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A bstract

The subject of the thesis is the use of models for disease progression 

in arthritis, with special emphasis on Markov regression models. The first 

objective of the thesis is to propose a Pearson type goodness of fit test for 

stationary Markov models with covariates. The grouping technique proposed 

by Hosmer and Lemeshow for logistic regression models is extended to  models 

with response variables recorded repeatedly over time. This generalization 

is particularly appropriate for panel data in which different numbers of ob­

servations, unequally spaced, are obtained for each sampling unit. Due to 

the complexity of the theoretical distribution of the test statistic, bootstrap 

methodology is used to calculate the distribution of the statistic 'under the 

null hypothesis. The power of the goodness of fit test is investigated for a 

particular model using a nested bootstrap algorithm. The proposed test is 

applied to a data set obtained at the University of Toronto with the objective 

of identifying prognostic factors for disease progression in psoriatic arthritis 

(PsA), measured via the number of damaged joints.

As the Markov regression model does not fit the PsA data, the second ob­

jective of the thesis is to consider potentially better models. A larger data  set 

is analysed for this purpose . Additionally, neither the outcome variable nor 

the covariates are categorized. Two m ixture regression models for longitudi­

nal data are examined to determine if there is statistical evidence supporting 

the hypothesis that a proportion of individuals never develop damaged joints. 

The results indicate tha t a negative binomial regression model without added 

zeros might provide a reasonable approach. The goodness of fit of this model 

is examined using bootstrap methodology, comparable to th a t used for the 

Markov regression model.
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C hapter 1

M arkov regression m odels

1.1 Introduction

Based on previous studies, Gladman, Farewell and Nadeau [1] state  that 

psoriatic arthritis (PsA) is a disease with a variable course. Some patients 

develop joint deformity and destruction, as well as disability, while others 

follow a more benign course. The authors hypothesized th a t there may be 

identifiable prognostic indicators for disease severity. If such prognostic in­

dicators exist, their identification could help to design a treatm ent for the 

disease. Thus, Gladman, Farewell and Nadeau conducted a study at the 

University of Toronto Psoriatic Arthritis Clinic in order to identify markers 

for severe disease in PsA.

The authors designed a prospective study lasting 14 years. It was planned 

to assess the patients at 6-month intervals according to a standard protocol. 

At each visit, clinical and laboratory assessments of both active inflammation 

and clinic damage were performed. A joint was considered to be damaged if 

the clinic assessment showed a decreased range of motion of more than  20% 

of the normal range that could not be a ttributed to active inflammation, 

the presence of contractures, subluxation, loosening or ankylosis, or previous 

surgery.

For the purpose of the analysis, the authors categorized the num ber of
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damaged joints recorded at each visit into 4 classes tha t reflected different 

stages of the disease. Based on this classification, a patient is said to be in 

the first stage if he/she has been diagnosed with psoriatic arthritis but has 

not developed damaged joints. Patients in the second stage of the disease 

have 1 to 4 damaged joints. Individuals in the th ird  stage have between 5 

and 9 damaged joints inclusive and subjects in the forth stage have 10 or 

more damaged joints. Thus, progression in damage is defined as a transition 

to a more severe stage of the disease.

Consecutive observations from the same patient are usually correlated 

while observations belonging to different individuals are considered to be 

independent. Gladman, Farewell, and Nadeau [1] assumed that, for every 

patient, the stage of the disease at the next clinic visit is independent of 

the previous stages given the current disease stage. This simple correlation 

structure between consecutive observations is known as the Markov property.

As mentioned before, clinic visits were planned every 6 months but in 

observational studies - like the PsA study - variations between the inter-visit 

periods are inevitable. In the PsA data, the extent of this variability is such 

tha t the authors assumed that the observations were made on a continuous­

tim e scale rather than a discrete time scale. This is an im portant distinction 

as, in the two cases, the data are analysed in different ways. In continuous­

tim e Markov models, the change from one stage to another is described by 

the transition rates.

The transition rates are not constant from one patient to another because, 

as mentioned before, the course of the disease is variable. In an initial anal­

ysis, Gladman, Farewell and Nadeau considered th a t the prognostic factors 

tha t could affect the transition rates are: sex, functional class, number of ac­

tively inflamed joints, number of effused joints, Lansbury index, rheumatoid 

factor, erythrocyte sedimentation rate, and medication level. Only the values 

recorded at the first clinic visit were used in the analysis. Markov models 

with transition rates that depend on covariates or explanatory variables are 

known as Markov regression models.
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The authors also assumed that the transition rates are stationary so they 

are not affected by the time at which the clinic visits take place.

Psoriatic arthritis is a chronic disease. As it evolves, the joints become 

irreversibly damaged and patients progress to a more severe stage. Hence, it 

is sensible to assume that the only transition rates greater than  zero are the 

ones describing a change to the next more advanced stage. Models having 

transition rates with this kind of structure are called progressive Markov 

models.

M ulti-state Markov models are increasingly being used in medical appli­

cations. For example, Ivalbfleisch and Lawless [2] used such a model to study 

smoking prevention programmes in schoolchildren and Gentleman et. al. [3] 

and Longini et. al. [4] considered models for HIV disease. If the response 

variable is qualitative or discrete, then the values it assumes are called states. 

Therefore, in the rest of the chapter, a disease stage is also referred to as a 

state.

Finally, a useful concept is that of an absorbing state. Individuals entering 

an absorbing state remain in it forever. Stage 4 of the PsA disease is an 

absorbing state. In other applications, the absorbing state is the death caused 

by the disease under investigation. Notice that in the first case, sample units 

can still be observed after they have entered the absorbing state while in 

the second case this is impossible. D ata gathered after an individual has 

entered an absorbing state is disregarded as it provides no information for 

the estim ation of the parameters of a Markov model.

The next sections deal with the theoretical aspects of time-continuous 

Markov regression models with stationary transition rates. I establish the 

notation, define the terminology and the characteristics of the model and 

explain the m ethod used to estimate the parameters. These sections can be 

om itted by non-technical readers. In section 1.6 I describe the data collection 

process and define the variables measured in the Psoriatic A rthritis Clinic at 

the University of Toronto. As the PsA database is constantly updated, a new 

data set became available while I worked on my research project. Thus, in
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this thesis I examine three related data sets. The differences between them  

and some descriptive statistics are presented in section 1.7. Also, in section

l.S I present and interpret the estimates of the model fitted by Gladman, 

Farewell and Nadeau.

1.2 P robab ility  theory

Consider a random sample of size n in which each subject is observed several 

times in one of K  different states. The measurement times may be different 

for each subject and unequally spaced. The to ta l number of observations 

may also vary between subjects.

One way to model the correlation between the observations of each sub­

ject is to condition the future observation on the previous ones. This kind 

of model is known as the Markov process with discrete states in continuous 

time. The Markov process is different for each subject when the num ber of 

observations and the measurement times are not the same for every individ­

ual.

The nii observations for subject i will be denoted as:

V- V- V- v-1 i , l  ? • • • 1 i , j i  ' ' • i 1 i , m, _ i  i 1 i ,m;

and the times at which they are obtained as:

ti, 1 t jj  < ! ...< [  i ^

where Yij  £ { 1 ,2 , . . . ,  I\ } for all j  = 1 ,2 , . . . ,  m,- and i =  1 ,2 , . . . ,  n. The 

total number of states is K  and throughout the thesis is considered to be 

finite i.e. I\ < oo. It is said that a transition from state a to state b occurred 

in the tim e interval (ti j,  ti,j+i) if Yi,j =  a and =  b. Notice that it is not

precisely known when the transition took place.

The Markov process is of order one if every observation depends only on 

the preceding one. This model is defined by the set of transition probabilities:

Pi,j(a,b) =  P(a,b){ti,jiti,j+l) =  =  ^ I Yij = Cl)
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If these probabilities remain constant through tim e the Markov process is saicl 

to be stationary or time-homogeneous. Henceforth only stationary Markov 

processes will be considered unless otherwise specified.

The transition probabilities have the following properties:

0 — Pi , j ( c i , b )  ^  Cl, b 1, 2,. . . , A , I 1, 2, . . . , 72

^  vP i , j ( a , b )  1 V a,b 1 , 2 , . . . , A, i 1 , 2 , . . . , n ( 1 . 1 )
6 = 1

Condition (1.1) implies that at the next observation tim e subject i will 

be observed at one of the I\ states including the present one. The m atrix  of 

transition probabilities for subject i at time is:

Pi,j{ 1,1) Pi,j( 1,2)

Pi,j{ 2,1) Pi, j(2,2)

P i , j ( l , I < )

P i , j ( 2 , K )

\

\  P i , j ( K , \ )  P i , j ( K , 2) • • • P i , j ( K , K )

In practice, the transition probabilities are unknown. It is possible, how­

ever, to estim ate the transition rates defined as [8]:

P[Yi j+A = b \ Y i j  = a] 
quajb) =  l im ------------------------    for a ±  b

where tij+i =  a- From equation (1.1) it follows that:

( 1 .2 )

Qi ( a , a )  ^   ̂Qi(a , b )  Cl 6
b̂ ct

The K  x Ii m atrix of transition rates for subject i is:

/

Q i  {9«(n,6)}

Qi{1,1) Qi{1,2)

9i( 2,1) Qi{ 2,2)

Q i ( l , K )

Cli{2,I\)

\  1) Q i { K , 2 )  • • • Q i { K , K )

The Chapman-Ivolmogorov equations:

(1.3)
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I<
P i , j ( a , b )  — P c i , b ( t i , j  5 ^  , P a , k ( t j , j  1 i j , j - \ - S ^ ) P k , b { ^ i , j + S  1 t̂,.7+ l )  w h e r e  0 ^  1

k = l

together with expressions (1.2) and (1.3) allow us to express P y  in term s of 

Qi as follows:

=  P u Q i =  Q iP ij (1-4)

The methods of ordinary differential equations with initial condition:

|  0 if a ^  b
=  {  1 if a =  b

yield the following solution to (1.4):

A r
P.j=exp(Q,Ai) = I + EQr-f (I-®)

r= l  r '

This series is always convergent when the number of states is finite. If Qi 

has distinct eigenvalues: At)i, Ati2 , . . . ,  A,- '̂ then the spectral decomposition

of Qi can be used to compute expression (1.5) l . The spectral decomposition

of Qj is Qi =  Bi diag(Aj-jl, A,t2, . . . ,  A,-t/f )Cj, where B jC | =  I. The columns of

B, and Cj are respectively the right and left eigenvectors of Qi. This implies

that equation (1.5) can be computed as:

P SJ =  B jD ijC | (1.6)

where D ;j =  diag(eA-?A,‘-1, eAj'Ai>2, . . . ,  eAjA‘-/<:).

1.3 Transition rates that depend  on covari­

ates

Sometimes the goal of the study is to describe the pattern  of transitions or to 

predict the future state of a subject using several explanatory variables which

1The Jordan canonical decomposition is used when Qi has repeated eigenvalues.
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are thought to influence the transition rates. The explanatory variables can 

be measured once - at the beginning of the study - or every time the state  of 

the subject is recorded. Obviously the second type of data is more difficult 

to analyse than the former one. In this thesis I only consider the situation in 

which for each subject a set of p — 1 explanatory variables or covariates are 

measured at the beginning of the study. The vector of covariates for subject 

i will be denoted as z[ = (1, ztii, 2 ,-^ ,..., zt',p-i) for all i = 1, 2 , . . . ,  n.

The transition rates are numbers greater than or equal to zero, hence it 

is inapproriate to model them  as a linear combination of z\. A more suitable 

param etrization is:

p -  1

/̂ 0(a,6) T ^   ̂fiu(a,b)~i,u for CL ^  b (I*/)
tt=l

The above expression implies that the effect of the covariates can change 

from one transition rate to another.

1.4 Inference for M arkov regression  m odels

An estim ate of 0 {ab) = (/?0(al6),/?i(aI6), • • • ,/?P- i  (<*,&)) for a, 6 € { 1 , 2 , . . . ,  A'} 
provides an estim ate for Qj and P y .

Conditional on the first state at which subject i is observed, yti 1 , the 

contribution of this individual to the likelihood function is:

Li(P) —  P y iY  ,y , i2Py,-,2-y«,3 '  • '  ’ A - . m i . j ' J I . m ;  ~  II P y i tj , y i , j  + l
j =  1

where 0  =  0 {h2), . . .  ,P(i,Kp • • • • • - ’P(K,K)) and> to sim“
plify the notation, P i , j ( y { J ,y i i j + l ) = P{Yi,j+i =  Vij+i I Yij  = Vij) is denoted as 
p„. . The likelihood function for 3  is defined as:
1 y t ,3 , y t , J + 1 1

n  n  mi—1

i w = n w = n i i f t y ,w  (l s )
i= 1 i= l j= l

To maxime (1.8) with respect to /3 the quasi-Newton (or scoring) proce­

dure is used. This procedure is based on the score function and the pseudo­
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information m atrix  defined by cross products of the observed score functions. 

This pseudo-information m atrix is used for ease of computation. The efficient 

score for f i u {a,b)  is:

a  log r n  ^ m̂ 9iog p „ ,„ , ,+1 
"la'b] dpula.b) d,

_  ST' y -  1 #
i=l j=l dflu{a,b)

Notice tha t j+1 is an entry of P jj so the first derivative of P y  with re­

spect to /?u(a,6) needs to be calculated for all a, b £ { 1 , 2 , . . . ,  K }. A method 

tha t enables us to calculate these derivatives without having an explicit ex­

pression for P jj  in terms of f5u{a,b) is given by Kalbfleisch and Lawless [2]:

dP- •
y - IJ-  =  B i V u ^ B i  1 for all u =  0 , 1 , . . .  ,p -  1; a, 6 G { 1 , 2 , ,  K }
Hu(a,b)

where K<(a,&) is a K  x K  m atrix with (h,l )th  entry:

9hl?'b)[exP(&j^h) ~  exp(AjAz)] .
if h ^ l

gth 'b)Aj exv(A j Xh) if h = l

where is the (fi,/)th entry of Gu â,b̂  = B ^ 1(dQi/d(3u â^ )B i .

The entries of the information m atrix I(/3) are the expected values:

a 2 log L(f))
E

d0u(a,b)dPu{a,b)-
for

d2 log m  =  i ^ Pyi.,yij+l

d P u ' ( a , b ) d f l u ( a , b )  P y . j . s / . j + i  ( a , b ) ^ f ^u ( a , b )

1 \ 2 dpy. . y.j+l dpyij iy{j +l

PyiJ’ViJ+i ' dfiu{a,b) dPu'(a,b)
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E

"D J. ^  Pyi,j'yi,j + 1 C\
But  ~*h— —  =  0 so

d P u ' ( a , b ) d Pu(a , b)

d 2 \ o g L { P ) ] _ f  1 \ 2 d p y.ijiy.J+l d p yijiy. j+l

d f i i i ' ( a , b ) P u ( a , b )  ■ P y i J M J  + i d / 3 u ( a t{,) 5 /5 u '(a ,6 )

If sup L((3) is attained in the param eter space, the m aximum likelihood 

estim ator of (3 is the solution to:

Su{a,b)(h = 0 for iz =  0 , l , . . . , p - l ;  a, b G { 1 , 2 , . . . ,  K }.

These equations are solved iterativelly starting from an initial value / 3 ^ ° \  The 

updated estim ate of (3 is obtained as:

pM  = pW  + { I { p W ) } - l S ( f i 0))

W hen n —> oo, \/n({3 — (3) has an approximate multivariate normal dis­

tribution with mean zero and covariance matriz I(/3).

1.5 Progressive M arkov m odels.

The m atrix of transition rates must be carefully defined so tha t it reflects 

the process being studied. In the medical context, Markov models have been 

used to describe the progression of individuals through the stages of a disease 

such as cancer, AIDS, and arthritis. As these disease develop, the patients 

are observed in the same stage or at a more advanced one. Therefore the 

entries below the main diagonal of Q; must be equal to zero. Processes with 

this kind of m atrix of transition rates are known as birth processes.

Progressive Markov models are a special kind of birth process. They arise 

when only the transitions a —»■ a and a —> a +  1 are allowed; in other words, 

Qi {a , b )  =  0 f°r a +  l}* Longini et. al. [4] used this kind of structure

to analyse a cohort of HIV infected individuals. Also the FORTRAN program 

tha t implements the methodology described by Kalbfleisch and Lawless [2] 

was w ritten to fit progressive Markov models.
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1.6 T h e P sA  study

The Psoriatic A rthritis Clinic at the University of Toronto treats a wide 

range of patients with psoriatic arthritis, from mild to severe disease. This is 

because the clinic is both a primary, secondary, and tertiary  referral center, 

with patients being referred by family physicians, dermatologists, internists, 

rheumatologists, and the Psoriasis Education and Research Centre. Patients 

are adm itted to the clinic and monitored only after a definite diagnosis of PsA 

is established. The diagnosis is determined on the presence of an inflamma­

tory arthritis, usually seronegative for rheumatoid factor, in association with 

psoriasis. The presence of rheumatoid factor is not an exclusion criterion be­

cause approximately 15% of the psoriatic arthritis patients are seropositive.

Since 1978, the clinic runs a database that allows research to be con­

ducted on several aspects of PsA such as the clinical course of the disease, its 

progression, pathogenesis, and treatm ent. Patients who agree to participate 

in the studies are periodically examined by a rheumatologist. A detailed 

inquiry about the onset of the disease is made at the initial visit. Physical 

and laboratory examinations are conducted every six months. Radiographs 

are taken every two years.

Each appointm ent is scheduled before the patient leaves the clinic and 

a follow-up call is made one week prior to this set date to remind patients 

of their appointment. In addition, patients deaths and causes of death are 

tracked and documented.

The information obtained at each clinic visit is recorded on a standard 

retrieval protocol and then entered into a SAS data  base on a personal com­

puter. The data are checked to ensure correct da ta  entry, and modifications 

are made when necessary.

At the initial visit, information is obtained regarding the age of onset 

for both skin and joint disease, pattern of joint disease at onset, and fam­

ily history of both skin and joint disease. Extra articular features including 

eye disease, cardiac disease, hypertension, inflammatory bowel disease, and 

other co-morbid illnesses are documented. The presence and duration of
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morning stiffness, inflammatory back pain, constitutional symptoms (such 

as fatigue, abdominal pain, neck pain, neck stiffness, etc.) and functional 

status of patients are assessed as well. Functional status refers to the degree 

of functional impairment and is evaluated using the American College of 

Rheumatology (ACR) classification scheme. Grade I is assigned to patients 

who are able to perform all activities without pain or handicap. Grade II 

includes those who feel adequate for most activities of daily living (ADL) but 

exp>erience some discomfort or limitation. Grade III includes those whose 

ADL are limited to self-care and/or a few daily activities. Finally, Grade IV 

refers to patients who are unable to perform (little or no) self-care activi­

ties and/or are confined to a bed or wheel-chair. A detailed history of past 

and current medication use along with any side-effects associated to them 

are also documented. Past medication refers to the medications used by the 

patient before attending the PsA clinic. The medications can be: none, nons­

teroidal antiinflammatory drugs (NSAID), gold or chloroquine, m ethotrexate 

or azathioprine, retinoids or psoralen ultraviolet A, and oral corticosteroids.

The physical examination consists of a general medical exam with partic­

ular attention to the skin, nails, and the peripheral and axial joints. Clinical 

measures of function, disease activity and severity, namely grip strength, to­

tal number of actively inflamed joints, total number of joint effusions, and 

total number of damaged joints (including instability and restricted range of 

motion due to mechanical factors) are assessed. Cervical spine lim itation, 

sacroiliac stress pain, back movements (i.e. full extension, full flexion) and 

the presence of spinal disease are also documented.

There are 66 joints examined for activity. Actively inflamed joints refers 

to the number of joints with stress pain, tenderness, or effusions and is 

deemed present if any of these, three signs occur. Effusions can be evaluated 

in 64 of the 66 joints examined for activity. The number of effused joints is 

determined by the number of joints with excess fluid. The Lansbury index is 

a quantity tha t reflects the size of the joint that is actively inflamed. Higher 

scores are assigned to large joints and lower scores are assigned to small joints.
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For example, an inflamed jaw would be assigned 2 points while inflammation 

of the ankles and hips would be assigned 8 and 24 points respectively.

Laboratory measures includes complete blood counts and differential counts, 

erythrocyte sedimentation rate (a measure of inflammatory activity tha t may 

also reflect disease severity. The ESR is measured in m m /hour by the West- 

ergren m ethod), serologic HLA typing for HLA class I (HLA-A, B, C loci) 

and class II (HLA-DR,DQ) antigens using the microcytotoxicity assay, bio­

chemical tests of kidney and liver functions, lipid levels (i.e. cholesterol and 

triglycerides), serum uric acid, serum protein electrophoresis and where ap­

plicable, immunoglobulin quantification.

The radiological evaluation consists of taking plain radiographs of the 

peripheral (i.e hands, wrists, feet), sacroiliac (both right and left), and spinal 

(i.e cervical, thoracic and lumbar) joints of patients.

In a first study, Gladman, Farewell and Nadeau [1] identified certain 

clinical predictors for disease progression in PsA. These clinical features are 

variables that change over time. In an attem pt to identify markers for disease 

progression that are stable, two studies on HLA antigens were conducted [5], 

[6]. Gladman and Farewell [5] concluded that the B27 and B39 HLA antigens 

are risk factors for disease progression in PsA, as is the HLA class II antigen 

DQw3. The effect of these markers and clinical variables is not reassessed 

for the mixture models proposed in chapter 3.

1.7 The P sA  data sets

In this thesis I examine three related data sets. The first is the one used by 

Gladman, Farewell and Nadeau [1] to fit the Markov regression model. The 

data set contains 271 patients with at least 2 clinic visits and no missing 

values on any of the covariates included in the model. All the covariates are 

binary and the response variable is recorded on an ordinal scale.

While I worked on the research project, a second data base became avail­

able. The database refers to a longer follow-up period and thus contains 365
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patients. Some of them, however, have only one clinic visit and/or miss­

ing values on some variables. The database contains additional variables 

apart from the ones examined by Gladman, Farewell, and Nadeau. All the 

variables were recorded in their original measurement units, none was cat­

egorized. However, the information on 45 patients was incomplete. These 

patients have two clinic visits recorded in the data set examined by Gladman 

et. al. [1] but only the information corresponding to the first visit appears 

in the second database.

In order to use the second database, patients with missing values on any 

of the prognostic factors identified by Gladman et. al. [1] were eliminated. 

The same was done with those individuals with one clinic visit up to the date 

of the database creation. The 45 patients with incomplete records were also 

eliminated. Their missing information could not be retrieved from the data 

set examined by Gladman et. al. [1] because of the discrepancies between 

the number of variables and the measurement scales.

Thus, the data set examined in chapter 3 contains 285 patients with at 

least two clinic visits and no missing values on any covariate. The third 

data set is a subset of the second one and was obtained after eliminating 31 

patients with 10 or more damaged joints at presentation. The third data  set 

is examined in chapter 4 and contains 254 patients with information on 2 or 

more clinic visits.

For each data set, Tables 1.1, 1.2, and 1.3 show some characteristics of the 

patients at presentation to the clinic. Between 61.8% (Table 1.2) and 69.3% 

(Table 1.3) of the patients had zero damaged joints when first examined. 

In fact, a striking feature of the data sets is the percentage of individuals 

who do not develop damaged joints throughout the study period. These 

percentages are: 42.8%, 36.8%, and 41.3% for the 1st., 2nd., and 3rd. data 

sets respectively.

Histograms representing the distributions of the number of clinic visits 

per patient are shown in Figures 1.1, 1.3, and 1.5. As mentioned before, 

the 1st. data set corresponds to a shorter follow-up period. Therefore, the
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median of the number of clinic visits in the data set examined by Gladman 

et. al. [1] is 4 while that for the 2nd. and 3rd. data sets is 6 (see Table 1.4).

Despite the efforts done to assess the patients at 6 m onth intervals, the 

time elapsed between clinic visits varied from 0.04 years to 9.78 and 15.35 

years (Table 1.5). The average length of the time intervals between visits is 1 

year and the median is 0.6 years (Table 1.5). For each data set, a histogram 

for the tim e gap between measurements is presented in Figures 1.2, 1.4, 1.6.

In long term  studies, the number of patients who are lost to follow-up in­

creases over time. This patient attrition is considered a threat to the study; 

it may lead to systematic bias, and missing data may reflect pathological 

factors. Brubacher et. al. [7] found that 33% of the patients in the PsA 

clinic have been lost to followup over a period of 12 years - a percentage 

which is comparable to other longitudinal prospective studies. Furthermore, 

the authors concluded that patients who attend the clinic on a regular ba­

sis are similar in clinical characteristics to patients who attend the clinic 

occasionally.

1.8 R esu lts for the P sA  stu dy

Over a 14 year period, 305 patients were followed prospectively at the Psori­

atic A rthritis Clinic at the University of Toronto. The response (or outcome) 

variable analysed by Gladman, Farewell and Nadeau [1] is the num ber of 

damaged joints divided into 4 categories: 0, 1 to 4, 5 to 9, and 10 or more. 

These were denoted as states 1 to 4. Clinic assessments were planned at 

the initial visit and at 6 month intervals although, in practice, considerable 

variation occurred. After examining the univariate and m ultivariate effect of 

several covariates, the authors decided to model the transition rates in terms 

of: the number of effused joints recorded in the first clinic visit, < 5 or >  5;
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Table 1.1: Clinical characteristics of patients at presentation, 1st. data  set.
Number Percentage

Number of patients entered to computer 271 100

Gender Female 127 46.9

Male 144 53.1

Functional Status Poor (III, IV) 22 8.1

Medium (II) 161 59.4

Good (I) 88 32.5

Active joints High (> 4) 186 68.6
Medium (1-5) 70 25.8

Low (0) 15 5.5

Effusions High (> 4) 44 16.2

Medium (1-4) 139 51.3

Low (0) 88 32.5

Lansbury index High (> 30) 103 3S.0

Low (< 31) 168 62.0

Erythrocyte Sed. Rate High (> 30) 83 30.6

Medium (15-30) 98 36.2

Low (< 15) 90 33.2

Previous medication Corticosteroids 93 34.3

High 27 10.0

None/NSAID 151 55.7

Damaged joints 5 - 9 15 5.5

1 - 4 71 26.2

0 185 68.3

Mean Range

Age at presentation (years) 42.2 15.5 - 79.2

Duration of arthritis (y<sars) 6.9 0.1 - 47.3
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Table 1.2: Clinical characteristics of patients at presentation, 2nd. data  set.
Number Percentage

Number of patients entered to computer 285 100

Gender Female 155 54.4

Male 130 45.6

Functional Status Poor (III, IV) 31 10.9

Medium (II) 167 58.6

Good (I) 87 30.5

Active joints High (>  4) 199 69.8

Medium (1-5) 69 24.2

Low (0) 17 6.0

Effusions High (> 4) 55 19.3

Medium (1-4) 143 50.2

Low (0) 87 30.5

Lansbury index High (>  30) 119 41.8

Low (<  31) 166 58.2

Erythrocyte Sed. Rate High (>  30) 96 33.7

Medium (15-30) 96 33.7

Low (<  15) 93 32.6

Previous medication Corticosteroids 114 40.0

High 29 10.2

None/NSAID 142 49.8

Damaged joints 10 or more 31 10.9

5 - 9 16 5.6

1 - 4 62 21.8

0 176 61.8

Mean Range

Age at presentation (years) 43.2 16.3 - 79.2

Duration of arthritis (y sars) 7.5 0.1 - 47.7
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Table 1.3: Clinical characteristics of patients at presentation, 3rd. data  set.
Number Percentage

Number of patients entered to computer 254 100

Gender Female 138 54.3

Male 116 45.7

Functional Status Poor (III, IV) 22 8.7

Medium (II) 148 5S.3

Good (I) 84 33.1

Active joints High (> 4) 175 68.9

Medium (1-5) 64 25.2

Low (0) 15 5.9

Effusions High (> 4) 44 17.3

Medium (1-4) 133 52.4

Low (0) 77 30.3

Lansbury index High (>  30) 98 38.6

Low (<  31) 156 61.4

Erythrocyte Sed. Rate High (>  30) 79 31.1

Medium (15-30) 92 36.2

Low (<  15) 83 32.7

Previous medication Corticosteroids 91 35.8

High 25 9.9

None/NSAID 138 54.3

Damaged joints 5 - 9 16 6.3

1 - 4 62 24.3

0 176 69.3

Mean Range

Age at presentation (years) 42.2 16.3 - 79.2

Duration of arthritis (y<sars) 6.6 0.1 - 47.3
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Figure 1.1: Histogram representing the distribution of the number of clinic

visits per patient in the 1st. data set.
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Figure 1.2: Histogram showing the distribution of the time elapsed between

consecutive clinic visits in the 1st. data set.
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Figure 1.3: Histogram representing the distribution of the number of clinic

visits per patient in the 2nd. data set.
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Figure 1.4: Histogram showing the distribution of the time elapsed between

consecutive clinic visits in the 2nd. data set.
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Figure 1.5: Histogram representing the distribution of the number of clinic 

visits per patient in the 3rd. data set.
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Figure 1.6: Histogram showing the distribution of the tim e elapsed between

consecutive clinic visits in the 3rd. data set.
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Table 1.4: Statistics for the number of clinic visits. 
D ata set Min. Median Mean Max.

1st. 2 4 5.7 24

2nd. 2 6 7.6 28

3rd. 2 6 6.7 23

Table 1.5: Statistics for the time elapsed between clinic visits. 
D ata set Min. Median Mean Max.

1st. 0.04 0.61 1.18 15.35

2nd. 0.04 0.56 0.98 9.78

3rd. 0.04 0.57 1.00 9.78

erythrocyte sedimentation rate (ESR) at the initial visit, < 15 m m /h  or >  15 

m m /h; and the type of medication taken before participating in the study, 

none or nonsteroidal antiinflammatory medications, disease modifying drugs 

(DMD) or oral corticosteroids. Patients were also stratified by their initial 

state in order to adjust for any differences in the referral pattern , although 

these were not expected to be marked.

Table 1.6 shows the param eter estimates for the stationary Markov re­

gression model fitted by Gladman, Farewell, and Nadeau after eliminating 

34 subjects with missing values on at least one covariate. The first column 

indicates the condition which was coded as one. The numbers in brackets 

are the standard deviations.

Notice tha t a different intercept, fio{a,ci+i)-> was used to model each transi­

tion rate. When no covariates or stratification variables are included in the 

model, 1 / exp(/?0(a,a+i)) provides an estim ate for the average (mean) time 

spent in state a, where a = 1,2,3. Such a model applied to the PsA data 

suggests that patients with psoriatic arthritis do not develop damaged joints 

for an average of 11 years. Also, patients with PsA remain in states 2 and 3 

for an average of 6.23 and 4.03 years respectively.

As expected, the stratification variables are not significantly different from
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zero indicating that the state at entry to the PsA Clinic has no effect on the 

progression of the disease. The estimated relative risks shown in Table 1.7 

are the ratio of the transition rate of a patient with a given covariate coded 

as 1 and the transition rate of a patient with tha t same covariate coded as 0. 

It is assumed that both individuals have the same values for the stratifying 

variables and for the other covariates.

Thus, a patient taking disease modifying drugs (DMD) before entering the 

study has a risk 1.84 times higher of moving to the next state  as compared 

with a patient taking none or nonsteroidal antiinflammatory medications. 

Also, subjects using oral corticosteroids prior to the study have a risk tha t is 

1.57 times higher of moving to the next state as compared with subjects not 

taking oral corticosteroids. The transition rate of a patient with 5 or more 

effused joints is 1.63 times bigger than the transition rate of a patient with 

the same characteristics but having less than 5 effused joints. Patients with 

an erythrocyte sedimentation rate less than 15 m m /h  have a smaller risk of 

moving to the next stage of the disease as compared to patients with an ESR 

of 15 m m /h  or more.

Therefore, based on the information recorded on the first clinic visit, 

the model suggests tha t 5 or more effused joints, disease modifying drugs 

and oral corticosteroids predict progression in damage while an erythrocyte 

sedimentation rate less than 15 m m /h prevents from such progression.
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Table 1.6: Estim ated param eters and standard deviations for the Markov 

regression model fitted by Gladman et. al.
Transition Rates

Param eter 1 -> 2 2 —̂ 3 3 —>4

Constant term -2.52 (0.14) -1.67 (0.18) -1.70 (0.24)

Effused joints >  5 0.49 (0.18) 0.49 (0.18) 0.49 (0.18)

ESR < 15 m m /h -0.54 (0.19) -0.54 (0.19)

Corticosteroids, Yes 0.45 (0.15) 0.45 (0.15) 0.45 (0.15)

DMD Yes 0.61 (0.20) 0.61 (0.20) 0.61 (0.20)
Initial state is 2 -0.51 (0.24) -0.00 (0.30)
Initial state is 3 -0.64 (0.40)

Table 1.7: Estim ated relative risks for each prognostic factor in the Markov 

regression model fitted by Gladman et. al.
Transition rates

Covariate Condition 1 2 2 —> 3 3 —► 4

Number of effused joints < 5 1 1 1

> 5 1.63 1.63 1.63

Erythrocyte sedimentation rate > 15 m m /h 

< 15 m m /h

1

0.58

1

0.58

Use of corticosteroids No 1 1 1

Yes 1.57 1.57 1.57

Disease modifying drugs No 1 1 1

Yes 1.84 1.84 1.84
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C hapter 2 

G oodness o f fit for M arkov  

regression m odels

2.1 Introduction

Gooclness-of-fit statistics measure the conformity of a sample of data  with 

a hypothesized distribution specified by H q . The alternative hypothesis is 

usually very vague - it gives little or no information on the distribution of the 

data, and simply states that H q is false. The m ajority of the goodness-of-fit 

techniques proposed in the literature are for univariate data. Methods for 

m ultivariate data are much less well developed.

Pearson-type, or chi-square tests, are particularly attractive for categori­

cal data. They are also well known and easy to interpret. If the null hypoth­

esis is rejected, the examination of the contingency table of observed and 

expected counts can give some information about the nature of the model 

misspecification.

It is generally difficult to calculate the exact discrete distribution of 

Pearson-type statistics when H q is assumed to be correct. Thus, a continuous 

distribution is frequently used to approximate the exact null distribution of 

the test statistic. The accuracy of this approximation depends on the total 

sample size, the dimension of the contingency table, and the magnitude of
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the expected counts. Alternatively, simulation techniques can be used to 

estim ate the exact distribution of the statistic under the null hypothesis.

Due to the vagueness of the alternative hypothesis, goodness-of-fit tech­

niques have, in general, low power to detect specific deviations from the 

hypothesized distribution. Therefore, the modelling process should not stop 

when a goodness-of-fit test indicates there is no lack of fit. Instead, spe­

cial techniques should be used to check more thoroughly the adequacy of 

the model. Some of these techniques are designed to identify systematic 

departures between the model and the data while others detect isolated de­

viations. Also, some model-checking techniques are graphical, like residual 

or probability plots, while others are powerful statistical tests that focus on 

a specific class of alternatives. Thus, a model tha t appropriately describes 

the phenomenon under investigation can be found by successively modifying 

and checking the model originally proposed.

Several authors have proposed Pearson-type goodness-of-fit tests to ex­

amine the adequacy of stationary Markov models for qualitative response 

variables. All these tests are designed for models with transition rates that 

do not depend on covariates or explanatory variables.

In this chapter I propose a Pearson-type goodness-of-fit statistic for sta­

tionary Markov regression models with a qualitative response variable. The 

statistic can also be used to examine the fit of non-stationary Markov regres­

sion models if the transition probabilities are estim ated in an appropriate 

way. A partition of the covariate space for the Markov regression model is 

defined in the same way as Hosmer and Lemeshow did for logistic regression 

models. This means that when the covariates are qualitative, the estim ated 

transition probabilities are grouped into different categories defined by the 

covariate patterns. Similarly, if some or all the covariates are continuous, the 

estim ated transition probabilities are grouped into equiprobable categories 

defined by the quantiles of the estim ated transition rates. A m ethod has 

been proposed in the literature to deal with panel data. Here I propose a 

different method tha t generalizes the above technique proposed by Hosmer
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and Lemeshow to response variables measured repeatedly over time.

The exact null distribution of the goodness-of-fit statistic proposed here 

for Markov regression models is intractable. A param etric bootstrap algo­

rithm  is proposed to estim ate such distribution. The estim ated distribution 

is then compared to the asymptotic “naive” distribution. This is consid­

ered to be a chi-square with degrees of freedom equal to the number of 

independent cells in the contingency table minus the number of estim ated 

param eters. This comparative study is done for several stationary Markov 

models - with and without covariates - fitted to different observation pat­

terns. The bootstrap methodology is also used to estim ate the power of the 

proposed statistic to identify Markov models with non-stationary transition 

rates. Also, the goodness-of-fit procedure proposed in this chapter is applied 

to examine the adequacy of the Markov model fitted by Gladman, Farewell, 

and Nadeau [1] to the PsA data.

Sections 2.3, 2.5, 2.6, and 2.9 may be skipped by non-technical readers.

2.2 G oodness o f fit sta tistics for M arkov m od­

els

Several goodness of fit statistics have been proposed in the literature to 

determ ine the adequacy of Markov models. These statistics assume th a t the 

num ber of observations and /or the frequency at which they are obtained is 

controlled by the researcher and that covariates do not affect the transition 

rates.

The simplest case is tha t in which no covariates are measured and every 

individual has the same number of observations (m,- =  m ) equally spaced in 

tim e ( tij+ 1 — t i j  = tj+1 — tj for all z =  1 , 2 , . . . ,  n).  This type of longitudinal 

da ta  can be displayed in a contingency table as explained by Bishop, Fien- 

berg, and Holland [9], chapter 7. The authors show that the analysis of these 

tables is formally equivalent to certain contingency table analyses based on 

log-linear models. W ithout referring to log-linear models, Kalbfleisch and
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Lawless [3] also proposed the construction of contingency tables for the ob­

served and expected transitions at each time interval ( t j , t j+1 ). The authors 

defined the observed transition counts, nj(a,6)5 as the total number of subjects 

in state a at tim e tj  and in state b at time tj+\. The corresponding expected 

counts, ej(a>b), are obtained by multiplying the total num ber of subjects in 

state  a at tim e t j , nj^,.) =  S£=i nj(a,Jt), by the probability of observing a 

transition from a to b in the time interval ( t j , t j+i), i.e. ej^a^  = ^j(a,.)Pj(a,6)- 

If none of the Pj(a,b) is restricted to be zero, the likelihood ratio statistic  is:

and the Pearson statistic is:

m —1 K  I \  / „  \2
^   ̂ ej{a )̂>
j= 1 a=l 6=1 ej(a,b)

The authors state tha t A has an asymptotic (m fixed and n —>■ oo) chi- 

square distribution with (m — 1 ) K ( K  — 1) — rj degrees of freedom; where rj 

is the dimension of the vector that parameterizes the m atrix  of transition 

rates.

Stavola [10] also proposed the Pearson statistic mentioned above.

Gentleman et. al. [3] generalized the above Pearson statistic for the case 

in which no covariates are measured and the number and periodicity of the 

observations varies between individuals. A partition of the time scale was 

suggested by the authors. Approximate transition or prevalence counts are 

then calculated at each cutpoint by assuming tha t individuals not observed 

at the cutpoints have remained in their last observed state. The observed and 

expected transition counts are defined as proposed by Ivalbfleisch and Law­

less [2]. The observed prevalence counts, rij(at-), are the number of subjects in 

state  a at tim e j ,  with a = 1 , 2 , . . . ,  I\ .  The expected prevalence counts are 

defined as the number of subjects being studied at time t j , rij = ]Ca=1 nj{a„), 

m ultiplied by the estim ated probability of observing a transition from state 

1 to state  a in the tim e interval (0 ,tj) i.e. po(i,a)? where a = 1 , 2 , . . . ,  I \ .  This
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requires tha t the time of the disease onset must be known. The authors sug­

gested the use of the Pearson statistic to compare the observed and expected 

counts. No discussion was given of the distribution of the statistic.

2.3 T he estim ated  transition  probabilities

In this section I explain how the distribution of the sojourn times is linked to 

the transition probabilities for a stationary Markov model with covariates. 

The sojourn times are defined as the time that an individual spends in the 

various states of the process. The procedure is illustrated for a progressive 

model although it is applicable to any kind of stationary Markov model.

In stationary Markov models, the time that an individual spends in each 

state is governed by an exponential distribution. Let T,(a) denote the time 

tha t individual i spends in state a before moving to state a +  1. The random 

variable T,-(a) has an exponential distribution with param eter A,(a) =  q~^a+iy 

i.e.

£ 1 (  *̂(a) A
/ t.-m  =  t— exP(  “ T— )•*i{a) V \ { a ) '

The probability that patient i is observed in state a -f- 1 at tim e tij+i 

given tha t Yij  =  a can be expressed in terms of the sojourn times in states a 

and a +  1. The argument is as follows. Given th a t Yij  = ft, individual i can 

only be observed in state a -f 1 at time Uj+i if the transition to state a +  1 

occurrs in a tim e span not greater than t i j +i — t{j. Before the transition 

takes place, individual i can remain in state a for a period not greater than 

tij+i — t{j. Once the transition has taken place, individual i remains in state 

fl +  1 for a period greater than t{j+1 — t i j  — t ^ ay Then

Pi , j (a , a+1) “h 1 | Y i j  ft]

—  P \ T { ( a 'i <C t i , j -(-1 t i j  and +  1 t i , j  ^ i(a )  I

The second conditional probability is equal to the unconditional probability:

40



P [ T i ( a ) ^  ^ i , j + 1 ^ i , j  < m d  (cx+ 1 )  ^  ^ i , j + 1 ^ i , j  ^ i ( a ) ]

because, by the Markov property, the remaining sojourn tim e in state  a is 

independent of the amount of tim e that individual i has already spend in state 

a. The Markov property also implies tha t T,(a) and T^a+i) are independent. 

In other words, the sojourn tim e in state a is independent of the sojourn 

tim e in state a +  1. Furthermore, T,(a) is a random variable that assumes 

values between 0 and 1 — t i j  because the transition to state a +  1 can 

occur just after the j - th  observation is made or just before observation j  +  1 

is obtained. Therefore

Pi,j(a,a+1) — J /T(o) X — -^[^'(a+l) ^  ~  ti,j ~  U( a) ]  j  dti{a]

= J0 frua) x y- ~  Jo /Tl(a+l>dti(a+i)J dti(a)

The explicit solution is:

^i(a + l) [ fti ,j  ti,j+l\ (ti,j U,j+l\Pi,j(a,a+1 )  =  7 - - - - - - ' - - - - 7 - - - -  e x p  I — - - - - - - - - -  1 -  e x p  ( - - - - -   J
^/(a + l) *(a) ^(a + l) ' '  ^i(a) '

(2 .1)

Explicit expressions for pij(a,a+2 ), ■ • • ,Pi,j{a,K) for all a =  1 , 2 , . . . ,  K  — 1 

are calculated in a similar way. As J2k=aPi,j{a,k) =  1 then Pi,j(a,a) =  1 — 

I2k=a+i Pi,j(a,k)- An estim ate of the transition probabilities is obtained by 

replacing the param eter of the exponential distribution by its maximum like­

lihood estimate. The formulas to calculate the nine transition probabilities of 

a progressive Markov regression model with 4 states are included in Appendix 

A.

A patient who participated in the PsA study was observed in states 2, 3, 3, 

3, and 4 at 3.18, 6.14, 6.91, 7.54, and 8.62 years respectively after the disease 

was diagnosed. The estim ated transition rates for this individual, derived 

from the model fitted by Gladman et. al. [1], are: Qi{ 1,2) — 0.21, 4(2,3) — 0.29,
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and <?;(3 ,4 ) =  0.47. At the first clinic visit the patient was observed in state 

2  so at the next observation time, the individual can remain in state  2  or 

move to state 3 or 4. The estim ated transition probabilities, calculated as 

explained above, are: Pi,i(2 ,2 ) =  0.43, 1 (2 ,3 ) =  0.28 and p,-fi(2 t4 ) =  0.29.
At the second clinic visit the subject had entered state 3. As the fitted 

model is stationary, the above transition rates are used again to calculate 

P i , 2 (3 ,3 )  and Pi,2 (3 ,4 ) with U,2 =  0.14 and #jt3  =  6.91. In a similar way, the 
estim ated transition probabilities for the third and fourth observed states 

are obtained. Notice that if m t- observations are made for patient i then 

m,_i matrices of transition probabilities need to be estimated.

2.4 T he goodness o f fit sta tistic

In determining goodness of fit statistics for logistic regression models, the 

number of distinct values for expectations is given by the total num ber of 

covariate patterns in the data. If some covariates are continuous then the 

number of different covariate patterns becomes approximately equal to the 

sample size. In this situation, Hosmer and Lemeshow [11] proposed to group 

the expected values according to the quantiles (e.g. deciles) of the estim ated 

probabilities. Each category thus defined is equiprobable and the number 

of observations in each category increases as the sample size increases. This 

produces an asymptotic null chi-square distribution for the Pearson type 

goodness of fit statistics.

In Markov regression models, the estim ated transition probabilities de­

pend on the covariate pattern, the sequence of observed states, and the time 

elapsed between consecutive observations. For non-stationary Markov mod­

els, the time at which the observations are made also affects the value of the 

estim ated transition probabilities. W hen the model is stationary and it is 

wished to test if the stationarity assumption is valid, the behaviour of the 

estim ated transition probabilities across time should also be examined. All
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Table 2.1: Example of a contingency table for the observed and expected 

counts of a Markov regression model.

Observation Time Covariate values States at times t i j  and tij+i

period tj tj+i X \  (Temp.) X 2 (Pressure) a —> a a —»• b h —y ci b -y b

Low Low

0 2 Low

High

High

Low

First High High

u  =  i)
1 3

Low

Low

High

High

Low

High

Low

High

Low Low

2 4 Low

High

High

Low

Second High High

(i =  2)
3 5

Low

Low

High

High

Low

High

Low

High

\
j

Low Low

4 6 Low

High

High

Low

Third High High

(j =  3)
5 7

Low

Low

High

High

Low

High

Low

High
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these factors need to be considered in order to group the estim ated transition 

probabilities to calculate a Pearson-type goodness of fit statistic.

In order to illustrate how a contingency table of observed and expected 

counts might be constructed, consider Table 2.1. It refers to a hypothetical 

prospective study in which the evolution of a phenomenon was examined 

through a response variable tha t assumes two values a and 6 . Previous studies 

suggested that the covariates, X \  and X 2 (e.g. tem perature and pressure), 

affect the value of the response variable. At the beginning of the study, the 

values of the covariates were randomly fixed at a high or low level for each 

sample unit. Four observations (m =  4) were obtained for each sample unit 

every 2 days (i.e. t j j + 1 — = 2 days for j  =  1 , 2 , . . . ,  m  — 1 ). However, it

was not possible to observe all the sample units on the same day. Therefore, 

some of them were assessed on days 0, 2, 4, and 6  while others were observed 

on days 1, 3, 5, and 7. The data gathered in this way could be summarized 

in Table 2 .1 .

Consider now the case in which X \  (tem perature) and X 2 (pressure) are 

recorded in a continuous scale. In this situation, the quantiles of a linear 

predictor, such as / ? 0  +  f3\X\ +  (32 X 2 , can be used, for each transition rate, 

to group the observations according to the values of the covariates.

In some studies, the sample units are observed at random times 1 , tjt2 ,

. . . ,  titmi• In this case I propose to classify the first pair of observations, 

y t-51 and yt)2 , based on the quantiles of the distances 2 — Similarly, 

the second pair of observations, yl ) 2  and 3 , are grouped according to the 

quantiles of the time spans ^ 3  — The same procedure is used to classify 

the remaining observations.

The procedure just described to construct the contingency table of ob­

served and expected counts is more formally presented below.

In experimental studies, the number of observations and the spacing be­

tween them  is constant between individuals and fixed in advance. Also, 

frequently, the covariates are qualitative. For this type of data, a m ethod 

for the calculation of aggregate summary statistics is the following. Group

44



the estim ated transition probabilities according to: the covariate pattern , 

the time at which the measurements are made, the time elapsed between ob­

servations, and the sequence of observed states. This m ethod is appropriate 

for both stationary and non-stationary Markov models. As recommended 

by D ’Agostino and Stephens [12], chapter 3, the categories defined should be 

equiprobable and sparse cells should be avoided if the asymptotic distribution 

of the goodness-of-fit statistic is to be used.

In panel data, the number of observations and the frequency at which they 

are made vary between individuals. Also, the covariates can be qualitative 

or quantitative. In order to classify the estim ated transition probabilities 

according to the time and the periodicity at which the observations are made 

I generalize the grouping technique proposed by Hosmer and Lemeshow [1 1 ] 

as follows. Classify the estim ated transition probabilities {£tj(a,6 )} of the 

j - th  observation period, (t i j ,  fi,j+i), into L levels defined by the quantiles 

(e.g. deciles or quintiles) of £;j+i — , where j  = 1 , 2 , . . . , m axfrn ,.!} . This

procedure yields different categories for the estim ated transition probabilities 

of each observation period. For example, the PsA data set discussed in 

chapter 4 yields the following quartiles for the first inter-visit period £0 ^ 5  =  

0.49 years, ^ s o  =  0-69 years, ^ 7 5  =  2.15 years, and =  9.78 years. 
Therefore, if for individual z, the time elapsed between the first and the 

second clinic visits is 1  year then the first two observed states, y,,! and y,- ,̂ 

and Pi,i(a,b) are classified in the category defined by =  0.69 and £ $ 5 =

2.15. Analogously, the quartiles obtained for the time elapsed between the
(2) (2 ) 

second and the th ird measurements are fjj. 2 5  =  9-50 years, £0 . 5 0  =  0-62 years,

£ ^ 5 =  1.16 years, and £[2q =  9.31 years. If for individual z, the length of

the interval between the 2nd. and the 3th. observations is 0.3-3 years then

2/1,3 ) and the estim ated transition probabilities £,-,2 (0 ,6 ) are assigned to

the category with upper bound given by £0 . 2 5  =  0.50.

If the set of all possible values for the response variable is {1 , 2 , . . . ,  A'} 

then a total of K 2 different transitions between states can be observed. 

Therefore, the estim ated transition probabilities {pi,j(a,b)} f°r the j -th  time

45



interval can also be classified into one of K 2 different groups according to 

the values of a and b.

When all the covariates are qualitative the {pi,j(a,6)} should be grouped 

according to the covariate pattern  associated with individual i. If some 

covariates are quantitative I propose to use the quantiles of the estim ated 

transition rates, {q^a,b)}, to define a partition of the covariate space. The 

transition rates are used here because they do not depend on time.

Thus, I propose to use four classification criteria to group the observed 

states and the estim ated transition probabilities. This can produce sparse 

cells when the number of observations between individuals is not fairly con­

stant, or when few individuals reach a given state or when some covariate 

patterns are uncommon in the population. In these situations, some cate­

gories might need to be collapsed. For example, if few individuals have more 

than m! observations, the estim ated transition probabilities of time intervals 

where j  >  m ', can be grouped together into L levels defined by 

the quantiles of t{j + 1 — t{j for j  > m'  and i =  1 , 2 , . . . ,  n.

Let H  denote the dimension of the contingency table associated with the 

number of observation periods. Then, H  =  m — 1 if all the individuals have 

the same number of observations equally spaced on time. If the number of 

observations varies between individuals then H  =  m ax{m ,_i}, if the {pij{a,b)} 
are not collapsed across observation periods, and H  = m ', if the estim ated 

transition probabilities of some observation periods are classified together. If 

the time at which the observations are made is unim portant, the observation 

period can be ignored. In this case H  = 1 and the estim ated transition 

probabilities are classified into L categories defined by the quantiles of the 

tim e span between all consecutive observations.

The letter h will denote the h-th  category defined on the basis of the ob­

servation periods, so h = 1 , 2 , . . . ,  H. The estim ated transition probabilities 

of category h are also classified into one of L different levels defined by the 

quantiles (e.g. deciles or quintiles) of the time elapsed between observations. 

A particular level will be denoted by I with I = 1,2, . . . , L .  Analogously,
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R  will denote the number of groups in which the transitions between states 

are classified. Notice tha t R = I \ 2 if a, b E {1,2, and none of the

a —> 6 transitions are grouped together. Letter r will refer to the r-th  group 

with r = 1 , 2 , . . . ,  R. Similarly, C will represent the total number of classes 

in which the covariate patterns are grouped or the total number of levels 

defined by the quantiles of the estim ated transition rates; c will denote the 

c-tli category with c =  1 , 2 , . . . ,  C. Therefore, I propose to construct a 4 

dimensional contingency table with H  x L x R  x C  cells.

The quantity Ph,i,r,c will be called the expected number of transitions in 

cell (/z, /, r, c). It is the sum of the estim ated transition probabilities between 

any two states classified in group r of individuals studied in an observation 

period classified in category /z, with an elapsed tim e between measurements 

in level /, and a covariate vector grouped in category c. Similarly, nhj,r,c will 

denote the total number of observed transitions from a to b classified in group 

r tha t belong to individuals observed in a time interval in category /z, with 

a time span between observations classified in level / and covariate vector 

in category c. The Pearson-type goodness of fit statistic tha t I propose to 

examine the adequacy of stationary Markov regression models is:

H L R c  ( _  j ? \ 2
rp _  Y  V ' V ^ ' ric Ph,l,r,c) ^

h=l 1=1 r=l C —  1 Ph,l,r,c

This statistic can be generalized to test the goodness-of-fit of a non-stationary 

Markov model if the transition probabilities are appropriately estimated.

2.5 D istr ib u tion  o f th e sta tistic

Given tha t individual i is in state a at time the probabilities of ob­

serving transitions to the states a, a +  1, a +  2 , . . . ,  I\ in the time inter­

val L'j+i ~ follow a multinomial distribution with param eters 1 and 

= (Pi,j{a,a),Pij{a,a+1 ): • • • ,Pi,j(a,K))- (A similar distribution is obtained for 
non-progressive Markov models). Individual i will, in general, have a differ­

ent multinomial distribution at time L',j+i because the vector of parameters
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&ij+ 1 depends on the tim e elapsed between yi,j+i and 2. As $ij also de­

pends on the explanatory variables in the model, different subjects also have 

different multinomial distributions. Therefore, if the total number of obser­

vation periods is taken as fixed, P[Nn n  = Run ,  • • •, NHlrc =  n HLRc] is 
the sum of several independent and non-identical multinomial distributions. 

As the total number of observation periods is not fixed since entry into an 

absorbing state terminates observation of one subject, the exact distribution 

of the proposed test statistic is particularly intractable.

A method of estim ating the distribution of (2.2) is by generating B inde­

pendent bootstrap samples from the model specified by the null hypothesis, 

and calculating the goodness of fit statistic for each sample. As B goes to 

infinity, the bootstrap distribution of (2.2) will approach the true null distri­

bution of the test statistic [13].

Here the bootstrap distribution is compared to the “naive” asymptotic 

distribution of T. This “naive” distribution is assumed to be a chi-square 

with degrees of freedom equal to the number of independent cells in the 

contingency table minus the number of estim ated parameters.

2.6 T he hypothesis testin g  procedure

A param etric bootstrap procedure can be carried out to calculate the signif­

icance level by generating data  from an estim ated Markov model specified 

by the null hypothesis. If this hypothesis states tha t a stationary Markov 

regression model of order one fits the data then the time elapsed between 

transitions follow exponential distributions with param eters At(a) =  q~(^a+i) 

for a = 1 , . . . ,  K  — 1.
The bootstrap states for individual i will be denoted as l^J, Y£ , . . .  where 

=  Yu for i = 1,2, . . . , n .  Thus the first bootstrap state  is taken to 

be the first observed state. Assume tha t =  a. The rest of the Y*- are 

obtained by simulating the times at which individual i enters states a +  

1 , . . . ,  K  (if the model is progressive). Let be an observation simulated
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from the exponential distribution with param eter for k  =  « , . . . ,  I\ — 1 ;

represents the tim e tha t individual i remains in state k before moving 

to state k +  1 . Therefore *̂(r)> • • • > *̂(r) are the simulated
times at which individual i enters state a +  1, a +  2 , . . . ,  K  respectively. The 

bootstrap state Y*- is then obtained as follows:

If t{j < t*(aj then Y*j =  a, otherwise

h /c —1
if X! % )  <  U,j < X  % )  then y i*j = k + 1 for k = a , . . . ,  K  -  2,

r—a r—a

K - 1
otherwise if t ifj > then Y*- =  I\ (2.3)

r = a

The above inequalities state that Y*- is equal to a if t i j  is less than  the 

simulated tim e at which the transition to state a -f 1  occurrs. Similarly, 

individual i remains in state a +  1  until t i j  is greater than or equal to the 

simulated tim e at which the transition to state a +  2 occurrs, etc. If the 

transition to the absorbing state takes place at a simulated tim e which is less 

than titTTli then several bootstrap states are equal to I\ .  Whenever Y'£s. =

Y£ =  . . .  =  y*tTn. = K  the last mi  — s,- states are ignored. Thus the

total number of bootstrap states for individual i will be denoted as s,- for 

i = 1 , 2 , . . . ,  n (si < m{).

Once a sequence of states is generated for each individual, the Markov 

model is estim ated based on the bootstrap data and the test statistic  is 

calculated. This process is repeated several times. Finally, the value of the 

statistic from the original data is compared with the bootstrap distribution 

of values to compute the significance level.

2.7 R esu lts  for th e  psoriatic arthritis data

The model proposed by Gladman et. al. [1 ] for the PsA data has 6  

binary covariates tha t produced 30 different covariate patterns. (The maxi­

mum number of different covariate patterns is 24  x 3 =  48 because the two
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Table 2.2: Contingency table for the observed and expected counts for the
Markov regression model fitted by Gladman et. al.

Transition
Time P. Factor 1  -> 1 1  1 2  2 2  -> 2 3 3 3 3

Zero Obs. 57 0 19 0 17 1

0.0384 Exp. 55.32 1 . 6 8 18.11 0.89 16.75 1.25
One Obs. 51 2 38 7 16 2

to Exp. 51.14 1 . 8 6 42.59 2.41 16.45 1.55
Two -f Obs. 2 0 3 18 1 6 1

0.4791 Exp. 2 2 . 0 1 0.99 17.69 1.31 6 . 2 1 0.79
Zero Obs. 50 3 18 1 6 1

0.4791 Exp. 50.87 2.13 17.55 1.45 6.37 0.63
One Obs. 53 5 31 7 2 1 3

to Exp. 55.09 2.91 35.32 2 . 6 8 2 1 . 6 8 2.32
Two + Obs. 16 1 19 3 6 2

0.5394 Exp. 16.04 0.96 19.97 2.03 7 1

Zero Obs. 47 6 24 1 1 1 1

0.5394 Exp. 50.42 2.58 22.94 2.06 10.69 1.31
One Obs. 51 8 42 2 23 2

to Exp. 55.95 3.05 39.86 4.14 21.76 3.24
Two + Obs. 15 1 14 2 5 2

0.7474 Exp. 14.72 1.28 14.09 1.91 5.50 1.50
Zero Obs. 57 3 2 1 2 1 2

0.7474 Exp. 55.39 4.61 20.32 2 . 6 8 2.50 0.51
One Obs. 51 6 27 2 25 1

to Exp. 52.01 4.99 24.59 4.41 20.51 5.49
Two + Obs. 15 2 15 3 1 1 4

1.4012 Exp. 15.70 1.30 14.27 3.73 10.78 4.22
Zero Obs. 38 13 2 1 3 4 2

1.4012 Exp. 39.16 11.84 16.17 7.83 3.80 2 . 2 0

One Obs. 67 1 2 25 9 14 5
to Exp. 57.88 2 1 . 1 2 22.49 11.51 11.43 7.57

Two -f Obs. 13 5 1 0 6 2 4
15.3484 Exp. 1 2 . 2 1 5.79 9.40 6.60 2.33 3.67

Total Obs. 601 70 342 49 168 33
Total Exp. 603.89 67.11 335.36 55.64 163.76 37.24
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Figure 2.1: Bootstrap and naive distribution functions for the Markov re­

gression model fitted by Gladman et. al.
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covariates for the initial state can not both be equal to one). Sixty patients 

with a total of 330 transitions had a zero covariate vector. The least com­

mon covariate vector corresponds to a patient with only two observed states. 

Due to the discrepancy between the frequencies of the covariate patterns, 

the partition of the covariate space was done using the number of prognostic 

factors coded as one. The prognostic factors are: number of effused joints, 

ESR, and type of medication taken before participating in the study. Pa­

tients were classified into C = 3 categories based on these prognostic factors. 

Level one refers to subjects with all prognostic factors coded as zero, level 

two corresponds to patients with only one prognostic factor coded as one, and 

level three contains individuals with two or more prognostic factors coded as 

one.

Gladman, Farewell and Nadeau [1 ] tested the appropriateness of the as­

sumption tha t the transition rates are stationary. They allowed the transition 

probabilities to depend on a power of time but did not find evidence for this 

dependence. Therefore, I decided to group together observations obtained at 

different time intervals so H  =  1.

Even though clinic visits were planned every 6  months, the m ean time 

between assessments is 1.18 years with a standard deviation of 1.42 years 

and a median of 0.61 years. The time elapsed between observations was 

categorized into L = 5 levels defined by the quintiles of L j+ i — ti,j for i =

1 , 2 , . . . ,  72 and j  =  1 , 2, . . .  ,m,-.

Nine types of transitions were observed; 47.60% are of the form 1 —̂ 1 but 

only 0.55% are of the type 1  —> 4. Cross-classifying the 9 types of transitions 

by the H  x  L x  C = 1 x 5 x 3  =  15 categories previously defined produces a 

table with sparse cells. Therefore, transitions of the form a —>• b with b > a 

were grouped together in a category denoted as a —> a. Consequently. R  = 6  

types of transitions were considered: a —»• a and a —>• a with a = 1 , . . . .  A" — 1 .

The observed and expected transitions for the PsA da ta  are shown in 

Table 2.2. The first two rows contain the observed and expected transitions 

of those patients with all the prognostic factors coded as zero and w ith an
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elapsed tim e between visits less than or equal to 0.4791 years. Analogously, 

the observed and expected transitions in the 3th and 4th rows correspond to 

subjects with only one prognostic factor coded as one and with tij+i — t i j  < 

0.4791, etc. As ties occurred at some quintiles, the L — 5 groups defined 

for the tim e elapsed between observations do not have the same number of 

transitions. The nine cells with bold numbers contribute 67.7% to the value 

of the goodness of fit statistic: T  = 69.95.

One thousand bootstrap replications were carried out. In 44 of them  the 

bootstrap algorithm did not generate any observations from state 3 so the 

associated contingency tables contain some empty cells. These cells were 

ignored in the calculation of the bootstrap goodness of fit statistic. The p- 

value thus obtained is 9/1000 =  0.009 indicating that the fitted stationary 

Markov regression model does not describe adequately the PsA data. Note 

tha t all the cells with bold numbers occur in the columns labeled as a —> a 

with a =  1,2,3. In six of these cells the observed count is bigger than  the 

expected count. These six cells contain patients with an elapsed time between 

clinic visits less than or equal to 1.4 years. Therefore, it may be that patients 

who experienced a rapid progression in damage were prom pted to visit the 

clinician in a shorter time interval than reflected by the m ajority of patients. 

Thus, the non-random distribution of the bold numbers indicates tha t some 

clinic visits did not occur at random times.

Furthermore, two outliers were detected in the contingency table formed 

by using the 9 original transitions instead of the 6  collapsed categories. The 

outliers are patients who had a 1 —> 4 transition in less than 2 years and thus 

make a large contribution to the value of the corresponding goodness of fit 

statistic.

Table 2.2 has 3 independent columns because the number of patients in 

state  a at the beginning of every observation period is known so the expected 

num ber of transitions from a to a depends on the expected number of tran­

sitions within state a, for a = 1,2,3. Then, the number of independent cells 

is 45 (=  H  x L x (R  — 3) x C).  Furthermore, Table 1.6 shows that 77 =  10
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Figure 2.2: Bootstrap and naive distribution functions for model 1.
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parameters were estim ated to fit the Markov regression model.

Naively, the expected degrees of freedom would be 35 (=  H  x L x ( * -  

3) x C — 77), which would correspond to the mean of the distribution of the 

statistic if it was chi-square. The mean value of the bootstrap goodness of 

fit statistic was 41.12.

Figure 2.1 shows the cumulative probability function of the statistic cal­

culated from the 1000 bootstrap data sets and the “naive” asym ptotic chi- 

square distribution.

2.8 O ther b ootstrap  analysis

To better understand the distribution of the proposed statistic, the bootstrap 

algorithm was implemented for different underlying models and observation 

patterns. The psoriatic arthritis data were used as a basis for the study. 

The first scenario considered, termed model 1, was th a t of regularly
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Figure 2.3: Bootstrap and naive distribution functions for model 2.
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Figure 2.4: Bootstrap and naive distribution functions for model 3.
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Figure 2.5: Bootstrap and naive distribution functions for model 4.
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Figure 2.6: Bootstrap and naive distribution functions for model 5.
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spaced observations 0.60 years apart and a Markov model, not involving 

explanatory variables, with transition rates: <?;(i,2 ) =  0.184, 9 1 (2 ,3 ) =  0.303, 

and 9 i(3 ,4 ) =  0.431. Seven states were simulated for each individual unless 

they first reached the absorbing state. The initial states were taken to be 

as observed in the psoriatic arthritis study. As t i j + 1 — t i j  =  0.6 for all z, j  

the contingency table can not be constructed using the quantiles of the time 

elapsed between observations. Therefore, the sequence of observed states 

were classified according to the observation period (1st. observation period, 

2nd. observation period, etc.) and according to their type: a —> a (tran­

sitions to the same state) or a —► a (transitions to a different state) with 

a =  1,2,3.  Both classification criteria have 6  levels. The "naive” degrees 

of freedom for the proposed statistic are 6 x 3  — 3 =  15 which is well in 

accordance with 15.53, the mean of the 1,000 bootstrap statistics. This is 

the situation considered by Kalbfleisch and Lawless [2] except for the fact 

tha t the number of transitions decreases as the number of observation peri­

ods increases because some individuals reach the absorbing state before the 

seventh bootstrap state is obtained. According to these authors, the statistic 

should have an asymptotic chi-squared distribution. The cumulative proba­

bility function of the gooclness-of-fit statistic calculated from the bootstrap 

data and the “naive" distribution function for model 1 are plotted in Figure 

2 . 2 .

In model 2, the original m; states for patient z were used under the as­

sumption tha t they were equally spaced every 0.6 years. For the PsA data, 

if no covariates are included in the model, the estim ated transition rates are: 

4( 1 ,2 ) =  0.184, 4(2,3) =  0.303, and 4(3,4) =  0.431. The observed states were 

again classified according to transition type (a —> a or a —> a) and obser­

vation period as follows. The 1st. pair of observed states were categorized 

in one class, the 2nd. ones in another, the 3th and the 4th were grouped in 

a third category, the 5th and the 6th were collapsed in a fourth class and 

the remaining ones were classified together in a fifth category. One thousand 

bootstrap data  sets were simulated from model 2. The mean of the bootstrap
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goodness of fit statistic is 12.64 while the degrees of freedom of the “naive” 

asymptotic chi-square distribution are 12 =  5 x 3 — 3. The simulated dis­

tribution function of the proposed test statistic and the “naive” distribution 

function are shown in Figure 2.3.

Model 3 is based on the original PsA data in which there are m,- un­

equally spaced states for patient i. No covariates are included in the model 

and the estim ated transition rates are: 4(i t2 ) =  0.091, 4(2,3) =  0.161, and 

4(3,4) =  0.249. A contingency table of two dimensions was constructed us­

ing the deciles of the time elapsed between all the measurements and the 

transition type (a —»■ a or a —> a). Again, one thousand bootstrap data  sets 

were generated from the fitted model. This produced a mean of 27.73 for 

the boostrap goodness of fit statistic. The mean of the “naive” chi-square 

distribution is 27 =  1 0 x 3  — 3. The distribution function of the test statistic 

estim ated from the bootstrap data and the “naive” distribution function are 

plotted in Figure 2.4.

Model 4 is similar to model 2 except for the transition rates that depend 

on the covariates as proposed by Gladman et. al. [1], A three way contin­

gency table was constructed using the transition type, the observation period 

and the number of prognostic factors coded as one. The transition type and 

the observation period were categorized as done for model 2. The partition 

of the covariate space was done in the same way as for the original PsA data. 

One thousand bootstrap samples were generated but 177 of the resulting con­

tingency tables had empty cells. These cells were eliminated to calculate the 

bootstrap goodness of fit statistic. Thus, the average of the 1000 bootstrap 

statistics is 40.82. This value is bigger than  35 =  5 x 3 x 3 — 10, the degrees 

of freedom of the “naive” chi-square distribution. Figure 2.5 shows the dis­

tribution function of the statistic as estim ated by the bootstrap replications 

and the “naive” chi-square approximation.

In the last scenario, term ed model 5, a stationary Markov regression 

model was fitted to the original data. The patients were not stratified by 

their first observed state and it was assumed tha t the rest of the covariates
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had the same effect on all the transition rates. The contingency tables were 

constructed in the same way as for the model proposed by Gladman et. ai  

Thirty  six out of 1000 bootstrap data sets produced a contingency table with 

empty cells. These cells were ignored in the calculation of the bootstrap test 

statistic. The mean of the bootstrap statistics is 41.92 and the mean of the 

“naive” chi-square distribution is 38 =  5 x 3 x 3 — 7. The distribution function 

of the statistic calculated from the bootstrap data and the “naive” chi-square 

distribution are shown in Figure 2.6.

2.9 A n illustrative power calcu lation

In this section I examine the power of the test statistic (2.2) in a particular 

situation. Longitudinal data sets were simulated with time elapsed between 

transitions having a Weibull distribution. The null hypothesis was taken to 

be the Markov stationary model described in scenario 5. The non-stationary 

longitudinal data was generated using the following result. If Tt(a) has an 

exponential distribution with param eter Aqa) and a  > 0 , then W,(a) =  

has a Weibull distribution with parameters a  and 7 ,(a) =  A-^.  A proof of this 

well known result is presented in Appendix B for completeness. Therefore, 

with a few modifications, the procedure described in Section 2.6 to generate 

the bootstrap states can also be applied to simulate non-stationary sequences 

of data. For example, if a = 2 then, in equations ( 2.3), t i j  and m ust be 

replaced by y/Uj  and ru,(a) =  respectively.

The nested bootstrap algorithm as described by Shao and Tu [14], chapter 

4, was used to calculate the power of the test statistic. A to tal of B\  — 200 

independent longitudinal samples were generated with elapsed time between 

transitions following a Weibull distribution. The stationary Markov regres­

sion model described in scenario 5 was fitted to each sample. The contingency 

table was also constructed in the same way as for model 5. For each of the 

2 0 0  data  sets, a total of B 2 =  500 independent bootstrap sub-samples were 

generated from the model specified by the null hypothesis. Model 5 was
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fitted to each of these B 2 sub-samples and the test statistic was computed. 

The p-value of each of the B\  =  200 models was obtained by comparing their 

goodness of fit statistic with the respective B 2 =  500 statistics. For 25% of 

the B\  samples, the scoring algorithm did not converge for up to three boot­

strap sub-samples. The significance level was calculated using the remaining 

B'2 data sets. Also, for each of the B\  hypothesis tests, an average of 5.25 

sub-samples produced a contingency table with em pty cells. These cells were 

ignored in the calculation of the test statistic. If the type I error is set at 

5%, 107 out of 200 stationary models were rejected, so the power at the 5% 

level is 54%. The power of the proposed test at the 1% critical level is 26% 

(=  100% x 52/200).

2.10 C onclusions

A contingency table needs to be constructed to calculate the proposed good­

ness of fit statistic. The classification criteria tha t need to be considered are: 

( 1 ) the transition type, (2) the covariate pattern, (3) the time elapsed be­

tween observations, and (4) the observation period (or the tim e at which the 

measurements are made). It will only be possible to use them  all when the 

to tal number of observed states is large or when each classification criterion 

has a small number of levels. The later situation arises in experim ental stud­

ies where the researcher assigns the treatm ents and decides when and how 

many observations each sampling unit will provide. In observational studies, 

where panel data are common, some experience and insight are needed to 

define the contingency table.

Classification criterion 4 will automatically induce criterion 3 when all 

the subjects have the same number of equally spaced observations. The 

fourth criterion is of param ount importance if the fitted Markov model is non- 

stationary or if interest lies in testing whether the model is stationary or not. 

W hen the tim e elapsed between measurements is not constant, we propose 

to classify the observed transitions and the estim ated transition probabilities
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using the quantiles of t{j+i — t{j. This is justified by the fact th a t two 

individuals with the same covariate pattern  having a transition from state  a 

to state b also have similar transition probabilities if 1 —ti j  ~  t-' -+ 1  — t-/ ■. 

Analogously, if the covariates are continuous we propose to use the deciles 

of the estim ated transition rates, { ) } ,  to generate a partition of the 

covariate space.

The theoretical distribution of the proposed goodness of fit statistic is 

intractable when covariates are used to model the transition rates and the 

measurement times are not fixed in advance . In this paper, the bootstrap 

methodology was applied to estim ate the distribution of the test statistic  un­

der the null hypothesis. Several stationary Markov models were considered, 

some with covariates and others without covariates.

In all the scenarios considered, the mean value of the bootstrap goodness 

of fit statistic is bigger than the “naive” degrees of freedom given by the 

number of independent cells in the table minus the number of estim ated 

parameters. For the models without covariates, the difference between this 

mean and the “naive” degrees of freedom is less than one unit but for the 

Markov regression models the discrepancy is bigger. Also, for the models 

without covariates, the bootstrap distribution of the proposed goodness of 

fit statistic is well approximated by a chi-square distribution with the “naive” 

degrees of freedom.

The number of observed states varied greatly between the patients who 

participated in the PsA study. A median of 4 states were observed for the 

individuals who participated in the study. Only 2 states were recorded for 

21% of the patients while 24 states were recorded for a single subject. The 

271 patients analysed gave a total of 1236 transitions.

The number of bootstrap states, s t- generated by the algorithm proposed 

here is smaller or equal than the number of observed states m,-. The longitudi­

nal series produced by the bootstrap algorithm is smaller when the absorbing 

state is simulated in less than ra,_i observation periods. Sometimes, the ob­

served and simulated series have the same length but the absorbing state  is
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only reached in the observed data. This means that the rate  at which the 

patients progress to the absorbing state is not always the same in the PsA 

data and in the bootstrap data. In the nested bootstrap analysis carried out 

for the power calculations, the longitudinal series of the sub-samples become 

even shorter for the same reason.

The param etric bootstrap algorithm that I propose does not guarantee 

tha t the proportion of individuals that reach the absorbing state is the same 

in the PsA data and in the bootstrap sample. The boostrap algorithm was 

modified so tha t additional states were generated for those individuals who, 

in the original data, reached the final state provided that their observation 

period does not exceed the mean observation period of the subjects who did 

not reach this absorbing state. The p-value obtained for the model fitted by 

Gladman et. al. is similar to the value mentioned in section 2.7. This may 

be due to the fact tha t only 20.3% of the patients reached state 4. W ith a 

higher rate of progression to the absorbing state a different result m ight be 

obtained.

Some contingency tables constructed from the simulated data to analyse 

the fit of Markov models with transition rates tha t depend on covariates had 

em pty cells. This is a consequence of the difference in length between the 

bootstrap and the observed series and the number of classification criteria 

used to construct the contingency table. I computed the bootstrap test 

statistic by ignoring the empty cells instead of collapsing adjacent categories.
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C hapter 3 

M ixture and contagious m odels

3.1 Introduction

Table 2.2 shows that 601 (47.59%) transitions in the PsA study discussed 

in chapter 2 are of the form 1 —» 1. In fact, 116 (42.8 %) patients w ith a 

total of 463 (36.66 %) transitions did not develop damaged joints during the 

course of the study. Thus arises the question of whether a subpopulation 

of individuals with PsA never develops damaged joints. If this hypothesis 

is clinically true, a m ixture model for repeated observations can be used to 

describe the PsA data. M ixture models assume that patients who do not 

develop damaged joints have a different behaviour (distribution) from the 

rest of the population. These models can be fitted without knowledge of 

the group to which each individual belongs and this gives an estim ate of the 

proportion of subjects in each group.

Another way of motivating the use of m ixture models is the following. 

Patients remaining in state 1  for a long time and patients not susceptible to 

damaged joints produce a large number of transitions from state  1  to state  1 . 

This implies tha t an increase of 0 damaged joints between visits is frequently 

recorded. The increase in the number of damaged joints in a given time 

interval is a discrete variable. Some discrete distributions, like the negative 

binomial, can be used to describe data sets with a large proportion of zeros.
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This is not the case for the Poisson distribution. The excess of zeros in 

the data relative to the Poisson, or any other distribution, can be modelled 

by an additional param eter. In this way, a distribution with added zeros 

is obtained. These distributions are special kinds of m ixture models. The 

additional param eter is interpreted as the proportion of zeros not accounted 

for by the original distribution or as the proportion of individuals th a t can 

not experience the event of interest (damaged joints) if the population is 

formed by two subgroups.

In this chapter I investigate the use of m ixture regression models and 

negative binomial regression models for longitudinal (panel) data. The cor­

relation between a series of observations is modelled in a similar way as for 

the Markov regression model. The models are used to describe a PsA data  set 

which is larger than the one analysed by Gladman, Farewell, and Nadeau [1 ]. 

The new data is based on a longer observation period in which more patients 

joined the PsA study and the ones already participating on it continued to 

be assessed. Also, observations corresponding to 10 or more damaged joints 

were incorporated into the analysis. As a result, 285 patients with a to tal of 

1875 transitions are analysed here.

The model proposed by Gladman, Farewell and Nadeau [1] has the char­

acteristic tha t, not only the response variable, but also the covariates were 

categorized. This can lead to some loss of information. Therefore, in this 

chapter, I avoid the categorization of explanatory variables and examine the 

fit of models for discrete response variables measured repeatedly over time.

The response variable studied here is the increase in the number of dam­

aged joints from one clinic visit to the next. The correlation between consec­

utive response variables is modelled by considering, as an extra  covariate, the 

to tal number of damaged joints recorded up to the last assessment. Thus, the 

average increase in the number of damaged joints between visits depends on: 

a baseline value, the number of damaged joints recorded up to the last as­

sessment, the type of medication taken before participating in the study and 

the erythrocyte sedim entation rate and the number of effused joints observed
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on the first clinic visit.

It was thought tha t the age of the patient at the tim e of the disease on­

set was the only covariate in the data tha t could be related to the additional 

param eter - representing the proportion of individuals never developing dam­

aged joints or the proportion of zeros not explained by a given distribution. 

The logit of this param eter is modelled as a linear function of the pa tien t’s 

age when he/she began suffering from PsA.

Three models for longitudinal data are examined in this chapter: a Pois­

son regression model with added zeros for repeated observations, a negative 

binomial regression model for repeated observations and a negative binomial 

regression model with added zeros for repeated observations. The maximum 

likelihood estimates of the parameters are computed using the quasi-Newton 

algorithm implemented in the NAG subroutine e04jaf. An estim ate of the 

asymptotic covariance m atrix of the param eter estimates is obtained by cal­

culating the inverse of the observed information m atrix. This m atrix is com­

puted using the NAG subroutine e04xaf. When possible, for the models with 

added zeros, a statistical hypothesis test is carried out to determine if the 

additional param eter is significantly greater than zero. The to tal num ber of 

observed increments equal to 0 , 1 , 2 , . . . ,  8 ,9, and 1 0  or more damaged joints 

is compared to the corresponding total predicted by each model. A measure 

summarizing the discrepancies between the observed and expected counts is 

also calculated.

Readers wishing to avoid the technical m aterial may skip sections 3.2,

3.3.1, 3.3.2, 3.3.3, 3.4.1, 3.4.2, 3.5.1, 3.5.2.

3.2 S ta tistica l background

Some probability distributions can be regarded as a combination or over­

lapping of other distributions. Usually, the resulting distribution is more 

complex than the original ones and is known as a contagious or m ixture 

distribution. More formally, let h(x \ 0) be a conditional density function
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tha t depends on the vector of parameters 0. Suppose also tha t 6 E is

subject to random variation according to the probability law q(9). Then the

contagious density function f ( x )  is defined as:

/ oo r o o

• • • /  h(x  | 6)q(6)d0i .. .ddm. (3.1)
-oo J  — oo

W hen 0 assumes a finite number of values: 6 1 , . . .  , #g, each with proba­

bility pg =  q{0g), where Pg = T then q{6) has a discrete m ultivariate 
distribution and

/(* )  =  E  PsKx  I 6b) (3-2)
9=1

is called a finite mixture or compound distribution. Johnson and Kotz, [15] 

chapter 8 , describe several density functions of the form (3.1) and (3.2).

Sometimes, contagious distributions are used to describe heterogeneous 

populations. For example, in accident proneness, Greenwood and Yule [16] 

derived the negative binomial distribution by assuming tha t the num ber of 

accidents per individual follows a Poisson distribution with param eter 6. The 

authors assumed that 6 varies from individual to individual according to a 

gam m a distribution. A negative binomial regression model is obtained when 

6 depends on several explanatory variables. For this model, Lawless [17] 

compared the efficiency and robustness properties of maximum likelihood es­

tim ators with those of weighted least-squares along with moment estim ation 

of the dispersion param eter.

Finite m ixture distributions are applied when a population is formed by 

G distinct subpopulations. Sometimes it is known to which subpopulation 

each individual belongs so the prim ary aim is to estim ate the mixing propor­

tions p i , . . .  ,pg in (3.2). In other situations it is impossible to observe the 

variable(s) that split the individuals into different groups. This means that 

there is no available information for each conditional distribution separately 

but only for the combined m ixture distribution. Several examples are given 

by Everitt and Hand [18]. In this situation, the objective is to estim ate both
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the mixing proportions and the parameters of the conditional distributions 

in (3.2). Usually, in this context, G is fixed by the theoretical background 

of the problem under investigation. In fact, some authors, like Everitt and 

Hand [18] and Farewell [19], state tha t this type of m ixture distributions 

should only be used when there is strong scientific evidence for the existence 

of two or more subpopulations. The reason is tha t interpretation problems 

may arise since a m ixture distribution can always be fitted to the data  by 

choosing a sufficiently large number of groups, G.

In spite of this, m ixtures of distributions are frequently used in cluster 

analysis where there is no a priori knowledge about any grouping structure in 

the population. The aim is to model heterogeneous data and to obtain some 

insight into the problem by the formation of several clusters. An example of 

this kind of approach is given by McLachlan and Basford [20].

When the population is divided into G =  2  groups, expression (3.2) 

becomes:

f ( x )  =  pih(x  | 0 i) +  ( 1  -  pi)h(x  | 0 2)

Here, X  can be viewed as depending on a binary variable V  tha t is equal to 

one with probability p\ and equal to zero with probability (1 — pi).  In other 

words, q(9) has a Bernoulli distribution with param eter p\.  If covariates 

are available, their effect on p\ can be assessed by fitting a logistic model. 

Farewell [21] and Struthers and Farewell [22] applied this model to tim e to 

event data. In these two articles, pi represents the proportion of individuals 

tha t experience the event of interest (e.g. AIDS or relapse of a disease) and 

X  is the time until the event occurs. It is assumed that the conditional 

distribution of X  given V  =  1 follows an exponential or Weibull distribution.

Consider now the situation in which X  represents the number of events 

tha t occur in a specified period of time. The Poisson distribution is a natural 

choice for X .  However, count data may have an excess of zeros as compared 

with a Poisson distribution. This is one example of the phenomenon known 

as overdispersion. It arises when a proportion, p i, of individuals can not 

experience the event of interest. Their zero count is a structural zero. Other
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individuals have a zero count by chance; these are sampling zeros. Several 

methods for modelling such overdispersed data have been proposed in the 

literature. The use of mixture distributions is one of them. In the situation 

just described, X  is a discrete variable and the population is again divided 

into G =  2 groups: individuals that can experience the event of interest, 

V  =  0, and those who can not, V  =  1. Therefore, expression (3.2) can be 

rew ritten more conveniently as:

P ( X  = x ) = PlP( X = x \ V  = 1) +  (1 -  p i ) P ( X  = x | V =  0) 

or equivalently:

P( X  =  0) = pi +  (1 -  Pi)P{X = 0 | V  = 0)

P ( X  = x) = { l - Pl) P ( X  = x \  V  = 0) if ar =  l , 2 , . . .

This particular type of mixture distribution is known as a Poisson distribu­

tion with added zeros or as a zero-inflated Poisson (ZIP) distribution because 

the proportion of zeros has been increased by a constant p\.  If measured, 

covariates can be used to model both the binomial param eter P\ and the 

mean of the Poisson distribution.

Lambert [23] compares several zero-inflated Poisson regression models 

for experimental data obtained at AT h  T Bell Laboratories. The objec­

tive of the experiment was to study the influence of five qualitative factors 

on the number of soldering defects on printed wiring boards. When a reli­

able manufacturing process is in control, the number of defects on an item 

should be Poisson distributed. Nevertheless, the Bell Laboratories da ta  have 

many more items without defects than would be expected from a Poisson 

distribution. The author postulates tha t slight, unobserved changes in the 

environment cause the process to move randomly back and forth between a 

perfect state (V =  1) and an imperfect state (V =  0). Lambert considered 

three types of ZIP models. In the first one, the probability th a t the process is
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in the perfect state, pi, does not depend on the factors. In the second model, 

the Poisson param eter and the Bernoulli param eter are not functionally re­

lated but both depend on the same factors. Finally, in the th ird model, p\ is 

a simple function of the Poisson param eter tha t depends on the factors. For 

each model, the author discusses the interpretation of the param eters and 

the algorithm to calculate the maximum likelihood estimates. Simulations 

showing the appropriateness of the asymptotic results are also presented.

In an unpublished work, Ridout, Demetrio and Hinde [24] fitted several 

regression models to experimental data from horticulture. The aim of the 

experiment was to evaluate the effect of 4 hormone concentrations and 2 pe­

riods of light exposure on the number of roots produced by a plant cutting. 

The regression models examined by the authors are: Poisson, Poisson with 

added zeros, negative binomial and negative binomial with added zeros. Sev­

eral variations of each model were examined as the param eter accounting for 

the extra zeros and the dispersion param eter were sometimes expressed as a 

function of the exposure to light. The authors analysed the significance of 

the factors and compared non-nested models using the Akaike information 

criterion and the BIC statistic.

Several methods have been proposed to calculate the maximum likelihood 

estimates of the parameters of a negative binomial model. These are the 

Newton-Raphson method, the conditional maximum likelihood approach for 

the estim ation of the dispersion parameter and the maximum extended quasi­

likelihood method. For mixture models describing populations formed by G 

subgroups, the maximum likelihood estimates are usually obtained via the 

EM algorithm or the Newton-Raphson method.

3.3 P oisson  regression m odel w ith  added ze­

ros for repeated  observations

The Poisson regression model with added zeros examined here for longitudi­

nal data assumes that a subpopulation of individuals with PsA never develops
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damaged joints. Besides this, it is assumed that, in a fixed tim e interval, the 

average rate at which the joints are damaged varies from one person to an­

other. The source of this variability is considered to be known and measured 

by the researchers. Thus, the average increase in damaged joints between 

clinic visits is expressed as a function of several covariates.

3.3.1 Description of the model

Let Ji j  represent the total number of damaged joints for patient i up to time 

t i j .  Then, Di j  =  Jij+i — Ji j  is the number of joints damaged between times 

t i j  and t i j + 1  with j  = 1 , 2 , . . . ,  m,-_i and i =  1 , 2 , . . . ,  n. The Di j  are discrete 

variables so in a first approach I assume they have a Poisson distribution ■with 

mean /i, j .  I also assume that Di j  is independent of D i j - 1 , . . . ,  D{ g i v e n  the 

value of Jij .  This assumption is similar to the one made for the Markov 

model in which the state occupied by individual i at time t i j  depends only 

on the previous state. Therefore, the expected number of damaged joints in 

an interval of length tij+i — t i j  is expressed as a function of the vector of 

covariates z\ — (1, 2 ^ 1 , . . . ,  -^>-2 ) and Ji j  i.e

fti,j — {U,j+ 1 ~  titj) exp(ao +  +  . . .  +  a p_2 -Zi,p - 2  +

=  {ti,j+ 1 — t i j )  exp(a' zi j )

where zj • =  (zj, Jij) and a'  =  (ao, <̂ 1 , • • •»<^p-2 , <^p-i)- Notice that J tj- is the 
only variable in z\ - tha t varies over time. A more general model would allow

the other covariates, to change over time. In this case, f.iij =  E(Djj)
would be a function of the covariates measured at time t i j .

The probability density function of Dij  is given by:

P{DU =  dij  | ztj)  =  , dij =  0 , 1 , . . .

As suggested by the results obtained in chapter 2, an excess of zero 

increments in the number of damaged joints may occur relative to the Poisson
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distribution. If the excess of zeros can be explained by the existence of a 

subpopulation of individuals who never develop damaged joints during the 

course of the disease, a m ixture model can be used to describe the data. 

Let V{ be a binary variable where V{ = 1 indicates that individual i will not 

develop damaged joints and Vi = 0 indicates that individial i is susceptible to 

damaged joints. The probability that patient i is not susceptible to damaged 

joints can be described by a logistic model:

Q. _  p( y .  =  i ■ z *) — exP ( ^ z i)__
1 J  1 +  exp(/?'*?)

where /?' =  (/?0,/? i,. . .  ,/?r_i) and z f  =  (1, z *tl, . . . ,  2,*r_i). It will be as­

sumed that the covariate vectors, z* and Z{j , modelling the Poisson and the 

Bernoulli parameters are, in general, different.

The probability of not observing any damaged joints for patient i is:

P(Di ,i =  0, Di,2 — 0} • • • i = 0 | Ziti , Zit2 , • • • 5 )

=  P(Vi = 1 I z*)P(Ditl =  0,. . . , Diimi_x =  0 I Vi =

+  P(Vi = 0 | Z*)P(Diti = 0, . . . , A . m , - !  = 0 I Vi =  0,Zlfi, . . . jZi.rr,,..! )

=  0i +  (1 -  6i) n  = 0 I Vi = 0 ,Zij)
j=  1 

m ,_ i

= 0i +  (1 -  Oi) n  exp
j=i

mi-l
=  &i +  (1 -  0i) exp(— Pi,j) (3-3)

j=i
For patient i , who developed damaged joints, the probability of the ob­

served dij  values is:

P(Di,  1 — , 1 5 • • • j P t ,m ; _ i  — | ^t’,1 5^1,2: • • • ? )
mi-i

=  ( ! -« ,- )  n  = 4 y |  V5 =  0 ,*y )
i=i

= (i-«o n
j = i

m ,_ i i-  xi i i  — #/,: ; in.* •
(3 .4)

di,i'­
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where dij  > 0 for some j  = 1 , 2 , . . .  , m ,_i. Note tha t expressions (3.3) ancl 

(3.4) retain the usual form for a distribution with added zeros.

Let J'i = {Jij ,  J i j , .. •, Ji,mi)• The likelihood function for a  and /3 is:

£(“>/*) = n i * + u - 0<)exp(- n  &,>)]
j'|Jt=0 j=1

r a i - ‘ r e x p ( - # < i j ) / i f y 1n {(i - »i) nX

v j= 1 d- •'

Therefore, the logarithm of the likelihood function is proportional to:

(3.5)

*7 1 . - 1

KaiP) = Y  lnÎ ' + (! ~ ^ )exP(- Y Vij)]
i|J ,-=0 j —1

*7 1 . - 1  *7 1 , - 1

+ Y  i n ( i - ^ ) -  Y Yfrj + Y Y
t|7,-^0 i |J t-^0 j =  1 i |J ,^ 0  j =  1

3.3.2 Goodness of fit analysis

In this section I explain how to evaluate the fit of the Poisson model with 

added zeros for repeated observations through the calculation and analysis 

of the observed and expected counts.

Based on the model defined by equations (3.3) and (3.4), I propose to 

calculate expectations based on the quantities:

e-ij(k) = P{Di j  = k | Zij)  for k = 0 , 1 , . . .  and z \ j  =  (zj, Ji j ) ,

defined for the interval ( t i j , t i j+ 1 ) .  For a patient with zero damaged joints 

up to time t i j , i.e J i j  = 0, the above probabilities are calculated as:

6 ^ ( 0 )  =  P { D i j  =  0  | Z i j )  =  8 i  +  ( 1  -  0 i )  e x p ( - f i i j )

(1 — § i )  exp( — LLi A l l1- ■ 
e i j { k )  =  P { D i j  =  k | Zi j )  =  ! ^  ̂ fc =  1 ,2 , . . .

where 9{ — — ' ~ r — and j  —  ( f i j + i  ~  U j )  exp(6t'zi j);
1 + e x p  (/?**)

72



if Ji j  > 0 then the probability of k damaged joints in an interval of length 

^i,j+1 î,j 1®'

ei,j\k ) P\Di, j  — k | ^,-j) — ^  for k — 0 , 1 , 2 , . . .

The probabilities eij(k)  depend on the values of the response variable, D i j , 

the time elapsed between observations, the covariates modelling the Pois­

son param eter, the number of damaged joints observed up to time and, 

if J{j  =  0, the covariates affecting the Bernoulli param eter. All this in­

formation needs to be considered, if the eij(k)  are to be grouped to form 

a contingency table. As done for the Markov regression model, if the co­

variates are continuous and the observation times are variable, the eij{k)  

can be classified into equiprobable categories defined by the quantiles of 

expfoNSij), 0{, and t i j + i — tij .  Nevertheless, with several classification 

criteria sparse cells may occur (Bishop et. al. [9]). To have a preliminary 

indication of how accurately the model fits the PsA data, I collapse the esti­

m ated probabilities across all the variables just mentioned except the values 

of Di j  i.e.

n m i — \ n  Tni—i

e (k ) =  I Z Y ,  ehj (k ) =  = k  I z i j )  w h ere k =  o , i ,  • • •
i=l j —l  i=l j=l

Furthermore, I only consider eleven categories for the increase in the number 

of damaged joints, namely: 0 , 1 , . . . ,  9, >  10. The total number of observed 

increments equal to k is:

n  mi-1

n ( fc) =  E E  1{Bij=fc}
i= i j =i

where l{Dij=k} is an indicator variable equal to one if Di j  = k. The ratios 

(n ( k ) — e(k))2/ e(k) are calculated to evaluate the discrepancies between the 

observed and expected counts. The sum of these ratios is used to measure 

the overall discrepancy between the fitted model and the data.
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3.3.3 Tests to determine the significance of the addi­

tional parameter

Models should not be used for descriptive or predictive purposes without 

checking them  carefully. The model checking phase is often overlooked in 

practice. It comprises several techniques to establish the validity of the as­

sumptions, to detect any misspecification of the various components of the 

model and to identify outliers and influential observations.

When a m ixture model is based on the assumption tha t the population is 

divided into G different groups, it is im portant to check tha t the proportion 

of individuals in each group is greater than zero.

The simplest situation is to determine if the population is divided into two 

groups defined by a Bernoulli param eter that does not depend on covariates: 

i.e.

Hq : 9 =  0 vs. H\ : 9 >  0

This is a non-standard hypothesis test because, under Ho, 9 lies on the 

boundary of the param eter space. Note that this problem persists if the logit 

of 9 is equal to /30 and the hypothesis is expressed in terms of (30:

Ho : flo =  —oo vs. H\ : (3q > —oo (3-6)

Self and Liang [25] and Ghitany, Mailer and Zhou [26] proved that the de­

viance statistic for testing this type of hypothesis has, asymptotically, not a 

chi-squared distribution with one degree of freedom, but the distribution of 

A", where

P( X < x) = 0.5 +  0.5P(xi <  x) (3.7)

A more general test was proposed by Ghitany, Mailer and Zhou [26] to

determine if the proportion of individuals that do not experience the event 

of interest differs between levels in a one-way classification. The authors 

assumed th a t the proportions do not depend on additional covariates.
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W hen covariates affect the proportion of individuals in each subpopula­

tion, the test to determine if the proportions are greater than zero has an 

additional non-standard feature. Under the null hypothesis, the intercept 

is equal to — oo and the effect of the covariates is therefore overriden by /50* 

Essentially, the regression coefficients disappear under the null hypothesis. A 

heuristic approach is to determine if the effect of the covariates is significantly 

different from zero. If it is not then the problem is reduced to the situation 

described above. W hen the effect of the covariates is significant, the sampled 

units can be stratified based on the value of the covariates. The hypothesis 

tha t the proportion of individuals in each subpopulation is greater than  zero 

is investigated in each strata.

Confidence intervals based on the profile likelihood for f t  are an alterna­

tive procedure to examine if the proportion of subjects in each subpopulation 

is greater than zero. Profile likelihoods are often used to construct confidence 

regions when the maximum likelihood estimate of a param eter does not have 

an asymptotic normal distribution. In the rest of the section I explain how 

to calculate the profile likelihood for f t  and how to use it to construct an 

asym ptotic confidence interval for f t .  I assume tha t no covariates affect the 

Bernoulli param eter so logit(0) =  f t .

If f t  is replaced by a fixed value /3q, equation (3.5) becomes:

m , _ i

L(a  \/3o = Po) = I I  [** +  (! -  O')exP ( -  E  M*j)]
t |J ,=0  j — i

exp ( - / if, mi-i
x n  { ( i - n  n

j = 1

The profile likelihood for f t ,  denoted as P L (f t) ,  is obtained by substituting 

a  by its maximum likelihood estim ate (a*) in the above expression i.e.

P L (f t)  = L(a* | f t  =  f t )

The likelihood ratio statistic for the hypothesis:
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H 0 : p 0  = Po

can be expressed in terms of the profile likelihood for j30 as:

A =  - 2 l n ( P L ^ P )  =  - 2 1 n ( ? L ^ P )
\ L [ a , p 0)J  \ P L ( f 3 0) J

The test statistic A has an asymptotic chi-square distribution w ith one 

degree of freedom. Therefore a (1 — a) • 100% confidence interval for (3o is 

the set of values of /?o for which:

P L (Po) ^  n E. 2

L ( * , P o )

> exp(-0 .5xM_Q)

or equivalently: S  = In(PL(j30)) — ln (X (a ,^ 0)) >  — 0.5xiti_Q If <* =  0.05 
then — 0.5xJO 9 5  =  —1.921.

3.3.4 Results for the PsA  data

For the PsA data, the proportion of individuals not susceptible to damaged 

joints was modelled with a dependence on the pa tien t’s age at the tim e of the 

PsA onset. The asymptotic 95% confidence interval for the corresponding 

param eter contains the value zero: 0.0136±1.96x 0.0112 =  (—0.0084,0.0356). 

Furthermore, the deviance statistic to test the significance of this param eter 

is equal to 1.42 with a significance level of 0.233. Therefore, there is no 

evidence that the patien t’s age at the time of the disease onset is related to 

the chance of developing damaged joints. Consequently, I assume th a t the 

logit of this proportion is constant. The mean number of damaged joints 

between successive assessments is modelled by the sedimentation ra te  and 

the number of effused joints recorded on the first clinic visit, the type of 

medication taken before participating in the study and the previous number 

of damaged joints. Table 3.1 shows the maximum likelihood estim ates for 

the regression parameters; the numbers in brackets are the standard errors.
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Table 3.1: Estim ated parameters and standard deviations for the Poisson

regression model with added zeros for repeated observations.

Param eter Estimates

Binomial intercept -0.772 (0.139)

Poisson intercept 

Erythrocyte sedimentation rate 

Num. effused joints 

Disease modifying drugs Yes 

Use of corticosteroids Yes 

Prev. number damaged joints

-0.318 (0.062) 

0 . 0 0 1  (0 .0 0 1 ) 

0.051 (0.007) 

0.027 (0.095) 

0.109 (0.061) 

0.014 (0.002)

The number of damaged joints observed until the previous visit and the 

number of effused joints recorded in the first assessment are the only covari­

ates with a significant effect on the mean number of damaged joints between 

visits.

The logarithm of the likelihood function evaluated at the estim ated pa­

ram eters is equal to -1395.07. Table 3.2 lists the values obtained for the 

logarithm of the profile likelihood (S) when the Bernoulli param eter takes 

different values around its maximum likelihood estimate. The values are 

plotted on Figure 3.1. The curve is fairly symmetrical around -0.77. For 

this reason, the asymptotic 95% confidence interval based on the profile 

likelihood, (-1.05,-0.5), is equal to the 95% confidence interval obtained by 

assuming tha t the additional param eter has an asym ptotic normal distri­

bution, —0.77 ±  1.96 x 0.14 =  (—1.05,—0.5). Calculation of the inverse of 

the logit transformation gives: (exp( —1 .0 5 )/( l+ ex p (—1.05)), exp(—0 .5 )/( l + 

exp(—0.5))) =  (0.259,0.378). This means that w ith 95% confidence, the per­

centage of patients with PsA that are not susceptible to damaged joints is 

estim ated to lie between 25.9% and 37.8%. The point estim ate is 31.6%(=
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Table 3.2: Statistic based on the logarithm of the profile likelihood for the

Poisson regression model with added zeros for repeated observations.

Binomial

intercept

Statistic

-1.06 -2.023

-1.053 -1.928

-1.05 - 1 . 8 8 8

- 1 . 0 0 -1.282

-0.95 -0.788

-0.90 -0.411

-0.85 -0.153

-0.80 - 0 . 0 2 0

-0.77 -0 . 0 0 0

-0.75 -0.013

-0.70 -0.137

-0.65 -0.394

-0.60 -0.789

-0.55 -1.323

-0.53 -1.576

-0.51 -1.853

-0.50 -2 . 0 0 0
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Table 3.3: Total number of observed and expected counts for the Poisson

regression model with added zeros for repeated observations.

Increase in the Num. 

of Damaged Joints

Observed

Count

Expected

Count

Scaled

Differences

0 1497 1032.20 209.30
1 146 481.87 234.11

2 87 190.31 56.08

3 27 75.08 30.79
4 2 0 35.80 6.97

5 19 20.60 0 . 1 2

6 17 13.15 1.13
7 8 8.70 0.06

8 1 0 5.78 3.08

9 5 3.81 0.37

1 0  + 39 7.70 127.13

Total 1875 1875.00 669.15
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Figure 3.1: Logarithm of the profile likelihood for the Bernoulli param eter

of the Poisson regression model with added zeros for repeated observations.
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100% x exp(—0.77)/( I  +  exp(—0.77))). The deviance statistic for testing if 

this percentage is greater than zero is equal to 395.65 with a significance level 

of 0.0 based on ( 3.7). Therefore, the confidence interval and the hypothe­

sis test indicate that the proportion of patients not susceptible to damaged 

joints is significantly greater than zero.

The total numbers of observed and expected counts are shown on Table 

3.3. Although the proportion of individuals not developing damaged joints is 

estim ated to be greater than zero, the model predicts fewer zero increments 

than observed in the data. In contrast, the expected number of increments 

equal to 1, 2, 3 and 4 damaged joints overestimates the corresponding ob­

served count. The model also underestimates the total number of increments 

with 10 or more damaged joints. The scaled differences in the last column of 

Table 3.3 are the ratio of the squared difference between each observed and 

expected count divided by the corresponding expected count. The sum of 

the scaled differences is 669.15 and suggests tha t the proposed model does 

not fit the PsA data.

3.4 N egative  binom ial regression m odel for 

repeated  observations

The negative binomial regression model is frequently used as an alternative 

to the Poisson regression model (without added zeros). The. difference be­

tween them  is that the negative binomial model assumes tha t the average 

rate at which the joints are damaged between clinic visits depends on sev­

eral covariates and on a random (unknown) component. Unlike the model 

examined in the previous section, the negative binomial regression model for 

repeated observations assumes that all patients with PsA are susceptible to 

damaged joints.
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3.4.1 Description of the model

Recall tha t Di j  = Jij+i — Ji j  represents the increase in the number of 

damaged joints for patient i in the period of length t{j + 1 — t i j .  Here I 

assume that the random variables Dij  are independent and follow a negative 

binomial distribution given the number of damaged joints recorded up to the 

last assessment, Jij.  The mean of Dij  is expressed as a function of the vector 

of covariates: z\ = ( 1 ,  Zi j , . . . ,  ^ > - 2) and Ji j  as follows:

ARj 6 xp(o: Z{j)

where z\ - = (z-, Jij) and cl — (e*0, a i ,  •. •, glp- 2 , ^ P- i) .  Thus,

p m  _ , 1  1 ,  , r ( d ^  + T 1) /  \ * j /  1  y 1

( 1 J “  , j l  ■j ) “  r ( 7 - ‘) U  +  7 / * J  U  +  1 }
where 7  >  0  is the dispersion param eter, r(-) is the gamma function and 

cl i t j  =  0 , 1 , 2 , . . . .

Therefore, the logarithm of the likelihood function for a  and 7  is:
n  m . - i

ln(I(« ,7))  =  £  £  ln(P(Dy  = di j  | , y ))
1 = 1 J = 1

if diJ = 0  then ln (P (A J- =  ^ l * y )) =  - i m + 7 / . U ),

if dij > 0 then ln(P(-D ,j =  d{j \ Zij))

■

=  ln{ +  1)(7_1 +  2) • • • ( I ’ 1 +  dij -  2 ) ( r l + dij  -  1)}

+  dij  In (  Y ' " 1 )  -  -  ln(l +  'Ui,j)

3.4.2 M odel appraisal

Expectations related to the number of damaged joints occurring in the inter­

val (tij , t ij+1 ) are again defined in terms of the probabilities of k = 0 , 1 , 2 , . . .  

damaged joints in a period of length — t i j ,  i.e.
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Grouping the eij(k)  according to the values of k regardless of the pa tien t’s 

characteristics or the tim e elapsed between observations gives:

n m t —l n m i —i

«(*) = E  E  = E  E  P{Dij = k I »y )
i= l j = 1 1=1 ,7=1

for the expected number of observations of k new damaged joints between 

visits.

The e(k) become smaller as k tends to infinity so I only consider eleven 

expected counts: e(0), e ( l ) , . . . ,  e(9), e(10+), where

n m i - i  9

e(!o+) = E  E  I1 -  E  eij(k)l
t=l j —l  fc=o

represents the expectation of the number of observations of 1 0  or more dam­

aged joints. Analogously, n(k)  =  X)?=i X ^ i*  1{D,-j=fc} is the total num ber of 
observed increments equal to k.

3.4.3 Results for the PsA  data

The logarithm of the likelihood function evaluated at the maximum like­

lihood estimates is -88.43. Table 3.4 contains the param eter estimates along 

with their asymptotic standard errors in brackets. The m agnitude of the esti­

m ated dispersion param eter, compared with its standard deviation, suggests 

th a t it contributes to the explanation of the high incidence of zero increments 

in the data. The covariate tha t has the most significant effect in predicting 

the mean increase in the number of damaged joints between clinic visits is the 

number of damaged joints until the last assessment. The type of medication 

taken before participating in the study has a smaller but significant effect on 

the average increase in damaged joints.



Table 3.4: Estim ated param eters ancl standard deviations for the negative 

binomial regression model for repeated observations.

Param eter Estimates

Dispersion param eter 

Intercept

Erythrocyte sedimentation rate 

Num. effused joints 

Disease modifying drugs Yes 

Use of corticosteroids Yes 

Prev. number damaged joints

7.475 (0.548) 

-1.092 (0.162) 

0.006 (0.004) 

0.051 (0.026) 

0.647 (0.247) 

0.481 (0.158) 

0.046 (0.008)

Table 3.5: Total number of observed and expected counts for the negative 

binomial regression model for repeated observations.

Increase in the Num. 

of Damaged Joints

Observed

Count

Expected

Count

Scaled

Differences

0 1497 1499.03 0.003

1 146 152.29 0.260

2 87 67.45 5.665

3 27 38.42 3.396

4 2 0 24.64 0.872

5 19 16.99 0.238

6 17 12.33 1.772

7 8 9.29 0.180

8 1 0 7.22 1.072

9 5 5.74 0.097

1 0  + 39 41.60 0.162

Total 1875 1875.00 13.716

84



In general, the observed and expected counts in Table 3.5 show good 

agreement. The negative binomial regression model for repeated observations 

predicts quite accurately the number of increments equal to zero damaged 

joints. Nevertheless, the model underestimates the number of increments 

equal to 2  damaged joints and overestimates the number of increments equal 

to 3 damaged joints. These two categories contribute 9.06 units to the sum 

of the scaled differences: 13.72.

3.5 N egative binom ial regression m odel w ith  

added zeros for repeated  observations

The model fitted in the previous section is based on an unrealistic assumption 

if the population of patients with PsA is formed by a group of individuals who 

never develop damaged joints and a group of persons susceptible to damaged 

joints. In this case a natural alternative is the negative binomial regression 

model with added zeros for repeated observations. Here I examine the fit of 

this model.

3.5.1 Description of the model

As before, the increase in the number of damaged joints between times t i j  and 

t i j + 1 is denoted as Di j  =  Jij+i — Ji j  for i = 1 , 2 , . . . ,  n and j  = 1 , 2 , . . . ,  772,_ i .  

In the group of individuals susceptible to damaged joints, the distribution 

of Di j  conditional on the vector of covariates z\ - =  ( 1 , Zjtl, . . . ,  z,-)P_2 , Ji j )  is 

described by a negative binomial regression model with mean fiij = (tij+i — 

t i j )  exp(a Zij),  see expression (3.8).

Thus, the probability of not observing damaged joints for patient i during 

the course of the study is:

m,-_i , .  \ ^ -1

P(D; = 0  | =  + (1-0,-) I I  — ------- (3.9)
j = l  U  +  7 V i , j '
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while the probability tha t patient i develops damaged joints in the pattern

specified by dt is:

| 1, . . . , Z i iJTi t_ j  ) ---

where 6{  =  P ( V i  = 1 | z*) =  exp(/?'z*)/(l +  exp[P'z])) is the probability 

tha t subject i belongs to the subpopulation of individuals not susceptible to 

damaged joints.

The likelihood function for a , /?, and 7  is:

£(«,/?,7) = n  +(i-«o i ib - r^ - ) 7 }
»|.7t-=0 j=l  +  W . j '  >

Thus the logarithm of L(a, /3, 7 ) is proportional to:

/ ( « , * 7 ) =  £  lnjfl; +  (1 -  6{) " n  ( 3̂ — ) 7”' }
i|J,-=o  ̂ 3 =1 V1 ^  <ri,3/  >

+ £  in ( i - f t )+  E  E
t|J,^o j= i v w  ) '

m i - 1 m , _ i

+  E  E  dij  H i  Vi,3 ) ~  E  E  dij  ln (l +  7f i i j)
i|J ,^0 j=1 i|J,-#0 J=1

m , _ i

- 7 _1 E  £  lnU +7M.j)
* | J,- ̂ 0 j = i

where

+ 7  ) .

rf.-j-src-r-1)

i f  d ( j  =  0

^ t J 7  1 +  l ) ( l  1 + 2 ) - -  •

. . .  ( 7 -1  +  d i j  -  2 ) ( 7 _1 +  d i j  -  1) i f  d i j  =  1 , 2 , . . .
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3.5.2 M odel appraisal

For the z-th patient, the estimated probability tha t Di j  — k in the interval 

( t i j , t { j+1 ) is again used as the estimate of the expected number of increases 

equal to k damaged joints in the period Uj+i — t i j  i.e.

ei j ik)  =  P{Di j  =  k | Z{j) where A: =  0 , 1 , 2 , . . . .

If — 0, the model described by equations (3.9) and (3.10) implies that 

e{j(k)  is calculated as:

but if Ji j  > 0  then

fc!r(7“ ) Vl +  j ^ i j J

where (9,-, /ijj , and 7  are the maximum likelihood estimates of 0;, f iij  and 7  

respectively.

As for the previous models, the grouped expected counts: e(k) = Z)”=i Y^j=il ei,j{k) 
are compared with the total number of observed increments equal to k dam­

aged joints: n(k) = £ " = 1  l{z?f>J=fc} where k =  0 , 1 , . . . ,  9, >  10.

The hypothesis test described in section 3.3.3 is also applied to determine 

if there is evidence tha t the proportion of patients not susceptible to damaged 

joints is greater than zero.

3.5.3 Results for the PsA  data

First I fitted the model in which the logit of the additional param eter is 

expressed as a function of the patien t’s age at the time of the PsA onset.
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Figure 3.2: Logarithm of the profile likelihood for the Bernoulli param e­

ter of the negative binomial regression model with added zeros for repeated

observations
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Table 3.6: Estim ated param eters and standard deviations for the negative

binomial regression model with added zeros for repeated observations.

Param eter Estimates

Binomial intercept -2.259 (0.476)

Dispersion param eter 

Negative binomial intercept 

Erythrocyte sedimentation rate 

Num. effused joints 

Disease modifying drugs Yes 

Use of corticosteroids Yes 

Prev. number damaged joints

6.762 (0.563) 

-0.830 (0.196) 

0.005 (0.004) 

0.042 (0.026) 

0.579 (0.253) 

0.418 (0.162) 

0.038 (0.008)

The asymptotic 95% confidence interval for the param eter measuring the 

effect of this covariate contains the value zero: —0.011 ±  1.96 x 0.027 = 

(—0.064,0.042). Also, the deviance statistic for testing the significance of this 

param eter is equal to 0.163 with a significance level of 0.687. This means 

tha t the data do not provide evidence that the patien t’s age at the time 

of the disease onset is related to the proportion of patients not susceptible 

to damaged joints. Therefore, the model I discuss below assumes th a t the 

logit of the additional param eter is constant and that the mean increase 

in damaged joints between consecutive visits depends on the erythrocyte 

sedim entation rate and the number of effused joints recorded on the first 

assessment, the type of medication taken before joining the PsA study and 

the number of damaged joints observed until the last visit.

The logarithm of the likelihood function evaluated at the maximum like­

lihood estimates is equal to -85.71. The estimates of the param eters and of 

the standard deviations are presented in Table 3.6. Because of the additional 

param eter, the estim ate of the dispersion param eter is slightly smaller than 

the one obtained for the negative binomial regression model for repeated ob­

servations. Nevertheless, the values in Table 3.6 are similar to the ones in
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Table 3.7: Statistic based on the logarithm of the profile likelihood for the

negative binomial regression model with added zeros for repeated observa­

tions.

Binomial

intercept

Statistic

- 1 0 . 0 0 -2.716

-8 . 0 0 -2.699

-6 . 0 0 -2.579

-4.50 -2.126

-4.40 -2.068

-4.20 -1.938

-4.00 -1.785

-3.00 -0.676

-2.60 -0.196

-2.50 -0.106

-2.45 -0.069

-2.35 -0.017

-2.26 0 . 0 0 0

-2 . 1 0 -0.063

-2 . 0 0 -0.181

-1.90 -0.377

-1.80 -0.665

-1.64 -1.364

-1.60 -1.592

-1.55 -1.912

-1.50 -2.272
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Table 3.8: Total number of observed and expected counts for the negative

binomial regression model with added zeros for repeated observations.

Increase in the Num. 

of Damaged Joints

Observed

Count
Expected

Count

Scaled

Differences

0 1497 1475.48 0.31
1 146 160.33 1.28
2 87 72.50 2.90

3 27 41.73 5.20
4 2 0 26.89 1.76

5 19 18.56 0 . 0 1

6 17 13.45 0.94

7 8 1 0 . 1 1 0.44

8 1 0 7.82 0.61
9 5 6.19 0.23

1 0  + 39 41.94 0 . 2 1

Total 1875 1875.00 13.89
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Table 3.4. Again, the number of damaged joints recorded until the last visit 

is the most significant covariate. It is followed by the covariates representing 

the type of medication taken before entering the study.

Figure 3.2 shows the logarithm of the profile likelihood for the additional 

param eter. The curve is not symmetrical with respect to -2.26, the max­

imum likelihood estim ate of the additional parameter. This suggests that 

the estim ate does not have an asymptotic normal distribution. Therefore, 

the 95% confidence interval based on such a distribution, —2.26 ±  1.96 x 

0.48 =  (-3 .1 9 ,-1 .3 3 ) , is of questionable validity. A 95% confidence in­

terval based on Figure 3.2, or equivalently, on Table 3.7 is: (-4.2,-1.55). 

Calculating the inverse of the logit transformation gives: (exp(—4 .2 )/( l +  

exp(—4.2)),exp( — 1.55)/(l +  exp(—1.55))) =  (0.015,0.175). This means that 

with a confidence of 95%, the proportion of individuals not susceptible to 

damaged joints is estim ated to lie between 1.5% and 17.5%. The deviance 

statistic for testing if this proportion is greater than zero is equal to 5.44 

with a significance level of 0.0099 based on ( 3.7). Both, the confidence in­

terval and the hypothesis test indicate that the estim ate of the proportion of 

patients tha t never develop damaged joints is significantly greater than  zero. 

The point estim ate is 9.45% =  (100% x exp(—2.26)/(l +  exp(—2.26))).

Table 3.8 lists the observed and expected counts as well as their scaled 

differences. Although the estim ate of the additional param eter is significantly 

greater than zero, the estim ated number of increments equal to zero damaged 

joints is not as accurate as the estim ate produced by the negative binomial 

regression model for repeated observations (see Table 3.5). The fitted model 

also underestim ates and overestimates the number of increments equal to 2  

and 3 damaged joints respectively. These two categories contribute w ith 8.1 

units to the sum of the scaled differences: 13.89.
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3.6 C onclusions

Three models for discrete response variables measured repeatedly over time 

were examined in this chapter. The Poisson regression model with added ze­

ros for repeated observations assumes tha t a subpopulation of patients with 

PsA never develops damaged joints. The negative binomial regression model 

for repeated observations is not based on this assumption but its dispersion 

param eter can describe data with a large proportion of zeros. The negative 

binomial regression model with added zeros for repeated observations com­

bines the effect of the dispersion param eter and of the additional param eter. 

Therefore, it is useful for modelling data with a high proportion of zeros some 

of which correspond to individuals not susceptible to damaged joints.

The only covariate that was available-in the data set tha t could be related 

to the additional param eter is the age of the patient at the tim e of the disease 

onset. However, the results indicate tha t it does not have a significant effect 

on the proportion of patients that never develop damaged joints. These 

results - obtained for the two mixture models examined in this chapter - 

allowed me to test if such a proportion is greater than zero.

The data  analysed contains 105 (36.84%) patients with no damaged joints 

in the entire follow-up period. In other words, about a th ird of the sampled 

individuals did not develop damaged joints during the course of the study. 

The two m ixture models for repeated observations investigated here assume 

that a fraction of these patients are those who will never develop damaged 

joints. W ith 95% confidence, the estim ated percentage of patients not suscep­

tible to damaged joints lies between 25.9% and 37.8% for the Poisson m ixture 

model for repeated observations and between 1.5% and 17.5% for the negative 

binomial m ixture model for repeated observations. The first confidence in­

terval contains values greater than 36.84%. This means tha t damaged joints 

were observed for nearly all the patients susceptible to present them  and that 

the m ajority of the patients with zero-damaged joints will remain like that 

forever. In other words, the data collection period coincided with the  time 

at which damaged joints occurred for those patients susceptible to present
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them. Samples like this seldom occur in practice. Therefore, the confidence 

interval might indicate tha t the additional param eter explains between 25.9% 

and 37.8% of the zero-increases in damaged joints, regardless of the subpop­

ulation to which the individuals belong. The confidence interval produced by 

the negative binomial m ixture model indicates tha t a proportion as small as 

1.5% of the population with PsA might never develop damaged joints. Such 

a small proportion might be clinically unim portant.

Thus, the estim ate of the additional param eter is significantly greater 

than zero for the two models with added zeros. However, in the Poisson 

regression model, care must be taken to interpret it as the proportion of 

individuals who are not susceptible to damaged joints. In the negative bino­

mial regression model, the estim ated proportion of patients not susceptible to 

damage joints can be so small that its practical usefulness is arguable. Thus, 

on balance, I believe the results obtained do not establish that individuals 

with PsA are in fact divided into two groups. This hypothesis needs to be 

investigated more thoroughly with additional data.

In the three models examined here, the number of damaged joints recorded 

up to the last assessment is the most significant covariate for predicting the 

mean increase in damaged joints between consecutive visits. The param eter 

estim ating the effect of this covariate is positive so the more damaged joints 

observed until the last assessment, the bigger the increase in the number of 

damaged joints becomes. For the two negative binomial regression models, 

the type of medication taken before participating in the study also has a 

significant effect on the mean increase in damaged joints. However, for the 

Poisson regression model with added zeros, a discrete variable - the number 

of effused joints observed on the first clinic visit - also has a significant effect 

on the mean increase in damaged joints.

The tables of observed and expected counts show tha t the Poisson re­

gression model with added zeros for repeated observations produces a poor 

fit compared with tha t of the negative binomial regression models. Further­

more, the param eter estimates and the contingency tables of the two negative
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binomial regression models examined here are similar. The one without the 

additional param eter is preferred unless further studies confirm that a sub­

population of patients with PsA do not develop damaged joints and it is 

clinically im portant to identify these cases. Also, the negative binomial re­

gression model for repeated observations is more parsimonious so it is easier 

to interpret and to fit using standard statistical software.

In summary, the three models examined in this chapter suggest th a t the 

rate at which the joints are damaged between clinic visits is better explained 

by a Poisson model with a random patient specific effect, i.e. the negative 

binomial model, rather than by a subpopulation of individuals who never 

develop damaged joints. Only some of the covariates used to model the 

transition rates of the Markov regression model had a significant effect on 

the mean of the negative binomial regression model for repeated observations. 

It can not be expected that the same covariates have a comparable or even 

significant effect on models with different response variables. The fit of the 

negative binomial regression model might be improved by considering other 

covariates. However, in this chapter I focused on techniques to measure 

the goodness of fit of models for repeated observations and not on covariate 

selection procedures.
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C hapter 4

C om parison betw een  th e  

M arkov and th e  negative  

binom ial regression m odels

4.1 Introduction

In this chapter I examine the fit of the negative binomial regression model 

for repeated observations. I also compare it to the Markov regression model 

on the basis of goodness of fit. This comparison method has the lim itation 

tha t it does not indicate formally whether one model is significantly better 

than the other.

A reasonable comparison between the two alternative models can only 

be done by fitting them  to the same data. The data used to  fit the Markov 

regression model is a subset of the one used to fit the negative binomial 

regression model for repeated observations. The largest data  set refers to a 

longer follow-up period in which additional observations were obtained for 

some individuals and new patients entered the PsA study. Also, observations 

corresponding to 1 0  or more damaged joints were retained in the largest data 

set to fit the negative binomial regression model.

Use of the smallest data  set for comparative purposes would disregard
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valuable information recorded in the extended follow-up period. On the 

other hand, the largest data set contains observations (transitions within 

the absorbing state) tha t are not used to fit the Markov regression model. 

Therefore, a third data set was created by eliminating from the largest one 

patients with 1 0  or more damaged joints in their first clinic visit and by 

om itting observations after 10 or more damaged joints were reached. In this 

way, a data set with 254 patients and 1455 transitions was obtained.

The Markov and the negative binomial regression models examined in 

previous chapters differ in several aspects. The response variable of the two 

models are different. In the negative binomial model for repeated observa­

tions the response is the increase in the number of damaged joints between 

consecutive assessments, so it is a discrete variable. In the Markov regression 

model, the response variable is the damage state occupied by an individual 

at every clinic visit, so it is a categorical (ordinal) variable.

The linear predictor of the two models is also different. In chapters 1  

and 2 , a different intercept was used in the model for each transition rate 

and all the prognostic factors were dichotomized. However, in chapter 3, 

the rate of damage between clinic visits depends on a baseline value and on 

the number of damaged joints recorded until the most recent assessment. 

Also, the erythrocyte sedimentation rate and the number of effused joints 

were analysed as discrete variables. In this chapter I redefine the linear 

predictor of the negative binomial regression model for repeated observations 

so tha t it resembles tha t of the Markov regression model. Therefore, the 

baseline value and the number of damaged joints recorded up to the last 

clinic visit, J,-j, are replaced by an intercept th a t depends on whether J,y 

is equal to zero, between 1  and 4 or in the range 5 to 9. The erythrocyte 

sedimentation rate and the number of effused joints recorded on the first 

clinic visit were categorized as Gladman, Farewell and Nadeau [1 ] did for the 

Markov regression model.

The techniques described in chapter 2 are applied to evaluate the goodness- 

of-fit of the Markov regression model and of the negative binomial regression
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model for repeated observations. This means tha t a Pearson-type goodness- 

of-fit statistic is calculated to measure the discrepancy between the observed 

and the expected counts. Its significance level is computed using bootstrap 

methodology.

The theoretical m aterial related to the negative binomial regression model 

for repeated observations examined in this chapter is presented in sections 

4.2, 4.3, and 4.4. These sections can be avoided by readers without a statis­

tical background.

4.2 D escrip tion  o f th e m odel

The response variable, Dij ,  is the number of joints presenting damage be­

tween consecutive clinical assessments. Here, I denote the covariate vector 

in the same way as in chapter 1, i.e. z\ =  (l,jz,-tl, . . .  ,Zi}P-{).  Based on the 

results obtained in the previous chapter, the distribution of Di j  given z\ is 

assumed to be well approximated by a negative binomial regression model 

with dispersion param eter 7  and mean:

p - i

Hij =  (Uj + 1 -  Uj) exp(£0o +  Y  $uZi,u) (4.1)
ii— 1

where a =  1,2,3. The baseline value of the linear predictor is $oa if J i j  (the 

number of damaged joints observed up to time t i j )  is contained in set Sa 

where Si = {0}, S 2 =  (1 ,2 ,3 ,4 } , and S 3 = {5 ,6 ,7 , 8 ,9}. The likelihood 

function for the estimation of 7  and S' = (6 0 1 , S0 2 , $0 3 5 • • • > ls:

i J i f J i  ^ , j ! r ( 7 _ 1 ) V l  +  7 / i * , j /  V l  +  7 f i i j

4.3 T he goodness o f fit sta tistic

The expected counts are estim ated by first calculating ei j (k ), the probability 

of an increase offc(fc =  0 , l , 2 , . . . )  damaged joints for patient i in an interval 

of length tij+1 — t ij  where i = 1 , 2 , . . . ,  n and j  = 1 , 2 , . . . ,  nrii, i.e.
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Ideally, for the first observation period the probabilities should be

grouped according to the value of k, the covariate pattern , and the time 

elapsed between the first two clinical assessments. This process should be 

repeated for each observation period j  =  1 ,2 , . . .  , m ,_i. In panel data, the 

heterogeneity between the number of assessments (m,) and the variability 

between the tim e elapsed between clinical visits (L j+ i — ti j )  can be a hinder- 

ance in applying such procedure. In a first instance, the observation period 

can be ignored as the proposed model assumes tha t D ij  depends solely on 

the distance: tij+i — t i j ,  regardless of the time at which the assessments are 

made. However, in order to detect different departures from the hypothe­

sised model it is advisable to group the €ij(k) in several ways by considering 

different classification criteria in each case.

Here I classify the estim ated probabilities t i j ( k )  according to the value of 

the response variable (D ij) ,  the quantiles of the time elapsed between suc­

cessive observations, and the covariate pattern. Theoretically, the response 

variable can assume an infinite number of values. These should be grouped 

into R  levels with approximately the same number of observations. These 

levels will be indexed by the letter r (r = 1 ,2 , . . . ,  jR). The le tter L will denote 

the number of categories obtained by calculating the quantiles of tij+i — t ij\  

let I represent the I-th  category. The lower and upper bounds of category I 

are, respectively, the ^-100%  and the £100% quantiles of titj+i — t i j . Anal­

ogously, C will denote the to tal number of groups defined by the partition of 

the covariate space; c will refer to the c-th group.

Let eirc be the sum over all the ejj(fc) such th a t k is contained in level r, 

z\ belongs to group c, and the width of the interval ( t i j , t i j+ i)  is contained in 

category I. Similarly, n/rc will represent the total number of response variables 

whose value is contained in level r, associated to a covariate vector in group 

c and a tim e interval contained in category /. The ratios (n/rc — ejrc)2 /e /rc



measure the discrepancy between the observed and expected counts. The

sum of these ratios is defined as the goodness of fit statistic for the negative

binomial regression model for repeated observations.

r M  =  E E E K l ~ e ' , c ) 2  (4-2)
1=1 r=l c=l eirc

The contingency table of observed and expected counts has L x  R  x C 

cells but only L x  (R  — 1) x  C are independent because YskLo ei,j(k) =  1  so 

XlJLi eirc bas a fixed value.

4.4 T esting th e adequacy o f th e  m odel

In this section I describe the bootstrap algorithm used to calculate a signifi­

cance level for the statistic (4.2). The idea is to estim ate the distribution of 

the goodness of fit statistic under the hypothesis tha t the negative binomial 

regression model for repeated observations fits the data. This is accomplished 

by simulating several data sets from the hypothesized model. Each data  set 

is then used to estim ate the parameters of the model defined by the null 

hypothesis and the goodness of fit statistic.

The number of damaged joints for patient i produced by the bootstrap 

algorithm up to time is denoted as J*j. It is assumed that =  

J ifi, where J t|i is the number of damaged joints recorded for patient i in 

the first clinic visit. The increase in the number of damaged joints given 

by the bootstrap algorithm, .D* •, is obtained by simulating an observa­

tion from the negative binomial regression model with param eters 7  and 

f iij  = (U,j+i ~  ti,j) exp(<S0a +  E«=i &uZi,u)- The value of J*j+1 is then com­
puted as J * j + 1 =  + If J * j + 1 <  9 and j  +  1  <  m,- then D*j+l and J*j+2

are calculated in the same way, otherwise the process is stopped. Thus, the 

number of response variables generated for patient z, is less than or equal 

to the to tal number of clinical assessments (m*). Once a sequence of obser­

vations has been generated for each patient, the negative binomial regression 

model with mean given by (4.1) is fitted to the bootstrap data  and statistic
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Table 4.1: Estim ated parameters and asymptotic standard deviations for the 

negative binomial regression model for repeated observations (third PsA data 

set).

Param eter Estim ates

Dispersion param eter 8.9795 (0.8706)

Baseline constant for the number of 

damaged joints up to the last assessment

Equal to 0 

Between 1 and 4 

Between 5 and 9

-1.2135 (0.1684) 

-0.4877 (0.3052) 

0.4121 (0.3002)

ESR, < 15 m m /h 

Num. effused joints, >  5 

Disease modifying drugs, Yes 

Use of corticosteroids, Yes 

Initial state 2 

Initial state 3

-0.3410 (0.2046) 

0.4114 (0.2611) 

0.7647 (0.3314) 

0.4345 (0.2113) 

-0.0189 (0.3006) 

-1.4083 (0.5087)

(4.2) is calculated. This process is repeated several times. The p-value is 

the proportion of bootstrap statistics greater than the value of the statistic 

obtained for the original data.

4.5 G oodness-of-fit for th e negative b inom ial 

regression m odel for repeated  observa­

tions

The negative binomial regression model for repeated observations fitted 

to the third PsA data  set gives the estimated param eters and asymptotic
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Table 4.2: Relative rates of damage for each, prognostic factor in the negative

binomial regression model for repeated observations (third PsA data set).

Prognostic factor

Relative rate 

of damage

Erythrocyte sedimentation rate

> 15 m m /hr 1

< 15 m m /hr 0.711

Number of effused joints

< 5 1

>  5 1.509

Disease modifying drugs

No 1

Yes 2.148

Use of corticosteroids

Yes 1

No 1.544
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standard deviations (in brackets) shown in Table 4.1.

The table shows that the prognostic factors for type of medication are 

the only ones with a significant effect on the rate at which the joints are 

damaged between clinic visits.

The first baseline value in Table 4.1 indicates tha t patients with all prog­

nostic factors coded as zero and with zero damaged joints up to the most 

recent clinic visit develop 0.297 (=  e-1,214) damage joints within 1  year (or 

0.149 damage joints in 6  months). Analogously, individuals with all prognos­

tic conditions equal to zero and having between 5 and 9 damaged joints up 

to their last assessment develop 1.5 damage joints in one year.

Relative rates should always be viewed as a comparison of two patients 

with identical inter-visit periods. The relative rates of damage quantify the 

risk of developing damage joints by comparing two individuals with the same 

characteristics except that one has certain condition coded as one while the 

other has tha t condition coded as zero. For example, Table 4.2 indicates that 

patients who took disease modifying drugs (DMD) before participating in the 

study have a risk tha t is 2.148 times higher of developing damaged joints as 

compared to patients who did not take DMD. More explicitly, patients with 

0 damaged joints on their latest assessment, having less than 5 effused joints 

and an erythrocyte sedimentation rate of 15 m m /hr or more in their first 

clinic visit and taking disease modifying drugs (except corticosteroids) before 

entering the study develop an average of 0.64 (=  e - 1 -2 1 4 + 0 -7 6 5  =  0.29 7 x 2.148) 

damage joints in one year. Analogously, subjects with the same character­

istics but taking none or nonsteroidal antiinflammatory medications before 

participating in the study develop an average of 0.297 (=  e“ 1-214) damage 

joints in 1 year. Notice tha t 0.64/0.297 is equal to 2.148, the relative rate of 

damage associated to DMD in Table 4.2.

A three dimensional contingency table was constructed to examine the 

fit of the negative binomial regression model for repeated observations. The 

estim ated probabilities and the observed increases in damaged joints were
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Table 4.3: Contingency table of observed and expected counts for the neg­

ative binomial regression model for repeated observations (third PsA data 

set).

Increase in the number of damaged joints

Prognostic Inter-visit Zero One or Two Three + Total

Factors Period (years) Obs. Exp Obs. Exp Obs. Exp Obs.

0.038 - 0.479 91 87.38 6 7.45 0 2.18 97

0.479 - 0.518 8 8 79.94 2 7.67 0 2.39 90

Zero 0.518 - 0.652 83 83.00 6 8 . 6 6 6 3.35 95

0.652 - 1.062 8 8 86.39 9 1 0 . 0 1 4 4.60 1 0 1

1.062 - 9.777 73 74.08 13 10.53 8 9.39 94

0.038 - 0.479 116 116.54 1 0 10.80 5 3.66 131

0.479 - 0.518 125 12S.85 15 13.41 8 5.74 148

One 0.518 - 0.652 119 123.97 19 13.57 6 6.46 144

0.652 - 1.062 1 2 0 111.57 9 13.74 5 8 . 6 8 134

1.062 - 9.777 107 108.42 23 15.94 1 2 17.64 142

0.038 - 0.479 54 55.72 8 5.83 2 2.45 64

0.479 - 0.518 45 45.99 3 5.42 6 2.60 54

Two -f 0.518 - 0.652 46 44.04 4 5.17 2 2.80 52

0.652 - 1.062 42 42.84 7 5.98 5 5.18 54

1.062 - 9.777 33 40.81 9 6.23 13 7.96 55

Totals 1230 1229.54 143 140.41 82 85.OS 1455
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Table 4.4: Table of observed and expected counts for the negative binomial

regression model for repeated observations (third PsA data set).

Increase in the Num. 

of Damaged Joints

Observed

Count

Expected

Count

Scaled

Differences

0 1230 1229.545 0 . 0 0 0 2

1 96 9S.952 0.0881
2 47 41.445 0.7446
3 1 2 22.764 5.0895
4 1 1 14.221 0.7296
5 13 9.617 1.1900
6 1 0 6.871 1.4252
7 6 5.113 0.1539
8 7 3.927 2.4059
9 2 3.092 0.3S58

1 0  + 2 1 19.454 0.1229

Total 1455 1455.001 12.3356
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classified into R  = 3 levels depending on whether the response variable was 

equal to an increase of 0  damaged joints (level 1 ), an increase of one or two 

damaged joints (level 2), or an increase of 3 or more damaged joints (level 3). 

Based on the number of prognostic conditions equal to one, the estim ated 

probabilities and the observed increases in damaged joints were classified into 

C = 3 categories. The prognostic factors are the erythrocyte sedimentation 

rate and the number of effused joints recorded on the first visit as well as 

the type of medication taken before participating in the study. Category 

1  refers to individuals with all prognostic factors coded as zero, category 2  

corresponds to subjects with one prognostic factor coded as one, and category 

3 refers to patients with 2 or more prognostic conditions equal to one. W ith 

respect to the tim e elapsed between successive clinic visits, the estim ated 

probabilities and the observed increases in damaged joints were classified 

into L =  5 categories defined by the quintiles of the inter-visit periods. (For 

the third PsA data set, the median and the mean of the inter-visit periods 

are 0.575 years and 0.995 years respectively.)

Table 4.3 contains the observed and expected counts for the negative 

binomial regression model for repeated observations. The contingency table 

has 45 =  L x R  x C cells but only 30 = L x (R  — 1) x  C are independent. 

The value of the goodness of fit statistic defined by expression (4.2) is 40.06.

The column totals show that 1230 (84.5%) increments are equal to zero 

damaged joints, 143 (9.8%) increments are equal to 1 or 2 damaged joints, 

and the remaining 82 (5.6%) increments are equal to 3 or more damaged 

joints. This suggests that, in PsA, the process leading to damaged joints is 

slow. For some time, patients have none or a constant number of damaged 

joints.

From a clinical point of view it is reasonable to expect tha t more damaged 

joints occur the longer the tim e elapsed between visits. This is reflected in 

the columns for an increase of one or two and three or more damaged joints 

where the cells containing more observations correspond to patients assessed 

over periods longer than 1.062 years - regardless of the number of prognostic
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factors codec! as one 1.

Nearly 50% (699 x 100%/1455) of the observed increments in damaged 

joints correspond to patients with one prognostic factor coded as one.

There is good agreement between the observed and expected counts in the 

first column of Table 4.3. The bold numbers in the next columns highlight 

the observed and expected counts that contribute with more than two units 

to the value of the goodness of fit statistic. Note tha t the column tha t refers 

to increments of one or two damaged joints has three cells with bold numbers 

while the column containing increments of three or more damaged joints has 

five cells with bold numbers. Thus, the negative binomial regression model 

produces accurate predictions for increases of zero damaged joints but not 

for increments of one or more damaged joints.

The highlighted counts in the first two rows of Table 4.3 indicate that 

the negative binomial regression model overestimates the num ber of response 

variables equal to one or more damaged joints when the tim e elapsed between 

visits is less than 6  months and all the prognostic factors are equal to zero. 

In all the other cells with bold numbers, the expected count is smaller than 

the observed count. Most of these cells contain data of patients having at 

least one prognostic factor coded as one and intervals between visits of 6  

months or more. This non-random pattern  of observed and expected counts 

suggests tha t patients with a large number of damaged joints tend to delay 

their visit to the PsA clinic. Perhaps these patients are reluctant to see the 

clinician unless they feel bad.

The p-value obtained by generating one thousand bootstrap data  sets 

from the estim ated negative binomial regression model for repeated observa­

tions is 0.076 =  76/1000. Then, although the proposed model is not entirely 

satisfactory it is not rejected at the 5% and 1% critical levels usually used in 

practice.

1The distribution of the inter-visit periods greater than 1.062 years is the following: 

134 (9.21%) time intervals are between 1.062 and 2 years while 34 (2.34%) elapsed times 

are greater than 5 years.
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Another contingency table was constructed to examine the fit of the neg­

ative binomial regression model for repeated observations. The estim ated 

probabilities and the observed number of increments in damaged joints were 

grouped into eleven categories defined by the values of the response variable, 

regardless of the covariate pattern  and the time elapsed between assessments. 

The observed and expected counts as well as their weighted discrepancies are 

shown in Table 4.4. The data set contains 59 (4.05%) increments between 3 

and S damaged joints. Their observed counts range from 13 to 6  while the 

expected counts decrease from 22.76 to 3.93. The goodness of fit statistic, 

defined as the sum of the scaled differences, is equal to 12.34. The smallest 

contribution to the goodness of fit statistic comes from the category con­

taining increments of zero damaged joints. The largest contributions to the 

statistic correspond to increments of 3 and 8  damaged joints. In the first 

case, the expected count is almost twice as big as the observed count while 

in the second case the expected count is nearly half the value of the observed 

count. The one thousand bootstrap data sets used to calculate the p-value 

for Table 4.3 were used to compute the significance level of the test statistic 

associated to Table 4.4. The p-value thus obtained is 0.199 =  199/1000. As 

previously concluded, the negative binomial regression model for repeated 

observations is not rejected.

Tables 4.4 and 3.5 suggest that the overall fit of the negative binomial 

models examined here and in the previous chapter are similar although they 

were fitted to different data sets.
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Table 4.5: Estim ated param eters and standard deviations for the Markov

regression model fitted to the third PsA data set.

Transition Rates

Param eter 1  -> 2 2 -> 3 3 -> 4

Intercept -2.46 (0.14) -1.65 (0 .2 0 ) -1.30 (0 .2 2 )

Effused joints >  5 0.31 (0.18) 0.31 (0.18) 0.31 (0.18)

ESR < 15 m m /h -0.37 (0.18) -0.37 (0.18)

Corticosteroids, Yes 0.35 (0.15) 0.35 (0.15) 0.35 (0.15)

Disease modifying drugs, Yes 0.48 (0 .2 1 ) 0.48 (0 .2 1 ) 0.48 (0 .2 1 )

Initial state 2 -0.60 (0.25) -0.36 (0.30)

Initial state 3 -1.30 (0.45)

4.6 R esu lts for th e  M arkov regression  m odel

The Markov regression model fitted to the third PsA data  yields the es­

tim ated param eters and asymptotic standard deviations shown in Table 4.5. 

The estimates are comparable to the ones obtained by Gladman, Farewell, 

and Nadeau, see Table 1.6.

The contingency table of observed and expected counts is presented in 

Table 4.6. It has 90 =  3 x 5 x 6  cells but only 45 are independent. The test 

statistic  is equal to 72.161. The bold numbers highlight the observed and 

expected counts tha t contribute with more than two units to the goodness of 

fit statistic. The m ajority of the highlighted counts are found in the group 

with one prognostic condition equal to one. As in Table 2.2, the m ajority of 

the highlighted observed counts are bigger than their expected count. Only 

three pairs of bold numbers are such that the observed count is smaller than 

the expected count. They are located in the group with one prognostic factor 

coded as one and have an elapsed time between observations greater than 

0.65 years.
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Table 4.6: Contingency table of observed and expected counts for the Markov
regression model fitted to the th ird  PsA data set.

Prognostic
Factors

Inter-visit 
Period (years) Count

Transition
1  1 1  1 2  -> 2 2  -+ 2 3 -> 3 3 -> 3

Zero

0.038 - 0.479 Obs
Exp

62
61.00

1

2 . 0 0

18
17.08

0

0.92
15

14.73
1

1.27
0.479 - 0.518 Obs

Exp
60

58.44
1

2.56
2 0

18.57
0

1.43
9

7.94
0

1.06
0.518 - 0.652 Obs

Exp
53

57.10
7

2.90
19

19.59
2

1.41
13

1 2 . 2 1

1

1.79
0.652 - 1.062 Obs

Exp
59

58.75
4

4.25
28

26.37
1

2.64
6

7.31
3

1.69
1.062 - 9.777 Obs

Exp
52

51.29
1 1

11.71
23

19.80
3

6 . 2 0

3
2.99

2

2 . 0 1

One

0.038 - 0.479 Obs
Exp

65
63.70

1

2.30
38

41.55
6

2.45
IS

19.21
3

1.79
0.479 - 0.51S Obs

Exp
69

70.74
5

3.26
30

33.51
6

2.49
33

34.29
5

3.71
0.518 - 0.652 Obs

Exp
69

73.97
9

4.03
34

34.86
4

3.14
25

24.51
3

3.49
0.652 - 1.062 Obs

Exp
54

52.99
3

4.013
46

42.28
2

5.72
28

23.90
1

5.10
1.062 - 9.777 Obs

Exp
70

64.13
14

19.87
30

26.75
8

11.25
IS

13.97
2

6.03

Two -f

0.038 - 0.479 Obs
Exp

2 1

23.95
4

1.05
28

26.91
1

2.09
8

9.14
2

0 . 8 6

0.479 - 0.518 Obs
Exp

16
17.07

2

0.93
25

24.91
2

2.09
7

8 . 2 0

2

0.80
0.518 - 0.652 Obs

Exp
27

25.47
0

1.53
17

16.98
2

2 . 0 2

5
4.97

1

1.03
0.652 - 1.062 Obs

Exp
14

15.50
3

1.50
2 2

19.74
1

3.26
1 0

10.94
4

3.06
1.062 - 9.777 Obs

Exp
2 1

20.40
6

6.60
14

15.28
8

6.72
4

3.43
2

2.57
Total Obs 712 71 392 46 2 0 2 32
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The significance level of the test statistic associated with Table 4.6 was 

obtained by the bootstrap algorithm described in section 2.6. One thousand 

bootstrap data sets were generated independently from the ones used to test 

the goodness of fit of the negative binomial regression model for repeated 

observations. Twenty of the resulting contingency tables had cells with zero 

observed and expected counts. These cells were ignored in the calculation 

of the bootstrap goodness of fit statistic. Only 8  bootstrap statistics were 

greater than 72.161, therefore the p-value is 0.008 =  8/1000. As concluded in 

chapter 2, the Markov regression model does not give an adequate description 

of the PsA data.

4.7 C onclusions

Ten parameters were estim ated to fit the Markov and the negative binomial 

regression models. The Markov regression model has three param eters, the 

transition rates, that describe the progression in damage while the negative 

binomial model has only one param eter for this purpose. Nevertheless, the 

only difference between the linear predictors of the two models is the way in 

which the effect of the erythrocyte sedimentation ra te  (ESR) was expressed. 

In the Markov regression model it was assumed that the ESR has no effect on 

the progression of damage once a patient had reached state 3 {i.e. once the 

individual has 5 or more damaged joints). However, in the negative binomial 

regression model it was assumed that the effect of the ESR is constant, 

regardless of the number of damaged joints observed up to the last clinic 

visit. This discrepancy between the linear predictors of the two models is 

unlikely to produce a substantially better fit for any model.

The contingency table constructed for the Markov regression model, Table

4.6, has 90 cells while tha t for the negative binomial regression model, Table 

4.3, has 45 cells. The difference is due to the way in which the values of 

the response variable were classified. In the Markov regression model, the 

response variable was classified into six categories depending on whether
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or not a change of state was observed. Only three of these six categories 

are independent so the contingency table has 45 independent cells. For the 

negative binomial regression model, the response variable was classified into

3 levels defined by the increase in the number of damaged joints between 

consecutive assessments. The observed and expected counts in any one level 

depend on the values obtained for the other two levels. Consequently, the 

contingency table has 30 independent cells. The difference in size of the tw'o 

contingency tables explains why only for the Markov regression model some 

bootstrap data sets produced cells with zero observed and expected counts.

Em pty cells can be avoided by reducing the num ber of categories of one 

or more classification criteria. For example, transitions to the same dam­

age state  (i.e. 1  —> 1, 2 —» 2, and 3 —> 3) can be grouped in one category 

while the rest of the transitions can be classified together in another cate­

gory. This means tha t the estim ated transition probabilities and the observed 

states would be classified into R  =  2  classes instead of six. Such a coarse 

classification can hide patterns in the expected counts and produce a spuri­

ous significance level. Furthermore, empty cells and small expected counts 

should be avoided when the asymptotic distribution of the test statistic is 

used but it is less critical when the significance level is simulated.

The total number of observed and expected counts in the 3 groups that 

define the partition of the covariate space and in the 5 classes in which the 

tim e elapsed between visits were classified coincide in Tables 4.3 and 4.6. 

The marginal totals for the response variable are not comparable. In Table

4.6, a to tal of 1306 =  712 +  392 +  202 transitions are contained in the 

categories referring to no change in damage state. This to tal is greater than 

1230, the number of increments equal to zero damaged joints in Table 4.3. 

This discrepancy is caused by the fact tha t a transition from state 2 to state 

2 represents an increase of 0, 1, 2, or 3 damaged joints. Analogously, a 

transition from state  3 to state  3 is equivalent to an increase of 0, 1, 2, 3, or

4 damaged joints.

The number of zero increments in damaged joints, representing 84.5% of
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the data, are well described by the negative binomial regression model for 

repeated observations. On the other hand, 89% of the observations referring 

to sequences of data in which a particular damage state is repeatedly recorded 

are adequately described by the Markov regression model. Thus, the Markov 

model fits well observations in which the number of damaged joints recorded 

at consecutive visits is the same or different provided tha t they belong to the 

same damage state.

Few highlighted observed counts are smaller than their expected count 

in Tables 4.3 and 4.6. These cases are concentrated in one category defined 

by the prognostic factors and correspond to patients observed either for long 

(in the Markov model) or short (in the negative binomial model) periods. 

The highlighted observed counts that are greater than their expected count 

correspond to increments greater than zero damaged joints. This means that 

the high rate of damage experienced by some patients was not appropriately 

described by either of the two models. A covariate or another model can be 

pursued to explain the behaviour of a small proportion of individuals, 15.5% 

or less, who experienced a rapid progression in damage. Recall th a t time 

varying covariates were not considered and, in the negative binomial model, 

the effect of some prognostic factors was not significantly different from zero.

Based on Table 4.3, the significance level associated to the negative bi­

nomial regression model for repeated observations is 0.076 while tha t of the 

Markov regression model is 0.008, based on Table 4.6. Thus, the negative 

binomial regression model is not rejected like the Markov regression model 

but this does not mean that the two models give a significantly different fit 

to the PsA data. Special techniques have been proposed in the literature to 

compare and, ultimately, to choose between two alternate statistical models. 

The main obstacle to apply these techniques to compare the Markov and the 

negative binomial regression models is the difference between their response 

variables.
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C hapter 5 

C onclusions

Approximately one third of the patients who attended the Psoriatic A rthritis 

Clinic at the University of Toronto did not develop damaged joints during 

the course of the study. The PsA data set is also characterized by having 

few patients with a large number of damaged joints developing between clinic 

visits.

Gladman, Farewell and Nadeau proposed the use of a stationary Markov 

regression model to identify prognostic indicators for disease severity in pso­

riatic arthritis. The response variable defined by the authors is the damaged 

state recorded at each clinic visit. In this thesis I propose three alternative 

models to describe the rate at which joints are damaged between consecutive 

assessments. The response variable of these models is the increase in the 

number of damaged joints between clinic visits. The goodness-of-fit analyses 

suggest tha t the Markov regression model and the negative binomial regres­

sion model for repeated observations are the models that best describe the 

PsA data sets.

A goodness of fit test of the negative binomial regression model for re­

peated observations produced a significance level of 0.076 not leading to 

rejection. The model best describes increments of zero damaged joints be­

tween clinic visits. In this model, the erythrocyte sedimentation ra te  and 

the number of effused joints recorded at the initial visit do not have a sig-
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nificant role. In contrast, a goodness-of-fit test indicated th a t the Markov 

regression model does not provide an adequate explanation of the data lead­

ing to a significance level of 0.008. Nevertheless, the model appropriately 

describes transitions to the same damage state which represent increments 

of zero or more damaged joints. In this model,the three prognostic factors 

have a significant effect on the transition rates.

In the negative binomial regression model for repeated observations, 15.5% 

of the observations represent increases of one or more damaged joints. Some 

of these observations are not adequately described by the model. They be­

long to individuals who visited the clinician after 0.652 years when they had 

experienced an increase of several damaged joints. The tim e elapsed between 

the visits of these patients might not be independent of the damage. Analo­

gously in the Markov regression model, the transitions to a different damage 

state represent 1 1 % of the data. Some of these observations are not well 

described by the model. They come from patients who experienced a rapid 

progression in damage and who attended the clinic sooner than expected, in 

0.652 years or less. Thus, the visits of these patients might not be randomly 

spaced on time violating the assumption that the times of clinic visits are 

independent of the response variable. Summarizing, patients with a large 

number of damaged joints are not well described by the negative binomial 

regression model while patients with a rapid progression in damage are not 

well represented by the Markov regression model.

The Markov and the negative binomial regression models for repeated ob­

servations appropriately describe the patients who did not develop damaged 

joints during the course of the study. No further improvement was obtained 

by assuming that a subpopulation of individuals with PsA are not suscep­

tible to damaged joints and by fitting a mixture model to the data. This 

conclusion was reached even though an estimate, significantly greater than 

zero, was obtained for the proportion of individuals who never develop dam­

aged joints. The Poisson m ixture model with added zeros for longitudinal 

data seems to overestimate such proportion. On the other hand, the estim ate
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produced by the negative binomial m ixture model for repeated observations 

may not have clinical relevance.

A Pearson-type goodness-of-fit statistic was proposed to examine the fit 

of the models. These statistics are appropriate for categorical data. They are 

also well known and easy to interpret. General guidelines exist to construct 

the contingency table. Nevertheless, decisions must always be made concern­

ing the dimension of the table, the number of categories of each classification 

criterion and the way in which the limits between the categories are defined. 

These decisions affect the value of the test statistic, its null distribution and 

the significance level of the test.

Contingency tables of three or four dimensions were defined to examine 

the goodness of fit of the models fitted to the PsA data. The classification 

factors considered were: the values assumed by the response variable, the 

tim e at which the measurements are made, the tim e span between obser­

vations and the values of the covariates. A m ethod was proposed here to 

classify panel data according to the time elapsed between observations. This 

m ethod is an extension of Hosmer and Lemeshow’s technique to group the 

estim ated probabilities of a logistic regression model.

W hen the time elapsed between observations is variable and covariates 

are measured, the exact distribution of the proposed statistic is intractable. 

Bootstrap methodology was used to estimate the exact distribution of the 

test statistic under the null hypothesis. The simulations suggest tha t if the 

transition rates do not depend on covariates the estim ated distribution is well 

approximated by a chi-square distribution with degrees of freedom equal to 

the number of independent cells in the table minus the number of estim ated 

param eters. For Markov regression models, this approximation is not very 

accurate. To some extent, this may be caused by the existence of cells with 

small expected values or the omission of cells without observations. For 

Markov regression models, the true distribution of the test statistic might be 

approximated by a chi-square with more degrees of freedom than given by 

the number of independent cells in the contingency table minus the number
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of estim ated parameters.

Models that provide a better fit to the PsA data over a wider range of 

values of the response variable need to be investigated in the future. A first 

approach would be to fit a negative binomial regression model for repeated 

observations with other prognostic factors different from the ones used to fit 

the stationary Markov regression model. Threshold models have successfully 

been used to describe univariate observations with a small proportion of non­

zero values. These non-parametric models could be generalized to describe 

correlated data. Alternatively, more sophisticated models can be explored 

in which the response variable at the next observation time depends on the 

present outcome and the current covariate values. This means that the effect 

of the covariates is not assumed to be constant over time but instead varies 

along with the response variable.

I assumed that, in the Markov regression models, the future damage state 

depends only on the current state. Similarly, in the models for discrete lon­

gitudinal data, the increase in the number of damaged joints between clinic 

visits depends on the number of damaged joints recorded up to the last as­

sessment. Other approaches to model the correlation between the response 

variables of an individual can also be considered. For example, the Markov 

models can be generalized so tha t the future observation depends not only 

on the present one but also on past observations. The generalized estim at­

ing equations (GEE) approach is frequently used to make inferences about 

marginal models for response variables. This is accomplished by making 

weak assumptions about the correlation structure of the data. Random ef­

fects models for repeated observations should be considered if the patients 

with PsA are not homogeneous {e.g. because they do not have the same sus­

ceptibility to damage joints). In this case, an unobserved random variable, 

specific to each person, is incorporated into the model. Thus, these models 

have two random terms, one is the subject-specific effect and the other is the 

error. Consequently, random effects models are more difficult to fit than  the 

models considered in this thesis.
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Tests for separate families of hypothesis might be generalized to compare 

and choose between two models with different response variables. Also more 

powerful goodness-of-fit tests, such as those based on likelihood ratio statis­

tics, should be investigated to measure the adequacy of models for discrete 

response variables measured repeatedly over time. This includes m ixture 

models for longitudinal data.
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A p p en d ix  A

Form ulas for th e  estim ated  

tran sition  probabilities

W hen K  =  4, the transition probabilities P i , j ( i , 2 )  and pt,j(2 ,3 ) are obtained by 

substituting a =  1 and a — 2 in expression (2 .1 ) respectively. This expres­

sion is only valid when a -f 1  < K  (if K  is an absorbing state) so it can not 

be used to calculate P « , j ( 3 , 4 ) *

Proceeding in an analogous way as with Pi,j(a,a+1 ) it can be shown that 

P i , j {  1 ,3)  i s  calculated as:

+ t i j  + l * * ,J + 1 — t i , j  ~  *i(l) ~  ̂ ' (2 )

/  f r i(l) J  f r iW ( l  -  J  f r i{3) d tm  ) dtl{2) d ti{l)

A (  3) A , (2)

A;(2 ) — At(3)/ VAj(i) — A;(2 )
A, (3) A,- (3)

K(2) ~~ At(3)/ — A,(3)

exp 

exp

t*,j+ 1

A * '(i)

A ; ( 1)

exp 

— exp

/  tj,j tj,j+i A
v Al(2) JJ(2 )

t i , j  ~  t i , j + 1

A;i(3)

The estim ated transition probability from state 1  to state 4, Pitj(i,4 ), is ob­

tained by solving:

119



t i , j  + l ~  t i , j  t i , j  + 1 ^ i(l ) * t (2 )

J  f Ti{l) J  2) J  fTi{3) dti{3) dti(2) dti(l)
0

=  1  

+

A.-i ( i )

A i ( i )  — A j ( 2 ) /  \ A i ( i )  — A,-(3 )

A t( l )  ^ f t i , j  t i , j + 1‘ exp 1
A;

Ai(2)

A | ( l )  — A i ( 2 ) /  \ A t(2) — Aj(3)

A *(3)

i ( l )

A,-(2) A f ^ h j  ^*ij + 1— ' exp
\  A' (2 )

t i , j  ~  t i , j + lA.-«(3) exp
A,(2) — A , ( 3 ) /  V A ^ ! )  — A , ( 3 ) /  \  A,-(3)

The estim ate, , and in general Pij(a,a) V a = 1 , 2 , . . . ,  K  — 1, can be

calculated as:

P i , j ( a , a ) — 1 P i , i ( a , b )
b > a

or as:

P i , j ( a , c i )  ~  ^i,j) 1 P [ ^ i { a )  5 : ^ ij '+ l

In either case:

P i , j ( a , a )  — CXp
t*,j+ 1

A;i(a)
V a =  1 , 2 , . . . ,  /T — 1 . (A .l)

Patients in state  2 at tim e t i j  can be observed in states 2, 3 or 4 at time 

t i j +1 . It has already been explained how to calculate Pi,j(2 ,2 ) and p,.j(2 ,3 )- The 

estim ated transition probability Pt',j(2 ,4 ) is obtained as follows:

, j + 1 ~ t i , j  *«.j + 1 *i{ 2)

P*,j(2 ,4) =  J  f r iW J  f r t(3) «(3) dti ( 2 )

0  0

=  l  +  ( . Ai(2), )  exp ( tiJ ~  tiJ+1)
V ^ i ( 3 )  — a , ( 2 )  /  \  A , (2) /

Ai(3) exp

A,(2)

î,j ^t’i.7+1

A|(3) — A , (2) J  r \  Ai(3)

Finally, for patients in state 3, Pi,j(3 ,3 ) is given by expression ( A. l )  and Pi,j(3 ,4 ) 

is calculated as:
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A j(3 ,4 )  =  P(TH3) < tij+1 ~  t j j )  

=  1  -  exp
'  î(3} /
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A p p en d ix  B

D erivation  of th e  W eibull 

distribution  function

Let Tj-(a) be an exponential random variate with param eter X^a) = a+1 j.

Then, where a  > 0, is a continuous random variable with domain

(0, oo).

P(W i < Wi) = P ( T $  < Wi) =  P{TKa) < 0  =  1 -  e * p ( - ^ - )
' l(a) '

I f  X t { a )  =  g ^ [a )  t h e n

P ( W i  <  =  F w i ( w i \  Q i ( a ) , o t )  =  1 -  e x p ( - ( - ^ - )  }
I ' Q i ( a ) '  'i(a)

and

cl
- P W i { W f ,  f t ( a ) , a )  =  -

‘(a )

Therefore, has a Weibull distribution with param eters a  and
  \ l/c*

Qi{a) — t(a) ’

fwi(wi;6na),a) = - f - F Wi{wi] gi{a),a )  = - %- w?  1 exp( - \  
dWi Q°,a) I \Qi(a)J j
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