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Recent ferromagnetic resonance experiments and theory of Pt/Nb/Ni8Fe2 proximity-

coupled structures strongly suggest that spin-orbit coupling (SOC) in Pt in 

conjunction with a magnetic exchange field in Ni8Fe2 are the essential ingredients to 

generate a pure spin supercurrent channel in Nb. Here, by substituting Pt for a 

perpendicularly magnetized Pt/Co/Pt spin-sink, we are able to demonstrate the role 

of SOC, and show that pure spin supercurrent pumping efficiency across Nb is 
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tunable by controlling the magnetization direction of Co. By inserting a Cu spacer 

with weak SOC between Nb and Pt/(Co/Pt) spin-sink, we also prove that Rashba-

type SOC is key for forming and transmitting pure spin supercurrents across Nb. 

Finally, by engineering these properties within a single multilayer structure, we 

demonstrate a prototype superconducting spin-wave (SW) device in which lateral 

SW propagation is gateable via the opening or closing of a vertical pure spin 

supercurrent channel in Nb. 

 

Spin-triplet Cooper pairs carry a net spin component in addition to charge and are 

therefore key to the development of superconducting spintronics1-3, underlying a future 

revolution in energy-efficient computing. It is established that spin-polarized triplet pairs 

are generated via spin-mixing and spin-rotation processes at magnetically-

inhomogeneous superconductor/ferromagnet (SC/FM) interfaces1-3. Recently, 

theoretical4-8 and experimental studies9-13 have been dedicated to an alternative 

mechanism for triplet pair creation involving spin-orbit coupling (SOC) in combination 

with a magnetic exchange field hex. In such systems, triplet pair creation depends on the 

commutation relationship4-7 between SOC and hex.
  

           The latter mechanism via SOC in conjunction with hex offers a conceptually novel 

approach to tune superconducting spin currents, as we demonstrate here using 

ferromagnetic resonance (FMR) spin pumping9,14. When a perpendicularly magnetized 

Pt/Co/Pt spin-sink is proximity-coupled to Nb (singlet SC) (Fig. 1a), the Co thickness tCo-

dependent magnetization anisotropy15,16 changes its effective tilt angle ƟCo under in-plane 

(IP) FMR condition of the IP magnetized Ni8Fe2 (Fig. 1b). This in turn alters the degree 

of orthogonality between hex and SOC at the interface of Nb and Pt/(Co/Pt) spin-sink. 
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Manipulating ƟCo determines the efficiency with which spin-zero triplets (converted from 

spin singlets by the presence of hex) rotate to form equal-spin triplets4-6. This enables 

orthogonality tuning of spin-angular-momentum transfer from the precessing Ni8Fe2 

through the proximity-induced equal-spin triplets into singlet Nb layers, which we call 

superconducting pure spin currents9. Such transmitted spin currents to Pt/Co/Pt spin-sinks 

result in the enhanced spin pumping/transfer which is then probed by measuring the FMR 

linewidth broadening or Gilbert damping increase of the middle Ni8Fe2 layer9,14. 

          To demonstrate our approach, we perform a series of FMR measurements on 

Pt/Co/Pt/Nb/Ni8Fe2/Nb/Pt/Co/Pt multilayers (Fig. 1a). The ultrathin (≤ 1.5 nm) 

perpendicularly magnetized Co layers serve as an internal source of hex to the 

neighbouring (inner) Pt layers, supplying spontaneous spin splitting17,18 with out-of-plane 

(OOP) polarization (Fig. 1a); the outer Pt layers boost the perpendicular anisotropy of the 

Co as well as the total effective spin conductance of Pt/Co/Pt trilayers19. By inserting a 

thin Cu spacer with weak SOC at the interface between Nb and Pt/(Co/Pt) layers (Fig. 

1a), we are able to separate the contribution of interfacial Rashba-type SOC to the θCo-

dependent superconducting spin-pumping efficiency from other contributions and to 

compare it with the prediction from spin-triplet proximity theory4-6,8. 

          We first measure the tCo-dependence of the superconducting transition Tc (Fig. 1c) 

for a series of multilayers with and without Cu spacers. Tc decreases rapidly with 

increasing tCo until it reaches about 1.5 nm where it slightly increases. No significant 

change in Tc(tCo) appears with the addition of the Cu spacer, consistent with its long 

(thermal) coherence length of several hundred nanometers3. In analogy with the original 

consideration on the non-uniform superconducting state20,21, such non-monotonic Tc 

behaviour has been discussed based on a spatial modulation of the superconducting order 
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parameter due to Cooper pairs acquiring a non-zero net momentum in the presence of hex; 

in particular, for SC/FM multilayers or SC/FM bilayers with FM thickness tFM of the 

order of the coherence lengthFM, which leads to a damped oscillatory behaviour of the 

order parameter22. A quantitative analysis (see Methods) of the Tc data (black lines, Fig. 

1c) gives an effective 𝜉𝐹𝑀  of 1.4−1.6 nm and interface transparency 𝛾𝐵  = 0.18−0.20 for 

our samples, which are in reasonable agreement with those obtained from Nb/FM23 

bilayers and Nb/Cu/FM trilayers24 with strong FMs.  

          The tCo-dependent magnetization anisotropy of the Pt/Co/Pt spin sinks can be 

independently characterized by static magnetometry measurements on Pt/Co/Pt/Nb-only 

films with different tCo. Figure 1e shows the typical magnetization hysteresis m(H) curves 

obtained at 8 K by applying the external magnetic field µ0H parallel and perpendicular to 

the film plane. At low tCo (≤ 0.8 nm), the easy axis of the Co magnetization MCo is clearly 

OOP, indicating that the ultrathin Co sandwiched between two Pt layers has well-

established perpendicular magnetization anisotropy (PMA), as expected for the Pt 5d−Co 

3d orbital hybridization at either Pt/Co interface plus SOC15. As tCo approaches 1.5 nm, 

the predominant magnetization anisotropy changes from OOP to IP, exhibiting the 

reorientation transition16. Using the relationship16 µ0Hani∙Ms/2 = Keff, where µ0Hani is the 

anisotropy field and Ms is the saturation magnetization, the effective PMA energy Keff is 

estimated for tCo ≤ 0.8 nm to be  1 MJ m-3, comparable to typical values of the 

perpendicularly magnetized Pt/Co/Pt trilayers25.  

          Assuming coherent rotation of MCo from OOP under the application of IP resonance 

fields µ0Hres for the middle Ni8Fe2, the effective θCo can be estimate using the simple 

Stoner-Wohlfarth model where θCo = arccos[M(µ0Hres)/Ms]. We then achieve discrete tilt 

states of the Pt/Co/Pt spin sinks from OOP to IP (Fig. 1f), which are systematically 
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controllable by varying tCo.  

          We next show the influence of the tilt states on the superconducting spin-pumping 

efficiency, namely that the associated orthogonality between hex and SOC at the 

Nb/Pt/(Co/Pt) interface strongly modifies the spin-angular-momentum transfer in the 

superconducting state. Figure 2a,b shows the microwave frequency f dependence of FMR 

data for the Cu-absent (Cu-present) samples, taken above and below Tc of the Nb layers. 

From this, we extract the effective Gilbert damping α, which provides a measure9,14,18 of 

the net spin current flow out of the precessing Ni8Fe2, and the effective saturation 

magnetization µ0Ms (see Methods). 

          The extracted α and µ0Ms values are plotted as a function of tCo in Fig. 2c. In the 

normal state (T/Tc > 1), α is almost tCo-independent for both sample sets and there is a 

small decrease in the magnitude by introducing Cu spacers. This means that the presence 

of ultrathin Co(≤ 2 nm) and Cu(5 nm) layers hardly changes the normal-state spin-

pumping behaviour, as expected from their small spin conductances19 relative to Pt and 

the three layers (Co, Cu, Pt) are all approximately spin-transparent26 with each other due 

to their similar crystal and electronic structures.  

          However, in the superconducting state (T/Tc < 1), a significant tCo-dependent 

enhancement of α appears and is strongly affected by the addition of Cu. For the Cu-

absent multilayers, as tCo increases the superconducting-state damping enhancement 

(indicating the enhanced spin flow/transfer mediated most likely by equal-spin triplet 

pairing)8,14,18 rapidly rises until reaching 0.8 nm and then slowly decreases for thicker Co 

layers, resulting in a maximum at tCo ≈ 0.8 nm. For the Cu-present samples, the overall 

amplitude of damping enhancement diminishes compared with the Cu-absent samples 

and the maximum moves to a lower value of tCo (0.4 nm). Since this non-trivial 



6 

 

enhancement of α(tCo) occurs in the ultrathin regime (tCo ≤ 2 nm, about one order of 

magnitude smaller than the spin diffusion length27) only for the superconducting state, it 

must reflect how the tilt states of the Pt/Co/Pt spin sinks correlate with the 

superconducting spin transport. 

          To elucidate this, we plot the damping difference across Tc, defined as [α2 K – α8 

K]/2∆2 K where 2∆ is the superconducting gap at 2 K calculated from the measured Tc 

(Fig. 1d), with and without Cu spacers as a function of the effective θCo (Fig. 2e). In the 

absence of the Cu spacers, [α2 K – α8 K]/2∆2 K rapidly rises with increasing θCo from 0o to 

56o followed a fall for a higher angle. However, this characteristic angular dependence 

vanishes when the Cu spacer (with weak SOC) is present: the damping difference 

increases monotonically/slowly up to the highest angle and it saturates to the similar value 

of the Cu-absent θCo ≈ 76o (tCo = 0.4 nm) sample. 

          There are, in principle, two different sources of proximity-induced triplet pairing 

which can contribute to the characteristic angular dependence observed in our 

experimental setup. Firstly, it is well-known that magnetization noncollinearity (or 

inhomogeneity)1-3,28 between two FMs separated by a SC of the order of the coherence 

length can generate equal-spin triplets through the entire structure. The equal-spin triplet 

density is then ascribed to the relative magnetization angle θ between the two FMs28: ∝ 

M1 × M2 ∝ sin(θ). This explains why our θCo ≈ 76o (tCo = 0.4 nm) samples reveal larger 

enhancements than θCo ≈ 9o (tCo = 2.0 nm) samples (Fig. 2e). Secondly, even for a single 

magnetically-homogeneous FM, the equal-spin triplet correlation can be generated by 

introducing a strongly SO coupled interface (e.g. Pt) between the FM and SC4-6,8. In this 

case, the singlet-triplet conversion efficiency is predicted to scale with the degree of 

orthogonality between SOC and hex; or equivalently, the cross product of the SO vector 
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operator [𝐴̂𝑘, [𝐴̂𝑘, ℎ𝑎𝜎𝑎 ]] and the exchange field operator ℎ𝑎𝜎𝑎. Here 𝐴̂𝑘=𝑥,𝑦,𝑧 is the 

vector potential describing the form of the SOC, for instance, the Rashba constant 𝛼𝑅 

(Dresselhaus constant 𝛽𝐷) due to the interface (bulk) inversion asymmetry. 𝜎𝑎(ℎ𝑎) with 

𝑎 = x,y,z is the vector of Pauli matrices (exchange field).  

          For a metallic vertical structure with atomically flat interfaces, the vector potential 

can be approximated as4,5: 𝐴̂𝑥 ≈ 0, 𝐴̂𝑦 ≈ −𝛽𝐷𝜎𝑦 + 𝛼𝑅𝜎𝑧 , 𝐴̂𝑧 ≈ 𝛽𝐷𝜎𝑧 − 𝛼𝑅𝜎𝑦. With 

finite Rashba (𝛼𝑅 ≠ 0) and zero Dresselhaus (𝛽𝐷 = 0) contribution to the SOC6,8, as 

relevant to our experimental setup, a sinusoidal maximum of the equal-spin triplet 

correlation is expected when the canting angle between IP and OOP components of hex 

becomes 450. In such a case, the overall triplet density is quadratic in 𝛼𝑅 and so very 

sensitive to details of the spin-orbit coupled interface. The addition of a-few-nm-thick Cu 

spacer layers26,29 at the spin-orbit coupled interface turns out to be sufficient to 

significantly quench the interfacial Rashba-type SOC, thus providing an important test 

experiment for the responsible mechanism, being done clearly here (inset of Fig. 2e,f). 

          We also note that non-vanishing of 𝐴̂𝑥  (≠ 0), as would be expected from non-ideal 

interfaces where OOP component of the Rashba SO field with respect to the local 

interface plane survives on a scale of the coherence length7, allows the equal-spin triplet 

to be generated locally even with a purely IP magnetized FM (ℎ𝑥 = 0). Each triplet 

channel is then able to transport spin-angular-momentum from the precessing FM 

(Ni8Fe2) through a singlet SC (Nb) to a spin dissipative bath (Pt spin-sink) independently 

even if the spatial average of net polarization of total triplet channels over the entire 

interface plane becomes zero. This is a likely mechanism for our previous FMR 

experiments9,18 and for the tCo = 0 samples (Fig. 2e). When the Pt spin-sink is substituted 

for the perpendicularly magnetized Pt/Co/Pt spin-sink, a global triplet channel opens in 
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addition to the local channels, maximizing the overall superconducting spin-pumping 

efficiency at θCo ≈ 45o (Fig. 2e).  

          By taking all these effects together, we can arrive at good fits to [α2 K – α8 K]/2∆2 K 

vs. θCo data for both sample sets (black solid and dashed lines in Fig. 2e, see 

Supplementary Section 1,2), thereby reproducing the experimental results and capturing 

the underlying physics. To focus on the second SOC mechanism, in particular for the 

interfacial contribution, we take the difference between the data with and without the Cu 

spacer (Fig. 2f). We then find an approximately sinusoidal maximum at θCo ≈ 45o, which 

is in good agreement with the Rashba SOC-induced triplet pairing6,8 described above. 

The data described above provides a proof-of-concept result demonstrating the 

orthogonality tuning of superconducting spin currents. 

          To help understand better the FMR absorption data of symmetric structures (Fig. 

2), we also measure the tCo-dependence of spin-pumping-induced inverse spin-Hall effect 

(iSHE)30,31 for the additional sets of asymmetric Pt/Co/Pt/Nb/Ni8Fe2 structures with and 

without Cu spacers. This provides direct evidence for spin transport in the normal state. 

Figure 3a (3b) displays the transverse d.c. voltage signals vs. external IP μ0H for the Cu-

absent (Cu-present) samples at f = 5 GHz, taken above and below Tc (see Methods). Under 

IP FMR of the Ni8Fe2, a clear Lorentzian peak emerges in the dc voltage only in the 

normal state for both sample sets, which can be explained31 by the strong decay of the 

quasiparticle charge-imbalance relaxation length across Tc. Importantly, the polarity of 

the Lorentzian peak is identical (opposite) to that of Pt/Ni8Fe2 (Nb/Ni8Fe2) bilayers31, 

where the Pt (Nb) spin sink is known to have a positive (negative) spin-Hall angle θSH
19,31. 

This indicates that the pumped spin currents from the precessing Ni8Fe2 pass through the 

Nb(30 nm) layer to a large extent to the (Cu)/Pt/Co/Pt spin sinks and the overall iSHE in 
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our structures is dominated by the (Cu)/Pt/Co/Pt (rather than the Nb).  

          For a quantitative analysis, we plot the iSHE voltage divided by sample resistance 

ViSHE/R vs. tCo (Fig. 3c) and θCo (Fig. 3d). In these plots, we can see that there is a clear 

decrease in the iSHE signal by the addition of Cu and its magnitude is strongly θCo-

dependent, which can be described by the rapid spin precession/dephasing of transverse 

spins32 around hex of the Co layer: cos2(θCo) (black lines in Fig. 3d). Note that the signal 

difference caused by the addition of 5 nm of Cu (insets in Fig. 3c,d) is nearly θCo-

independent. These results taken together support our argument that Cu spacers weaken 

the interfacial SOC strength and it is the Co tilt state that then plays a dominant role in 

the spin transport process.  

          Finally, we progress to show the potential to harness these effects in a proof-of-

principle prototype superconducting SW device (Fig. 4). The idea behind this is that 

lateral SW propagation33,34 in our proximity-engineered structure (e.g. α2 K – α8 K ≈ 0.005 

for the tCo = 0.8 nm sample) between microwave injector and detector antennas is readily 

altered by opening or closing the vertical spin transport channel via the proximity creation 

of triplet pairing. Figure 4a,b shows the f-dependent SW transmission ΔS12 of two types 

of the SW devices with and without Pt/Co(0.8 nm)/Pt spin sinks, obtained above and 

below Tc at the fixed/external IP μ0H = 70 mT in the magnetostatic surface wave (MSSW) 

geometry33,34 (see Methods and Supplementary Section 6 for details). The observed 

spectra containing two major peaks in the low f (< 7 GHz) regime and satisfying the SW 

dispersion relationship (Supplementary Video 1-4 and Supplementary Section 6) and 

their exponential decay in the intensity with increasing the distance d between the two 

separate antennas (Fig. 4c,d) indicate the propagating SWs33,34.  

           The most noteworthy aspect in this demonstration is that on entering the 
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superconducting state, the intensity of lateral SW transmission signal clearly rises 

(decays) when the Pt/Co(0.8 nm)/Pt spin sinks are omitted (added) [Fig. 4c (4d), see also 

Supplementary Video 1-4] and the degree of this change becomes pronounced with 

increasing d. This is because SWs experience weaker (stronger) effective attenuation 

during laterally propagating if spin-angular-momentum is less (more) transmitted across 

the adjacent/superconducting Nb to the spin loss regimes in vertical direction. Note that 

the SW attenuation increases proportionally to the total FMR damping of the system33,34. 

          With the Pt/Co(0.8 nm)/Pt spin sinks, we are able to modulate the lateral SW 

transmission intensity up to about 40% by proximity-generating the vertical triplet spin-

transport channel. This result is encouraging and may provide a new type of SW logic 

functionality35 activated in the superconducting state.  

          We have shown that when a perpendicularly magnetized Pt/Co/Pt spin sink is 

proximity-coupled to Nb, superconducting spin-pumping efficiency can be tuned by 

controlling the effective θCo - i.e. by tuning the degree of orthogonality between the SOC 

and hex at the Nb/Pt/(Co/Pt) interface4-6,8. We have also found that by comparison with 

the Cu-present samples, the θCo-dependent superconducting spin-pumping efficiency 

reflects characteristic features of Rashba SOC-induced triplet pairing4-6,8. Our results 

provide a timely step towards understanding key interfacial properties for tuning 

superconducting spin transport mediated via equal-spin triplet states in a spin-singlet 

superconductor. Our finely proximity-engineered structures enable experimental 

realization of a prototype superconducting SW device. This concept can be extended to 

any Rashba system36,37 for the development of superconducting spin-logic devices1 in 

which SOC is gate-tunable36, leading to a superconducting spin-based transistor. 
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Methods 

Methods and any associated references are available in the online version of the paper. 
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Methods 

Sample growth. Symmetric Pt/Co/Pt/Nb/Ni8Fe2/Nb/Pt/Co/Pt and asymmetric 

Pt/Co/Pt/Nb/Ni8Fe2 multilayers, with and without Cu spacer layers, were grown on 5 mm 

× 5 mm thermally oxidized Si substrates by d.c. magnetron sputtering in an ultra-high 

vacuum chamber9,18. The symmetric and asymmetric structures were prepared, 

respectively, for the ferromagnetic resonance (FMR) absorption9,18 and inverse spin-Hall 
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effect (iSHE, or transverse d.c. voltage)31 measurements. All layers were grown in-situ at 

room temperature. Ni8Fe2, Nb, Co and Cu are deposited at an Ar pressure of 1.5 Pa and 

Pt at 3.0 Pa. The typical deposition rates were 5.1 nm/min for Ni8Fe2, 21.1 nm/min for 

Nb, 6.0 nm/min for Co, 9.7 nm/min for Cu and 7.6 nm/min for Pt. The thicknesses of 

Ni8Fe2, Nb, inner (outer) Pt and Cu layers were kept constant at 6, 30, 1.7 (2.2) and 5 nm, 

respectively, while the thickness of the Co layer varied from 0 to 2 nm to investigate the 

variation of FMR damping as a function of tCo (or the Co tilt angle θCo) through the 

superconducting transition temperature Tc of the coupled Nb. Note that for all samples, 

the Nb (inner Pt) thickness is fixed at 30 (1.7) nm where the Pt/Co/Pt spin sink was 

proximity-coupled through the Nb layer to the precessing Ni8Fe2 layer and the largest 

enhancement of spin pumping in the superconducting state was achieved in our prior 

FMR experiments9,18. 

 

Magnetization characterization. The static magnetization hysteresis curves were 

measured on 5 mm × 5 mm samples using a Quantum Design Magnetic Property 

Measurement System at 8 K, immediately above the superconducting transition 

temperature Tc. The external magnetic field was applied parallel and perpendicular to the 

film plane direction.  

 

Superconducting transition measurement. d.c. electrical transport measurements were 

conducted on (un-patterned) 5 mm × 5 mm samples using a custom-built dipstick probe 

in a liquid helium dewar with a four-point current-voltage method. The resistance R (of a 

sample) vs. temperature T curves were obtained at the applied current I of ≤ 0.1 mA while 

decreasing T. From the T derivative of R, dR/dT, Tc was defined as the T value that 
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exhibits the maximum of dR/dT.  

          We analyzed our Tc(tCo) data (Fig. 1d) using the following approximate formula22: 

ln [
𝑇𝑐

∗

𝑇𝑐
] ≈ Ψ (

1

2
) − 𝑅𝑒 {Ψ [

1

2
+

2𝑇𝑐

𝑇𝑐
∗𝜏̃0

×
1

𝛾̃+
1−𝑖

2
cosh[(1+𝑖)𝑡𝐹𝑀]

]}, where 𝑇𝑐
∗ = 𝑇𝑐(𝑡𝐹𝑀 = 0), Ψ 

is the digamma function, 𝜏̃0
−1 = (1/4𝜋𝑇𝑐)(𝐷𝑆𝐶/𝑡𝑆𝐶𝜉𝐹𝑀)(𝜌𝑆𝐶/𝜌𝐹𝑀), 𝐷𝑆𝐶  is the diffusion 

coefficient of the Nb (10 cm2/s at 8 K), 𝑡𝑆𝐶  is the Nb thickness (30 nm) and 𝜌𝑆𝐶  (𝜌𝐹𝑀) is 

the conductivity of the Nb (Co) [7 (30) µΩ-cm at 8 K]. 𝛾̃ = 𝛾𝐵(𝜉𝑆𝐶 /𝜉𝐹𝑀), 𝛾𝐵  is the 

interface transparency and 𝜉𝑆𝐶  is the (dirty-limit) coherence length of the Nb (16−18 nm 

at 2 K)9. Note that in this formula, only the influence of hex on the order parameter is 

taken into account22.  

 

Broadband FMR absorption and iSHE measurements. We measured the FMR 

response of the sample attached on a broadband coplanar waveguide (CPW) with either 

d.c. field or r.f. pulse modulation9,18. To obtain each FMR spectrum, the microwave power 

absorbed by the sample was measured while sweeping the external static magnetic field 

μ0H at the fixed microwave frequency f of 5–20 GHz. At the beginning of each 

measurement, we applied a large IP μ0H (0.5 T) to fully magnetize the Ni8Fe2 layer, after 

which the field was reduced to the range of FMR. Once the f-dependent FMR 

measurements (from high to low f) were complete, the field was returned to zero to cool 

the system down further for a lower T measurement. For all FMR absorption 

measurements, the microwave (MW) power was set to 10 dBm where the actual 

microwave power absorbed in the sample is a few mW that has no effect on Tc of the Nb 

layer9. Note also that the fixed thickness (30 nm) of Nb layers studied here is much less 

than the magnetic penetration depth in the superconducting state (≥ 100 nm in thin Nb 

films) and so there is no considerable effect of Meissner screening on the local (d.c./r.f.) 
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magnetic field experienced by Ni8Fe2 below Tc, as supported by the insensitivity of the 

resonance field 0Hres across Tc (Fig. 2a,b). We employed a vector field cryostat from 

Cryogenic Ltd. that can apply a 1.2-T-magnetic field in any direction over a T range of 

2–300 K. 

          We first fitted the FMR absorption data (Supplementary Section 3) with the field 

derivative of symmetric and antisymmetric Lorentzian functions38 to accurately 

determine the FMR linewidth µ0ΔH and the resonance field µ0Hres: 
𝑑𝜒"

𝑑𝐻
∝  𝐴 ∙

[
(∆𝐻𝐻𝑊𝐻𝑀)2∙(𝐻−𝐻𝑟𝑒𝑠)

[(∆𝐻𝐻𝑊𝐻𝑀)2+(𝐻−𝐻𝑟𝑒𝑠)2]2
] + 𝐵 ∙ [

(∆𝐻𝐻𝑊𝐻𝑀)∙(𝐻−𝐻𝑟𝑒𝑠)2−(∆𝐻𝐻𝑊𝐻𝑀)3

[(∆𝐻𝐻𝑊𝐻𝑀)2+(𝐻−𝐻𝑟𝑒𝑠)2]2
], where 𝐴 (𝐵) is the 

amplitude of the field derivative  of the symmetric (antisymmetric) Lorentzian function, 

µ0H is the external d.c. magnetic field and 𝜇0∆𝐻𝐻𝑊𝐻𝑀= 
√3

2
𝜇0Δ𝐻 is the half-width-at-

half-maximum (HWHM) of the imaginary part χ" of the magnetic susceptibility.  

          From the linear scaling of µ0ΔH with f (Fig. 2a,b), we calculated the effective 

Gilbert(-type) damping constant α: 𝜇0∆𝐻(𝑓) = 𝜇0∆𝐻0 +
4𝜋𝛼𝑓

√3𝛾
, here 𝜇0∆𝐻0 is the zero-

frequency line broadening. We also estimated the effective saturation magnetization µ0Ms 

(of the Ni8Fe2) from the dispersion relation of µ0Hres with f (inset of Fig. 2a,b) using 

Kittel’s formula: 𝑓 =
𝛾

2𝜋
√[𝜇0(𝐻𝑟𝑒𝑠 + 𝑀𝑒𝑓𝑓) ∙ 𝜇0𝐻𝑟𝑒𝑠], where 𝛾 = 𝑔𝐿𝜇𝐵/ℏ is the 

gyromagnetic ratio (1.84 × 1011 T-1 s-1), 𝑔𝐿 is the Landé g-factor (taken to be 2.1), 𝜇𝐵 is 

the Bohr magneton and ℏ is Plank’s constant divided by 2π.  

          For the iSHE (or transverse d.c. voltage) measurement31, the sample was attached 

face down on the CPW by using an electrically insulating high-vacuum grease. A 

microwave signal was passed through the CPW and excited FMR of the Ni8Fe2 layer; a 

transverse d.c. voltage as a function of μ0H was measured between two Ag-paste contacts 
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at opposite ends of the sample. In these measurements, the microwave frequency was 

fixed at 5 GHz and the microwave power at the CPW at approximately 150 mW (for T = 

2 and 8 K), which yields measurable signals (≥ 5 nV) in our setup.  

          The measured d.c. voltage (Fig. 3a,b) can be decomposed into symmetric and 

antisymmetric Lorentzian functions with respect to μ0Hres, with weights of Vsym and Vasy 

respectively31: 𝑉(𝐻) − 𝑉0 = 𝑉𝑠𝑦𝑚 ∙ [
(∆𝐻′)

2

(∆𝐻′)2+(𝐻−𝐻𝑟𝑒𝑠)2] + 𝑉𝑎𝑠𝑦 ∙ [
(∆𝐻′)∙(𝐻−𝐻𝑟𝑒𝑠)

(∆𝐻′)2+(𝐻−𝐻𝑟𝑒𝑠)2
], where 

V0 is a background voltage and 𝜇0∆𝐻′ is the HWHM of the d.c. voltage. We attributed 

𝑉𝑠𝑦𝑚  to the iSHE signal ViSHE. If the Co thickness in the Pt/Co/Pt spin sink is larger than 

its spin dephasing length (a few ångstroms)32, ViSHE(θCo) is simply proportional to 

cos2(θCo) (Fig. 3d). 

 

SW device fabrication. To fabricate the standard SW devices33,34 displayed in 

Supplementary Section 6, the Hall bar(-type) structures with an active SW track of 50 × 

50 μm2 were patterned into the in-situ grown Nb/Ni8Fe2/Nb films with and without 

Pt/Co(0.8 nm)/Pt spin sinks by using optical lithography and Ar-ion beam etching. After 

depositing AlN(40 nm) for d.c. electrical isolation by reactive sputtering, coplanar 

waveguides (CPWs or, MW antennas) with a various inter-spacing of 10−25 μm were 

patterned on top of the SW track using electron-beam lithography and lift-off of sputtered 

Cu(100 nm)/Ti(5 nm) layers. Two identical CPWs consist of a MW signal line (2 μm 

wide) and two ground lines (1 μm wide) with an intra-separation of 2 μm, which 

preferentially excites or detects the SWs with a wavenumber 𝑘𝑆𝑊 in the range of 0.9 ± 

0.6 μm-1 (Supplementary Section 6).   

 

Propagating SW spectroscopy. A pair of antennas of the SW device were connected to 
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ports 1 and 2 of a vector network analyser (VNA, Rohde & Schwarz, 100 MHz to 20 

GHz) by multiple wire bonding to a pre-calibrated sample holder (having the 50 Ω 

impedance) via phase-stable coaxial cables. The f-dependent forward complex 

transmission coefficient (e.g. scattering parameter S12: the MW power received at port 1 

relative to the power conveyed to port 2) was measured in the variable temperature insert 

of a vector field cryostat by applying a fixed/external IP μ0H transverse to the SW 

propagation direction (or wave vector 𝒌𝑆𝑊) , so-called the MSSW configuration33,34. The 

input MW power was set to 0 dBm (the actual power delivered to the device in our setup:  

< 100 µW) so that the non-linear response of magnetization dynamics and the un-

intentional heating effect on the Nb layer can be avoided. The SW transmission signal 

∆𝑆12(𝑓, 𝜇0𝐻) of interest was analyzed by subtracting the non-magnetic background 

𝑆12(𝑓,  𝜇0𝐻𝑟𝑒𝑓) under application of a large reference field μ0Href (0.12 T) and 

normalizing the f-dependence33,34: ∆𝑆12(𝑓, 𝜇0𝐻) =
𝑆12(𝑓, 𝜇0𝐻) − 𝑆12(𝑓, 𝜇0𝐻𝑟𝑒𝑓)

𝑆12(𝑓, 𝜇0𝐻𝑟𝑒𝑓)
.   

          The SW dispersion in the MSSW mode for symmetric sample structures is given 

by33,34: 𝑓𝑆𝑊 ≈
𝛾

2𝜋
√[𝜇0(𝐻𝑟𝑒𝑠 + 𝑀𝑒𝑓𝑓) ∙ 𝜇0𝐻𝑟𝑒𝑠 + (

𝜇0𝑀𝑒𝑓𝑓

2
)

2
(1 − exp (−2𝑘𝑆𝑊𝑡))], where 

𝑡 is the Ni8Fe2 thickness (6 nm). By fitting the SW resonance, corresponding to the peak 

in the absolute of ∆𝑆12 (= |∆𝑆12|, Fig. 4a,b), to this dispersion relationship, we extracted 

the 𝑘𝑆𝑊 and 𝜇0𝑀𝑒𝑓𝑓 values (Supplementary Section 6) for the Ni8Fe2 layer. In addition, 

we deduced the SW attenuation length 𝜆𝑆𝑊 (insets of Fig. 4c,d) from the fact33,34 that the 

SW intensity, defined as the maximum peak-to-valley height of the real part of ∆𝑆12 (=

𝑅𝑒[∆𝑆12], Fig. 4a,b), exponentially decays with increasing d:  exp (−
𝑑

𝜆𝑆𝑊
). Here 𝜆𝑆𝑊 =

 
𝜐𝑔

𝜏𝑝𝑟𝑒𝑠
 ,  𝜐𝑔 = 2𝜋 ∙ (

𝜕𝑓𝑆𝑊

𝜕𝑘𝑆𝑊
) is the group velocity and  𝜏𝑝𝑟𝑒𝑠 =  {𝛼𝛾[𝜇0(2𝐻𝑟𝑒𝑠 + 𝑀𝑒𝑓𝑓)]}

−1
 

is the magnetization precession time.  
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Data availability 

The data used in this paper can be accessed here (TBD). 

 

Code availability 

The code that was used for the numerical calculations is available from X.M. upon 

reasonable request. 
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Figure legends 

Figure 1. Principle of the approach and experimental setup a, Schematic of Pt(2.0 

nm)/Co(tCo)/Pt(1.7 nm)/Nb(30 nm)/Ni8Fe2(6 nm)/Nb(30 nm)/Pt(1.7 nm)/Co(tCo)/Pt(2.0 

nm) multilayers with different  Co thicknesses tCo. The Cu spacer with weak spin-orbit 

coupling (SOC) is selected to quench the interfacial Rashba-type SOC at the 

Nb/Pt/(Co/Pt) interface. b, Measurement scheme and Cartensian coordinate system used 

in the present study. c, Normalized resistance R/RN vs. temperature T plots for three 

different sets of the samples, grown each in a single deposition run. d, tCo dependence of 

the superconducting transition temperature Tc of the sample sets with and without Cu(5 

nm) spacer layers; for comparison, Tc of a bare Nb(30 nm) film is also shown. The black 

solid (dashed) line is a fit to estimate the effective values of coherence length and interface 

https://doi.org/10.17863/CAM.20719


22 

 

transparency (see Methods) for the Cu-absent (Cu-present) samples. e, In-plane and out-

of-plane magnetization hysteresis m(H) curves of  Pt(2.0 nm)/Co(tCo)/Pt(1.7 nm)/Nb(30 

nm)-only films, measured at 8 K. f, Effective tilt angle θCo of the Co layer estimated from 

e using the Stoner-Wohlfarth model, in which only the corresponding regime of the in-

plane m(H) curves to the ferromagnetic resonance measurement condition/sequence (i.e. 

from high to low field, see Methods) is considered.  

 

Figure 2. Correlation of Co tilt angle with superconducting spin-pumping efficiency. 

a, Microwave frequency f dependence of ferromagnetic resonance (FMR) absorption for 

symmetric Pt(2.0 nm)/Co(tCo)/Pt(1.7 nm)/Nb(30 nm)/Ni8Fe2(6 nm)/Nb(30 nm)/Pt(1.7 

nm)/Co(tCo)/Pt(2.0 nm) samples with various Co thicknesses, taken above and below Tc 

of the couple Nb. From this, one can extract the (effective) Gilbert(-type) damping α and 

the (effective) saturation magnetization µ0Ms. b, Data equivalent to a but for symmetric 

Pt(2.0 nm)/Co(tCo)/Pt(1.7 nm)/Cu(5 nm)/Nb(30 nm)/Ni8Fe2(6 nm)/Nb(30 nm)/Cu(5 

nm)/Pt(1.7 nm)/Co(tCo)/Pt(2.0 nm) samples. Note that in any case, the zero-frequency line 

broadening 𝜇0∆𝐻0 due to long-range magnetic inhomogeneities is less than |0.5 mT| and 

the FMR linewidth 𝜇0∆𝐻 scales linearly with 𝑓, indicating the high quality of the samples 

and the absence of two-magnon scattering38. Extracted α (c) and µ0Ms (d) values as a 

function of tCo for the samples with and without the Cu spacer.  The dashed lines are guide 

to the eyes. e, Damping difference across Tc, denoted as [α2 K – α8 K]/2∆2 K where 2∆ is 

the superconducting gap at 2 K calculated from the measured Tc (Fig. 1d), as a function 

of the (effective) Co tilt angle θCo. The black solid (dashed) line is a fit from spin-triplet 

proximity theory4-6,8 for the Cu-absent (Cu-present) samples (Supplementary Section 

1,2). f, Interfacial SOC contribution ∆[α]SOC, separated by taking the difference between 
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the [α2 K – α8 K]/2∆2 K data (e) with and without the Cu spacer. The black solid is a 

theoretical fit based on Rashba-type SOC-induced triplet paring6,8 (Supplementary 

Section 1,2). Here, the amplitude and component of Rashba SO field and the exchange 

field strength are only adjustable parameters to get to the theoretical fit. The inset of e,f 

shows [α2 K – α8 K]/2∆2 K data as a function of Cu spacer thickness tCu for the tCo= 0.8 nm 

samples (Supplementary Section 4). The red and blue symbols in c,d represent 

independent sets of the samples grown each in a single deposition run. 

 

Figure 3. Effect of Cu spacer addition and Co tilt angle on normal spin-transport 

properties.  a, Transverse d.c. voltage measurements for asymmetric Pt(2.0 

nm)/Co(tCo)/Pt(1.7 nm)/Nb(30 nm)/Ni8Fe2(6 nm) samples with various Co thicknesses tCo 

at a fixed microwave frequency f = 5 GHz, taken above and below Tc of the couple Nb. 

The black solid lines are fits to Lorentzian functions (see Methods). b, Data equivalent to 

a but for asymmetric Pt(2.0 nm)/Co(tCo)/Pt(1.7 nm)/Cu(5 nm)/Nb(30 nm)/Ni8Fe2(6 nm) 

samples. Inverse spin-Hall effect (iSHE) voltage divided by the sample’s resistance 

ViSHE/R as a function of tCo (c) and the (effective) Co tilt angle θCo (d) at f = 5 GHz. The 

dashed lines are guide to the eyes. The left (right) inset in c (d) shows the signal difference 

caused by the Cu(5 nm) spacer addition whereas the right inset in c exhibits the Cu spacer 

thickness tCu dependence of iSHE for the tCo= 0.8 nm samples (see Supplementary Section 

5 for details). The dashed lines in c are guide to the eyes whereas the black solid (dashed) 

line in d is a fit to cos2(θCo) for the Cu-absent (Cu-present) samples. The red and blue 

symbols in c,d represent independent sets of the samples grown each in a single 

deposition run. 
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Figure 4. Experimental realization of superconducting spin-wave devices. a, Spin-

wave (SW) transmission ΔS12 as a function of frequency f for the Nb(30 nm)/Ni8Fe2(6 

nm)/Nb(30 nm) device with a different distance d (10−25 µm) between two separate 

antennas. These spectra are obtained under application of a fixed/external magnetic field 

µ0H = 70 mT above and below Tc of the coupled Nb. In each figure, the red, blue and 

black curves represent respectively the real, imaginary and absolute of ΔS12. b, Data 

equivalent to a but for the Pt(2.0 nm)/Co(0.8 nm)/Pt(1.7 nm)/Nb(30 nm)/Ni8Fe2(6 

nm)/Nb(30 nm)/Pt(1.7 nm)/Co(0.8 nm)/Pt(2.0 nm) device. c, Normalized intensity of the 

real part of ΔS12 across Tc for the Pt/Co(0.8 nm)/Pt-absent device with d = 10−25 µm. d, 

Data equivalent to c but for the Pt/Co(0.8 nm)/Pt-present device. Each inset shows the 

associated d-dependence of the signal intensity above and below Tc. The dashed lines in 

c,d are guide to the eyes whereas the solid lines in each inset are fits to an exponential 

decay function to estimate the SW attenuation length 𝜆𝑎𝑡𝑡
33,34 (see Methods). 
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