniformly distributed over
the whole volume V of the cell. The density of the defect plus the charged background
is then

pr) = -;/—q + Pdefeut(r) (2.8)
here the prime indicates that this density does not correspond to the total density
of the system, since the density of the unperturbed cell (i.e. the cell without the
defect) is not being considered. If a point charge ¢ placed at a point of the cell rg is
added and substracted, then the density is subdivided in two different contributions

P = 1t = [a8(e = 10) + 2] + Daeels) = b - x0)] (29)
by convenience, ry is chosen so that ps has no dipole, and we assume that the origin
of coordinates corresponds with the center of the cell. Note that p; actually is size
dependent, since the density of the neutralizing background is inversely proportional
to the volume of the cell.

There are three contributions to the energy electrostatic energy, that we will
denote E;; with 4, j = 1,2 refering to the interaction between the densities p; and p;.
The interaction of p; with itself is equal to the Madelung energy of a lattice of point
charges plus a the neutralizing background, and therefore F1; = —Q;Ta, where L is
the linear dimension of the cell, and is the (lattice dependent) Madelung constant.
E» corresponds to the interaction between a neutral charge density in a lattice (since
p2 has no dipole), which displays fast convergence with the cell size. Finally, Eys is
the interaction between the two densities p; and p2. It is possible to difference two
terms E%, and E%,in this contribution, which correspond to the interaction between
p2 and the point charge in p; and the interaction between ps and the uniformly
charged background, respectively. In the case of EY, , the dominant interaction is
that between the point charge and the quadrupole moment of p (if the lattice is
cubic, then this interaction vanishes by symmetry). On the other hand E?, is size
dependent. The final expression for Ey3 is [37]:

2mq

Eio = —= d3rp2(r)r2 + O(L_S) (2.10)
3V cell

Summing up all the contributions mentioned, the electrostatic energy turns to be
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g’a _2mg
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Up to know, we have excluded considering the environment in which the defect

d3rpa(r)r? + O(L™°) (2.11)

is introduced. Similarly to the case presented in the previous section, it is necessary
to account for the response of the medium to the presence of the defect. And once
more, this can be done in first instance by scaling the electrostatic contribution by
the dielectric constant of the material, ¢.
¢°a  2mg 3 2 (T -5
B= By~ 10210 /ce”d rpa(r)r? + O(L%) (2.12)
There has been some concern on the validity of the approach just taken. The
arguments against this procedure are that the validity of the approximation is very
dependent in the assumption that the density related to the point defect remains
very localized. This may not be the case for certain type of defects, especially if they
are negativelly charged and the extra electrons move to delocalized states in or near
the conduction band.

2.2.3 Reference energy levels in infinite systems. The band alignment
problem.

The use of periodic systems causes a lack of reference level in the energy scale. The
infinite extension prevents simulation of the process of extraction or addition of any
particle (electron or nuclei), since there is no place to take it from. Therefore, it is
not possible to define a vacuum level that would be a universal reference and would
allow one to establish an absolute energy scale. The problem of defining a reference
level is far from being trivial.

The need of a reference level will become evident when studying how the band
structures of two different materials align (as in chapter 4). In order to understand
the dependence of the energy barriers on the width of the oxide layer it is necessary
to observe in detail the evolution of the band structure of the system in a direction
perpendicular to the plane of the junction. The electronic levels experience a shift
that constitutes an energy barrier for the charge carriers. Although the junctions can
be structurally abrupt, the evolution of the electronic structure extends over a few
layers at each side of the interface (see figure 2.1). This fact has been proven both
by theory [39] and experiments [5]. From the point of view of device engineering,
however, the evolution of the electronic structure has been idealized by a step function
(also shown in figure 2.1), neglecting the actual spatial extension of the change. A
fundamental parameter in this model is the offset, defined as the change in energy of
the edge of the band across the junction. Such idealization may become inadequate
for the design of new devices, since the junctions implemented in working devices are
soon going to be so small that the thickness of the layers may not allow the materials
to recover their bulk electronic structure (let alone the action of other factors as
defects commonly present at the interface or roughness of the junction).
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Figure 2.1: The band alignment problem.
The left side plot shows the most common approach taken to find how two band gaps align
at an interface. The band offset Aband measures how energy of the edge of a given band (on
the graph, the top of the valence band) changes at each side of the junction. Rather than
determining it directly, it is possible to define a reference level, Eref, and then determine the
change in the position of this level across the interface, Aref. Then the distance between the
edge of the band and the reference level, at each side of the junction is found (Av][l] and Av][2]).
This information suffices for determining the offset Aband=Av|[l] -Av[2]- Aref. The graph on
the left shows some examples of reference levels: the electron affinity, Eaff, the charge neutrality
level, Ecnl, the averaged electrostatic potential, Vav, and the inner core levels, Ecor. See text

for further comments on these choices.

Band alignment theories try to find the relationship between the essential features
of the electronic structure at the junction, and those that characterize its micro-
structure The list of different techniques on band alignment, both experimental
and theoretical is large, and the discussion concerning the different features of each
one would be very large. I will rather list here the most important concepts and the
theories that have been most relevant. An excellent and exhaustive review on the
band alignment problem can be found in the text by Franciosi and Van de Walle [40].

The problem of band alignment is usually formulated in terms of the edges of the
band, as illustrated in Figure 2.1: given the junction between two materials, we want
to know what is the change in energy Aband experienced by an electron in a state
on the edge of a given band, as its moves across the interface. The most common
strategy for solving this problem follows two steps: a) determining the change in
energy Aref of a reference level Eref, and b) determining the position of the edge
of the bands with respect to the reference level at each side of the junction (in the
Figure the quantities Ev[l] and Ev[2] refer to the valence band). This information is
enough to find Aband.

Also in Figure 2.1, common choices for the reference level are shown. The electron
affinity Eaff appears in the first band alignment theory, by Anderson [41]. Although

~deally, it will be possible to determine the height of the energy barriers for carriers through a

careful selection of the composition of the materials and a control over the process of formation of
the interface.
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conceptually it is absolutely correct, the affinity in fact depends critically on proper-
ties of the surface, like orientation and relaxation. There have been several attempts
to find surface-independent levels; Frensley and Kroemer tried to identify the vacuum
level for each semiconductor [42], while Harrison used as a reference the electronic
states of free atoms [43]. Since the mentioned theories rely on bulk-independent
magnitudes, they are not able to account for the effect of the particular features of
the interface.

A conceptually different approach has been followed by Tersoff, by defining a
neutrality level [44]. Tersoff’s study actually presents a very intuitive and interesting
mechanism that determines the charge alignment, which is worth describing here in
brief. When the interface forms, the electron density at the interface redistributes,
filling some gap states that are intrinsic to the system (not due to the presence
of any point defects). This redistribution generates dipoles, that tend to drive the
system towards the configuration in which the dipoles become zero. Tersoff’s main
assumption is that the system will tend to be very close to this canonical situation,
and finds the last gap level that should be filled in such state (charge neutrality
level). Such level should be actually aligned in both materials at the interface, so
both materials are in the zero dipole situation, and this allows determination of the
relative position of their band structures. The gap states are mixtures of valence and
conduction band states, and their spectral weight can be deduced from the Density
of States near the gap region.

The effects of the charge redistribution at the interface can be considered through
the information provided by electron structure calculations. In order to refer, once
more, to an intrinsic property, Van de Walle and Martin [45] calculate the average
electrostatic potential of the materials. This technique can only be applied to ma-
terials which display periodicity, so the electrostatic potential can be averaged over
a distance equivalent to the lattice parameter, therefore displaying a constant value
over all the material. A modification of this method, by Demkov and Sankey [46],
uses as reference level the average spatial dependence of the expectation value of
the Hamiltonian calculated for the valence states of a reference atom type. Obvi-
ously, this method can only be applied for studying interfaces of materials which
have common atomic species in their chemical composition.

For the sake of completeness, common experimental techniques are listed here.
Transport methods (either I-V or C-V measurements) were historically the first to be
employed on the study of band alignment. These methods, however, give an average
over the direction perpendicular to the interface, while the offset is spatially very
localized at the junction. The presence of dopants and the performance of the elec-
trical contacts have been also reported to affect the measurement. Optical methods
include absorption, luminescence, light scattering and photo-emission spectroscopy.
The latter technique has proven to give remarkably good results and has been widely
applied to the study of the Si/SiO2 system. However, there are extra effects that
should be taken into account, like the fact that the system becomes charged and is
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left in an excited state. A deeper discussion concerning this issue will be provided
while discussing the results in chapter 4.

The method that has been used here differs from all the discussed ones, since it
does not follow the strategy of identifying a reference level; instead, the band edges
are compared directly. The possible advantages and disadvantages of this scheme
will be discussed in section 3.1

2.3 Evaluation of the Coulomb and exchange interaction

in extended systems.

Both the Coulomb and exchange interactions have long-range character, and there-
fore its evaluation requires considering all the nuclei of the system, and the whole of
the electron density. In the case of infinite solids, it is obviously impossible to design

any practical implementation without assuming any further approximations.

2.3.1 Treatment of the Coulomb series. Ewald summation.

The terms that represent the coulomb interaction constitute a series with condi-
tional convergent character. The technique proposed by Ewald [47, 48] is routinely
employed to sum this series ensuring its convergence. The idea behind this technique
is to rearrange the terms, adding and substracting a screening charge distribution,
to give two convergent series, whose sum gives the correct value of the potential.
The charge density can be written as a sum over point charges plus a screening
background:

pewald(r) = Z 5(1' —r; — L) — prack (2.13)
L

where r; are the position of the point charges and L runs over the complete set
of lattice vectors. This density is then divided in two contributions:

pi(r) = ﬂlﬁ EL: exp (— W) — Pback (2.14)
pa(r) = ; [5(r —r;—L)— exp (J”“r“—‘L)z)] (2.15)

These two series employ arrays of gaussians. They cancel the background poten-
tial in one of the series, and are substracted from the delta function charge distribu-
tion in the other. The width of the gaussians u can be tuned to optimise the rate of
convergence.
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These densities are employed to compute the Ewald potential (the potential due
to p1(r) is actually more easily computed in the reciprocal space). The final shape
of this potential is

2 )
Pewald = E(;;eo ‘;l_éfemp (_L4G_ + 7'(1' - rz)G>

el’_fc(lr—r;;—l. M (216)
+ ZL r-r;—L TV

where G runs over the reciprocal lattice vectors, V is the volume of the cell, and

erfe(zx)=1—erfe(z)=1- % /Ox exp(—y>)dy (2.17)

The electrostatic energies are calculated multiplying the Ewald potential by the
appropriate product of charges (g;g;). In principle, Ewald technique can be employed
for the calculation of Coulomb interaction in both DFT and HF schemes. Eventually,
differences are linked to the type of basis sets employed in the calculation.

In the case of local basis sets, the direct application of Ewald technique is still a
very time-consuming task, because it requires considering a high number of electron-
electron integrals [49]. In the CRYSTAL code, an alternative approach is followed.
For each atomic shell A, the system is subdivided into two zones, in which the
electron-electron integrals are either calculated explicitly or approximated by means
of a multipolar expansion.

The criterion followed to determine whether an electron-electron integral should
be calculated explicitly or approximated, is an estimation of the charges associated to
the overlap distributions. Since the basis sets are local, such charges should decrease
exponentially. A single normalized s-type gaussian is automatically associated to
each atomic shell®, and employed in the estimation of the charges. The exact calcu-
lation of the integral is avoided if either of the overlapping charges is smaller than
a threshold parameter Sc. The accuracy of the approximation can be controlled by
means of S¢, and actually the accuracy of the calculations performed with CRYSTAL
depend critically on this issue.

Outside the region where integrals are calculated explicitly, the multipoles* Y;™ (r¢; {A})
associated to the charge distribution py referred to a point r., are used to estimate
the integrals by means of the expression:

({12} | {\, h}) =>_ ¥ (In; 2) ({128} | {(im)s, h}) (2.18)
Im

3These gaussians (named "adjoined gaussians”) are chosen so their exponent reproduces approx-
imately the absolute value of the corresponding atomic orbitals at intermediate and long-range. In
practice, the exponent is assumed to be the smallest of the exponents of the gaussian type orbitals.
A single adjoined gaussian is used for all atomic orbitals in one shell.

“The multipole Y;™ (r; {A}) corresponds to the unnormalized complex solid harmonic

Y™ (r; {A}) = 2P cos(0)exp(ime)

with integers | > 0 and |m| < l. Here, z., 6 and ¢ are spherical polar coordinates of the vector
Xc = X —rc and Pllmlare Legendre functions.
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here the indices 1,2 account for atomic orbitals inside the unit cell, and both g and
h are translation vectors. Such integrals correspond to the interaction between the
distribution {12g} and the shell distribution {), h} in terms of the multipoles of the
later with respect to its center at (h + s,). Ewald technique can then be employed
efficiently for estimating the contribution from the non-analytical region.

2.3.2 Treatment of exchange and correlation.

There are deep differences between the HF and DFT schemes in what concerns the
way exchange and correlation interactions are considered. This reflects directly over
the design of the algorithms.

In the case of the DFT techniques, the contributions due to exchange and correla-
tion are taken into account by means of a functional of the density. Such a functional
has the shape of a multiplicative operator. The evaluation of such term, no matter
how complicated is the form of the functional, is in any case relatively simple and
unexpensive in terms of computational cost.

Correlation interaction is not treated explicitly in the HF equations®, but the
exchange terms have non-local character, and their evaluation is a complicated task.
This is in fact one of the main reasons why there are few implementations of the HF
scheme applied to periodic models. Once more, we will focus now in the methodology
employed in the CRYSTAL package.

The exchange series does converge without displaying any significant problem. In
infinite systems, it is still necessary to impose the truncation of the series (otherwise
infinite).

The contribution to the total energy due to exchange interaction is

1 1
= g n . .
Eex =75 Y Ph|—5 > P ({10;3h} | {2g;4h +n}) (2.19)
128 34n h
where each numerical index is an atomic shell, and each vector indicates the transla-
tion vector associated to the cell to which the shell belongs. P}J‘. are elements of the
density matrix

Pj= Zn: /B _ dieap(ik - €)at, ()ajn ()0 [er = en(I) (2.20)

where a;n (k) is the coefficient of the j-th bloch function in the n-th crystalline orbital
at point k, and its associated eigenvalue &, (k).

The evaluation of equation 2.19 requires selecting which of the integrals should
be included. The convergence of the exchange energy with respect to the h vector
is fast, since the overlap distribution decreases exponentially with increasing h. The

5The Restricted Hartree-Fock (RHF) theory does not account for correlation effects at all. In
the Unrestricted (UHF) scheme, however, different sets of orbitals are considered for each spin
population, to allow treating open shells. Because of this, rigurously, correlation effects are partially
taken into account in the UHF scheme.
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situation is more complicated for the g and n indexes. The reason is to be found
when considering terms at long distance, since the number of terms per unit distance
increases as ]g|d_1 with d the dimensionality of the system.

In the scheme implemented in CRYSTAL the integrals involved in the evalua-
tion of the exchange interaction are selected following a procedure similar to that
employed in the case of the Coulomb series (described in previous subsection). The
summations in both g and n are truncated when the overlaps [ drx?x5 and [ drx9x%
are smaller than a given threshold value, Rex which is also a parameter to be defined
at running time, and is also determinant of the accuracy of the calculation.

There is an important consequence of using this selection criterion, which affects
directly the quality of the basis sets that can be employed in the calculations. There
is no distinction between the indexes g and n when the criterion is applied (i.e.
the truncation is symmetrical with respect to g and n). But in equation 2.19 the
summation over n is performed for each value of g. For a given g, the truncation is
such that all integrals within a sphere of radius Rg centered in g are considered, while
at the same time all integrals within a sphere of radius Rp centered in the origin are
considered. For small values of g, the whole sphere of radius Rg is contained within
that of radius Rn. However, for g values close to the range of the density matrix,
the center of the sphere of radius Rg is close to the boundary of that with radius
Rn. This causes the exclusion of some exchange terms and the potential appears
distorted. During the self-consistent cycle, this causes the density matrix of a given
cycle to react in the variational direction against the distortion caused in the previous
iteration, eventually taken the calculation to divergence (or non-convergence).

This problem becomes more evident when employing basis sets with big vari-
ational freedom, since the “reaction” of the density matrix becomes bigger. This
limits the possibilities to use basis sets with many basis functions, in contrast with
the case of molecular systems, where increasing the variational freedom of the basis
set usually increases the quality of the results. Similar difficulties are found if the
basis set contains diffuse functions (gaussians with small a exponents). In this case,
the problem is that the contribution of the diagonal elements which are disrregarded
is more significant.

2.4 Description of the electron density: Basis sets and

pseudo-potentials.

The choice of basis set is one of the most fundamental factors determining the quality
of the results of an electronic structure calculation. In practice, the computer codes
are adapted as to consider specific types of basis functions, with the aim of achieving
efficient computations. The programs that have been used in this study employ either
Gaussian (CRYSTAL98) or plane wave (VASP) basis sets. Several issues concerning
each type of functions will be discussed next.

37



ﬁ CHAPTER 2. METHODS OF CALCULATION

2.4.1 Gaussian basis sets.

This type of functions are a popular choice in molecular applications, especially
for convenient expression of multi-electron integrals, and despite the fact that some
other types of functions, such as Slater type orbitals, display a better behavior in the
vicinity of the nuclei. Gaussian type-orbitals are actually composed as a product of

an angular function and a radial function
g(r) = Y (8, )R(r) = Vi exp(—ar?) (2.21)

where [, m are integers [ > 0 and |m| < I, r, 6 and ¢ are spherical polar coordinates.
The parameter a in the exponent of the radial functional is a variational parameter.
Generally, the construction of a basis set implies the optimisation of the o parameters
for all the gaussian functions forming the basis functions.

The orbital is usually constructed as a linear combination (contraction) of several

Gaussians

pu(r) = djug;(r) (2.22)
J

this allows preparation of basis sets with well behaved orbitals. The coeflicients d;
are also optimised during the construction of the basis sets. All the gaussians of a
contraction are centered at the same point, typically the position of a given nuclei.

Gaussian orbitals depend directly on both the nature and the position of nuclei.
Given their local character, further manipulation is needed in order to be able to
use them as basis sets for periodic systems. It is possible to generate sets of Bloch
functions® using gaussian orbitals

¢5(r) = @u(r — A,—T)exp(ix - T) (2.24)
T

here A, notes the position of the atom to which the gaussian orbital belongs. Once
the basis set of the atoms contained in the unit cell is defined, it is reproduced by
translation over the equivalent atoms in the different cells.

When using gaussian basis sets, the cost of the calculations is independent of the
nature of the orbital, and therefore core electrons can be described as easily as valence
electrons (this contrasts with the difficulty on describing the core electrons when
using plane wave basis sets). Still, pseudo-potentials can be employed to simulate

81t is possible to construct functions that intrinsically reflect the periodicity of the system (Bloch
functions)[50], that is:
Y (r + T) = ezp(ik - T)¢n(r) (2.23)

where T is a translation vector. The index m labels the different, discretely spaced, eigenvalues,
similarly to the molecular case. The new index k represents a vector in the Brillouin zone (the
region of the reciprocal space that contains the set of non-equivalent points which are closest to
the origin). Each vector k is therefore equivalent to (k+K), where K is a translation vector of
the reciprocal lattice. Therefore, there is as many solutions as there is non-equivalent k& points.
This number is strictly equivalent to the number of cells contained in the solid. If the crystal is
assumed to be infinite (as is the case), then k can taken as all the possible values inside the Brillouin
zone, and the eigenvalues ¥ become continuous functions of k. The spectra of X forms the band
structure of the solid.
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atomic cores and reduce the cost of the calculations.

Gaussian orbitals are not orthogonal to each other, and this complicates the
algorithms for evaluation of the integrals. A brief description of how this is done can
be found both in [27] and [30].

The construction and optimisation of the gaussian basis set requires, as shown,
bigger effort than the definition of a plane wave basis set. In general terms, for at
least each atomic species contained in the unit cell, it is required to define the number
of orbitals, their symmetry (s, sp, p,...) and the set of coefficients and exponents of
each contraction.

In general terms, gaussian sets employed in molecular systems cannot be em-
ployed straight away on the study of periodic systems. The reason is that in molec-
ular systems very diffuse functions are required to allow a correct description of the
decay of the wave function, since the molecule is surrounded by vacuum. In periodic
systems, this situation does not exist, but rather the use of diffuse functions rapidly
increases the number of integrals that need to be evaluated, and the tails run into
regions where there is already large variational freedom due to the presence of the
basis sets of atoms in adjacent cells. The situation just described above, where two
different orbitals overlap, leads to an overestimation of the binding energies (Basis
Set Superposition Error, BSSE). This problem is well known in the case of molecu-
lar systems, and several methods have been developed to estimate corrections (see
for instance [51]). Much less work has been done in the case of extended systems.
Additionally, in the particular case of the HF calculations (like those performed with
CRYSTAL98), diffuse functions cause numerical instability in the algorithms that
evaluate the exchange interaction (see 2.3).

There is, finally, a little comment on the notation adopted here to describe Gaus-
sian basis sets. In general, the standard notation has been employed”. The name of
each set has the form X — Y1Y5...Y,G* where the number X indicates how many
Gaussians are contained in the core shells; there is as many Y; numbers as valence
shells, each one indicating the number of Gaussians contained in the respective shell;
and the % symbol, if present, indicates that extra diffuse shell has been included. As
an example, the 6-31Gx set contains 6 Gaussians in the core shells, two valence shells
with 3 and 1 Gaussians, respectively, and a diffuse shell.

2.4.2 Plane wave basis sets.

Plane waves are natural candidates as basis sets in periodic models, since they au-
tomatically satisfy the Bloch condition. The formal definition of a plane wave is the
following:

P (r) = Q2 exp[ir - (k+K)] (2.25)

where Q™7 is a normalization factor, « is a point within the Brillouin zone, and K
is a vector of the reciprocal lattice.

"The only exception to this notation will be the STO-3G basis set, which is an adaptation of the
Slater type basis functions that employs Gaussians per primitive.
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The set of plane waves (PW) is complete and orthonormal, and therefore any
continuous, normalizable function can be expanded with arbitrary precision in the
PW basis set. Obviously, practical applications require to use finite sets, and there-
fore it is necessary to impose a selection criteria. The number of PW contained in a
given basis is usually selected by defining a cut-off energy, Eqsy: for each k in the
Brillouin zone, such that all the PW that satisfy

(k+K)? < Eys; = R? (2.26)

are included. Here R corresponds to the radius of the sphere, in the reciprocal space,
centered at the origin. The finest detail that can be revealed for a given Egyy is
in the order of 1/R. In practice, the number of plane waves required for describing
correctly the rapid changes of the orbitals of core electrons becomes prohibitive.
Instead, pseudo-potentials can be used for simulating the core electrons (this issue
will be discussed in subsection 2.4.3).

A main characteristic of the PW set is that the functions are not associated in
any way with the either the position, or the nature of the atoms contained in the
unit cell. This situation is especially desirable when employing methods where the
position of the ions varies constantly (for instance, molecular dynamics or structural
relaxation). However, the number of plane waves contained in a cell depends both
on the shape and volume of the unit cell. The other main advantage, as already
has been mentioned, is the convenience and simplicity of most of the mathematical
expressions, especially if the momentum representation is used.

2.4.3 Pseudo-potentials.

Most of the fundamental properties of matter can be justified in terms of the chemical
bonding that links ions together in molecules and solids. Only the electrons of the
outer shells of those ions participate actively in this bonding, and therefore a detailed
description of the inner (core) electrons is not necessary in many cases. On the other
hand, a significant part of the cost of the calculation is linked to the description
of core electrons (this is especially true when plane wave basis sets are employed).
One possible solution, that allows avoidance of the description of the core electrons,
while simulating their presence (so the wave function in the region outside the core
is correct), is to introduce pseudo-potentials.

The procedure for the introduction of the pseudo-potentials is well established.
We consider here the DFT scheme to illustrate it. The implementation in the HF is,
however, strictly parallel.

The one-electron Hamiltonian is partially modified, by introducing a new term
Vps that accounts for the nuclear attractions, already screened by the core electrons.
For a system containing A nuclei and n electrons, from which n’ are valence electrons,
the one-electron equations become
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_— +/ Ip (l‘ dr’ + Ier:cc—co'rr(ra )+ Z ps(A) 1/;;(1-) = 5;»‘/,:(1.) (2.27)

This equation is identical to the all-electron DFT equations, apart from the sub-
stitution of the potential by the pseudo-potential operator. The primes symbols
indicate that the solution of the equation is limited to valence electrons only. There-
fore, only n’/2 orbitals are considered, and the valence density p'(r’) is used to define
the coulomb, exchange and correlation contributions to the total energy.

The new terms V44) are also in charge of keeping the orthogonality between
core and valence electrons (Exclusion Principle). The general expression of a pseudo-
potential under these conditions is:

ZA ncore _ _
Vo) = == +{ZUS "(r-AD} +WT(r-4)  (228)

here Z4 represents the charge of nuclei A, n{"® the number of electrons contained
in the core of atom A. Both U "(|r — A|) and W*~"(|r — A|) are functions with
short-range character, that can be defined in different ways.

The pseudo-potentials are usually fitted to a basis of atomic data obtained using
all electron first-principles calculations of isolated atoms or ions. Several conditions
are applied, and fulfilled as best as possible: a) Pseudo-valence eigenvalues have to
coincide with true eigenvalues, b) the pseudo-orbitals should be as similar as possible
to the true ones, in the region outside the core. This is usually achieved by requiring
the pseudo-wavefunction to be continuously differentiable at least twice at a cut-off
radius that defines the core region:

P ™ |,er, = £ E()™ |,2r, n=0,1,2,... (2.29)

where ¢AE(r)(™) is the solution of the radial Schrodinger equation for an specific
le

[;;2,; (j:z G, 1)) V() = e] SAE(r)™ = o (2.30)

energy e:

Often, it is also required that the charge enclosed inside the core region should be
the same for the pseudo wavefunctions and the all-electron wavefunctions (norm-
conserving condition).

R, R
/ qﬁf:(r)2dr=/ B (r)2dr (2.31)
0 0
Obviously, a minimum set of four adjustable parameters is required to fulfill

these conditions, but practical implementations require additional parameters used
for improving convergence of the pseudo-wavefunctions expanded in the basis of plane
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waves [52].

In the calculations presented here, pseudo-potentials have been used only for the
calculations in which plane wave basis sets have been employed (chapters 5 and 6).
The VASP 4.4. code allows one to use ultra-soft pseudo-potentials, allowing a signif-
icant reduction in the number of plane waves in the basis set. The original concept
of this type of pseudo-potentials can be found in the work by Vanderbilt [53], and
details on how they have been employed inside VASP can be found in [52]. The high
efficiency of this type of pseudo-potential is achieved by relaxing the norm-conserving
constraint, but then a generalized eigenvalue problem must be faced. The lack of
norm-conserving constraint leads to a deficit between the charge described by the
pseudo-potential and that of the all-electron wavefunction, that should be compen-
sated by means of an augmentation function. In the implementation in VASP, these
augmented functions are constructed employing information from norm-conserving
pseudo-potentials. This procedure (which differs from the original proposal by Van-
derbilt) allows one to generate ultrasoft-pseudopotentials with very similar behavior
to their norm-conserving counterparts. There is an issue on the transferability of
the pseudo-potentials, i.e. if they can be used for target systems that have not been
used to fit the pseudo-potentials. Kresse and Hafner show in their original work [52]
how good transferability can be achieved if the reference norm-conserving pseudo-
potentials are of good quality. In any case, the validity of the pseudo-potentials
will be tested, when used, by checking how accurate host systems can be described
(i.e. by checking the structural and electronic properties of perfect systems, free of
defects).

In general terms, the use of pseudo-potentials leads to satisfactory results. Par-
ticular cases in which this method cannot be applied are the study at very high
pressures, or other processes in which core electrons play a key role, like the hyper-
fine interaction (which is the source of structural information in Electron Paramag-
netic Resonance experiments), or high-energy (X-ray) spectroscopy, which involves
excitation of core electrons.

2.5 A semi-empirical approach. The INDO method.

In contrast to the first-principles techniques, the semi-empirical schemes implement
approximations with the aim of reducing the cost of the calculations. Generally,
the approximations imply a simplification of the mathematical method, by applying
some criteria with a physical meaning. In the words of Pople [54], “semi-empirical
methods no longer attempt to derive the properties of the system directly from
the principles of quantum mechanics, but rather seek to interpret correlations with
experimental data”. There are many semi-empirical methods with many different
conceptual backgrounds, and providing an overview of all of them is beyond the scope
of this introduction. Instead, the semi-empirical method known as Intermediate
Neglect of Differential Overlap (INDO) will be reviewed in closer detail, since it is
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the only one employed in part of the research of the Thesis.

The INDO method is actually part of a wider family of semi-empirical approaches,
based on the zero differential overlap approximation, and developed mainly by Pople 8
and co-workers. The main derivations can be found in the series of publications [56,
57, 58], and a very good review of the methods, with examples of its implementation
into computer code, can be found in the book by Pople and Beveridge [54].

The basis for any of these semi-empirical schemes is the Hartree-Fock theory,
which is used to find the best single-determinant approximation to the ground state
wave-function. In order to save computing resources, the semi-empirical schemes
consider valence electrons only. The molecular orbitals 1] are defined as a linear
combination of atomic orbitals, ¢,

¥ = clidu (2.32)
m

where ¢ runs over the number of molecular orbital, u over the number of atomic
orbitals, and 7 accounts for the spin (v = @, ). The basis of atomic orbitals in

9

this particular case is composed of Slater functions®. The matrices, C?, of linear

coefficients, 67“-, can be determined by solving the (matrix) equations
F'C'= CS"E” (2.33)

were E7 is the matrix of orbital energies, S7 is the overlap matrix (S = [ ¢}d)
and F7 is the Fock matrix, whose elements are defined as

F), = H®+ Y [Pa(pv|Aa) — P, (uAvo)] (2.34)
Ao
were HS7™® represents the kinetic energy of electrons and their interaction with the

core: .
atoms
Z

r
A 1A

2
HE® = /qs;';(l) |:—22— + ] éu(1)dm (2.35)
note that this quantity depends on the coordinates of one electron. The integration
is performed over the spatial coordinates. Z4 corresponds to the charge of the ion
A and r14 is the distance of the electron (1) to the nucleus A.
The rest of the terms on the right hand side of equation 2.34 correspond to the
interaction between electrons. The P\, and P;‘Ya are elements of the total charge

8John A. Pople has been awarded the Nobel Prize in Chemistry in 1998 “for his development
of computational methods in quantum chemistry”. He is also co-author of the GAUSSIAN code,
which is among the most advanced and widely used computer programs for electronic structure
calculation [55].

®Slater orbitals, similarly to Gaussian orbitals, are composed as a product of an angular and a
radial function. The functional form of the radial function employed in the INDO method will be
shown further in the text. The Slater orbitals are not orthonormal, although an orthogonalized set
can be constructed following a simple procedure [54]. The use of Slater orbitals in modern ab initio
routines is not popular due to the difficulty to evaluate the electronic integrals, when using this
type of basis set.
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density and the charge density associated to the electrons with spin v

p
B, = ) i (2.36)
Py = Y P (2.37)
Y
and (uv|Ao) are the integrals
(o) = [ [ 1083~ ,W)¢s(2)dndn (239

here 7; correspond to the spatial coordinates of electron i.

The evaluation of the (uv|Ao) integrals is one of the most time consuming parts
of the calculation, since it requires one to consider all one-, two-, three- and four-
center integrals. Most of these integrals, however, have values close to zero, since they
represent the interaction due to orbitals with very small overlap between them. The
Zero Differential Overlap Approach proposes a method for systematically neglecting
those integrals with very small contribution. In fact, the criteria of selection can be
applied at different levels, that lead to different techniques:

e Complete Neglect of Differential Overlap (CNDO). All the integrals
that depend on the overlapping charge density of different basis orbitals are
neglected (i.e. (uv|Ao) =0 unless u = v and A = o).

e Intermediate Neglect of Differential Overlap (INDO). The one center
integrals representing exchange interaction are preserved (although parametrised),
allowing to differenciate states of different spin multiplicity. All other integrals
are set to zero unless u = v and A = 0.

e Neglect of Diatomic Differential Overlap (NDDO). The integrals are
only neglected if the i and v belong to different atoms. Therefore, all two-
electron two-center integrals are retained. This technique allows a better re-
production of the dipole-dipole interactions.

The INDO scheme, which has been employed here, is the simplest of these tech-
niques that allows resolution of electronic states that belong to the same electron
configuration. This is obviously due to the fact that the exchange interaction is not
neglected.

The application of the Zero Differential Overlap Approximation requires intro-
ducing several extra approximations to guarantee that the results are invariant to
rotations of the basis set and hybridization. In the particular case of the INDO
method the approximations assumed are the following:

e Overlap integrals S,, are neglected unless 1 = v (that is, overlap matrix is
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assumed to be diagonal). This simplifies the set of equations to
F'C"'= C"E" (2.39)

This approximation is not applied, however, in the evaluation of the core matrix
elements.

e Two-, three- and four- center integrals of the type (uv|Ao) are assumed to be
zero unless 4 = v and A = ¢. Remaining integrals are approximated by the
expression:

(uv|Ao) = vaB = (sasalsBsB) (2.40)

where ;1 € A and v € B, and s; is the Slater orbital (s-type) in atom 3. The
integral (sasa|spsp) is therefore calculated explicitly.

e The interactions involving one orbital only (diagonal core matrix elements,
H{77®) are evaluated by separating the part of the interaction of ¢, with the
nucleus in which the orbital is centered (A), and the interactions with the rest
of nuclei.

HX® =U,,— Y ZpyaB (241)

B#A

Note that the elements Uy, with (1 # A; 4, A € A) vanish in the cases where
pure s and p orbitals are used as a basis, but are non-zero if hybrid orbitals
are considered. The U, elements were calculated in the original derivation
by subtracting the electron interaction terms from an average between the
electron affinity and the ionization potential [59]. In the version implemented
in the MOSYM code (used in our calculations) the Uy, elements are calculated
explicitly.

e The two-center core matrix elements (H)®) are approximated by the expres-
sion

+
pezreBat bn 5 5., (2.42)

where p € A and v € B. The 84 and Gp parameters depend only on the nature
of the atoms A and B, respectively.

Once these approximations have been assumed, and considering a basis set formed
with s and p orbitals (rather than hybrids) the elements of the Fock matrix reduce

to the form:
Fl, = U+ Y [Pa(uuldN) — P (uA]p))] (2.43)
AEA
+ Z (PB — ZB)yaB ; LE A
B#A
F), = (2P — B))(wv|pv) — Pl (pplvv);
v eEApFv
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Ba + BB
FJ, _—2—Su

v—PlyaB; p€A,veB

where Ppp = Eﬁ P, represents the total valence electron density on atom B. Once
these elements have been calculated, the system of equations can be solved by means
of standard diagonalization techniques. Similar to the first-principles HF scheme,
the equations need to be solved in a self-consistent way, since the elements of the
Fock matrix depend directly on the molecular orbitals.

The last summation in the right-hand side of Equation 2.43 for the elements
FJ, with u € A, are the penetration terms, that represent the attractive interaction
between electrons in the orbital ¢, and the nuclei B, screened by all the electrons in
B. The neglect of the differential overlap matrix, however, causes an overestimation
of the penetration terms. In the original derivation by Pople and co-workers, this
was compensated by assuming that the attraction with the nucleus cancels exactly
the penetration terms (Vap = Zp-yap). Instead, in the modification proposed by
Shluger [60], which is implemented in the code used in our work, it is proposed
that the underestimation of the attraction between the nucleus B and the electrons
in ¢, is caused by the assumption that the cores have zero-radius (point charge
approximation). In order to account for the extended nature of cores, the interaction
between electrons in ¢, and nucleus B is calculated by means of the expression:

1 1 _
Vi = Zn | e~ (s — Gunlsmss) ) emoaRas| (2.44)

RaB
the ap parameters depend on the nature of atom B and on the symmetry (s, p, ...)
of the orbital ¢,.
In the implementation of the modified INDO scheme that we have used, some
extra information, apart from the INDO parameters Sg and ap, is required. The
basis set is defined as single-exponent Slater functions, whose radial part is defined

as
_ 1 n+% n—1_—¢&r
Rp(r) = ————(zn)!(%) T eTE (2.45)

It is possible to define in the input the values of the exponents £ for each different
type of shell, allowing one to fit the valence basis set. On the other hand, in the
initial step of the self-consistent calculation the code generates a Fock matrix by
means of the (more approximated) Hiickel method, where two parameters, the elec-
tronegativity Epneg and an initial population of the orbitals Pi(’?z, are used to estimate
the value of the diagonal matrix elements. The complete set of parameters required

as input for an INDO calculation is summarized in Table 2.1.
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Notation Meaning Quantity
¢ Exponent of the Slater orbital. One for each type of orbital
(s, p, d) of each atomic species.

Eneg Electronegativity. One for each type of orbital
(s, p, d) of each atomic species.

P% 4) Initial population of orbital 4in atom A. One for each type of orbital

1

(s, p, d) of each atomic species.

Bli(a),j(B)) Interaction between electrons in orbital One for each [i(A), j(B)]pair.
of type iin atom Aand electrons in
orbital of type jin atom B.

Q3 4),B Factor scaling the interaction of electrons in  One for each [i(A), B]pair.
orbital of type iin atom Aand nuclei N,

(due to extension of nuclei).

Table 2.1: The INDO parameters.
All types of parameters required for performing an INDO calculation are listed here. For each
type, there are indicated (from left to right) its usual notation, its meaning, and how many
parameters of this type are required. Detailed explanation about how this parameters are used
can be found in the text.
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Chapter 3
Data analysis

Probably the most important, and difficult, part of a computational study is to
determine an estimate of the accuracy obtained with the methods that have been
employed. Electronic structure calculations give as primary information the total
energy of the system (in both HF and DFT schemes) and either an approximation
to the wave function (in the HF case) or the electron density (in the DFT case). All
the other properties of the system are then derived from this information.

The rest of the section will indicate how different properties can, and have, been
calculated in the work presented here. The subjects of study chosen are actually
different in nature, and the properties analyzed in each case are also considerably
different. In brief, this is the list of properties that have been analyzed in each one
of the studies:

¢ Study of the band alignment at the Si/SiO; interface (chapter 4). The
valence-band offset (change in energy of the edge of the valence band across the
interface) is often used as a representative parameter of the barrier of energy
found by the carriers at the junction. Given the technological interest of this
issue, great attention has been devoted to develop models that will allow one
to determine the band-offset, as has been shown in 2.2.3.

The method employed here, described in 3.1, removes the need of a reference
level for the energy, and provides enough spatial resolution to observe the
change of the offset as a function of the distance in a direction perpendicular
to the interface. Several factors condition the accuracy of the method. This
issue will be discussed in depth in chapter 4.

e Study of point defects in HfO; and ZrO,. The reliability of gate dielectrics
depends critically on the ability for structural defects to act as charge traps.
This issue is addressed here by characterizing a) the energy required for the
defect formation (that determines their abundance in the material) and b)
the energy required to charge defects (that determines their charge trapping
ability).

Formation of point defects often requires adding or removing an atom. The
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calculation of atomic energies requires some comments, and are discussed in
3.2.1.

The process of charging is understood as the capture of an electron from the
conduction band of the materials. The problem, in this case, is that the elec-
tronic structure techniques employed do not predict correct position of the
unoccupied states of the system. The methods proposed here for the calcu-
lation of the electron affinities and ionization potentials include an empirical
correction to calculated band gaps.

e Study of stability and diffusion of hydrogen inside Silica. Atomic hy-
drogen is a paramagnetic center, and therefore Electronic Paramagnetic Res-
onance (EPR) experiments can be employed for obtaining structural informa-
tion, in this case possible stable sites for the atom inside silica. Apart from
comparing directly the results of structural relaxations with the models de-
duced from EPR data, it is possible to estimate the value of several parameters
that characterize the hyperfine interaction between the unpaired spin and the
neighboring nuclei. The basis of the EPR technique and the how the hyperfine
parameters can be calculated are discussed in 3.3.

e Development of an INDO code. The work described in chapter 7 is mainly
focused on describing several modifications done to a code designed to perform
INDO calculations, and very few physical results are analyzed. As an exam-
ple of application to systems with very large number of atoms, however, the
participation function of some silica structures are calculated. Participation
functions allows one to evaluate the degree of localization of specific electronic
states inside the system. They are described in 3.4.

3.1 Calculation of the band Offset through the Density
of States.

A fundamental tool for the exploration of the electronic structure of a solid is the
Density of States (DOS), that shows the number of electronic states contained in an
energy interval. The calculation of this function can be done using several techniques,
once the electron density has been determined. In this particular case, we have
used the tool provided in the CRYSTAL 98 program, that is based on a Fourier
representation of the bands, and an expansion of the DOS associated with each band
into an orthonormal set of Legendre polynomials. The authors have selected such a
technique because it provides analytical expressions for the integrals that need to be
evaluated, and allows highly efficient calculations [27]. A detailed derivation of the
method can be found in [61]. There is no account of thermal broadening in the DOS.

The DOS as such does not provide any spatial resolution, that is, it does not
discriminate where the electron states with certain energy are placed. However, it
is possible to project the DOS function into a given subset of electronic states. The
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Projected Density of States (PDOS) is often used to see how specific electron states
contribute to the band structure of the solid. Through a selection of these orbitals,
it is possible to find the states associated with specific regions of space.

An example of the use of PDOS to study the electron structure as a function of
the distance can be found in the particular case of the Si/SiO2 interface, also studied
here. Yamasaki and co-workers [6] use the result of plane-waves density functional
calculations to plot the evolution of the bands across the interface. To do so, they
subdivide the unit cell into ”slices” parallel to the plane of the interface, and evaluate
the PDOS associated to the density contained inside each one of this elements. In
principle, such a method is applicable independently of the technique and basis set
used, as long as the electron density is known. However, in the calculations presented
here (done using gaussian basis sets) it is also possible to exploit the localized nature
of the basis functions to make the selection in an intuitive way.

The methods using gaussian basis sets assume that the orbitals are constructed
as linear combinations of gaussian functions that are centered in the positions of the
nuclei. Therefore, it is straightforward to select the electron orbitals that belong to a
specific ion, and construct a PDOS. In order to obtain as much spatial resolution as
possible in the direction perpendicular to the interface, the PDOS associated with the
orbitals of each single ion is determined. Then, the set of projections can be arranged
in the same order that the ions have in the direction perpendicular to the plane of
the interface, to obtain a representation of the evolution of the band structure along
this direction.

To illustrate the procedure, an example is shown in Figure 3.1 (we avoid, for
clarity, to give details about the electronic structure calculation). The plots are
displayed in a range of energies so as to show the states corresponding to the top of
the valence band. Note how the edges of this band are placed at different energies as
one considers atoms at different positions along the interface, showing the evolution
of the band as a function of the distance to the junction.

This picture of the smooth change of the electronic structure at the interface is
very similar to the results obtained by Yamasaki et al. [39] and the experimental
measurements by Miiller [5]. One interesting feature of this method is that allows
one to detect the region of the junction that contains interface states. As it can be
seen in Figure 3.1, this region extends to the first layers of oxygen region.

From now on, all the discussion will be centered in the calculation of the valence
band offset (VBO). The reason why the calculation of the conduction band offset
will not be addressed using this method is that, as has been already mentioned,
none of the first-principles methods applied to extended systems are able to provide
a correct description of unoccupied states of which the conduction band is formed.
The evaluation of the VBO is straightforward by comparison between the edges of the
band in two plots corresponding to the PDOS of atoms at each side of the interface,
as it is also shown in Figure 3.1.

The method just described allows an easy determination of the valence band
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Figure 3.1: First-Principles calculation of the valence band offset.

The evolution of the electronic structure across the interface can be explored by projecting the

density of states over the basis function associated to each one of the atoms contained on the

unit cell. The projections are then arranged

in the same order as the atoms in a direction

perpendicular to the interface. The band offset can be determined by locating the edges of the

band at each side of the interface.

interface states are associated.
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offset, with almost no additional cost to the calculation, and with the advantage of
allowing an analysis of the band structure in terms of the chemical composition and
bonding. However, it is obvious that the results will depend on the quality of the
calculated electron density.

Since the calculation of the offset relies on obtaining the Density of States of the
system, the accuracy of the results depend on the same factors that determine the
quality of the electronic structure calculation. This study also intends to establish
how these factors influence the results. More specifically, the comparative study will
concern the choice of Hamiltonian, the quality of the basis set, and the model of
interface.

3.2 Energetics of point defects.

We will discuss now several issues concerning calculation of energies involved in the
processes of formation and ionization of point defects. The formation of a point defect
often requires one to remove or add an atom to the system (which is assumed to be
taken to, or from infinity). Evaluating the formation energy requires consideration
of the total energy of this isolated atom, in order to keep the mass and energy
balance correct. The evaluation of the atomic energies, when using periodic models,
is actually tricky, as will be discussed in 3.2.1. In what concerns the ionization
energies, the process involves the transition of an electron (at least) to or from the
conduction band. Unfortunately, the position of the levels that form the conduction
band is not predicted accurately with current methods. This problem, and a possible
correction, will be presented in 3.2.2 and remaining subsections.

3.2.1 Calculation of atomic energies.

The evaluation of formation energies of some of the defects requires knowledge of
the total energy of the neutral atoms. The calculation of these systems is non-
trivial, since an incorrect representation of the exchange interaction and the single
determinant wave-function implemented in the DFT-GGA Kohn-Sham scheme may
eventually lead to incorrect predictions on the ordering of atomic electron levels.
This happens especially in the case of electronic configurations close to degeneracy,
like the triplet state of oxygen atom. In the plane wave implementation, there is an
additional constraint on the density imposed by the shape of the unit cell.

In our calculations, we have to determine the energy of the atoms predicted by
DFT with the smallest possible constraint. To do so, we used low-symmetry unit
cells (rectangular and monoclinic). The size of the vectors on each cell was increased
until convergence in the total energy was achieved.

3.2.2 Correction to the underestimation of the band gap.

We have calculated the ionization potentials and electron affinities for some of the
defects, defining them as the energy required to move one electron to and from, re-
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spectively, the bottom of the conduction band of the oxide. This is not necessarily
the case in the real MOS structure, where the source of electrons may be the con-
duction band of silicon. The calculation of the affinities and ionization potentials
for this alternative process is straightforward if the offset between the edges of the
bands of the oxide and of silicon are known (see figure 3.3).

A real problem in the calculation of the affinities and ionization potentials appears
because DFT techniques underestimate the width of the band gap considerably. We
have assumed that the error introduced in our calculations has remained constant
for all systems where the bulk material remains the same. We have estimated these
errors by comparing the width of the gap of the perfect bulk with the experimental
values. The theoretical gap in a band structure calculation can be found in two
different ways:

o As the difference in energy between the highest occupied and the lowest non-
occupied one-electron states.

e As the difference in total energies between different charged states of the su-
percell corresponding to the perfect lattice.

E4(theor) = E(prf,q = —1) + E(prf,q = +1) — 2E(prf,q=0)  (3.1)

The change in the charge state modifies the population of the one-electron
states, and therefore allows one to define the gap as a property of the occupied
orbitals only. Note that the calculation of the charged states requires the
introduction of the neutralizing background, possibly affecting the one-electron
energies. A common problem also arises if the added charges are completely
delocalised over the lattice; describing a metallic state often requires one to
modify the computational setup (sampling of the reciprocal space).

None of these methods allowed us to obtain values of the band gaps that agree
with experimental ones. By direct comparison of the two, we obtain the following
correction.

k = Egop(Exp) — Egop(Theor) (3.2)

where Egqp(Exp) is the value of the experimental gap, and Egqp(Theor) is the value of
the theoretical gap taken as the difference in total energies. Egqp(Theor) is calculated
in this way (as opposed to the difference between one electron energies), because:
a) then the gap is a property of the total energy and of the occupied orbitals only;
b) there is no clear physical meaning of the one-electron energies in the DFT Kohn-
Sham scheme, and c) we will be calculating the ionization potentials and affinities
as a function of total energies as well.

These corrections will be applied to re-locate the position of the bottom of the
conduction band of the bulk in the calculation of ionization potentials and electron
affinities. The DFT technique describes accurately the valence band of the solid
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Figure 3.2: Process of capture of an electron by a positively charged Oxygen vacancy.
The charged vacancy has only one electron in the level introduced in the gap. The electron
comes from the top of the conduction band of the oxide. There is a difference between the true
bottom of the conduction band and the calculated one, which causes the trapping energy to be
underestimated by x. This correction needs to be added with opposite sign to the ionization

potential and electron affinity, since the flow of energy is opposite in these processes.

(formed by occupied states) and therefore further corrections are not necessary. Even
if the method is clearly an approximation, it is possible to "update” the results if
more accurate measurements of the band gap are made. This implies a shift of the
predicted values by a constant. Note that the method is applicable only if there
is no coupling between the defect and the states at the bottom of the conduction
band. Otherwise, one should expect that both the defect levels and the states of the
conduction band will shift together.

The sign of the X correction is inverted in the affinities with respect to the ion-
ization potentials. This is done to keep consistency with the criterion in the sign of
the total energy described before (see figure 3.2 for a schematic representation of the

process of trapping and releasing of electrons).

3.2.3 Calculation of the ionization potentials and electron affinities.

In chemistry, affinities and potentials are often defined as the energy required to
extract or add an electron. The problem when simulating such process when using
periodic infinite models is that there is no absolute scale of energies. On the other
hand, in MOS devices electrons are usually coming from the metal or silicon layers,
or from the conduction band of the oxide (see figure 3.3). As I already mentioned in
3.2.2, we have chosen the bottom of the conduction band of the oxide as reference
energy.

Another important issue is that, unlike in Hartree-Fock methods, in the DFT-
Kohn-Sham method the one-electron energies and orbitals cannot be given a direct
physical meaning. This excludes, in principle, the possibility of obtaining the ioniza-

tion potentials and affinities from a direct analysis of the spectrum of eigenvalues.
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Figure 3.3: Sources of hot charge carriers in a semiconductor/oxide interface.

The electrons coming either from the conduction band of the silicon substrate or the
conduction band of the oxide substrate can be trapped in a defect level (shown in red). The
amount of energy required in each case (xsi and xzr0~) 'S different, but it is related through

the band offset: (A) = \Zr02 ~ XSi

We have calculated the electron affinities and ionization potentials using the total
energy of the systems directly. This is justified because DFT-Kohn Sham techniques
have actually been constructed to calculate the ground state total energy accurately.

The naive approach would be comparing the total energies of two systems con-
taining N and N#1 electrons. This, however, gives an incorrect description since
there is no specification of the amount of energy of the extra electron. As mentioned
before, the sources of electrons in the MOS system are well known (they are the
conduction bands of silica and silicon) and the amount of energy that electrons have
in these bands is also known.

For the calculation of the electron affinities % (i.e. trapping of an electron), the
electron is assumed to come from or to a state at the edges of the bands of the bulk
oxide. This can be represented by calculating the electronic structure of a supercell
of perfect lattice, with an extra electron. At this initial stage, a supercell containing
the defect represents the vacancy in charge state ¢ In the final state, when the
electron has been transferred from the bulk material to the defect, the final systems
are represented by a neutral perfect lattice supercell and a supercell with the vacancy
in charge state ¢g—/. In microelectronics, it is assumed that both electrons and holes
play the role of charge carriers ~ Therefore, a full characterization of the charge
trapping ability should include the hole affinities. Holes are completely symmetrical
to electrons, and thereby holes coming from the valence band are trapped into the

defect state. In this case the perfect lattice supercell carries a positive charge in the

~The concept of a hole exists only because the valence band in a semiconductor or dielectric is
entirely occupied, and therefore cannot conduct electricity. When one electron is taken away from
this band, the empty state seems to have the properties of a positive charge carrier. A more detailed
description of the properties of both electrons and holes can be found in many texts as, for instance,

(7.
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initial state, which is then transferred to the vacancy supercell in the final state.

The calculation of the ionization potential I, is symmetrical to the calculation
of the electron affinity. Once more, two different systems are considered (a perfect
cell and a cell containing the defect). In the initial state the vacancy holds an extra
electron and the perfect lattice supercell remains neutral. In the final state, the
electron has been transferred to the perfect lattice and the vacancy has charge q.

There is an issue concerning which defect structures should be considered, since
the trapping of a carrier causes a rearrangement of the system to lower the repulsive
energy. In the case of the positive charging process, we ensured that the vacancy
containing the extra electron has had time to undergo the relaxation process.

In the case of negative charging, we have considered both the case where the final
state of the vacancy is unrelaxed (vertical process), and the case where the vacancy
is relaxed after trapping the electron. In the vertical process, both initial and final
states have the same geometry: the relaxed geometry of the initial state. Note that
the ionization potential and the relaxed electron affinity are symmetrical processes.

As was discussed in 3.2.2, one of the main limitations of the method comes from
the fact that DFT-GGA. calculations considerably underestimate the width of the
gap. To avoid introducing this error we have applied the correction described in the
mentioned subsection.

Using the total energies of the different supercells described above as data, the
expressions that enable calculation of the defect levels are:

e Jonization potentials.
I(VY) = E(prf,g= 1)+ E(V) — E(prf,g=0) —E(V{ ) +x  (33)

e Electron affinities.

XE(VE) = E(prf,q =0) + E(V{™") — E(prf,g = -1) — E(V{) — s (34)

e Hole affinities.
xn(VE) = E(prf,q = 0) + E(VZtY) — E(prf,q = +1) — E(VY) (3.5)

Where E(prf,q) are the total energies of the supercell containing a perfect lattice in
charge state g, E(VZ) are the energies of the vacancy with coordination ¢ in charge
state g. The proc superscript in the electron affinities x2 °°(Vd) specifies whether
the affinity describes a vertical (proc = vert) or a relaxed process (proc = rix).
Note that the hole affinity does not require the introduction of the correction
constant &, since the process of trapping of a hole involves only the valence band,
which is assumed to be correctly described by the DFT technique. Note also that the
addition of the vertical electron affinity of the defect with charge g and hole affinity
of the defect with charge g + 1 gives the width of the gap, as the difference in total
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energies.

3.3 The Electron Paramagnetic Resonance technique.

The physical principle underlying the EPR experiments is the interaction between
applied magnetic fields and the unpaired spins inside a given system. When an
electromagnetic field is applied to a sample, the electrons experience a change of
their energy that depends on their spin (see figure 3.4). Transitions between states of
different spin are possible if the difference in energy AU is supplied, usually by means
of another applied field perpendicular to the first. This technique, of course, makes
sense only in systems where the spin populations are unbalanced. The presence of
paramagnetic entities is detected as an absorption line in the spectra. This technique
is also sensitive to the presence of nuclei with spin surrounding the paramagnetic
centre, since they modify its energy because of the spin-spin interaction, as indicated
also in figure 3.4. A very detailed description of the EPR technique can be found in
the book by Weil, Boltzon and Wertz [62].

In principle, knowledge of the electron density does allow one to evaluate the
hyperfine interaction over the ions. The interaction between nuclei with spin and
the electronic spin can be defined by means of the spin-Hamiltonian H = S- A - L.
The equation is composed of tensors, since it is necessary to account for anisotropy
caused by the presence of an external field. The tensors S and I stand for the spin
of the system and that of the nucleus, respectively. The matrix A describes the
coupling between the electron and nuclear spin. This matrix can actually be split
into two terms:

At 0 O Bi; 0 0
A=| 0 A, 0 |=al+| 0 By 0 (3.6)
0 0 A3 0 0 B3

here I stands for the unit matrix. The a;5, factor corresponds to coupling due to
the presence of non-zero electron density at the nucleus. This is only true for s-type
orbitals, which are spherically symmetrical and therefore make this contribution
isotropic. The isotropic component can be calculated:

2 ,
Qiso = _gggNﬁNge,Be < pspm > (37)

where po represents the permeability in vacuum, gy and g correspond to the nuclear
and electronic g factors and By and B, correspond to the nuclear and electronic Bohr
magnetons. The value of the expectation value of the spin density, < p*P™ > is the
one that can be calculated by means of an electronic structure calculation. The B
tensor represents the anisotropic contribution of the coupling. Although it is also
possible to calculate this tensor from first principles results [30] we have not evaluated
it in this study.
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Figure 3.4; Basis of the EPR experiments.
When an external electromagnetic field is applied, there is a change in the energy of the electrons
in depending of their spin. In paramagnetic systems, transitions between states are possible if
the required energy AU is supplied. This is usually done by means of a second field, and presence
of paramagnetic defects is detected as absorption in the second field spectra. Because of the
interaction with spins of surrounding nuclei, there is a second and more subtle change in energy
(hyperfine interaction). As a consequence, the energies that appear in the absorption spectra

(solid blue), differ from the theoretical one (dashed blue) if no hyperfine splitting was present.

3.4 Calculations with systems of many atoms. Participa-

tion functions.

As an example of an application of the semi-empirical INDO method, I will present in
chapter 7 an study of the localization of electronic states in amorphous silica. Such
a type of analysis profits from the possibility of using periodic models containing
hundreds of atoms.

One problem with the strong impact in semiconductor integrated circuits tech-
nology is the tunneling of electrons between the channel and the gate, which causes
the degradation of the devices. It has been suggested that the presence of local-
ized states in the oxide contributes to the tunneling process [63]. A very interest-
ing study in the specific case of silica® has been presented by Ching along several
publications[21, 22, 23]. Following the idea presented by this author, the use of one
electron wave functions based in linear combinations of atomic orbitals (LCAO) of-
fers a very powerful tool for detecting the presence of localized states, by means of a
simple analysis of the calculated linear coefficients.

In the LCAO scheme each electronic orbital is defined:

(3.8)

and the Cj coefficients are fitted during the SCF calculation. Following the proba-
bilistic interpretation of Quantum Mechanics, if the electron state corresponds to a

delocalized state, the electron will have equal probability to be found at any point in
“The study by Ching has been mentioned here because of the use that this author makes of the
participation function analysis. Of course, there are many other authors which have focussed their

efforts on studying amorphous silica (see, for instance, section 4.2.2, and the reviews by Wright and
Hobbs in [64].
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space and therefore all the coefficients squared (c?j) should have very similar value.
However, if the state is localized then the squared coefficients corresponding to the
basis function ¢; localized in a specific region will have higher values than the rest.

In order to make use of this information, it is possible to define a participation

function as follows:
Pl=N> ", (3.9)

where N equals the number of atoms. Note that if the electron state is delocalized,
then P = 1, while if it is completely localized, then P = &.

Obviously, such a type of analysis requires one to have a system big enough so
that you have true delocalized states, but this is not the only reason why the study
of localization may require considering systems with a big number of atoms. As
Anderson and Ching suggest [63, 65], the mechanism causing the localization of an
electronic state is related to the symmetry of the potential, as it proves the fact that
amorphous systems have states of this type, while in crystalline systems the states
remain completely delocalized.
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Presentation of the research.
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Chapter 4

Electronic structure of the
Si/SiOg interface

Aim. This chapter studies the possibility of determining directly the valence band offset at an interface
by means of first-principles electronic structure calculation. The method is based on the analysis of the
density of states projected over selected sets of orbitals. We aim to understand how different parameters
of the calculations influence the results. In particular, we study the effect of using different Hamiltonians
and different basis sets, as well as the dependence on the symmetry of the oxide. As a case study, we
have selected the Si/SiOz interface. We address the technologically relevant problem of determining the
minimum thickness of the gate oxide layer in the MOS structures.

Results. All the Hamiltonians tested provide the same qualitative description of the electronic structure,
although the quanitative results differ from each other, and from the experimental value. The B3LYP
functional as implemented in CRYSTAL gives the best agreement with experiment. Reliable basis sets
require the inclusion of polarization functions. In our model of interface, the Si substrate is not thick
enough as to provide the correct band structure of bulk silicon. The symmetry of the oxide layer influences
the value of the offset; an oxide model with density closer to that of the amorphous phase is in better
agreement with the experimental data. The interface states are located inside the oxide, along region
several atomic layers wide. The size of this region is independent of the thickness of the oxide, and
constitutes a limit on the thickness of the gate oxide layer.

Techniques employed. First Principles Hartree-Fock (HF). First-Principles Density-Functional Theory
on its Local-Density-Approximation (DFT-LDA), and Generalized-Gradient Approximation (DFT-GGA).
First-Principles Hybrid method (B3LYP).

Basis sets. Gaussian basis sets: STO-3G, 6-21G, 6-21G*, 6-311G*.

Models. Periodic slab models of the Si/SiOz interface, containing between 35 and 50 atoms.
Computer Facilities. Self-consistent calculations of the electronic structure done using the Cray-T3E
supercomputer of the CSAR service at Manchester (UK). Post-processing (calculation of densities of
states) done using a single processor workstation.

4.1 Introduction.

The development of planar micro-electronic devices relies entirely on the possibility of
controlling the flow of charge carriers by alternating layers of materials with different
electrical properties. At the interfaces, the carriers find energy barriers that keep
them confined within certain regions of the device. The size of the barriers critically
determines the performance of the system, and influences the possible improvements
of the technology. The general tendency in planar micro-electronics is to rely on the
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miniaturization of the device in order to improve its performance. There is, however,
an emerging problem, linked to the change in the properties of the materials when
they are disposed in too thin layers.

Up to the date, the most relevant heterostructure is the Si/SiO interface, that
plays a fundamental role in the Metal-Oxide-Semiconductor devices 1. The oxide
layer in the gate region of the MOS transistors is by far the thinnest layer in current
circuits. Predictions are that, if miniaturization rate is maintained, in around ten
years time the devices will become inoperative due to tunneling of carriers through
the gate oxide and dielectric breakdown processes.

One of the main interests in the research of possible solutions is to develop a tool
that will help to understand the mechanisms that cause the change in the properties
of the materials, and to determine the ultimate limits to which current devices can
be taken. The same tool will also be useful for designing new heterojunctions with
very specific properties. Following this idea, there is a collection of band alignment
theories that try to predict the values of the energy barriers at the junction. Many of
these theories are only concerned with the chemical composition of the materials that
form the junction, although some others also consider details of the micro-structure
of the junction, like its roughness or the presence of defects.

First-principles electronic structure calculations can, in principle, be very useful
for the type of studies mentioned above. Unfortunately, their elevated computational
cost prevented their application to the study of heterojunctions until very recently.
However, this situation is changing as the capability of computers increases and now
considerably complex models of interfaces can be developed and studied.

In this chapter we have addressed the possibility of studying the energy barriers at
an interface by means of first-principles calculation. The evolution of the electronic
structure in a direction perpendicular to the junction is determined by studying
projections of the density of states over selected sets of local orbitals. This method
is a variant of that employed by Yamasaki and co-workers, where a plane wave basis
set has been used. The use of localized sets, however, allows one to keep a chemical
interpretation in terms of the position of the ions and their bonding. I think that
such an interpretation can be useful for correlating certain features of the electronic
structure to those of the microstructure of the system.

Since the method relies entirely on the accuracy of the ab initio calculations, it
is necessary to explore how different factors that can be tuned in the calculation
affect the results. This study focuses its attention on the effect of selecting different
Hamiltonians, the effect of the quality of the basis set, and on the effect of different
features of the models. In particular, we explore if the offset is affected by changes in
the microstructure of the oxide, and by changes in the thickness of the oxide layers.
I found these two factors especially interesting because they will help to understand
if the complicated amorphous structure of the oxide can be simulated by simpler

'For a more detailed explanation on the working principle of the MOSFET devices, and the
relevance of the Si/SiO2 system, see section 1.2
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crystalline models, in the first place, and to see if the energy barriers lower as the
thickness of the oxide is reduces, in the second place.

As I have mentioned above, the Si/SiO2 structure has special technological rele-
vance, and it has been target of many studies, which have left a lot of information
available. This is the reason why I have selected this system as a case study.

The chapter is organized as follows. Firstly, I present a bibliographic review of
relevant issues. This includes the knowledge concerning the micro-structure and elec-
tronic structure of silicon dioxide and the silicon/silicon dioxide interface. Secondly,
I discuss in detail the Hamiltonians, basis sets and models of interface in which I will
base the comparative study. Thirdly, I describe in detail how the band offset can be
calculated from the density of states of the system, and finally I present and discuss
the results.

4.2 Bibliography review.

4.2.1 The role of silicon dioxide in planar microelectronics.

Silicon dioxide is almost the only material used, up to the date, as a gate oxide in
silicon-based transistors [66]. Among other properties, the Si/SiO2 system presents
energy barriers high enough to prevent electrons and holes from moving across the
oxide layer (see figure 4.1). This allows one to keep the carriers confined in the
channel region, and establish the main current between source and drain?.

The importance of the silicon-silicon oxide interface in the MOS technology is
proven by a historical fact: the wide gap of almost forty years between the first
patent of a MOS field effect transistor, by Lilienfield, and the first transistor of
this type, which actually worked. The original devices did not work because charge
was accumulating in the channel region near the interface. The use of the combined
system of silicon and silicon dioxide overcame the problem. The charge accumulation
problem was due to the existence of defects at the interface, caused by mismatch
between the materials. This problem is greatly reduced in the Si/SiO; system because
the fiexibility of the amorphous oxide allows one to minimize mismatching [67].

4.2.2 The structure of the silicon-silicon dioxide interface.

Despite being one of the most studied systems, the silicon/silicon dioxide interface is
far from being well known. In general terms, it is not clear which are the structural
features of the interface that determine the features of the electronic structure. A big
effort is being paid in understanding which is the role of, for instance, the roughness
of the interface, its stoichiometry composition or the presence of structural point
defects like three-coordinated silicon ions, oxygen vacancies or interstitial hydrogen.
The complexity of the problem is such that it is difficult to have a full view of the

2See section 1.2 for a more detailed description of the MOS transistor.
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Figure 4.1: The Si/Si02interface.
Three types of regions can be identified: the crystalline silicon substrate, the SiOx region and
the silicon dioxide region. At the SiOx region, the ions are not connected as in the bulk materials
(for instance. Si ions bond two Si and two 0), Although the junction can be very abrupt, the
electronic structure (displayed below) evolves smoothly. The bulk properties, specially in the
Si02 region, are displayed a few A away from the interface. This figure is based in the work by

Yamsaki and co-workers [6].
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current situation. However, excellent reviews on the subject appear often, as, for
instance those of references [10, 68, 3].

At present, one of the main problems of the simulation of the Si/SiO; interface is
that there is not a representative model of its micro-structure. This is due to the fact
that, in the MOS systems, silicon dioxide displays an amorphous structure, whose
composition and structural features are difficult to characterize, both experimentally
and theoretically. Despite this difficulty, many different approaches have been use to
develop such a model.

In what concerns generation of the amorphous structure, the review by Wright
(chapter 1 in [64]), lists three main strategies: crystal-based models, random network
models and computer simulations. The crystal-based models use the fact that the
local structure, to an extent of approximately 10 A is very similar in almost all phases
of silica, and justifies the main properties. The random network models are based on
generating a structure based on the SiO4 tetrahedral blocks, following certain rules of
connectivity. The computer simulations involve a wide range of techniques. Models
of the interface can be obtained by performing structural relaxation of reasonable
initial configurations. In the molecular dynamics simulations, a crystalline structure
is "melted" and then "quenched" to form the amorphous phase. In the reversed
Monte Carlo methods networks structures are randomly generated and selected as
to reproduce experimental data.

We will see now some examples of the methods listed before, applied to the
specific case of generating the interface. The amount of such works is actually big,
and therefore this list is not exhaustive, but rather intends to provide an idea of the
evolution of the models and methodology.

Herman and co-workers have developed a model of the interface (described in the
review by Helms, chapter 3 of [10]) after realization of the almost perfect matching
between the Si(001) surface and the cristobalite (001) surface. The model constitutes
an idealization of the true system, containing a perfectly flat interface, two crystalline
systems and no defects, but does not reproduce correctly, however, the density of
atoms in the SiO, region (see figure 4.1 for a definition of this region). Pasquarello
et al. also make use of crystalline-based interfaces for an analysis of photo-emission
measurements [69]. A model of continuous random network was presented by Pan-
telides and Long [70]. The structure was constructed following several connectivity
rules, and the free energy of the system optimised. The model shows that abrupt
interfaces are possible, but the connectivity rules impose restrictions to the bond
lengths and angles from the bulk SiO2, while some experience with other interfaces
shows that the situation may be considerably different (see [68]). Both crystal-based
and random network models are in fact considerably old, and were designed with-
out the present computing resources. Despite their success in justifying the main
features of the interfaces, they describe too idealized surfaces. The use of computer
simulation techniques has lead towards much more realistic models.

Monte carlo simulations have been employed by Ng and Vanderbilt [71], and
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recently by Tu and Tersoff for constructing some models of Si/SiO2 interface [72, 73].
The models by Ng and Vanderbilt display wide transition regions (around 20 A thick)
characterised by deficiency of oxygen atoms, which lead to th presence of positively
charged Si species. Tu and Tersoff use a continuous network algorithm to generate the
(defect-free) structures, and the Monte Carlo sampling to explore the thermodynamic
ensemble of possible network topologies. The most relevant conclusion in this study
concerns the key role played by the bringing oxygens beween each pair of Si atoms
terminating the substrate region. This bridging oxygens eliminates half of the bonds
of the Si surface, and therefore correct the mismatch between the bond densities in
the two regions.

Work on reversed Monte Carlo simulations has been presented by one of its
developers, McGreevy and co-workers [74]. The main objection to the use of this
technique is that results depend directly on the experimental data used to generate
the structure. Because of this, reversed Monte Carlo has often been considered as
a fitting of 3N variables (the coordinates of N particles) to experimental data (see
chapter one, in [64]).

Molecular Dynamics simulations can actually be considerably differently. In the
classical scheme, some pair potentials are used to simulate ion interactions. The
potentials are usually fitted to reproduce some data, either from experiments or
from first principles calculations. Very large scale models of the interface, both
flat and with steps and terraces, have been presented by Watanabe and Ohdomari
[75, 76]. Their interatomic potentials were fitted as to reproduce ab initio calculations
of energies and structures of small clusters and molecules. The results seem to be
in good agreement with experimental measurements of the angular distributions.
The success in reproducing the microstructure of the oxide is, however, just the
very first step: the classical molecular dynamics technique does not provide any
information concerning the electronic structure of the solid. Given the size of the
models generated with this technique (Watanabe and Ohdomari models have around
4000 atoms), it is impossible to port the structures as a basis for a first-principles
technique, even if no structural minimization is performed. Possible alternatives are
to use a low-cost semi-empirical method, or to use the classical model of the interface
as basis for embedding a quantum cluster.

The use of first principles molecular dynamics has also been employed widely in
the generation of Si/SiO2 interfaces. Demkov and Stankey have simulated a process
of oxidation of a silicon substrate [46], within the size-limitations linked to the use
of this computationally expensive technique (most of the models employed had side-
lengths of 5.43 A). Pasquarello and co-workers have dedicated considerable effort
[77, 78, 69] to simulate realistic models of the interface using quantum molecular
dynamics. In an earlier approach [79], the same authors performed structural re-
laxations using crystalline-based models as an initial configuration. The structural
relaxation drives the system towards a more favourable configuration, but does not
allow to explore the potential surface for different minima. In their publication [78§],
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a model of the interface is generated by simulating the oxidation of 3 layers of crys-
talline silica substrate. The oxidation process is actually simulated not by adding
oxygen, but by putting together a piece of crystalline silica near the silicon sub-
strate. The main problem with these simulations is that they were performed at
a very high temperature (~ 6000°) to compensate for the short timescale (24 ps).
This limitation is imposed by the cost of the computations at this level of theory.
As a result, the structure obtained presented an oxygen deficient interface, which is
corrected in a later model obtained using the same technique and presented in [77].
Additional oxygen atoms were added, preserving the bonding pattern but modifying
the stoichiometry conveniently. The new model agrees with some experimental data.

A similar procedure is used by Yamasaki et al. on their work presented in [6, 39],
although no detail concerning the molecular dynamics simulation is given in their
publications. One of the targets of Yamasaki’s study was to determine the stability of
the different models as a function of the thickness of the oxide. The authors have done
a systematic study of the stability of three different models of the interface, based
on quartz, trydimite and cristobalite, as a function of the oxide layer thickness.

There are remarkable differences between the models presented by Pasquarello’s
group and the ones presented by Yamasaki’s group. The latest model presented by
Pasquarello agrees with certain experimental conditions, but still does not provide
a description consistent with all experimental data. Yamasaki’s models, present
much higher symmetry, with clear resemblance to the crystalline phases. This is not
extremely artificial since it has been shown that the region surrounding the interface
presents to a certain extent crystalline structure. These interfaces are also very
abrupt and do not justify properly some X-ray diffraction data. However, Yamasaki
presents six different models constructed based on three different polymorphs of
silicon. Each one of the phases is used for generating a model with a thin layer of
oxide (2 monolayers) and a model with a thick layer of oxide (~5 monolayers). This
collection of models, with so specific changes, is ideal for performing a systematic
study of how the properties at the interface evolve as these changes take place. In fact,
Yamasaki has shown how the stability of the interfaces changes with the thickness,
and has compared how the bonding and angular distributions of each model compare
with experimental data. However, these type of results are more oriented towards
validating the models than to determine how different techniques and parameters in
the model affect the picture of the interface that it is obtained.

4.2.3 The electronic structure of the Si/SiO, interface.

One of the main challenges on the construction of microscopic models of the interface
is to relate the arrangement of ions with the electrical properties. A very interesting
contribution from the experimental side has been presented by Muller et al in [5]. In
this work the electrical properties are deduced from measurements of the unoccupied
electronic states done using atomic-scale electron-energy-loss spectroscopy (EELS).
A transmission electron microscope (TES) was used to access the states of internal
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interfaces. The roughness of the interface was measured using X-ray reflectivity data.
One important observation done during this research is that the tunnelling current
through the oxide layer increases considerably if the interfacial regions from both
sides of the oxide layer overlap. As the authors suggest and prove, the tunnelling
reduces considerably if the thickness of the oxide is increased until both interface
regions do not overlap.

The determination of this minimum thickness has been target of several works,
both experimental and theoretical. In Muller’s work, a structure with an oxide ~15
A wide, represents an acceptable level of tunnelling current. This implies that the
transition regions have widths smaller than half the value of this width (7.5 A).
Previous works reach similar conclusions; Alay et al [80] have found (by X photo-
emission spectroscopy) a constant value of the conduction band offsets of 3.2 eV, for
oxide thickness larger than 16 A and a value of the valence band of 4.36 eV for oxide
thicker than 18 A. This value of the offset is now quite widely assumed to be correct,
as they follow similar values from a much earlier review by Balk [10]. Finally, Tsu
et al. show that careful control of the thickness can allow smaller values (1.7 €V for
the conduction band offset [81]).

Theoretical models for evaluating the tunnelling current through the oxide require
an accurate determination of the band structure. This type of analysis has been
performed for Stédele et al., [4] arriving to the conclusion that oxide layers as thin
as 7 A still present the correct band structure.

The tunnelling of electrons does not depend only on the thickness of the oxide
layer, but also on the barrier height between SiO2 and Si, i.e. the band offset.
Yamasaki et al. show that in fact both the width of the band gap and the offsets
evolve along the direction perpendicular to the interface [39]. In their model (and
using the DFT-GGA technique for calculating the electronic structure), the oxide
presents a slow change of the gap width during the first 2 A and a more sudden
change in the next 3 A, until the properties of bulk SiO; are achieved. Tang et al. [§]
used the same type of calculations (DFT-GGA), with less sophisticated models of the
interface to evaluate directly the minimum thickness required to control tunnelling
by keeping an appropriate value of the band offsets. They found that the value of
the offset becomes constant in oxide layers with a thickness bigger than 4 monolayers
(~7 A). The valence band offset of the Si/SiOs interface has also been studied in the
works by Demkov and Sankey [46] and, recently, by Tuttle [82]. Their results will be
compared with ours in Subsection 4.3.5.

A final picture of the band structure of an ideal Si-SiOg system is shown in
figure 4.2. The values that characterize the energy barriers, shown in this figure,
have been taken from [10], and are widely accepted.
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Figure 4.2: Electronic structure of a MOS structure.
This type of step-like diagram has been valid during many years as a representation of the elec-
tronic structure of a silicon-silicon dioxide-aluminium structure. However, the reduced dimensions
of the devices in a short future will require to consider that the evolution of the bands is smooth

along a direction perpendicular to the interface.

4.3 Presentation of the results.

4.3.1 Choice of Hamiltonians. The CRYSTAL 98 code.

As has already been introduced in 2.1, there are several first principles methods
that allow calculating the electronic structure of extended systems, among which the
Hartree-Fock (HF) and some of the Density Functional Theory (DFT) schemes are
now of standard use. Recently, some hybrid methods combine features of both HF
and DFT schemes with the aim of obtaining a better estimation of the contributions
to the total energy due to electron exchange and correlation interactions.

Exploring the accuracy that some of these techniques can provide when describ-
ing a complex system such as the Si/Sio: interface, has been one of the aims of
this comparative study. In particular, we have selected the HF method, two im-
plementations of the DFT, the Local Density Approximation (DFT-LDA) and the
Generalized Gradient Approximation (GGA), and the B3-LYP hybrid method. Ref-
erences where the detailed derivation of each one of these techniques can be found
have been already given in 2 .1.

The code employed in all the calculations of this chapter is CRYSTAL 98. The
reason for using this package has been precisely that the code allows one to select the
type of technique that is used for the evaluation of the electronic structure, without
essentially modifying any other parameter of the calculation. The peculiarities of
the method implemented in CRYSTAL 98, and of the use of local basis sets that are

employed, have been also discussed in 2.3 and 2.4.1.
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4.3.2 Choice of Basis Sets.

The other important factor to ensure accurate calculations is the quality of the
basis set, as it should be large enough to provide flexibility for the fitting of the
approximated solution to the wave function. However the use of periodic models
makes a difference with respect to the molecular codes. CRYSTAL 98 employs a
Gaussian basis from which the Bloch functions are then generated. The use of local
basis sets in periodic systems has the inconvenience that very diffuse basis functions
cause numerical instability during the calculation (see 2.3). Because of this, the
quality of the basis set cannot be systematically improved by adding more diffuse
basis functions, as is the case in molecular calculations.

Several works have already paid attention to the search for a reasonable basis set
for the description of silicon dioxide. A very interesting example can be found in the
work by Civalleri et al. [83]. Some of the most relevant conclusions are the following:

e The use of poor quality basis sets, with reduced variational freedom and small
number of basis functions, keeps the electronic charge under constraint and,
as a consequence, the system appears “too ionic”. In extended systems, this
effect leads to an increase in the intensity of the crystalline field, which raises
or lowers the energy of the one-electron levels (depending on their occupancy).

e Since the main features of the SiO2 system seem to be due to the local arrange-
ment of atoms, it is essential to ensure that the basis sets are able to provide
an accurate description of the local geometry. In this sense, the presence of
polarization basis functions in the basis sets associated to the oxygen atoms
seems to play a fundamental role in determining the value of the Si-O-Si angle.

I have considered the points described above in the choice of the basis sets that I
have used in the study. In the first place, I included a STO-3G basis set, which
is now assumed to be incapable of providing enough flexibility, although its has
been very popular in many molecular chemistry applications. Such a set typically
produces the effect mentioned in the first point above. To evaluate the role of the
polarization wavefunctions, I have selected a basis set of reasonable quality, the 6-
21G. The functions in this basis are an adaptation of the standard set in order to
obtain a better description of the SiO4 system. I will compare the effect of using such
a basis set with and without basis functions (which correspond to d shells). Finally,
I have considered a 6-311G* set as the set of best quality in this study. This set has
been specially adapted for the study of silica polymorphs and proved to offer very
good results both for the description of micro-structure and electronic structure (see
work by Chivaleri et al). Note that the use of the 6-311G* in systems with a number
of atoms similar to that of the models of interface (not related by symmetry) implies
considering a large amount of basis functions.

The most important characteristics of the mentioned basis sets are given in table
4.1. In general terms, the sets used are standard and the complete information
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Silicon
s sp d
STO-3G 3 3, 3 (0.16) -
6-21G 6 6, 2 (0.13) -
6-21G* 6 6,2 (0.13) | 1,1 (1.5)
6-311G* 6|6,2,1(0.13) | 1,1 (1.5)
Oxygen
s sp d
STO-3G 3 3 (0.36) -
6-21G 6 2,1 (0.37) -
6-21G* 6|2,1,1(0.28) | 1, 1 (0.40)
6-311G* 6|3,1,1(0.28) { 1, 1 (1.20)
Hydrogen
s sp d
STO-3G 3 (0.16) - -
6-21G 2,1 (0.16) - -
6-21G* 3,1 (0.12) 3,1(0.72) -
6-311G* 3,1 (0.12) 3,1(0.73) -

Table 4.1: Description of the Gaussian basis sets used.
The four basis set shown have been tested in this study. The columns named s, sp and d shown
how many of this type of shells are contained on each basis set. Each number in bold corresponds
to a shell, and indicates how many gaussian functions are contained on its contraction. The
numbers in brackets correspond to the value of the exponents of the most external gaussian.

concerning the exponents and coefficients can be found in [30, 84]. The exponents
of the outer shells have been optimized for the description of silica, and they are
displayed in the table. The number of shells and orbitals for each basis and the total
number of shells in the calculation are also listed.

4.3.3 Choice of the models of interface.

As has been already shown in section 4.2.2, an impressive amount of work has been
devoted to find models of the SiO2 micro-structure and, by extension, to the SiO2
interface. Fortunately, some of these models have allowed us to perform this study
without the need of generating new ones.

In the work by Yamasaki et al., already presented in section 4.2.2, it is possible to
find the set3 of interfaces presented in Figure 4.3. As can be seen in the Figure, the
interfaces a-S and a-L have an oxide that displays a very similar structure, but a very
different thickness. More specifically, the oxide layer in a-S contains 2 atomic layers,
while the layer in o-L contains 5 atomic layers. On the other hand, the interfaces
o-L and C-L have oxide layers of very similar thickness, while the structures of the
oxides are very different, since they are based in the a-quartz, and a-cristobalite
phases of silica, respectively.

Although the structure of the oxides in these models looks very much like that of

3The information concerning these structures was kindly provided by Dr. C. Kaneta, from
Fujitsu Laboratories (Japan).
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Figure 4.3: Models of Si/Si02 interface.

the corresponding silica crystalline phases, there is in fact certain differences. The
most relevant structural features of each model can be seen in Table 4.2. The in-
terfaces have been generated by joining an slab of crystalline silicon (with a (o01)
surface) and an slab of silicon dioxide, by means of first-principles molecular dy-
namics, using a plane-waves basis set, at DFT-GGA level, without imposing the
constraint of the crystalline symmetry. As a consequence, there is an angular and
bond length distribution. It also can be seen that some extra oxygen atoms have
been added right at the junction, in order to reproduce correctly the density of oxy-
gen found at the interface by experiments. There are finally, some extra hydrogen
atoms used to saturate the dangling bonds in the surfaces of both the oxide and the
substrate. For further information concerning the generation of the models and the

analysis of their characteristics the reader is referred to the original papers [s, 39].

4.3.4 Setup of the calculations.

All the calculations presented here have a similar setup, that will be described now.
All the interfaces have been built by generating an slab based on one of the mod-
els mentioned in previous section. The use of periodic boundary conditions allows
performing part of the calculation in reciprocal space (in the search for the eigen-
values and eigenfunctions). From our tests, a set of five special «-points selected by
the Monkhorst-Pack method allows a convergence on the total energy up to 10“®
Hartree.

Some other important parameters in a calculation done with CRYSTAL98 are

tolerances that controls the calculation of infinite Coulomb and exchange series

AIn CRYSTALY8 these series are truncated following the criteria established by the tolerances.
The important terms are evaluated explicitly, while the neglected terms are approximated by means
of a bipolar expansion. A detailed description of the method can be found in CRYSTAL98 user’s
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Model a-S a-L C-L
Total number of ions 35 23 22
Number Si ions 18 23 22
Number O ions 11 21 19
Number H ions 6 6 6
Total Thickness (A) 17.52 24.26 23.29
Thickness Oxide (A) 6.65 13.26 11.46
Thickness Substrate (A) 6.74 6.79 6.64
0-Si-0 angle distribution (°)  [105-115]  [100-115] [95-120]
115 105 110
Si-O bond distribution (A) [1.62,1.66] [1.63-1.66] [1.63-1.68]
1.66 1.63 1.65

Table 4.2: Structural features of the models of Si/SiO; interfaces.
The O-Si-O angular distribution and the Si-O bond distribution are described by providing the
range (in square brackets) and the value for which the distribution has a maximum (in bold).

To keep the convergence beyond 10~¢ Hartree it is enough to keep a set of tolerances
equal to (6 6 6 6 12) (see CRYSTAL98’s manual [30] for a detailed explanation of
this notation).

When employing a DFT Hamiltonian, the CRYSTAL98 code makes use of an
additional basis set, which is for the evaluation of the exchange-correlation contribu-
tions [30]. The authors of the code provide a database of basis sets that can be used
for such purpose, and can be found in [85].

4.3.5 Presentation of the results.

The fundamental parameters that describe the electronic structure of the interface,
for each different setup of the calculation, are displayed in Table 4.3.5. The value
of the valence band offset has been determined following the procedure described
in section 3.1. The values in the column “Error” display the difference between
the calculated offset and the experimental value of 4.6 eV [10]. The gap has been
calculated by finding the difference in energy between the top of the valence band
and the bottom of the conduction band in the total density of states. Each one
of the calculations has been named with a letter to ease the discussion. Note that
calculations A, B, C and D have been performed using the same basis set and the
same model of interface, and therefore allow one to study the effect of using different
Hamiltonians. Calculations D, E, F and G have been performed using the same
model and Hamiltonian, and allow one to study the effect of using different basis
sets. Calculations D and H have been performed with the same Hamiltonian and
basis set, and the models contain oxides of very similar micro-structure, but different
thickness. Finally, calculations H and I have been performed using the same basis
sets and Hamiltonian, and the models contain oxide layers of similar thickness, but

guide [30] and the description of the program by Roetti in chapter 8 of [27]. Comments on how this
approximation can affect the results can be found in the chapter by Dovesi, in the same book.
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Technique Basis Set Interface Offset Error
HF 6-311G* -5 5.60 +1.00
DFT-LDA 6-311G* a-S 213 -247
DFT-GGA 6-311G* a-S 231 -2.23
B3-LYP 6-311G* a-S 3.03 -1.57
B3-LYP 6-21G* a-S 312 -148
B3-LYP 6-21G a-S 240 -2.20
B3-LYP STO-3G a-S 1.85 -2.75
B3-LYP 6-311G* a-L 342 -1.18
B3-LYP 6-311G* C-L 396 -0.64

~OoQEEOQE >

Table 4.3: Results concerning the calculation of valence band offset.
The error corresponds to the difference in eV of the predicted offset with respect to the commonly
accepted [10] value of 4.6 eV. All values in eV.

different micro-structure.

I will start discussing the results concerning calculations done using different
Hamiltonians (Calculations A, B, C and D). As could be expected, the HF technique
overestimates both the band offset and the gap width. It is also well known that
this is due to the complete neglect of the correlation effects, which causes a wrong
positioning not only of the conduction band states but also of the valence band
states. On the contrary, both DFT schemes underestimate the offset and the gap
width, with the DFT-GGA results being closer to experiments than DFT-LDA ones,
but by 0.1 €V. Finally, the hybrid B3LYP scheme gives an intermediate answer, not
in exceptional agreement with experiments. These results, however, require further
analysis.

Table 4.4 contains information concerning the electronic structure of both silicon
and silicon dioxide layers, as given by each calculation. Focusing attention onto the
gap widthin the silicon substrate, the calculation in better agreement with experi-
ments would be the DFT-GGA. Such a straight match of the values leads, however,
to an erroneous conclusion. Here, the width of the gap has been determined as the
difference in energy between the last occupied and the first unoccupied one-electron
state (edges of the bands in the projected densities of states). It is well known that
any of the techniques employed describes far more accurately the occupied states
than the unoccupied states. Therefore most of the error in the calculation of the
gap comes from the incorrect positioning of the conduction band in the energy scale.
Based in this conclusion, we will focuss in comparing the width of the valence band,
which is composed of occupied states only.

Attending to the width of the valence band of silicon, and looking only at the
results obtained with the same basis set and model of interface, the calculations
done with the B3LYP hamiltonian seem to provide the results in best agreement
with the experimental meassurement. Once more, numerical agreement should not
be trusted without further analysis, since we cannot be sure that the few layers of
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Calculation Si Si0,
Gap Valence band | Gap
A 6.92 16.42 17.95
B 0.97 11.57 5.40
C 1.09 12.08 5.38
D 2.26 12.32 8.01
E 2.24 12.80 7.42
F 2.37 13.50 6.55
G 3.87 14.45 -
H 2.15 13.80 8.35
I 2.02 13.85 6.97
Exp. 1.1 12.5% 8.91

Table 4.4: Parameters of the band structure.
The values shown correspond to the widths of the band gap for both materials, and the width of
the valence band of silicon. They have been meassured directly from the projected densities of
states of the interface model, and therefore are equivalent to differences of one-electron energies.
All values in eV. Experimental data taken from { [10] and  [86].

| HF | DFT-LDA | DFT-GGA | B3LYP |

16.42 11.87 12.08 12.32
18.9 11.95 - 13.08

Table 4.5: Comparison of the electronic structure of the slab model with bulk calcula-
tions.

The width of the valence band the Si substrate is compared with data from calculations of bulk
Si, to understand if the ammount of layers of Si employed is enough for reproducing the bulk
structure of the material. All calculations done using 6-311G* basis set and model a-S (note that
the dimensions of the substrate layer are identical in all models). Data from the bulk calculations
taken from the compilation in [28]. All energies in eV.

Si atoms included in the substrate layer are enough as to provide a band structure
matching that of bulk silicon. In order to check this point, we have contrasted the
data presented above with the compilation included in the work by Muscat et al.
[28], concerning the width of the valence band of bulk Si. This is done in Table 4.5.
Note that in all cases, with independence of the technique employed, the value of the
valence band width is lower than the corresponding bulk value. Assuming that all the
calculations are of similar quality in what concerns the quality of the basis set and
sampling of the reciprocal space, the conclusion is that addition of more layers of Si is
needed to reproduce correctly the bulk structure of the silicon substrate. It is a well
known effect that systems with small number of atoms display larger band gaps than
the bulk material (quantum confinement). It is worth noting that the calculation
corresponding to the models a-L and C-L display larger widths of the valence band
than that of the model a-S. Although all three models, have identical dimensions of
the substrate layer, the former models are those having similar thickness of the oxide
layer, while the later is the one with smallest thickness of the oxide.
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In what concerns basis sets (calculations D, E, F and G), it is evident that
the basis sets of lowest quality (STO-3G, calculation G) are not able to provide a
good description of the electronic structure. Furthermore, the need of polarization
functions seems critical, by comparing the results obtained with sets 6-21G and 6-
21G* (calculations F and E, respectively). Finally, by comparing results between
the two basis sets of better quality (6-21G* and 6-311G*, calculations E and D) one
can expect convergence in the results up to 0.1 eV, once certain quality has been
reached. Unfortunately, as mentioned, making the outer basis functions more diffuse
than those employed will cause problems of linear dependence when constructing the
Bloch functions.

Centering the attention now on the features of the models, as has already been
pointed out, the comparison between calculations D and H outlines the need of
using models thick enough as to obtain a correct representation of the bulk states.
Unfortunately, we only had models of two different thicknesses, and we could not test
if the bigger ones where thick enough. However, by examining the graphs containing
the projections of the densities of states (as the one in Figure 3.1, we could determine
that the thickness of the region of oxide which contains interface states is the same
(~5 A), independently of the thickness of the oxide layer. The dimensions of the
region containing the interface states are in agreement with previous experimental
[5] and theoretical [39] work.

The intrinsic interface states appear because of the way ions at the junction are
connected. Silicon ions, for instance, bond two silicons from the substrate and two
oxygens from the oxide, while in the bulk materials silicon ion bonds either four other
silicons (while in the substrate) or four oxygens (while in the silica). This difference
in the bonding scheme leads to the interface states that appear in the gap of the
oxide, which are generated as charge redistributes in the junction. The presence
of these states is detectable only in a region of the oxide corresponding to several
atomic layers. This evidences that silicon dioxide is more ionic than pure silicon. The
electric field generated during the charge redistribution causes the electron states in
the region of the oxide near the interface to shift, and justifies that interface states
have energies inside the gap of silicon dioxide. The electrostatic interaction does not
apparently affect the states associated to the silicon substrate, i.e. the crystalline
field does not propagate significantly inside the semiconductor.

The fact that the dimensions of the region with interface states remain constant
even if the oxide layer becomes thinner may have significant impact for miniaturiza-
tion. As the oxide layer is reduced, the number of bulk states becomes smaller while
the number of interface states remains constant. The interface states, however, are
easier to access by the carriers, since they are inside the gap, and very close to the
junction (so carriers can tunnel). This, effectively, should be seen as a reduction of
the energy barriers and an increase of the leaking current.

Comparison between calculations H and I, shows that also the micro-structure
of the oxide influences the band alignment. It is encouraging that the best result is
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obtained for the model in which the oxide has cristobalite-like structure, since this
is the polymorph whose density (2.33 g/cm3) is closer to that of amorphous silica
(2.21g/cm?®)[87]. This suggests that the models based in a cristobalite-like structure
of the oxide may actually simulate successfully the properties of the amorphous oxide.
Reading the result in a different way, it is not possible to simulate the electronic
structure of the interfaces with an oxide based in any symmetry. In my opinion this
result should be handled carefully and further tests are needed, to find out if the
relationship between the density of the oxide and the band alignment is consistent.

We finally compare our results with those obtained by other authors. Tang et al.
obtained a valence band offset of 2.56 €V, using a crystalline model of interface, and a
DFT-LDA technique [8]. This is a similar result to ours (2.13 eV), and we notice that
the model employed by Tang and co-workers has an oxide thickness of 16 A, while the
oxide layer in our calculation the model had a thickness of only 6.65 A. We have found
almost perfect agreement with the results obtained by Yamasaki and co-workers [39],
which used the same models as us, a plane wave DFT-GGA approach, and a similar
procedure for studying the evolution of the electronic structure along the interface.
Also Tuttle has employed a DFT-LDA scheme, and obtained a value of 3.00 eV for
the valence band offset of a model with an oxide structure based in a-quartz [82).
Furthermore, the same author presents a calculation of the band offset based in the
ionization potentials (using calculations of surface models), which gives a value of
4.0-4.3 eV, very close to the experimental one. This results are certainly encouraging,
although it is unclear to me how to extrapolate the methodology employed by Tuttle
to the study of systems where the oxide layer displays an amorphous structure. On
the other hand. the calculation based in the ionization potentials does not allow to
evaluate the dependence of the offset on features of the junction, like the roughness
or the presence of point defects. Finally, the results by Demkov and Sankey shows
apparently a very good agreement with experimental data (their calculated offset is
4.65 eV). The authors, however, have employed a local basis set, but they have not
studied the dependence of the offset on the quality of the basis set (which in their
case is minimal). As we have shown here, this is a critical issue.

It is interesting to note that in most of the cases mentioned, the authors still make
use of band-alignment techniques which require defining and locating a reference

level, even if the studies already employ interface models.

4.4 Discussion of the results.

4.4.1 Calculation of the offset: capabilities and limitations. Possible
ways of improvement.

As has been pointed out already, the most useful aspect of the technique employed
here is that it does not rely on any particular energy level as reference, in contrast
with most of the other band alignment methods.

On the other hand, it is obvious from the results that obtaining a correct de-
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scription of the electronic structure is also not an easy task. In view of the results
presented here, the BSLYP technique is probably the best choice of the Hamiltonian.
Basis sets including polarization functions should be used.

Our models should be consider as a lower bound. The results depend on the
thickness of the oxide layer. Future models should certainly improve in this direc-
tion. As we have already mentioned, thicker layers of silicon substrate are needed to
reproduce correctly the band structure of this region. The case of the oxide is differ-
ent, since the thickness that we have employed is very similar to the real thickness
of true MOS structures which can now be produced.

Another issue that we have not been able to address here is the structural relax-
ation of the models to study their dependence on the Hamiltonians and basis sets.
Unfortunately, CRYSTAL98 does not allow one to calculate the gradients over the
ions, and therefore performing such relaxation is impossible. On the other hand,
exploring the energy surface of such a complex system is a task that can only be
faced by means of a molecular dynamics technique, in the ways as the authors of the
models proceeded.

The impossibility to obtain a correct description of the unoccupied states prevents
us from being able to apply the technique to the study of the conduction band offset,
which is fundamental for understanding of the electron flow. A possible way to
explore, in this direction, is the use of embedding techniques that allow modeling
a region of the system at quantum mechanical level, while reproducing the long-
range interaction at a simpler level. A good example of this techniques is the scheme
developed by A. Shluger, P. Sushko and co-workers [35, 88]. Although the simulation
of a complex interface is not yet straightforward in this embedding scheme, its study
is certainly possible and affordable, and may become useful in the study of the band
alignment problem in the Si/SiOy interface. The use of embedded cluster models
opens the possibility of considering amorphous lattices generated by inexpensive
classical molecular dynamics or reverse quantum Monte Carlo simulations, which
are able to provide structures in good agreement with experiments. They also allow
one to use more sophisticated quantum chemical methods that can provide a better
description of unoccupied states.

Turning back to the method employed here, and to possible applications, I think
that the key factor is the cost of the whole process. An evaluation of the offset
following this procedure requires: a) to construct a model of the interface following
a reasonable procedure; b) to perform a first-principles calculation of the electronic
structure of the model, ensuring. as much accuracy as possible and c) to evaluate the
density of states of the system and generate its projections. From all these steps, the
third one takes an infinitesimal part of the resources and the computer time. Some
of the other band alignment techniques, on the other hand, require only a knowledge
of the band structure of the band materials. In my opinion, such techniques have
been useful up to now, since the MOS structures contained dielectric layers of big
thickness, where the alignment was easy to deduce with simplified models. The
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method employed here, instead, is useful to understand if particular features of the
micro-structure, like its roughness, the density of the materials, their stoichiometry
or the presence of defects, affect the band alignment.

Once the capabilities and limitations of the method have been discussed, it is
worth considering that not all the sources of error may be due to the method itself,
but to oversimplifications of the model. The most important of these simplifications
will be discussed next.

4.4.2 Disagreement with the experimental results. Possible explana-
tions.

As can be seem from all the results presented, there is a disagreement between the
results obtained and the commonly accepted value of 4.6 eV for the valence band
offset. In the best of the cases (B3-LYP calculation using a 6-311G* basis set and a
model based on the cristobalite phase of the oxide), the offset is underestimated by
0.64 eV. There are several factors that can justify this difference.

Often the systems and mechanisms considered by theoretical studies are much
simplified from those systems handled in experiments. Theoretical systems allow
an accurate control of the conditions of the system, which is not always possible
to achieve in laboratory. On the other hand, the approximations implemented in
the techniques and the limitations of computational capacity often oversimplify the
systems described in calculations.

As to what concerns the experimental measurement of the valence band offset,
several methods have been employed, from high-resolution X-ray photo-electron spec-
troscopy [89, 80, 90] to electrical measurements [91, 92]. The results actually span
a considerably wide range of energies. In the paper by Alay et al. [80] the authors
remark in the introduction that electron current measurements predicted an offset
of less than 1.0 eV for oxides thinner than 3.0 nm, while internal photo-emission
experiments give a constant offset of 3.0 eV for systems with oxides thicker than 4.0
nm. Some other measurements of tunneling processes establish the offset at a value
lower than 1.8 €V for oxides thinner than 3.1 nm, and close to 3.0 eV for oxides
thicker than 3.6 nm. A scanning tunneling microscope-based technique predicts a
constant barrier of 2.75 eV if the oxide has a thickness between 1.8 and 4.5 nm.
Alay’s group themselves have determined the offset to be 4.36 €V (with an accuracy
of £0.1 eV), by means of X-ray photo-electron spectroscopy. A similar technique
is used by Keister et al. [89], who have predicted an average offset of 4.44 (£0.06)
eV. The electrical measurements, however, predict much lower barriers, between 3.1
eV [91] and 3.5 eV [92].

Such a dispersion of data, especially amongst the results obtained using different
techniques, suggests that either that the experimental conditions are very different
and greatly affect the results, or that what is being measured is actually not the
same thing. The following list highlights the features of the main techniques listed
above:
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o X-ray photo-emission spectroscopy. This setup allows direct scanning of

the valence band of the system. The technique has a high spatial resolution,
but it is constrained to explore the surface or the very first layers of the sample.
This requires the interfaces to be grown under very controlled conditions. The
uncertainty of the technique is around 0.05-0.07 V. It is very important to note
that after the photo-ionization process the system is left in an excited state.
The photoelectrons generated in the substrate are usually replaced by carriers
coming from the substrate holder, but in the oxide the photoelectrons are also
replaced by electrons tunneling from the substrate at a much smaller rate. As
a consequence, the oxide charges positively, and the energy and position of the
band are bent. This effect is by no means accounted for in standard electronic
structure calculations, and therefore the ground-state valence band does not
correspond exactly to the detected one.

Scanning tunneling microscope-based techniques. The main difficulty
when using STM devices in the SiO2/Si system is the insulator character of
the oxide. This situation can be modified if the sample is irradiated with an
electron beam. The beam excites electrons from the insulator valence band into
the conduction band, making the system a conductor and therefore allowing
STM probing. The I-V (intensity vs. voltage) and dI/dV — V plots allow one
to detect the gap width of the materials, and given the spatial resolution of the
setup, the change in the width of the gap along the interface can be scanned.
In the measurements presented in [93], the authors observe a too narrow oxide
gap, which they attribute to an increase in the density of states due to the

irradiation process.

Transport measurements. Based on the evaluation of the capacitance and
intensity as a function of the voltage. These methods are space averaging over
the direction perpendicular to the interface. Because of this, the methods are
especially affected by contact performance, unintentional doping or leakage
currents.

Given that the main trend in the microelectronics industry has been to miniaturize

the devices, the measurements obtained by photo-emission spectroscopy on thin films

have been considered as the landmarks for the development of new devices, and the

valence band offsets considered to be correct are between 4.4 and 4.6 €V. As already

mentioned, this technique allows spatial resolution, essential in order to study the

offset at the interface and to reduce the number of undesired effects.

4.4.3 The role of defects at the interface.

As can easily be seen, all the models of interface considered here are free of defects.

However, the role of even simple defects like vacancies or atoms with different coor-

dination (for instance, two or three coordinated silicon) is important and known to
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severely affect performance of the MOSFET based devices by contributing to carrier
tunneling or breakdown processes. In practice, the presence of such defects is un-
avoidable, or even allowed on purpose. A clear example of this is the use of Hydrogen
for saturating the dangling bonds of the Si substrate surface previous to oxidation,
in order to allow better control over the oxide growth process [94, 95].

The action of some of these defects over the barriers at the interface has been
addressed experimentally. In the work by Perfetti et al [96], it is shown how the
introduction of interlayers of hydrogen or cesium causes changes in both directions
(depending on the dopant), and as big as 0.5 €V, in the values of the band lineup.
Such changes are due to the fact that the dopant species bonds atoms at the interface,
modifying the quantity and magnitude of the existing dipoles. Some other defects
which cause the electrons to localize, like vacancies, are also known to affect the
dipole distribution at the interface. The magnitude of their action is, however, much
more modest, of the order of 60 meV [92].

In the work by Keister et al, the authors outline that the difference in the valence
band offset between the interfaces grown on the (100) and (111) surfaces of crystalline
silicon may be due to the action of defects at the junction.

It is possible, in principle, to use the method in this chapter for studying the
effect of the presence of specific point defects in the electronic structure across the
interface. However, I have not addressed the subject here, since it would have in-
troduced more parameters, complicating considerably the comparative study. Some
successful attempt of determining the effect of defects in the offset by means of su-
percell calculations has been done by Kageshima and Shiraishi, who found that the
presence of H and O-H increases the value of the valence band offset in 0.1 and 1.3
eV respectively [97]. Certainly such numbers partially justify the difference between
experimental measurements and the results presented here.

4.5 Conclusions.

In this chapter I have explored the possibility of studying the band alignment at an
interface through an analysis of the density of states of a first-principles calculation.
The method is applied to calculations done on periodic models of the interface, where
local basis sets have been used.

The approach contrasts with other band alignment techniques, where only in-
formation concerning bulk materials is employed. Current computational resources
allow already calculations of models of interfaces, and therefore open the possibility
to apply methods like the one shown here. This avoids the need to define an absolute
reference level for studying the alignment.

The case study has been the Si/SiOg interface, given its technological relevance.
I have studied in particular the effect that different Hamiltonians, basis sets and
characteristics of the models have on the prediction of the band offset. In what
concerns the Hamiltonian choice, from all those compared (HF, DFT-LDA, DFT-
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GGA and B3LYP), B3LYP gives best agreement with experimental measurements.
It is necessary to consider basis sets with polarization functions that allow enough
flexibility to the wavefunction.

The models of interface tested (taken from the work by Yamasaki et al.) contains
layers of Si substrate which are too thin as to describe the band structure of the bulk
material. It was possible to see that the interface states remain confined in the oxide
region which is closest to the junction. The thickness of this region is around 5A
wide, and is independent of the total thickness of the oxide. Since total thickness
of the oxide region in some of the models is very similar to that of some of the real
MOS structures, this result could be relevant for technologicl applications. Electrons
trapped in the region of the interface states would be able to tunnel easily. Therefore,
the thickness of the oxide layer should be bigger than that of the region containing
interface states.

Part of the disagreement of the calculated offset is certainly due to oversimplifica-
tions of the model, like the absence of defects in our models of interface. Certainly,
further work is required to understand the role of defects in the band alignment,
but this is not possible without using models of the interface. The most interesting
characteristic of the technique used here is actually the possibility to understand how
the band alignment depends on particular features of the junction.
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Chapter 5

Defects in hafnia and zirconia

Aim. In this chapter some basic point defects inside zirconium and hafnium dioxides are characterized.
The formation energies, electron affinities and ionization potentials of the anion and cation vacancies,
substitutional Zr in HfO2 and complex pairs formed by this substitutional defect and a vacancy. The
capability of these defects to act as charge traps is discussed.

Results. The ionization potentials and electron affinities have been evaluated as ground-state properties
by defining them in terms of differences of total energies of different charge states. A correction for
the underestimation of the band gap has been considered. The relaxation of the structures as defects
are formed and/or charged is small, due to the dense nature of the materials, and suggest that they
display a considerable ionic character. The oxygen vacancies appear to be able to trap electrons, and
neutral oxygen vacancies are also able to trap holes. The presence of hafnium impurities inside zirconia
does not affect significantly the properties of the vacancies. Finally, the energy involved in exchanging
ions between the oxides turns to be ten times smaller than the energy required to exchange ions in the
metals. This partially justifies the difficulty to isolate zirconium from hafnium.

Techniques employed. First Principles Density-Functional Theory on its Generalized-Gradient Approxi-
mation (DFT-GGA).

Basis sets. Plane waves.

Models. Periodic models of monoclinic Zirconium dioxide and Hafnium dioxide, containing around 96
atoms.

Computer Facilities. Self-consistent calculations of the electronic structure done using the Cray-T3E
supercomputer of the CSAR service at Manchester (UK).

5.1 Introduction.

Materials with a high dielectric constant (k) are being considered as possible sub-
stitutes for Silicon oxide as a gate dielectric in MOS devices. This would allow one
to increase the physical thickness of the gate to avoid the risk of carriers tunneling
through the gate, without degrading the performance of the device. Prior to the
employment of any of the high-x materials in MOS technology, several tests have to
be performed, like, for instance, the mechanical and thermal stability of the material
over the Silicon substrate, and the density and ability of defects to act as charge
traps. When it occurs, charge trapping by defects may contribute to some of the
dielectric breakdown processes, which eventually make the device useless.

Zirconia and Hafnia have turned out to be strong candidates as gate dielectrics,
fulfilling many of the mentioned prerequisites. Although most of the properties of
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these materials have been already studied because of their wide scope of applications
ranging from nuclear rods to jewelry, the properties of point defects have not been
studied in detail.

Electronic structure calculations can be used to make an exhaustive character-
ization of point defects. The characteristic of these materials, with a strong ionic
character, allow successful application of Density Functional Theory methods. In
this chapter I will show how the energies involved in the formation of and charging
of the defects can be evaluated accurately as a ground state property of the system,
despite the intrinsic limitation of DFT to describe the unoccupied electronic states.

The chapter is organized as follows. In first place a bibliographic review on
the previous research on the field is presented. Then, since all the setup of the
calculations and models of defects is similar, it will all be introduced at once. Finally
the results concerning each type of defect will be presented and discussed.

I will like to outline here that this research was performed in collaboration with
A. S. Foster, from the Helsinki University of Technology and V. B. Sulimov, at that
time working at University College of London. The results of the study have also
been published in the papers [98, 99, 100].

5.2 Bibliography review.

5.2.1 Two strong candidates: Zirconia and Hafnia.

Two very attractive candidates, which are the object of very active research at
present, are ZrO2 and HfOs. The permittivities for these materials are 22 and 21,
respectively, allowing the use of a considerably thick layer of this oxide with a ca-
pacitance equivalent to very thin layers of silicon dioxide. Devices with a dielectric
layer around 36 A thick of any of these materials will have the same capacitance as
devices with a layer of SiO9 just 5 A thick.

The band gaps of zirconia and hafnia are 5.8 and 6.0 €V, respectively, and the
conduction band offsets are around 1.4 eV for ZrO,, which is above the limit value
of 1.0 eV required to avoid leakage current [12].

In terms of mechanical stability, usual processing temperatures actually rise up
to 900°, and then it has been proven that ZrO» has a tendency to react with the Si at
the interface, forming a significant SiOy and SiZr layers [11]. Because of the smaller
permittivity of silicon dioxide, the effectiveness of the dielectric layer is reduced.
There are some attempts to control the wideness of the SiO4 layer by controlling the
processing conditions [101]. The problem of incorporation of zirconium or hafnium
to the silicon substrate and formation of the silicon oxide interfacial layer has also
received some attention from theoretical studies [102] recently. Theoretical studies
concerning different aspects of the growth of Si/ZrO, films has been presented by
Brodskii et al. [103].

Although the formation of a silicon oxide layer is certainly not desirable, the
formation of a silicate (Zr-Si-O or Hf-Si-O compounds) is not so inconvenient. The
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silicate is formed from ZrO4 and SiO2 tetrahedral units. The band gaps and offsets
seem to be close to the ones of the pure ZrO; high-k material oxide [12] and it seems
that these materials present excellent behaviour in preventing leakage currents [104,
105]. Both the stability and electrical properties of these materials largely depends
on their composition [105, 102]. The biggest drawback in the use of silicates is the
low dielectric constant (around 11 for Zr compounds and 13 for Hf compounds). This
may limit considerably the applicability of these materials as gate dielectrics in a few
generations, although some research suggest that enhanced dielectric constants can
be obtained by using SiO2 and silicates alloys [106]. In any case, the dependence on
the composition considerably complicates the systematic characterization of silicates
and alloys. In this regard ideal oxide systems act as good paradigms for looking at
more general properties.

5.2.2 Previous studies of the electronic structure of ZrO, and HfO,.

One of the main problems of using ZrO2 or HfOg is that they are fast ion conductors.
In particular, oxygen has a very high diffusivity through these materials. In fact,
this property has made these materials very attractive for application in catalysis
and gas sensors. Since a detailed knowledge of the electronic structure is desirable
to understand the mechanisms of diffusion and chemical bonding, several studies
have been devoted to find it, even before the microelectronic industry found these
materials interesting. One of the first studies was presented by Orlando et al. [107].
They used a Hartree-Fock level of theory, effective core pseudo-potentials and a
valence band LCAQ basis set. The cubic and tetragonal phases of zirconium were
studied extensively. Experimental geometries were used, and some partial geometry
optimisation was done for the tetragonal phase. As should be expected because of
the use of a Hartree-Fock scheme, the band gaps appear clearly overestimated by
a factor of more than 2. Stefanovich et al. performed, also using Hartree-Fock-
based techniques (first principles and semi-empirical INDQ), an extension towards
all three phases [108]. This work shows that good accuracy for structural data and
related magnitudes can be at ab initio Hartree-Fock level within 1% deviation from
experimental data.

DFT-LDA calculations of these systems have been presented by French et al [109].
This last work, however, makes use of experimental equilibrium structures at room
temperature. The band gaps are in this case underestimated by a factor of around
3/4, obviously because of the use of the LDA approach. The overall work presented
by the authors is, however, very interesting because it also provides experimental data
concerning the electronic structure. Finnis and co-workers [110] have also studied
the relative stability of all three phases of zirconia, showing how a self-consistent
tight-binding model developed by this group allowed a correct description of the
energetics, close in accuracy to DFT-LDA results.

The most accurate calculation of the band structure, so far, has been provided

85



L CHAPTER 5. DEFECTS IN HAFNIA AND ZIRCONIA

by means of the GW approximation for electron’s self energy!. The authors show
how DFT-LDA level calculations also provide correct structural information, and
describe properly the total energy ordering of the different phases[111].

In what concerns to the structural properties, the amount of information avail-
able is actually very big (for reviews on both materials, see the articles by Kisi [112]
and Wang [113]). Zirconia and hafnia are very well known materials in the field of
ceramics. Nuclear industry takes advantage of hafnia because of its high neutron ad-
sorption coefficient [113]. Certain instability problems presented by zirconium, which
undergoes tetragonal to monoclinic transformation below 1000°, made it unsuitable
for high-temperature applications, directing the attention of the research towards
hafnium as an alternative material. The behaviour of both zirconia and hafnia at
high-pressure phases has also turned out to be interesting because of their high bulk
moduli, which makes them interesting as very hard and refractory materials[114].
The difficult experimental set up for high-pressure characterization has made theo-
retical models play an important role [115, 116].

One of the main fields of research, of interest both for ceramics and microelec-
tronics industry, is the presence of defects in the ZrO2 and HfO; structures. Addition
of impurities like Ca, Mg or Y improves considerably the thermodynamically prop-
erties like strength and toughness. The stabilization effect of such ions in the cubic
phase of ZrO; has been studied by Stefanovich et al [108] by means of the HF-INDO
technique, and experimental measurements using ESR are shown by Ben-Michael et
al. [117].

There are some other defects, which are more relevant for the performance of these
oxides as gate dielectrics. This is the case of interstitial oxygen, and the vacancies of
both anion and cation species. The presence of interstitial oxygen is obviously related
to the process of diffusion of this species, affecting silicon oxide film growth. The
vacancies, on the other hand, are important defects because they may show the ability
to act as charge traps. In both cases, understanding the energetics and electronic
structure of both types of systems is fundamental in order to ensure reliability of the
dielectric. We have performed detailed DFT-GGA electronic structure calculations
using a plane wave basis set to study this. Results are presented in [98, 99], and
will also be presented and discussed in detail next. The other only work, to our
knowledge, which has studied the oxygen vacancies is that by Kralik and co-workers
[111].

5.3 Description of the Structure of ZrO, and HfO,.

In order to construct the models for our study we have considered the following
data. Both Zirconia and Hafnia have several crystalline phases. At the pressure and

!The GW approach allows the calculation of excited state properties, and therefore the band
gap, or difference between occupied an unoccupied levels. It was first systematically formulated
Hedin, and first implemented in a computational scheme by Hybertsen and Louie. We will not give
a description of the method here, since it has not been used in our research. Further references can
be found in the work by Kralik et al .
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Cubic Tetragonal Monoclinic

coorOInMsd oxygen vecency

Four-fold coordmeted oxygen vecency

Figure 5.1: Atomic arrangements of cubic, tetragonal and monoclinic Zr02 or Hf02.

temperature conditions in the manufacture and operation of MOS devices, Zro > and
Hfo » show three different phases: monoclinic, tetragonal and cubic. Both monoclinic
and tetragonal structures can be obtained by distortions ofthe cubic structure. Note
that the monoclinic unit cell has the largest number of degrees of freedom (it is defined
by three cell vectors and the angle j3). The unit cells of all three are reproduced in
figure 5.1. In table 5.1 some of the experimental values [118, 119, 113] for the relevant
crystallographic parameters are shown. A more exhaustive set of crystallographic
data for different temperatures can be found in the review by Wang [113]. There is a
strong similarity between both materials, but is interesting to note that the volumes
of the Hafnia unit cells are smaller in all three cases. This result can be predicted by

theory, since the ionic radius of Zr (0.083nm) is larger than the one of Hf (0.084nm)

The transformations, at atmospheric pressure, from one stable phase to the next
as temperature is increased are as follows

For Zirconia:

.. 1720° 2600° .
Monoclinic Tetragonal Cubic

For Hafnia:

2000
Monoclinic Tetragonal Cubic

Although both materials follow the same transformation sequence, each phase
transition always takes place at higher temperature in Hafnia than in Zirconia. This
can be an interesting advantage to avoid phase transitions during manufacturing. In
general, the qualitative description of both materials is identical, since Hf and Zr have

the same electronic outer shell configuration. Because of the higher density of Hafnia,

“Data for these transformation temperatures have also been taken from the review by Wang
[113]. As the author remarks, there is some disagreement in these numbers, which are given for
guidance purposes only.
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Monoclinic Phase Tetragonal Phase Cubic Phase
(space group P2;/c) (space group P42/nmc) (space group P4sm3)
| ZI‘OQ Hf02 ZI'OQ Hf02 ZTOQ Hf02
a | 5145 5292  5.094 5.140 5.124 5.110

b | 5208  5.175 - - - -
c|5311 5292 5.117 5.250 - -

819023  99.22 - - - -

Table 5.1: Structural parameters for ZrO, and HfO,.
Data have been extracted from the review [113].

however, differences in the energies of formation of defects, ionization potentials and
electron affinities are expected. Also, as pointed out by Lowther et al [115], electron
correlation seems to play an important role in explaining the differences between
both materials.

5.3.1 The monoclinic phase.

Since the monoclinic phase is the most stable in the range of temperatures at which
processing of MOS devices takes place, we have centred our attention on this system,
and all subsequent models of defects are based on a supercell of this polymorph. This
phase has been experimentally characterized in several works, which are summarized
in the review by Wang [113]. Since Zirconia and Hafnia monoclinic phases are almost
identical, the following description is applicable to both:

e Zr(Hf) has a formal charge close to +4, and it is seven-fold coordinated. The
range of bond lengths goes from 2.057 A to 2.285 A in ZrO; and 2.031 A to
2.254 A in HfO,.

e There are two types of Oxygen sites with three-fold (O7) and four-fold (Oyr)
coordination, both with formal charges close to -2.

e The Zr(Hf) ions are arranged in layers parallel to the (100) planes, separated
by Oxygen ions on either side.

Interatomic distances are shorter in Hafnia than in Zirconia. As an example, the
average Zr-Oy distance is 2.090 A and the average Zr-Ojpy one is 2.211 A, while the
corresponding distances in Hafnia are 2.086 Aand 2197 A respectively. Because of
this disparity in bonding distances, the group of Oyy ions resemble a square array
more closely in HfO» than in ZrOs.

5.4 Technical details of the calculation.

Since the study of the structure and electrical levels has been done at DFT-GGA
level, in this section we provide all the details of the calculations. All calculations
have been performed using the VASP 4.4.4. code 32, 120, 121].
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5.4.1 Set up of plane wave DFT calculations.

We have used the spin-polarized Density Functional Theory Hamiltonian and the
Generalized Gradient Approximation of Perdew and Wang, usually known as GGA-
II. We have made use of Vanderbilt [563, 52] ultrasoft pseudo-potentials to simulate
the cores of the ions. The pseudopotentials were generated considering the elec-
tron configurations [Kr|4d35s! for Zirconium atoms, [Xe4f'4]5d36s! for Hafnium and
[152)2s22p* for the Oxygen atoms (the core electron configurations are shown inside
the brackets).

The two fundamental parameters to adjust in a DFT plane-wave calculation are
the number of plane waves of the basis set (through the cut-off energy) and the
number of k-points considered in the sampling of the reciprocal space. The results
of our calibration for Zirconia are shown in table 5.4.1.

We explored cut-off ranges between 200 and 600 eV in the case of Zirconia, and
200 and 700 eV in the case of Hafnia, and have found that a cut-off energy of 500 eV
is sufficient to achieve convergence in the total energy of the order of 10 meV in any
of the systems studied here.

The k-point sampling of the cell was done by means of the Monkhorst-Pack
method. We tested the dependence of the total energy as the sampling in reciprocal
space was varied from 1 to 60 k-points in the case of Zirconia, and 1 to 80 k-points in
the case of Hafnia. Grids of 20 k-points in the former case and 10 k-points in the later
provided accuracy within 10 meV in the total energy of the unit cell. The modelling of
defects has required the use of supercells (which will be described in section 5.4.7),
which are constructed by extending the unit cell of the monoclinic phases by two
along all three dimensions. The symmetry of this superstructure causes some points
in the reciprocal space to become equivalent, and therefore the amount of points
to be sampled can be reduced significantly. A 2 X 2 x 2 grid corresponds to a set
of two special 3 k-points in the case of the 96 atom perfect supercell, and provides
accuracy up to 1 meV in the total energy of the system, as it can be seen in table
5.4.1. The creation of a point defect inside the supercell lowers the symmetry of the
system, therefore making necessary to employ a set of four special k-points. This set
of k-points was used in all the calculations of defects.

5.4.2 Criteria for relaxation of structures.

Structural relaxations were done for the different defects in different charge states.
For each type of defect, the neutral defect was generated by modifying the relaxed
structure of the perfect lattice. The starting geometry for the relaxation of charged
defects is that corresponding to the relaxed structure of the defect in another charge
state. The discussion of the relaxation process will be addressed in terms of the

3When a supercell containing several unit cells is used, the Brillonin zone in reciprocal space
is smaller than that corresponding to the unit cell. Because of the symmetry, each of the points
contained in the reciprocal space cell of the supercell is equivalent to several k-points in the normal
Brillouin zone. These points are known as special k-points.
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Cut-off Total Number of Total

energy energy k-points energy
450  -916.90321 1 -916.698194
500 -916.87354 2 -916.968404
550  -916.87940 10 -916.968174

Table 5.2: Convergence tests for the total energy of the 96 atom Zirconia supercell, as
a function of the energy cut-off and number of k-paoints.

The Table shows the total energy of the supercell for different values of these parameters. The
Energy cut-off determines directly the number of plane waves that are included in the basis set.
The choice of cut-off energy of 500 €V gives convergence in the total energy of the cell in the
order of 10 meV.The k-point mesh was generated using the Monkhorst-Pack method (see text).
The choice of a mesh of size 2x2x2 (containing 2 k-points) gives convergence up to 1 meV in
the total energy.

change in energy and in the position of the ions between the unrelaxed and the
relaxed structures. In all cases, the criterion to stop the relaxation was converging
the forces over atoms to a value smaller than 0.05 éV/A. A combination of Conjugate
Gradient and quasi-Newton minimization algorithms was used in the relaxations.

5.4.3 Accuracy of the calculations.

To test the accuracy achieved with the set up just described, we have compared with
experimental data the results obtained for the perfect structures of the three phases
(cubic, tetragonal and monoclinic) of the oxides (ZrO2 and HfO2) and the hcp phases
of the metals (zirconium and hafnium).

Typically, DFT-GGA calculations do not agree completely with the experimental
structural data. DFT-GGA calculations predict longer bond-lengths, so the volume
of the cell at equilibrium turns out to be larger than the experimental one. Because
of this disagreement the experimental geometries cannot be used as the most stable
in the calculations, as they appear strained. We therefore needed to first find the
most stable geometries of the unit cells, as predicted by DFT.

We have performed full cell relaxations (i.e. position of the ions inside the cell,
and cell volume and shape) of all three phase of both Zirconia and Hafnia. The
results are shown in Table 5.3.

In the cases of the metallic systems, very big sets of k-points are required to
obtain correct description of the delocalised states. In the cases shown here, sets of
250 k-points and cut-off energies of 250 eV were required to achieve convergence of
10 meV in the total energy of the cell. Due to the elevated cost of the calculations,
we opted for a less time-consuming methodology than the straight optimisation of
the structures. First. the positions of the ions of the basic unit cells of were relaxed
for a series of fixed volumes. Then, the total energies obtained were fitted with a
Murnaghan equation of state [122], and the equilibrium volume and total energy

were found. A comparison of the structural parameters between the DFT-GGA
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ZI‘02 Hf02
Calculated Experimental | Calculated Experimental
Cubic
Volume(A3) 32.97 32.97 32.49 32.77
a(d) 5.090 5.090 5.07 5.08
Tetragonal

Volume(A?) 34.55 34.07 33.12 35.08
a(A) 3.628 3.571 5.06 5.15
c/a 1.447 1.451 1.024 1.027

0z 0.049 0.057 0.051 -

Monoclinic

Volume(A?) 36.05 35.22 34.81 34.62
a(d) 5.192 5.150 5.132 5.119
b/a 1.014 1.012 1.011 1.011
c/a 1.032 1.032 1.034 1.035
B(°) 99.81 99.23 99.78 99.18
Xx 0.277 0.275 0.277 0.276
Xy 0.044 0.040 0.044 0.040
X, 0.209 0.208 0.209 0.207
Olx 0.072 0.070 0.070 0.071
01, 0.338 0.332 0.333 0.332
01, 0.341 0.345 0.345 0.344
02x 0.447 0.450 0.448 0.446
02, 0.758 0.757 0.758 0.755
02, 0.479 0.479 0.478 0.480

Table 5.3: Comparison of structural parameters between calculated (DFT-GGA level)
and experimental data for the monoclinic phases of ZrQ; and HfQ,.

0z is the shift in the fractional coordinates of oxygen ions in the tetragonal cell with respect
to their ideal position in the cubic phase. (3 is the angle (in degrees) between a and ¢. The
coordinates of the non-equivalent ions are given in fractional units, and X stands for the metal
species (Hf or Zr). Experimental data taken from [113, 123, 118, 119]

predictions and some of the experimental data are shown in Table 5.4.

On view of the results just presented, the general conclusion is that, despite
a slight overestimation caused by the longer bond lengths, the results are in good
agreement with experimental data. This essentially proves that the set up of the
calculations was correctly done, and that further results can be trusted within the
limitations of the theory.

5.4.4 The electronic structure of perfect lattices.

Since most of the processes in which we are interested involve the transition of carriers
between different one-electron states, we analyse now how the electronic structure of
the bulk materials are described in our calculations.

All three phases of both Hafnia and Zirconia qualitatively display the same band
structure. Since the calculations have been performed using pseudo-potentials to
simulate the electron cores, the discussion concerns the outermost bands only. A
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Property Calculated Experimental

a(A) 3.1797 3.1946
c(A 5.0239 5.0510
e 1.58 1.58
A% 2199 22.32
By(GPa) 110 110

Table 5.4: Comparison of calculated and experimental data for the metalic systems.
The data concerns bulk hcp hafnium. Experimental data has been taken from [124] and [125].

graphic representation of the density of states described here is shown in figure 5.2.
The plot corresponds to the total density of states of the monoclinic phase of both
Hafnia (solid black line) and Zirconia (dashed red line). The main characteristics of
the density of states of these materials are:

e One valence band is composed of Oxygen 2s orbitals. This band is located at
around -15 €V.

e Another valence band appears at 0 eV, and arises mainly from Oxygen 2p or-
bitals, with a small contribution from d orbitals from Zr or Hf . The proportion
of this contribution is consistent with the fact that the covalent character of the
Zr(Hf)-O bonding of these materials is very small and they can be considered
ionic insulators.

e A conduction band formed by d states of Hf or Zr.

It is a well known fact that the DFT-GGA method is unable to provide a proper
description of the unoccupied states (which for the conduction band of the oxides).
As a result of the self-interaction interaction, the unoccupied states are positioned
far below the experimental value, and therefore the gap between the valence and
the conduction bands appears to be smaller than experimental values. The way this
error is treated in our study is discussed next.

In any case, the values that we have obtained are reasonable within the limitations
of the method. This can be seen by comparing the gap width of our calculation of
monoclinic zirconia (3.41 €V) with the compilation of results obtained with other
methods presented by Kralik et al. [111]. The DFT-LDA technique gives a gap
width of monoclinic zirconia equal to 3.12 eV, that is an even smaller value than the
DFT-GGA result. This is consistent with the fact that the GGA technique provides
a better approximation of the exchange-correlation energies than the LDA scheme.
The GW approach, on the other hand, provides a value of the gap of 5.42 eV, much
closer to the experimental value. This is, once more, also consistent, since the GW
approach constitutes one of the most accurate techniques available.
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Figure 5.2: Density of states of monoclinic Zirconia and Hafnia.
The black solid line corresponds to the density of states of Zirconia, while the red dashed line
corresponds to Hafnia. The widths of the respective band gaps, calculated as difference between

one-electron energies, are also shown.

Material Exp. Gap One-elec. GAP Tot. E. GAP z
Z1Os 5.4f 3.19 3.41 2.21
Hf02 5.681 3.92 4.12 1.76

Table 5.5: Calculated and experimental values of the gaps of Zr02 and Hf02.
The first column contains the experimental values (see text for references), the second one
the value of the gap calculated as the difference in one-electron energies, the third the value
calculated as the difference in total energies, and the last one is the correction %« calculated with
these values. All energies are given in eV. fData taken from reference [1271. IData taken from

reference [128].

5.4.5 Correction to the band gap.

The value of the gap for both zirconia and hafnia, as given by experiments and as
calculated by us, are shown in table 5.5. The value of the gap has been calculated as
a ground -state property, as described in 3.2.2, and the corresponding X correction
calculated for these values is also shown in Table 5.5.

Earlier we noted that there is no overall agreement with the experimental values
of the gaps of these materials. In the case of zirconia, the value for the experimental
gap is given as 5.83, 4.2 and 5.4 eV depending on whether it is measured by UPS
[109], EELS [126] or electron photo-injection [127] techniques. In the table we display
the value obtained using the latter technique, because it is also the closest to that
obtained by DFT calculation using perturbation theory at GW level [111] (5.4 eV).
The experimental value for hafnia band gap (5.68 eV) has been taken from [128].
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3-fold
4-fold coordinated
coordinated Oxygen
Oxygen

\

Zirconium # Three fold coordinated oxygen vacancy.

Oxygen Four-fold coordinated oxygen vacancy.

Figure 5.3: Supercell of ZrU2 (or Hf02)
The cell, containing 96 atoms is shown on the left. It has been constructed by replicating the crystallo-
graphic cell of monoclinic Zirconia (Hafnia) shown on the right. The red circles indicate Oxygen ions,
the grey are either Zirconium or Hafnium. A 3-fold-coordinated Oxygen is highlighted in blue and a

4-fold coordinated oxygen in pink.

Oxygen Zirconium Hafnia
Total energy (eV) -1.97 -2.23 -3.36
DFT Config. [Is*]2s72p”  [Kr]4d"S5s™  [XedfN"A]Sd6s™

Table 5.6: Atomic energies.
Calculated following the procedure described in 3.2.1. They have been employed in the evaluation

of the formation energies of defects.

5.4.6 Atomic energies.

Table 5.6 shows the atomic energies employed to calculate the formation energies of
the defects. They have been calculated following the procedure described in 3.2.1.
The second row lists the electronic configuration employed as reference for the fitting

of the pseudopotentials.

5.4.7 The supercell models of defects in Zirconia and Hafnia.

All calculations of defects in Zirconia and Hafnia were done using a 96 atom unit
cell as basis. This supercell was generated by extending the 12-atom monoclinic unit
cell by two in three orthogonal directions. In this structure, the neighbouring defects
(generated by periodic translation of the supercell) are on average 10 A apart. At
this distance the contributions to the total energy coming from interactions between
these defects are, in all cases, smaller than 0.1 eV (the interaction between defects
has been estimated following the method described in 2 .2 .1).

In figure 5.3 we show a schematic representation of the supercell, highlighting the

sites corresponding to three-fold and four-fold coordinated oxygens.
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5.5 Oxygen vacancies.

Oxygen vacancies (i.e. the removal of one Oxygen atom from its site in the crystalline
network) are one of the simplest types of point defects that exist in the oxides. In
many cases, vacancies have been reported to act as charge traps. Such a behaviour is
undesirable if the oxide is being used as a gate dielectric, because the trapped charge
may contribute to increase the leakage current and to trigger a breakdown process.

The aim of this study is giving a characterization, as complete as possible, of the
oxygen vacancies in both Zirconia and Hafnia. I have divided the analysis in blocks:

e Structural data and energies of formation.
e Analysis of the electronic structure.

e Ionization potentials and electron affinities.

5.5.1 Description of the structures and formation energies.

The monoclinic structure of both Hafnia and Zirconia contains two different sites for
Oxygen, characterized by a different coordination (see figure 5.3). We have performed
a systematic study of both, and results are presented mostly through tables and
pictorial schemes to allow an easier comparison. To differentiate each type of vacancy,
I will make use of the notation V¢, where c stands for the coordination and q for the
charge state.

The vacancies were generated by removing each of the different types of oxygens
atoms (three-fold coordinated or four-fold coordinated, see figure 5.3). In all cases
we remove a neutral atom, and not an ion in the corresponding charge state in the
crystal.

A summary of the results of the relaxation of the structures is shown in Table
5.5.1. The first thing to point out is the similar behaviour of both materials. The
very densely packed structure of these oxides only allows a very small relaxation of
the neutral vacancies. The displacements in this relaxation process are 0.5%-1.0%
of the Zr-O or Hf-O bonding distances. In the case of positively charged systems,
displacements due to relaxation are in the order of 5%-10% of the bonding distances.
This is caused by the reduction in the screening effect by the electrons trapped in
the vacancy level. As these electrons are removed, the first cations surrounding the
vacancy experience a greater repulsion between them. In the case of the negatively
charged vacancies, the displacements are similar to those of neutral vacancies. The
reason is that the extra electron is delocalized throughout the entire supercell.

The formation energies of the neutral vacancies have been calculated assuming

the following process takes place:

Perfect | =>| VI Oatom
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ZrOy HfO,

Vacancy | Relaxation Range of the | Relaxation Range of the
type energy displacements energy displacements
\% 0.11 0.01-0.02 0.06 0.01-0.02
\'4 0.47 ~ 0.1 0.61 ~ 0.1
\ 0.74 ~0.1 0.84 0.1-0.15
' 0.10 < 0.02 0.09 < 0.07
VY . - 0.09 0.01-0.02
V' - - 0.65 0.1-0.17
Vit - - 0.83 0.1-0.2
V3 - - 0.04 0.01-0.02

Table 5.7: Energies (in eV), displacements (in A) and formation energies involved in
the relaxation of the Oxygen vacancies in Zirconia and Hafnia.

Zr02 Hf02
V] 890 9.48
V) 888 9.46

Table 5.8: Formation energies (in eV), of three- and four-fold coordinated Oxygen
vacancies in Zirconia and Hafnia.

The oxygen atoms are assumed to be far enough as to have no interaction with
the vacancy site. The initial system is calculated as a 96 atom supercell of perfect
monoclinic oxide, the vacancy as a 95 atom supercell, and the oxygen atom as isolated
(described in subsection 3.2.1). Note that the number of atoms and the number of
electrons between the initial and the final states are equal. The formation energy of
the vacancy can then be defined:

Ejor (V) = E(VS) + E(O) — E(pry) (5.1)

where E(V{),E(O) and E(prf) are the total energies of the vacancy, the oxygen
atom and the perfect lattice respectively. The values of the formation energies were
obtained using equation 5.1, and are shown in table 5.8.

For each material, the similarity between both values is remarkable despite the
difference in coordination. In the case of charged vacancies, we do not consider their
direct formation, but rather the processes of charging of the defects. The energies
involved in such processes are the ionization potentials and affinities described in
subsection 5.5.3. Prior to this calculation, it is necessary to have a clear picture of
the band structure of the system and of the perturbation introduced by the vacancies.

5.5.2 The electronic structure.

Neutral oxygen vacancies introduce a double-occupied one-electron level into the
band gap of the oxides. With respect to the top of the valence band, this level is
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Figure 5.4: Defect levels of different vacancies in zirconia and hafnia.
The width of the band gap and the position of the bottom of the conduction band with respect
to the vacuum level (electron affinity of the material) are those detected experimentally, as given
in [127, 128, 12]. The calculated position of the levels is given with respect to the top of the
valence band. The estimated position [12] of the silicon gap (1.1 eV, as given in [10])is also

shown as grey bands. All energies are in eV.

placed at 2.61 eV and 2.20 eV in the three-fold and four-fold coordinated vacancies
in Zro>» and 2.80 and 2.33 eV in the three-fold and four-fold coordinated vacancies
in Hfo » . These results are displayed schematically in Figure 5.4. Since it is well
known that the unoccupied states are not correctly described by our approach, we
have displayed in this Figure the position of the conduction band with respect to the
valence band as provided by experiments (i.e. we used the esperimental band gap
width). The experimental electron affinity of the material allows also to estimate the
position of the vacuum level with respect to the bottom of the conduction band. It
should be kept in mind, however, that this is an approximated estimation, since the
electron affinity depends in the dipoles formated at the surface of the material. We
have also included the position of the silicon band gap, as estimated by Robertson
[12]. Note how the defect level corresponding to the three-fold coordinated oxygen
vacancy in zirconia falls into the same range of energies as the Si band gap. Also
some other levels (V4 in Zro>» and Vs in Hfo» ) are very close to the edge of the
valence band of Si, suggesting that tunneling of electrons from the valence band of
Si to these defects levels is very likely to happen.

The reason for the difference in the position of the defect levels between these ma-
terials is that hafnia has shorter cell vectors than zirconia has. The potential well in
which the electrons in the vacancy level are trapped is narrower in hafnia, and there-
fore the energy of these electrons lies slightly above the energy of the corresponding
levels in zirconia.

We can compare some of our results with the only other work which has studied

the vacancies. Kralik and co-workers have performed accurate GW calculations.
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Figure 5.5: Partial charge density maps of neutral three fold Oxygen vacancy in Hf02.
The density has been projected over the last occupied state (defect state) and mapped onto a
plane containing the first neighbours (Hf atoms marked in the pictures). Because the vacancy
site is not containded in this plane, the maxima of the density (red regions) appear to be near
the hafnium ions. However, an integration of the electron density inside the spheres shown in
the plot shows that actually only a portion of the density is contained in these regions. The

distances along the axes are given in A.
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although their model concerns an oxygen vacancy in cubic zirconia only [111]. They
describe the vacancy level being 2.1 eV below the bottom of the conduction band,
which in their calculations turns out to be 5.55 €V. Therefore the distance of the
vacancy level with respect to the top of the valence band is 3.45 €V, which is at
least 1 eV above the value position of the levels found in our calculations. It is still
difficult to compare these results, not only due to the difference in the structure of
the materials (cubic against monoclinic), but also because the unit cell in the model
by Kralik an co-workers is considerably smaller (their cell contains 11 atoms, while
ours contains 96). As a consequence, the interaction between defects in their case
should be strong. Indeed, this is pointed out by the authors themselves in basis of
the study of the dispersion of the defect level throughout the Brillouin zone. This
interaction should unavoidably rise the energy of the level associated to the vacancy.

Turning back to the analysis of our results, both three-fold and four-fold coordi-
nated vacancies in the two oxides have a similar behaviour. The following description
can therefore be applied to all different types of oxygen vacancies.

It is possible to evaluate the localization of the electrons in these states by making
a projection of the electronic charge associated to the defect state, as shown in figure
5.5. The doubly occupied electron state is localized in the region surrounding the
site of the vacancy and limited by the first neighbours shell of hafnium atoms. The
plane on which the density has been projected contains all three hafnium atoms, but
the site of the vacancy is not contained on it. Because of this the graph may be
misleading, showing that the electron density tends to accumulate near each one of
the hafniums (red regions). To prove that the electrons accumulate on the vacancy
site, it is possible to integrate the partial electron density corresponding to this state
over spheres of radius 1.5A (indicated in the figure as white circles). The maximums
in the density map (red regions) are at a distance approximately equal to 0.8 A. The
integrated charge density, however, shows that the main part of the electron density
is further away from all hafnium atoms. Note also how the differences in distance
between the vacancy site and the hafnium atoms also affect the amount of charge
contained on each sphere (seen as a difference in slope).

The first excited state can be determined by calculating the vacancy system in
its triplet state. This level is very close to the bottom of the conduction band and it
is much less localized. The charge density is maximum at the neighbouring Hf sites.
We have considered the possibility of a singlet to triplet excitation of the system
as a “vertical process” where the triplet (final state) has the same geometry as the
relaxed singlet (initial) state. The difference in total energies between the singlet
and triplet states is 1.20, 1.30 and 1.59 eV in the four-fold coordinated vacancy in
zirconia and three-fold and four-fold coordinated vacancies in Hafnia, respectively.
It is interesting to note that these energies agree to 0.1 eV with the single particle
energy differences between the last occupied and the first excited levels. The exact
values for these differences are 1.11, 1.22, 1.66 eV, once more for the three-fold and
four-fold coordinated vacancies in ZrOo and HfOs.
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ZI’Oz
v vitoovit Vv it Vi
l,(D) 345 353 - 380 398 -
Xe(D) -225 -268 -289 - -333 -354
xn(D) -272 251 - 210 -18 -
HfO,
VAR A R A
IL,(D) 341 373 - 388 410 -
Xe(D) -1.80 -276 -293 -1.90 -226 -2.26
xn(D) 292 275 - 242 242 -

Table 5.9: lonization potentials, electron affinities and hole affinities for Oxygen va-
cancies in ZrO2 and HfO,, lonization potentials (I(D)), electron affinities (x.) and hole
affinities (1) for Oxygen vacancies in ZrO; and HfO,.

The affinities correspond to fully relaxed configurations of both initial and final states of the
process. All energies are given in eV.

When one electron is removed from the neutral singlet state, the vacancy be-
comes positively charged, and the electron remaining in the vacancy level remains
localized. If, on the contrary, an electron is added to the neutral vacancy, it becomes
strongly delocalised along the entire supercell. Because of this, the relaxation of the
negatively charged vacancy is small, as aforementioned. The reliability of this result,
however, may be affected by at least three factors. First, the DFT-GGA calculation
predicts a too narrow band gap, so the added electron may be incorrectly placed
in an state belonging to the conduction band. Second, the neutralizing background
may introduce an unphysical interaction (see discussion in section 2.2.2). Finally,
it may be necessary to consider a setup of the calculation that will allow a more
accurate calculation of the delocalized state.

5.5.3 lonization potentials and electron affinities of the defects.

As shown in the previous subsection, oxygen vacancies introduce a level in the gap of
the bulk material. The ability of this defect to act as a charge trap depends on the
amount of energy required for an electron to move between the defect level and any
other state. The energies involved in these processes are, by definition, the ionization
potential and electron affinities, and actually depend on the energy of the incoming
electron. We have assumed here that the electron is moving to the closest empty
one-electron state, located at the bottom of the conduction band of the oxide. It is
worth noting, however, that in hypothetic MOS structures built with this oxides, it
is more likely that the sources of carriers will be the valence and conduction bands
of the semi-conductor substrate (as we have just discussed in previous subsection).

The ionization potentials, electron affinities and hole afinities of oxygen the differ-
ent types of oxygen vacancies in both Hafnia and Zirconia are summarized in Table
5.9. These quantities have been calculated as described in subsection 3.2.3.

As expected, the energy required to trap an electron is different if the relaxation
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vy o it v vy oyt vEt
Xe(D) -1.80 -2.76 -2.93 -1.90 -2.26 -2.26
xn(D) 292 275 - 242 242 -

Table 5.10: Comparison between vertical and fully relaxed electron affinities (in eV) of
Oxygen vacancies in HfO-.

of the defect as it changes its charge state is not taken into account. The difference in
energies, which corresponds to defect relaxation, is of the same order as the relaxation
energies shown in subsection 5.5.1, involved in the processes of formation of the
defects. The calculated electron affinities correspond to extreme cases of the real
processes. This is because in the vertical processes no relaxation is considered, while
in the relaxed processes a full relaxation is considered. In real systems, a relaxation
will take place when the carrier is trapped, but it may not be a full relaxation if the
carrier does not remain long enough on the site.

5.6 Cation vacancies, substitutional defects and complex
pairs.

We have also looked at some other types of defects in pure Zirconia and Hafnia:
the cation vacancy in HfOsq, substitutional Zr in HfO, and the complex pair Oxy-
gen vacancy-substitutional Zr in HfO,. The reason for choosing these defects is the
difficulty found in eliminating Zirconium impurities from Hafnia: we wanted to in-
vestigate whether the presence of these impurities affects the electrical properties of
the Oxygen vacancy and how. In case this does have an effect, the the situation
will then be very similar to that of Ge impurities in Silica, which are of very much
interest for high speed communications technology (see for instance [129] for further
references).

The principal commercial sources of Zirconium are Baddeleyite (Zirconium oxide)
and Zircon (Zirconium silicate). Both minerals are also the main source of Hafnium
[113], which is naturally contained in approximately 1.5-3.0 %. The process of isola-
tion of both metals is difficult, and most of the commercial Zirconium and Zirconium
oxide contains Hafnium as an impurity, in the same proportion found in nature. This
is also the reason for the high cost of Hafnium with respect of Zirconium, and of the
mistake in the original determination of the atomic weight of Zirconium, due to the
undetected presence of Hafnium.

The source of the difficulty found when separating Hafnium and Zirconium is the
very similar behavior of both species in terms of chemical bonding. This is expected,
since both elements have the same external electronic configuration. In order to
evaluate the amount of energy involved in the process of formation of the defect, it is
necessary to consider first the formation of the cation vacancy and then the addition
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of the impurity.

5.6.1 Formation of the Hf vacancy. Calculation of the formation en-
ergy.

In the first instance, we generated the neutral Hafnium vacancy by removing the
atom from the perfect supercell, following an identical procedure as for the Oxygen
vacancy. The energies involved in the process of formation of the neutral Hf vacancy
in HfO3 can be determined from the equation

Efor(Vuy) = E(Vy) + E(HS) — E(prf) (5.2)

If we use the energy for the isolated Hf atom, E(Hf)%™¢=_3.36 eV, calculated
using the periodic scheme as described in section 3.2.1, the formation energy of the Hf
vacancy is E%‘,’,mic = 23.50 eV. It is important to note that in this case the resultant
energy does depend on which the atomic energy E(Hf) is taken for Hafnium. In order
to avoid the problems involved in the calculation of atomic energies using periodic
DFT techniques, it is possible to evaluate a system of bulk metallic Hafnium and
find the energy per atom of this system. Using such reference makes sense because
in the process of formation of the oxide, when used as gate dielectric ¢, metallic
Hafnium may be clustered inside the material. In our calculations, we obtained an
atomic energy for metallic Hafnium equal to E(Hf)™e%!¢=_9 88 eV, which gives a
formation energy of E}";}t“”ic = 16.9 eV. Finally, one can assume that the removed
Hafnium remains in equilibrium with Oxygen vapour (this situation also agrees with
the process of growth of the oxide over the Silicon substrate in MOS devices). In this
case the energy of the Hafnium atom will be equal to Exy = Exjo, — Eo,, where
Ep o, is the energy of monoclinic bulk Hafnia and Ep, is the energy of the Oxygen
molecule. Molecular Oxygen can be calculated more accurately that atomic Oxygen
if using periodic DFT 3. Using this procedure the energy of Hf is E(Hf)o%de=_20.83
eV and the energy of formation of the cation vacancy is Egg:’.de = 5.76 €V.

All these results are summarized in table 5.6.1. The process is endo-energetic
and the amount of energy involved is significant. This is because of the large number
of Hf-O bonds that need to be broken in order to extract the Hf ion.

The lattice relaxation involved in the creation of a Hf vacancy is larger than in
the case of the Oxygens, and has energy equal to 1.57 eV. During this relaxation,
the Oxygens move between 0.1 and 0.2 A away from the vacancy site. This indicates
that the Hafnium ion (with formal charge +4) provides a strong screening to the

“The growth of the oxide layer over crystalline substrate (when the oxide is not native silica) is
done by deposition of the metal and by subsequent oxidation at high temperature in an atmosphere
rich in molecular Oxygen.

5 Actually, it is possible to estimate the error introduced by the DFT calculation of the atomic
Oxygen by evaluating the dissociation energy of the Oxygen dimer by means of the formula
AEthee™ = E(0,) - 2E(O). Using E(0)**°™°=-1.97 eV, the dissociation energy is AE*"*°"¥=5.88
eV, which is still above the experimental value AE®**?=5.17 eV. Also the electron affinity of the
Oxygen atom [124] is overestimated by 0.2 eV.

102



L CHAPTER 5. DEFECTS IN HAFNIA AND ZIRCONIA

Type of Hf E(Hf) Formation energy

Atomic -3.36 23.50
Metallic -9.88 16.90
Oxide -20.83 5.70

Table 5.11: Formation energies of the Hafnium vacancy in HfO..
The value of this energy depends on the atomic energy of Hf. The table shows the values of the
energy of atomic Hf, (bulk) metallic Hf and Hf in equilibrium with molecular Oxygen vapour. All
three results depend on the accuracy of the DFT technique (see text for details). All energies
are given in eV.

Oxygen atoms that surround it, and this screening disappears as soon as the ion is
removed.

It is interesting to note that all the states introduced by the creation of a Hf
vacancy are contained in the valence band, and therefore we do not expect this defect
to play any important role as a charge trap. The abundance of cation vacancies is
also not probable, since a high energy is required to create these type of defects. This
energy may, however, be supplied by the process of incorporation of the Zr impurity.

5.6.2 Substitutional Zr in HfO,.

For the study of the formation of this substitutional defect, we have considered
directly the substitution of a Hf atom by a Zr atom at the same site. In a similar
way as described for the other defects, the energy involved is

Efor(SZr) = E(Szr) + E(Hf) — E(ZT) — E(prf) (5.3)

where E(Hf) and E(Zr) are the atomic energies for the isolated atoms. Using the
atomic energies calculated in section 3.2.1 the formation energy turns out to be
Egtemie(SZr) = 0.86 &V if the bulk metal references are used, then Efictlic(SZr) =
0.55 eV ; if the oxide references are used E%%%(SZr) = —0.05 eV. These results are
reasonable, since the incorporated Zr atom is able to create bonds very similar those
of Hf atom which it substituted, and therefore the energy gain due to bonding is
similar to that required to break the previous bonds. These results also explain the
difficulty in separating the metals from the minerals. The exchange of ions between
the oxides is a process that almost does not require any energy, while the transfer
of ions from the oxide to a metallic cluster requires as much as half an electron-volt
per ion.

When the substitutional Zr is added to the vacancy site, the system undergoes
a relaxation in the opposite direction, but with displacements of the same order of
magnitude (0.1-0.2 A), as those in the creation of the cation vacancy. The Oxygen
atoms, however, are not able to return to their positions as in the perfect monoclinic
Hafnia. This is consistent with the fact that the Zr-O bond in Zirconia is longer that
the Hf-O bond in Hafnia.
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In order to establish if the substitutional defect was able to act as a charge
trap, we removed and added an extra electron to the relaxed system. In both cases
(positive and negative charging) the hole and the electron (respectively) remained
delocalized all over the supercell. This behavior is similar to that of the supercell
of perfect Hafnia, and outlines once more the similarity of Hafnium and Zirconium
in their electronic structure. This system does not mimic the behaviour of Silicon
and Germanium systems, but structure considered here (monoclinic Hafnia) is much
denser than that of silica polymorphs at normal pressure. One should also be aware
that the DFT technique used may not be accurate enough to describe the existence
of shallow states, due to its poor description of unoccupied states.

5.6.3 The substitutional Zirconium-Oxygen vacancy complex pair in
Hafnia.

It is not probable that the industrial production of MOS devices based on using Haf-
nia as a gate dielectric (should this occur) will employ a material free of Zirconium
impurities. Both experimental evidence and studies like the one presented in the
previous section show that the process of isolation of one of the metal (or an oxide
based only on one of them) is difficult and therefore, in economical terms, expensive.
The use of Zirconium-contaminated Hafnia should not be, however, a problem, if its
presence does not modify the essential properties of the material. The very simi-
lar chemical behaviour of both Zirconium and Hafnium ensures similar mechanical
properties. In what concerns the electrical activity of the defects, in the previous
section it is also shown that substitutional Zirconium is not itself a charge trap. In
order to determine how the presence of this impurity affects the properties of some
other defect that can trap charge, we have studied the complex pair formed by an
Oxygen vacancy and a substitutional Zirconium.

The complex pair has been constructed using a supercell containing a three-fold
coordinated Oxygen vacancy, replacing one of the Hafnium atoms neighbouring the
vacancy. The relaxation process is more complex than in the single defects, but
it can easily be understood in terms of the interaction between ions. The Oxygen
atoms in the vicinity of the vacancy move towards the empty site. This happens
because part of the repulsion is compensated by the attraction felt by these anions
to the Zirconium atoms. Also feeling the presence of the Zirconium, some Hafnium
ions displace away from the defect site. In all cases the displacements are very small,
between 0.1 and 0.04 A in the case of the Oxygens and 0.01 A in the case of the
Hafnium ions. The rest of the ions do not experience any displacement due to the
presence of the defect.

The complex pair introduces a level inside the gap of Hafnia, 2.7 eV above the
top of the valence band. This result is very similar to that of the single three-fold
coordinated Oxygen vacancy (2.8 €V). We have also calculated the electron affinities
and ionization potentials of the complex pair, by successively charging the defect.
The behavior of the charged states mimics precisely those of the single vacancy. The
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electrons in the neutral and single positively charged vacancies remain localized at the
site of the vacancy, and the charge density around the Zirconium ion remains very
similar to that of the Hafnium ions also neighbouring the vacancy. The presence
of the Zirconium nearby the vacancy does not modify the electron affinities and
ionization potentials in more that 0.1 eV.

5.7 Conclusions.

In this chapter I have presented the results of a study of oxygen vacancies (Vp) in
zirconia and hafnia, the hafnium vacancy in hafnia (Vz,), the substitutional zirco-
nium in hafnia (Sz,) and the complex pair Sz,+Vp in hafnia, using a DFT-GGA
scheme and plane waves basis set.

All defect structures in all charge states have been relaxed, to allow estimation of
the energy involved in the relaxations after the formation or charging of the defects.
In general terms, the relaxations do not involve big displacements of the ions, because
of the dense nature of the material. All the relaxation processes can be justified in
terms of the attractive and repulsive interaction between ions of different charge,
and the rise or decrease of screening provided by electrons as they are added or
removed. This is indicative that the system has strong ionic character, although an
analysis of the Density of States of the materials shows that the top of the valence
band is formed by a mixture of contributions from oxygen p orbitals and hafnium or
zirconium d orbitals. This shows that the system retains some covalent character,
which can make its modeling by means of simpler techniques inaccurate.

The energy involved in the process of formation of the anion vacancies is much
lower than that involved in the formation of the cation vacancies, in both hafnia and
zirconia. In both cases, the values of the calculated energies depend in the accuracy
with which the value of atomic energies can be determined. The evaluation of the
formation energy involved in the incorporation of a substitutional zirconium atom
into hafnia, shows that the process requires very little energy for exchanging ions
between oxides, but ten times more for the exchange of ions with the bulk of one of
the metals. This justifies the difficulty in isolating zirconium from hafnium in nature.

The oxygen vacancies of both types (three- and four-fold coordinated) appear to
be able to trap electrons when positively charged. The calculation of the defect levels
shows that they should be able to trap electrons that tunnel from the bottom of the
conduction band of silicon. The neutral oxygen vacancies are also able to act as hole
traps. Negatively charged oxygen vacancies apparently do not act as traps. This
result, however, may be affected by the incapacity of the technique to display the
spectrum of unoccupied states correctly. The presence of a neighboring zirconium
atom substituting a hafnium in the vicinity of the oxygen vacancy does not seem to
essentially modify the properties of the defect. All the ionization potentials, electron
affinities and the position of the level introduced in the gap differ from those of the
isolated vacancy by less than 0.1 eV.
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In conclusion, the potential application of either zirconia or hafnia as gate di-
electrics should account for the effect of the charge trapping by even simple defects.
The localized nature of the charge trapped may participate in breakdown mecha-
nisms similar to those appearing in silica, and in any case the charging of the oxide
will certainly have an effect on the band structure at the interface.
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Chapter 6
Hydrogen in a-quartz

Aim. The structure and diffusion of atomic hydrogen inside a-quartz is studied. The energy barriers for
hydrogen atom diffusion along selected directions are evaluated by calculating the adiabatic potential.
The zero-point energy is accounted for a posteriori. The results are compared with EPR data by
calculating the isotropic hyperfine constants.

Results. The adiabatic potential for hydrogen has two minima in the large channels along the c-axis
of quartz. Hydrogen becomes polarized when placed inside silica, but does not establish any chemical
bond with the lattice. The adiabatic barrier for hydrogen difussion along the c-axis is 0.21 eV, but lowers
down to 0.13 eV if zero-point energy is taken into account. The classical treatment of the H nucleus,
and the approximated treatment of the exchange-correlation energy constitute two important sources of
error in this system. The hyperfine isotropic parameters cannot be described accurately, due to a large
dependence on the quality of the basis set.

Techniques employed. First Principles Density-Functional Theory on its Generalized-Gradient Approxi-
mation (DFT-GGA).

Basis sets. Plane waves.

Models. Periodic models of \alpha -quartz, containing 73 atoms.

Computer Facilities. Self-consistent calculations of the electronic structure done using the Cray-T3E
supercomputer of the CSAR service at Manchester (UK).

6.1 Introduction.

The two physical processes that prevent reduction of the size of a MOS transistor
beyond certain limits are the tunneling of electrons through the gate dielectric layer
and the breakdown of the dielectric [130]. The former process is undesirable since
increases the leakage current and drives the consumption towards unaffordable levels,
but it is not destructive, while the latter is. The breakdown of the dielectric implies
a destruction of its micro-structure, and eventually causes device failure.

The mechanisms of a dielectric breakdown are complex, and probably not unique.
In the specific case of the SiOq (by far the most used gate dielectric), there is quite
clear evidence that hydrogen plays a fundamental role. Paradoxically, the presence
of hydrogen is also desirable, since it helps to passivate the dangling bonds at the
interface, reducing drastically the number of surface states. Because of both its
beneficial and degrading effects, understanding the chemistry and physics of hydrogen
inside the MOS systems will allow one to optimize device reliability.
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Several works have tried to study particular steps of the mechanisms and struc-
tures in which hydrogen participates when placed inside silica. In particular, there
is several works that make use of the Density Functional Theory to evaluate the
electronic structure of the SiOy:H system. On the other hand, modeling the complex
MOS structures, where Silicon Dioxide displays an amorphous structure, is a difficult
problem, as well as is interpreting the experimental data concerning this system. A
possible alternative is to study the behavior of hydrogen inside one of the many crys-
talline phases of silicon dioxide. Such a system should allow one to understand the
fundamental mechanisms and interactions of hydrogen inside silica, while rendering
the analysis of the results considerably simpler.

In the particular case of the study presented here, we will center attention on the
study of the diffusion of atomic hydrogen through a-quartz. The choice of such a
host is due to the fact that there is actually a very interesting source of experimental
information: Electron Paramagnetic Resonance (EPR) experiments. These type of
measurements are able to provide information concerning the micro-structure of a
paramagnetic center (as is the case, since atomic hydrogen has an unpaired electron).

We have explored the possible paths of diffusion for hydrogen, and the energies
involved in the process, by sampling the adiabatic potential surface for hydrogen
inside the silica host. To do this we have performed several structural relaxations of
a periodic model of the system, at Density Functional Theory level. We have also
considered the validity of the adiabatic approximation in the extreme cases of very
light particles, as hydrogen atom is. This has been done by evaluating the zero point
energy of this particle at its equilibrium position. The results have been compared
with those coming from EPR experiments in two different ways: a) by comparing
the possible most favored sites for hydrogen, as predicted by EPR and as predicted
by our calculations, and b) by calculating the isotropic hyperfine constants that can
be measured directly in the experiments.

The chapter is organized as follows. In first place, I will review the knowledge in
the subject - presented in a bibliographic review. This review includes the suggested
models of dielectric breakdown in which hydrogen takes part, the data concerning
the diffusion of Hydrogen through silicon dioxide, and a brief overview on the basis
of the EPR technique. In second place I will discuss the motivation for choosing the
DFT periodic models and the setup of the calculations. Finally, I will present the
results, and discuss them in depth.

6.2 Bibliographic review.

6.2.1 Hydrogen in MOS systems.

The study of the role of hydrogen inside the MOS systems is certainly among the
classics of the micro-electronics technology. It is well known that many steps in
the fabrication of MOS systems, in which wet reactors are often employed, allow
the introduction of this impurity inside the device. The elevated temperatures of
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Figure 6.1: Generation of hydrogen-related defects in a MOS system.
Hot electrons can cause the release of hydrogen from the interfaces, that will diffuse through
the oxide and recombine forming some of the defects shown. The schematic representation is

inspired in that of [135], also shown in [3].

some of the steps of the manufacturing process and the light nature of hydrogen
cause its fast-diffusion through the hosts, and make it very difficult to control its
concentration.

The presence of hydrogen is far from being undesirable. One of the first problems
found on the development of planar circuits was the high density of defects caused by
lattice mismatching at the interfaces, hydrogen is capable of saturating the dangling
bonds and therefore reduces the amount of surface states. Also, implantation of high
doses of hydrogen allows one to generate a highly resistive layer that separates a thin
layer from a substrate [131].

On the other hand, many hydrogen related defects, like atomic and molecular
hydrogen, Si-H+* and O-H groups, and bridging H (a hydrogen trapped at the site
of an Oxygen vacancy) influence the electrical behavior of the Si/Si02 system [132].
Some of these systems introduce defect levels in the band structure of the host, and
therefore are able to act as charge traps. These traps reduce the insulating capability
of the oxide and eventually trigger its breakdown. The generation of these defects
in many cases takes place during the operation of the devices, as it is illustrated
in Figure 6.1. If the gate dielectric layer (made of silicon dioxide) is thin enough,
electrons can tunnel through, and arrive to the anode interface with enough energy
to break the bonds of hydrogen atoms that are saturating dangling bonds (this
energy can be as low as 2 eV [133]). These atoms can then diffuse rapidly through
the oxide and recombine, forming one of the mentioned defects. Some other non-
desired processes in which hydrogen takes part are several chemical reactions in the
Si02 films, such as the nitridation via the use of NHg molecules (used during the
manufacturing process). A review of the chemistry of hydrogen inside Si02, and its
negative effect in the MOS systems has been presented by Poindexter [134].

Part of the understanding concerning the mechanism of release of hydrogen from
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passivated bonds at the interface has been provided by the substitution of hydrogen
by deuterium. A significant improvement of the immunity against electrical stress of
the deuterium-treated-MOS systems with respect to hydrogen-treated ones has been
reported by several groups (see [3] for further references). It has been suggested that
the release of the hydrogen (deuterium) atoms at the interface happens through the
excitation of the vibrational Si-H (Si-D) modes by the hot carriers.

There is a wide collection of works that address the issue of the potential role
of the hydrogen-related defects as charge traps. Electronic structure calculations
are convenient tools to help in the interpretation of experimental results, since they
allow one to obtain details of the micro-structure, to locate the position of the defect
levels with respect to the band structure of the solid, and to determine the energies
involved in the formation and charging of the defects. Very interesting examples of
this type of approach can be found in the works by Blochl [17], and Van de Walle
and Tuttle[136].

The Hs molecule, for instance, has been reported to be useful for the reduction of
the defects inside the silica network by helping to dissociate O molecules that then
bond low-coordinated Silicons and/or fill vacancy sites [137]. Theoretical predictions
(periodic DFT calculations) done by Bléchl suggest that H is inert in non-defective
silica [17], while Edwards (using a cluster model) outlines the need to consider the
quantum nature of hydrogen nucleus in order to justify properly the behavior of such
system[14].

In what concerns atomic hydrogen, the most recent theoretical calculations point
towards the idea that the neutral species is thermodynamically not stable, and should
rather recombine to give a H* /H™ pairs of Hy dimers. This conclusion was based
on periodic DFT calculations both by Yokozawa and Miyamoto [18] and Bloch [17],
and of molecular cluster calculations by Edwards and co-workers [13]. The argument
apparently contrasts with experimental evidence. The Electron Paramagnetic Res-
onance (EPR) setups are able to detect the unpaired spin associated to the neutral
hydrogen. The EPR spectra shows the presence of hydrogen inside a-quartz at low
temperatures, but the signal disappears above 100-130 K [138]. The most straight-
forward interpretation of this result is that hydrogen remains as an isolated neutral
entity at low temperatures, while above the mentioned temperature becomes highly
mobile and/or recombines, so the unpaired spin disappears. Edwards discussed that
the recombination of neutral hydrogen should actually be regulated by the height
of the diffusion barriers (in the case of the formation of Hp) and by the activation
energy required to take an electron from a neutral hydrogen to the conduction band
of SiOy (in the case of the Ht /H™ pairs, since an electron needs to be transfered
from one H to the other).

The study of the barriers for diffusion has been addressed at very different levels of
theory, from macroscopic kinetic models [139] and classical molecular dynamics [140]
to first principles Density Functional calculations [19, 18]. Not very surprisingly, the
range of predicted values spreads considerably. The fact that hydrogen is a very light
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element makes it difficult to construct models based on classical descriptions. As an
example, Bongiorno et al. [140] have performed a classical molecular dynamics to
study the diffusion of hydrogen inside a-quartz, and they estimated that the height
of the energy barriers for diffusion is 1.7 eV, and concluded that hydrogen diffused
through the narrower channels in the alpha-quartz structure, along the c-axis of the
crystal 1. The authors argue that very good agreement is achieved with some first-
principles calculations performed using an STO-3G set. It is a well established fact,
however, that such a basis set does not provide an accurate description of the silica
polymorphs [83].

In contrast with these results, first principles electronic structure calculations us-
ing plane waves basis set and a DFT-GGA Hamiltonian have been used by Tuttle
[19] to perform the same type of study, under the assumption that the silicon dioxide
host does not offer any response to the presence of hydrogen (frozen phonon approx-
imation). In this study the value of the barrier turns to be 0.2 €V. In calculations of
the same quality, Blochl shows that actually the preferred site for hydrogen inside
quartz is the center of the wide channels in quartz. Unfortunately, the accuracy of
any of these works is difficult to determine, since the spread of the experimental
values for the diffusion barriers is similar to that of the theoretical works, in a range
from 0.07 to 1.98 eV (see [140] for further references).

As can be seen, the amount of studies on the behavior of hydrogen inside the MOS
systems (more particularly, in the oxide region) is considerably big and, while certain
aspects have become more clear, some others are still puzzling. The use of electronic
structure calculations can be very helpful, but it is also necessary to consider their
limitations in the accuracy that they can provide, and in the complexity of the
systems that can be studied. In the next section I will present the system studied
and for the technique employed on it.

6.2.2 Choosing the case study: crystalline hosts.

Most of the experimental data related to the study of diffusion are based in electrical
measurements (see, for instance the work by Cartier et al. [133]). These techniques
find some difficulties to identify which is the species that is actually diffusing (i.e.
which is the charge state of hydrogen, or if it is atomic or molecular hydrogen). This,
as is suggested by Tuttle, may be one of the reasons why there is such spread of the
measured energy barriers [19]. There is, however another type of experimental setup
that allows one to detect the presence of atomic hydrogen: the EPR technique. As it
has already been mentioned, the temperature over which the signal associated to the
unpaired hydrogen spin fades away can be related to the energy required by hydrogen
to recombine. Furthermore, an analysis of the hyperfine spectra allows to determine
which is the closest environment of hydrogen.

In view of the information that the EPR techniques are able to provide, the

' A schematic representation of the structure of a-quartz can be found further in the text, in
Figure 6.2.
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calculations presented here will focuss on two issues: a) determining if there are
stable sited for hydrogen inside silica, and b) determine the energy involved in the
diffusion of this species through the host.

The first point will be addressed in two different ways. Firstly, it is possible to
explore the energy surface of the system as a function of the coordinates of the con-
stituent ions, and therefore detailed information about the equilibrium structure can
be obtained an compared with that suggested from the analysis of EPR data. This
experimental information is obtained (as will be described in section 3.3), through
the fitting of a phenomenological Hamiltonian to match the values of the hyperfine
constants. The second possibility, is then to calculate directly the value of the hy-
perfine constants from the information from electronic structure calculations. The
difference between both approaches is that in the first one the experimental tech-
nique is providing indirect information, while in the second one it is the theoretical
technique that does so.

The basic idea of this study is to test, in a system for which there is direct
experimental information available, if the theoretical method is capable of providing
a description of the basic mechanism that justify the behavior of hydrogen inside
silica. I have not expected to provide any conclusion that could be applicable to
the more complex case of MOS systems. Such a target is now within the limit of
the affordable with present computational resources and it is yet to be proved if
results concerning crystalline materials can be extrapolated to amorphous systems.
If the technique is validated, however, it can be assumed that future progress of the
computing technology will allow such studies.

Up to my knowledge, the EPR data available [20, 138, 62] has always considered
a-quartz as a crystalline host, and therefore it is logical to consider this host also in
the calculations. The use of crystalline silica as host for hydrogen is very convenient,
since it eases the interpretation of the results. In crystals, the translational symmetry
reduces the number of possible sites for the impurity, while in amorphous materials
the number of possible different sites is virtually infinite and forces one to elaborate
an statistical sampling. From the point of view of calculations the translational
symmetry of the crystals allows a considerable saving of computational resources, by
using periodic models.

6.3 Presentation of the results.

6.3.1 Set up of the calculations.

The work presented here is based on DFT-GGA calculations using a plane wave basis
set. At the time of realization of this study, there was no code available that would
allow one to perform structural relaxations using periodic models at the Hartree-Fock
level. Such types of calculations are essential to explore the energy surface of the
system, and determine the energy barriers.

The evaluation of the hyperfine constants, however, required the use of a all-
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electron basis set, since the isotropic hyperfine signal depends essentially on the
electron density associated to some of the inner core electrons. All-electron basis sets
are avoided when using plane waves, due to the elevated number of basis functions
required to describe properly the localized core functions. This has forced us to
consider using two different codes, and split the study in two steps.

The first stage of the study has targeted the sampling of the energy surface for
hydrogen, employing the advantages of the VASP code, that allows efficient structural
relaxations using plane-waves DFT-GGA. In a second stage, selected geometries
obtained from the structural relaxation have been ported and recalculated using
CRYSTAL98, which is based on the use of localized basis sets and therefore allows
the use of all-electron basis sets (although does not allow one to relax the structures).
The consistency between both types of results has been checked and will be presented
later. Prior to the detailed description of the calculations and the results, I think
that it is worth providing a very basic overview of the EPR technique, that, as I said,
is the fundamental source of the experimental results that will be used as reference.

The adiabatic barriers for hydrogen inside quartz were explored using VASP
4.4 code [120, 121, 32|, which implements a periodic Density Functional scheme
based in the Generalized Gradient Approximation known as Perdew and Wang 91
(GGA-II). Given that hydrogen has a single electron, spin-polarization was included
in the calculations. The basis sets are formed by plane waves, and the cores of the
atoms are simulated by means of Vanderbilt ultrasoft pseudo-potentials [53, 52]. The
pseudopotentials were generated considering the electron configurations [Ne]3s23p?,
[15%]2s22p* for the Oxygen atoms and 1s'1p° for the hydrogen atom (the core electron
configurations are shown inside the brackets). Although using a pseudopotential
for the hydrogen atom may seem surprising, since it only contains one electron, the
authors of the code justify its use because allows a correct description of the hydrogen
atom and Hy dimer while keeping the cut-off energy low [32] (later on, I will present
some tests performed to check whether this statement is valid or not).

The first stage of the calculation was to optimize the geometry of the host lattice.
This work was done using a supercell containing 36 atoms, resulting from a 2 x2x 1
expansion of the crystallographic unit cell. A schematic representation of this cell
can be seen in figure 6.2. The sampling of the reciprocal space was done using a
set of ten special k-points, and the cut-off energy was kept to a value of 514 €V, in
order to obtain the diagonal elements of the stress tensor accurately. During the
calculation of the adiabatic barriers for hydrogen the cut-off was reduced to 400 eV,
which still allowed an accuracy up to 10 meV in cohesive energy.

During the optimization of the structure no symmetry constraint was kept over
the positions of the ions. The geometry of pure a-quartz is reproduced as follows. The
calculated unit cell parameters are a = 5.026 A, b = 5.0214, ¢ = 5.509A. Since these
are "temperature zero” calculations, they are to be compared with measurements
at low temperature as, for instance the following experimental values [141], taken at
13K: @ = b =4.902 A and ¢ = 5.400A. This means that our calculations overestimate
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e

Figure 6.2: Supercell of a-quartz.
It has been constructed as a 2x2x1 extension of the crystallographic unit cell. The supercell

contains 36 atoms (without hydrogen inside).

the length of the cell parameters by an average of 2.2% of'the true values. Concerning
the local structure, Si-0 bond lengths are on average 1.618 A for the long bond and
1.615 A for the short bond. These values also overestimate the experimental values,
but by less than 1%. In what concerns the electronic structure, the band gap of Silica,
measured as the difference in energy between the one-electron energies associated to
the last occupied and the first non-occupied orbitals, turns to be 6.07 eV, in contrast
with the s s eV detected experimentally [10]. This underestimation is typical of the
DFT schemes.

6.3.2 Determination of the lowest energy site for hydrogen.

The determination of the lowest energy site was done by performing geometry re-
laxations using a set of different starting geometries, which differed basically in the
position of hydrogen with respect to the lattice. In all of the cases tested, the min-
imum distance between hydrogens is 5.5 A. This distance is enough to ensure that
there is essentially no contribution to the total energy caused by interaction between
defects in different cells (evaluated as described in 2.2.1). The change in total energy
involved in the structural relaxation is 0.18 eV. This amount is significantly bigger
than that obtained by Tuttle [19] for hydrogen inside cristobalite.

The lowest energy site found is displayed in figure 6.3; hydrogen is placed along
the c-axis of the crystal, contained in a plane perpendicular to this axis that also
contains several Oxygen atoms. These atoms are the closest neighbours to the hydro-
gen, being the minimum O-H distance 2.13 A. This result is among the possibilities
expected; by intuition, hydrogen should tend to be in the center of the channels,

because the symmetry of this position minimizes the action of the crystalline field.
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Figure 6.3: Schematic representation of possible sites for H inside a-quartz.
The two top figures (la and lb) display the position predicted by EPR experiments (figures la
and 1b), which is named along the discussion in the text. The two bottom figures (2a
and 2b) correspond to the position predicted by total energy minimization using a DFT-GGA
Hamiltonian and a plane-waves basis set, which is named as M 4 f¢ in the text. The dashed line
in la and lb corresponds to a two-fold axis in which hydrogen apparently sits, as it is deduced
from the symmetry of the hyperfine tensor obtained in the experiment [62]. The axis also links
the sites of the Si ions marked as 1 and 2. Although the view from a plane perpendicular to the
Y axis (Ib and 2b) is the same for both the experimental and the calculated sites, a view from

a plane perpendicular to the Z axis (la and 2a) shows considerable difference.
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The position found as global minimum (Mpprr) seems to agree with the results
obtained by Blochl [17], which is the only other calculation done at DFT level using
a-quartz as host lattice. However, this is not the site that is proposed by Weil and
co-workers as deduced from their EPR measurements [20, 138], whose position is
also indicated in figure 6.3. This site (MEEE%) has two-fold symmetry, and the axis
(also marked in the figure) goes through two Silicon atoms, each one at an opposite
side of the cavity. The disagreement between the position predicted by Weil and
the result of our calculations can be see clearly if the system is projected in a plane
perpendicular to the c-axis (see figure 6.3). The minimum detected by EPR stands
1.30 A away from the closest point contained in a c-axis, and it is 2.09 A away from
the closest Oxygen (its closest neighbour).

In order to understand if the position suggested by the EPR experiments corre-
sponds to a minimum on the total energy surface, we have performed a structural
relaxation, taken as starting geometry that of MEW€a2 We have in fact found such
a minimum (ngé“g), which stays 0.13 eV above the minimum Mpgr, found previ-
ously. The position of the second minimum ME‘}’;‘}% does not correspond exactly with
that predicted by the EPR measurements, since it is displaced 0.29 A away from the
two-fold symmetry axis. The difference between both sites is shown in figure 6.4.

It is interesting to note that in the displacement from MEYEer to MLELE hy-
drogen moves towards the lattice, indicating the existence of a possible interaction
with the Silica host. In this position the shortest H-O distance is 2.32 A, therefore
indicating that the hydrogen tends to move away from the Oxygens. A plot of the
partial charge density corresponding to the minima is shown in figure 6.5. The plane
of the figure contains the hydrogen atom and two Oxygens. As can be seen, there
is very little transfer of charge from the hydrogen towards the Oxygens. The cumu-
lative integral shows, as in the case of Mprr, that the electron density associated
to the hydrogen state is much more delocalized than in the case of isolated atomic
hydrogen.

The most surprising fact in these results is that both minima found are actually
placed in the same channel inside a-quartz (as its shown in Figure 6.3). There is
only an empty region between both minima, and therefore it seems reasonable to
think that hydrogen will be free to move towards the lowest minimum. A possible
explanation for this behavior is that the second minima is actually due to the inter-
action between hydrogen and the host. The mechanism that rules this interaction
should be the electrostatic interaction due to polarization of hydrogen.

To justify this hypothesis we have analysed in detail how the electron charge dis-
tributes around hydrogen. VASP allows to isolate the charge density associated to a
specific band. In this system, the last occupied one-electron state is single-occupied,
and the energy associated to this state is placed inside the range of energies corre-
sponding to the gap of silica. We have therefore identified it as the level introduced
by hydrogen.

In first place, we have studied the confinement of the electron density associated
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Figure 6.4: Results of the structural relaxation.
Using the experimental EPR geometry as starting point shown as a pink circle), hy-
drogen atom displaces towards a position nearer to the lattice (M “fpp , shown as a white circle),

and out of the axis that links both Silicon atoms to the right and the left of the initial position.

to this state. To do so, we have integrated the density contained in a sphere with
center in the position of hydrogen’s nuclei. By finding the value of this integral for
different radii of the sphere, we obtained a representation of the amount of electrons
as a function of the distance from hydrogen’s site, as shown in Figure6.5. The graph
displays the integrated density for both minima (plain and dashed lines). The changes
in the slope ofthe curves indicate that the distribution of charge is not homogeneous.
This is due to the interaction with the neighboring ions. To obtain a reference of
the confinement, we compare the integrated density with that of isolated atomic
hydrogen (dotted line). The calculation for isolated hydrogen has been performed
using identical setup than that used for hydrogen inside quartz, but the unit cell
contained a single hydrogen atom. It is possible to see how the electron in isolated
hydrogen remains more confined than when H is inside quartz; In the case of isolated
hydrogen, 0.99 of the electron is contained within a sphere of 2.3 A, while in both
cases corresponding to H inside quartz, it is necessary to consider spheres of radius
5 A to find the same amount of electron density contained inside the sphere. It is
therefore true that the hydrogen nuclei loses part of the screening provided by the
electron, since the former becomes more delocalized.

The integration of density does not provide much information about the shape
of the density, since the integration is performed in spheres. To obtain more insight
into this issue, we have projected the density associated hydrogen’s state into several
planes. The results are shown in Figure .. The planes have been selected as to
contain the point at which hydrogen nucleus is placed. This point appears at the
center of all plots, and each of these graphs shows a square region 5 A wide. The
planes have been selected to be parallel to the X- and Y-axis, X- and Z-axis and
Y- and Z-axis, and there is a collection of these projections for each one of the two

minima.
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Figure 6.5: Confinement of the electron of hydrogen atom.
To see how confined is the electron trapped at the hydrogen atom, we have integrated the charge
density associated to the last occupied orbital of the system in spheres with center at hydrogen’s
site. At any of the minima, the electron extends over a volume bigger than the one occupied by

the electron of free isolated hydrogen (also shown for comparison).

When placed at any of the minima, part of the electron density associated to
hydrogen is transferred to its first neighbors. Note that the planes shown here do
not contain any of these neighbors. This redistribution of the density should cause
the appearence of multipoles, although the amount of charged which is transferred
is very small. Since the relative position of the neighbors with respect to hydrogen’s
site is different for each minima, the orientation of the multipoles is also different.

One possible cause of the stabilisation ofthe second minima, given the appearence
of multipoles, is the interaction between defects of different cells. However, the
estimation of the defect-defect interaction (as discussed in 2 .2 .1) showed us that the
energies involved are not significant.

In principle, there is no reason to believe that several other minima may appear
as a consequence of the same mechanism. Exploring such possibility, as well as the
barrier between the two minima that we have described, was out of our possibility,

given the cost of the calculations.

6.3.3 Determination of the adiabatic barrier along the c-axis.

Taking as starting point the lowest energy site found in our calculations, we explored
the changes in total energy found by hydrogen as it moved along a direction parallel
to the c-axis of the crystal. This displacement seems to us as the most probable
since hydrogen will not find any ion on its way, and will be able to stay in symmetry
positions. The adiabatic curve was determined by performing several structural

relaxations in which hydrogen was constrained not to move along the c-axis, to
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Figure s . : Analysis of the density at the minima for hydrogen inside a-quartz.
These graphs corresponds to projections of the density associated to the last occupied state of

the system. This state can be attributed to the presence of hydrogen (see text). The plots on
the left column correspond to the lowest minimum, and the plots on the right column to the
second minimum. Hydrogen atom

is placed at the center in all graphs. From top to bottom,

the graphs correspond to planes parallel to the XY, XZ and YZ axis. The scales on the bottom

correspond to all the graphs in the same column. Units of the density are (e~A/A )
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Figure 6.7: Adiabatic potential for hydrogen inside SiO,.
It has been constructed by calculating first the most relaxed structure, and then displacing
hydrogen atom along the Z axis. The graph shows the change in the total energy of the unit cell
as this displacement takes place. Notice that the potential has the periodicity of the cell, and it
is asymmetric around the minimum.

prevent this atom from returning towards its minimum energy site. Most of the
atoms of the lattice were allowed to relax their positions. Also hydrogen was left free
to move in a plane perpendicular to the c-axis.

The reason why not all the positions of atoms of the supercell were allowed to
relax is to be found in the way VASP performs selective structural relaxation. During
the relaxations, the code first performs a self-consistent calculation to determine the
electron density, then used this information to evaluate forces over each ion. If some
ions are selected not to move the computer makes the value of the gradient for the
specific ion zero. Then the atoms are displaced following the gradients and a new self-
consistent calculation is started. Making some of the gradients zero is equivalent to
add a force of the same magnitude and opposite sign to all the other ions, that will be
consequently displaced. In the case presented here, fixing the position of hydrogen in
c-axis may have caused all the rest of the cell to feel a force in the direction opposite
to the displacement. Then the whole supercell could have displaced itself as a block,
as to reach once more the minimum energy configuration. In order to avoid this some
of the ions in the edges of the supercell were kept fixed, serving as “anchors” for the
lattice structure.

The relaxation of the position of the ions belonging to the host keeping hydrogen
atom partially fixed is equivalent to assuming that the vibrational frequencies of
the host depend weakly on the impurity [142]. This approach is less drastic than
assuming that only hydrogen moves in response to the interaction with the lattice.

The results of the calculation of the adiabatic potential are shown in figure 6.7.
The first thing to notice is that the potential displays translational symmetry, but
it is not symmetric around the minimum. This is, however, consistent with the
trajectory, and it is related to the distance that the hydrogen keeps with respect to
the host atoms. In appearance, there is a secondary maxima at about 2 A in the
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horizontal scale shown in the graph. Such maxima is most likely due to not having
required enough accuracy in the relaxation of the structure. Improving the quality
of the calculations, however, would require to push the convergence criteria both in
the convergence of the total energy and the gradients. As a result, the cost of the
calculations will increase substantially, since it will be necessary to resolve changes
of less than 1 meV per atom inside the cell.

Given that the differences in total energy between the minimum and maximum
of the adiabatic curve are in the order of tenths of eV, the criteria for stopping
the structural relaxations was to obtain convergence in the gradients up to 0.01 eV.
The total height of the barrier is 0.21 eV. This value is very close to that obtained
by Tuttle [19], and the experimental value for the activation energy for hydrogen
diffusion presented by Cartier and co-workers [133]. We think, however, that the
value of the real barrier should in fact be lower. In the following section, I will
discuss several arguments which may be affecting the accuracy of the description.

6.3.4 Comparing with experiments. Hyperfine constants.

The isotropic hyperfine constant can be calculated once the electron spin density
is known, using the expressions already described in 3.3. The calculation of the
isotropic hyperfine constant requires performing all-electron calculations, since the
spin density over the nucleus is given by the contributions of s orbitals only. This
is the reason why we employed the CRYSTAL98 package, which uses local functions
as a basis set.

In this case the basis for Silicon (6-21G*, outer exponents oz, = 0.13 Bohr—2 a4 =
0.5 Bohr~2) and Oxygen (6-311G*, outer exponents as = 0.28 Bohr=2 a4 = 0.6
Bohr~2) considered have been optimized for the description of a-quartz by Civalleri
et al in [83] (this set has also been employed in the study presented in chapter 4, where
it is described more extensively). This set describes correctly the geometry of the
system when used together with the UHF Hamiltonian, with an error in the distances
within 0.01 A in the cell vectors and 0.002 A in the Si-O distances. The average Si-
O-Si angles are reproduced with an error of 1.3° and the O-Si-O average angles are
reproduced with an error of 0.1°. The stability of different silica polymorphs is also
predicted correctly. For the hydrogen, I have used a double-{ basis set containing
polarization functions. This set has been employed previously in the calculation of
EPR parameters by Pacchioni et al [15]. Also some other lower quality basis sets
have been used for testing the dependence of the results on the quality of the basis.

The geometry of the cell used in the calculation corresponds to an “idealization”
of the structure found as lowest energy site using the plane-wave DFT technique.
The relaxed host lattice was substituted by a perfect lattice generated by exploiting
the full point symmetry displayed by a-quartz. The information concerning the size
of the crystallographic cell and position of ions inside was taken from experimental
data. Hydrogen is placed on its lowest energy site as described in section 6.3.2.

The code is able to evaluate the hyperfine isotropic constants on request, using
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tabulated values of the g factors for the nuclei (in the case of hydrogen gy =>5.5856948).
All the data concerning the values of the different constants can be found in the man-
ual of the code [30]. The value of the isotropic constant for atomic hydrogen inside
a-quartz is ajso(H) = 44.13mT. This should be contrasted with the experimental
value of 51.80 mT [138]. The reasons of the disagreement can be: a) due to differ-
ence in the position of the site for hydrogen and/or b) due to error introduced in the
calculation of the constants. '

Unfortunately, the second source of error has a significant weight in this case.
The isotropic constant is evaluated through an expression that depends directly on
the spin density of the system. The quality of the density, in comparison to the
'real’ density, is affected by many factors, the most significant being probably the
Hamiltonian and the basis sets. To test how the choice of these parameters affected
the calculation of the hyperfine isotropic parameter, I have repeated the calculation
with identical geometry and different Hamiltonians and basis sets. The basis set
employed, apart of the one already mentioned, are the standard 6-21G and 6-21G*
(value of the exponent of the polarization shell is ag = 0.6 Bohr—2).

Table 6.1 shows a comparison of the values obtained for the hyperfine isotropic
constant for hydrogen trapped inside quartz and also for free hydrogen in depending
of which basis set and which Hamiltonian has been used in the calculation. Although
the agreement with experimental values (also shown in the table) is not bad with
certain setups, it is discouraging that the results are so sensitive. The calculations
done at Unrestricted Hartree Fock (UHF) level allows one to check the dependence
on the basis set. The UHF technique has been chosen because it allows one to
evaluate the exchange interaction exactly. On the other hand, we are aware that the
UHF calculation may be problematic due to the fact that the wavefunction is not an
eigenfunction of S2.

The poor results obtained with basis sets 1 and 2 are due to the fact that the
hydrogen basis set does not contain any polarization function. The results obtained
with basis 4 and 5 sets are of similar quality, only difference between sets being the
polarization functions on Si basis. This indicates that the EPR signal over the H site
is not strongly influenced by the polarization functions of the lattice. The basis set
optimized for a-quartz by Civalleri (basis 3) gives the best result obtained at UHF
level. In what concerns to the performance of the Hamiltonians, the UHF technique
allows the best numerical agreement with the isotropic constant of hydrogen inside
quartz. However, the difference between the isotropic constants of confined and free
hydrogen is several times bigger than the one detected experimentally. Obtaining
such difference is important because it indicates the change in the confinement of
hydrogen’s wavefunction. The DFT-GGA technique, also used in the plane wave
calculations already presented, provides the closest estimation to that difference.

Certainly, there is space for comments on the setup of the calculations done
for calculating the hyperfine constants. The geometries have not been relaxed and
therefore an arbitrary amount of strain is artificially introduced in the electron den-
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aiso H aiso H
Basis set Hamiltonian oa-quartz Free
(mT) (mT)

Basis 1

Si 6-21G

0 6-21G* UHF 70.01 39.84
H 6-21G

Basis 2

Si 6-21G*

O 6-311G* UHF 100.97 39.84
H 6-21G

Basis 3

Si 6-21G*

0 6-311G* UHF 50.62 42.87
double-¢

Basis 4

Si 6-21G

0O 6-21G* UHF 49.85 42.87
double-¢

Basis 5

Si 6-21G* UHF 49.93 42.87
0O 6-21G* DFT-GGA9 44.36 42.50
double-¢

Experimental 51.80 50.68

Table 6.1: Dependence of the calculated isotropic constant on the basis set and tech-
nique.
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sity. However, from my point of view, a significant conclusion is that the value of
the isotropic hyperfine constants depend critically on the quality of the basis. This
affects not only the complex system, but also to the simplest case of the isolated
hydrogen atom. This conclusion is also in agreement with the problems found by
Blochl when calculating the hyperfine parameters of the same system, using an aug-
mented plane waves method [17]. Therefore, we cannot trust in the data concerning
the calculation of the hyperfine constants to contrast our results with those obtained
on the EPR experiments.

Of course, there is still the possibility to compare the structures obtained through
the structure relaxations with the predictions concerning the structure of the defect
done through the analysis of the EPR experiments, like the models proposed by Weil
and co-workers [20]. Also in this case, however, care should be paid to ensure that
the level of theory employed is able to describe the system properly.

6.4 Discussion of the results. Sources of error.

The results presented so far, concerning the structural relaxation of the defect and
the scan of the adiabatic potential along the c-axis of the crystal, are in good qual-
itative and quantitative agreement with previous studies. More precisely, the size
of the energy barrier is very similar to the value obtained by Tuttle for hydrogen in
cristobalite [19], and the preferred site for hydrogen inside a-quartz is essentially as
that predicted by Blochl [17]. This, however, does not guarantee that we are actually
describing the real system correctly. My main concern is that hydrogen is extremely
light, and therefore should display response to even very weak interactions. Different
points that come to my mind as possible sources of error are:

e The approximated treatment of exchange and correlation in the DFT
scheme. The exchange and correlation interaction are described in DFT by
means of functionals of the electron density. Paradoxically, the case of hydro-
gen becomes then particularly difficult to treat, since it has an electron, and
therefore the exchange functional will provide a non-zero contribution to the
energy, while in fact the electron in hydrogen is unpaired and the exchange
should be exactly zero.

e Validity of the adiabatic approximation. The electronic structure cal-
culations are done in the assumption that the nuclear motion is decoupled
from that of electrons (adiabatic approximation). The case of hydrogen is once
more extreme, since the nuclei is composed of a single proton. Neglecting the
quantum nature of hydrogen may be then a too drastic approach.

I will discuss the possible effect of this problems in detail now.
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6.4.1 The treatment of exchange interaction in DFT.

The problem of the arbitrary (and non-systematic) contribution to the exchange
energy due to the approximated treatment of this type of interaction is in fact a well
known problem in computational chemistry [143, 144]. In order to have an estimation
of the amount of error introduced by this problem, I have performed a calculation
of the single hydrogen atom using the same DFT setup. The size of the unit cell,
energy cut-off and k-point sampling ensure convergence on the total energy up to 0.1
meV. The final periodic system reproduces a ”gas” of atomic hydrogen with atoms
distant 12 A apart.

As expected, the description of hydrogen atom by DFT-GGA is not so accurate.
The formation energy for the atom turns out to be -12.53 €V, to be compared with
the well known experimental value of -13.6 €V [124]. The single atom contains one
electron and therefore the electron-electron interaction should not exist at all. How-
ever, the contribution from the GGA exchange-correlation functional is +1.92 eV.
Furthermore, the dissociation energy of the Hs dimer, is 2.21 €V, much smaller than
its experimental value of 4.52 €V [124]. This proves the fundamental role of exchange
in the Hs bond.

The underestimation of exchange interaction is, with no doubt, one of the main
sources of error in these methods, but estimating how it affects the system that we
have studied is difficult. State of the art computational chemistry methods offer
the possibility to improve the treatment of correlation, and this has proven to also
improve the accuracy of weakly bonded systems containing hydrogen [144]. These
methods are, however, at a very early stage of development in solid state disciplines.
In addition to the low values found for the activation energies, it also should be kept
in mind that this is actually an upper bound estimation. The reason is that kinetic
energy of nuclei is completely neglected in this approach. This, as I will show in the
next section, may be a drastic approximation in the case of hydrogen atom.

6.4.2 Hydrogen as a light particle.

In the structural relaxations presented here, the ion cores are considered as classical
particles. The ions are displaced along the direction of the forces that are evalu-
ated once the electron density has been determined. The Schrédinger equation is
solved only for the electron system, and therefore only this particles are considered
as quantum particles. This approximation may not be appropriate for determining
the trajectory of hydrogen. The behavior of such a light atom may need to be jus-
tified by means of the quantum mechanics, as the amounts involved in, for instance,
vibrational motion are very small.

As a first approach for accounting for these effects, we have explored the vibra-
tional spectra of hydrogen atom inside the potential well constituted by the adiabatic
potential. This well has been approximated by fitting a Morse potential to repro-
duce the potential curve in a region around the minimum. The reason why we have
considered this type of potential instead of, for instance, a parabolic type one, is
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because the Morse potential can account for the asymmetry around the minimum.

U(r) = Up{l — exp (—B(r — re))}? (6.1)

The different energy levels associated to the Morse potential be calculated as
follows [145].

G(v) = we(v + %) (6.2)

=5,

where u corresponds to the reduced mass. In this case, we assume that the solid
presents an infinite mass with respect to that of hydrogen and therefore y = myg.
The three parameters which are actually fitted are Up, 8 and re. For the fitted
potential, these values are Uy = 0.290984 eV, 3 = 0.630729 A~! and r, = 0.815781A.
There is only one bounded state with energy lower than the barrier. This level has
an energy 0.16 eV above the minimum of the potential curve. The results are shown
in figure 6.8. The adiabatic potential is shown as a thick solid black line. The fitted
Morse potential is shown as a blue dotted line. The bounded level is shown as an
horizontal red dashed line.

This result indicates that atomic hydrogen is in practice almost free to diffuse
along the oxide, and the activation energy is as low as 0.05 eV. With such a low
barrier tunneling of the particle should be very probable. A fact to worry about is
that the order of magnitude of this energy is the same as the order of magnitude
of the stopping criteria for the relaxation. However, if the results are true, then
they are in certain contradiction with the interpretation of the EPR experiments, in
which the signal detected below 100 K was associated to hydrogen, and the fading
of this signal above the mentioned temperature was linked to the recombination of
the impurity. Assuming that hydrogen has such low barriers for diffusion, then the
next question to understand is what are the magnitudes of the energies involved in
the processes where hydrogen recombines.

6.4.3 Stability of hydrogen in quartz. Formation energies and dimer-
ization.

There is actually two different proposals of mechanisms for the recombination of
hydrogen inside Silica: the transfer of one electron from one H to another, to form
a H*/H™ pair, and the formation of the Hy dimer. The former process does not
require both hydrogen atoms to comes very close together, since the electron is lost
first to the conduction band of the host. The second, instead, requires the formation
of the molecular bond.

On the other hand, Blochl [17] and Yokozawa and Miyamoto [18] have both stud-
ied the stability of isolated charged states of hydrogen inside silica. The study of a
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Figure s .5 : Vibrational states of hydrogen inside quartz.
Being such a light atom, the amount of energy required for hydrogen vibrational motion may be
of the same order of the barrier. We have estimated the vibrational energy by means of a Morse
potentials (see text), showed as a dotted line. The potential has been fitted to reproduce the

region around the minimum. There is only one bound state, show as a dashed line.

chargeci system in periodic models, however, requires including a charge neutralizing
background to avoid having a system of infinite charge. This background causes
an unphysical interaction when the extra charge remains localized, like it seems to
be in the case of H~ [13]. In the opposite case, from our experience in the studies
on Zirconia and Hafnia (see chapter 5) and in agreement with Pacchioni and co-
workers results [34], DFT may be inaccurate when describing the behavior of holes
in insulators.

Because of these problems when studying the charged states of hydrogen with
periodic Density Functional techniques, I have not calculated the charged states of
hydrogen and I will center my attention only on comparing the stability of atomic
hydrogen with respect to that of hydrogen dimer inside a-quartz. The incorporation

energies for both atomic hydrogen and the H> dimer are defined:

(6.4)

where X stands for either H or Hz, E{SiU2+ X) is the energy of the relaxed supercell
containing the impurity, £{SiU2) is the energy of the supercell without the impurity,
and E{X) is the energy of the isolated impurity. In the VASP code, the total energy
of the system is defined as the cohesive energy required to separate the system into
non-interacting atoms” and therefore E{H) = 0.0 eV. The energy of the dimer has
been calculated ensuring convergency up to 1 meV, and its value is E{H2) = —2.21
eVv.

In the case of H: inside Silica, I have calculated the most stable geometry for
the system using a similar setup as for the calculation of atomic hydrogen’s lowest
energy site. The molecule orientates as to place its axis parallel to that of the crystal

(c-axis), in the same channel where atomic hydrogen finds its lowest energy site.

127



ﬁ CHAPTER 6. HYDROGEN IN a-QUARTZ

Following the definition from equation 6.4, the incorporation energy for hydrogen
atom in quartz is Eipcorp(H) = —0.38 €V, and that of Hy is Eipcorp(H) = —3.57
eV. From these numbers it is straightforward to deduce that hydrogen will tend to
dimerize when placed inside silica. There is still room for the study of the reaction of
formation of the dimer in detail, understanding the energy barriers and how they are
influenced by the presence of the crystalline host. This study, however, is complex
and has not been addressed here.

6.5 Conclusions.

We have applied plane wave Density Functional structural relaxations in the study
of the stability and diffusion of hydrogen in a-quartz. In agreement with previous
calculations using similar techniques, we have found that hydrogen remains inert and
does not tend to bond to the lattice. However, the ion becomes polarized since the
electron charge in the state associated to hydrogen becomes delocalized and therefore
the nucleus partially looses the screening of its positive charge.

Density Functional techniques may present the drawback of using an approximate
expression for evaluating the exchange interaction. This error becomes especially
evident in the case of the hydrogen atom given that it has a single electron and
the self-interaction error is important. Up to the degree of accuracy provided by
DFT-GGA, the hydrogen potential surface seems to be very smooth with minima of
the order of 0.2 €V, in agreement with the study done by Tuttle [19] using quantum
molecular dynamics and with the experimental barriers found by Cartier et al [133].
This should be considered as an upper estimation, since hydrogen is a light particle
and therefore its quantum character may be important. We have estimated that the
first vibrational level of hydrogen stands 0.13 eV above the minimum of potential
energy. In this case tunneling processes should be very likely. In agreement with the
discussion by Edwards [13], the dimerization of hydrogen is favored and therefore
hydrogen should recombine rapidly when diffusing. These results are however difficult
to match with the experimental evidence that shows that hydrogen is detected as an
atomic entity below 100 K.

Another surprising result is the existance of two stable minima for an hydrogen
atom inside a single channel. This can be explained if at least one of such minima is
due to interaction with the host. However, the shallow nature of the minima found,
and the limitations of the DFT technique makes us regard these results with some
concern. Unfortunatelly, the cost of the calculations required for a deeper study
was too elevated for us to afford.Finally, we have tried to calculate the values of the
hyperfine isotropic parameters that can be also determined experimentally. These
parameters are very sensitive to the choice of both Hamiltonian and basis sets.

In conclusion, we have tried to determine how helpful standard plane-wave DFT
can be in the understanding of the behaviour of atomic hydrogen inside silica. The
subtle nature of the interactions in this system places it at the boundaries of the set
of systems that can be studied using the DFT techniques.
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Chapter 7

Development of an INDO code.

Aim. This chapters presents the work done for upgrading, optimizing and including extra features to
the code MOSYM, that performs electronic structure calculations at INDO level.

We also have fitted a set of INDO parameters for the study of systems based on silicon dioxide, silicon
nitride and silicon oxynitride. These materials are of great interest for the micro-electronics industry due
to their role as gate insulators. The accuracy achieved when studying such systems is tested.

Results. The overall performance of the code has been increased dramatically through a substitution
of the diagonalization routines in the self-consistent algorithm. We have added a new correction to
the total energy and gradients, based on a library of pair potentials, that allows avoiding problematic
situations, like the unphysical attraction between oxygen ions. We have enabled the possibility to define
some of the parameters as functions of the charge, so they can be recalculated at each self-consistent
cycle.

With the fitted set of parameters, we have successfully simulated the structures of amorphous and
crystalline silica, a- and S-silicon nitride and silicon oxynitride. The bond-lengths are reproduced with
less that 0.1 A of difference with experimental data, and most of the angles are given with an error
of less that 5°. The electronic structure shows the correct order of the electronic levels, as well as the
hybridization, necessary to create the covalent bonds.

Finally, we present examples of applications of the code on the study of systems of many atoms, whose
calculation is beyond the possibilities of current first-principles techniques. In particular, the participation
functions, that allow one to detect localizes states in systems of many atoms, has been successfully
calculated for two models of Silica containing more than 500 ions each.

Techniques employed. Semi-empirical Intermediate Neglect of Differential Overlap (INDO) technique
(based in the self-consistent Hartree-Fock scheme).

Basis sets. Localized Slater-type orbitals.

Models. Periodic models of SiO2 containing up to 648 ions. Periodic models of SisNs and Si2N2O
containing up to 224 ions.

Computer Facilities. Single processor workstation.

7.1 Introduction.

The continuous rate of growth of the capability of computers to handle, process
and store information has opened the possibility to apply first-principles electronic
structure calculation techniques to the study of considerably complex systems. This
has not always been the case, as in early days of the discipline the small capacity of
computers constrained the range of applicability of ab initio codes to very few and
very small systems. The semi-empirical schemes were born as simplifications of the
first-principles schemes that reduce significantly the cost of the calculations.
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The common feature to all semi-empirical techniques is the avoidance of the eval-
uation of certain expressions, that are substituted by sets of parameters. The values
of these parameters are fixed before the calculation, usually in basis of experimental
data, or information from accurate first-principles calculations. There is two main
consequences of using this type of approach: a) the extra approximation that im-
plies not using the exact calculated values introduces an added inaccuracy on top
of that of first-principles results; and b) the results become dependent in the set of
parameters used.

In practice, the use of semi-empirical methods requires a careful setup of the
calculation, especially in what concerns the choice of the parameters. The parame-
terization is usually done by selecting a set of reference systems, from which there
is experimental or first-principles information available. The reference systems are
chosen as to be similar, but easier to calculate, than the system under study. The
value of the parameters are fitted as to reproduce as good as possible selected prop-
erties of the reference systems. It is then assumed that approximately the same
quality of the description will be achieved on the main system. The transferability
of the parameters, that is, the range of systems to which they can be applied, is an
important issue.

The general trend among many groups of research has been to stick to the use
of first-principles methods as basis for their studies. The obvious reason is that the
accuracy in first-principles methods can be controlled more systematically, and based
on only intrinsic properties of the system (i.e. the number of particles and the spatial
distribution of the nuclei). This has relegated most of the semi-empirical techniques
to a second plane, where actually their main capabilities are rarely exploited.

Since semi-empirical methods have been designed to be computationally more
efficient that first-principles methods by definition, the range of applicability of the
former methods will always be wider than that of the later ones. In the particular
case of solid state systems, the reproduction of the long range interaction is a main
concern. Ab initio techniques are constrained to exploit intensively the symmetry
of the systems or to use embedded cluster models. Semi-empirical techniques, using
the same computing resources, are able handle much bigger models instead, reducing
the constraint. As I already mentioned, it is necessary to be careful in what concerns
which properties of the system can be reproduced, and with which accuracy, but the
semi-empirical methods can be very useful tool for the exploration beyond the limits
of the ab initio. Some examples will be given inside this chapter.

Unfortunately, the increasing popularity of the first-principles techniques has
drifted most of the efforts on the development of computer codes towards their imple-
mentation. Most of the programs that are able to perform semi-empirical calculations
have become obsolete.

With this perspective in mind, we have established a collaboration project ! with

! Actually, Fujitsu has provided the funding for the elaboration of this Thesis, in the framework
of this collaboration.
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Fujitsu Labs (Japan), in which we agreed to develop a semi-empirical code that will
allow its use as a tool for preliminary analysis of the structure of complex systems.
More specifically, the intention was to target materials that could be employed as
gate dielectrics, including Silica. A particular feature of such systems is that they
display an amorphous structure, very difficult to reproduce with the limited sizes of
the ab-initio models.

The basis for the project has been the updating of the MOSYM code 2 (for-
merly known as SYMSYM), which is an implementation of the self-consistent semi-
empirical INDO method. We also have included some extra features that will offer
more flexibility and the possibility to correct for the error introduced by the approxi-
mations. Together with the modification of the program, we have also tried to obtain
a set of parameters that will be useful for the study of the dielectric materials just
mentioned.

This chapter is particular in the sense that it does not target any specific physical
problem, but rather the development of a computational tool and its set up (this
includes both the program and the set of parameters). The structure of the chapter
is also slightly different from the others presented in this part of the Thesis. Firstly I
will describe the MOSYM code and its features, as well as the issues that we decided
to address in order to improve its performance and capability. Then the work done
on each one of this points and the achievements are presented. Secondly, I discuss
in detail the problem of the parameterization, and the strategy followed to find a set
of parameters that will allow the description of Silicon dioxide, Silicon Nitride and
Silicon Oxynitride. The tests concerning the accuracy that can be achieved using
this parameterization, and the transferability of the set are presented next. Finally,
I will present an example of potential application of the code, and some preliminary
results, for the study of a complex model of Silicon Dioxide containing far more
atoms than is currently affordable for a first-principles code.

7.2 Updating and development of the MOSYM code.

7.2.1 Main features of the program.

The MOSYM code is an implementation of the Intermediate Neglect of Differential
Orbital (INDO) scheme, which in turn is based on the self-consistent Hartree-Fock
theory. Therefore, the INDO technique seeks for the best single-determinant ap-
proximation to the ground state wave-function of a multi-electron system. This
wave-function is composed of one-electron functions (orbitals), that are defined as
linear combinations of atomic orbitals. The self-consistent procedure optimizes the
linear coefficients of each one of the orbitals .

One of the most time consuming parts of the first-principles HF calculation is
the evaluation of the multi-center integrals that represent the interaction between

2Current public version of MOSYM remains under licensing of the University College London
(UCL). The code authors are L. Kantorovich, A. Livshits and F. Lopez Gejo.

131



Li.o CHAPTER 7. DEVELOPMENT OF AN INDO CODE.

different electrons, and that are used to construct elements of the Fock matrix. In the
INDO technique, the evaluation of the integrals corresponding to electron densities
with overlapping close or equal to zero is avoided. Such an approximation, known
as zero-differential overlap, is the basis of a whole family of schemes, of which the
INDO forms part, developed by Pople and co-workers. The main difference between
these methods is the extent to which the approximation is applied. In particular,
the INDO scheme is the simplest of the schemes that allows discriminating between
states that come from the same electron configuration, by considering the one-center
integrals that represent the exchange interaction. A more detailed derivation of the
INDO scheme, and a detailed discussion of the physical meaning of the parameters
has already been presented in section 2.5. The original derivation of the method can
be found in the series of papers by Pople et al. [59, 57, 58, 56], or in the book by
Pople and Beveridge [54]. The MOSYM code actually implements a modification of
the original scheme, suggested by Shluger [60] to account for the extended nature of
the nuclei.

The MOSYM code is able to handle three different types of models: isolated
clusters or molecules, embedded clusters and periodic systems. In the embedding
scheme the quantum cluster is surrounded by a lattice of point charges, that allows
one to reproduce the effect of the crystalline field over the cluster. The periodic model
makes use of the Large Unit Cell scheme, to allowing sampling of the reciprocal space
in the I point only 3. Such a versatile choice of models turns out to be very useful in
the stage of parameterization. For instance, it is possible to choose molecular systems
as reference for the parameterization, and then move towards extended systems easily.
In any of the cases, MOSYM is able to recognize and exploit the symmetry of the
system, reducing both the storage and the cost of the calculation. The program can
perform selective geometry optimizations of the positions of the ions, in any of the
types of models.

Some other additional features of interest of the program are the following.
MOSYM allows one to control the occupation of the orbitals, and to define the
multiplicity of the system. Several tricks can be used for helping and/or allowing
the convergency of the self-consistency calculation. More specifically, it is possi-
ble to define a shift of the energy of the unoccupied states, to avoid degeneracy,
and/or to define a mixing between the Fock matrices of two contiguous steps in the
self-consistency calculation. Finally, the code is able to select different work regimes,
adapting itself to the existent resources of disk space and memory. The most efficient
regime makes extensive use of memory and reduces input/output operations.

The basic structure of MOSYM, with all the features described above, was already
defined for the time that this work of upgrading was started. We decided, however,

3The reason for this choice is, once more, because of computational efficiency. The calculations
in the I" point avoid the need to use complex numbers. Handling complex arithmetics was a heavy
task on the early days of development of the code. The sampling in I'" point is usually enough
for studying insulating materials, but is not valid for the study of the metallic systems, where an
accurate description of delocalised states is required.
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that in order to be able to use it for the study of systems with many atoms the
performance should be considerably increased.

In the specific case of the study of oxides, we also found some trouble when opti-
mizing the geometries, due to the appearance of an unphysical attraction between the
Oxygen ions, that caused the system to collapse. We have designed an implemented
a new correction to the total energy and gradients (that are the basic information
for the structural optimization) based on a pair potential scheme. We have also de-
veloped a systematic way of defining the shape of the corrective potential based in
simple first-principles molecular calculations. The tests (that will be presented here)
show that such simple approach solves successfully the problem.

Finally, we considered that in some of the systems that could be interesting
to study, such as some point defects inside the oxides, there was a strong charge
re-distribution during the self-consistent calculation. We thought that the set of
parameters will become more flexible if at least some of them will be defined as
functions that could be recalculated at each self-consistent iteration. Unfortunately,
we did not have the chance to perform the necessary test completely, but I have
included the description of the charge dependent parameters, and how they have
been implemented in the code, with the hope that they may become helpful in
future research.

All these different issues will now be addressed in detail in the next sections.

7.2.2 Improvement of the performance of the code.

The Hartree-Fock equations are handled in matrix form, and solved through a di-
agonalization of the Fock matrix that produces the eigenvalues and eigenvectors of
the system at each self-consistent cycle. The diagonalization involves multiplications
of matrices and therefore scales like N3, being N the number of basis functions of
the system. We identified this step as one of the most time-consuming parts of the
calculation.

Despite being a clearly defined problem, the calculation of eigenvalues and eigen-
functions is not trivial. The underlying reason is that the algorithms are based
on an iterative scheme (grand strategy) for reaching the diagonal form of a matrix
through similarity transformations [146]. Usually, applying such a procedure directly
(transforming the matrix until the deviation from the diagonal form is small enough)
does not lead to efficient algorithms. Instead, the matrix can be transformed in its
tridiagonal form and then factorization methods are used. These techniques (named
QL and QR methods) are based on splitting the matrix into sub-matrices of low
dimension, whose eigenvalues can be found efficiently. If the tridiagonal form has
been calculated correctly, the method scales linearly with the order of the matrix. A
detailed derivation of the methods can be found in the references [146, 147].

I have introduced in MOSYM an implementation of the QR and QL techniques
based in state of the art linear algebra libraries LAPACK [147] and BLAS [148]. In
order to test the efficiency of the new routines in contrast with the old versions, I
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Number Number Total CPU time
Atoms Basis functions OLD NEW
9 48 6.00 1.68

18 96 10.49 2.82

36 192 24.92 7.31

72 384 196.53 40.00
108 576 871.03 139.76
162 864 3592.41 453.40
243 1296 5955.29 1380.09

Table 7.1: Test of performance of the code.
The table displays the CPU time (in seconds) required to complete a self-consistent calculation,
as a function of the number of basis functions employed. The time in plain letters corresponds
to the calculations done with the old version of MOSYM, and the numbers in bold correspond to
the time employed by the new version, where the diagonalization routines have been modified.
The scf calculation has been converged up to 10~° a.u. on the total energy.

have performed a timing of the different routines for different test systems. All the
tests have been performed on a single AMD Athlon processor with a clock frequency
of 1009 Hz, a cache of 256 Kb and 512 Mb of RAM memory. The MOSYM code has
been compiled using the g77/gcc 2.96 compilers * as provided in the Mandrake 8.2
(2.96-0.76 mdk) distribution of Linux operating system. The size of the arrays inside
the code has been defined big enough as to allow the fastest calculation regime even
for the biggest system tested (avoiding unnecessary use of hard disk). The timing
has been done using gprof 2.11.92.0.12 5.

In order to test the code performance and scalability, I have calculated the elec-
tronic structure of a set of supercells of different sizes (the system was a-quartz). All
the calculations were converged up to 107° a.u. on the total energy. The results of
the timing are presented in table 7.1, where the size of the systems is listed by both
number of atoms and number of basis functions (each function is doubly populated).
Timing is given as total CPU time & of the calculation.

The results of this timing are also displayed in Figure 7.1 for a more intuitive
comparison. The graph shows the relationship between the cost of the computation
(measured as time) and the number of basis functions considered. The solid black
line represents the performance of the code after the modifications mentioned here,
and the red line the performance of the previous version. The green dashed line is
just the function y = z. In any case, it is possible to see how we have managed to
increase the calculation rate substantially. This has allowed us to face the calculation
of considerably complicated systems as, for instance, the example in section 3.4,

“The MOSYM code is entirely written in standard FORTRAN 77. However, the GNU compilers
are based in a set of libraries written mostly in C.

Sgprof performs a profile of the program, displaying a timing of the routines and a call tree.
The call tree allows to determine the percentage from the total time consumed by a given set of
routines (for instance, those involved in diagonalization).

8Note that the real (wall) time involved in the calculation is usually considerably larger than the
CPU time, since big intervals are required for the input/output operations (i.e. reading and writing
on the hard drives and screen display).
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Figure 7.1: Performance of the code.
The plot shows the time (in seconds of CPU) employed in a self-consistent calculation (converged

up to 10'* a.u. in the total energy) as a function of the number of basis functions employed.

which concerns a model of Silicon Dioxide containing 648 ions. This calculation
was performed in a few hours of single processor workstation. A similar ab initio
calculation, if possible, will require exploiting the full resources of a massive parallel

supercomputer.

7.2.3 Implementation of the pair-potential correction.

In the particular case of the systems containing oxygen, an unphysical attraction
between the oxygen atoms causes great distortion of the micro-structure and, even-
tually, its collapse (this problem has been already mentioned by Sokol [149]. This
effect was not noticeable in systems where the periodicity kept the system under a
meta-stable minimum, but appeared as soon as the system was perturbed (generating
a vacancy or displacing an ion far from its equilibrium position, for instance).

The algorithm used in MOSYM seeks for the set of atomic coordinates that min-
imizes the total energy of the system. The atoms are displaced in the directions
indicated by the gradients of the total energy. This information is therefore crucial
for driving the structural relaxation towards correct structures. In fact, much more
simple non-quantum mechanical models can be used for generating the correct struc-
tures and determining many ofthe mechanical properties ofa system accurately [150].
Following this idea, SYMSYM already implemented a simple pair potential correc-
tion to the total energy of the system based in the distance between oxygens only
(this work was done by M. Szymanski). Presumably, the code should be able to
explore the correct potential surface and provide the correct structure of the system.
Such a simple procedure, however, did not give any positive result because both the
pair potential used was not appropriate and the code followed the incorrect paths of
relaxation, since it was using the information provided by uncorrected gradients.

In the new version of MOSYM, we have implemented a more elaborated version
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Figure 7.2: Dissociation curve for O2 molecule, obtained with INDO and CISD tech-
niques.

of the pair potential correction. The code is able to use a collection of different
potentials, compiled as a library, for any given pair of atomic species. It is possible to
choose on input both the functional shape of the pair potential and some parameters
of the potential that are left free to be fitted following any desired criteria. Both the
total energy and the gradients are corrected before the structural relaxation routine
is given the information. Note that, as implemented, the pair potential is applied as
a correction to the total energy, and it does not provide by itself the correct total
energy surface.

The new feature of the code was used for correcting the problem of the attraction
between oxygen ions as follows. In first place, we have used the program GAUSSIAN
98 [55] to obtain an accurate representation ofthe adiabatic curve for the O> molecule
into two oxygen atoms in triplet state. This calculation was done using a 6-311G*
basis set and the CISD technique, therefore taking partially into account the cor-
relation effects that are not considered by construction in the single determinant
Hartree-Fock approach and are partially responsible for the incorrect behavior. The
same curve was also calculated at INDO level using MOSYM and a reasonable set
of parameters.

Results are showed in figure 7.2. Since the comparison of absolute energies does
not make sense between results obtained with different techniques, the adiabatic
curves for the oxygen molecule have been calculated at each point by subtracting
twice the energy of the atomic oxygen in its triplet ground state from the total energy
of the molecule. As can be seen in 7.2, the INDO technique predicts a very similar
equilibrium distance, but the depth of the potential well is much higher than in the
CISD results (0.34 a.u. equivalent to 9.25 eV). It is also remarkable the difference
between the shapes of the curves.

Although these results outline the need for correcting the INDO results in order
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Figure 7.3: Dissociation curve for O2 ~ molecule, obtained with INDO and CISD tech-
niques.

to obtain a correct representation of the total energy surface, they cannot be applied
to correct the parameterizations of oxides. The reason is that the formal charge of
Oxygen ions inside Silicon oxide is very different from that displayed in the neutral
O: molecule. Because of this, the potential well describing the behavior of the latter
does not represent that found by the oxygen ions in the oxide.

In silicon oxide, oxygen ions have charges between -1.0 and -2.0. In order to
reproduce this situation, the same type of adiabatic curve has been represented, but
for the O: ”~ molecule being dissociated into two O~ ions. The results are presented
in figure 7.3. In this case the potential well predicted by the INDO technique is
much more deep. In addition, and more consistently with the process of collapse of
the structures during the relaxations, the equilibrium distance between oxygens is
smaller by 0.15 A in comparison with the CISD results. Also the difference in slope
between both curves to the right of the minimum is large, leading to much bigger
gradients directed towards the minima in the INDO calculations.

The correction has been constructed by assuming that the CISD calculation with
the 6-3110* basis set provided accurate results. We have found the difference be-
tween the curves displayed in figure 7.3. Results are displayed in figure 7.4. The
mentioned difference has been evaluated in all the points marked as green crosses.
If this correction is added to the total energies obtained using the INDO technique,
the total energies obtained with the CISD method should be obtained. The simplest
function that can reproduce correctly this curve within a wide enough range of o -o

distances is a polynomial of 7" degree:

fix) = - raly (7.1)

i=0

where r corresponds to the distance between pairs of atoms. In this specific case
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Figure 7.4: Fitting of the pair potential correction.

The green crosses show the difference between the dissociation curves of 0~ * calculated at

CISD and INDO level. The solid red line shows a polynomial of 7** degree fitted to this data.

the coefficients are cg = —0.001238754, ¢l = —0.05579981, cg = —0.3097622, cg =
-0.5355361, G = -0.3416556, G = -0.10048775, ce = -0.008715564, ¢j = 0.001035221,
and the cut-off radius ro = 4.72 au. (2.5 A) Note that the function converges
smoothly to zero at this distance. This additional constraint is required to avoid
unphysical shifts in the total energy surface. Figure 7.4 also shows this function as
solid red line, so the quality of the fitting can be directly seen by comparison.

The factor a has been included to allow a scaling of the whole potential, without
essentially modifying its shape. Its inclusion was motivated because of the results
obtained with the unsealed pair potential that showed that the Oxygen-Oxygen
distance (in a-quartz) was too short by 0.1 A. The factor a = 1.1 was fitted to
obtain correct o -0 distances in small negatively charged molecules (O""), clusters
(SiaOe and s1304), and a-quartz.

In practice, it will be necessary to supply to the program in the input file an
additional line including the atomic species whose distance should be evaluated for
applying the pair potential (in this case oxygen-oxygen), the keyword identifying the
seventh order polynomial, the cut-off radius and the values of the coefficients in the
order listed above. The gradients are corrected by adding the values of the analytical
gradients of the polynomial, evaluated along the X, Y and Z directions.

The effect of the pair potential was tested over a supercell of a-quartz, using the
set of parameters described in 7.3.2. A structural relaxation using the experimental
geometry leads to the same relaxed structure whether the pair potential is used or
not. The reason is that in a-quartz the 0-0 distance is bigger than 2.5 A, which
is the cut-off radius specified for the pair potential, and therefore the correction is

not applied. If a perturbation is introduced, making two Oxygen ions come close

138



CHAPTER 7 DEVELOPMENT OF AN INDO CODE

initial structure final structure final structure

without correction with correction

Figure 7.5: Performance of the pair potential correction.
The picture shows a supercell of 72 atoms representing the crystalline structure of a-quartz. If
a strong perturbation (indicated with green lines) causes two oxygen atoms to come together,
the INDO structural relaxation is not able to find the crystalline structure again (bottom left).
If, the correction to the total energy and gradients is used, the correct structure is recovered

(bottom right).

together (as shown in Figure 7.5), then the results are very dependent on whether
the correction is applied or not. If the pair potential is not used, then the Oxygens
feel the extra unphysical interaction. This introduces a strong perturbation that
eventually causes the whole microstructure to collapse (see Figure 7.5). However, if
the correction is applied, the artificial attraction is eliminated and the structure of
the crystal is kept.

Managing to obtain the correct microstructure of the system has a strong in-
fluence in both the energetics and the electronic structure. As an example, I have
performed a structural relaxation of a supercell of amorphous Silicon Oxide (shown
in Figure 7.6) generated using classical molecular dynamics. If the pair potential
correction is not applied, the relaxed structure differs considerably from the initial
one, while the relaxed structure obtained applying the correction is very similar (all
three are displayed in Figure 7.6). The relaxation energy involved in the uncorrected
calculation is 36 eV, which is surprisingly high. If the correction is applied, the
relaxation takes 3.12 eV.

Looking at the electronic structure of the system (also in Figure 7.6), the big
relaxation occurring ifthe correction is not applied leads to a widening ofthe occupied
bands, and therefore the value of the band gap (measured as a difference of one
electron energies) reduces from 14.36 eV to 9.80 eV. If the correction is applied the

changes in the electronic structure are minimum, and the gap is 14.40 eV.

7.2.4 Charge dependent parameters.

In the first step of the self consistent cycle, the elements of the Fock matrix are
obtained by means of a Hiickel guess. This initial Fock matrix may be very different
from the one obtained at the end of the calculation. In this situation the set of
parameters is not flexible enough, and the self consistent cycle is driven to slow

convergence or even divergence. On the other hand, in many cases a single set of
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Figure 7.6: Effect of the correction on the electronic structure.

The picture shows a supercell of 72 atoms representing an amorphous structure of silica. Once

more the relaxation is very dependent on whether the correction is used (bottom right) or not
(bottom left). Although the correction is applied to the total energy only, the electronic structure

of the system is very affected since it depends on the microstructure of the system. The green

plots show the density of states of the initial structure, while the red ones show the Density of
states of the final structures.
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parameters can also not be enough to describe two atoms that, being from the same
species, are present with different charge state in the system. As an example of this,
the parameterization that will be shown shortly requires defining two different types
of Nitrogen species for obtaining an accurate description of several phases of silicon
nitride. This strategy becomes difficult to handle if the systems are more complex,
like in the case of an interface where the charge of atoms of a given species changes
from one monolayer to the next.

In order to avoid such a problem, I have introduced into the MOSYM code the
possibility of using a set of parameters that are defined as functions of the charge.
These parameters are recalculated at every cycle of the self-consistent calculation,
using the information about the charge state of each ion given by charge population
analysis. In the first instance, the only parameters defined in this way have been the
electronegativities. The program admits defining them as a second order polynomial
of the charge on each ion. I also have implemented a “safety switch” that stops the
calculation if the recalculation of the parameters drives the convergence towards an
unphysical situation. The program checks at every iteration that the charge of each
ion is kept withing some limits that can be defined at input. Finally, another switcher
determines when the charge dependent parameters should start to be calculated and
used. This allows skipping first iterations of the self-consistent calculation, where
the charges may be unreasonable, and affects critically the speed of convergence.

Unfortunately, I only had time for performing very few attempts of fitting a set
of charge-dependent parameters, and the results were, so far, not very successful.
The strategy followed for the fitting of charge dependent parameters was to build a
database of different systems that contained the same atomic species, but in different
charge states. For each system, the electronegativity parameter was optimized in
order to achieve the best agreement possible with ab initio HF calculations. The
charge-dependent parameter (which is now a function) was defined as the best fitting
to the points given in a plot representing the optimized electronegativity versus the
charge population of the ion.

7.3 Development of a parameterization.

7.3.1 The target systems. Gate dielectrics.

The original targets of the collaboration project with Fujitsu Labs have been silica
systems and possible substitutes for this material as a gate dielectric. The list of
such candidates changes rapidly and is determined by the trends in the industry.
At the time of definition of the project, silicon nitride seemed to be an interesting
candidate. In fact, this material has been considered for a long time as a potential
substitute [10] as a gate dielectric.

In brief, silicon nitride presents a higher dielectric constant (7.8 [151]) than that of
silicon dioxide, and therefore it allows the use of a thicker gate dielectric layer without
decreasing device performance. Thicker gate layers avoid the problems related to
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tunneling of carriers and dielectric breakdown. In addition, silicon nitride displays
higher resistance than silicon dioxide to the diffusion of impurities [152]. The main
advantage of this material over many high-x materials is that it is easy to generate
over the silicon substrate. A big drawback on the application of silicon nitride as
gate oxide has been a high level of defects found, both in the interface with silicon
and in the bulk [10]. Some improvement is possible if the nitride is combined with
oxygen, to form silicon oxynitride. In this case the flexibility of the network increases,
allowing one to reduce the density of defects, at the price of lowering the dielectric
constant.

Silicon oxynitride may display very different stoichiometries, and it is therefore
important to understand how the electrical properties of the system change as a
function of the composition of the material. Since using the oxynitride is intended to
reduce the number of defect sites, it is necessary to evaluate the energies of forma-
tion of these defects. The task of evaluating all these properties for many different
compositions is considerably demanding if first-principles methods are to be used.
This is especially true if realistic models are to be used, since these materials display
an amorphous phase. We therefore decided to develop a set of parameters that will
allow the study at INDO level, as a preliminary stage. The aim of the parameteri-
zation was to find a set that will allow the study of models of silicon dioxide, silicon
nitride and silicon oxynitride, and of simple defects inside these materials.

7.3.2 The set of parameters.

The INDQO parameterization requires defining several types of one-center and two-
center parameters. The former ones basically determine the interaction between
electrons and nuclei of an specific atomic species, while the second one rules the
interaction between electrons of different atomic species. Therefore, each atomic
species can be characterized by providing the following parameters, for each occupied
orbital 5 (only valence electrons are considered): the exponent of the orbital, £,
the electronegativity, Eneg(i), the interaction between electron densities, 3, and
the strength of the interaction between the electron density and the nucleus, a. A
detailed description of the parameters, and its physical meaning has already been
given in section 2.5.

The set of parameters that has been fitted during this study is shown in Tables
7.2, 7.3 and 7.4. Many of these parameters are modifications of those fitted and
employed previously by A. Sokol, and appear listed also in[149], together with details
of the fitting process and results of his tests. This set with minor modifications came
out as best possible choice after a long process of selection in which we also tried
to develop new sets. The main difference between the sets employed by Sokol and
the one shown here is the use of non-diagonal 3 elements that have been calculated
explicitly, as opposed to the conventional INDO parameterization where the non
diagonal  are calculated automatically by finding the average between the diagonal

elements (8;; = 2% 1), This allows obtaining extra control over the description
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Element Core Shell ¢ (a.u.!) Epeg(eV) P@(e)  B(eV)

Charge
H +1 s 1.150 5.783  0.800  6.940
o +6 2s 2.270 4.500 1.974 —16.0
2p 1.860 -12.000 1.960 —16.0
Si +4 3s 1.559 42.100 0.000 —8.0
3p 1.834 35.100  0.000 —24.0%
N +5 2s 2.200 -4.700 1.974 -26.000
2p 1.900 -18.000 1.667 -28.000

Table 7.2: Set of one-centre INDO parameters.
The B parameters are actually matrices, whose diagonal elements are listed here. The rest of
the elements of the matrices are calculated automatically, except for the elements marked with
t are defined explicitly in table 7.4.

Core type H(ls) Si(3s,3p) O(2s,2p) N1(2s,2p) N2(2s,2p)

H 0.000 0.001 0.490 0.490 0.490
Si 0.000 0.310 0.245 0.000 0.100
0] 0.000 0.050 0.100 0.100 0.100
N1 0.000 0.030 0.100 0.100 0.100
N2 0.000 0.000 0.100 0.100 0.100

Table 7.3: Set of two-centre INDO parameters.
See text for more details about the double set of parameters for Nitrogen (N1 and N2).

of the geometry of silica polymers. Also, a set of parameters for Nitrogen has been
fitted from scratch. In this case the peculiarity of the set is the use of two different
types of o parameters (named N1 and N2 in table 7.3). This was introduce in order
to obtain correct descriptions of the geometries of two different crystalline phases of
Silicon Nitride.

7.3.3 Performance of the set of parameters.

We first tested the accuracy of the set of parameters just presented by observing the
bulk properties of several dielectric materials. Some examples concerning amorphous
and crystalline Silica have already been shown in Section 7.2.3. Given that the set of
parameters concerning Nitrogen is completely new, I will focus now in the Nitrogen
containing compounds.

The structure of Silicon Nitride (SizN4) has been characterized by several groups,
because of its application as a ceramic material. We have taken as a reference the data

Si(s) _Si(p) | O(s) O(p) | Si(s) O(p)
Si(s) 80 -16.0| O (s) -16.0 -16.0 | Si(s) -20.0 -20.0
Si(p) -8.0 -24.0| O(p) -16.0 -16.0 | O(p) -14.0 -20.0

Table 7.4: Set of 3 parameters.
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a-Si3N4 S12N20

Figure 7.7: Schematic representation of 0:-Si3N4, and SigNgO.
The Yellow spheres represent Silicon ions, the blue spheres represent Nitrogen ions, and the red
spheres represent Oxygen ions. The structures are shown from a plane perpendicular to the

c-axis.

from X-ray powder diffraction experiments obtained by Yand et al. Polycrystalline
Silicon Nitride displays two different phases (a and /?). Both phases are based on
tetrahedral SiNs units. Silicon Oxynitride (Si2N:2 o ) can be considered as a hybrid
between Sio> and SigNs. Its structure is based on SiNaO units, and can be seen
as planes of SiNg units linked by the Oxygens. A graphical representation of all
these materials, a- and 4-Si3Ns and Si2N: o, is shown in Figure 7.7. We also have
compared our results with those obtained from first-principles calculations (at DFT-
LDA Ilevel) performed by Xu and Ching [153].

We have constructed periodic models following the Large Unit Cell approach.
In all cases, the supercells were generated using a 2 x 2 x 2 (diagonal) extension
matrix. The supercells of both phases of Silicon Nitride contained 224 each, and that
of Silicon Oxynitride contained 160 atoms. For each material, we have performed
a geometry optimization using as initial geometry that predicted by experiments,
keeping the lattice vectors fixed to the experimental values. No symmetry constraint
was imposed over any of the atoms. The self-consistent calculations were converged
up to 10~® atomic units in the total energy ofthe supercell. The criteria for stopping
the structural optimization was also not to have changes in the total energy above
10 “” atomic units.

The results concerning the micro-structure of the materials have been summarized
in Figure 7.8. In general terms, all the bonding distances are reproduced within less
than 0.1A. We have noticed, that the INDO calculation forces the system to have a
homogeneous bond-length distribution, so all Si-N bonds tend to have similar values.
It should be noticed, however, that the experimental data comes from diffraction
experiments, where the data is fitted assuming certain symmetry of the crystal. As
a result, the coordinates of the atoms related by symmetry are not independent (and
neither the bond-lengths) in opposition to our calculations where the coordinates of
each ion have been relaxed independently.

In what concerns the angles, the level of agreement depends considerably on the

symmetry of the system. In Silicon Oxynitride, all the N-Si-N and N-Si-0 angles
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Figure 7.8: Comparison between INDO results and experimental data.
The schemes represent the local structure inside Si2N2U 0- and a-SisN4 (from top to bottom).
All the geometry optimizations have been performed without any geometry constrain. The exper-

imental data has been taken from [154] and [153] for p- and a-SisN4, and Si2N20 respectively.
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Figure 7.9: Electronic structure of pS'isN*, and SigNgO.
The arrows indicate the biggest contributions for each band. All energies are in eV. The density

of states is given as states/eV cell.

match within less than 5°. The Si-O-Si is the one in biggest disagreement. It is
well known, from the studies performed in Silicon-Oxygen compounds[83, 155], that
the total energy of the system changes very little as the Si-O-Si angle is modified”.
Such subtle changes in the energy are difficult to reproduce with the calculations at
INDO level. However, the pair potential correction introduced accounts successfully
for it, as it could be seen in the examples in Section 7.2.3. In the case of pure Silicon
Nitride compounds, the angles are much better reproduced in the case of /3-Sis N4,
where agreement is within 5°.The a phase has a much more complex structure, and
the parameters do not show enough flexibility.

Turning attention towards the electronic structure of these systems. Figure 7.9
shows the Density of States of Silicon Oxynitride and the (3 phase of Silicon Nitride
(the DOS of both Nitrides are very similar). The composition of the DOS (also
shown in the Figure) is qualitatively correct, and shows the different hybridizations
between the orbital of different atomic species, which results in the covalent bonds
that are characteristic of these materials. If we compare our results with those by
Xu and Ching [153], obtained by means of a first-principles technique, the only two
main differences are: a) that the s levels of Nitrogen appear shifted up in energy
with respect to the s levels of Silicon in Silicon Nitride, and that the conduction
band in the INDO results appears divided in two regions, separated by a wide gap.
This result is unphysical, and is actually due to the absence of d functions in the
basis set of Si.

In conclusion, the set of parameters presented here allows a reasonable descrip-
tion of the systems. They provide a qualitatively correct description of the electronic
structure of the materials, and therefore the bonding scheme is described correctly.
As a consequence, also the micro-structure of the systems is described correctly, with
an accuracy of 0.1 Ain the bond-lengths and 5° in the angles. The parameters, how-
ever, lack flexibility and fail to describe systems with complicated and/or asymmetric

structures, if no external help like a pair potential correction is used. Unfortunately,

~This justifies the fact that there is so many Silica polymorphs based in Sio4 units, that can be
arranged in many different ways thanks to the flexibility provided by the Si-O-Si links.
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this statement becomes critical in complex systems that contain defects. We have
not succeeded, so far, in applying the INDO approach to the study of these systems.
Still, we find that the set of parameters, as it is, can be of help for certain type of
studies, as the one presented next.

As an example of this type of application, I have performed a calculation of
the participation functions for a crystalline system (a-quartz) and amorphous silica,
using cells containing 576 and 648 atoms respectively. The amorphous structure has
been generated by means of a classical molecular dynamics technique. The results are
presented in figure 7.10, together with a representation of the structures that allows
one to appreciate the difference in symmetry. The graphs display both the density
of states of the system (solid line) and the participation function (crosses) for both
systems. It is possible to see how the edges of the bands in the amorphous system are
composed of states that are not completely delocalized, while the density of states
remains essentially unaltered. This is consistent with the predictions by Ching [65].
In this particular example of an amorphous system, there is no unusual localized
states. This is not surprising since the system also does not have any particular
structural defect (i.e. vacancies or low coordinated atoms). This simple method
turns to be really useful for the identification of the region containing a localized
state inside a much bigger system. In a further stage, such a region can be modeled
more accurately. An example of this kind of work has been presented by Sushko and
co-workers in the case of defects in surfaces of MgO [156].
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Figure 7.10: Participation functions for a-quartz (top graph) and amorphous silica (bot-
tom graph).

The red crosses represent the values of the participation function for each one of the eigenvalues of
the system. The function range goes from 1 (completely delocalized) to 0 (completely localized).
The normalized density of states is also projected in black under the function, and allows one
to see how in amorphous systems the states on the edges tent to be localized. A schematic
representation of the unit cells used in the calculation are also shown on top. All energies are

given in eV.

7.4 Conclusions.

The work presented in this chapter concerns two different main subjects a) the update
and addition of new features to the code MOSYM, that performs semi-empirical
LCAO electronic structure calculations at INDO level, and b) the development and
testing of a parameterization for the study of systems formed of silicon dioxide, silicon

nitride and silicon oxynitride.
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The upgrading of the code consisted mainly in a substitution of the diagonaliza-
tion routines, which are employed during the self-consistent solution of the equations
of the INDO method. The increase in the speed of the computations was significant.

The addition of the new features was focused on two different points: a correction
for the total energy and gradients based on a pair potential scheme and the modifi-
cation of some of the INDO parameters, redefining them as functions of the charge
of the ions, instead of keeping them constant along the calculation. The pair poten-
tial correction was tested against a system of silicon dioxide, in which an unphysical
attraction between the oxygen ions caused the structure of the system to collapse.
The problem was successfully solved by the pair potential correction. We showed
how the fitting of the potential can be deduced directly as the difference between
two adiabatic curves as calculated at INDO level and with a higher order method.
The correction was fitted using molecular systems as a reference, and successfully
transferred towards extended systems. The modifications of the code that enable
the use of charge dependent parameters have been included, but further tests will be
required for understanding and validating the new parameterization.

In what concerns the sets of parameters generated for the description of com-
pounds containing Si, O and N, our tests show that crystalline and even amorphous
materials are described with an accuracy of 0.14 in bond-lengths and 5° in the an-
gles. The transferability of the set, however, was limited to cases in which there is
no strong redistribution of the charge density during the self-consistent calculation.
Examples of systems where this happens are some point defects (like vacancies) and
also some interfaces.

The ability to deal with systems of many atoms with this particular code and
method has been shown in an example in which a cell containing 648 ions have
been employed. The calculation was done in a single processor machine, in a few
hours of CPU time. The equivalent calculation using standard ab initio techniques
is currently unaffordable, even if supercomputing facilities are available. Therefore,
semi-empirical methods could be considered as useful tools for the qualitative analysis
of systems beyond the first-principle methods. At present, however, new methods
allow one to maintain the ab initio approach, with a remarkable low cost of the
calculations (for instance, the SIESTA code, at the time of publication of this work,
was able to deal with systems of the size of those compared here in a very similar
time scale, using a DFT approach [157]). These new methods may be then preferred
to the approach presented here.
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Chapter 8
Final conclusions.

The research presented in this Thesis intended to explore the limits of applicability
of some of the most widely employed electronic structure calculation techniques, for
the modelling and predictive simulation of some dielectric materials. These materials
are employed as gate dielectrics in the MOS structures, and the evolution of their
physical and chemical properties as the devices are scaled down is a main concern
for the developers of microelectronics.

We have choosen some problems that, either have been in the scene for many
years without getting any final answer, or are becoming very important for the near
future of the technology. The former group includes the presence of hydrogen inside
silicon dioxide, and the problem of band alignment at the Si/SiOq interface. The
latter includes the study of the properties of point defects in zirconia and hafnia,
which are being considered as possible substitutes of silica as gate dielectric. The
conclusions achieved on each case are the following:

e Band alignment at the Si/SiO; interface. Usual band alignment tech-
niques use information corresponding to bulk calculations of the materials that
constitute the junction. They require the (non-trivial) definition of an absolute
reference level whose position should be determined inside the band structure
of each material. Instead, we have employed a model of a true interface, and
studied directly the evolution of the bands accross it. This avoids the need of
the reference level, and also allows exploring the dependence of the band align-
ment on particular features of the interface (thickness of the oxide, presence
of defects, roughness). We studied how different parameters of the calculation
affect the results: the BSLYP Hamiltonian provided the best accuracy, and
the basis sets should contain polarisation functions. The thickness of the oxide
layer of some of the models studied is close to that of some of the thinnest
devices. It can be seen that there is a region inside the oxide, around 4A thick,
which contains interface states. The dimensions of this region do not change
as the thickness of the oxide layer changes. Since carriers can be able to tunnel
from these states, this possibly establishes a limit for the minimum thickness
of the oxide.
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¢ Defects in hafnia and zirconia. Any alternative to silica as a gate dielectric
should first prove to be reliable. Part of this reliability is determined by how
easily certain types of defects can be created and by whether these defects can
trap charge carriers or not. Hafnia and zirconia are among the possible substi-
tutes of silica. We have performed a systematic study of the charge trapping
ability of several types of simple defects, using a density functional technique
(GGA) and plane wave basis set. The main drawback of this approach is the
underestimation of the band gap caused by the inaccurate treatment of the un-
occupied states. We applied an empirical correction to the gap width, in order
to be able to express the electron affinities, ionization potentials and formation
energies as ground state properties. Oxygen vacancies can be created at much
lower cost in energy than the cation vacancies, and are able to act as traps
when positibely charged. In a MOS system, they should be able to capture
electrons coming from the conduction band of the silicon layer. Some complex
pairs like impurities near the vacancy do not seem to affect significantly this
behavior. In conclusion, the charge trapping ability of even simple defects in
these materials should be taken into account when considering their use as gate
dielectrics.

e H inside a-quartz. Understanding the role played by hydrogen inside the
MOS systems has been an issue as old as microelectronics itself. Several studies
have addressed different aspects of the problem. Employing the same DFT-
GGA approach as for the study of defects inside hafnia and zirconia, we ex-
plored the stability and diffusion of atomic neutral hydrogen inside quartz.
Hydrogen does not seem to establish any chemical bond with the host, al-
though the electron becomes more delocalized than when H is isolated. This
causes the proton to lose some of the screening and therefore an electrostatic in-
teraction between the host and the impurity appears. The minimum found are,
however, very shallow (0.2 V). Because of this, some approximations adopted
in the method may constitute big sources of inaccuracy. One of these sources is
the approximate treatment of the exchange and correlation energies. Another
is the classical treatment of the hydrogen nuclei, which actually is a very light
particle. An estimation of the zero-point energy indicated that the depth of
the minima found by hydrogen is even smaller than that predicted by the elec-
tronic structure calculation. Finally, we attempted to calculate the isotropic
constants for direct comparison with EPR experiments, but the results dis-
played a very strong dependence on the basis set. Given the accuracy achieved
with these calculations, we concluded that this problem is actually on the edge
of the range of applicability of conventional DFT schemes.

There is an additional part of the research, that has focused on the development
of methodology rather than in facing a particular problem. We have updated a
semi-empirical code, in order to apply it to the study of systems with big number
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of atoms. The tool can be used for a preliminary analysis of a complex structure,
before a more detailed and accurate study of a particular region. We have been able
to handle systems as big as 648 atoms in single processor workstations. We fitted
a parameterisation that allowed us to reproduce the crystalline structures of several
phases of silicon dioxide, silicon nitride and silicon nitroxide with errors of 0.14 in
the the bond-lengths and 5° in the angles, with respect to experimental results. We
did not succeed, however, on porting this parameterisation towards compelx systems
with strong charge redistributions like some defects or interfaces.

In overall conclusion, computational disciplines have been largely employed in
the research vinculated to the progress of microelectronics. The miniaturisation of
the devices and the progress of the computational disciplines has placed us in the
edge of the era in which the direct simulation of real systems will be possible, as it
is now in many areas of chemistry. Meanwhile, modelling of the systems constitutes
a fundamental step. And in any case, a careful analysis of the limitations of the
techniques is needed, if the predictive capability of the tools is to be preserved.
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