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Abstract

Solving the time-dependent Schrödinger equation (TDSE) for large molecular sys-

tems is a complicated task due to the inherent exponential scaling of the problem. One

of the most successful and versatile methods for obtaining numerically converged solu-

tions for small to medium-sized systems is multiconfiguration time-dependent Hartree

(MCTDH). In a recent publication [J. Chem. Phys. 152, 084101 (2020)] we introduced

a hierarchy of approximations to the MCTDH method which mitigate the exponen-

tial scaling by truncating the configuration space based on a maximum excitation

level w.r.t. a selected reference configuration. The MCTDH[n] methods are able to

treat large systems, but the single-reference Ansatz is not optimal in cases where one

(or a few) degrees of freedom are special. Examples could be double-well systems, in-

tramolecular vibrational-energy redistribution (IVR) calculations, or non-adiabatic dy-
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namics. In this work we introduce a multi-reference (MR) extension to the MCTDH[n]

methods where selected higher-order excitations for the special degrees of freedom can

be introduced in a simple but flexible way. The resulting MR-MCTDH[n] methods

allow for e.g. treating non-adiabatic dynamics within the single-set formalism with the

wave packets on each electronic surface described using the same level of approxima-

tion. Example calculations are performed on formyl fluoride (IVR), salicylaldimine

(double well), and pyrazine (non-adiabatic dynamics). The results show that fast con-

vergence is achieved by extending the configuration space in the special modes that

govern the quantum dynamics.

1 Introduction

The ability to simulate the quantum dynamics of complex molecular systems is of great

importance in chemical physics. Quantum-mechanical calculations are valuable tools for

e.g. interpreting photoabsorption spectra, reaction rates, and for studying the behavior of

molecules exposed to time-dependent perturbations. Solving the time-dependent Schrödinger

equation (TDSE) exactly is, however, impossible for anything but the smallest systems due

to the inherent exponential scaling w.r.t. system size known as the curse of dimensionality.

One of the most sucessful methods for obtaining numerically converged solutions to the

TDSE for molecules with more than ∼ 4 atoms is multiconfiguration time-dependent Hartree

(MCTDH)1,2. The MCTDH method still scales exponentially with system size, but the base

is reduced significantly by expanding the wave packet in a compact time-dependent basis

which adapts itself variationally to the time evolution of the wave function. MCTDH includes

the exact method as a limiting case and if the number of time-dependent basis functions

(denoted as time-dependent modals or single-particle functions (SPFs)) is set to one for

all degrees of freedom, MCTDH reduces to time-dependent Hartree (TDH)2–4. The TDH

method provides a mean-field description of the correlation between modes by representing

the wave packet as a single Hartree product. It thus reduces the computational scaling
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significantly which allows application of TDH to very large systems3. However, for many

systems of interest a correlated wave-function description is required for obtaining even

qualitatively correct results4.

Over the years many extensions and alternatives to MCTDH have been formulated

with the aim of reducing computational cost or increasing computational flexibility in var-

ious ways. Among these are multilayer MCTDH (ML-MCTDH)5–8 and various methods

based on variational Gaussian wave packets, such as G-MCTDH9,10 and variational multi-

configurational Gaussian (vMCG)11,12, which are in turn related to the coupled coherent

states (CCS)13,14 and multiple-spawning15–17 methods. The MCTDH[n] method presented

in Ref. 18 reduces the computational scaling of MCTDH by truncating the number of config-

urations based on excitation level w.r.t. a reference configuration in line with the vibrational

configuration interaction (VCI)19,20 and vibrational coupled cluster (VCC)21–23 methods for

solving the time-independent Schrödinger equation (TISE), and also very recently time-

dependent vibrational coupled cluster (TDVCC) theory.24 Schemes for the truncation of the

configuration space in MCTDH have been developed in previous works25–28 and outside the

MCTDH context the topic has been studied extensively for both time-dependent29–32 and

time-independent21,33–38 wave functions. While the previous works on truncated MCTDH

have primarily focused on obtaining a fully converged wave-function description, the aim of

MCTDH[n] is to introduce a systematic hierarchy of methods which allows a fully variational

solution to the TDSE at each level of approximation to be obtained.

For a truncated MCTDH wave function to satisfy the time-dependent variational principle

(TDVP), the so-called constraint (or gauge) operators gm need to be chosen correctly (as

also discussed in Ref. 25 and previous works on truncated MCTDH for systems of identical

particles39–42). In the limit of full MCTDH the gm operators can be chosen as arbitrary

Hermitian one-mode operators, but if any configurations are removed from the wave function

this is no longer the case. Previous works have employed a natural-orbital representation2,43

of the wave function in the hope of keeping the weights of the missing configurations small.
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The systematic nature of the MCTDH[n] truncation scheme allows an explicit analysis of the

matrix elements of the gm operators that become non-redundant and for writing a set of linear

equations that determine the variationally optimal choice resulting in the MCTDH[n,V]

methods. Alternatively, the constraint operators can be used to keep the one-mode density

matrices block diagonal during the propagation resulting in the MCTDH[n,D] hierarchy.

Setting gm = 0 for all modes which is a standard choice in full MCTDH is denoted as

MCTDH[n,g0]. Since different choices of gm give different results, it is part of defining the

method. It is therefore relevant to be explicit on this choice in computations, and from here

on we avoid the word gauge since it is often associated with a freedom or invariance.

The MCTDH[n] expansion of the wave function is based on a single reference state.

This provides an accurate description for many applications - especially when the constraint

operators are chosen correctly18. However, when some degrees of freedom in the system

are special, the wave function may attain multi-reference (MR) character. In those cases,

selected higher-order excitations including the special modes are required for obtaining an

accurate and balanced wave-function description. Examples of these systems could be double

wells and non-adiabatic dynamics on coupled electronic states44. Schemes for constructing

configuration spaces that allow special treatment of selected modes have previously been

developed for computing vibrational energy levels with MCTDH in Refs. 26,27. In this

work we introduce a flexible, yet simple, way of extending the configuration space of the

MCTDH[n] methods in order to account for MR character in the selected modes. The

resulting MR-MCTDH[n] methods include higher-order excitations for the special modes,

and thus improve the description of the degrees of freedom that govern the dynamics of

the system. This can be viewed as a special case of a more general framework for building

the configuration space by assigning individual excitation weights to the modes. Note, that

while both MCTDH and MCTDH[n] by name are multi-configurational methods, the multi-

reference part of MR-MCTDH[n] refers to the specific way of selecting the configurational

space. Both MCTDH[n] and MR-MCTDH[n] converge to full MCTDH, but the MR frame-
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work provides a freedom for doing so in a more computationally efficient way when some

degrees of freedom are special.

The remainder of the paper is structured as follows. Section 2 describes the MCTDH[n]

approximation and introduces the equations of motion (EOMs) used for propagating the wave

function. In section 3 the MR-MCTDH[n] extension is discussed and the implementation is

described in section 4. Section 5 presents the numerical results while section 6 contains a

summary and future outlook.

2 MCTDH[n] theory and extension to non-adiabatic

dynamics

2.1 Summary of MCTDH theory in second quantization

For a system with M degrees of freedom (modes), the MCTDH wave function is written in

second quantization (SQ) using the SQ formulation introduced in Ref. 19 and discussed for

time-dependent wave functions in Refs. 3,18,24,

|Ψ̄〉 =
n1∑
u1=1
· · ·

nM∑
uM =1

Cu1...uM (t)
M∏
m=1

ãm †um (t) |vac〉 =
∑

u
Cu |Φ̃u〉 , (1)

where |Φ̃u〉 is a Hartree product of time-dependent, one-dimensional functions denoted as

single-particle functions or modals. The time-dependent modals are represented by a set of

creation (ãm †um ) and annihilation (ãmum) operators which add and remove occupation in modal

um of mode m, respectively. These elementary operators satisfy the commutator relations,

[ãmrm , ã
m′ †
sm′ ] = δmm′δrmsm′ (2a)

[ãmrm , ãm
′

sm′ ] = 0 (2b)

[ãm †rm , ãm
′ †

sm′ ] = 0 . (2c)
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SQ formulations are most commonly associated with systems of identical particles where

the fundamental (anti-)commutator relations enforce the correct permutational symmetry.

Such systems have been treated successfully with different variants of MCTDH45–49. As

vibrational modes are distinguishable, permutational symmetry is not an issue in quantum

molecular dynamics. The SQ formulation of MCTDH, however, leads to a short derivation

of the EOMs18 and key quantities (density matrices, mean fields, etc.) emerge naturally and

resemble the analogues from e.g. electronic-structure theory (see table 1).

The time-dependent modals are expanded in a time-independent basis of size Nm ≥ nm

for each mode m. The use of a compact, time-dependent basis that adapts itself to the

evolving wave packet is the primary strength of MCTDH which allows application of the

method to much larger systems than the exact method2. However, the complete-active-space

(or full-configuration-interaction) expansion makes the MCTDH method scale exponentially

with M , limiting its applicability to small and medium-sized molecules.

Inserting Eq. (1) into the Dirac-Frenkel TDVP results in EOMs for the configuration-

space coefficients and the time-dependent modals18,

iĊu = 〈Φ̃u|(H − g)|Ψ̄〉 , (3)

iU̇m
αmum =

∑
βm

(
δαmβm − P̃m

αmβm

)∑
vm

[(D̃m)−1]umvmF̌m
vmβm +

∑
vm

Um
αmvm g̃mvmum , (4)

where a linear parameterization has been chosen for the modals, i.e. for a general modal of

modem, indexed with rm, we have ãm †rm (t) = ∑
αm am †αmUm

αmrm(t) and ãmsm(t) = ∑
βm amβmUm ∗

βmsm(t),

where am †αm (amαm) create (annihilate) occupation in the αm’th time-independent basis function

in mode m. Definitions of the various quantities appearing in Eqs. (3) and (4) are found in

table 1.
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Table 1: Definitions used in the MCTDH EOMs, Eqs. (3) and (4). See Ref. 18 for derivations
and discussion of index conventions.

Constraint operators

g =
∑
m

gm (5)

gm =
∑
umvm

g̃mumvm ã
m †
um ãmvm (6)

g̃mumvm = i[ãmum , ˙̃am †vm ] (7)

Density matrices D̃m
umvm = 〈Ψ̄|ãm †um ãmvm|Ψ̄〉 (8)

Mean-field matrix elements
F̃m
umrm = 〈Ψ̄|ãm †um [ãmrm , H]|Ψ̄〉 (9)

F̌m
umαm =

∑
sm

F̃m
umsmUm

αmsm (10)

Active-space projectors
P̃m
αmβm =

∑
umvm

Um
αmum [(S̃m)−1]umvmUm ∗

βmvm (11)

S̃mumvm = [ãmum , ã
m †
vm ] (12)

2.2 The MCTDH[n] approximation

The MCTDH[n] wave function is based on a single-reference Ansatz18,

|Ψ̄〉 = Ci |Φ̃i〉+
∑

m∈MCR[I]

∑
am

Cm
am |ãm〉 , (13)

where |Φ̃i〉 is the reference configuration. |ãm〉 ≡ ∏m∈m ãm †am ãmim |Φ̃i〉 is a configuration where

the reference (occupied) modals of the modes included in the mode combination (MC) m

are excited to the virtual modals indexed by am ∀ m ∈ m. The wave function includes all

excitations for all MCs in the mode-combination range (MCR) of included configurations

denoted as MCR[I], i.e. the truncation is done solely in the sum over MCs and not in the

am summation. The standard MCTDH[n] wave function includes all MCs of size ≤ n, i.e.

up to n-mode excitations w.r.t. the reference configuration. However, in principle any set
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of MCs can be included in MCR[I] (the set must be closed under one-mode deexcitation in

order to obtain a fully variational wave function18). This is used in section 3 for introducing

the MR extension to the MCTDH[n] approximation.

An important aspect of the MCTDH[n] methods is the choice of constraint operators gm.

In the limit of n = M , i.e. full MCTDH, the gm operators can be chosen to be arbitrary

Hermitian one-mode operators and are often simply set to zero. Taking this approach in

truncated MCTDH[n] results in the MCTDH[n,g0] methods. As shown in Ref. 18 this choice

of constraint is, however, not optimal for achieving accurate results at low excitation levels

because it does not satisfy the TDVP.

The non-redundant matrix elements of the constraint operators for the fully variational

MCTDH[n,V] methods are obtained by solving a set of linear equations,

∑
m′

∑
bm′
Amm′

ambm′ g̃m
′

bm′ im′ = Bmam , (14)

with,

Amm′

bmbm′ ≡
∑

m′∈MCR[X1] |m,m′∈m′

∑
bm′

−m,m′

C
m′\m
bm′\m

∗
C

m′\m′

bm′\m′ , (15)

Bmbm ≡
∑

m′∈MCR[X1] |m∈m′

∑
bm′

−m
C

m′\m
bm′\m

∗
Km′

bm′ . (16)

with Km′

bm′ ≡ 〈b̃m′|H|Ψ̄〉 and MCR[X1] is the set of excluded MCs that are one-mode excited

w.r.t. an included MC. The variational optimization of the constraint operators can be shown

to be equivalent to a linear least squares (LLS) minimization of the time derivative of the

Cm′

bm′ coefficients with m′ ∈ MCR[X1]18.

An alternative choice of constraint, also introduced in Ref. 18, is one that keeps the one-

mode density matrices block diagonal and thus makes the reference configuration a product

of natural modals. The non-redundant matrix elements of the constraint operators for the

resulting MCTDH[n,D] models are obtained by solving a small set of linear equations for
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each mode, ∑
bm

(
δambmD̃m

imim − D̃m
ambm

)
g̃mimbm = F̃m ∗

imam − F̃m
amim , (17)

This choice of constraint is computationally much cheaper than the fully variational solution

and, thus, the MCTDH[n,D] methods can be applied to quite large systems18. The downside

is that Eq. (17) becomes singular if the natural population of one of the virtual modals

becomes as large as the population of the occupied modal. This calls for regularization and

the MCTDH[n,D] EOMs become difficult to integrate if population changes a lot between

configurations.

2.3 Treating non-adiabatic dynamics

The wave function Ansätze presented thus far (Eqs. (1) and (13)) are able to describe an

evolving wave packet on a single Born-Oppenheimer potential-energy surface (PES). How-

ever, in order to simulate non-adiabatic effects occuring in the presence of conical intersec-

tions, the MCTDH wave function must take the electronic degree of freedom into account2,44.

There exist two different formulations of MCTDH for non-adiabatic dynamics, the single-set

formalism50,51 and the multi-set formalism52,53. The fundamental difference between the two

is that in the single-set formalism the same time-dependent modal basis is used on all PESs,

|Ψ̄〉SS =
n1∑
u1=1
· · ·

nM∑
uM =1

NI∑
I=1

Cu1...uM I

(
M∏
m=1

ãm †um

)
a†I |vac〉 . (18)

Note that the ”modals” of the electronic degree of freedom are time-independent because the

full set is used. The single-set formalism is simple to implement, but has the drawback that

many time-dependent modals are needed for reaching convergence if the wave packets on

the different surfaces become very different. In the multi-set formalism, on the other hand,

different modal bases are used on each surface which allows for a more compact representation
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of the wave function.

|Ψ̄〉MS =
∑
I

|Ψ̄I〉 |I〉 , (19)

with

|Ψ̄I〉 =
n1

I∑
u1

I=1
· · ·

nM
I∑

uM
I =1

CI
u1

I ...u
M
I

M∏
m=1

ãmI †
um

I
|vac〉 . (20)

However, due to non-orthogonality between the different bases, [ãmI
um

I
, ãmJ †

vm
J

] 6= δum
I v

m
J

, the

EOMs become more complicated2.

In this work, we use the single-set formalism for describing non-adiabatic dynamics within

the MCTDH[n] framework. In order to include the same number of configurations in the

wave packets on the different surfaces the electronic degree of freedom needs to be treated

in a special way as described in section 3.

3 MR-MCTDH[n] through systematic extension of the

configuration space

The MCTDH[n] wave function of Eq. (13) is based on a single reference state which is

assumed to have high occupation during the entire propagation. This assumption breaks

down when the wave function attains MR character due to e.g. double-well potentials or

during a non-adiabatic transition from one electronic state to another described in the single-

set formulation. In these cases higher excitation levels need to be included in the wave

function in order to describe the time evolution correctly. However, in many such cases not

all of the higher-level excitations are required or they are at least not equally important. The

number of configurations can be reduced significantly if the multi-reference character can be

ascribed to one (or a few selected) modes, mMR. Thus, it is the hope that a much more

balanced wave function, in terms of accuracy and computational effort, can be constructed

using the MR extension as opposed to increasing the overall excitation level.
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We can generally define MR-MCTDH[n] wave functions by using flexible ways of defining

the employed excitation space. These strategies will, one way or another, lead to excitation-

counting methods whose logic differs from the usual one of simply counting excitations out

of a single reference. However, within this very flexible setup are some very simple variants,

and these are the ones we will investigate in our computations and therefore describe first

in the following. If the modes in the set mMR are specifically important we can construct a

MR-MCTDH[n] wave function by not counting excitations of the MR modes (mMR) when

truncating MCR[I]. Thus, if mMR = {mMR} the MR-MCTDH[2] wave function will account

for all 3-mode excitations that include mMR (in addition to all the 1 and 2-mode excitations

usually included). A schematic representation of the modal spaces in this MR-MCTDH[n]

is shown in figure 1. Using this MR formulation, all states that are excited exclusively in

2-mode excitation

...
...

...

...
...

...

m0 m1 m2

occupied modals: im

virtual modals: am, bm

secondary modals: xm, ym

active space

secondary space

MR in m0

Formal 1-mode excitation

...
...

...

...
...

...

m0 m1 m2

Figure 1: An example of MR-MCTDH[n] for a 3-mode system. The shown configura-
tion is 2-mode excited w.r.t. the reference configuration when using regular single-reference
MCTDH[n]. When using MR for mode m0, all states that are 1-mode excited in mode m0
are also treated as reference configurations and, thus, the shown configuration only counts
as being 1-mode excited.

modes included in mMR are effectively also treated as reference configurations. Restricting

the included MCs as in figure 1 gives a significant reduction in the scaling of computational

effort in terms of the number of modes M compared to increasing the n-level of a standard

MCTDH[n] to achieve inclusion of the same important configurations.

For many applications it is probably not necessary to treat all active-space excitations
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within mMR as references. However, restricting the number of reference modals as shown in

figure 2 will result in more complicated equations for determining the variationally optimal

constraint operators (Eq. 14), as well as potentially leading to the need of different modal

spaces for different MCs. Restrictions in the number of reference modals as outlined in

...
...

...

...
...

...

m0 m1 m2

Figure 2: A MR scheme with further restrictions in the number of reference modals for the
modes included in mMR.

figure 2 will not give additional reductions in terms of M -scaling. Though some potential

savings in absolute computational cost may be obtainable depending on the number of modes

in mMR, we choose, with reference to the above-mentioned unresolved theoretical problems,

to only implement the scheme outlined in figure 1.

The MR method described here has some analogies to some methods in time-independent

electronic structure theory, such as the restricted active space54 and generalized active

space55 ideas in multi-configurational self-consistent field (MCSCF) and configuration in-

teraction (CI) theory, as well as the sub-branch of multi-reference coupled cluster (MRCC)

methods that are based on a single-reference (SR) formalism56–58. A topic of concern for the

SR-based MRCC approach is that the MR configurations are not treated identically, as one

of them has to be singled out as the formal reference. Accordingly, the model has difficulty

describing states with vanishingly small weight for the chosen SR58,59 unlike the situation

for genuine MRCC schemes59. For the present purpose of MR-MCTDH[n], the weight of
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the chosen reference is allowed to become zero in the wave function construction outlined

above. Hence, we do not face the same problem as SR-based MRCC. Furthermore, with the

modals evolving in time the reference has some flexibility to retain a high weight, as was

observed in Ref. 18, especially for the MCTDH[n,D] methods. With this in mind, we expect

the presented MR scheme to also be very useful in a TDVCC24 context, particularly if the

modals are time-dependent, although this will be the subject of a future study.

An important application of the MR formalism is to the single-set formalism for treating

non-adiabatic dynamics discussed in section 2.3. In this case the electronic degree of freedom

always needs to be included in mMR in order to include n-mode excitations of the vibrational

wave function on all electronic states. Thus, when treating non-adiabatic dynamics, the

configuration space of the given MCTDH[n] model is always extended in the electronic

degree of freedom and we choose to omit the MR notation.

The concrete MR scheme discussed above can be viewed as a special case of a more

general framework for constructing configuration spaces of many-mode systems. If each

mode is assigned an excitation weight wm, a flexible MCR can be built by only including

MCs for which,

wm ≡
∑
m∈m

wm ≤ n . (21)

This can e.g. be applied to system-bath problems where higher excitation levels are required

for the system (small wm) and the bath can be treated using more approximate theory

(large wm). The MR-MCTDH[n] methods outlined by figure 1 are obtained by wm = 0 for

all m ∈mMR and wm = 1 for the remaining modes. The general excitation-weight framework

is implemented in MidasCpp60 and used as described with wm = 0 or 1. Testing it in broader

contexts is a subject for future investigation.
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4 Implementation

The MCTDH methods described in section 2 have been implemented in the Molecular In-

teractions, Dynamics And Simulations Chemistry Program Package (MidasCpp)60 which

also includes an efficient implementation of TDH3, TDVCC24, as well as an array of meth-

ods for solving the TISE for molecular vibrations21,23,61, tools for automatic generation of

PESs and property surfaces62–64, optimization of vibrational coordinates65,66, etc. The time-

independent wave-function methods are used to generate the initial wave packet which is

propagated in time using the general-purpose routines described in Ref. 3. In this work

we use the Dormand-Prince 8(5,3) explicit Runge-Kutta method67 with adaptive step-size

control for all calculations.

The MR-MCTDH[n] method is implemented by implementing Eq.(21) in the construction

of MCR[I]. In all computations presented in section 5 wm = 0 for the modes included

in mMR. Thereby, MCR[I] includes all MCs of dimension ≤ n and those MCs of up to

n+ dim(mMR) degrees of freedom which have one or more modes in mMR.

5 Results

The following sections present numerical results for MCTDH[n] and MR-MCTDH[n] calcu-

lations on the formyl fluoride PES presented in Ref. 18, the 6D and 13D salicylaldimine

PESs of Ref. 68, and the 4D and 24D pyrazine models of Ref. 69. For formyl fluoride the

intramolecular vibrational-energy redistribution (IVR) from an initially excited C-H stretch

is studied in terms of the decay of the autocorrelation function. The salicylaldimine models

are used for studying the flux over the transition state, and for pyrazine the photoabsorption

spectrum and diabatic state populations are calculated.

The number of configurations in the MR and SR MCTDH[n] wave functions used for

studying these systems are shown in table 2. For (MR-)MCTDH[n] the number of con-

figurations is in general a good measure for the computational cost of a given calculation,
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although the choice of constraint also matters with (MR-)MCTDH[n,V] being the most ex-

pensive methods. We note that this is not necessarily the case for other types of methods such

as ML-MCTDH where the EOMs for the wave-function parameters of the different layers are

interdependent and the cost per parameter may become significantly higher than in standard

MCTDH. Concrete timings for a series of calculations on 6D salicylaldimine are shown in

table 3. These confirm that for each choice of constraint the cost of a MR-MCTDH[n] cal-

culation lies between the those of MCTDH[n] and MCTDH[n + 1]. The MR-MCTDH[4,V]

calculation is slightly more expensive than full MCTDH due to the low dimensionality of the

system, but as shown later in figure 4 the flux is converged already at the MR-MCTDH[3,V]

level.

Table 2: Number of configurations included in the MR and SR MCTDH[n] wave functions
used for studying the formyl fluoride molecule, the 6D and 13D salicylaldimine models, and
the 4D and 24D pyrazine models. Note that the full MCTDH calculations on the 13D
salicylaldimine and the 24D pyrazine models have not been performed.

n 2 3 4 Full
Formyl fluoride and NSR

config 406 2906 12 281 46 656
6D salicylaldimine NMR

config 1656 9156 27 906
13D salicylaldimine NSR

config 2016 37 766 484 641 13 060 694 016
NMR

config 10 266 175 266 2 031 516
4D pyrazine Nconfig 1344 9240 26 880 26 880
24D pyrazine Nconfig 19 444 837 140 25 646 130 98 277 538 868 892 794 880

5.1 Computational details

The time-independent basis sets used for the wave-packet propagations are harmonic-oscillator

basis functions (using ground-state normal-mode frequencies) for pyrazine and a B-spline ba-

sis for formyl fluoride. For salicylaldimine a B-spline basis is used for treating the double-well

mode and harmonic-oscillator functions are used for the rest. Both types of basis functions

are transformed to a set of orthonormal vibrational self-consistent field (VSCF) modals

before starting the propagation. The initial wave packets are generated using the VSCF

module of MidasCpp. The time-dependent modals of the active space are initially chosen as
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Table 3: Time (in seconds) per derivative evaluation for a series of MR and SR MCTDH[n]
calculations performed on 6D salicylaldimine.

Model tSR
deriv tMR

deriv
[2,g0] 1.40× 10−2 2.30× 10−2

[2,D] 1.45× 10−2 2.41× 10−2

[2,V] 2.19× 10−2 3.90× 10−2

[3,g0] 3.28× 10−2 7.46× 10−3

[3,D] 3.24× 10−2 7.51× 10−2

[3,V] 5.88× 10−2 1.15× 10−1

[4,g0] 9.41× 10−2 2.03× 10−1

[4,D] 9.47× 10−2 2.06× 10−1

[4,V] 1.53× 10−1 2.64× 10−1

MCTDH 2.37× 10−1

the nm lowest-energy VSCF modals for each mode. For a harmonic potential (such as the

electronic ground state of the pyrazine models) this results in a harmonic-oscillator basis,

while anharmonicity is incorporated in the initial modals for other types of PESs.

Spectra are calculated by performing fast Fourier transform (FFT) on the autocorrelation

function defined as,

S(t) = 〈Ψ̄(0)|Ψ̄(t)〉 = 〈Ψ̄∗(t/2)|Ψ̄(t/2)〉 , (22)

where the last equality only holds if Ψ̄∗(0) = Ψ̄(0) and H = HT 2. In order to introduce

phenomenological broadening of the spectra, the autocorrelation function can be modified

as,

S̃(t) = S(t) exp
(
−|t|
τ

)
, (23)

where τ is a given lifetime.

For salicylaldimine the flux over the transition state is calculated as the expectation value

of the flux operator2,

FQ1=0 = i[H,Θ(Q1)] = − i2

(
∂

∂Q1
δ(Q1) + δ(Q1) ∂

∂Q1

)
, (24)

where Θ(Q1) is the Heaviside step function, δ(Q1) is the Dirac delta function, and the last
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equality only holds in recitilinear coordinates where the kinetic-energy operator is of the

form Tm1 = −1
2

∂2

∂Q12 .

5.2 Intramolecular vibrational-energy redistribution

We first study the IVR of formyl fluoride using MR-MCTDH[n] with the initially excited C-

H stretch as the MR mode. As in Ref. 18 the initial wave packet is generated by performing

a VSCF calculation targeting the [0,0,0,0,0,2] state (the C-H stretch) on a PES with all

the coupling terms removed, i.e. a set of uncoupled anharmonic oscillators. The MCTDH

calculations are performed using nm = 6 in all modes in order to compare directly with the

results of Ref. 18 (initial tests were performed to ensure that nm = 6 is sufficient). Figure 3

shows the decay of the autocorrelation function as well as the difference between the MCTDH

and MR-MCTDH[n] results. The results clearly show that the MR wave functions converge

fast towards full MCTDH and already at the MR-MCTDH[2,V] level the autocorrelation

functions are very similar. In fact, the MR-MCTDH[2] results qualitatively correspond to

the MCTDH[3] results in Ref. 18, signifying that the MR scheme succeeds in including

the most relevant 3-mode excitations. Note that the MCTDH[3] wave function includes

almost twice as many configurations as the MR-MCTDH[2] wave function (2906 vs. 1656).

In contrast the single-reference MCTDH[2] results shown in Ref. 18 do not reproduce the

correct decay of the autocorrelation function, and thus using a MR description of the C-H

stretch greatly improves convergence of the MCTDH[n] hierarchy.

5.3 Double-well system

We now turn to studying the proton-transfer reaction of the salicylaldimine molecule. The

PES contains an asymmetric double well (in the mode denoted as m1) which is expected

to lead to MR character in the wave function. As in Ref. 68 the initial wave packets are

generated as Gaussian functions with widths corresponding to the enol widths shown in

table 4. The initial position expectation values of the wave packets are 〈Q1〉 = 0.9634,
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〈Q36〉 = 0.1373, and 〈Q〉 = 0 for the remaining modes (in mass-frequency-scaled normal

coordinates). As the zero for the coordinates is at the transition state, this places the wave

packet close to the barrier on the slope towards the more stable enol conformation, but

with an energy less than the barrier height (see Ref. 68 for details and illustrations of the

normal modes and PES). We examine both the 13D model using all modes in table 4 and

the 6D model which includes the following modes: m1, m10, m11, m13, m32, and m36. The

Table 4: Position expectation values and relaxed wave-packet widths (∆Q =
√
〈Q2〉 − 〈Q〉2)

of the enol conformation of salicylaldimine (from Ref. 68).

m1 m5 m7 m9 m10 m11 m13 m16 m22 m23 m24 m32 m36
〈Q〉 2.3903 0.7196 0.6020 0.5752 -1.5657 -1.0808 0.8422 0.3082 -0.2273 -0.0826 -0.3140 0.2421 0.6045
∆Q 0.5706 0.7409 0.7150 0.7115 0.7745 0.7590 0.6902 0.7167 0.7139 0.7166 0.7154 0.6707 0.7704

wave packets were propagated to t = 4200 au ' 100 fs using 6 time-dependent modals in all

modes. Figure 4 shows the flux over the transition state of the 6D model using different (MR-

)MCTDH[n,g0], (MR-)MCTDH[n,D], and (MR-)MCTDH[n,V] models, respectively. The

same results for the 13D model are shown in figure 5. The results clearly show that a MR

description of the double-well mode is essential for obtaining correct results at low excitation

levels. Among the MCTDH[2] models only the MR-MCTDH[2,D] and MR-MCTDH[2,V]

methods produce qualitatively correct results after the initial barrier crossing. The single-

reference MCTDH[2] methods all result in unstable propagation and even qualitatively wrong

flux at longer times. For the 6D model, all methods are seen to converge towards the

full MCTDH results when going to higher excitation levels and at the MCTDH[4] level all

except the MCTDH[4,g0] and MR-MCTDH[4,g0] methods are virtually indistinguishable

from full MCTDH. For the 13D model the same trends are observed. The flux calculated

by MR-MCTDH[2,D] and MR-MCTDH[2,V] is essentially converged until right before the

final crossing (starting at ∼ 2400 au). On the other hand, the single-reference MCTDH[2]

methods are not even able to predict the correct flux of the first recrossing occuring between

300 and 1000 au.
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5.4 Non-adiabatic dynamics

We finally study the non-adiabatic dynamics of the pyrazine molecule using the 4D and

24D models of Ref. 69. The number of time-dependent modals is (as suggested in Ref.

2) (nν10a , nν6a , nν1 , nν9a) = (16, 15, 8, 7) and for the 24D model we use nm = 6 for the

remaining modes. The initial wave packets were generated as Gaussian functions using the

normal-mode frequencies of the electronic ground state and placed on the S2 surface. The

4D system was propagated to t = 104 au ' 242 fs and the 24D system was propagated to

t = 6200 au ' 150 fs. Only the MCTDH[n,g0] and MCTDH[n,V] results are compared as the

MCTDH[n,D] wave functions became very difficult to propagate due to the large changes

in occupation numbers caused by the non-adiabatic dynamics. Recall that the electronic

degree of freedom is always treated as an MR mode although this is not explicitly reflected

in the notation. Figure 6 shows photoabsorption spectra and diabatic state populations of

the 4D pyrazine model. The corresponding results for the 24D model are shown in figure 7.

For both models it becomes clear that the fully variational MCTDH[n,V] hierarchy con-

verges much faster than the corresponding MCTDH[n,g0] wave functions. For the 4D model,

the MCTDH[3,V] results are basically converged (as expected) while this is not the case for

MCTDH[3,g0]. For the full 24D model all the MCTDH[n,V] methods produce qualitatively

correct spectra and the state populations for MCTDH[3,V] and MCTDH[4,V] are very simi-

lar during the first ∼ 2000 au of the propagation. Most importantly, the dynamics leading up

to the crossing between the diabatic populations is converged already at the MCTDH[3,V]

level.

6 Summary and outlook

A MR extension to the MCTDH[n] hierarchy has been introduced which includes selected

higher-order excitations for the modes that govern the quantum dynamics of the system.

This is formally equivalent to treating all configurations that are excited exclusively in the
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MR modes as reference configurations. The MR-MCTDH[n] methods are implemented by

simply modifying the MCR of included configurations, MCR[I], and thus the various choices

of constraint operators outlined in section 2.2 can be straightforwardly employed.

The MR formalism has been applied to studying the IVR of formyl fluoride, the proton-

transfer reaction of salicylaldimine, and the non-adiabatic dynamics of pyrazine. The nu-

merical results show that the MR-MCTDH[n] methods provide a more balanced description

of the studied systems compared to single-reference MCTDH[n] and ensure fast convergence

towards the full MCTDH limit. As expected, the choice of constraint operators is key to ob-

taining accurate results at low excitation levels. For the formyl fluoride and salicylaldimine

calculations the MR-MCTDH[n,D] and MR-MCTDH[n,V] hierarchies converge fast towards

the full MCTDH limit compared to MR-MCTDH[n,g0]. For the non-adiabatic dynamics of

pyrazine the density-matrix constraint resulted in very small integration steps close to the

point where the diabatic populations of the two electronic states cross. This exemplifies

that while the density-matrix and the fully variational constraints typically lead to similar

accuracy, the MCTDH[n,V] EOMs are numerically more stable.

In this work we have exclusively used the single-set formalism for treating non-adiabatic

dynamics within the MCTDH framework. However, in order to further reduce the required

number of time-dependent modals a formulation and implementation of MCTDH[n] within

the multi-set formalism could be an important step towards studying the complex photody-

namics of larger molecules. Also, applying the general excitation-weight framework outlined

in section 3 to studying system-bath problems with MCTDH[n] is a relevant topic for future

investigation. Furthermore, a (semi-)automated scheme for identifying the MR modes will

be an important tool for applying MR-MCTDH[n] to larger and more complex systems.

Such a procedure could e.g. be based on norms of the coefficients of the 1-mode excitations

in a SR MCTDH[n] calculation, but this approach remains to be studied further. Finally,

developing a scheme for dynamically including the relevant couplings in the wave function

during the course of propagation while keeping the required number of configurations small
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is an important subject for future research in this area.
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Hansen, M. B.; Hansen, M. B.; Kongsted, J.; Klinting, E. L.; König, C.; Losilla, S. A.;

27



Madsen, D.; Madsen, N. K.; Monrad, K.; Seidler, P.; Sneskov, K.; Sparta, M.; Thom-

sen, B.; Toffoli, D.; Zoccante, A. MidasCpp (Molecular Interactions, dynamics and

simulation Chemistry program package in C++); 2020; https://midascpp.gitlab.io/.

(61) Hansen, M.; Sparta, M.; Seidler, P.; Toffoli, D.; Christiansen, O. New Formulation and

Implementation of Vibrational Self-Consistent Field Theory. J. Chem. Theory Comput.

2010, 6, 235–248.

(62) Sparta, M.; Toffoli, D.; Christiansen, O. An Adaptive Density-Guided Approach for the

Generation of Potential Energy Surfaces of Polyatomic Molecules. Theor. Chem. Acc.

2009, 123, 413–429.

(63) Klinting, E. L.; Thomsen, B.; Godtliebsen, I. H.; Christiansen, O. Employing general

fit-bases for construction of potential energy surfaces with an adaptive density-guided

approach. J. Chem. Phys. 2018, 148, 064113.

(64) König, C.; Christiansen, O. Linear-scaling generation of potential energy surfaces using

a double incremental expansion. J. Chem. Phys. 2016, 145, 064105.

(65) Thomsen, B.; Yagi, K.; Christiansen, O. A simple state-average procedure determining

optimal coordinates for anharmonic vibrational calculations. Chem. Phys. Lett. 2014,

610-611, 288 – 297.

(66) Klinting, E. L.; König, C.; Christiansen, O. Hybrid Optimized and Localized Vibra-

tional Coordinates. J. Phys. Chem. A 2015, 119, 11007–11021.

(67) Hairer, E.; Wanner, G.; Nørsett, S. P. Solving Ordinary Differential Equations I: Non-

stiff Problems; Springer, 1993.

(68) Polyak, I.; Allan, C. S. M.; Worth, G. A. A complete description of tunnelling using

direct quantum dynamics simulation: Salicylaldimine proton transfer. J. Chem. Phys.

2015, 143, 084121.

28



(69) Raab, A.; Worth, G. A.; Meyer, H.-D.; Cederbaum, L. S. Molecular dynamics of

pyrazine after excitation to the S2 electronic state using a realistic 24-mode model

Hamiltonian. J. Chem. Phys. 1999, 110, 936–946.

29



0 5000 10000 15000

t [au]

0.4

0.6

0.8

1

|S
|

MCTDH

MR-MCTDH[2,g0]

MR-MCTDH[2,D]

MR-MCTDH[2,V]

MR-MCTDH[3,g0]

MR-MCTDH[3,D]

MR-MCTDH[3,V]

MR-MCTDH[4,g0]

MR-MCTDH[4,D]

MR-MCTDH[4,V]

0 5000 10000 15000

t [au]

0

0.05

0.1

|S
|−

|S
| M

C
T
D
H

MR-MCTDH[2,g0]

MR-MCTDH[2,D]

MR-MCTDH[2,V]

MR-MCTDH[3,g0]

MR-MCTDH[3,D]

MR-MCTDH[3,V]

MR-MCTDH[4,g0]

MR-MCTDH[4,D]

MR-MCTDH[4,V]

Figure 3: Top: Absolute value of the autocorrelation function for formyl fluoride. Bottom:
Difference between the full MCTDH and MR-MCTDH[n] autocorrelation functions.
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Figure 4: Flux over the transition state of the 6D salicylaldimine potential for MCTDH[n]
(left) and MR-MCTDH[n] (right).
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Figure 5: Flux over the transition state of the 13D salicylaldimine potential for MCTDH[n]
(left) and MR-MCTDH[n] (right).
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Figure 6: Spectra (left) and diabatic state populations (right) of the 4D pyrazine model using
MCTDH[n,g0] and MCTDH[n,V]. A phenomenological broadening of 6200 a.u. ' 150 fs is
used in the spectra.
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Figure 7: Spectra (left) and diabatic state populations (right) of the 24D pyrazine model
using MCTDH[n,g0] and MCTDH[n,V]. A phenomenological broadening of 6200 a.u. ' 150 fs
is used in the spectra.
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