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Abstract

This paper provides a solution for fast haptic information gain during soft tissue palpation

using a Variable Lever Mechanism (VLM) probe. More specifically, we investigate the

impact of stiffness variation of the probe to condition likelihood functions of the kinesthetic

force and tactile sensors measurements during a palpation task for two sweeping directions.

Using knowledge obtained from past probing trials or Finite Element (FE) simulations, we

implemented this likelihood conditioning in an autonomous palpation control strategy.

Based on a recursive Bayesian inferencing framework, this new control strategy adapts the

sweeping direction and the stiffness of the probe to detect abnormal stiff inclusions in soft

tissues. This original control strategy for compliant palpation probes shows a sub-millimeter

accuracy for the 3D localization of the nodules in a soft tissue phantom as well as a 100%

reliability detecting the existence of nodules in a soft phantom.

Introduction

During the last decade, the human-robot or robot environment interactions have been one of

the main foci of research in robotics. Advances in tactile sensing [1, 2], compliant robotics [3,

4], soft robotics [5, 6] and new control methods [7], have been improving robot capability to

interact with the environment. This trend is one of the promising advances that can bring new

opportunities for robotic applications in the healthcare field. The possible outcomes of

human-robot interaction in medical application range from robot-assisted medical imagery

[8, 9], teleoperated surgery [10], medical training [11, 12] to robotic-assisted examination.

This paper focuses on medical palpation of soft tissue to localize hard nodules.

Robot-assisted palpation aims to use a robot to perform haptic examinations of a patient in

place of a medical practitioner. Often used as an early-stage examination, the goal of this haptic

investigation is to estimate the mechanical properties such as the texture, the stiffness, or the
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consistency of an organ. It can also help to track the size and the position of a nodule or a

tumor in soft tissues [13].

In such physical examinations, the compliance of the robotic probe plays an important role

due to several reasons such as safety and stability under tissue uncertainty. Since the compli-

ance is defined as the inverse of the stiffness, we mean by compliant system a physical system

with low stiffness. By opposition, a stiff system is a system with low compliance. We will delib-

erately use the two words compliance and stiffness inconsistently in this paper since some

ideas are more intuitive when expressed using the stiffness, while some others are more intui-

tive with the compliance. However, a stiff robotic probe to explore patient tissues relies only

on compliance of the tissues which increases the risks of hurting the patient. Our previous

study has shown that the compliance of the probe can be used to maximize haptic information

gain during hard nodule depth estimation in soft tissue exploration [14]. There have been sev-

eral approaches to give compliance to robots. These approaches can be based on mechanisms

such as Variable Stiffness Actuators (VSA) [15, 16], passive elements integration [17], or based

on control algorithms such as impedance controllers [18, 19]. The role of the compliance and

the impedance have been widely studied for stability analysis, disturbance rejection or energy

consumption, but the impact of such compliance on the perception remains an open question.

Thus, the mechanical impedance of a system can, for instance, be used to filter the information

and signals measured by a robot while interacting with the environment [20].

In the past, most approaches to robotics treated perception (sensing) and action (actuation)

as decoupled phenomena. It seems clear that in the context of haptic exploration or robotic

interaction with an uncertain environment, actions taken by the robot directly affect haptic

perception. Our approach presented in this paper is inspired by recent studies that provide a

better insight into the interaction between perception and action [14, 21]. In particular, we

propose a novel control algorithm tested with the Variable Lever Mechanism (VLM) probe

[22] to detect and localize an embedded nodule in soft tissues. Thanks to its controllable stiff-

ness and its two sensing modalities (kinesthetic and haptic) we used the VLM probe to demon-

strate that the compliance of the joints plays a significant role in the haptic detection, the

localization, and the depth estimation of a nodule. The proposed algorithm uses the compli-

ance of the VLM probe to perform either a local (longitudinal sweep) investigation using only

the tip-end of the probe or a wide (lateral sweep) investigation using the palmar region of the

probe’s tip and its tactile sensor. The stiffness is tuned to maximize the information gain

(entropy reduction in a random variable) during the explorations by using Bayes inference

and likelihood functions. These likelihood functions are built from a prior knowledge obtained

during previous palpation or thanks to Finite Element (FE) simulation.

The remainder of the paper is organized as follows. In the next section, the previous

research done on robot-assisted palpation are presented. We will give an insight into the

research we accomplished on variable stiffness palpation along with other approaches

addressed in the literature. Then, we describe the methods used to study the effect of the stiff-

ness of the VLM probe on the perception and detection of a hard nodule embedded in a soft

tissue phantom. In particular, we detail the VLM probe’s hardware, the phantom characteris-

tics, the lateral and longitudinal sweep experiments, and the Finite Element (FE) simulation.

The next section discusses the experimental and simulation results we obtained. The following

section presents the likelihood functions obtained experimentally and from the FE simula-

tions. The new algorithm to condition haptic perception and localize stiff inclusion in soft tis-

sues is then detailed and tested in another section. Finally, we discuss and conclude about the

performance of the algorithm and the impact of the stiffness variation on perception tasks.
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Related work

During the past two decades, we have witnessed an increasing trend to use Minimally Invasive

Surgery (MIS) procedures over open surgeries. Even if we can find some exceptions such as

robotic probes to measure the blood flow [23], most of the studies on robotically assisted pal-

pation have been motivated to give local information during MIS that the surgeon would have

obtained by manual palpation in open surgeries.

The majority of robotic palpation probes aims to detect hard inclusions in soft tissues. In

particular, these probes are mainly designed to detect tumors or anomalies which are generally

stiffer than the surrounding healthy tissue. The main types of sensors used to do so are the kin-

esthetic sensors and tactile sensors. In this paper, we refer to kinesthetic sensors, the sensors

that aim to give a signal related to the force or the torque applied at a probe joint level. On the

other hand, the tactile sensing is referring to fingertip contact sensing using taxel images. Tac-

tile sensing is usually representing the behavior of the mechanoreceptor at the skin level.

Finally, It should be noticed that in this section we omit work on medical imagery such as x-

ray, CT scans, or ultrasound which are also solutions to detect hard inclusions but not based

on haptic palpation.

Kinesthetic palpation probes measure the force and/or torque during the tissue indentation

by the probe. For instance, Ahn et al. [24] developed a force sensing probe for prostate cancer

detection and tested it on ex-vivo prostate tissue samples. They concluded on the interest of

studying the tissue elasticity to estimate the presence of a nodule. Thus, they gave the likeli-

hood of different elasticity levels in healthy and cancerous tissues respectively with the average

Young’s modulus they measured as well as the standard deviation. Liu et al. [25] and Sangpra-

dit et al. [26] have developed a rolling indentation probe to detect different abnormalities

embedded in porcine kidney samples. By computing a reaction force map after probing, they

studied the role of indentation and nodule depth and size on the force measurement. They

have shown in particular that the deeper and the smaller the nodule is, the hardest it is to detect

it.

Tactile sensing is based on the measure of the local contact pressure between the probe and

the tissue. Generally, the information given by these sensors is an array of values taken at spa-

tially distributed measurement points also called taxels. Several technologies have been used to

integrate tactile sensing in robotic palpation probes. For instance, Kwon et al. [27] designed a

tactile sensor for robotic palpation based on an array of pressure-sensitive resistors. Xie et al.
[28] used an array of optical sensors to measure the contact pressure during MIS palpation.

Trejos et al. [29] used a combination of tactile sensors and a kinesthetic sensor. The aim of

the tactile sensor is to give a pressure map of the palpated region where the kinesthetic sensor

is used only to control the robotic arm where the probe is attached to. They also mentioned

using a hybrid impedance controller optimized for a stiff arm with kinematic redundancy.

However, they did not investigate the impact of compliance during palpation. In our work, we

use tactile and kinesthetic sensing in succession and use probe stiffness control to improve

haptic perception efficacy during palpation.

Most of the previous work is based on a stiffness evaluation of the tissues and performed

with a rigid probe. The interest of using a compliant probe is not only to avoid relying on the

tissue compliance for safe robot-tissue interactions, but also to increase the robustness against

misalignment of the probe with the tissue. For example, the probes designed by Jia et al. [30]

or Faragasso et al. [31] are based on passive serial elastic components. A soft robotic approach

has been followed by Pacchierotti et al. [32] using the BioTac sensor that is based on the mea-

surement of the deformation and internal fluid pressure of a compliant fingertip.
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Palpation behavior also affects the quality of haptic perception [14, 33]. Several palpation

strategies have been proposed in the literature, but most of them have been developed for stiff

palpation probes. Therefore, these strategies do not include stiffness control. A common strat-

egy involves probing point by point to identify the local stiffness and refresh a stiffness map

each time a new point is available. It is the strategy used by Ayvali et al. [34] who used a Bayes-

ian optimization to determine where the next palpation point should be to reduce uncertain-

ties. Garg et al. [35] also used a point by point method with a Gaussian process adaptive

sampling in order to estimate the shape of the stiff inclusion efficiently. Using point by point

strategy, Hoshi et al. [36] proposed an algorithm to optimize the stiffness estimation of the pal-

pated tissues by coupling the force measurement with a predictive model based on the Finite

Element Method. Nichols et al. [37, 38] have developed a point by point palpation strategy

which is based on machine learning trained with ultrasonic elastography image. This algo-

rithm is able to segment hard inclusion in soft tissues by giving the shape of the hard inclusion

and an estimation of the local stiffness. Park et al. [39] presented the results of a similar

machine learning control strategy to segment real cancerous breast samples with a micrometer

scale probe. The point by point palpation strategy is really efficient for segmenting hard inclu-

sions or detecting the shape of these abnormalities, but the uncertainties decrease with the

number of points and it is often needed to use many points to obtain an accurate estimation.

Multiplying the number of points also means increasing the examination time of the tissue,

which can be inconvenient for the patient during an in-vivo examination.

Another approach to detect and diagnose hard inclusions in soft tissue is sweeping the

probe on soft tissues. This method gives spatially continuous information of the palpated tis-

sue, which reduces the time of examination, but the measured data often suffer from dynamic

disturbance and non-linear effects due to the viscoelasticity of the tissues. Chalasani et al. [40]

proposed a palpation strategy based on sweeping with a sinusoidal normal force profile. Since

only the point where the force is maximum are used for the estimation of the hard inclusion,

this strategy can be considered as a hybrid method between the sweeping method and point by

point method. Salman et al. proposed an algorithm for a stiff probe that computes an optimal

trajectory of sweeping palpation after based on prior knowledge obtained with point by point

palpation [41]. They, in particular, have shown that switching from point by point to sweeping

can save examination time. Ahn et al. [42, 43] have developed a probe for prostate cancer diag-

nostics. This probe performs a rotational sweep and measures the force during the sweep. The

force is then compared to experimental and FE simulations to diagnose if the tissue contains a

tumor or not. Based on the study of how humans perform palpation exploration, Konstanti-

nova et al. [44] proposed an autonomous probing strategy following an auto-regressive force

regulation to estimate the depth of a nodule in soft tissues. Nevertheless, all these sweeping

strategies have been developed for stiff probes.

Our previous studies [14, 45–47] were also inspired by how humans regulate stiffness of fin-

gers during soft tissue palpation. In the previous study [47], we have shown that the stiffness of

the arm and hand joints is modified during the longitudinal sweeping exploration of soft tis-

sues by varying the level of co-contraction of antagonistic muscles. The previous strategies to

control the probe’s stiffness was based on Markov chains and shown a reduction of the num-

ber of sweeps (5 Bayesian iterations to reach 80% of confidence) needed to estimate the depth

of a nodule compared to a strategy with a random stiffness. The new algorithm proposed in

this paper allows not only to estimate the depth of the nodule but also to perform the full 3D

localization. Contrary to the previous algorithm, the proposed strategy conditioned the likeli-

hood of the force peak prominence to minimize its variance and maximize the haptic informa-

tion gain. The compliance of the probe is used to switch from lateral sweep palpation, which

provides information for a wide area, to longitudinal sweep palpation, which investigates tissue
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along a straight line passing over the suspected location of the nodule, without reorienting the

probe. Finally, with this new strategy which combines tactile and kinesthetic measurements

with likelihood conditioning, we increased the size of the probed area, we added the localiza-

tion of the nodule, we improved the resolution of the depth estimation from 3mm (in [47]) to

0.2mm without increasing the number of Bayesian iterations (on average).

Materials and methods

To study the role of the joints’ stiffness on haptic perception during 3D localization of nodules

in soft tissue palpation, we first describe the experimental setups and protocols. In the follow-

ing subsections, the VLM probe hardware and phantom fabrication are presented. We then

describe the sweeping directions studied in this paper. Finally, the FE simulation used to

model the behavior of the probe during longitudinal sweep is detailed.

Variable stiffness palpation: The VLM probe

As described in [22], the VLM probe (see Fig 1) is composed of a variable stiffness joint based

on a variable lever mechanism and two sensors: a Cyskin tactile sensor [2] placed on the VLM

probe fingertip and an ATI NANO 25 placed at the equivalent wrist level. The stiffness varia-

tion of the VLM probe is based on position control of a flexible carbon rod. Changing the posi-

tion of this carbon rod modifies the active length (the part which can bend) of the rod and, by

cantilever effect, it changes the stiffness of the joint. An analytical model to correlate the car-

bon rod position to the equivalent angular stiffness of the joint has been given in our previous

study.

Fig 1 shows the design of the VLM probe. The VLM probe is based on a revolute variable

stiffness joint composed of 2 rigid links (the base link and the tip link) connected with a revo-

lute joint in parallel with a deformable carbon rod. This carbon rod acts as a variable spring

that allows the stiffness of the joint to be controlled thanks to an Actuonix L12-30-50-6-I linear

actuator. This actuator slides the carbon rod through the base link and the tip link changing

the length of the carbon rod that can be bent (active length). As one can see, the hole in the

base link has been designed such as that the carbon rod can slide axially but is constrained

radially to prevent bending of the rod in the base link. On the other hand, the hole in the tip

link is large enough to allow the carbon rod to bend in. A PTFE cylinder is used to transmit

the radial forces between the tip link to the carbon rod. This PTFE cylinder has been designed

Fig 1. VLM probe and phantom. Left: illustration showing the Variable lever mechanism of the VLM probe with a

mid-sagittal cut of the tip link and base link. Right: VLM probe and phantom with nodules with different depths.

https://doi.org/10.1371/journal.pone.0237379.g001
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to slide easily axially when the actuator is translating the carbon rod. Adjusting the active

length of the carbon rod changes, by cantilever effect, the amount of force required to bend the

rod and by consequence the angular stiffness of the probe.

In order to describe the movement of the probe, we need to define a frame. First, we define

the axis z as the direction of the normal to the phantom surface. We then define the x axis as

the intersection between the tangent surface of the phantom and the mid-sagittal plane of

the probe. Finally, the y is defined in order to obtain a direct orthonormal frame (x,y,z). In the

rest of the paper, this reference frame will be used to describe the directions of forces or

displacement.

To move the VLM probe on the phantoms, the probe is attached to a 3 axis Cartesian robot.

This robot is composed of an Aerotech ANT130-XY stage and an Actuonix L16-50-150-12-P
linear actuator which allows the probe to be moved in the horizontal plane (x, y) and vertically

(z) respectively. Two National Instruments cards are used to acquire the sensors’ signals and

control the vertical position and the stiffness of the probe. Especially, a NI PCIe-6320 is used in

order to acquire the force sensor signals whereas a NI USB-6341 controls the two linear actua-

tors positions. The programs to run the experiment and the algorithm have been implemented

using C++.

In this paper, the indentation refers to vertical displacement of the actuator of the VLM

probe along negative direction of z (positive when going down) instead of the depth of the

probe’s tip in the phantom. Additionally, the indentation 0mm refers to the point where the

contact between the probe and the phantom starts. To deal with the issue of alignment

between the phantom and the XY stage, the surface roughness of the phantom and possible

deformation of the latter, the tangent surface of the phantom (0mm indentation position) is

autonomously redefined each time the region of exploration is changed.

To autonomously detect the 0mm indentation position, the method is based on an indenta-

tion (without sweeping) and the detection of variation in the kinesthetic sensor measurement.

This detection strategy aims to improve the robustness of the nodule detection by improving

the accuracy of the indentation measurement. This is particularly important since related stud-

ies have shown that a variation of indentation can impact the nodule depth estimation [25,

47].

For all the experiments, the Cartesian coordinates (x, y, and indentation) of the probe are

measured at 50Hz for x, y, and 10kHz for the indentation respectively. The forces and the posi-

tion of the actuator which control the stiffness are also acquired at 10kHz. Finally, the tactile

pressure is acquired at 20Hz. The acquisition rates are different, but all the signals are time-

synchronized.

The angle between the surface of the phantom and the probe is set at 32˚. This angle has

been chosen to optimize the number of taxel in contact after indentation during the sweeps.

Soft tissue phantom with nodules

The phantom is made of platinum-catalyzed silicone Ecoflex 00-10 (Smooth-On, Inc, USA),

with 6 nodules embedded at a depth of 2 × 2mm, 2 × 4mm, 1 × 6mm and 1 × 8mm (the two

additional nodules 2 and 4mm deep have not been used as prior knowledge in the likelihood

functions but are used to test the proposed detection algorithm.). It has to be noticed that we

define as nodule depth the distance between the surface of the phantom and the upper tangent

plane to the nodule. All nodules are made of acrylic with a diameter of 16mm. The phantom is

cast at room temperature with a width of 150mm and a thickness of 25mm while the distance

between each nodule is 40mm. The ratio between the tissue thickness and the nodule diameter

has been chosen accordingly to the one used in related studies in the literature [25, 29, 47].
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The mechanical properties of the materials and components of the phantom are described in

the Finite Element Simulation subsection.

In the presented study, we limited the nodule depth to 8mm to reduce the average palpation

force level and minimize damage to the probe. Indeed, as shown in related works, detecting

deeper nodules requires deeper indentation and by consequence, higher forces. Higher forces

also lead to faster degradation of the tissue in repeated trials, making it difficult to compare

results. Moreover, the lateral sweeps used an array of capacitive tactile sensors, that saturates if

an excessive force is applied to locate the nodule. To avoid saturating the tactile sensor, we

used a nodule depth that meets all hardware requirements to demonstrate the role of stiffness

variation in conditioning the haptic perception during 3D localization of nodules in soft

tissues.

These materials have been widely used to simulate human soft tissues mechanical proper-

ties. In particular, Ecoflex 0010 has been used in biomedical simulators to practice abdominal

palpation [11] or needle insertion [48]. The size of the nodule represents the size of a tumor of

type T1 (<2cm) for the breast or liver cancers. This is, according to the TNM classification,

the earliest stage where the nodules can be detected by palpation [49].

Ecoflex 00-10 is a rubber silicone that has a high coefficient of friction with the probe which

affects the motion of the probe. For this reason and to protect the phantom, we wrapped the

phantom in an additional layer of plastic film. It has to be noticed that, except for the friction

coefficient, this layer of plastic film is not taken into account in the simulation.

Sweeping directions

In this study, we aim to understand the role of the stiffness on the detection and 3D localiza-

tion of a hard nodule embedded in soft tissues. Two types of sweeping with different aims are

presented in this paper. These two palpation directions show distinct results that have been

exploited in the Bayesian algorithm for nodule detection presented in a further section of this

paper.

The aim of the two sweeping directions is to reproduce some human participants’ palpation

strategies that we observed during our previous study [44]. We have shown in this study that

the palpation behavior of the participants is adapted to localize the nodule or to estimate the

depth. From these observations and results, we found interesting to compare two types of

sweeping strategies, one local with a light force applied to the phantom using the tip of the

probe and one more global using the whole palmar region of the probe with the tactile sensor.

The first sweeping direction is the lateral sweep (along y). The aim of this sweeping strategy

to perform the nodule detection on a wide surface. Therefore, during lateral sweeps, the probe

is first significantly indented (along z) in the phantom to have contact between the whole pal-

mar surface of the VLM probe and the phantom (see Fig 2).

The second sweeping strategy, denoted longitudinal sweep, aims to improve the depth esti-

mation of a hard nodule by performing a localized exploration. Indeed, during this longitudi-

nal sweeps, the probe only slightly touches the surface of the phantom with the edge of its tip

and is swept along the x direction.

The trajectories of the VLM probe during the lateral sweep and longitudinal analysis are

shown in Fig 2.

During the study of the lateral sweeps, the probe is initially positioned to align the nodule

with the end of the probe’s tip and to have the nodule roughly centered on the trajectory. The

probe is first indented at 25mm, then it is swept along y axis by 120mm at 30mm/s. The probe

is then outdented and moved back at 100mm/s to the original position. This cycle is repeated 5

times, and after the fifth time, the VLM probe is shifted by 5mm along x axis to a new initial
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position. As the lateral sweeps are performed to localize nodule on a wide area, the aim of this

shift is to observe the behavior of the probe when the latter is sweeping over a nodule at differ-

ent distances. The next cycle is also repeated 5 times before applying a new shift. In total, 4

shifts are applied, the distance between the initial and last trajectories is then 20mm.

During the study of the longitudinal sweeps, the probe is first indented by 4mm. With a

4mm indentation, only the tip’s edge of the probe is touching the phantom. The probe is then

swept along the x axis by 120mm. The speed of the sweep is also set at 30mm/s. The probe has

been initially positioned to sweep over the center of the nodules placed in the silicone. Finally,

the probe is lifted up to avoid contact between the phantom and the probe and moved back to

the initial position. The longitudinal sweeping is repeated 25 times.

The two sweeping directions have been tested for 15 different stiffnesses covering the range

of stiffness that the probe can achieved with a carbon rod of 1.5mm.: 0.65, 0.66, 0.67, 0.68,

0.69, 0.7, 0.71, 0.73, 0.74, 0.76, 0.77, 0.8, 0.83, 0.87, and 0.94Nm/rad and for 4 different nodule

depths (2, 4, 6, and 8mm) and without nodule for a total of 1875 trials per sweeping direction.

The supplemental S1 and S2 Videos show respectively some lateral sweeps and some longitudi-

nal sweeps.

One can notice that the steps of the stiffness tested in this paper is not linear. This comes

from the fact that for simplicity, we have chosen linear steps of 2mm in the active length of the

carbon rod. This choice allows us to take advantage of the probe characterization performed in

our previous study [22] and makes the stiffness control easier by relying on the closed-loop

position control of the linear actuator. It also simplifies the implementation of carbon rod

Fig 2. Sweeping directions. (A) Picture taken during a lateral sweep. (B) Picture taken during a longitudinal sweep.

(C) Probe trajectory during lateral sweeps with different shifts. (D) Probe trajectory during longitudinal sweeps.

https://doi.org/10.1371/journal.pone.0237379.g002
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displacement in the FE simulation. However, since the relation between the stiffness and the

active length of the carbon rod is nonlinear, it results in nonlinear steps of stiffness.

Finite Element simulation

The aim of our Finite Element (FE) model is to provide a further study on the impact of the

joint stiffness variation during palpation exploration. The experimental results show that the

variation of stiffness is more significant for the longitudinal sweeps than for the lateral sweep.

As a consequence, we focused our FE simulation on longitudinal sweeps.

Using COMSOL multiphysics, a 2D Finite Element (FE) model has been developed to simu-

late the VLM probe and phantom behavior during the longitudinal sweeps. To reduce the

complexity of this simulation performed the geometry of the probe has been simplified. Fig 3

presents the mesh and the different material domains of the FE simulation.

All the materials except the phantom silicone have been modeled as linear elastic materials.

The Ecoflex 0010 material, as several rubber silicones, follows a nonlinear behavior when it is

significantly deformed. This is the reason why the material of the phantom has been modeled

with a hyperelastic model in addition to a viscoelastic model. The chosen hyperelastic model is

the Ogden model with the parameters obtained by Spark et al. [50]. The viscoelastic model is

based on a Standard Linear Solid (SLS) model. The parameters have been obtained from

experimental characterization during a previous study [11].

The bottom part of the phantom is constrained in position whereas a prescribed displace-

ment is applied to the probe. To save some computing time, the sweeping distance has been

reduced to 60mm (120mm in the experiments). The simulation has been performed for 15

active lengths of carbon rod (from 24mm to 52mm in steps of 2mm) which are equivalent to

the 15 levels of stiffness studied in the experiment.

The contact between the probe and the phantom is modeled with two surface contact pairs

covering the palmar region of the probe and the upper layer of the phantom, respectively. The

pressure contact calculation is based on an Augmented Lagrangian Method, and the friction

between the 2 contacts is modeled as Coulomb friction (μ in Table 1). Finally, no rolling resis-

tance is modeled for the contact between the probe and the phantom assuming pure sliding at

the elements level.

Fig 3. FE simulation mesh and materials. 6mm deep nodule and an active length of carbon rod of 52mm (equivalent

to a stiffness of 0.65Nm/rad).

https://doi.org/10.1371/journal.pone.0237379.g003
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The mesh of the FE model is composed of triangular elements (3933 elements for simula-

tions with nodules and 3566 for the simulation without nodule). To increase the accuracy, a

mesh refinement has been done around the nodule and around the probe joints. About 27

hours of computations on a 2.6GHz Intel Xeon 16 cores machine with 128GB of RAM were

needed to simulate all the configurations proposed in the paper.

The main simulation parameters are given in Table 1.

Results

In this section, the results obtained during the experiments and from the FE simulation are

presented. These results illustrate the differences between the two sweeping directions as well

as the role of the VLM probe’s stiffness variation on haptic perception. In the last subsection,

we also describe how the likelihood functions of the force knowing the depth are generated.

Thus, these likelihood functions can be seen as a knowledge obtain from past palpation or

from the simulation and are used in the algorithm proposed in this paper.

Lateral sweep

The aim of this experiment is to analyze the suitability of the VLM probe for detecting a nodule

concealed in soft tissues during a lateral sweep. The objective is also to understand if the stiff-

ness is playing a role in nodule detection. Finally, it is explained how the bi-modal sensing

(kinesthetic and tactile) helps in the localization of the nodule.

Fig 4 shows an example of the signals acquired during lateral sweep experiments on a phan-

tom without any nodule and with 16mm diameter nodules placed respectively at 2mm, 4mm,

6mm and 8mm from the surface. The signals shown on this figure are the force measured by

Table 1. Simulation parameters.

Domain Parameter Description Value Unit

General vx Sweeping velocity 30 mm/s

tindent Time to reach the maximum indentation 0.6 s

Δt Time step of the simulation 10−2 s

zmax Indentation 4 mm

μ Static Coulomb friction coefficient between the phantom and the probe 0.1 SI

3D printed parts E1 Young modulus 2.7 × 109 Pa

ρ1 Density 1250 kg/m3

ν1 Poisson’s ratio 0.36 SI

Nodule E2 Young modulus 3.2 × 109 Pa

ρ2 Density 1180 kg/m3

ν2 Poisson’s ratio 0.37 SI

PTFE cylinder E3 Young modulus 4 × 108 Pa

ρ3 Density 2200 kg/m3

ν3 Poisson’s ratio 0.48 SI

Carbon rod E4 Young modulus 10.2 × 109 Pa

ρ4 Density 1000 kg/m3

ν4 Poisson’s ratio 0.49 SI

Ecoflex 0010 G5 Shear modulus (Ogden model) 12605 Pa

α5 Strain Hardening Exponent (Ogden model) 4.32 SI

τ5 Relaxation time (SLS viscoelastic model) 2.30 s

β5 Energy factor (SLS viscoelastic model) 0.6 SI

https://doi.org/10.1371/journal.pone.0237379.t001
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the force/torque sensor along the z axis filtered with a Savitzky-Golay filter, the indentation

and the y position of the probe. In this figure, four main periods can be distinguished:

P1: From t = 0s to t� 0.6s. During this period, the VLM probe moves along the z axis but the

probe is not in contact with the phantom, the indentation is then considered negative.

P2: From t� 0.6s to t� 5.2s. This is the indentation period. The probe continues moving

along the z axis to reach an indentation of 25 mm. One can notice that the speed of the

indentation reduces after 20mm of indentation, this phenomenon is due to the reaction

force of the phantom and the frictions of the linear actuator and mechanism which counter-

act the proportional component of the regulator. It is then the integral action of the inte-

grated controller which helps to converge to the desired position, this integral gain is set at

a high value to ensure the convergence to the desired position.

P3: From t� 5.2s and t� 9.2s. This is the sweeping period. The probe moves along the y axis

by 120mm with a speed of 30mm/s. It is important to take into account that since the accel-

eration and deceleration period are small, they are neglected in the rest of the paper. It can

be noticed that at the beginning of the sweeping period, the force along z axis drops sud-

denly. This force drop can be explained by the action of several phenomena, in particular,

the dynamic forces due to the acceleration but also the compliance of the joints and links.

Indeed, all the joints except the variable stiffness joint are assumed to be rigid, but due to

the play between some parts, the probe rotates slightly around the y axis which releases a bit

the normal force applied to the phantom.

Fig 4. Data acquired during one lateral sweep. Stiffness = 0.65Nm/rad and 20mm shift.

https://doi.org/10.1371/journal.pone.0237379.g004
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P4: The last period is for t� 9.2s. The probe is static still indented. One can notice a small

relaxation period after the probe stops.

Fig 4 shows that a force peak on z axis is measured when the probe sweeps over a nodule.

This peak can easily be detected since it is also the maximum value measured during the period

P3. It can be noticed that the force peak value is not necessarily suitable to estimate the depth

of the nodule. Thus, in Fig 4, the force peak value for the nodule 8mm deep is higher than the

force peak value for the nodule 4mm deep. This can be explained by the fact that a small error

on the indentation or a small variation on the thickness of the phantom implies a big variation

of the value. After studying the results of several trials, it seems more reliable to study the

prominence of the peak. In this paper, we define the prominence of the peak as the difference

between the force peak value and the force baseline value at the corresponding time of the

peak. The baseline computation method used in this study is based on the Asymmetric Least

Squares (ALS) method which is suitable for detecting a baseline of a signal with peaks [51].

The ALS baseline parameters have been tuned for the VLM probe signals but are kept constant

for all the experiments presented in this paper.

Fig 5 illustrates the force measured, the baseline computed, and the prominence of the peak

for several combinations of stiffnesses and shifts when the probe is sweeping laterally over the

Fig 5. Force, baseline, and force peak prominence acquired for several shifts.

https://doi.org/10.1371/journal.pone.0237379.g005
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nodule concealed at 4mm and the part of the phantom without nodule respectively. It has to

be noticed that even if there is no peak due to a nodule, a peak prominence is computed from

the sweep over the phantom without nodule. As for the other phantom sample, the promi-

nence is computed from the distance between the baseline and the maximum force value

detected. The peak prominences measured for the nodule are clearly higher than the promi-

nences for the lateral sweep where no nodule is concealed.

By comparing the different rows of Fig 5, one can see that the maximum force and the

prominence increase with the shift. This can be explained by the fact that in the range covered

in this paper, the higher the shift is, the closer the nodule is to the VLM probe joint. Then for

the same tangent displacement (along z), if the point of application is closer to the center of

rotation, the equivalent angular displacement is higher. Finally, if the angular displacement is

higher, due to the stiffness, the reaction torque and forces applied are greater.

Fig 6 shows the distributions of the force peak prominence per stiffness for each depth of

nodule. It has to be noticed that the graph does not separate the shift so each box is obtained

from 25 trials. These distributions presented with a boxplot standard confirm that there is a

clear difference for the sweep with and without nodule. This figure also shows that the boxes

for the different nodule depths are overlapping, this implies that from a single measure, it

would be difficult to determine the nodule depth. To further support the interpretation of Fig

6, we detail, in the supplemental S1 Appendix, a comparison of the distributions obtained for

each stiffness using statistical analysis.

However, Fig 7A shows the contact pressure measured by several taxels of the Cyskin sensor

during lateral sweeps over a 2mm deep nodule for different shifts. It can be seen on this figure

that depending on the shift, a peak of contact pressure is measured when the probe sweeps

over the nodule. Fig 7B exhibits the pressure contact prominence map measured by the tactile

sensor at the force peak instant for different shifts. The latter shows once again that the region

Fig 6. Force peak prominence per stiffness for lateral sweeps.

https://doi.org/10.1371/journal.pone.0237379.g006
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where the max contact pressure prominence is measured depends on the shift. By knowing the

probe position and geometry, the localization of the nodule on x axis can then be estimated by

interpolation. The position of the nodule on y axis is directly obtained from the position of the

probe at the force peak instant.

Longitudinal sweep

The previous section shows that the lateral sweep explores a large area and helps to find the

location of the nodule but it only gives a rough estimate of the nodule depth. In this section,

the simulation and experimental results for the longitudinal sweep that allows exploring the

phantom more locally are presented. These results show that the longitudinal sweep is more

suitable for estimating the depth of the nodule and highlights the role of the stiffness on haptic

perception.

Simulation results. Due to the nonlinear behavior of the soft material, coming from its

hyperelasticity and its viscoelasticity, it is not simple to obtain an analytical model for the

phantom. FE simulation is a way to have a better insight into what happens at the tissue level.

The supplementary S1 Fig and S3 Video shows some simulation frames for different nodule

depth and stiffnesses. The stress in the soft tissues increases when the probe sweeps over the

nodule. As can be seen, the deeper the nodule is, the smaller the stress is. Moreover, with the

small forces applied during the longitudinal sweeps, the stress in the material under the nodule

is not impacted as much as the stress in the material above the nodule. This phenomenon

comes from the fact that during the palpation sweeps, the displacement of the nodule is small

compared to the displacement of tissue above the nodule. This shows that the probe is more

significantly affected by the amount of material above the nodule (the nodule depth) than the

amount of material under the nodule.

Fig 7. Tactile sensor data. (A) Tactile data after baseline correction per shift. (B) Normalized tactile prominence map computed at the peak time per shift.

https://doi.org/10.1371/journal.pone.0237379.g007

PLOS ONE Conditioned haptic perception for 3D localization of nodules in soft tissue palpation

PLOS ONE | https://doi.org/10.1371/journal.pone.0237379 August 11, 2020 14 / 31

https://doi.org/10.1371/journal.pone.0237379.g007
https://doi.org/10.1371/journal.pone.0237379


From the FE model, the kinesthetic force measured by the F/T sensor can also be simulated.

Fig 8 shows an example of the evolution of the force during the sweeps for the same stiffness. It

can be seen that due to the dynamics of the contact and the nonlinear behavior of the tissue,

some oscillations appear in the simulated force signals. These oscillations are due to a stick-

and-slip behavior coming from the friction between the probe and the phantom. These oscilla-

tions are more or less filtered by the mechanical impedance of the probe in which the stiffness

plays an essential role. These oscillations can be observed on force signals measured during the

experiments (see Fig 10). Furthermore, one can notice that the amplitude of these oscillations

varies with the nodule depth, which means that these oscillations are not only dependent on

the probe’s internal dynamics but also on the ones from the phantom.

Fig 9 shows the distributions of the force peak prominence per stiffness for the different

nodule depth obtained from the FE simulations. One can notice that this time the distributions

for the different nodule depth can be distinguished from one to another. The simulation

results are compared to the experimental results in the next subsection.

Experimental results. The force data presented in Fig 10 shows once again that a peak

can be detected when the probe sweeps over the nodule. This figure also shows that the force

peak prominence seems more reliable than simply the peak height. For the longitudinal sweep,

the peak detection is also simple since it corresponds to a maximum force measured during

each trial.

Fig 11 presents with boxplot format the distribution of the force peak prominence for the

15 different stiffnesses and each nodule depth. It can be seen that compared to the results

obtained for the lateral sweep (Fig 6) the distributions can be distinguished the majority of the

cases. This observation confirms the results obtained from the FE simulations. Similarly to the

lateral sweeps, the significance of the probe’s stiffness variation on the force peak prominence

distribution is further studied, using statistical analysis, in the supplemental S1 Appendix.

The stiffness plays a role in the width of the distributions but also on the distance between

the distributions. To compare the distance between the distributions for a given stiffness, the

Fig 8. Force simulated for longitudinal sweeps with a stiffness of 0.66Nm/rad.

https://doi.org/10.1371/journal.pone.0237379.g008
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Standardized Euclidean Distance (SED) is used. The SED can be defined as follows:

dSEDðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � yÞ⊺ðx � yÞ

sxsy

s

; ð1Þ

where x and y denotes two random vectors describing the distributions to be compared. σx
and σy are the standard deviation of the random vectors x and y respectively. This metric is

Fig 10. Data acquired during longitudinal sweeps for the different nodule depth.

https://doi.org/10.1371/journal.pone.0237379.g010

Fig 9. Peak amplitude vs stiffness obtained in simulation.

https://doi.org/10.1371/journal.pone.0237379.g009
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suitable to compare two distributions taking into account the standard deviation [52]. One can

notice that the two vectors x and y must have the same dimension.

Fig 12A gives the minimum SED between the force peak prominence distribution without

nodule and the force peak prominence distribution with nodule across the different stiffnesses

of the probe. The results show that the distance varies depending on the stiffness. The higher

this SED is the easiest it is to distinguish if there is a nodule. The figure shows that both sweep-

ing directions give good results to distinguish if there is a nodule or not. In particular, the bests

Fig 11. Force peak prominence vs stiffness for longitudinal sweeps.

https://doi.org/10.1371/journal.pone.0237379.g011

Fig 12. SED evaluations. (A) Minimal distance between the distributions with and without nodule. (B) Minimal distance

between the distributions with nodule.

https://doi.org/10.1371/journal.pone.0237379.g012
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of the tested stiffnesses to detect the presence of a nodule in the stiffness range of the VLM

probe are respectively Kθ = 0.68Nm/rad and Kθ = 0.76Nm/rad for the lateral sweep and for the

longitudinal sweep. It can be noticed that since the longitudinal sweep is inspecting the phan-

tom more locally, the distance between the force peak prominence distribution with nodule

and without nodule is slightly higher, in particular for medium stiffness. Finally, the SED dis-

tance obtained from the FE simulation is overestimated. This can be explained by the fact that

in the experimental approach, the phantom is not perfectly flat in contrast to the FE simulation

where the phantom is virtually perfectly flat. This difference can also be observed by compar-

ing the force peak prominence distributions, where it can be seen that the mean force peak

prominence obtained during the simulation is closer to zero than the one obtained

experimentally.

Fig 12B presents the minimum SED distance between two distributions of the Force peak

prominence when a nodule is present. This time, the minimum distance measures the ability

to distinguish the depth of a nodule for the different stiffnesses. Thus, a clear difference

between the two sweeping directions is observed. Indeed, Lateral sweep minimum is smaller

than the longitudinal one. This highlights that a local investigation simplifies the nodule depth

distinction. Finally, the SED distance obtained from the FE simulations gives a good insight

into the role of the stiffnesses in the nodule depth distinction.

Likelihood functions

From the previous experimental and simulation results, we can compute for each stiffness the

probability density functions of the force peak prominence knowing the depth of the nodule:

platKyðFjdÞ and plongKy ðFjdÞ for the lateral sweep and the longitudinal sweep respectively. Where F
refers to the force peak prominence, d refers to the depth of the nodule and Kθ refers to the

stiffness of the probe. These functions are the results of a knowledge obtained by past or simu-

lated explorations of the phantom. They are used in the nodule detection algorithm to update

the depth estimation with Bayes inference.

To obtain the likelihood functions, we used a non-parametric Kernel distribution fitting

using Matlab 2018. Fig 13A and 13C illustrate the obtained likelihood functions for each stiff-

ness. The role of the stiffness on the sharpness of the distribution, as mentioned earlier, can

also be seen in these figures.

These likelihood functions are computed for the known nodule depth d 2 {2, 4, 6, 8} and

without nodule. Using these functions would be sufficient to estimate the depth of the nodule

with a 2mm accuracy. However, to increase the resolution of the estimation, the probability

density functions have been interpolated by linear interpolation of uncertain data [53]. The

interpolated functions are shown in Fig 13B and 13D for the experimental results and on Fig

13E for the one generated from the simulation results.

Nodule detection algorithm

In this section, we propose the algorithm 1 for nodule detection that uses the property of the

stiffness to condition the likelihood of the force peak prominence. This algorithm, based on

Bayes inference and information gain theory, controls the VLM probe and its stiffness to

autonomously palpate soft tissues and determine if there is or not a nodule. Moreover, the

algorithm returns the position of the nodule in the (x,y) plane and the estimated depth. All the

notations used in this algorithm and section are described in Table 2.

From the results described in the previous section, we obtained the probability density

functions of the force knowing the depth for both sweeping directions and for each stiffness

denoted platKyðFjdÞ and plongKy ðFjdÞ respectively.
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Fig 13. Likelihood functions. (A) Probability density functions for lateral sweep. (B) Interpolated probability density functions for lateral sweep. (C) Probability density

functions for longitudinal sweep. (D) Interpolated probability density functions for longitudinal sweep. (E) Probability density functions for longitudinal sweep from FE

simulation. (F) Interpolated probability density functions for longitudinal sweep from FE simulation. nn refers to no nodule. In order to highlight the variation of

sharpness of the probability density functions the yellow color is attributed to the maximal value of each vertical strip.

https://doi.org/10.1371/journal.pone.0237379.g013
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Description of the algorithm

Algorithm 1: Proposed algorithm for nodule detection

Data: Likelihood functions Plat
Ky
ðFjdÞ and Plong

Ky ðFjdÞ
Result: Probability of the presence of a nodule P(N), Probability mass
function of the depth of the nodule P(d), and the coordinates of the
position of the nodule (xn,yn)
1 Initialization
2 do
3 if PðNÞ < Pth

N then
4 the probe sweeps laterally over the region to explore with the

stiffness Ky ¼ Kdetect
y

5 else
6 foreach Ky 2 K do
7 Compute pKyðFKyÞ
8 end
9 the probe sweeps longitudinally over the region of the nodule

with the stiffness Ky ¼ arg minKy2K
ðVarðFKyÞÞ

10 end
11 Filter force and tactile data
12 Find maximum force during the sweep;
13 Compute prominence;
14 if PðNÞ < Pth

N then
15 Compute posterior estimations P(d|F) and P(N|F) with platKyðFjdÞ

Table 2. Algorithm parameters.

Notations Description

platKy ðFjdÞ Probability density function of the force peak knowing the depth of the nodule d for a lateral sweep at

stiffness Kθ
plongKy ðFjdÞ Probability density function of the force peak knowing the depth of the nodule d for a lateral sweep at

stiffness Kθ
P(N) Probability of the presence of a nodule in the explored area.

P(d) Probability mass function of the depth of the nodule in the explored region.

P(N|F) Posterior estimation of the probability of the presence of the nodule knowing the force peak

prominence of the last sweep

P(d|F) Posterior estimation of the probability mass function of the depth of the nodule knowing the force

peak prominence of the last sweep

dir 2 {lat,
long}

Direction of sweeping; lateral or longitudinal

pdirKy ðFKy Þ Estimated probability density function of the force for the next sweep with the stiffness Kθ.

Pth
N Threshold on the probability of the presence of a nodule

Pth
d Threshold on the probability of depth of a nodule

xn Position of the nodule on the x axis.

yn Position of the nodule on the y axis.

IG Information gain of the sweep, computed from the Kullback-Leibler divergence

IGth Threshold on the information gain.

Kθ Stiffness of the probe for the sweep

Kdetect
y

Best stiffness of the probe for distinguishing if there is a nodule

K Set of stiffness values Kθ that the probe can take. For the VLM probe

K ¼ f0:65; 0:66; 0:67; 0:68; 0:69; 0:7; 0:71; 0:73; 0:74; 0:76; 0:77; 0:8; 0:83; 0:87; and0:94g

D Set of depth considered for the depth of the nodule. In this study D ¼ ½2 : 0:2 : 8�

https://doi.org/10.1371/journal.pone.0237379.t002
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16 Compute information gain IG = DKL(P(N|F) k P(N))
17 else
18 Compute posterior estimations P(d|F) and P(N|F) with plongKy ðFjdÞ.

Compute information gain IG = DKL(P(d|F) k P(d))
19 end
20 if PðNjFÞ < Pth

N then
21 Update nodule position (xn,yn) from probe position and tactile

measurement at maximum force
22 end
23 Update P(N) and P(d) with the posteriori estimations
24 while PðNÞ > 1 � Pth

N&max
d2D
ðPðdÞÞ < Pth

d &IG > IGth;

25 return P(N), P(d), xn and yn
Line 1 of the algorithm 1 refers to the initialization. During this step, the probe is manually

positioned over the region of soft tissue that we want to explore. The probability of the pres-

ence of the nodule P(N) is set at 0.5 (same probability between the presence of a nodule and

the non-presence of a nodule). The probability mass function of the nodule depth is set as flat

distribution.

The condition in line 3 tests the likelihood of the presence of the nodule. If the probability

P(N) is high enough, it means that a nodule has been detected during the precedent sweeps

and that its position has been estimated. A longitudinal sweep is then performed over the

region of the nodule to give a better estimation of the depth. On the other hand, if P(N) is still

lower than the threshold, a lateral sweep is performed over the region to explore.

The stiffness chosen for the sweep is dependent on the direction and the depth estimation

P(d). For lateral sweeps, the stiffness chosen is Kdetect
y
¼ 0:68 Nm/rad which is the stiffness that

maximizes the SED between the distributions with nodule and the distribution without nodule

during lateral sweep as shown on Fig 12A. For longitudinal sweeps the stiffness chosen is the

one which minimizes the variance of the estimated peak force prominences FKy with the prob-

ability distributions computed for all Kθ in K as follows:

pdirKyðFKyÞ ¼
X

d2D

PðdÞpdirKyðFjdÞ ð2Þ

The filters used at the line 11 are the same Savitzky-Golay filters used for post-processing

the data in the results section. Similarly, the prominence is computed by subtracting the ALS

baseline to the maximum force measured during the sweep.

Depending on the direction of the sweep the posterior estimation of the presence of a nod-

ule and the probability mass function of the depth are computed with the Bayes inferences as

follows:

PðNjFÞ ¼
PðNÞpdirKyðFjNÞ

PðNÞpdirKyðFjNÞ þ ð1 � PðNÞÞpdirKyðFKyÞ

PðdjFÞ ¼
PðdÞpdirKyðFjdÞ
pdirKyðFKyÞ

ð3Þ

where the probability density functions are evaluated for the force peak prominence measured

during the sweep and dir 2 {long, lat} refers to the direction.

It can be noticed that pdirKyðFKyÞ appears in the denominator of the Bayes inference in (3).

Minimizing the variance of the expected force peak prominence at the line 9 increases the

probability of having a sharp posterior estimation of the depth.
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The information gain denoted IG is computed depending on the direction of the sweep

using the Kullback-Leibler (KL) divergence which is a metric to evaluate how much informa-

tion is gained when the probabilities P(N) and P(d) are updated from the prior to the posteri-

ors. The KL divergence is often used in machine learning or with Bayes inference to evaluate

the gain of information obtained with the update of the probability distributions. The KL

divergences used in line 16 and 18 are given by the following equation:

DKLðPðNjFÞkPðNÞÞ ¼ PðNjFÞlog
PðNjFÞ
PðNÞ

� �

þð1� PðNjFÞÞlog
1 � PðNjFÞ
1 � PðNÞ

� �

DKLðPðdjFÞkPðdÞÞ ¼
X

d2D

PðdjFÞlog
PðdjFÞ
PðdÞ

� �

ð4Þ

If the posterior estimation of the presence of the nodule is higher than the threshold, the

position of the nodule in the (x, y) plane is updated. If the sweep is a lateral sweep, the position

yn is updated with the position where the maximum kinesthetic force has been detected,

whereas xn is estimated from the tactile sensor measures. Thus, the position is estimated from

the normalized tactile prominence map at the time of the peak (as shown in Fig 7B). If the

sweep is a longitudinal sweep, only the position xn is updated from the position where the

maximum force has been detected.

Line 24 gives the conditions which determine if the algorithm should continue sweeping. In

other words, another sweep is needed if: 1) it is likely to have a nodule 2) the maximum proba-

bility of the depth P(d) is too low 3) the information gain of the last sweep is high enough. The

respective thresholds Pth
N , Pth

d , and IGth can be tuned to change the performances of the algo-

rithm. Indeed, augmenting Pth
N , for instance, increases the confidence on the nodule detection

but is likely to increase the number of lateral sweeps needed. Pth
d and IGth allows tuning the

confidence on the depth estimation of the nodule and the minimal information gain

respectively.

Several values of thresholds have been tried experimentally. Pth
N ¼ 0:8, Pth

d ¼ 0:7, and IGth =

0.02 have been found to provide a good trade-off between the confidence level and number of

sweeps. These parameters’ values are the ones that have been used for the evaluation of the

algorithm.

Evaluation of the algorithm

The evaluation of the proposed algorithm was carried out using the VLM probe. The evalua-

tion was first performed using the likelihood function obtained experimentally, and then with

the likelihood function generated from the FE simulations. It has to be noticed that for the

2mm and 4mm depth, the tests were done using the nodules which have not been used for

computing the likelihood functions. Finally, the proposed palpation strategy aims to localize

the nodule independently from the phantom orientation, so the algorithm has been tested for

several orientations of the phantom.

Fig 14A shows representative results from the several trials performed with the algorithm.

This figure shows the evolution of the probability mass function of the depth P(d) after each

sweep. On average on all trials, the final expected value of the depth is in a range of 0.5mm

around the real depth. The median of the number of sweeps is 5, with a minimum of 3 and a
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maximum of 10. The supplemental S4 Video also shows the behavior of the algorithm for a

trial over a 4mm deep nodule.

The two thresholds Pth
d and IGth can seem redundant at first but they are complementary to

avoid too many sweeps. For instance, the majority of the trials are stopped by the threshold

Pth
d , but for the 6mm deep nodule in Fig 14A, the evolution of P(d) over the sweeps is slow, and

may not reach the threshold Pth
d . In this case, IGth allows the algorithm to stop and give a result

with lower confidence.

With the proposed threshold values, the algorithm was 100% accurate on the estimation of

the presence of a nodule with a single lateral sweep. When a nodule was present, P(N) was

over 0.98 after the first sweep, independently from the initial distance between the probe and

the nodule. When there was no nodule, P(N) was in a range between 0 and 0.18 after the first

Fig 14. Algorithm results based on experimental likelihood functions. (A) Nodule depth estimation by the

algorithm. (B) KL divergence and stiffness changes across sweeps.

https://doi.org/10.1371/journal.pone.0237379.g014
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lateral sweep. A trade-off needs to be found while tuning Pth
N in order to maximize the detec-

tion rate but not increasing the number of false-positive detection, which would lead to unnec-

essary additional lateral explorations.

Fig 14B shows the evolution of the KL divergence of the nodule depth estimation and the

variation of stiffness for the different sweeps for the same trials as shown in Fig 14A. It can be

seen that with the set of thresholds, the KL divergence does not need to converge to stop the

exploration. Concerning the stiffness, all the trials start with the same stiffness Kdetect
y

, while the

first longitudinal sweep is usually performed with the same stiffness Kθ = 0.87Nm/rad. It is

only after the second sweep when P(d) changes significantly that the stiffness selection for the

sweeps differs from one nodule depth to another.

On the other hand, Fig 15 shows the results of the algorithm for 3D localization of nodules

using the likelihood functions obtained thanks to the FEM simulation instead of the one

obtained experimentally. In particular, Fig 15A presents examples of nodule depth estimation

for the same four nodules tested previously. One can see that the algorithm is able to detect the

depth of the nodule but generally need more sweeps. Thus, the results obtained with the FEM

based likelihood functions are particularly good for the 2 and 8mm deep nodules, but for the 4

and 6mm deep nodules the expected accuracy (mean of P(d)) and the confidence level (sharp-

ness of P(d)) are lower than for the sweeps performed with the likelihood obtained experimen-

tally. This is because the force peak prominence measured during the sweeps is further from

the simulated expected value, so the information gained per sweep is generally smaller. As

shown in Fig 15C, the threshold on the information gain is reached for the 4 and 6mm deep

nodules. Moreover, this figure shows, that the probe can gain information within the first two

sweeps with the exception that the 4mm deep nodule requires four sweeps to achieve signifi-

cant information gain. It can be noticed that this important information gain corresponds to a

significant change on the posterior distributions in Fig 15A from a relatively flat distribution

to a sharper one and also to a variation of the probe stiffness. This shows once again the impor-

tance of stiffness variation for haptic 3D localization of nodules in soft tissues.

The final depth estimate dest can be computed as follows:

dest ¼
X

d2D

PðdÞd ð5Þ

The Root Mean Square Error (RMSE) between the estimated depths and the actual nodule

depths for all the detections presented in Figs 14 and 15A is 0.27mm. The highest absolute

error is 0.53mm for the 6mm deep nodule with the likelihood function obtained from the FE

simulation.

In addition, to complement the investigation on the effect of the probe’s stiffness variation

in the Bayesian nodule depth estimation, 2 trials have been run without the stiffness modula-

tion strategy. During these trials performed for 4 and 6mm nodule depths, the stiffness is

therefore maintained constant at the stiffness Kθ = 0.68Nm/rad (the same as the one used for

lateral sweeps). The results for these trials are shown in Fig 15B. One can see that the accuracy

stays similar to the case where the stiffness is updated from previous knowledge but the confi-

dence level is significantly lower. It can also be observed in Fig 15C that the KL divergence

quickly converges to 0, which means that the repetition of the sweeps with the same fixed stiff-

ness did not bring much information on the nodule depth. These results confirm that the pro-

posed strategy using stiffness variation helps in conditioning the force peak prominence

likelihood and improves the nodule depth estimation.
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Fig 15. Algorithm results based on FE simulated likelihood functions. (A) Nodule depth estimation by the

algorithm with the likelihood functions obtained by FEM simulation. (B) Bayesian iterations for nodule depth

estimation with a constant stiffness Kθ = 0.68Nm. (C) KL divergence and stiffness changes across sweeps with the

likelihood functions obtained by FEM simulation.

https://doi.org/10.1371/journal.pone.0237379.g015
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Finally, since for all the trials presented in Fig 15, the likelihood functions for lateral sweep

used are still the ones obtained from the experiments, there is no significant change in the

detection of the nodule’s presence.

Discussion

In this study, we highlighted the importance of tuning the stiffness of a compliant palpation

probe to shape the force peak prominence likelihood during a palpation task, and we proposed

a controller that utilizes this principle to estimate the 3D localization of a nodule. This study

highlights the role of compliance of a soft robot not only as a design parameter for safety but

also as a control parameter for improved haptic perception [54].

There is still some remaining work to be done to implement this probing method on real

scenarios like automated examination of biopsy samples or even remote patients. The main

difficulty is that the likelihood functions obtained in this paper are valid only for the same

thickness of soft tissue, the same size of the nodule, and the same sweeping speed since all

these factors are impacting the force peak prominence dispersion. To solve this issue, new

models able to predict the kinesthetic force uncertainties during a compliant palpation explo-

ration would be needed. We have shown in this paper that FE simulation is one solution to

predict the behavior and to generate likelihood functions. Indeed they can be used to generate

the likelihood functions when no palpation has been performed on this type of tissue. How-

ever, they still require the knowledge of some tissue meta parameters such as the soft tissue

elasticity. Also, increasing the accuracy of the tissue model or simulating the lateral sweeps

would require developing a 3D FE model and repeating the simulation for several shifts (posi-

tion along x). These modifications would increase the computational cost of the simulation

significantly.

Another approach to generate the likelihood functions for different conditions is using mix-

ture models [55, 56]. A mixture model linearly combines a set of nonlinear kernels to fit a

given distribution of observations. In this particular scenario, likelihood functions for new

materials can be constructed by learning a set of parameters of the mixture model already

identified for a known tissue.

In this paper, the flat phantom has been designed to simplify the study and minimize

assumptions. In real scenarios, such as breast or abdominal palpations, the surface of the tissue

to be palpated is not likely to be flat and the breathing of the patient would add some distur-

bances. However, these issues have been widely addressed in the literature. Some control strat-

egies can compensate in real time the motion due to the patient breathing [57] or to follow

complex and moving surfaces [58–60]. In the future, we will implement these solutions and

the Bayesian controller to test the probe on a soft robotic patient phantom with controllable

and sensing organs.

More generally, this paper concludes that the probe stiffness matters in conditioning the

shape of the likelihood function (sensor model) in a Bayesian framework to estimate a given

feature in the tissue (in this case the nodule depth after having identified the location using lat-

eral sweeps). However, when the tissue is inhomogeneous, multiple force prominence values

will be present in the force profile. Then a suitable technique should be adopted to filter a tar-

get force prominence shape. One realtime solution is to convolve a target force shape on the

measured force data. A data-driven approach can be used to build the target shape from a vari-

ety of tissue samples with a given feature in them.

In the proposed algorithm, the tactile sensor is currently used to help to find the location of

the nodule. Removing the sensor would be possible, but it would require to increase the longi-

tudinal sweeping distance by two times the length of the probe’s tip link. This would then
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increase the exploration time and also the tissue region area that is probed. These two factors

are not really suitable in the case of patient palpation.

Finally, one may notice that the stiffness variations (for the same nodule depth) during the

trials with likelihoods functions computed from experimental do not necessary follow the

same gradient as the variations during the trials with likelihoods function computed from the

FE simulations. More generally, even across trials repeated for the same scenario, we observed

different stiffness variations. This comes from the fact that the stiffness is adapted according to

the current knowledge during the palpation exploration. The proposed method then presents

a strategy that tunes the stiffness in order to increase the probability of getting new informa-

tion based on prior knowledge (likelihood functions). Due to the stochastic behavior of the

force peak prominence, even for the same stiffness and same nodule, the information obtained

during a sweep is different from one sweep to another. As a consequence, for two trials on the

same nodule, if the information collected so far is different, the stiffness selected to maximize

the information gain of the next sweep will be different. Finally, this can also be supported by

another study [14] where the variation of the human’s joints stiffness during palpation tasks

has been studied and clearly showed that this joint stiffness follows a random walk. In other

words, during palpation exploration tasks, even humans do not follow a predictable gradient

of joint’s stiffness variation.

Conclusion

In this paper, we have shown that the embodied stiffness of the robotic probe is conditioning

the force peak prominence likelihood. In particular, we have shown that by controlling the

stiffness of the probe it is possible to sharpen the probability distribution of the force peak

prominence. This change of shape of the likelihood is seen as a haptic information gain and

can be observed for both sweeping directions. For the lateral sweep, the impact of the joint’s

stiffness variation on the force peak prominence distribution is not as significant as for the lon-

gitudinal sweeps. This results in the fact that the haptic information gain is not sufficient to

distinguish the depth of a nodule. However, the stiffness can be chosen to facilitate the detec-

tion of a nodule. In contrast, for the longitudinal sweeps, the haptic information gain from one

depth to another is significant and helps to determine which stiffness is suitable for the depth

estimation. To illustrate the importance of conditioning the likelihood of the force peak prom-

inence, we proposed an algorithm that autonomously explores soft tissues using tactile for the

localization of the nodule and kinesthetic sensing to estimate the nodule location and depth.

This Bayesian algorithm selects the suitable stiffness by minimizing the variance of the

expected force prominence based on prior knowledge that can be constructed from past palpa-

tions or generated from FE simulations. The algorithm has been tested on a soft tissue phan-

tom with the VLM probe and shows a 100% reliability on the nodules detection and sub-

millimeter accuracy in the 3D nodule localization.

Supporting information

S1 Appendix. Statistical analysis. This appendix provides the details of the statistical analysis

performed to compare the distribution of the force peak prominence for different stiffnesses.

(PDF)

S1 Fig. FE simulation results. This supporting figure shows some results obtained during the

2D FE simulation used to model the VLM probe performing a longitudinal sweep on phan-

toms with a 2mm, with an 8mm nodules, and without nodule respectively. This figure shows

the variation in the vertical force and the stress of the phantom (denoted Fz and σ respectively)
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at two different instants of the sweep, depending on the depth of the nodule and the stiffness.

(EPS)

S1 Video. Lateral sweeps on a 2mm deep nodule. This video shows how the lateral sweeps

have been performed over a 2mm deep nodule for 3 different shifts and 3 different stiffnesses.

(MP4)

S2 Video. Longitudinal sweeps. This video shows how the longitudinal sweeps have been per-

formed for 3 different stiffnesses. The video illustrates the sweeps over a 2mm deep nodule

and a region of the phantom without nodule.

(MP4)

S3 Video. Simulation results. This video shows some results obtained with the FE simulation.

3 different phantom conditions are compared for 2 different stiffnesses.

(MP4)

S4 Video. Algorithm test with a 4mm deep. This video shows how the proposed Bayesian

algorithm performs over a 4mm deep nodule.

(MP4)
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