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Abstract 

A longstanding problem in the social, biological, and computational sciences is to determine 

how groups of distributed individuals can form accurate judgments.  Since Galton’s discovery 

of the “wisdom of crowds” [Galton F (1907) Nature 75:7] theories of collective intelligence 

have suggested that in order for a group to be accurate, individuals within the group must 

be either independent, with uncorrelated beliefs, or diverse, with negatively correlated 

beliefs [Page, S (2007) The Difference].  Previous experimental studies argued that social 

influence undermines the wisdom of crowds, showing that individual estimates became 

more similar when subjects observed each other’s beliefs, reducing diversity without a 

corresponding increase in group accuracy [Lorenz J et al (2010) Proc Natl Acad Sci 108:22].  

In contrast, we find general network conditions under which social influence can improve 

group estimates, even as individual opinions become more similar.  We present theoretical 

predictions and large scale experimental results showing that in decentralized 

communication networks, group estimates become more accurate as a result of exposure to 

social information.  We also present results showing that in centralized networks, the 

influence of central individuals dominates the collective estimation process, and group 

estimates are as likely to increase in error as they are to become more accurate. 
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Significance Statement 

Since the discovery of the wisdom of crowds over 100 years ago, theories of collective 

intelligence have held that group accuracy requires either statistical independence or 

informational diversity among individual beliefs.  Empirical evidence suggests that allowing 

people to observe the beliefs of others leads to increased similarity of individual estimates, 

reducing independence and diversity without a corresponding increase in group accuracy.  

As a result, social influence is expected to undermine the wisdom of crowds.  We present 

theoretical predictions and experimental findings demonstrating that in decentralized 

networks, social influence generates learning dynamics that reliably improve the wisdom of 

crowds. We identify general conditions under which influence, not independence, produces 

the most accurate group judgments.   

 

Main Text 

Since Galton’s discovery of the “wisdom of crowds” over 100 years ago (1), results on 

crowdsourcing (2,3), prediction markets (4), and financial forecasting (5,6) have shown that 

the aggregated judgment of many individuals can be more accurate than the judgments of 

individual experts (1,7-9).  Statistical explanations for this phenomenon argue that group 

accuracy relies on estimates taken from groups where individuals’ errors are either 

uncorrelated or negatively correlated, thereby preserving the diversity of opinions in a 

population (10).  Thus, while individuals may have estimates both far above and far below 

the true value, in aggregate these errors cancel out, leaving an accurate group judgment 

(2,10,11).  
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Recent experimental evidence has suggested that the wisdom of crowds may be 

undermined by processes of social influence, in which people exchange information about 

their estimates and revise their judgments to align with one another (12-14).  When social 

influence leads to correlated errors, both independence and diversity are reduced, which has 

been argued to compromise the reliability of the group judgment (10,12-19).  In direct 

contrast with these results, however, theoretical models of social learning (20-22) have 

suggested that the effects of social influence on collective decisions vary based on the 

structure of the interaction network, predicting that under the right conditions, social 

learning can lead a group’s median judgment to improve (21-25). 

This prediction derives from the assumption that when people learn about the beliefs 

of others, they revise their own beliefs to become more similar to their social referents 

(12,13,26,27).  Following the DeGroot model of social learning, this theory suggests that each 

individual’s revisions are based on a weighted average of their own belief and the beliefs of 

their social referents (20).  Thus, an individual’s revision is determined in part by the amount 

of weight they place on their own belief relative to social information.  When this “self-

weight” is independently and identically distributed throughout a population, and the 

population is embedded in a decentralized social network (i.e., one in which everyone is 

equally connected), this model predicts that belief distributions will converge on the 

statistical mean of the initial, independent beliefs (SI Appendix).  Thus, if the initial group 

mean is accurate, exposure to social influence will lead individuals in the group to become 

more accurate, improving the accuracy of the group’s median even as the group mean 

remains fixed (SI Appendix). 
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We build on the DeGroot model to generate novel theoretical predictions for how 

social influence can affect the accuracy of group judgments.  We show that if individuals’ self-

weights are not identically and independently distributed in the population, but are instead 

correlated with individual accuracy, then social influence may not only improve the median 

judgment by bringing it toward the mean, but may also result in the mean of the population 

estimate becoming more accurate.  This prediction builds on DeMarzo, Vayanos, and 

Zweibel’s (21) notion of “social influence weight,” which identifies the amount of influence 

that each individual in a network has on the collective belief.  Because self-weight contributes 

to social influence weight, a correlation between accuracy and self-weight means that more 

accurate individuals will be more influential in the group estimate, resulting in a direct 

improvement in the accuracy of the group mean.  

Our predictions also show that this process can go awry if some individuals in a 

population are more prominent than others, giving them disproportionate levels of social 

influence in the population.  Theoretical results suggest that when networks are highly 

“centralized” in this way, instead of efficiently aggregating all available information, 

populations are biased toward the beliefs of the central individuals (21), which can 

significantly influence the accuracy of the collective judgment (SI Appendix).  This effect of 

centralization on group estimates has been predicted by a variety of social learning models, 

including both fixed (21,24) and growing (22,25) networks, as well as models of both 

discrete choice (24,25) and continuous estimation (21,22). 

We test these theoretical predictions using a Web-based experimental design.  We 

recruited subjects to participate in a series of large group estimation tasks, and compared 

the effects of social influence in both centralized and decentralized networks to a control 
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condition in which there was no social influence.  Consistent with previous work, our 

theoretical results predict that centralized networks will exhibit a bias toward the beliefs of 

central individuals.  However, in contrast to prior work showing that social influence 

undermines group accuracy (12-19), we predict that social influence in decentralized 

networks will improve the accuracy of the group median (SI Appendix).  Moreover, we also 

predict that social influence can produce systematic improvements in the accuracy of the 

group mean if the individual revision process is not identically and independently 

distributed, but is correlated with individual accuracy.  As described below, our 

experimental design permits a direct test of these theoretical predictions based on our 

extensions of the DeGroot model. 

 

Theoretical Model  

We build on DeGroot’s (20) formalization of local information aggregation, in which subject 

i updates their response estimate, itR , , after being exposed to the estimates of their network 

neighbors, 
iNjtR ,   We define a subject’s revision process with three components:  their own 

estimate; the estimates of network neighbors; and “self-weight,” or the amount of weight 

they place on their own estimate relative to the estimates of their network neighbors.  In this 

model, each subject responds to social information by adopting a weighted mean of their 

own estimate and the estimates of their neighbors, according to the rule: 

iNjtiitiit RRR + −+= ,,,1 )1(  , 

where the value itR ,  indicates the response of subject i at time t; i  indicates the self-weight 

a subject places on their own initial estimate; ( 1- i ) indicates the weight they place on the 
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average estimate of their network neighbors; and 
iNjtR ,  indicates the average estimate of 

subject i’s network neighbors at time t.  Outcomes are therefore determined by three 

parameters:  the communication network (i.e., who can observe whom), the distribution of 

initial estimates, 1R , and the distribution of self-weights, αi.   

At the population level, this model states that the group estimate after t revisions can 

be calculated as a function of a weighted, directed network of social influence (20).  In this 

social influence network, a tie exists from node i to node j if i can observe j in the 

communication network.  The tie has a numeric value that indicates the weight that node i 

places on the estimate of node j which is determined by αi.  For any given node i, the sum of 

the outgoing tie weights equals (1 – αi).   Consistent with previous implementations of this 

model (20-22), we represent the self-weight that node i places on its own estimate ( i ) as a 

“self-tie” from i to i.  The set of each node’s outgoing tie weights (including their self-tie) sums 

to 1.  The sum of each node’s incoming ties (including their self-tie) is proportional to their 

overall influence in the network during each round of revisions – i.e., their “social influence 

weight” – which is defined as each subject’s influence in the collective estimation process 

(21).  Because this sum includes the subject’s self-weight, each subject’s influence in the 

collective estimation process is determined in part by how heavily they weight their own 

opinion compared to the social information they receive.   

This concept of social influence weight comes from the properties of the DeGroot 

model, where members of a population revise their estimates indefinitely according to the 

process above.  Through this revision process, the DeGroot model predicts that in a wide 

range of network structures all members of the population will asymptotically converge on 
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a single shared estimate (20).  The collective estimate after social influence is a weighted 

mean of the initial independent estimates (21).  Each individual’s social influence weight is 

defined by the size of the contribution that their initial (independent) estimate makes to the 

final collective estimate (21).  The relationship between self-weight and social influence 

weight reflects the fact that when a subject places more weight on their own individual belief, 

they adjust their belief less in response to others, and thereby contribute more weight to the 

group estimate (21).   

 In decentralized networks – defined as networks where everyone has the same 

number of ties (28) – the properties of the model described above indicate that the 

arithmetic mean of a group’s estimate distribution will remain unchanged even as social 

influence leads individuals’ estimates to become more similar.  This prediction (convergence 

toward the mean) holds under the assumption either that self-weight is identically and 

independently distributed (i.i.d.) throughout a population (SI Appendix).  If this process 

accurately characterizes the effects of influence on the wisdom of crowds, and the initial 

group mean is accurate, then social influence in decentralized networks allows individuals 

to increase the accuracy of their estimates without any deleterious effects on group-level 

accuracy.  One consequence of this is that the median of the group estimate can improve 

while the mean stays fixed (SI Appendix). 

 We extend these predictions by analyzing what happens when this i.i.d. assumption 

is violated – i.e., there is non-i.i.d. heterogeneity in the degree to which individuals revise 

their estimates based on the estimates of others.  Our results predict that if an individual’s 

self-weight is correlated with their accuracy, social influence dynamics may not only be able 

to improve the median judgment by bringing it toward the mean, but may also result in the 



NETWORK DYNAMICS OF THE WISDOM OF CROWDS 9 

 

 

 

mean of the population estimate becoming more accurate as a function of social influence (SI 

Appendix).   

 

Experimental Design 

We recruited 1,360 participants from the World Wide Web to take part in a series of 

estimation challenges.  Subjects were randomized either to one of two experimental social 

network conditions, or to a control condition.  In all conditions, participants were prompted 

to complete estimation tasks and were awarded a monetary prize based on the accuracy of 

their final estimate.  In the network conditions, participants were placed into either a 

decentralized network, in which everyone had equal connectivity, or a centralized network, 

in which a highly connected central member had a disproportionate number of connections 

(see Materials and Methods and Figs. S1 and S7).   

Each social network contained 40 subjects.  Within each network, all subjects were 

simultaneously shown the same image prompt (e.g., a plate of food) and asked to estimate a 

numerical quantity (e.g., the caloric content) (SI Appendix).  There were three rounds for 

each estimation task.  In Round One, participants provided an independent estimate based 

on the prompt.  In both network conditions, participants were then shown the average 

estimate of the peers directly connected to them in their social network, and prompted to 

submit their answers again in Round Two.  Subjects were then shown the average of their 

peers’ revised estimates, and prompted to submit a final estimate in Round Three.  Thus, for 

each question, participants provided one independent estimate and two estimates after 

exposure to social information, for a total of three estimates per question.  Subjects were not 
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provided with any information about their social networks, which ensured that the subject 

experience was identical across the two network conditions.   

Subjects who were randomized to the control condition were not placed into social 

networks, but were instead given the opportunity to answer the same questions without 

being exposed to social influence.  These participants were still given the opportunity to 

revise their initial answer two times, providing a total of three independent estimates per 

question.  All control participants observed the same sets of questions in the same order as 

participants embedded within the experimental networks.  More generally, the subject 

experience in the control condition was identical to that of subjects in other conditions, 

except that participants were not given any social information.   

Each experimental trial of the study consisted of an identical set of questions 

provided to one decentralized network (40 individuals) and one centralized network (40 

individuals).  For each set of questions that was asked in the experimental trials, we also 

collected responses from 40 independent individuals in the control condition, who 

collectively formed a “control group” for that set of questions.  

Because subjects in the network conditions were not statistically independent, all 

analyses of collective estimates in the network conditions were conducted at the group level 

(SI Appendix).  Moreover, because each network completed multiple estimation tasks within 

an experimental trial, we cluster our main analysis at the trial level such that each network 

provides a single, independent observation (SI Appendix).  In total, we conducted 13 

experimental trials, comprising 520 subjects in each network condition (1040 experimental 

subjects in total).  In 6 of the experimental trials, subjects answered 4 questions in each trial, 

where each question set was unique.  In the remaining 7 trials, subjects answered 5 
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questions in each trial, using 2 unique questions over repeated trials.  In total, this produced 

8 unique question sets.   

Control groups were conducted corresponding to each unique question set, 

producing 8 control groups, each of size 40 (320 control subjects in total) (See Methods and 

Materials).  Because subjects in the control groups were independent from each other, fewer 

overall subjects were required for the control analyses (see Methods and Materials; SI 

Appendix).  Nevertheless, for proper comparison with the experimental conditions, we still 

conducted our control trials with subjects in groups of 40, and conduct our analyses at the 

group level (SI Appendix).    

We measure the cumulative effect of social influence on collective judgments by 

comparing the initial estimates of each group (i.e., in Round One of our study), with the final 

estimates of each group after two rounds of revision (i.e., in Round Three).  For results where 

we report percent change, all comparisons are made between final estimates (i.e., Round 

Three) and independent estimates (i.e., Round One), so that percent change is measured as 

the magnitude of the change in the estimate divided by the magnitude of the initial estimate 

(SI Appendix).  To facilitate comparisons across different estimation tasks of different scales 

(i.e., some questions have true answers over 1000, while some questions have true answers 

under 100) we normalize all estimates, dividing them by the standard deviation of the 

independent responses for each question (SI Appendix).  All reported changes in error are 

therefore measured in terms of the distance of each estimate from the truth, represented as 

the number of standard deviations (s.d.) away from the true answer (comparable to a z-

score). 
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Results 

Social network structure significantly affected the wisdom of crowds.  We found both that 

decentralized networks showed the predicted increase in collective accuracy, and that 

centralized networks exhibited the predicted bias toward the beliefs of central individuals.  

We begin our analysis by confirming that in the independent round (i.e., Round One of all 

trials) groups exhibited the wisdom of crowds.  Consistent with earlier studies (1,6-9,14), we 

found that, on average, both the mean and the median of each group’s estimate was more 

accurate than the majority of its members (SI Appendix).  In the results that follow, we 

analyze how social influence affected the trajectory of group estimates in each of the network 

conditions. 

 

Decentralized Networks.  Social influence dramatically reduced the diversity of group 

estimates.  As shown in Fig. 1D, two rounds of revision significantly narrowed the standard 

deviation of responses (N=13 trials, P<0.001, Wilcoxon signed rank test), producing a 43% 

reduction in the average standard deviation between Round One and Round Three.  This 

sizable reduction in diversity replicates the main finding from previous experimental 

research on social influence in the wisdom of crowds (14).  

However, this reduction in diversity did not undermine the wisdom of crowds.  

Rather, consistent with previous research (29,30), we found that social influence in 

decentralized networks produced significant improvements in individual accuracy.  Across 

all 13 trials with decentralized networks, average individual error was significantly lower in 

Round Three than it was in Round One, decreasing by 23% on average (N=13 trials, P<0.001, 

Wilcoxon signed rank test).  In addition to these individual level improvements, we also 
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found that the average error of each group’s median estimate was significantly lower in 

Round Three (0.67 s.d.) than in Round One (0.76 s.d.) (N=13 trials, P<0.001, Wilcoxon signed 

rank test), resulting in a 12% decrease in average error, as shown in Figs. 1A and 1C.   

In our analysis of how social influence produced these group-level improvements in 

the median, our initial expectation was that self-weights were independently and identically 

distributed within each network.  On this assumption, the DeGroot (20) model predicts that 

social influence in decentralized networks can improve the group median by pushing it 

towards the mean of the group’s independent estimate, which is not expected to change (SI 

Appendix).  Remarkably, however, we found that, on average, each group’s mean estimate 

also became more accurate.  After two rounds of exposure to social influence, the average 

error of the group mean at Round Three (0.62 s.d.) was significantly lower than at Round 

One (0.69 s.d.) (N=13 trials, P<0.01, Wilcoxon signed rank test), resulting in a 10% reduction 

in the average error of the group mean.  These findings can be explained with the DeGroot 

model by observing that individuals’ self-weights were not identically distributed in the 

population.  

Figure 2 shows that across all network conditions the magnitude of an individual’s 

revisions from Round One to Round Three was significantly correlated with the magnitude 

of their initial error (N=4340 estimates by 1040 subjects, ρ=0.41, 95% CI [0.39, 0.43], 

P<0.001, Analysis of Covariance).  Because each individual completed multiple estimation 

tasks, we measure this relationship between individual accuracy and revision magnitude 

after controlling for correlation between estimates by the same individual (SI Appendix).  

The results (Fig.2) show that initially accurate individuals made smaller revisions to their 

estimates, while initially inaccurate individuals made larger revisions.  Consistent with the 
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DeGroot model, one explanation for this revision pattern is that individuals who were more 

accurate had greater self-weight in their revisions than individuals who were less accurate.  

This explanation is consistent with the observed behavior, however our analysis also needs 

to account for the observation that individuals who were more accurate also had estimates 

that were closer to their observed neighborhood average.  Consequently, the positive 

correlation between error and revision magnitude may be due to the fact that subjects whose 

initial estimates were farther from their neighborhood average were inclined to make larger 

revisions, rather than to the fact that more accurate individuals had a stronger self-

weighting.  

To control for this potentially confounding effect, we measured the partial correlation 

between error and revision magnitude, while holding constant the distance between the 

subject’s initial estimate and the initial neighborhood estimate.   The inset in Fig. 2 shows 

that even with this statistical control, more accurate individuals still made smaller revisions 

to their estimates than less accurate individuals (N=4340 estimates by 1040 subjects, 

ρ=0.25, 95% CI [0.22, 0.28], P<0.001, Analysis of Covariance).  This suggests that accurate 

individuals placed more weight on their own estimates and less weight on social information 

(SI Appendix).  By contrast, less inaccurate individuals had a lower self-weight, and were 

more influenced by social information.  For clarity, we refer to this partial correlation 

between accuracy and self-weight as the “revision coefficient.” 

As discussed above, each individual’s social influence weight in the network is 

determined in part by their self-weight, so that individuals who place more weight on their 

own estimate are also more influential in the collective estimate.  When considered in the 

context of our theoretical model, the correlation shown in Fig. 2 indicates that more accurate 
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individuals had a larger social influence weight in the network, which can pull the group 

estimate toward a more accurate mean (SI Appendix).  These analyses suggest a direct 

positive relationship between the average revision coefficient among the members of a 

group and the expected improvement in the accuracy of the group mean.  Fig. 3A shows, for 

decentralized networks, the correlation between the improvement in the group mean for 

each question, and the group’s revision coefficient for that question, for each of the 59 group 

estimation tasks completed in decentralized networks.   Because each group completed 

multiple estimation tasks, these analyses control for correlations across multiple estimates 

made by the same group (See SI Appendix). 

Consistent with our theoretical expectations, the correlation shown in figure 3A 

indicates that in decentralized networks, groups with higher revision coefficients also 

exhibited larger improvements in group accuracy (N=59 estimation tasks, ρ=-0.71,  95% CI 

[-0.82, -0.56].  By contrast, figure 3B shows that centralized networks (as discussed below) 

exhibited no significant correlation between a group’s average revision coefficient and a 

change in group accuracy (N=57 estimation tasks, ρ=-0.16, 95% CI [-0.33, 0.10]).   

Figure 3A indicates that, in decentralized networks, the greater the correlation 

between individual accuracy and self-weight, the more likely it is that the group mean will 

improve.  Additional simulation analyses, which are provided in the SI Appendix (Fig. S9), 

show that in decentralized networks a positive revision coefficient is sufficient to produce 

increases in group accuracy consistent with our empirical findings.  Notably, across all 

experimental trials, the average revision coefficient for all subjects was positive (SI 

Appendix) suggesting that in very large populations with decentralized networks, social 

influence is likely to generate consistent improvements in the accuracy of the group mean. 



NETWORK DYNAMICS OF THE WISDOM OF CROWDS 16 

 

 

 

 

Control Condition.   These improvements in both the mean and the median, as well as the 

accuracy of individuals’ estimates, all contrast with the results from the control condition 

(i.e., without social influence).  Subjects in the control condition were able to revise their 

answers several times, but were not provided any information about the estimates of other 

participants.  Between Round One and Round Three, groups in the control condition showed 

only a small (3%) decrease in average standard deviation (SI Appendix), which was 

significantly smaller than the reduction in diversity in decentralized networks (43%) and 

centralized networks (42%) (N=21, 13 experimental and 8 control trials, P<0.001 for both 

comparisons, Wilcoxon rank sum test).  The opportunity for revision produced a small (3%) 

decrease in average individual error even in the absence of social information (N=8 control 

trials, P<0.001, Wilcoxon signed rank test).  However, this improvement was significantly 

smaller than the 23% improvement by individuals in decentralized networks (N=21, 13 

experimental and 8 control trials, P<0.001, Wilcoxon rank sum test).  Moreover, in the 

control condition, these individual improvements produced no significant changes in the 

accuracy of either the group mean (P>0.94) or the group median (P>0.64) (complementary 

analyses provided in the SI Appendix).  These results indicate that the improvements in 

collective judgment observed in decentralized networks are not explained by independent 

learning effects, but are due to the network dynamics of social influence.   

 

Centralized Networks.   In each centralized network, one randomly selected participant 

was given disproportionate exposure to the rest of the network by being given many more 

network ties than other subjects (see SI Appendix).  Because these central individuals had 
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more network ties than other individuals, they had much greater weight in the resulting 

network of social influence.  As expected, the diversity of estimates in centralized networks 

(shown in Fig. 1D) significantly decreased after social influence (N=13 trials, P<0.001, 

Wilcoxon signed rank test), reducing the average standard deviation by 42%.  However, 

averaged over all trials, social influence in centralized networks did not reliably improve 

either the group mean (P>0.63) or the group median (P>0.78).  Instead, as predicted by the 

DeGroot model, the effects of social influence were determined by the initial estimates of the 

central individual.   

To analyze these effects, we divided the group estimates in centralized networks into 

two categories, based on the initial estimate of the central nodes.  In one category (“center 

toward truth”) the influence of the central node is expected to increase the accuracy of the 

group mean.  This category includes estimates in which the central node was more accurate 

than the group mean, and also estimates in which the central node was less accurate, but was 

on the opposite side of the truth from the group mean.  For instance, if the true value is 100 

and the group mean is 90, a central node with an estimate of either 105 (more accurate) or 

120 (less accurate) will pull the group toward the truth (see SI Appendix, Fig S8).  The second 

category (“center away from truth”) includes trials in which the estimate of the central node 

pulled the group mean away from the truth.  For instance, if the estimate of the central node 

is instead 70.  This analytical strategy was used to identify the effects of social influence on 

both the group mean and the group median, as reported below.  

All 13 trials produced responses to at least one question in which the central 

individual was away from truth relative to the group estimate, while only 12 trials produced 

responses where the central individual was towards truth.  Accordingly, our analyses for 
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each category use N=13 trials and N=12 trials, respectively.  As shown in Fig. 1B and 1C, 

when the central individual’s estimate was toward truth, the average error of the group 

mean after social influence (0.32 s.d.) was 43% lower than the average error of the group 

mean before social influence (0.56 s.d.), producing a significant increase in group accuracy 

(N=12 trials, P<0.01, Wilcoxon signed rank test).  Correspondingly, the same analysis for the 

median showed that the error of the median also decreased significantly by 48% in these 

group estimations from Round One (0.70 s.d.) to Round Three (0.36 s.d.) (N=12 trials, 

P<0.01, Wilcoxon signed rank test).  Similarly, when the central individual provided an 

estimate that was away from truth, social influence increased the error of the group mean 

by 19% and the error of the median by 32% (Fig. 1B and 1C), significantly reducing the 

accuracy of both the mean and the median of estimates (N=13 trials, P<0.01 for both 

comparisons, Wilcoxon signed rank test).   

Figure 3C shows the effects of the central node on the collective estimate for each of 

the 57 estimation tasks in which the central node offered a response (SI).  As above, because 

each group completed multiple estimation tasks, these analyses control for correlations 

between multiple estimations made by the same group (SI Appendix).  The positive slope in 

Fig. 3C (N=57 estimation tasks, ρ=0.92, 95% [0.88, 0.95]) indicates that the group estimates 

in centralized networks moved toward the initial belief of the central individual – i.e., higher 

estimates by the central node made the group mean increase, while lower estimates made 

the group mean decrease.    

 

Robustness.   To conclude our analyses, we examined the robustness of our theoretical and 

experimental findings under variations in the network parameters, such as average degree, 
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graph density, and population size.  Graph density and average degree had no effect on the 

results (see Figs S11 and S12).  However, we found that the effects of social influence on the 

wisdom of crowds are significantly strengthened with larger population sizes (see SI 

Appendix).  Our analyses indicate that recent small group studies arguing that social 

influence undermines the wisdom of crowds (even in a decentralized network) (14) were 

insufficiently statistically powered to identify the improvements in collective accuracy that 

we found (see Fig. S13).  Additional simulation analyses as well as supplementary analyses 

of the publicly available data from these studies (SI Appendix) show that these effects of 

population size can both explain the negative findings from previous experiments using 

small groups, and demonstrate the generalization of our positive results to larger population 

sizes. 

 

Discussion 

Our study differs in several respects from previous work on the network dynamics of 

collective intelligence.  Unlike research on social coordination (31-33) and group problem 

solving (34-36), our study does not consider situations where social interaction is necessary 

for groups to achieve a collective outcome.  Instead, we identify how the network dynamics 

of social influence can affect collective estimation tasks in situations where social influence 

has been predicted to have a negative effect on the quality of group judgments (2,12-19).  

Our finding that groups have the ability to generate accurate estimates even in the presence 

of social influence has useful implications for the design of several kinds of collective decision 

processes.  As described in previous studies (14), if social influence did indeed undermine 

the wisdom of crowds, then democratic institutions and organizational decision procedures 
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could be improved by preventing people from communicating during a voting process (14).  

Based on these ideas, commercial and non-profit organizations have implemented 

automated aggregation tools in order to collect individuals’ independent beliefs in ways that 

minimize the information exchanged between them (37).  Our findings argue against this 

approach to aggregation.  In contrast, we have shown how social learning in networks can 

amplify the influence of accurate individuals, leading to both individual and collective 

judgments that are more accurate than those which could typically be obtained by 

independent aggregation alone.  We therefore anticipate that process interventions within 

political discussion settings (38) and organizational decision contexts (2,39) may benefit 

more from approaches that manage communication networks, rather than approaches that 

attempt to increase independence in the aggregation process.   

 

Materials and Methods 

All subjects who participated in this study provided informed consent during the registration 

process, and all procedures in this study were approved by the Institutional Review Board 

of the University of Pennsylvania.  Upon entering the experimental platform, participants 

were randomly assigned to one of three conditions – a decentralized random network, a 

centralized network, or a control condition (SI Appendix).  Once placed into a condition, 

players interacted in real time for a period of approximately 15 minutes.  For each question, 

participants first provided an independent estimate without any social information.  In the 

network conditions, participants observed the average response of the peers immediately 

connected to them in a social network and were prompted to submit their answers again.  

Subjects were exposed to two rounds of social influence before they submitted their final 
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answer, providing a total of three responses to each question.  In the control condition, 

participants were given three opportunities to respond, but were not provided any social 

information.  Monetary rewards were based on the accuracy of subjects’ final response to 

each question. 

To ensure that our findings are robust to variations in the distribution of estimates, 

we conducted two sets of experimental trials, using questions that generate distributions 

with different shapes.  In the first set of trials, subjects were given count-based questions 

(e.g., “how many candies are in this jar?”).  Because these are zero-bounded on the left and 

unbounded on the right, count-based questions generate highly skewed distributions (1,12), 

in which the median is able to improve even if the mean remains unchanged (SI Appendix).  

In the second set of trials, we asked participants to provide responses to percentage based 

question (e.g., “what percentage of people in this photograph are wearing hats”).  These 

responses are constrained to fall between zero and one hundred, and did not produce any 

systematic skew in the distribution of estimates (SI Appendix). 

A single experimental trial consisted of 40 individuals placed into a decentralized 

network and 40 individual placed into a centralized network, all of whom were given the 

same question set.  A control group consisted of 40 independent individuals who were all 

given the same question set as the 80 subjects in the corresponding experimental trial.  Since 

the subjects in a control trial were independent from one another, only one control trial was 

conducted for each question set.   

In trials where we provided count-based estimation tasks, each group completed four 

tasks.  We conducted 6 independent experimental trials of this kind of task, with four 

questions each, producing a total of 24 count-based estimations by decentralized networks, 
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and 24 count-based estimations by centralized networks.  We used a unique question set for 

each trial, yielding 6 unique question sets.  To create independent control groups for each 

question set, we ran 6 independent control groups, each with 40 individuals, producing 24 

control group estimations. 

In trials where we used percentage-based estimation tasks, each group completed 

five estimation tasks.  We conducted 7 independent experimental trials of this kind of task, 

with five questions each, producing a total of 35 percentage-based estimations by 

decentralized networks, and 35 percentage-based estimations by centralized networks.  We 

used 2 unique question sets, which were randomly assigned across trials.  One set was used 

in three of the trials, the other was used in four of the trials.  To create independent control 

groups for each question set, we ran 2 independent control groups, each with 40 individuals, 

producing 10 control group estimations.  Because control groups are composed of 

statistically independent individuals, we only require a single control group for each 

question set to compare to the experimentally replicated trials.  In total, we observed 59 

estimations by decentralized networks, 59 estimations by centralized networks, and 34 

estimations by control groups. 

 

Supporting Information is available as an appendix to this document. 
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 Fig. 1.  Effect of social influence on group accuracy in centralized and decentralized 
networks.  Average error and standard deviation in 13 experimental trials for each network 
condition.  (A) In decentralized networks, both the mean and the median became more 
accurate over two rounds of social influence.  (B) In centralized networks, the effect of social 
influence on the accuracy of the group mean and group median was determined by the initial 
estimate of the central node. Results are conditioned on whether the central node was in the 
direction of truth relative to the group estimate.  (C) Total change from Round One to Round 
Three with bootstrapped 95% error bars, indicating that changes shown in panels A and B 
are significant. Both the mean and median of estimates in decentralized networks became 
more accurate (N=13, P<0.01 for mean, P<0.001 for median). For centralized networks, the 
mean and median became less accurate when the central node provided an estimate in the 
opposite direction of truth (N=13, P<0.01 for both mean and median). Both the mean and 
median became more accurate when the central node provided an estimate in the direction 
of truth (N=12, P<0.01 for the mean and median). (D) In both network conditions, the 
standard deviation in the distribution of estimates (i.e., diversity of opinions) decreased 
significantly after each round of revision (N=13, P<0.001 for both conditions). 
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Fig 2.  Correlation between revision magnitude and individual error.  Each point in the 
main figure shows the average size of individuals’ revisions from Round One to Round Three 
for individuals located in each decile of the distribution of individual error (i.e., average 
distance from zero error).  Measured for N=4340 estimates provided by 1040 individuals 
assigned to one of 13 decentralized networks or 13 centralized networks.  This figure shows 
a positive “revision coefficient,” such that individuals with greater error in their initial 
estimates made significantly larger revisions.  Controlling for correlation between estimates 
by the same individual (SI Appendix), we find a positive correlation between individual error 
and individual revision magnitude (N=4340, ρ=0.41, 95% CI [0.39, 0.43], P<0.001).  Inset:  
On the y-axis, positive values indicate larger revisions than would be expected based on the 
distance between an individual’s estimate and their neighborhood estimate.  On the x-axis, 
positive values indicate greater initial error than would be expected given the distance 
between an individual’s estimate and their neighborhood estimate.  After controlling for the 
distance between each individual’s initial estimate and the average estimate of their 
neighborhood, there is still a significant correlation between individual error and individual 
revision magnitude (N=4340, ρ=0.25, 95% CI [0.22, 0.28], P<0.001).    
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Fig. 3. Correlations with changes in group mean.  Shown are all 59 estimation tasks 
completed over 13 experimental trials.  In centralized networks, two estimation tasks are 
omitted where the central node did not provide any response.  Decentralized networks show 
all 59 estimation tasks.  (A) In decentralized networks, the “revision coefficient” for each 
group estimate – i.e., the partial correlation for all members of a network between 
individuals’ accuracy and their revision magnitudes on a given estimation task – is highly 
correlated with the change in the error of the group mean (N=59, ρ=-0.71, 95% CI [-0.84, -
0.51]).  On estimation tasks in which groups exhibited larger revision coefficients, they 
showed significantly greater improvements in the accuracy of the group mean.  (B) By 
contrast, in centralized networks, there was no significant correlation between the revision 
coefficient and the change in group mean (N=57, ρ=-0.16, 95% CI [-0.33, 0.10]).  (C) In 
centralized networks, the change in the group mean is strongly correlated with the behavior 
of the central node.  The difference between the initial group estimate and the initial estimate 
of the central node is highly correlated with the change in the group’s estimate (N=57, 
ρ=0.92, 95% CI [0.88, 0.95]). When central node has an estimate larger than group mean, the 
group mean typically increased; when the central node is below the group mean, the group 
mean typically decreased. 
 


