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ABSTRACT

Artificial neural networks, inspired by the neural structure of the brain, is a 
rapidly expanding field of research based on algorithms to solve a wide spectrum of tasks 
including speech recognition, image processing, planning, optimisation and other pattern 
processing tasks. Although a growing number of neural models have been developed to 
support a variety of applications, neural network programming is still mainly done using 
conventional languages.

This thesis investigates the problems concerned with the programming of neural 
network models and their portability. The main goal of this thesis is to propose and 
develop a programming system that can facilitate the implementation of a range of neural 
network models on a range of hardware. This led to the design and implementation of a 
programming system called NPS, and a specialised neural network implementation 
language called NIL. NIL, which forms the neucleus of the programming system NPS, is 
a low level, machine independent network specification language designed to map a 
spectrum of neural models onto a range of architectures and thus supporting portability.

The neural network programming system NPS provides the user with a system 
consisting of:

• A programming language, NIL, to specify network models.

• A utility, to save partially trained networks for further training.

• Libraries o f functions and algorithms, to aid the network construction and the 
execution of standard models.

The neural network programming language NIL consists of two major components:

• A network implementation sub-language, which provides mechanisms for 
specifying the functions of the nodes and the interconnection topology of the 
network.

• A manipulation sub-language, which provides interactive control and 
modification facilities for use during the training and the recall phase of the 
network.

These sub-languages together produce a low level, machine independent network 
specification language that can be used to port neural network models.

Chapter 1 introduces the thesis and the background concepts, namely, neural 
networks, and programming systems for neural networks. In chapter 2, a survey of 
neural network programming systems is presented. In chapter 3, the proposed NPS 
programming system is presented. In chapter 4, a detailed description of the NIL 
language is presented. In chapter 5, implementation details of the NPS and NIL is 
presented. In chapter 6 , an assessment of NPS and NIL is presented. Finally in chapter 7, 
conclusions are drawn and future work is discussed.
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Chapter 1

This chapter introduces the research work conducted and the important background 

concepts. These include an introduction to neural computing, and an investigation o f 
programming and portability o f neural network models and applications.

1. Introduction

The work described in this thesis represents a precursor of the PYGMALION 

project [Ange89] funded by ESPRIT II (project 2059) to build a general purpose 
neurocomputing platform (both programming environment and hardware). 

PYGMALION is a collaboration of major industrial and academic partners in Europe to 
produce a number of applications, a programming environment and hardware to promote 
the exploitation of neural network technology.

Typically a neural network programming system consists of an integrated set of 
software and hardware tools for specifying and executing neural network models and 
applications. The major components of a typical system are:

• an algorithms library of common neural network models;

• a special purpose high level language for programming network algorithms and
applications;

• a graphic monitor for interactively building and controlling a network.

For programming neural networks, many current neural network programming 

systems provide a specialised language. These languages are usually very high level, 
often object oriented and with a C or Pascal syntax [Anza87, Guts8 8 , Ange8 8 ] together 
with data types and functions specifically for neural networks. These high level 

languages are good for programming neural network applications, but frequently their 

portability is limited to a few machines due to the complexity of writing translators. In 

addition, these languages often do not have the explicit constructs or the structural 

features (such as explicit connectivity, parallel control, and specialised data structures) 

which are necessary for the efficient mapping of algorithms on parallel hardware.

For portability, certain systems like Neuralworks Professional II [K0 I0 8 8 ] tackles 

the problem of portability by translating the neural networks specified in high level form 
into C code. This is a pragmatic approach and is useful for conventional machines as 

most machines support a C compiler. However, for parallel machines this C code is not
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particularly useful since C is a sequential language and hence will require excessive 
overheads to isolate codes that can be executed in parallel. This is due to the lack of 

explicit parallel control constructs or explicit parallel structure defining connectivity

which are essential for isolating components that can be distributed and executed in

parallel.

What we believe is required is a language with the following features:

1. Programmability: It must be general enough to be able to capture the 

features of a range of neural (and semantic) network models. That is, it 

must be model independent. It must be a readable language so that the 

specification and testing of these models is easy. It must be based on a
simple and general syntax and semantics so that complex models can be

easily supported.

2. Portability: It must be based on simple syntax and semantics so that it can 
be used as a low level target language for higher level neural 
programming languages. By this, we mean that it should be almost at the 
same level as OCCAM to capture the general features of sequential and 
parallel machines and hence support portability. This also implies that it 
must be simple to translate into assemblers of a range of machines. This 
language should either have explicit parallel constmcts or features such as 

explicit connectivity and structure to support parallelism.
To put it more broadly, what we need is a language which is:

1. readable and expressive enough to be a programming language for 

implementing neural network models and applications;

2 . simple and low level enough to be easily translated for a range of 

hardware;

3. simple and general enough to be a target language for higher level 

languages.

This thesis investigates the program m ability and portability of neural network 
models and their applications. Our main goal is to design and implement a neural 

network implementation language that can be both portable and programmable. In order 
to demonstrate the feasibility of our solution, that is, to demonstrate the capabilities of 

the language we use a simplified version of a programming system called NPS. The main 
purpose in designing and implementing NPS is to use it as a test-bed for assessing the 

network implementation language NIL. Although, NPS, contributes to programmability
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by providing a number of support tools, it is NIL which tries to facilitate the 

programming of a range of neural network algorithms and mapping of these algorithms 

on a range of hardware.

Having briefly stated the motivations and the goals of this thesis, the next section 

introduces the reader to neural computing as a prelude to subsequent sections which deal 

with programming systems for neural networks, and the aims and background of this 

research.

1.1 Neural Com puting

Since the motivation for neural computing is biological neural networks, it is 

useful to review the properties of biological neural networks before introducing artificial 

neural networks. The brain deals with pattern matching and pattern manipulation with 

ease and efficiency that no electronic computer of the present generation can match. The 
brain performs these tasks not through a more powerful computational device in a 
sequential fashion but in a parallel fashion using a large network of much slower 
primitive devices called neurons (or nerve cells). The brain is believed to be organised in 
a hierarchy with successively higher layers performing more complex and abstract 
operations on the input data. Each layer performs its processing of the input data before 
passing the result up to the next layer.

The neurons are the "processing elements" of the brain. The human neocortex 
contains over 10 billion neurons with each neuron connected to thousands of other 
neurons. The brain contains a vast number of different types of neurons each with 

slightly differing structure and properties [Shep79].

Dendrites

Inputs

Summer

Figure 1 shows a "biological" neuron which has:

• several dendrites, which receive input from other neurons;

Soma

>ses

Axon

Threshold
Output

Figure 1. Idealized View of a Biological Neuron
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• a cell body, called the soma, which performs some processing (typically a 
threshold summation) on the information collected by the dendrites;

• a single axon which outputs the processed information, usually by the 

propagation of a "spike" or action potential. The axon splits into various 

branches that make synapses onto the dendrites and cell bodies of other neurons.

Artificial neural network modelling started in the early 1940s by Professor 

Warren McCulloch and Dr Walter Pitts [Rum86b]. This initial work on neural network 

modelling was given a significant encouragement in 1949 when Donald Hebb [Hebb49], 

published a paper postulating that learning in the brain may be achieved through the 
changing of the strength of these synaptic junctions. Specifically the more a particular 

synapse is used or activated, the stronger that connection becomes. This is termed 
synaptic facilitation. As a result, a particular pattern, once established and learnt, can 

easily be refreshed in the future. It is this general principle that is the basis of artificial 
neural networks.

In 1957 Rosenblatt created a neural model called the perceptron [Rum86b] which 
showed remarkable promise as a computing device. The perceptron brought many 
people into the field of neural networks and generated great enthusiasm, until in 1969 
Minsky and Papert published a book [Mins69] that showed the inadequacies of the 
perceptron. They were so convincing that the research into neural computing slumped 
markedly, until in 1980 Hopfield produced a paper [Hopf82] that showed the potentials 
of the collective computational abilities of neural networks. Since then research into 
neural networks has expanded rapidly. During the past few years, there has been a great 
deal of research into computational models which are inspired by the brain to deal with 
pattern recognition problems. These models are simply known as neural models and have 

been used in a number of applications with reasonable degree of success. However, there 

is a great deal to be learnt about the real neural model in order to be able to produce a 
more efficient and meaningful model that can be nearly as good as the original one.

In the next section a brief introduction to artificial neural networks is presented 

which is followed by an overview of the common models and their properties. This is 

done so in order to give a clear view of the type of processing that is required by a neural 
network programming system.

1.1.1 Artificial Neural Networks

An artificial neural network is an attempt to solve pattern and image recognition 

problems by using approaches analogous to the methods adopted by the brain. There are
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two reasons why one would want to do this:

1. by using techniques inspired by the brain one hopes to solve pattern and 

image processing problems much more efficiently than by using the 

current methods.

2 . it is also hoped that these neural models will lead to more powerful and 

fault tolerant hardware.

Current neural models are still extremely simple when compared with the brain, 

and use a simple summation and threshold device as the basic processing element in a 

layered network. A typical artificial neuron has a single output and several inputs, 

usually one from each neuron in the preceding layer.

Artificial neurons are the fundamental building blocks of neural networks. As 
shown in Figure 2, a neuron takes a set of inputs X, which are the equivalent of the 
excitation or the inhibition signal levels of a neuron.

OUT

Figure 2. Typical Artificial Neuron

These are then acted upon by a set of associated weights W-, which correspond to the 

synaptic strengths of a neuron. The weighted sum of these inputs is then compared with a 

threshold value and an output is delivered depending on the result of thresholding. The 

weighting factors are analogous to the synaptic strengths.

The artificial neurons are usually connected in a simple layered structure. Most 
models consist of either two or three layers of neurons since it has been shown that any 

continuous mappings can be achieved by a three layered system [Hect87]. The network 
shown in Figure 3 is a multi-layer network where each input X, to a neuron N} , in a layer 

has an associated weight . The outputs from each layer are propagated as inputs to the
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Input Layer Hidden Layer Output Layer

OUT  i

^  OUT2

OUT o

Figure 3. Artificial Neural Network

next layer until a final set of outputs is generated. Multi-layer networks have proved to 
be more broadly applicable and general than single-layer networks [Wass8 8 ] because of 
their abilities to map any input to output patterns and capture the underlying features of 
the data space.

These networks can learn to map a specified input pattern to a specified output 
pattern. Once a mapping has been learned the network will provide the required output 
pattern when supplied with the appropriate or part of the appropriate input pattern.

The system learns by adjusting the connection strengths between successive 
layers of neurons [Rum8 6a]. Different models use different algorithms to determine this 
adjustment. These models form an N-dimensional energy terrain, where N is the number 
of connections in the most interconnected neuron [Hopf82]. Given a set of input and 

output pattern, these models adjust their connection weights in such a way that a local or 

global energy minima is found by using the input pattern as the entry point to it (ie- the 

possible output patterns generatable from the current connection weight matrix fonn 
local energy minima on the energy surface). When a model seeks a global minima to 

map its input patterns to output patterns, it adds some noise to the energy space to pull 

itself out of the local energy minimas in order to avoid being trapped in it without 
finding its global minima. Once the energy terrain has been learned, an input pattern can 

be supplied to test the model. This input pattern specifies where on the terrain the search 

for an output pattern will start. The model then "relaxes" into the nearest minima. No 

matter what input pattern is supplied the model will always settle on an output pattern, 
but of course this may not be the desired output pattern. The closer the test input pattern
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is to the originally learned input pattern the better the chance that the correct output 
pattern will be selected.

1.1.2 Neural Network Models

Over the past few years the research efforts in neural networks have produced a

number of neural network models. Some of these models namely, Hebb/Hopfield

[Hopf82], Boltzmann [Hint85, Hint86 ], Kohonen’s self-organising feature map
[Koho84], Adaptive Resonance (ART models) [Gros88] and Back-Propagation

[Rum86c] have become popular because of their applicability to practical problems.

These neural network models in general can be classified into three major categories.

They are associative memories, weak-constraint optimizers, and learning systems as 
shown in Table 1.

Neural Network Models
Associative
Memories

Weak-Constraint
Optimizers

Learning Systems 
Supervised Unsupervised

examples: 
Hopfield Models 
Kosko’s BAM

examples:
Boltzmann Machine 
Hopfield/Tank Model

examples:
Back Propagation 
Boltzmann Machine

examples 
ART Models 
Self-organising Map

T ABLE 1. A Classification of Neural Network Models

In associative memories, the memory is organized as a storage of pattern vectors. 
Presentation of a part of one of these stored vectors will enable the system to recall that 

whole vector. These Vector patterns are distributed and stored in the connections of the 
network. The values stored in these connections are simply referred to as connection 

weights and are calculated using some fairly simple non-iterative algorithms. Adaptive 
learning is usually not possible in such a system because all the pattern vectors must be 
stored at the same time. Later storage of an additional vector will necessitate the process 

of storing all the vectors again. In this respect, it is rather like a conventional 
programmable-read-only-memory (PROM). However, the aim here is to build fast- 

access fault and noise tolerant associative memories using networks of simple processing 

elements similar to neural networks. The binary Hopfield [Hopf82] model is a recent 
example of such models.

Optimization models offer good, though approximate, solutions to combinatorial 

optimisation problems. As no learning processes are involved, the weights are fixed and 
calculated a priori. Such models correspond to weak constraint satisfaction problems. 

Constraints are embedded in the weights of the connections. The network evolves in such 
a way as to observe these constraints whilst optimizing some general cost function.
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Typical neural network optimisation models include the Boltzmann Machine [Aart8 6 ] 

and the analog Hopfield model [Hopf85].

Learning systems are probably the most commonly used systems in neural 

networks. There are two major types of learning systems, namely, supervised and 

unsupervised learning systems.

In supervised learning models the learning process is governed by a set of 

training pairs. A training pair is formed by an input vector and a desired output vector. 

The difference between the target output and the output the neural network produced 

constitutes an error. The learning process seeks to reduce this error by modifying the 

connection weights in a similar fashion as in a typical relaxation scheme. The multi­

layer perceptron with Back error Propagation and the Boltzmann Machine are well 
known examples of this kind. Their learning mles have their origin in the Hebb’s rule of 

learning (or some variations of it) which states the connection between two nodes that 
are highly activated at the same time should be strengthened. Basically, the change in 
the weight of a connection is proportional (with a proportionality constant k — the so 
called learning rate) to the product of source and destination neuron activation states:

i.e Wu (t-+1) = Wij (t ) + k*A; *Aj

In unsupervised learning models there is no "specified" target output; the neural 
network organises itself by applying some rules. This means that the network is only 
given input data and is expected to organise itself into some useful configuration in 
response to it. Such models grew out of an analysis of a simpler type of adaptive pattern 
recognition network, often called Competitive Learning [Rume86]. Its development has 
lead to different models. One of these as defined by Grossberg in [Gros88 ] corresponds 

to neural networks that self-organises stable recognition codes in real time in response to 
arbitrary sequences of input patterns. Rumelhart and Zipser have developed another 

model in [Rume86b] which is a regularity detection model. Their basic idea is that the set 

of units is divided into a number of disjoint clusters in which the units compete with one 

another in order to become active, i.e. to win the competition.

It should be noted that any supervised learning model (e.g. the Boltzmann 

Machine) can be converted into an unsupervised learning scheme by using the input itself 

to do the supervision. This kind of models have been used for image processing and 

speech recognition tasks [Hint84].

In the next section, the general structure of a neural network programming system 

and their contribution to programmability and portability is discussed.
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1.2 Program m ing Systems for Neural Network

Generally speaking, programming of a neural network can be viewed as a two 

level process. They are:

• specification of the network topology and the functions of the neuron.

• execution of the network.

The role of the neural network programming system is to provide the user with 

facilities to accomplish these two tasks. Typically, a neural network programming system 

is an integrated suite of software tools, and possibly associated hardware, which enable 
the user to specify the neural network and map it on to the hardware for execution. A 

simplified view of programming a neural network can be described by the diagram 

shown in Figure 4.

NETWORK MODELS

Back-Propagation Hopfield Boltzmann Machine
Model M odel

Neural Network Programming System

Silicon
Compilation

Workstations Parallel h/w Emulators Neurocom p. Etedicated h/w

Sun Supem ode H N C  Boards UCL Chip

Simulation Simulation Emulation Emulation Emulation

Figure 4. A Simplified View of Network Programming

What this diagram tells us is that a neural network programming system accepts 

neural network models as input and transforms them into a suitable form (eg:-binary 

code) and maps them on to the desired hardware for execution.

Typically a neural network programming system consists of four major 

components (see Figure 5). These are:

• An algorithm s library - which contains a set of parameterised neural network 
algorithms such as Hopfield, Boltzmann, Back propagation, and Competitive
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Figure 5. A Generalised Neural Network Programming System

learning. These can be configured for a specific user application by providing the 

necessary parameters.

• A graphic m onitor - provides the facilities for the user to express the network 
models in the form of a network graph which can be then translated into either a 

high level language program or an intermediate language for further translation 
and eventual execution. This also provides an easy way of controlling and 

monitoring the network at run time.

• A high level language system - this system (language + compiler) allows the 
user to specify algorithms in the form of a high level description and compile it 

into either graphic or intermediate form for eventual execution.

• An interm ediate level language system - an intermediate level language system 

(language + compiler) is the converging point of the system in that the high level 

language programs and the graphic descriptions of the networks are translated 
into this form first and then only compiled into specific machine language for 

execution. This form is a low level description of the network model and acts as a 
common form from which specific target machine codes are generated. An
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intermediate language compiler can be dedicated to a particular hardware if the 
role of this language is to provide a common form of representation for a 

particular architecture or be a common representation such as a virtual machine 

that can be mapped on a range of hardware architectures.

Of these major components, the algorithms library, high level language, and the 
graphic monitor can be classified as programming tools. These are there to aid the user to 

communicate with the hardware system. On the other hand, the intermediate language 

serves a different purpose, which is portability. By being able to represent the network 

in a simple and general form, it is able to support portability. It must also be said that the 

high level language also deals with the aspects of expressibility and portability.

Having briefly introduced a general neural network programming system let us 
now look at two of the major problems associated with neural computing on the whole 
and the neural network programming system in particular. These are programmability 

and portability. A good system should offer the user the facilities for programming a 
range of neural network models and mapping them on a range of hardware. These two 
major issues are not uniquely associated with neural computing. These issues concern 
computing in general. But in the case of neural computing it is more important because 
of the cost involved in producing application packages which are commercially 
acceptable. The next two sub sections considers these two issues in greater detail and 
tries to evaluate their importance.

1.2.1 Portability

Portability is considered to be an important issue because:

1. The implementation of a neural network model consists of two phases 
namely, training, and recall. It is generally accepted that the training phase 

consumes an excessive amount of time. This suggests that it is 

economically wise to train a system on a fast computer and use a low 

performance machine for the recalling phase. This stresses the need for a 
portable system.

2. Recent years have seen the emergence of a diverse range of hardware for 
executing neural network models, each with their own programming 

systems. This means that there are what one would call "software barriers" 
to be crossed by the programmer to execute these network models on 

different machines available to him/her. To overcome this barrier, one 
needs a programming system that supports portability over a range of
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machines.

3. The ultimate aim of neural network modelling is to develop practical 
applications for industrial use. In this context, an application developer 

wants to be able to have the constructed application made available across 

a wide class of users with varying computer platforms. This again 

demands portability.

1.2.2 Program m ability

Programmability of a particular system concerns the provision of tools for easy 

and efficient programming. In the case of neural computing, major tools which contribute 
to programmability are the implementation languages (high and low level) and graphic 

monitors. Of these two major tools, we believe that the languages are more important as 

they are the ones which offer more freedom in terms of expression and control. In neural 
computing, we believe that programmability should also include model independence. 
This leads us to consider the following issues:

1. Conventional languages - Conventional languages like C, C++, and 
OCCAM are being used to implement neural network models and 
applications in many programming systems. The main advantage in using 
these languages to implement neural networks is that most of the 
conventional machines have compilers available for these languages. The 
disadvantage in using these languages are that they do not have 
specialised features for efficiently implementing neural network models. 
In addition, although they are portable across a wide range of sequential 

machines their portability across parallel machines is restricted.

2. Specialised high level languages - Recent years have seen the emergence 
of a number of specialised high level languages for implementing neural 

network models and applications. These specialised neural network 

languages, like other application specific languages for other areas of 

computation, typically offer more specialised features on top of a classical 

language. They are usually complex in nature and tend to be better at 
expressing a particular sub class of the problem domain. This naturally 

encourages the user to choose different language for different application. 

The major advantages are that these languages provide better expressive 
power and domain specific features for coding the algorithms. On the 

other hand these languages are biased towards application building and 
often lacks explicit parallel constructs or explicit features to aid
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parallelism.

3. Specialised Low level languages - First of all, having a specialised low 

level language which is similar to an assembler may help to port the

network models across a range of machines, but it may not contribute to

programmability. What would be more suitable is a language that can be 

both a target level language as well as a programming language. This will 

offer the user the best of both worlds. In the case of neural network 

programming, it is useful to have the facility of programming at the 

intermediate level. These requirements lead us to a specialised low level 
language which is at a similar level as OCCAM so that programmability 

can be achieved.

In conclusion, our aims namely, portability and programmability demands a 
programming system where the user has the choice of a number of high level languages 
which can be compiled down to a common intermediate representation (intermediate 
level language) that can be mapped on to a range of hardware. In addition, this language
should have the necessary basic features so that it can be used as a low level
programming language for implementing a range of neural network models.

Having considered the issues of portability and programmability and identified 
their importance in neural computing systems, the next section states the goals of this 
thesis and presents a brief description of the research carried out in order to reach those 
goals.

1.3 Aims and Background to Research

As mentioned earlier the work described in this thesis represents a precursor of 

the PYGMALION project [Ange89] funded by ESPRIT II (project 2059) aimed at 
producing a general purpose neural network programming environment and applications.

The research reported in this thesis on the portability and programmability of 

neural networks was undertaken in conjunction with a complementary project on 

neurocomputer architectures [Pach91]. They started in October 1986 and aimed at 
producing a general purpose neural computing platform that could support:

• a wide range of neural network models and hardware;

• applications based on neural network techniques;

• further research and experimentation in this area of computing.
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Firstly, a primitive processing element (PE) which was to be the basic element of 
a massively parallel computer that supported neural computing [Pach88 ] was designed. 
The design of this PE was completed jointly with another student by the latter part of 

April 1987 and forms the basis of another PhD project in VLSI design [Pach91]. This PE 

was simulated at the register transfer level and configured in an array to form a network 
of processors. Then the design and implementation of a neural network programming 

system to aid the development of various applications based on neural network models 

was undertaken. This led to the design of a neural network programming system called 

NPS. Analysis of this design showed that there were basically two major areas to be 
investigated, namely, the higher level and lower level of the system. The higher level 

consists of high level language(s), algorithms library, and the graphics monitor(s) as 

major components. We believe that these tools falls into the category of human 
computer interactions and ample attention is being focussed on this area [Hood87]. The 
lower level is concerned with portability and programmability at the intermediate level. 
We believe that, portability is the least investigated area in neural network computing 
and there was a need to address this problem because of the diversity in the available 
hardware for executing neural networks. On the issue of programmability, what we are 
looking for is a low level language which is capable of implementing a range of neural 
network models (i.e - model independence) and expressive enough to also be a 
programming language at the intermediate /low level. Programmability at the 
intermediate/lower level is an important requirement in neural network computing due to 

its dynamic nature and computational complexity. This initiated the design and 
implementation of a specialised low level language whose main aims are to support 
portability and programmability.

1.3.1 NPS and NIL

Having identified the major aims of the thesis, a full neural network programming 

system, NPS, was outlined. This system as shown in Figure 6  consists of:

• high level languages; a number of high level neural network programming 

languages (HLL).

• a graphic monitor for building and interacting with the running network.

• a specialised low level language that can be used as both an intermediate level 

language to represent the high level language and graphical description of the 

network in a suitable form for mapping on a range of machines and as a 
programming language at a lower level offering the user the facility of multi-level 
programming.
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Figure 6. Neural Network Programming System, NPS

• a utility system, comprising a set of useful tools such as context editors, 

debugging aids, and software to save the partially trained networks for further 

training and recall at a later time.

• an algorithms library, consisting of a set of popular models which can be 

executed by supplying the necessary parameters.
Since the main aim of the thesis is to investigate portability and programmability of 

neural network models and applications, and a full implementation of NPS is beyond the 

scope of this thesis, it was decided to implement only the relevant parts of the NPS 

(indicated by the broken lines in Figure 6) to demonstrate the feasibility of the solutions 
proposed in this thesis. Thus, the currently implemented system consists of:
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• a low level language, NIL, to build a spectrum of neural network models and 

applications and map them on a range of hardware.

• a utility, to save partially trained networks for further training and recall at a later 

time.

• a library, consisting of a set of popular models which can be executed by 

supplying the necessary parameters.

• a facility, to generate a range of target machine code for different architectures 

based on a simple virtual machine called the C-Machine.

• a neurocomputer architecture simulator based on the design specification 

mentioned in chapter 3. As part of the project, a compiler was implemented to 
map NIL on to this simulated architecture to test the practical feasibility of 

mapping NIL on parallel hardware.

The main reason for including the C-Machine (a "C" based virtual machine) is to 
show that NIL can be mapped on to a range of conventional hardware. This is based on 
the fact that the majority of the currently available hardware (network of transputers, 
conventional machines such as Sun workstations, connection machine, and neural 
network hardware like HNC [Anza87]) support languages which use "C" language as 
their base.

The basic aim of the neural network programming system NPS as far as this 

thesis is concerned is to enable us to demonstrate the feasibility of the proposed solutions 
by serving as a platform for demonstrating the portability and programmability aspects of 

NIL. This is why the currently implemented systen offers neither a high level language 
nor a graphic monitor.

NIL consists of two major components:

• A network implementation sub-language, which enables a network to be built by 

providing suitable statements for specifying the functions of the nodes and the 

topology of the network.

• A manipulation sub-language, which provides monitor, control and modification 

capabilities for the network.

These sub-languages together produce a low level, machine independent network 

specification language.
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The primary design aim of the of the network specification language NIL, is to support:

• portability by being target machine independent.

• program m ability by being able to

a. represent a spectmm of network models including neural networks 

(model independence).

b. express the connectivity and computations in a clear and concise 
manner.

c. to handle non-determinism. This is achieved by splitting the 
functions of a node into guarded processes and randomly selecting 

one of the eligible processes for execution (see chapter 4).

The computational model on which NIL is based is formulated to support a variety of 
neural network models. NIL tries to provide capabilities such as implicit synchronisation 
and non-determinism to meet the basic needs of a network system and neural networks in 
particular.

NIL is believed to be capable of implementing a wide variety of network models 
in general and neural networks, and semantic networks in particular. We believe this 
general property is a significant advantage for the following reasons:

1. Being at the early stages of neural network modelling no one knows what 
the future models are going to be except that they will be based on 
network principles. So an intermediate network specification language 

should be general enough to represent network models of any type to cater 
for the future needs.

2. Building applications based on neural network techniques may involve the 
use of different network models. This means that a general network 

language rather than a special purpose neural network language is useful 

in building such heterogeneous network systems.

In addition to this general property, it is also found that this language is suited to 

programming a network of transputers. This, we felt was another significant achievement 

when considering both the current difficulties with the mapping of algorithms on a 
network of transputers using the existing programming tools and the popularity of the 

transputer as a building block of parallel computer platforms.
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1.4 Outline of the Thesis

This thesis presents the design, implementation and the assessment of the neural 
network programming system, NPS and the network implementation language, NIL. In 

chapter 2, a survey of neural network programming systems is presented. This survey is 

used to form a critical assessment of the existing systems, as background to design a 

neural network programming system. In chapter 3, the proposed programming system 

NPS is presented. It also discusses the reasons behind some aspects of the design. In 

chapter 4, the network implementation language NIL which forms the central part of the 

proposed programming system is presented. In this chapter, semantics and syntax, and 
the computational model of the language are discussed. In chapter 5, implementation 

details of NPS and NIL is presented. This includes the detailed description of the virtual 
(C-Machine) machine, the data structures and the communication mechanism between 
the application code and the system. In chapter 6 , an assessment of NPS and NIL is 

presented. This chapter includes sample programs, coded in NIL, to run some well 
known neural network models, a brief comparison with existing languages in this class, 
namely Occam and BIF [Bahr87], and a discussion on how to compile programs written 
in high level languages into NIL. The discussion on translating high level languages into 
NIL involves the loose specification of a high level language that combines most of the 
major features found in majority of the high level neural network languages currently in 
use and showing how it can be translated in to NIL. Finally, in chapter 7, conclusions are 

drawn and future work is discussed.
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Chapter 2

This chapter presents a survey o f systems for programming neural networks. This 

includes the descriptions o f some o f the well known systems. The main reason behind this 

survey is to ascertain the current state o f research in this area and to serve as a 

background to our investigation o f neural network programming systems.

2. N eura l N etw ork  P ro g ram m in g  System s

The term "Programming Systems" refers to the collection of software and 

hardware tools available to a system developer to build software systems. A neural 
network programming system provides facilities for network specification, testing and 
execution. These facilities may be provided in the form of a set of stand alone tools or as 

an integrated software/hardware package. A good programming system offers a 
systematic path for developing software by providing the necessary tools at every stage 
under a single environment. It is this approach that is adopted by most of the neural 
network programming systems for developing software [K0 I0 8 8 , Hans87, Paik87, 
Test88J. To specify and control the neural network most of the systems offer either a 
special purpose high level network specification and control language or a graphical 
system or both. Most of the debugging, run time control and manipulation is carried out 
with the aid of the control component of this language and its graphical counter part. 
Apart from offering these high level tools as basic facilities and a few minor aids, the 
majority of the existing systems do not offer anything radical in the way of a debugging 
tool for parallel systems or intermediateAow level programming. Most of these systems 

are also dedicated to particular hardware. That is, they generate executable code for a 
specific hardware.

A few of these neural network programming systems have an intermediate level 
language so that the high level description of a network can be commonly represented in 

this form for further translation and execution on different machines.

This chapter presents a survey of the existing Neural Network Programming 

Systems with the view to examine their strengths and weaknesses in order to help us 

design a neural network programming system that satisfies our intended goals which 

were stated in the previous chapter.
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2.1 Classification of Neural Network Program m ing Systems

Currently, neural network simulations are mainly done using tools which were 

developed for traditional computing on conventional machines such as C language on 

workstations. However, building, analysing, debugging, and maintaining a neural 

network is quite different from that of a traditional sequential program. This is due to the 

fact that there is no single point of control that can be traced in a parallel distributed 

system like the neural network. More specialised tools are needed to aid the developers 

to specify networks, observe their behaviour, identify faults, correct the problems, and 

retest the networks.

Although there is a certain degree of commonality among the different types of 
neural network programming systems, they can be broadly classified according to the 

specific purposes for which they are developed into three categories.

1. Educational systems

2. Research systems

3. Commercial systems

2.1.1 Educational systems

These are primarily intended for introducing neural computing to the novice 

users. Some of these are free whilst others are sold as commercial products. The 
majority of these packages are model dependent (i.e.- restricted to execution of a given 
set of popular models such as Hop field, Boltzmann, and Back propagation etc).

NNPSs in this category include Adaptics, Netwurkz, NeuralWorks Explorer, and 

the PDP Exercise Neural Network Tool. They are briefly summarised in Table 2.

Neural Network - The Course

Neural Network - The Course is developed by Adaptics [Adap88] as a training 

software, available on Macintosh and IBM-PC computers. Its main purpose is to 

introduce the various common neural network models to the novice user. This product is 

a part of a broad line of support services and products to assist companies to use neural 

network techniques.
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Organisation Environment Description

Adaptics NEURAL NETWORK - 
THE COURSE

Simple Training Software for NN

Dair Computer 
Systems

NETWURKZ Training Software for NN with a 
low-level network language PL/D

NeuralWare NEURALWORKS EXPLORER A cut-down Educational Version 
of the NEURALWORKS 
PROFESSIONAL series

Stanford PDP EXERCISE TOOL Free Software available with 
the Rumelhart PDP book vol.3

TABLE 2. Educational NNPSs

Netwurkz

Netwurlcz [Netw87] is a neural network simulator, developed by Dair Computer 

Systems, available on IBM-PC computers. It is intended for people not familiar with 
neural networks. Associated with Netwurkz is a low-level network language PL/D which 
is based on list storage and representation. Netwurkz is itself implemented in PL/D. A 
best-fit pattern recognizer demonstrator program called "Spell" is also included.

NeuralW orks Explorer

NeuralWorks Explorer [Neur89] is a basic programming environment, developed 
by NeuralWare, available on the IBM PC, XT, AT, PS-2, Sun Microsystems SUN/3 and 

SUN/4 computers. It is an introductory package with several of the features of a more 
powerful package NeuralWorks Professional II (see later sections) marketed by the same 

company, but with fewer capabilities. Basically, this package provides a number of 

parameter driven neural network models and some example applications. A primitive 
graphical environment is also provided.

PDP Exercise Neural Network Tool

This tool is available on MS DOS or UNIX Operating Systems, and is given free 

with the Rumelhart neural computing book [Rum86d]. It is produced as a training tool to 

illustrate the various PDP models covered in the accompanying book. It provides a 

simple version of each of the basic PDP models. The user is guided through those models 
by a textual description of the behaviour of each model. The effects of changing the
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parameters of these models can also be observed.

Comments

The main strengths of these educational NNPSs are that they are relatively cheap 

and usually adequate as training and educational tools for novice users. They guide the 

user through the basic neural network models, which are well described. Moreover the 

user can learn the effect of slight changes on various components and parameters (e.g. 

learning rate and threshold function) of a model. One of the best in this respect is the 

PDP Exercise Neural Network tool. Finally they provide the user with facilities for 
understanding the exact behaviour of the model (such as running the network in a "slow- 

motion"), which is otherwise difficult to capture due to the dynamic nature of neural 

networks.

However, because of the model-dependence of these NNPSs, the user doesn’t 
have the flexibility required to experiment with new and novel neural network models. 
Moreover, since their purpose is educational and not intended as a tool for building 
commercial or research products these environments are usually slow in operation. In 
addition these NNPSs lack a proper user-friendly graphical interface. Finally these 
NNPS are appropriate only for small models; they are not effective in modeling neural 
networks with large number of neurons (e.g. counter propagation model). But, as the 
major aim of these NNPS is educational these restrictions are minor.

2.1.2 Research systems

The group of research NNPS encompasses various experimental research 

environments. They include NETSIM [Test88,Gart87], the King’s College Simulator 
[Smit87], P3 [Zips8 6 ], SNAIL [Hood87], NDL/ANNE [Bahr87], Rochester 
Connectionist Simulator [Feld8 8 ], UCLA SFINX [Paik87], and IBM CONE [Hans87]. 

Some of them are hardware dependent whilst others are more general purpose and are not 
designed to run only on a specific target machine, although very often a specific 

hardware emulator is included. NNPSs under this category are summarised in Table 3.

NETSIM

NETSIM is a specialist parallel neural network simulator. It has been designed 

for high speed simulation of large systems of networks. There is also an associated VLSI 
chipset forming the core component of the simulator. But the importance of the ability to
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Organisation Environment Description

Texas Instruments/ 
Cambridge Univ.

GRIFFIN A Parallel Network Simulator based 
on the TI NETSIM neurocomputer

King’s College 
London

King’s College 
Simulator

A PDP Network Simulator implemented 
on Multiple-Transputer System

Stanford Univ. P3 A Lisp-based Windowed Environment with 
Graphical display, Plan/Method as the 
Specification Language

University
College
London

Pygmalion A Programming System for a range 
of Connectionist Models, with NC as 
the Specification Language

Carnegie
Mellon
University

SNAIL An Interactive/Graphical Windowed 
Programming Environment (Textual 
Description Not Supported)

Oregon
Graduate
Centre

NDL/ANNE An Integrated Programming System 
with NDL (as HLL), BIF (as ILL), H/W 
mapper, and Intel iPSC Emulator

University
of
Rochester

ROCHESTER
CONNECTIONIST

A C-based Hierarchical Graphical 
Programming Environment that runs 
on various Hardware Emulators

UCLA SFINX A C-based Interactive Programming 
Environment with Primitive Graphics, ILL, 
Assembler (but no HLL yet)

IBM
Palo Alto

CONE An Extensive Environment with Library, 
GNL (as HLL), NETSPEC (as ILL),
XIP Graphical Monitor, and IBM NEP 
(as Hardware Emulator)

TABLE 3. Research NNPSs

design and debug programs has been recognised in this NNPS. Therefore a software 

environment is provided with this parallel NN simulator [Test8 8 ]. The user interface is 

based around a multi-window environment which is driven either by the user application 

program (written in C) or by the interface itself. However, the NNPS is very low level 

in nature in that it mainly facilitates the user not in the high level construction of models 

and applications but in the low level efficient utilization of the parallel hardware.



Kings College Sim ulator

Kings College Simulator [Smit87], corresponds to a PDP network simulator 

implemented on a multiple Transputer system. The system is implemented via two 

processes : the user interface and the network simulator. The user interface provides 

functions to the user to analyse and simulate a PDP network. It supports all the PDP 

network models, taken from the book by Rummelhart et al [Rum8 6d, Rum86e]. It is 

probably the first system designed to simulate neural nets on a network of transputers. 

The major facilities provided by this system includes, facilities to construct networks and 

map them on the hardware optimally, display network structures and unit status, and 

display simulation performance.

P3

The P3 system was developed by Zipser and Rabin as a simulation tool to aid the 

development of parallelly distributed processing models [Zips8 6 , Trel8 8 a]. P3 is a 
language centred system which is implemented in LISP and runs on a Symbolics 3600. 
Although it was not originally intended as a neural network development system, it has 
the necessary facilities and an inherent parallel structure that would map onto suitable 

neural network hardware. The major components of the P3 system are a plan language, a 
method language, a constructor, and a simulation environment.

The plan language describes the collection of nodes (called units in P3) in a 
network model and specifies the connections between them. To do this, the language uses 
a small but rich set of statements. The three fundamental constituents of the plan 
language are a UNIT, a UNIT TYPE, and a CONNECT. The UNIT TYPE statement 

names and describes a kind of unit. The UNIT statement instantiates and names actual 
units. This statement can instantiate either a single unit or a whole array of units of the 
same type. The CONNECT statement makes connections. Associated with each type of 

unit is a method which defines the computational behaviour of the units in the model 

program. This method is described in the method language which is an extension to 

LISP. After the plan and the associated methods have been specified the constructor 

generates a distributed data structure. This data structure is loaded into the simulation 

environment for execution. This simulation environment is highly interactive and makes 

extensive use of the "window" system and the "mouse" pointer of the Symbolics 3600. It 

offers two layers of debugging tools for testing the code and monitoring its run-time 

behaviour interactively. The first layer of the debugging allows the user to test and verify 
the network connections and the second layer allows the user to test the individual units. 

It allows "strip-chart recorders" to be connected to any of the parameters of a unit so that
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the behaviour of that parameter over the time can be measured. The simulator also 
provides the user with a display of nodes in an orientation of his/her choice.

The environment of the network is handled by an appropriately defined 

environment unit which handles any input or output connections, and has a suitably 

defined method. Control over the update sequence of units is also handled in this manner 
via a control unit. Without this control unit each of the units will be sequentially 

executed, but through this unit an asynchronous updating process can be simulated.

SNAIL

SNAIL is a an interactive graphical tool for designing and testing neural networks 
which was developed by scientists at Carnegie Mellon University [Hood87]. A neural 

network design in the SNAIL system consists of a set of drawings. With these drawings, 
one can construct a network by selecting appropriate primitives for drawing neurons, 
synapses, etc. Labels can be attached to lines in order to reduce the number of connecting 
lines, just as is done in electrical circuit schematics. In SNAIL modifications, deletions 
and additions of elements of network can be made interactively and the consequences of 
the change can be seen immediately. States of the network are shown by assigning 
different colours for different parameters and their current values. Windows can be 
created with parameter’s names and their values, and the user may modify any of these 
parameters. Parameter windows may also be created for abstract objects, such as neuron 
types, or a set of global simulation parameters, and the user can also modify any of these 
parameters. Parameter windows, once displayed will have their values continuously 
updated while the simulator is running. Neurons firing rate or synaptic strength over time 
can also be displayed by requesting a chart recorder window.

Just as in designing circuits where it is extremely useful to abstract away from the 
transistor level, and work in terms of gates or registers, in SNAIL system one can 

encapsulate portions of a network up into prototype drawings, which can then be used as 

units in themselves. Once a prototype drawing has been created, an instance of it can be 
included in a drawing by creating a block. In the simplest case, the name of the block is 

just the name of the prototype drawing which is to be included at that location in the 

drawing. Connections are made between lines external to the block and lines internal to 

the block by means of labels. The prototype drawing includes labels on all lines to which 
external connection can be made. In the drawing containing the block, lines attached to 

the block are labeled at the point of attachment to indicate the internal lines to which they 

should be connected. It is also possible to use blocks within prototype drawings, thus 
permitting the construction of hierarchical network designs.
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NDL/ANNE

ANNE (Another Neural Network Emulator) is a general purpose neural network 

simulation system, developed at the Oregon Graduate Centre for the Intel iPSC [Bahr87, 

Trel8 8 a, Trel88b]. Although an emulator exists in the form of an Intel iPSC multi­

processor, the development environment is not dedicated to any particular hardware 

architecture (see Figure 7).

debugging
I-------------------------------------------------------------------------------------------------------- 1
I 1
I i

mapped
BIFNDL BIF

PAD

mappercompiler

Figure 7. A Typical Development Process in ANNE

The user describes the network using a high level NDL (Network Description 
Language) which is then compiled into a low level generic BIF (Beaverton Intermediate 
Form) which is a common specification format designed to express network structures 
with both generality and compactness. Mapper is a tool for assigning the network 
structure (by graph partitioning) to a particular target machine architecture. It takes as its 
inputs a BIF file and a PAD (Physical Architecture Description) file describing a specific 
target machine architecture (which is the Intel iPSC hypercube in this case). The 
functions of the nodes for learning and computation are specified by pointers to C 
procedures. The output of the mapper is then used by ANNE which acts as a test bed and 

debugger for the neural network model described by BIF. Using ANNE the user has the 
ability to examine, modify or save pertinent data within the network, including the entire 

BIF specification of the network at any point in the simulation. It should be noted that, 

although the design of NDL/ANNE is intended to be hardware independent the only 

existing version runs on the Intel iPSC.

Rochester Connectionist Sim ulator

The Rochester Connectionist Simulator (RCS), developed over a long period of 

time at the University of Rochester [Feld88 ], is designed to be run on the Unix Operating 
System. Versions of the simulator have run on a DEC/VAX, a Sun workstation and on 

the BBN Butterfly Multiprocessor. It appears not to be dedicated to any neural networks



models.

The overall system consists of a user program, a Graphics Interface and the 

Simulator, which corresponds to a run-time environment. The neural network is built in 

the simulator via the user program (written in C). The user has to define, via a data 

structure, each unit, its sites and links (sites at which incoming links are attached). This 

specification has the ability to give a description at different levels of abstraction. The 

lowest level corresponds to a single-unit description; i.e. unit, sites and link functions. 

The next level corresponds to the description of the connectivity pattern; i.e. specifying 

the links and the group of units. The highest (user-defined language) may be read in and 

compiled into units and links by "user-supplied" functions. The Simulator and Graphics 

Interface are independent. The Graphics Interface allows the user to display network 
information during simulation and aids for the network debugging process. Furthermore 

the user can examine the network before, during, and after it executes via a "simulation 
window".

UCLA SFINX

SFINX (Structure and Function In Neural Connections) is a neural network 
simulator environment, developed at UCLA’s Machine Perception Laboratory [Paik87, 
Trel88a], that allows researchers to investigate the behaviour of various neural networks.

As shown in Figure 8 , the SFINX structure is analogous to traditional language 
based systems. A neural network algorithm is specified in a high level textual language 
which is compiled into an equivalent low level language. Next this low level language is 
assembled into a binary data stmcture (defining the network) and is loaded into the 
SFINX simulator for interactive execution. In SFINX, network specifications have two 

basic parts:

• set of nodes - a node is a simple computing element, composed of: memory 
storing the state of the nodes, and functions defining how signals are processed.

• interconnections - defining the connectivity and the flow of data amongst the 
nodes.

These network specifications are represented by virtual PEs, each comprising:

• function pointer

• output register
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Figure 8 . SFINX Environment

• vector of state registers

• vector associated weight/link_address(es)

Lastly, the front-end of the SFINX simulator is a command interpreter, accepting SFINX 
shell scripts. These shell commands include: load, save, peek, poke, run, draw and set; 
whose meanings should be fairly obvious. Once a network stmcture is created, these 
SFINX shell commands can be used to exercise the simulator, displaying and modifying 
the state of the network.

IBM CONE

The IBM Computational Network Environment (CONE) [Hans87, Trel88a] is 
based on hierarchical and functional decomposition design methodology and consists of 

a high level General Network specification Language (GNL), a generic intermediate 

network specification (called NETSPEC), and an Interactive Execution Program (IXP). 

Neural network programs are specified in GNL and compiled into a machine independent 

intermediate form NETSPEC. This intermediate specification is then assembled into an 

executable form dependent upon the execution engine (see Figure 9).

To describe a network in GNL, the designer uses three fundamental primitives:

• proc, which describes the functional processors.

• path, which defines the connections between procs.

Page 28



Source

M ode ls

PANO

Compiler

Hopfield VISION

NETSPEC

Assembler

Display

Network

IX P

User

Figure 9. CONE System

n

• port, which specifies the point at which a path joins a proc.

For any specific application area, the designer can establish a library of procs and these 
are then made available to the compiler in a fashion completely analogous to providing a
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scientific library of routines. The NETSPEC description is simply a parts lists of various 
primitive processors and a listing of the topology.

To run and manipulate the network, CONE provides an execution environment 

called NET Interactive Execution Program (IXP) that runs on a PC connected to the 
Network Emulation Processor (NEP). The IXP has three major components:

• a graphics display,

• an operator interface,

• a network engine.

The graphics display enable the operator to view the state of the network by selecting a 
set of procs of interest. The operator can also vary the hierarchical depth for which the 

network procs are to be decomposed. The IXP operator interface is a command shell 
which controls the execution of the network engine and the display terminal. It has been 
developed in close association with the hierarchical GNL compiler. Thus, the IXP 
interface recognises the hierarchical decomposition of the network procs. The network 
engine provides a simple interface to the target hardware. The IXP has isolated the entire 
engine interface into a couple of low level functions. Thus, the IXP itself can be easily 
modified to support the inclusion of special purpose hardware for the network updates.

Comments

Most of the NNPS in this category are hardware specific. In terms of execution 

speed, the advantages of a hardware specific NNPS are obvious. Indeed, if the main 
purpose is to create a specific end-user application then NNPSs from this group will fit 

the bill well. They can provide complete solutions to specific problems. But when the 
aim is to build a general purpose portable NNPS capable of integrating novel 

applications, then a hardware independent NNPS seems to be a priority.

The obvious disappointment as far as these NNPSs are concerned is the failure to 

achieve the expected level of performance Hood87, Zips86 ]. In terms of speed, the 
dedicated systems reduce the running time by a significant margin. Even for ANNE 

which runs on a parallel target engine (namely the Intel iPSC), the results in terms of 

speed and storage efficiency are far from adequate, and in fact are much worse than 

expected. This problem lies in the fact that at this stage of technology development, no 

efficient general purpose "neurocomputer hardware" can be designed yet. To increase 

efficiency, some NNPSs give the user two ways of specifying their model. For instance, 
in SFINX the user has an explicit and an implicit way of designing his model. The
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implicit specification is designed to take advantages of high degrees of regularity in 

connectivity patterns (as in low-level vision model). Because of the restrictions imposed 
on the user it increases notably the space and time efficiency. The explicit specification 

provides a great deal more flexibility to the user by assuming only minimal constraints. 

But, because of the massive amount of details that is needed in explicitly specifying large 

irregular models, the user is restricted to specify only small neural networks in reality. 

Placing too much reliance on graphical facilities can also become a liability for NNPSs. 

An example is the SNAIL NNPS. Because SNAIL is graphics-dedicated (i.e. 

specification is by graphics only) the user is restricted to the design of neural network 

models with only a small amount of neurons and interconnections which can be shown 

and specified visually.

Flexibility is the main strength of most of the research NNPSs. There are two 
aspects in this, viz., modelling flexibility and execution flexibility. Modelling flexibility 

is indicated by the degree of freedom a NNPS gives to the user in expressing a neural 
network model and application. This freedom depends on the expressive power of the 
specification languages used (e.g. high-level network primitives, description granulity, 
pre-imposed network structures and constraints, graphical/textual languages etc.). The 
Rochester Simulator is a good example of a NNPS that gives the user the power to 
construct specification at different levels of abstraction. A lowest level provides single­
units description; corresponding to units, sites and link functions. The next level 
describes the pattern of connectivity via a set of functions which specify the links and 
groups of units. A higher level gives the overall network specification. Execution 
flexibility is measured by the kind of facilities offered to the user during a simulation 
session. Regarding the generality, user-friendliness, and integration of tools, the IBM 

CONE is one of the best example. These tools are highly interactive and provides 
graphical display at any level of the specification; network as well as individual nodes.

2.1.3 Commercial systems

NNPSs in this categories have an overwhelming commercial orientation. They 

include ANSE and Mark III/IV, HNC ANZA & AXON [Guts8 8 ], SAIC ANSim & 

ANSpec, Cognitron [Fuku8 8 ], NESTOR, NeuralWorks and Professional II. A summary 
of these NNPSs is given in Table 4.

ANSE and MARK III/IV

ANSE (Artificial Neural System Environment) is a design environment which 
supports the neural network designer in the areas of neural network definition, network
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Organisation Environment Description

TRW ANSE commercial environment for 
TRW neurocomputers Mark III, 
IV and V

Hecht-Nielsen
Neurocomputer

ANZA sophisticated environment with 
library, object-oriented HLL, 
for HNC neurocomputers ANZA 
and ANZA Plus

Cognitive
Software

COGNITRON multi-window icon-driven 
environment + LISP-like HLL 
for Macintosh

Nestor NESTOR DEVELOPMENT A NNPS for pattern recognition 
and signal processing applications

NeuralWare NEURALWORKS 
PROFESSIONAL II

Graphical environment for 
IBM PC and SUN, C Converter 
Available

Science 
Applications 
Int. Corp.

SIGMA/ANSpec commercial environment with 
library, object-oriented HLL, 
for SIGMA/DELTA neurocomputer

TABLE 4. Commercial NNPSs 

editing, network storage and retrieval, and network implementation [Souc88].

ANSE is machine independent and it is compatible with the family of MARK 

computers, the most significant of which are the MARK III and MARK IV 
neurocomputers. The MARK III neurocomputer is a parallel processor implementing 

neurons as virtual PEs and virtual full-connectivity is supported. The MARK IV 
neurocomputer is a single high-speed pipelined uniprocessor, also implementing virtual 

PEs and virtual full-connectivity.

HNC ANZA & AXON

The ANZA package comprises: the ANZA User Interface Subroutine Library, 

basic Netware packages for the common neural network algorithms, the AXON 
specification language, and a IBM PC co-processor board for the speeding-up of floating 

point operations in neural network simulations.
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The User Interface Subroutine Library (UISL) is a collection of routines 

providing access to the ANZA system functions. Examples include: load network, set 
learning etc. The basis of UISL is common set of data types defining formats for slabs, 

weights etc. As with the data types, the UISL routines adhere to a naming convention. 

The UISL routines names use the same set of nouns as the data types. Likewise, the 

UISL data files required to implement networks use four types of data: state data, weight 

data, constant data and network description data.

The Basic Netware Package contains five of the classic neural network algorithms 

in a parameterised specification that can be configured for a specific user application. 

These algorithms are: Back propagation, Spaciotemporal (Formal Avalanche), 

Neocognition, Hop field (plus Bidirectional Associative Memory) and Counter- 
Propagation networks. In these networks the interconnection geometry and the transfer 
equations are already specified. However, the number of PEs, their initial state and 

weight values, learning rates and time constants, are all user selectable.

Lastly, AXON is a language for describing neural network architectures in a 

machine-independent form. It is object-oriented and its syntax combines features of 
Pascal and C, with constructs such as weight, input class and slab as keywords. AXON 
is based on a generic neuron model containing attributes such as output state, transfer 
function, interconnection class, connection weights, and local data memory.

The stmcture of a specific network is defined by four sections.

1. The network parameter section which defines the load-time and run-time 
constants.

2. The network data declaration section which declares the processing 
elements and their attributes.

3. The network construction and connection section which specifies 

interconnections.

4. The network execution section which schedules the updating and also 

defines the transfer functions.

SAIC ANSim & ANSpec

Scientific Applications International Corp. (SAIC) market a series of 

sophisticated tools and co-processor boards collectively known as ANSkit [SAIC8 8 ] for 
developing neural networks. The kit is designed for an IBM PC/XT/AT environment.
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The main utilities of the kit are the ANSim simulator and the ANSpec 
programming language.. ANSim comprises a Microsoft Windows operating 

environment, interfaces to dBase HI and Lotus 1-2-3, together with files of the popular 

algorithms. The windows environment provides pull-down menus to select and change 

I/O format, network architecture, network learning algorithm, network training and 

execution, and displays of activations, weights etc.

The popular algorithms provided are:

1. Back propagation (with/without momentum, shared weights, recurrent 

networks),

2. Hop field,

3. Boltzmann (learning, machine, I/O),

4. Kohonen feature map,

5. Adaptive resonance (ART 1, ART 2),

6 . Enhanced counter propagation,

7. Bi-directional associative memory, and

8 . Hamming net.

Networks can be loaded and saved, using data creation/load/save/modify 
commands, and neurodynamic equations specified using simulation, activation/transfer 

and learning functions.

ANSpec is a concurrent specification language for defining and simulating neural 

networks, and extending the ANSim environment. ANSpec is object-oriented allowing 

code developed for different applications including ANSim networks to be integrated 

into more extensive systems. Applications can include mixtures of ANS networks and 
other non ANS processes such as image processing, signal processing, and data base 

management. The ANSpec specifications can either be simulated in a virtual processing 

environment of thousands of concurrent processors or used for native code generation for 

one or more Delta floating point co-processors, also available from SAIC.

Cognitron

Cognitron is a Macintosh-based neural network simulation system. It is designed 

as an advanced network model simulator based on the principles of parallel distributed
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processing, and utilizing multi-window displays [Fuku8 8 ]. A main feature of the system 
is the provision of "Modelling Windows" which allow the user to design a network and 

its components in a hierarchical and graphical manner. There is also a textually-oriented 

Creator!Editor primarily used to program the functionality of units and initial weights. 

The simulation engine is represented by a specific simulation window. This window 

provides the user with an implicit way of start, pause and resume a simulation, as well as 

graphical displaying simulation status. Finally, there are facilities for time-charting the 

output behaviour of any unit in a network. Input/Output handling is done via normal file 

handling, and is compatible with standard graphing, statistics, and spread sheet 

programs. The user interface has an appearance of a common Macintosh software 

package in that it is intuitive and heavily graphical-oriented. The system appears capable 
of supporting most currently imaginable neural network models.

NESTOR

NESTOR Inc. has produced a number of standard products. Their first product is 
the Nestor Writer which allowed a computer user to read handwritten text into a typical 
data-processing system. The system is implemented using a standard DBM PC. A 
follow-on product is the Nestor Decision Learning System for the financial-services 
market. Finally the Nestor Development System (NDS) provides access to the Nestor 
Learning System  for the development of solutions to pattern recognition or signal 
processing applications. Therefore NESTOR corresponds to range of different products 
serving the needs of different markets.

NeuralW orks Professional II

This is a fully fledged version (superseding an earlier release—NeuralWorks 

Professional I) of an educational system called Neural works Explorer mentioned 

previously, and is available on most PC’s and workstations (such as SUNs).

It is supposed to be a neural network environment for the "neural computing 

professionals". In this system, in addition to a number of manufacturer-supplied standard 

neural network models and applications, the user can define any network topology 

(provided that it can be stmctured in terms of layers of neurons) and functionalities. A 

package called the Designer Pack is also available for the conversion of a network design 

into a subset of standard "C" code for portability and easy integration with other 

conventional systems. Network manipulations are mostly icon-driven. There is also a 
library of learning rules, activation rules, summation functions, and transfer functions. A 

simulation run can be controlled in a number of ways, e.g. continuous, counted, or single
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step. Input/Output compatibility with Lotus 1-2-3 and dBase III is supported as well as 
user defined I/O. It seems partially executed networks can be saved and restarted through 

a check-point facility.

Comments

It seems that most of these commercial packages tend to place more emphasis on 
performance. This inevitably leads to a certain amount of loss of flexibility in terms of 

modelling and executing of neural networks in order to make them commercially 

attractive(i.e. better performance and less flexibility). The Nestor Learning System is a 
typical example in that producing a pattern recognition application is feasible but 

observing the features of different learning schemes is quite impossible. On the other 
hand some commercial NNPSs (e.g. ANZA) contain their own model specification 
languages (e.g. AXON) which are flexible enough for specifying most of the existing 

neural network models as well as new ones. Another common problem is the lack of 
flexibility in the investigation of the behaviour of models during a simulation run, and in 
the precise control of the system during a simulation. However, these NNPSs usually 
come with a bundle of popular models and some of them even contain libraries of 
common applications. The result is that the user can start using the technology in a very 
short time. This factor undoubtedly has commercial appeal.

2.2 Assessment

A good NNPS should provide facilities for building and simulating a variety of 

neural network models. This means that it should have the ability to deal with different 
topologies, activation functions, and learning scheme. This demonstrates that a NNPS 

(whether it is a commercial or a research system) needs to be able to specify and run any 
type of neural network model. This is a crucial requirement when investigating novel 

neural network models. In order to have such flexibility, at the specification level one 

needs a high level language which should be heavily oriented towards the process of 
model and application construction. This means that it should be very powerful and 

flexible in its descriptive power. Efficiency considerations should not be a major concern 

in this language. Indeed, efficiency concerns should be more appropriately dealt within a 
low level language. Moreover, NNPSs have to be able to deal with heterogeneous neural 

network models. These are models formed by a combination of different basic models 

(shown in the previous section). They can be combined in parallel, in series or in 

hierarchies. For example, Josin [Josi87] has demonstrated an interesting model composed 
by the combination of an optimisation model and a self-organising model. Such a model 

has been designed for a robot’s arm control application. There are no general rules for
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combining neural network. However, some sort of hierarchy concept (or level) appears 
to be useful.

NNPSs have to be able to accommodate a wide range of neural network models 
including some possible new ones, both from the point of view of the design and the 

execution. Thus there is a need for a target engine independent NNPS. Indeed, if the 

purpose is an end-use application there is no doubt that a dedicated hardware NNPS is 

the best choice since it gives a complete solution to a specific problem. But when the aim 

is to build a general-purpose NNPS then a target-engine independent NNPS seems a 
priority. On the other hand we should bear in mind the efficiency of execution. But it is 

premature to seek a general purpose neurocomputer given the current state of the 

technology in parallel architectures for neural networks [Feld88 ]. Even if today’s 
technology moves toward parallel systems, it is not necessarily a move towards 
massively parallel "neural-style" machine. Therefore a flexible NNPS should contain an 

intermediate level language able to be mapped onto any future hardware.

Another important point is the flexibility given to the user in terms of execution. 

Indeed, neural networks are dynamic systems. Thus it is quite difficult to understand all 
the processes involved at the same time. Graphics interface has proven to be 
indispensable for displaying information during simulation and for aiding the network 
debugging. Indeed, with a good display of run-time system behaviour, one can quickly 
determine if a network is working properly and if not where the problem lies. 
Furthermore NNPSs should allow the user to focus on a certain part of his model, that is 
to stop the execution and "look" at certain components of the network. These 
components can, for example be either a particular neuron or a particular layer etc. They 
should also allow the isolated execution of only a part of the network; which is useful for 

heterogeneous models and for general debugging. Much of the power of this type of 
interfaces lies in their dynamic properties, which are not shown in a static pictures. For 

example, with dynamical graphic display, the user can catch oscillations which can 

penalise a network. Thus good graphical facilities seem a condition "sine-qua-non" for a 

NNPS, given the useful information that these graphical displays can convey.

A large number of neural network models have been developed. Generality 

requires the NNPS to be able to implement any known neural network models. Indeed, 

generally one has to understand the existing models in order either to improve them or to 

present a new type of model. Moreover, a NNPS has to give the user a reusability of 

previous models. Thus, the need for a library is demonstrated. This library should supply 
the user with a complete set of neural network models, each of those is equivalent to a 
parameterised module and the user can use any particular instance of a model (either as a
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complete model or as a part of a more complex model) by providing the modules with 
parameters.

Current research in programming systems is concentrating more and more in the use of 

graphical aids in these environments. Also efforts are being made in producing a single 

programming system that can provide most of the useful facilities which are available in 
the existing programming systems together with appropriate tools for developing parallel 

programs, especially tools designed to deal with network programming. This thesis is 

one such attempt at providing a neural network programming system which tries to 

address a few of these problems, namely, portability and programmability.
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Chapter 3

This chapter presents the proposed neural network programming system, NPS, and then 

goes on to present the subset which was implemented fo r  the purpose o f this thesis. It 
also includes the descriptions o f each component o f the system and discusses the design 
motivations.

3. T h e  N eural N etw ork  P ro g ram m in g  System , NPS

The neural network programming system, NPS, was primarily designed to 

support portability and program m ability [Bava90a, Bava90b]. That is - a system 

which can take algorithms specified in a range of high level languages as input and map 
it on a range of hardware. The NPS as shown in Figure 10 (which is same as the Figure 6 
seen earlier in chapter 1), consists of:

• a number of high level languages for specifying neural network algorithms and 
controlling (monitoring) the execution of the network;

• a graphic monitor for graphically representing and interacting with the network;

• an intermediate level neural network implementation language system that can 
represent the graphical and high level language specifications of the various 
neural network models;

• a library of popular algorithms for the user to run standard models by supplying 
parameters;

• a set of utilities for assisting the user in the programming tasks;

• a wide range of hardware.

In this system, neural network models specified either in one of the high level 
languages or in graphical form is translated into an intermediate language(NIL). The 

intermediate language compiler translates this into appropriate target machine code and 
passes it on to an appropriate mapping system for mapping it on to a specific hardware 

for execution. The monitor and the control part of the high level programs can be 

executed in an interactive mode in conjunction with the graphics system to display and 

modify the network at run time. In this case each command is translated into its 

intermediate counter part and communicated to the hardware through the appropriate 
communication module. This run time translation is performed by a sub system of the
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respective language and graphics systems. Apart from this the user can execute any of 
the available models in the algorithms library by supplying the necessary parameters.

User

i—

Utilities 
- -A- - - -HLL  ii___

Graphic
Monitor

i— — i

Algorithms
Library

i___

—i

Intermediate Level

Language (NIL)

Special Purpose 

M achines

Suns Neurocomputer

Emulators

Parallel Analogue

ChipsPyramids Machines

Figure 10. Neural Network Programming System, NPS

The high level languages (HLL): A developer needs the flexibility to specify different 

topology, activation functions, and learning schemes for building a variety of models and 

applications. In order to have such a flexibility, at specification level one needs a high 

level language which is highly expressive in terms of modelling and application 

construction. This language does not have to be efficient as long as it is powerful and 

flexible in its descriptive role, since the efficiency factor can be dealt by the intermediate 
level language. Since different high level languages offer different facilities, a good
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programming system should have more than one high level language for the user to 
choose from so that a suitable language can be chosen according to the special needs of a 

particular application. This will no doubt enhance the programmability of the system.

G raphic Monitor: When it comes to interacting with the network, the user prefers a 

method that would present the information in a form which is easily understood. It is 

quite difficult to observe all the processes and make alteration to individual components 
in a massively parallel and dynamic system like a neural network. This can only be 

possible, if an overall picture of the system is available and sub components can be 
accessed. Displaying the network using graphics and indirectly accessing sub 

components via graphic displays for making alterations has proved to be a useful 

technique in network programming and debugging. With a good display of the run-time 
system behaviour, one can quickly determine if a network is working properly and if not 
where problem lies. Furthermore a good Neural Network Programming System should 
allow the user to focus on a certain part of the network and stop execution and examine 
it. These components can be a neuron, a link, a layer or a sub network. Thus the 
provision of good graphical facilities is an important requirement for a neural network 
programming system.

The Interm ediate Level Language: First of all let us answer the question "Why do we 
need an intermediate language system ?". The answer to this question is that we want a 
common representation of the models we are trying to implement so that we can achieve 
portability. Generally, an intermediate language can be used to achieve three different 
kinds of mapping.

One to many mapping - In this mapping, a single high level language is mapped on to a 

range of machines.
Many to one mapping - In this case, a number of high level languages are mapped on to a 

single machine.

Many to many mapping - In this case, number of high level languages are mapped on to a 
range of hardware.

These three systems require different design approaches to be efficient. The first 

form, one to many mapping, requires an intennediate language that can both capture the 

essential properties of a particular high level language and represent the algorithm 

expressed in this language as a simple virtual machine that can be easily mapped on to 
any hardware. The second form, many to one mapping, has to capture the essential 

properties of all the high level languages and be capable of exploiting the unique 
characteristics of the particular hardware on to which it is trying to map these high level
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language programs. This can be achieved by having a low level language which is closer 

to the assembly language of that machine but slightly at a higher level so that the 
essential features of most if not all the high level languages can be captured. On the other 

hand the third form, many to many mapping, is more complex. It must combine the 

properties of the previous two forms of representations to be a good system. That is, the 

intermediate language should not only has to capture the essential properties of a broad 

spectrum of high level languages but also should have the ability to exploit the desirable 

features of a range of hardware through a common scheme of representation. A possible 

solution to this is to have an intermediate language that represents the algorithms 

specified in these high level languages in the form of virtual machine which is simple and 
very general. This demands a high level description similar to "C" language or Occam in 

order to be of any practical use. The major problem with this approach is that it does not 
lend itself to producing optimised code for all the target machines.

These three forms of mappings are only a rough generalisation and further 
classification at specific levels can also be possible. One such case is the problem at 
hand, which is mapping a particular class of algorithms (models) specified in a range of 
high level languages on to a range of hardware. That is, we want to map neural network 
models specified in a number of high level languages on to a range of hardware. Here we 
feel the problem is slightly simplified because of the existence of a set of basic features 
which is inherent in all the neural network models. For example, a neural network model 
must consist of a description of its network topology, descriptions of the different types 
of nodes in the network, the learning and recall procedures, and the training and test data. 
Using these basic features as the back bone of the language, one can design an 
intermediate level language which is simple and general enough to represent these 
models specified in various high level languages in the form of a simple virtual machine 

so that it can be mapped on to a range of hardware. In here we see the NIL language as a 
set of notations for representing such a virtual machine rather than a language for 

specifying network models. This is substantiated by the fact that we are able to generate 
"C" code from the NIL translator which is similar to a NIL program. This is the approach 

the author has taken to tackle the problem of portability and programmability in this 

piece of research.

So, what we want is a neural network programming system which is independent 

of the execution hardware to take advantage of the advances in technology and one that 
is capable of accommodating a wide range of neural network models, from the point of 
view of the design, execution and interaction.
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Combining these two basic requirements with the need for efficiency creates the 
need for an intermediate language which is model independent and capable of 

representing the high level descriptions in a simple and efficient form {a virtual 
machine). The reason for requiring a simple form is because a simple form of network 

representation is considered to be easier to map on to different hardware architectures. 

Other important characteristics needed in an intermediate language in a neural network 

programming system is that it should provide facilities for observing and modifying the 
network during run time. This particular characteristic is in a way an important one to 

network programming as a whole in the same way it is important in an Object Oriented 

Language System. Because it is the one that makes it possible for experimenting and 
debugging since there are no other known tools for debugging a massively parallel 

system.

The other important issue as far as a network language at an intermediate level is 
concerned is "whether one should have primitives to specify parallelism explicitly or the 
language should implicitly express it without the use of such primitives?". We believe a 
neural network language (especially at an intermediate level) must be implicit in its 
expression of parallelism like object-oriented languages. The main reason behind this 
belief is that a network algorithm is generally considered to be inherently parallel. If this 
assumption is adopted then the designer of the language should aim to design the 

language in such a way that it expresses parallelism in a natural way.

Algorithms Library: A programming system for neural network should provide 
facilities for building applications and testing the suitability of an existing model to solve 
a particular problem in hand. One way of aiding the user in this task is to provide a 
library of models and functions which can be executed by supplying the necessary 

parameters. This approach also promotes reusability. This library should contain a 
complete set of existing neural network models and associated functions. These are 

equivalent to a set of parameterised modules and the user can use any particular instance 

of them (either as a complete model or as a part of a more complex model) by selecting 

the appropriate module and suplying the parameters.

Utilities: A good programming system should provide a number of tools for assisting the 

programmer in the development of software. These may include a good editor (in our 

case a context editor would be of great help), a screen dump program, a file maintenance 
system appropriate for the particular type of software being developed, a program for 

saving partially run programs etc.
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M apper: The software that maps an executable network on to a particular piece of 

hardware must be efficient. This implies that it must be a dedicated system to exploit the 

advantages offered by that particular hardware. This leads to a decision to have 

dedicated mapping software for each target machine. This approach may be considered 
inefficient for building software systems but it has the advantage of producing a run time 

system which is efficient. Also depending on the architecture, physical placement of 

processes can be arranged in such a way as to reduce the possibility of deadlocks due to 

message passing.

3.1 The Implemented System

Since the main aims of this thesis is to investigate portability of neural network 

models over a range of hardware and programmability (at a low level) of a range of 
models, only the components marked by the broken lines in Figure 10 were 
implemented. The main reason for deciding on this particular approach was to 
demonstrate the capabilities of the intermediate level language and to show that the basic 
concepts behind the proposed solution is a practical possibility. In this system (see Figure 
11) the input commands are interpreted by a command interpreter and appropriate 
functions or sub systems are called to perform the required task. The user may issue 
commands for compiling and executing a NIL program, running an algorithm from the 
library, save a partially run network using the utility or abort a running network etc. This 
implemented system as shown in Figure 11 consists of:

1. the intermediate network implementation language (NIL) system;

2. an algorithms library;

3. a utility for saving partially trained network for further training and recall;

4. a library of general purpose functions specified in NIL for implementing 

some well known node functions;

5. a main module comprising a command interpreter and a set of mappers;

6. a neurocomputer architecture simulator based on a primitive processing 

element.

NIL System - This sub system consists of a NIL compiler and a translator, and a library 

of useful function definitions for nodes. NIL programs can be either translated into the 

virtual machine (C-Machine) based on "C" language and then compiled into object code 
using a standard "C" compiler or compiled into target machine code for UCL
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Figure 11. The Implemented System

Neurocomputer Architecture simulator. The command interpreter takes these machine 
codes and maps them on the appropriate hardware for running. In the case of the virtual 
machine, it is loaded on a Unix machine (Pyramid/Sun). Since the C-Machine is virtually 
similar to the NIL program in terms of its constructs, we envisage no difficulty in 

generating target machine code for the UCL Neurocomputer architecture simulator from 

the C-machine. The current system uses a NIL compiler (which was originally 
implemented for mapping NIL and testing the UCL neurocomputer architecture) to 

generate code for UCL neurocomputer simulator, and a separate translator for generating 

the virtual machine based on the "C" language. It must also be pointed out that NIL can 

be implemented in other languages and may be considered as a notation for representing 

neural network models rather than a language. This is found to be true in the case of the 

C-machine and during our experience with the hand translation of NIL into OCCAM.

Algorithms L ibrary - The algorithm library consists of a set of popular models such as 

Hopfield model, Back-Propagation model, Boltzmann machine, etc. These can be



executed by providing the appropriate parameters. Most algorithms in this library require 
the user to specify the number of nodes in each layer, set of input patterns, a set of output 

patterns, and tolerance value.

Utility - This is a single function utility package containing software for saving a 

partially run network for further training at a later time. This is invoked by a "save" 

command which is available both at the command level and at the manipulation level of 

the intermediate language.

Library of functions - Since the functions which define the nodes in each layer of a 
particular neural network algorithm can be specified as a general purpose function in 

NIL, we found it useful to have a library of node functions readily available for use in a 
NIL program. This is similar to the "C" language library, where the programmer is 

provided with a set of functions for performing some common tasks.

Command interpreter - The command interpreter in the implemented system is like a 
Unix shell. It accepts commands from the user and interprets it and calls the appropriate 
function/sub system. This means that it shares some of its commands with the NIL 
system. That is - some of the commands can be used within a NIL program.

There are all together seven commands available to user at this level. They are

1. load -m file jiam e  - for loading a partially run network for execution on a

particular hardware by specifying the hardware option in the parameter
tt m .

2. save file jiam e  - to save a partially run program for running later. This 

command can also be used in the manipulation part of a NIL program.

3. stop - to stop a running network. Again this command can be used in the 

manipulation part of a NIL program.

4. go - to run a loaded network.

5. run -m file jiam e - to compile, load and run a source program file with 

options to execute in a particular machine.

6. exec -m m odeljiam e  - to execute one of the standard models available in 

the model library. When executed, this command will initiate a series of 

questions regarding the size of each layer, tolerance value, and input and 
output patterns etc. The user responds by typing the required data. Once
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all the information is available, the system builds the appropriate network 

and proceeds with the compilation and subsequent execution process.

7. abort - to abandon the execution of the network. This command is also 

available in the NIL language.

Ucl Neurocomputer - At University College London we have designed and are currently 

implementing in CMOS, a primitive processing element for building a parallel MIMD 

neurocomputer, configured from an array of these elements [Pach88, Pach91]. The main 

goal of the neurocomputer is to support a range of connectionist algorithms spanning 

both neural network models and semantic network models.

The overall structure of the system, as shown by Figure 12, consists of a set of 
arrays of processing elements(PE) connected to a host computer that controls the 

activities of the network.

PE

Figure 12. UCL Neurocomputer

A PE in an array is linked by a bi-directional, point-to-point connection to its two 

neighbours and communicates by sending message packets (see Figure 13). Each 

message consists of three fields: a destination address (ie-the identity of the destination 

PE.), a logical input channel number, and a data value. When a PE receives a packet, it 

compares the address field with its own address and if it matches then the processor is 
interrupted and the packet is passed to the application process. If the address is different 
then it is passed to its other neighbour. In this system both the host and the individual PE



can broadcast messages by placing a special destination address and input number in 
their packets. In the case of a broadcast packet, each PE takes a copy of the packet and 

passes the original to its other neighbour.

Each PE as shown in Figure 13, consists of three units: a communication unit, a 

processor and a local memory. The communication unit has two I/O Buffers and a name 

register to hold its address.

A Packet: 16 bit 16 bit 16 bit

destination input channel data value

COMMUNICATION

i/O name i/O

PROCESSOR

MEMORY 

IK x 16 bit words

Figure 13. UCL Neuro-Chip

The processor consists of a primitive ALU, supporting a reduced instruction set of 

16 instructions. This instruction set enables the processor to perform all the necessary 

functions required by a network program by providing instructions such as load, store, 
add, sub, mult, and, xor, etc. There is only one working register, the accumulator AX, 

and a very few memory mapped registers. All the data addresses and instructions are 16- 

bits long. Each instruction consists of a 4-bit opcode and 12-bit data address. The size of 

the local memory can be up to IK X 16-bit words long which is found to be adequate 

enough to support a range of neural network node functions.

The neurocomputer is configured by initialising each PE with a unique address 

and then loading them with appropriate codes. These codes can be either identical or
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different for each PE depending on the overall task. Each PE also has a local operating 

system to control and manage its activities. Currently, a simulation of the architecture at 
the register level is running on a UNIX machine and a CMOS implementation is under 
way.
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Chapter 4

This chapter describes the intermediate level language, NIL fo r  mapping and
manipulating neural networks on a range o f hardware. The language incorporates the 

concept o f guarded process and combines this with the philosophies behind network 

languages to build networks and manipulate them.

4. The Network Implementation Language, NIL

4.1 Motivations and Requirem ents

The main motivations behind the design of NIL is to produce a low level 
language for specifying neural network algorithms with the following features :

1. machine independence - The language must be independent of any
hardware, especially neurocomputers so that it can be used as an
intermediate language for porting neural network models specified in a 
range of high level languages across a range of hardware.

2. neural network independence - The language must be capable of 
representing a wide range of neural network models and applications so 
that it can be used as a programming language, especially at a low level 

during the development phase as well as during runtime.

3. simple and general - It must be simple enough to be an intermediate level 
language as well as general enough to be translated into high level 

languages like Concurrent Pascal, "C", etc and low level languages like 

Occam and assemblers.
Using these motivations as a basis, a list of desirable properties for an intermediate level, 

machine independent neural network language is arrived at [Ange88, Bahr87, Chol88, 

Guts88, Kohl88, MayD87]. These are:

• Small and specialised language:
The language should be dedicated to neural network algorithms. This language 

should offer specialised features on top of a more classical language, providing 

the user with useful primitives and tools to deal with the unique aspect of the 
problem domain. But these must be kept to a minimum in order to keep the 

language as small as possible, thus avoiding costly compilation.
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• Simplicity:
The language should be readable. Generally, specialised languages are considered 

to be less simple to understand than more general purpose ones, because they are 

used by specialists, and less attention is given to their readability.

• Generality:
Any connectionist algorithm should be programmable in the language. The 

expressive power of the language should not be a limiting factor. This is a very 

ambitious requirement because no one knows what the models of tomorrow will 
require. For example, some of the recent research papers suggests the need for

• Primitives for the dynamic evolution of the network structure - Some 

models allow the creation and deletion of links and nodes, and primitives 

for doing so should be provided in the language.

• Expression of randomness - Some models make use of random connection 
patterns, and/or probabilistic cell activation. Primitives for implementing 

these functions should be provided in a language.

• Parallelism:
An intermediate level language for neural network must have parallelism built 
into it in a natural way, that is, it should reflect the parallel nature of the algorithm 
in the way it represents it without explicitly stating it. It must also encourage the 
programmer to isolate components in the algorithm which can be processed in 
parallel.

• Reusability:
The language should incorporate a mechanism for making use of already written 
and validated network components. One possible approach is to create a library of 

common components and models, written in the most general and parameterised 

form so that, it can be used by giving values to parameters.

• Support for graphical environment
A network programming language benefits from having the facilities to display its 

structure as a graph wholly and partly during run time. Graphic facility should 

also have the capability to express the behavioural characteristics during run time. 

As there is no easier way to monitor the progress and debug the network other 
than graphically displaying the network and making alteration through the graph, 

it is important that the language should provide a mechanism for graphic 

interface.
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This brings us to the question "why not use an existing language like "Occam" as 
an intermediate language for implementing neural networks?". The reasons for not 
following this approach are:

1. To manipulate a neural network, we need special commands, especially 
when dealing with dynamic networks which require facilities for creating 

and deleting links and nodes. If we are to use Occam, we need to 

synthesise new functions to deal with these tasks. This will require 

complicated coding and will only result in an inefficient system.

2. Additions needed to make Occam a neural network intermediate language 

will make the language larger and less simple.

3. Supporting a graphical environment using an Occam based language 

requires unacceptable level of overheads. This is mainly due to the 
difficulties in extracting the topological informations and the informations 
contained in each nodes. This will make the whole system unacceptably 
slow.

4. So far, no one has shown that Occam can be efficiently mapped on other 
parallel hardware (i.e - other than the transputer).

These considerations led to the design and implementation of NIL. NIL is 
intended to be a machine independent low level language for neural network 
specification. NIL has

1. a basic part that builds the network representation of the algorithm and 

specifies the functionality of the nodes in the network.

2. a manipulation part that provides the capabilities for controlling and 
modifying the network.

In the network specification part, nodes are connected using statements which 

implement a series of mapping of inputs to outputs. The statements which describe the 

functional behaviour of a node consists of control flow statements which are found in 

popular procedural languages.

Having stated the motivations and requirements of NIL, section 4.2 lists all the 

keywords used in NIL. Section 4.3 explains the use of brackets and separators in NIL. 

This is followed by an explanation of the meanings and the use of constant values. 
Section 4.5 describe the syntactic and typing convention used in formally describing the 
language. Section 4.6 gives a detailed description of NIL. Finally, section 4.7 describes
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the semantic properties of the language.

4.2 Keywords

The following list(see Table 5) of tokens represent keywords and hence may not 

be used as identifiers.

add all and begin
construct delete do end
exp fi fun get
getwt go if input
int ival join ldconst
load nde not od
or output read readst
real rep rmv md
run_net save skip stop

TABLE 5. Keywords

4.3 Brackets and Separators

The following symbols are used for grouping or separating objects:- (), []> {}> ->» 
=>, semicolon Y ,  colon and comma In general, round brackets are used for 
grouping and precedence, square brackets are used to denote array elements, and curly 
brackets are used to enclose processes and blocks of codes. The arrow is also used as a 
mapping operator in the link statement. The imply symbol ’=>’ is used to separate the 
input condition from the associated block of statements in a guarded process. The 
semicolon is generally used as a terminator of assignment statements. The colon is used 
as a special separator to distinguish weight vectors from ordinary input vectors in the 

parameter lists and separating subscripts in an array. Finally, the comma is used as a 
general purpose separator for syntactic convenience (e.g. for separating parameters etc.).

4.4 Constant-Valued Tokens

Certain tokens have priori values associated with them. These are characters, 

strings, integers, and real numbers. It should be noted that maximum and minimum 

values for numbers will be machine dependent. A character is enclosed in single quotes 
(e.g. ’c ’).

Integer numbers are represented using decimal numbers(0-9). The real numbers 
are represented using decimal point notation. A string is any sequence of characters 
enclosed within double quotes(e.g. "string").
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4.5 Syntax and Typing

The syntactic elements in NIL may be subdivided into five groups: link 

statements, function definitions, guarded processes, expressions, and statements(see 
APPENDIX A - for further details). Throughout this document a Backus-Naur Form 

(BNF) notation will be used for describing NIL. The following conventions are adopted:

italics = nonterminal symbol 

lower_case = terminal symbol 

{ symbol } = optional symbol 
{ symbol } * = repetition of zero or more symbols 

{ symbol }+ = repetition of one or more symbols

Alternative categories of a syntax mle are separated by a vertical bar.

4.6 A Network Im plem entation Language - NIL

NIL is a machine independent, low level neural network programming language 
for mapping and manipulating neural network algorithms on a range of parallel and non­

parallel hardware.

NIL consists of two sub-languages :

• a network specification sub-language which specifies the connections between 
nodes and the functions performed by the nodes in the network.

• a m anipulation sub-language which allows the user to observe the behaviour 
and modify the network during mn time.

a program written in this language has the following syntax.
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begin

networkspecification _part 
begin

manipulation _part
end

end

4.6.1 The Network Specification Sub-Language

The network specification sub-language consists of:

• link statem ents for linking nodes in the network to specify the desired topology;

• function definitions for specifying the computational behaviour of the nodes in 
the network.

4.6.1.1 Link Statements
In NIL the network is built using three types of link statements. These statements 
implement a series of mappings using appropriate functions with specified lists of input 
and output parameters. They are

1. a link statement, which is the most primitive statement that specifies the 
mapping of a set of input to a set of output using a particular function 
which represents the computational behaviour of a node.

2. a rep statement, which replicates nodes and their connections both in a 
series and in parallel.

3. a construct statement, which builds a complete network structure with 

regular connections.

link statem ent - a link statement has the following syntax.

name(input_list {: w t j i s t}) -> (outputJist)

The name refers to the specific function performed by that node. The input lists and 

outputjists  represent the set of input and output list associated with that node. The 

w tjis t  represents the list of initial values such as initial weights, status status values and 

any other local data for that node. These data are private properties of that node and are 
not accessesd by any other nodes in the system except the host for controlling the 

network. To illustrate the use of the link statement, consider three nodes A, B and C 

linked in a network as shown in Figure 14.
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Figure 14. A Simple Network

Where A and B perform the function defined by f l  and C performs function f2  to 

transform their inputs into outputs. The linking of these three nodes are achieved by the 
following link statements.

fl([a, b, c] :[1, 3 ,5]) -> ([d, e, fj)

fl([d, e] : [7, 9 ])-> ([g , h]) 

f2([f,g, h]) ->([i])

When this network is executed, appropriate connections are established, weights 
vectors are initialised and the system will wait until input channels a, b, and c are loaded 
with appropriate values. This will initiate the firing of node A which in turn will output 
values d, e, and f and provide input for other nodes.

rep statem ent - There are two forms of rep statements and these are similar to those 

found in Occam [MayD87]. A rep statement of the form

rep[3] ff([X[I], Y[I]]) -> ([X[I+1], Y[I+1]])

would replicate the function f f  three times in a series as shown in Figure 15.

X[3]XL21 X[4]
Y[4]

X[l]
Y [l]

Y[2] Y[3]
Figure 15. Sequential Replication 

A rep statement of the following form

rep[2] ff([X[I], Y[I]]) -> ([A[I], B[I]])
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would replicate the node and its I/Os in parallel as shown in Figure 16.

X [l]
Y [l]

ff A [l]

B [l]

X[2]
Y[2]

ff
A [2] 

B[2]

Figure 16. Parallel Replication

construct statem ent - This allows the programmer to build a complete network 
with regular connections. For example, the following construct statement

construct ( [i = 2] in(iv[i], [sig[l]]) -> ([ou[i]])

:[p = 1] hi(ou[i], [erbk[l]] ) -> (out[p], sig[p])

:[k = 1] op(ou[i], out[p], [eop[l]], [rcl[l]]) -> (erbk[k], result[k]))

is equivalent to the following set of statements.

rep[2] in(iv[i], sig[l]) -> (ou[i])
hi([ou[l],ou[2]], [erbk[l]]) -> ([out[l]], [sig[l]])
op([ou[l], ou[2]], [out[l]], [eop[l]], [rcl[l]]) -> ([erbk[l]], [resultfl]])

These statements implements the network shown in Figure 17.
The construct statement has the following syntax.

construct

[rep_par] name( input_par ) -> ( output_par )

{: [rep_par] name( input_par ) -> ( output_par )} +

)

where



result[l]

rcl[l]

ou[2]ou[l]
out[l]

erbk[l]

sig[l] inin

iv[l] iv[2]
Host

Figure 17. A Regular Network

rep_par ::= index_var = number o f replications

input_par ::= c j j i s t  {: c_ w tjis t }

output_par ::= c j j i s t
c j j i s t  ::= in_var_vector \ arrayjange
c_o_list ::= var_name[index_var]

{ ,var_name[index_var] }* 

in_var_vector ::= var ja m e \su b scrip tja r ia b le ] 

arrayjange  ::= var_name[index_range] 

index_range ::= range {, range} * 

range ::= sub ja n g e  | setjrange 

sub_range ::= integer .. integer 
set ja n g e  ::= integer {, integer }* 

c j v t j i s t  ::= see later

This can produce statements such as
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construct [i = 5] fl(a[i], [b[l,2,4..7, 9], d[1..4]]) -> (c[i])
: U = 14] f2(c[i]) -> (b[j])

: [k = 12] f3(c[l,4,5], b[j]) -> (d[k]))

The rules governing the synthesis of a construct statement is as follows

1. The value of the index_var indicates the number of repetition of the 

associated link statement.

2. The subscript_variable in the in v a rv e c to r  must be either the current or a 

previous index_var. If it is an index_var of a previous link component 

then all the elements specified by that range are repeated for each 
replication. If only a selection is required then it must be specified as an 

arrayjange.

3. Any index var that has not yet appeared must not be used.

4. Links from nodes that are not part of the construct statement can be 
included in the c j j i s t .

5. Any feed back loop must be specified using an array ja n g e .
Weights can be introduced into these statements using a standard random function as
follows.

rep[3] ff(x[i], y[i] : 2*md[0-l]) -> (a[i], b[i])

This will generate two random values in the range of 0 to 1 for each link statement.
Fixed array of weights also can be used

   :[2.0,3.0, 4.0]....
or

:[i, i+1, i-1]

where "i" is known index var.

Only simple expressions involving +, - and * can be used in this way.

4.6.1.2 Definition of functions
Once the topology of the network is specified, the computational behaviour of each 

node(or a group of nodes in the case of a number of nodes performing the same type of 

computation) is described in the form of function definitions. A function that represents 

a node in this language is based on a generalised model of a biological neuron.
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The Computational Model - A computational model of a function that represents a 
neuron should reflect the overall properties of a neuron. A popular view is that a neuron 

only starts firing when the inputs that arrive at the dendrites satisfy certain conditions and 

subsequently produces a new set of outputs which may or may not be different from the 

previous set of outputs. This is then followed by a change of state and waiting until the 
arrival of a new set of inputs that satisfy the input condition for firing and outputting new 

values again. This process is repeated until the network becomes stabilized. This 

generalisation led to the computational model shown in Figure 18.

Input

V r̂ \' \f

false

Input Conditions

true

passive state

Execution

Outputs
active state

Figure 18. The Computational Model

We believe this model is flexible and general enough to accommodate a wide 

range of artificial neurons. This model also makes it possible to define functions in a 

general way so that it can be used again. A function which implements this model has the 
following form.
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fun name {input_vectors {i\n\:wt_vectors } )

-> {output_yectors)

body

A function definition, although very much similar to a function definition in 

Pascal, differs in many respects.

1- A function in NIL is considered to be a mapping function (i.e. - it maps

inputs onto outputs). This means that it can act upon any set that belongs to
the input space. This makes the function more general purpose and can be 
re-used again with a different set of I/O parameters.

2- The parameter list consists of three types of parameters, they are input, 
output and initialisation vectors. The initialisation vectors are sets of 
constant values which are used to initialise variables within the functions at 
the start of the system and they represent the state of computation in a node 
at any given time. These are not carried by any links and are planted into the 
node during compilation and are the sole property of that node.

3- All the parameter vectors denote a group(array) of variables.

4- Each element of the input and output vectors represent a set of virtual input

and output channels through which the data is sent and received by nodes.

5- The length of each I/O vector parameter is only determined by the link 

statements which use this function to build the neural network(ie- the 

individual components of the parameter lists are only specified at the linking 

stage of the network).

6- The dimension component of the input, output and weight vectors are used 

to hold the lengths of these vectors when a link statement is activated(see 
example for explanation).

7- The body of the function consists of one or more GUARDED PROCESSES 
with boolean input conditions as its head. A guarded process has the
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following construct.

input condition => process description "}"

8- A guarded process becomes eligible for execution when the corresponding 

input condition becomes true.

9- Only one of the eligible guarded processes is executed during a node cycle 

where a node cycle consists of the execution of a guarded process and 

dispatching the output.

A general stmcture of a function definition and a link statement is as follows.

sum([a, b, c] : [2, 5]) -> ([k, 1, m]) 

fun sum ( x[nl] ival: w[n2]) -> (y[nl])
n |  ii

input_condition_l =>”{" process_1 "}" 

input_condition_2 =>"{"process_2 "}"

input_condition_n process_n

In the above definition sum is defined to be a function that takes an input vector x 

and a weight vector w each with n l and n2 elements respectively and produces an output 
vector y. When sum is called n l takes a value 3 and n2 a value 2 along with initialisation 

x[l] <- a, x[2] <- b, x[3] <- c, and w [l] <- 2, w[2] <- 5 and produces outputs y[l], y[2], 

y[3] which are passed to other nodes in the network in k, 1 and m. This mechanism makes 

it possible for the user to build general purpose functions that can be used by a number of 
nodes wishing to perform the same type of computation but with different numbers of 

input elements, which is an essential feature of a neural network.
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Guarded Process

A guarded process becomes eligible for execution when the corresponding input 

condition becomes true. The guarded process in this language is similar to the guarded 

process described by Hoare [Hoar85] except that it provides a compact and elegant 
notation for representing it.

Input Condition - The input condition is represented by an array with an index-range. If 

new input values are present in all the elements of the input array as specified by the 

index range then a true value is realised and the corresponding process is executed. This 

input condition can be expressed as an "ALT" statement in Occam [MayD87]. An input 
condition has the following syntax.

vector_1 [index_range] {,vector_i[index_range] }*

The above syntax should produce a family of input condition that would cater for every 
eventuality as illustrated below.

x[3] one specific channel input.

x[l..n], y[l..m] all input channels from x and y. 

x[k..l] sub range.

x[kl..ml,k2..m2] set of sub ranges.

x [ l , 12], y[2,5,9] subset of x and y.

Statements - The statements available for describing a process consists of " i f ,  "do", 
"assignment" and "skip".

O utput Statements - There is no special statement to perform output in this sub­

language. This is achieved by assigning values to the elements of the output vectors.

The following example describes a general function to perform summation and 
thresholding. This function can be used anywhere in a network whenever a summation 
and thresholding unit is needed.
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fun lay2(x[n]) -> (y[i]) 

int i ,n ,j ;

real x[10], y[10], netj;

{
x[l..n] => {j := 1; 

netj := 0.0;
do (j<=n) -> netj := netj + x[j];

j := j + i;
od

if (netj>=0) -> y [1] := 1.0; 
->-> y[l] := 0.0; 
fi

}
}

4.6.1.3 Output From Compilation A compilation of a program consisting of 

definitions and link statements would output one of the following two outputs.

1- A list of errors and diagnostics if the compilation fails.

2- If the compilation is successful then it produces a list of labeled nodes, name 
of the functions performed, input list, weight values and an output list(see 
Appendix D).

The production of the second list gives all the relevant information so that the user is 

familiar with the network he/she has built and can refer to each node uniquely by the 

node label provided in the list during manipulation.

4.6.2 M anipulation Sub-Language

Once a network is built one would require a MANIPULATION language to 

retrieve and deduce information from the network and modify it. Commands given in this 

language can be expressed by the following syntax.
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begin control comnds end

control comnds ::= { control statement }*

This language should ideally have the following capabilities.

1- Stopping and starting the network.

2- Feeding and receiving data from individual nodes.

3- Looking at the current inputs and outputs of a node or nodes.

4- Inspection and modification of state variables of a node(s).

5- Creating and deleting links and nodes.

6- Saving and reloading an incomplete process(network).

7- Facilities for conditional and repeated execution of the above mentioned 

functions(ie-loops and conditions).

Instead of having very descriptive constructs for each tasks mentioned above, it 
was decided to have very simple commands to reduce the overheads in interpreting these 
commands during run time. This led to the inclusion of the following statements in the 
manipulation sub-language.

4.6.2.1 Reading Status and Links A single construct is used to read the status of nodes 
as well as the links.

readst parameters

parameters ::= all | n o d e jd  {, n o d e jd  }* ;

Where a n o d e jd  refers to a particular node and is referenced using the following 
convention.
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nd e[unit_number\

nde[2]

denotes the second unit in the network. The construct above should produce the 

following set of statements.

readst all

readst nde[2], nde[5];

The first statement reads the status of all the nodes in the network. The second statement 
reads the status of nodes 2 and 5. This reads the state variables(ie- elements of the 

weight vectors) and the values of the I/O channels.

When using the "readst" statement , all the specified state and I/O variable values 
are made available to the programmer. Access to these values are made by referencing 
them by their link I/O variable or referencing the I/O vector element of the particular 
node. For example - Vector element t[2] of the I/O vector for the node 5 is accessed by 
the following identifier.

nde[5].t[2]

4.6.2.2 Reading Inputs from Nodes To read any messages sent to host by nodes in the 

network, a separate read statement is provided. This is similar to the one provided in 

Occam [MayD87]. The reason for adopting this is to provide the host the ability to make 

use of the data as soon as it arrives and respond to it as well as synchronize the activity of 

the network. This is a very important statement in the language and helps to avoid 

overwriting inputs sent from the host and bring about an orderly computational system.

get varjiam el -  linkname
{ , var_name2 = linkname } * ;

When this statement is encountered, the linkname is checked repeatedly until a new
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datum is present in the named link variable and is placed in var_namel. If the 
weight/status variable of a particular node is to be read instead of the link variable then 

the following command is used.

getwt varjiam el -  Weighttiame
{ , var_name2 = weightname } * ;

In this case the value of that variable is simply read into the named variable (i.e. 
var name 1, say).

4.6.2.3 Reading Data from a File To read input data from a file, the following 

statement is used.

read (filename, d a ta jype) d a ta jis t

Where the file name is a string or a variable which contains the name of the source file. 
The data_type is an integer value which denotes the type of data to be read. This value 
range from 0 to 3, where 0 stands for integer, 1 for real, 2 for character, and 3 for strings. 
The data_list is a list of variables into which the data is to be placed. Some examples of 
this statement are as follows.

read(data.p, 1) x, y, z; 
read(filel, 3) head_line;

4.6.2.4 Creation and Deletion of Links To delete and create links, the following 

construct is used.

operation link_name( joinjpar \ delete_par ) 

operation ::= delete | join

join_par ::= nodeJd.^formal input vector element 

delete_par ::= n o d e jd  j n o d e jd
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This construct will enable the deletion and creation of links. For example -

delete link_one{,ndz\2\)

or

delete link_two{nde[4])

The first delete statement will delete the link at the destination node. The second 

statement will delete the link at the origin node.

join link_one{nde[2].x[3])

In this case output channel, link_one from a node will be linked to node 2 with the formal 
parameter name x[3]. This means that the node 2 must have an input vector called ‘x ‘ 

with two elements already in place.

4.6.2.5 Loading Initial Values on to the Input Links Loading new(initial) values on to 
those input links which require input from outside can be achieved by the following 

construct.

input linkjiam e  = value

{ , linkname = value } * ;

4.6.2.6 O utputting Results Outputting values to the standard output device is achieved 

by the following construct.

output results

results ::= o p jis t  \ read_status 

o p jis t  ::= element { ,element }*;

element ::= strings or variables or values



Using the above syntax statements, like

output x,y,z;

output "The result is ", result; 

output link_namel;

can be constructed. These three statements output values of the variables x, y, z, a string, 

result and the value of the link named "link_namel".

4.6.2.7 Feeding New Inform ation To feed in new information and alter the behaviour 

of the network a "ldconst" statement is introduced. This statement enables us to introduce 

new weights to an existing node before or during run.

ldconst nodeJd.state_yariable = value_l,

• • )

n o d e jd . state variable = value_n;

The construct above produces the statements such as

ldconst nde[3].wt[5] = 5,
nde[3].zt[3] = index;

This statement changes the weights of an existing node. The changes made by control 
commands are permanent. This capability is of great value to a system of this nature. 

This will allow modifications based on the current state of the system to be introduced at 

run time and to perform experiments with the network.

4.6.2.8 Deleting and C reating Nodes Only node types which already exists in the 

network can be added. This is achieved by copying an existing node of the desired type 
and adjusting its i/o vector and parameters and loading into a free processor(virtual in the 

case of C implementation).
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To delete a node from the network the remove command is used as follows.

rm v n o d e jd ;

For example

rmv nde[5]; 
will remove node five from the network.

4.6.2.9 Saving and Reloading Network Commands for saving a partially trained 

network and reloading it for further training is (in fact) belong to the system. That is, it 
can be executed outside the scope of the manipulation program. But we decided to allow 

the manipulation program to be able execute it also. The main reason for this decision is 
to allow the network to run in batch mode without any user interaction. So to save and 
reload network programs we have the following commands.

save file name;

for saving a partially run network and

load -mfile_name;

for loading that network for running from where it was stopped. The user specifies 
the target hardware by replacing "m" with the appropriate integer value. Currently only 

one value is given(which is 1) as the target machine is Pyramid in the implemented 
programming system.

4.6.2.10 Executing the Network Initially the control is in the hands of the host. Once 

the necessary data is loaded on the links, and the weights are placed in each node, the 

command

r u n n e t ;

must be issued to run the network. This will execute each node in the system twice 

before returning the control to the host processor.
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4.6.2.11 Stopping and Starting For stopping and restarting the network, the following 

commands are used.

stop

go

4.6.2.12 Loops and Conditions To be able to perform the above mentioned tasks in a 
loop or perform them conditionally requires constructs like the guarded "do", " i f  and the 

"assignment" statements encountered in section 4.6.1 of this chapter. So it was decided 
to use them for this purpose also.

4.7 Semantic Properties

• only control flow execution takes place in a node.

• Deleting a link means loading a zero on it.

• Only nodes with existing descriptions can be added to an active network.

• stopping a running network implies waiting until the end of current process in 
each node and passing the control to an idle process for a fixed time before 
freezing it.

• all input/output and weight values are taken to be real values.
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Chapter 5

This chapter describes the implementation o f the NPS and the NIL compiler I translator. 
First it describes the main components o f the translator that generates the virtual 

machine called the C-Machine which is based on "C" data structure that can be 
compiled by a C compiler and executed on a Unix machine. Then it describes the 

prototype compiler and the data structure originally developed fo r  generating machine 

code fo r  execution on the UCL neurocomputer simulator. Finally it describes the 

implementation o f the NPS and its interfaces.

5. Im p lem en ta tio n  o f NPS an d  N IL

As previously mentioned, only a subset of the NPS design was implemented. This 

subset consists of the following.

1. A NIL language translator and a compiler.

2. An algorithms library comprising a set of well known neural network 
algorithms which can be executed by supplying the necessary parameters.

3. A utility to save a partially run network for further training/recall at a later 

time.

4. A library of general purpose node functions which can be used in a NIL 

program in place of user written node functions.

5. A command interpreter that interprets the user commands and calls the 
necessary sub system to execute it.

6. A neurocomputer simulator (which was jointly implemented with another 

student) based on the design features described in chapter 3.
The major part of the implementation effort went into the implementation of the 

intermediate language. The first version of the NIL was implemented as a compiler that 
generated machine code for the UCL Neurocomputer simulator. A translator was 

implemented to generate a virtual machine based on "C" language which can be 

compiled using a "C" compiler for execution on a Pyramid technology machine. This 

translator is the one that is used to in the Network Programming System. The 
implementation of the translator is described first followed by a description of the 

implementation of the prototype compiler. In the description of the translator, 
prominence is given to the description of the virtual machine because of the important
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role it plays in demonstrating that NIL is in fact a computational model for processing 
neural networks and can be implemented in any language like the paralation model 
[Sabo88] which tries to model parallelism in general.

5.1 Implementation of NIL

When NIL was designed, implementation efforts were mainly concentrated on 

generating code for the UCL neurocomputer architecture in order to test the suitability of 

the language for implementing neural network algorithms on a massively parallel 

machine. Having successfully demonstrated this, the next step was to implement it on a 

sequential machine. This led to the design of the virtual machine which is a "C" 
representation of the NIL. This approach is in a way similar to the paralation model 
[Sabo88] approach. That is, we have a very general and simple neural network 
implementation model in the form of NIL which can, not only be implemented in NIL 
specification language but is also implementable in other languages. This implementation 

language can be "C", Pascal, Lisp or Occam. To prove this very point "C" was chosen to 
represent this model. This also helped to demonstrate the fact that our intermediate level 
language is not only hardware independent but also language independent (ie- easy to 
translate into high level languages as well as into low level languages).

The subsequent sub-sections describe the NIL translator and the data stmctures 
used in generating the C-Machine followed by a description of the original prototype 
compiler for generating code for UCL Neurocomputer simulator and the data structure 
used for implementing a computational node in this system. Section 5.4 of this chapter 
describes the implementation of the Network Programming System.

5.2 The NIL T ransla to r

The present NIL translator produces "C" code in the form of a virtual machine for 
execution on a Unix based sequential machine. The main reason for generating "C" code 

for execution on a sequential machine is two-fold:

1. Firstly to show that the intermediate language is target machine 

independent;

2. Secondly to demonstrate that the simple model represented by NIL can be 

implemented in other languages and mapped on a range of hardware 

whether it be a sequential one or a parallel one.

The translator is a two-pass translator and slightly different from a typical one for 

obvious reasons. During the first pass all the construct and replicate statements are
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converted into their equivalent set of simple link statements and an intermediate 
(Expanded) source file is generated. This source file is used as input to the second pass 

for the final translation. During the first pass only the constmct and replicate statements 

are checked for lexical and syntactical error before expanding these statements into a set 

of link statements. The rest of the program is ignored. During the second pass the 
expanded source is checked for lexical and syntactic error. While performing syntactic 

check, some semantic checks are also made before building the virtual machine (C- 

Machine) based on "C" stmctures. The structure of the translator is as shown in Figure 

19. Once the C-Machine is generated, depending on the target machine an appropriate 
path can be taken. Currently it is executed on a sequential machine, so the "C" compiler 

is activated and the C-machine is compiled and executed.

5.2.1 The Virtual (C-Machine) Machine

The C-machine is the simplest that one could design for representing an artificial 
neural network. The idea stemmed from the simple view that a neural network is a 

network of automatons and each of which are associated with a set of

• inputs;

• weights and state parameters;

• outputs.
This led to the synthesis of a data structure which is simple and easy to manipulate (see 
Appendix E for the full representation of this data structure in "C"). This data structure 
as shown in figure 20 consists of a list of nodes (see Figure 21). Each node consists of 

two data fields

1. a node identification.

2. name of the function which specifies the computational method of that 
node.

and four pointers-

1. pointer to a list of input vector nodes.

2. pointer to a list of weight vector nodes.

3. pointer to a list of output vector nodes.

4. pointer to the next node in the network.
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Figure 19. NIL Translator

These nodes are not arranged in any order. The topology of the network, that is 

the way the nodes are connected to each other is only determined by names of I/O link 
variables which are included in the description of the elements of the I/O vectors of each
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Figure 21. A Node

node(see Figure 22 and 23). Each input/output/weight vector node contains information 
about a particular input vector of a function definition and two pointers, one for the 

associated list of vector elements and the other for the next input vector node as 
illustrated in the Figure 22 and Figure 23.
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next
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Figure 22. An I/O Vector

Each element of the I/O vector contains the name of the link (actual parameter) variable, 
index values of the I/O vector element (formal parameter), the status of the I/O value, the 

current or the last I/O value and a pointer to the next element in the list. The status value 

of an input element indicates whether this value is a fresh one (ie- not yet used) or an old
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value (ie-an output has been generated by processing the input). In the case of the output 
value it indicates whether this value has been distributed to all the relevant destination 
nodes or. not (see Figure 23).

index 1 index 2
act.

param.
name

status value

index 1 index 2
act.

param.
name

status value
next

elmnt

index 1 index 2
act.

param.
name

status value
next

elmnt

Figure 23. Elements of an I/O Vector

The element of the weight vector is slightly different from the I/O elements in that it does 
not have the name of the actual parameter name for there is none.

This virtual machine can then be compiled and executed on the pyramid. The 
main advantage of having the network in this form is that it can easily be translated into 

other target languages especially for execution on parallel hardware. It fully describes the 

processing activity of a node and its I/O data space. This also makes it easier for 

converting it into object-oriented programs such as C++ and Objective C.

5.2.2 The Im plem entation of the M anipulation Part

The manipulation part is mn on an interpretation mode using a code interleaving 

strategy. That is, whenever a get command is encountered all the node processes are 

executed once in a loop before checking to see if the inputs expected by the get 

command are available. This is repeated until the expected values are available to the 
host before executing the next statement in the manipulation program. In the case of the
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UCL Neurocomputer implementation this checking is done after the execution of each 

node to be consistent with the assumption that Host and the nodes are parallel processing 

units.

5.3 The Prototype Compiler

The prototype compiler for generating code for UCL Neurocomputer was 

generated using lex [Lesk75] and yacc [John75] and has the similar structure as the 

translator down to the syntactic and semantic analysis stage. Then it differs from the 

translator by producing the symbol tables and generating assembler codes like any other 

compiler. In this compiler, no intermediate code is generated. A straight forward code 

generation is applied. To convert the assembler code into executable machine code, an 
assembler-compiler was implemented and is used to produce the machine code for the 

neurocomputer as shown in Figure 24.
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Figure 24. The Prototype Compiler
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The loader and mapper used was developed during the implementation of the simulator 

and is a very simple one which merely loads each virtual node into a simulated processor 
in a sequence.

5.3.1 Data S tructures for UCL-Neurocomputer

The implementation on the UCL-Neurocomputer simulator was much easier than 

expected. This could be due to the fact that the computational model of a node in the 
language is in a way very similar to the model of a processing element. The overall 

structure of the program in each node is as shown in Figure 25.

Memory Organisation

system software 
and

standard functions 

code for guarded process_l 

code for guarded process_2

code for guarded process_n 

interrupt service routines 

intermediate data 

input messages 

output messages

Figure 25. Structure of a Node Program

The control flow structure of the application code can be explained by the following 
pseudo-code.
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while TRUE do 
begin

if (input_condition_l_is_true) then 
execute guarded_process_l 
call update_l/0_status_flags 
call send_output 
goto START 
fi

if (input_condition_n_is_true) then 
execute guarded_process_n 
call update_l/0_status_flags 
call send_output 
goto START 
fi 
end

When an interrupt occurs (ie- when a packet arrives) the control is transferred to the 
service routine for transferring the input packet to the data area allocated for placing 
input messages and appropriate updatings are done before returning control to the 
application software. The main feature of this implementation is in the way the input and 
output data are organised. First of all let us look at the organisation and handling of the 
input data.

number 
of data 
items

link
variable
number

addr. addr.
data flag

link
variable

number
addi
data

addi
flag

flags Data

xl x2 x9 xlO

Figure 26. Organisation of the Input Data

The input messages are organised in contiguous blocks of memory (see Figure 

26). At the head of these blocks is a single cell which contains the number of input data 

blocks. This number includes the actual number in use plus ten free blocks for further use 
during mn time (for example:- when creating new links). Each input block consists of a
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number which represents the link (input) variable, a pointer to the formal parameter 

variable into which it is to be copied and a pointer to a flag field which represents the 
status of the current data.

When an input arrives, an interrupt transfers the control to a routine which 

determines the source and services the interrupt. The service routine copies the newly 
arrived packet into a temporary buffer and then the appropriate block which contains 

information about this input (ie-link variable/input number) is used to copy the data into 

its formal parameter variable and update its status.

The output data is again controlled by a set of control blocks placed contiguously 

(see Figure 27). As with the input control blocks, at the head of the output blocks a single 
memory location contains the number of output data. Each output block consists of a 
link variable number as before, number of destination nodes (m say) for which this data 

is to be sent, a list (m) of destination node identification numbers and ten spare slots for 
further use.

addr. link number dest. dest. dest.
of variable of node node node

data number nodes 1 2 3

v
Figure 27. Organisation of the Output Data 

5.4 Im plem entation of NPS

The NPS is implemented in the form of a command interpreter where each 

command is interpreted and appropriate action is taken. In the case of sequential 
execution NPS behaves almost like a UNIX shell where commands are accepted and 

appropriate programs are executed and the control is returned to the user with one 
exception. When a network is being executed the user can gain control in order to stop 

and save the network by typing a "CONTROL X" . This character input is trapped by a 

function and the control is given to the user after the execution of each node in the list. 

The command interpreter has the following form
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While not EOF do 
begin

get command 

execute command 

end

The "execute command" consists of interpreting the commands and calling the 

appropriate function to act. For instance when the run command is issued, the file name 

is passed to the NIL translator for translation and subsequent execution.

The commands that can be executed by the NPS are

• run  -m file jiam e  - which takes the source file called file_name and compile, load 

and execute it on the desired machine specified by "m".

• load -m file_name - takes a partially run network in file_name and loads it on to 

the desired system specified by the value given to "m".

• go - start executing the network.

• stop - stops a running network.

• save file jiam e  - saves the current configuration of the network for later 
execution in the named file.

• abort - aborts the current network.

• exec model_name - initiate the execution of a network package available in the 
library. This will be followed by a number of request for parameters such as input 

values, number of layers, nodes per layers etc. Once the system has got all the 
information, it will proceed with the compilation, loading and execution of the 
network.
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Chapter 6

This chapter presents an assessment o f NIL and the NPS. The assessment o f NIL consists 

o f testing its portability and model independence, and showing how programs written in 

high level languages can be compiled into NIL. The assessment o f the NPS centers 

around the execution o f the system’s commands and the use o f library functions to 

demonstrate its programmability.

6. A ssessm ent o f NPS an d  N IL

To assess a programming system where the specification language forms the 
major part is to demonstrate that it fulfills its intended role efficiently and easily. In the 
case of NIL it must demonstrate that it is portable and contributes to programmability of 

the system. This means that it must demonstrate that:

1. It is independent of any particular hardware;

2. It can represent a range of neural network models;

3. It is suitable as an intermediate level language for neural network 
programming;

4. It supports reusability.

In the case of NPS, assessment is made with respect to its programmability. This means 
that it must possess the following properties:

1. usability - how easy it is to code and execute neural network algorithms 

on a particular machine?

2. facilities - the main facility, library of functions and models, how helpful 

are they and how can they be improved?

3. simplicity - how simple is the design? is it easy to maintain and upgrade?

6 .1 Assessment of NIL

This section assesses the capabilities of NIL. As mentioned earlier the assessment 
falls under two categories. They are

1. Programmability: In this category, NIL is assessed for its
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a. specification capability by coding three different
algorithms, namely, Hopfield, Back-error propagation and 
Kohonen’s feature map algorithms in NIL and executing it 

to show that it can satisfy the programmability

requirement.

b. dynamic properties to show its general applicability.

c. suitability as an intermediate language and its reusability.

d. overall strengths and weaknesses by comparing it with 

another intermediate network language called BIF.

2. Portability: In this category, NIL is assessed for its

a. target machine independence to show that it satisfies its 

portability requirement.

b. ability to deal with parallel computations by comparing 
with Occam.

c. suitability as a target code by showing generally how an
algorithm specified in a high level language can be

compiled into NIL.

6.1.1 Program m ability

6.1.1.1 Specification of Models. The specification capabilities of NIL is demonstrated 
by coding three different models, namely, Hebb/Hopfield, Back-error propagation, and 

Kohonen’s feature map in NIL and executing them. To look at the capabilities of the 
language and how it is used, let us first consider the following program written in NIL to 

implement a Hebb/Hopfield algorithm that learns three patterns and recalls them. In this 

example each input vector consists of five elements and there are two layers, an input 

layer which merely propagates the input patterns to the next layer and an output layer 

that learns and recalls the patterns. A model with five input units and five output units to 

implement an auto-associator was coded in NIL. Three patterns were used as input and 

the system was trained and recalled as described in [Psal87]. The network that describe 
this model is as shown in Figure 28. This network was specified using six connection 
statements as follows.
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Figure 28. Hebb/Hopfield Network

begin
/* a rep statement specifying the input layer */ 
rep[5] lay l(iput[i]) -> (out[i])
/* five link statements specifying the output layer */
1 ay2([out[ 1 ] ,out[2] ,out[3] ,out [4] ,out[5]],[s[ 1 ] ,s[2] ] :

[0.0,0.0,0.0,0.0,0.0],[1.0]) -> ([sig[l]],[resl[l]]) 
lay2([out[l],out[2],out[3],out[4],out[5]],[s[l],s[2]] :

[0.0,0.0,0.0,0.0,0.0],[2.0]) -> ([sig[2]],[resl[2]]) 
lay2([out[1],out[2],out[3],out[4],out[5]],[s[l],s[2]] :

[0.0,0.0,0.0,0.0,0.0],[3.0]) -> ([sig[3]],[resl[3]]) 
lay2([out[ 1 ],out[2],out[3],out[4],out[5]],[s[ 1 ],s[2]] :

[0.0,0.0,0.0,0.0,0.0],[4.0]) -> ([sig[4]],[resl[4]]) 

lay2([out[l],out[2],out[3],out[4],out[5]],[s[ 1 ],s[2]] :

[0.0,0.0,0.0,0.0,0.0],[5.0]) -> ([sig[5]],[resl[5]])
/* specification of the function for nodes in the input layer*/ 

fun lay l(x[i]) -> (y[i]) 

int i;
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real x[2],y[2];

{

XW => {y[i] := x[i];} /*sends inputs to output layer */

}

/* specification of the function for nodes in the output layer*/ 

fun lay2(y[i], lr[j] ival:w[i], index[m]) ->(signal[m],result[m]) 

int i,j,m,k,ii;

real y[7] ,lr[4],index[2],signal[2],result[2],w[ 10] ,net;

{
y [l..i] ,lr[l]  =>{

/* learns the input pattern by adjusting the weights */

}

y[l..i],lr[2] =>{
/* recalls the input pattern */

}

}

/* specification of the manipulation part (host)*/ 
begin
real a, b, p, q, r, s, t; 

a :=1.0; b:=-1.0;
/* loading initial weights for nodes 6 and 8 */ 
ldconst nde[6].w[l] = 0.11, nde[6].w[2] = 0.21, nde[6].w[3] = 0.12, 

nde[6].w[4] = 0.04, nde[6].w[5] = 0.13; 
ldconst nde[8].w[l] = 0.15, nde[8].w[2] = 0.06, nde[8].w[3] = 0.17, 

nde[8].w[4] = 0.02, nde[8].w[5] = 0.11;
/* inputting patterns for learning */

input iput[l] = b,iput[2] = a,iput[3] = a,iput[4] = a,iput[5] = b,s[l] = a; 

run_net;

/* has all the 2nd layer nodes learnt the pattern? */ 

get p = sig[l], q = sig[2], r = sig[3], s = sig[4], t = sig[5];

/* yes - input the next pattern for learning */

input iput[ I] = b,iput[2] = b,iput[3] = a,iput[4] = a,iput[5] = a,s[l] = a; 

mn_net;

get p = sig[l], q = sig[2], r = sig[3], s = sig[4], t = sig[5];
input iput[l] = a,iput[2] = a,iput[3] = b,iput[4] = a,iput[5] = a,s[l] = a;

mn_net;

get p = sig[l], q = sig[2], r = sig[3], s = sig[4], t = sig[5];
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/*RECALL THE FIRST PATTERN*/

input iput[l] = b,iput[2] = a,iput[3] = a,iput[4] = a,iput[5] = b, s[2] = a; 

mn_net;

/* is the output ready? */

get p = resl[l], q = resl[2], r = resl[3], s = resl[4], t = resl[5];

/* yes - display the results */ 

output "result = ",p,q,r,s,t;

end

end
The first "rep" statement describes the input layer and the subsequent five statements 

describe the second layer and its connections(see Appendix B). The processing activity 
of an input unit is described by the function layl(), which merely sends the input sent by 
the host (represented by the manipulation program) to all the output units in the next 
layer. In this case the first layer is not really needed and can be excluded from the 
network. The reasons for including it is to show how a simple two layered network can 
be built and the use of the parallel "rep" statement. The computational behaviour of the 
output units are described by the function lay2(). This function consists of two guarded 
processes, one for learning and the other for recalling. The link statement associated 
with these nodes have two input vectors, [out[l],..,out[5]], and [s[l],s[2]]. The first input 
vector represents the input pattern and the second input vector represents the leam (s[l]) 
and recall(s[2]) signals to the nodes. The two weight vectors of each link statements are 
mapped into the weight vectors w[i] and index[m] of the output nodes respectively. The 
w[i] vector represents the actual weights on the links(which are all zeros initially) and the 
index[m] represents the node index (i.e. 1,2,..,5) which enable each node to determine its 
position in the output layer. The output of each link statements again consists of two 

vectors, [sig[]], and [resl[]]. The first set carries a signal from each 
node([sig[l]],..,[sig[5]]) to the host to inform that the current pattern has been leamt and 

the second set of vectors([resl[l]],..[resl[5]]) carries the output generated by each node 

when a recall is initiated.

The manipulation part begins with some initialisation statements followed by two 

"ldconst" statements which changes the weights associated with node 6 and 8. These two 
statements are mainly included to show how new weights can be loaded on to the links. 

This is then followed by an "input" command to load the first input pattern and the signal 

for leaming(s[l]). After loading the inputs, the network is executed using the "runjnet" 

command. Then the "get" command is used to read the completion signals(sig[]) before 
submitting the next pattern for learning. Once all the patterns have been learned, "input"
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command is used again to input a pattern and the recall signal(s[2]) for recalling that 

pattern. Finally "output" command is used to print the results.

When this algorithm was executed both on the UCL’s simulated neurocomputer 

and on the pyramid technology machine, it learnt the patterns and recalled them 

correctly. The initial weights are as given in table 6.

Weights Node 6 Node 7 Node 8 Node 9 Node 10

w 1 0.1100 0.0000 0.1500 0.0000 0.0000

w2 0.2100 0.0000 0.0600 0.0000 0.0000

w3 0.1200 0.0000 0.1700 0.0000 0.0000

w4 0.0400 0.0000 0.0200 0.0000 0.0000

w5 0.1300 0.0000 0.1100 0.0000 0.0000

TABLE 6. Initial Weights

The node numbering is done by the compiler by assigning the values in ascending order 
starting with the first node associated with the first link statement and so on. The final 
listing of the weights and the output results produced by running the program is as given 
below.

WEIGHTS FOR NODE 6 /*i.e- the first output node */
w l=  0.000000 w 2=  1.210000 w 3=  -2.880000 w 4=  -0.960000 w 5=  1.130000 

WEIGHTS FOR NODE 7 /* the second output node */

w l=  1.000000 w 2=  0.000000 w 3= -1.000000 w 4= 1.000000 w 5= -1.000000 
WEIGHTS FOR NODE 8

w l=  -2.850000 w 2= -0.940000 w 3=  0.000000 w 4= 1.020000 w 5=  -0.890000 

WEIGHTS FOR NODE 9

w l=  -1.000000 w2 = 1.000000 w 3=  1.000000 w 4=  0.000000 w 5=  1.000000 

WEIGHTS FOR NODE 10

w l=  1.000000 w 2=  -1.000000 w 3=  -1.000000 w 4=  1.000000 w 5=  0.000000

INPUT ~> OUTPUT 

-1 .000000->  -1.000000
1.000000 ~> 1.000000

Page 88



1.000000 ~ >  1.000000 
1.000000 ~ >  1.000000 
- 1.000000 ~ >  - 1.000000

INPUT ~> OUTPUT 

- 1.000000- >  - 1.000000 
-1 .000000->  -1.000000 

1.000000 ~> 1.000000 
1.000000 ~> 1.000000 

1.000000 - >  1.000000

INPUT --> OUTPUT 

1.000000 - >  1.000000 
1.000000 - >  1.000000 
-1 .000000->  -1.000000 

1.000000 ~> 1.000000
1.000000 ~> 1.000000

full listing of the program can be found in Appendix B.

Back-Propagation Model

Back-propagation algorithm [Rum86c] is a fairly popular model and goes a long 
way towards guaranteeing a global minimum. Apart from this, it can also succeed in 

mapping any function using one or more layers of hidden units. Our reason for including 
this algorithm in this assessment is to test the ability of the language in dealing with 

feed-back loops. To test this basic property, the exclusive or (XOR) problem was coded 

using two input units, one hidden unit and an output unit. Again the host executes the 
manipulation sub-program. The problem is represented by the network topology shown 

in Figure 29. In this example, the complete network is built using the powerful 

construct statement to demonstrate its capabilities, especially its ability to deal with 
feed-back loops.
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result[l]

eop[l] rcl[l]

ou[2]ou[l]

erbk[l]

in

iv[l] iv [2]
Host

Figure 29. Exclusive OR Network

begin

construct ( [i=2] in(iv[i], sig[l]) -> (ou[i])
:[p=l] hi(ou[i], erbk[l] : 3*md[0-l], l*m d[0-l], l*m d[0-l], 

l*m d[0-l],l*m d[0-l] ) -> (out[p], sig[p])
:[k=l] op(ou[i], out[p], eop[l], rcl[ 1 ] :3*rnd[0-l],l*rnd[0-l], 

l*m d[0-l]) -> (erb[k], result[k])

end

Even though, slightly complex for an intermediate level language, it is an essential 

facility that greatly reduces the number of link statements.

The random function provided by the language was found to be very useful when 

initialising the weights etc. Various other models based on this algorithms were tested 

during trials and found to be satisfactory (see Appendix B for full coding, test data and 

results). This example also demonstrate the power and value of a separate manipulation 

sub-language to control and monitor the network using the control commands in "do" and 

"if' statements.
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The initial weights and the output of the program which includes the final 

weights, and the output values produced when recalled is as given in Table 7.

Weights Node 3(Hidden) Node 4(Output)

w 1 3.10000 1.20000

w2 2.10000 2.60000

w3 _ 1.27000

theta 2.50000 1.70000

TABLE 7. Weights for Nodes in Hidden and Output Layers

FINAL WEIGHTS FOR NODE 3 /* the hidden node */
W l=  5.596046 
W2 = 5.521795 
theta = -2.134852

FINAL WEIGHTS FOR NODE 4 /* the output node */
W1 = -3.271263 
W2 = 7.620885 

W3 = -3.245167 
theta = -2.529501

input input ==> output
0.000000 0.000000 = >  0.151414

0.000000 1.000000 = >  0.831594
1.000000 0.000000 ==> 0.830358
1.000000 1.000000 ==> 0.193722

A full listing of the program can be found in Appendix B.

Kohonen’s Feature Map Model

This model is basically a pattern classifier and serves as a good test bench for any 

neural network language. The main reason is that it is a system where the neighbourhood 
of a node changes during every cycle. To implement such a system in a truly parallel 

hardware one requires a language capable of handling a heterogeneous network. We



found that NIL seems to handle this aspect fairly easily with the help of an extra node to 

determine the neighbourhood nodes at the beginning of each cycle. This also 
demonstrates that NIL is able to deal with non-homogeneous neural network models.

A simple version of the model without lateral connections consisting of three 

input nodes, twenty five feature map nodes and an output node (see Figure 30) was coded 

for this assessment [Lipp87].

6

output

dist[i]

recal signal

ajust[i]

inputs

host

node for finding neighborhood nodes

Figure 30. Kohonen's Feature Map

Originally the connections were specified using a "rep" statement and twenty six simple 

link statements(25 for each node in the feature map and one for the output node). Then 

the network was specified using the "construct" statement to show the advantage of using 

this statement. In both cases the results were the same.
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CODE USING SIMPLE LINK STATEMENTS ONLY

begin

rep[3] inode(iput[i])->(invec[i])

onode([invec[l],invec[2],invec[3]], [learn], [ajust[l]], [si], [recal]

:[0.2,0.1, 0.05],[0.0])->([dist[l]],[otpl]) 
onode([invec[l],invec[2],invec[3]],[learn],[ajust[2]],[si],[recal]

:[0.2, 0.1, 0.05],[0.0])->([dist[2]],[otp2]) 

onode([invec[l],invec[2],invec[3]],[learn],[ajust[3]],[si],[recal]

:[0.2,0.1, 0.05],[0.0])->([dist[3]],[otp3]) 
onode( [in vec [ 1 ] ,in vec [2], invec [3 ] ], [le am], [ajust [4] ], [si], [rec al]

:[0.2,0 .1 ,0.05],[0.0])->([dist[4]],[otp4])

:[0.2, 0.1, 0.05],[0.0])->([dist[21 ]],[otp21 ])

onode([invec[l],invec[2],invec[3]],[leam],[ajust[22]],[si],[recal]
:[0.2, 0.1, 0.05],[0.0])->([dist[22]],[otp22]) 

onode( [invec[ 1 ],invec [2],invec [3] ], [leam], [ajust [23] ], [si], [recal]
:[0.2,0.1, 0.05],[0.0])->([dist[23]],[otp23]) 

onode([invec[ 1] ,invec[2] ,invec[3]],[leam] ,[ajust[24]],[si],[recal]
:[0.2, 0.1, 0.05],[0.0])->([dist[24]],[otp24]) 

onode( [invec[ 1 ] ,invec[2],invec [3] ] ,[leam] ,[ajust[25]], [si],[recal]
:[0.2, 0.1, 0.05],[0.0])->([dist[25]],[otp25]) 

resnode( [otp 1 ,otp2,otp3 ,otp4,otp5 ,otp6,otp7 ,otp8 ,otp9,otp 10,otp 11, 
otp 12 ,otp 13 ,otp 14 ,otp 15 ,otp 16 ,otp 17 ,otp 18 ,otp 19 ,otp20 ,otp21 ,otp22, 

otp23,otp24,otp25]) -> ([clout])

end

CODE USING CONSTRUCT STATEMENT

construct[i=3] inode(iput[i]) -> (invecfi])

: [j=25] onode(invec[i] ,leam[ 1 ],ajust[j] ,si[ 1 ],recal[ 1 ] 

: 3*md[0-l], [0.0]) -> (dist[j], otp[j])
:[k=l] resnode(otp[j]) -> (clout[k]))

end
end
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As expected the execution of this model was very slow on the neuro-computer 

architecture simulator. The heavy load of messages between the host and the nodes of the 
network reduced the speed of execution. On the other hand, the "C" version was 

comparable with a three layered back propagation model with ten nodes in each layer. 

Again the construct statement showed its power in terms of its compactness and 

expressibility. The manipulation part seems a bit long, but given the required amount of 

interaction with network it was tolerable. A full listing of the program with nine feature 

nodes, input values, and the output from the program can be found in Appendix B.

6.1.1.2 Dynamic Properties of NIL The dynamic properties of the language was tested 
by creating a simple network consisting three layers, two input nodes, two hidden nodes, 

and an output node. The test consisted of deleting, creating links and nodes to see if the 
network behaves as expected (see example in Appendix B for more details and the 

execution results). This proved to be satisfactory however there were limitations such as

1. when adding node types which are not already present in the network.

2. in the neurocomputer implementation, adding nodes with different 
number of I/O links other than the one already present needed major 
modifications to the code and was found to be a complex and time 
consuming process.

3. in the case of creating a new link in a network, it was found that some 
extra processing is needed to adjust the I/O channel indexes in the C- 
Machine version.

6.1.1.3 NIL as an Interm ediate Language and its Reusability Assessing the 
suitability of NIL as an intermediate language depends on what we use as basic criteria 
for classifying a language as an intermediate level language. We believe an intermediate 

language should have the following properties.

1. It should not have any high level functions.

2. A program written in this language should ideally represent a virtual 

machine.

3. Intermediate state of this machine can be saved and the execution can be 

resumed from where it was stopped.

4. Translating to target machine code for execution on a particular hardware 

should not involve too many overheads nor should it be a multi-step 

process.
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5. A high level language should compile down to this language and not up to 

it.

6. In the case of network language, an intermediate language should clearly 

define its topology and allow interaction at the intermediate level(ie- 

multi-level interaction).

7. A network language at intermediate level also should have the facilities 

for interfacing with other tools such as graphics, debuggers and other 

support tools.

The first property, which is that the intermediate level language should be free of any 
high level functions is generally considered to be an unnecessary restriction given the 

current diverse nature of computing. Especially in the case of an intermediate level 
neural network language that is supposed to facilitate interaction at this level. So this 
requirement is not strictly met by NIL. However, the language was deliberately designed 
to be at a similar level as PARLE[McCa88] and Occam[MayD87] which are generally 
considered to be typical intermediate languages.

The second property, that an intermediate level language should represent a 
virtual machine is an important one and we believe that this requirement is fully satisfied. 
This is achieved by designing the language as a representation of a network of 
automatons where each node is based on a very general computational model which 
changes its state according to its input. This is further proved by the fact that a NIL 
program can be translated to a C-Machine which is almost similar to the NIL program in 

structure.

The third property is also believed to be satisfied by the successful demonstration 

of the "save" and "load" commands. The existence of a compact prototype compiler for 
mapping NIL programs on a simulated general purpose neurocomputer architecture 

seems to prove that the fourth requirement is also satisfied. The fifth requirement can be 

safely interpreted as meaning that at least no extra data structures must be generated 
during translation from a high level language. This seems to be true with NIL as there are 

no data structures and the language is primarily built on primitive constructs.

The sixth requirement, which is clear definition of the topology and intermediate 

level interaction, is believed to be satisfied. Firstly, on the issue of clear definition of the 

topology, the language scores well in using the three types of connection statements 

namely, link, rep and construct. Especially the "rep" and "construct" statements gives a 
clear and concise view of the network in a compact form. Secondly, on the issue of
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intermediate level interaction, the manipulation sub-language have demonstrated its 

ability beyond reasonable doubt.

Finally, satisfying the last requirement is not seen as a problem. Especially, 

because of the primitive nature of the connection statements. NIL is ideally suited for 

translating into graphic form and back to it. The question of a debugger for NIL is made 

redundant to an extent by the existence of the manipulation sub-language. It is also 

anticipated that there will be no problem in calling other tools in the system.

In all the above mentioned cases NIL seems to score well except in its definition 
of functions which seems to be slightly at a higher level. But when compared with BIF 

(the only intermediate language in its class) it compares favourably.

The reusability issue in the case of NIL is an important one in that the language 
lends itself to reusing a function definition as long as the link statement which uses it 

correctly specifies the actual parameters. This makes it possible for building function 
definitions of general type, for example, a hidden unit in a back-propagation model or an 
output unit in Kohonen’s feature map model can be built and used again and again. This 
is why a set of general functions are also included in the functions library.

6.L1.4 Comparison with another Language in its Class One of the very few 
languages in this class (ie- intermediate level network languages) is BIF (Beaverton 
Intermediate Form) in ANNE [Bahr87]. This is based on the "C" language syntax and 
describes the network structure in a standardized network format using a "C" data 
structure. In BIF the basic network object is called a Connection Node (CN). Each CN 
may have one or more sites, and each site has one or more links. A CN is, thus, made up 

of three sub-parts. The main CN field, a site, which groups the links and hold the values 
from those links. At the terminal end of each link is the address of its other end in the 
node which is connected to it.

A BIF file has two parts. The first contains a listing of the CN groups, each of 
which consists of a unique group index, a string name, and two initialisation values for 

CNs belonging to that group. Each CN carries an index corresponding to the group to 

which the CN belongs. The group name allows the user to address groups of CNs 

symbolically. Each BIF file must have two special CN groups named "input" and 

"output". These groups designate the CNs used for global I/O operations.

The second part consists of individual CN records. These records are composed 
of a hierarchy of CNs, sites, and links. Sites nest within CNs, and links nests within 
sites. Input or output sites are not listed in any order. Neither the sites nor the links are
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explicitly indexed in a BIF file. Sites happened to be specified in BIF as being either 
input or output. The network procedure at node level consists of functions for performing 

sub tasks which collectively implement the activity of a node. The procedure at host level 

is similar to the manipulation part in NIL except that NIL is much richer in terms of 

network manipulation commands. The rest of this sub section compares NIL with BIF 

systematically using the following criteria.

1. representation of network topology.

2. representation (holding) of data values.

3. representation of a node (ie- function representation) and description of 

computation in a node.

4. control structure for controlling and manipulating the network during mn 

time.

Comparison of NIL with BIF is based on the programs given in Appendix C. 
These two programs implement a three layer Back-propagation model consisting of five 
nodes in each layer. Each aspect mentioned above is considered one by one.

Representation o f network topology - As mentioned earlier, the network topology in BIF 
is described in two parts using "C" data structures. In the first part, the nodes are grouped 
according to their types. The second part describes the individual nodes as a set of 
hierarchical records. These records contain informations such as its group identification, 
number of sites, number of links per I/O values etc. These are accessible to the user and 

can be viewed. This form of representation does not give a clear picture of the network 
topology. On top of this, the input and output sites are not listed in any order nor are they 
explicitly indexed. These make it even more difficult for the user to understand the 

topology. On the other hand, NIL expresses its network topology in a neat and simple 

way by using its simple link statement or rep and constmct statements. In this particular 

case, it uses the constmct statement to give a compact view of the network topology. A 

NIL’s link statement completely describes the input, output links, the weights, and other 
state values associated with each node in a single statement. When a constmct statement 

is used to define the topology, the topology of the network becomes even more clearer to 

the user. This is not so clear in the case of BIF [see Appendix C] because most of the 

informations concerning the network topology is burried into the "C" data stmcture. In 

NIL the topology can be clearly worked out by looking at the link statements. This leads 

us to conclude that NIL’s representation of the network topology is preferable to that of 
BIF.
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Representation o f data values - By this we mean, how the data such as weights, status 

values, and the I/O values are held by the intermediate language. In the case of BIF, these 
are kept as a part of the data structure. In the case of NIL, these are part of the program 

constructs. For example, the weights are a part of the parameter list of a node function 

and the link statement associated with it, and can be displayed by using the "readst" or 

the "get" command. We are of the opinion that it is preferable to hold the data in the 

language constmct than in a data stmcture at this level (i.e. - intermediate level). The 

main reason for this is that it requires less overheads to access these data. The second 

reason is that it gives a clear view of the algorithm and the data in a combined form.

Representation o f a node - In BIF, a node procedure is described as a collection of 

separate functions, where each function performs a sub task. This means that a node 

activation triggers a series of calls to all or a sub set of these functions depending on the 
purpose behind the activation (eg- learning or recalling). In NIL, a node is described as a 
complete entity in the form of a function. This function consists of a header that specifies 

the input, output, and weight parameters, a body that specify the computational tasks of 
the node in the form of a set of guarded processes (eg- for learning and recalling). A node 
function is a general class of function in NIL. Using this general class approach, one can 
specify the basic classes such as input, output, and hidden nodes and then specific nodes 
(units) which can be generated from these by connecting the appropriate I/O links. This 
is where the important differences between NIL and other languages in its class comes to 
the surface. First of all, on the issue of clarity, NIL fairs well because it is able to 
describe a node completely (ie- its computation and data). Secondly, it shows that 
mapping of neural network algorithms as a network of nodes on a parallel as well as a 
sequential hardware is easier with NIL. On the other hand, a faithful implementation of a 

network model using BIF will require excessive amount of resources and so it is mainly 
used as a simulation language. This is further supported by the fact that the current 

implementation of BIF on a hyper-cube system only mns on a simulation mode. This 

lead us to conclude that NIL is better suited to program the type of massively parallel 

machines which are being developed for executing neural network models. On the other 

hand, NIL can also be used as a simulation language by splitting a node, that is- using 

each guarded process as a virtual process.

Control structures and manipulation commands - The control stmctures in BIF are 
composed of purely "C" statements such as " if’, "for", "return", function calls, etc. These 

are very familiar constmcts and easy to leam and use. The manipulation and other 

commands consists of a number of system calls. These includes
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• Send_node_output(cn_index, site_index); which sends the output from a single 

CN along all the output links belonging to the named site.

• Send_net_output(filename); which is used specifically to get the host to write the 

output vector to the named file.

• Update_node_weights(cn_index, site_index); which is used to transmit the new 

weights from one end of a bidirectional link to the other. The CN and site indices 

in the parameter list name the group of links that transmit their weights.
In addition to these system functions, there are a set of run-time/user commands such as

• buildnet; for constructing and initialising the network and the auxiliary data 

structures.

• newmn; to begin a simulation run.

• stopnet; to suspend a network simulation.

• savenet; to save current network structure in a new BIF file, which can be used 
later for a new simulation.

• show; to display the state of the "local" simulation parameters and list the 

currently active traces.

• quit; to exit from the simulator.

In NIL, the control statements consists of " i f  , "do", and "goto". The syntax of 
the "if' and "do" are made simpler. Even though the presence of "goto" statement gives 
the impression that it is not a proper structured language, it can be argued that it is a 
necessity. On the other hand, the system call/user commands in NIL are much more 

simple and geared towards parallel network execution mode and are part and parcel of 
the language. This means, NIL is independent of any simulation environment and does 

not require any other software other than its compiler for it to be implemented on a 

different computer. For example, if weights are to be updated for a set of binary links, 
these will be done by the user written code in each node autonomously. Building the

network is the task of the compiler in NIL and is not seen as a systems task as in BIF.

Apart from these, NIL has a richer command set for manipulating and controlling the 

network. Especially, the delete and join commands for links and nodes in NIL makes it 

more powerful and makes it eligible for dealing with connectionist models as a whole.

In conclusion the BIF programs do not clearly show the structure of the network 
as NIL does. Secondly, it does not give a complete picture of a node and its activity in a
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compact form as in NIL. Translation into different target machine code and mapping of 

the code on to the target machine requires more computational effort than NIL would. 
Mapping a BIF program onto a neural network architecture like the UCL neurocomputer 

would only result in an inefficient system. It is more geared towards a simulation mode 

especially with its timer mechanism than a true neural network language. Even this is 

debatable when one considers the simplicity of the C-Machine produced by the NIL 
translator in terms of the procedural code for nodes and the host, and its simple data 

stmcture which describes the network.

6.1.2 Portability

6.1.2.1 Target machine independence The target machine independence of the 
language is demonstrated by successfully mapping the NIL programs on to a sequential 

machine (Pyramid) and a simulated parallel architecture (UCL neurocomputer). The 
execution of these models on the UCL simulated architecture led us to conclude that

1. The language is well suited to this particular architecture.

2. Parallel implementation of neural network algorithms using NIL does not 

require any extra overheads.

3. It can be implemented and executed on both parallel and sequential 
hardware.

Execution of these models both on a sequential machine and the parallel simulator also 
confirmed that the underlying virtual machine(C-Machine) is a suitable vehicle for 
porting network models over a range of machines. This view is further enforced by the 

fact that "C" language programs can be mapped on a range of hardware(i.e. parallel and 
sequential machines). In fact, the main reason for implementing a translator to translate 

NIL into "C-Machine" is to prove that NIL can be mapped on a wide range of hardware.

6.1.2.2 Occam and NIL As already mentioned, NIL has a lot in common with the 

language Occam. In a way NIL can be considered as a possible alternative to Occam in 

programming a network of transputers. In Occam, the computation falls into two 

categories, parallel, and sequential. This means that the programmer has to explicitly 

specify the mode of computation using the "PAR" and "SEQ" constructs provided by the 

language. In NIL, there are no such explicit constmcts to specify the mode of 

computations. These are done in a natural way by splitting the parallel components into 

virtual nodes and allowing sequential execution within nodes. The pattern of connections 

are specified by the "link" statements. This has the obvious advantage of being able to 
express each node (which is the equivalent of a procedure in Occam) as a generic
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function. The other advantage is that it expresses the whole process as a set of related but 

independent functions and specify how they are related to each other in terms of data 
channels. In Occam, communications between processes are established via data 

channels in similar manner as in NIL except that these channels are specified explicitly at 

the procedure level. The "rep" and "seq" statements in NIL have their equivalents in 

Occam.

For example, the statement

rep[N] A(X[i], Y[i]) -> (X[i+1], Y[i+1]) 
is equivalent to the following Occam code 

JN+1] CHAN X, Y :
PAR

ASTART (X [l], Y [l])
PAR i = 1 FORN 

A(X[i], Y[i], X[i+1], Y[i+1])
ASTOP (X[N+1], Y[N+1]) 

and the statement

rep[N] A (S[i],T [i])->(U [i],V [i]) 
can be expressed in Occam as

[N] CHAN S, T, U, V :
PAR i = 1 FOR N 

A(S[i], T[i], U[i], V[i])
The "constmct" statement in NIL on the other hand is more powerful and will need many 
more statements in Occam.

Receiving and sending data is treated in different ways in both languages. In 

Occam, "?" and "!" notations are used to receive and send data and they are 
synchronised. In NIL, an input is accessed by referencing the appropriate input channel 

of a node. There is no explicit form of outputting data on a channel in NIL. This is done 

automatically by the run-time system in NIL. Most importantly, the I/O transfers are not 

synchronised. The body of a function in NIL consists of one or more guarded processes. 
These can be constmcted using the ALT statement in Occam. The input condition 

associated with a guarded process also can be coded in Occam very easily as follows. 

X[1..N] => {PROCESS_l} 

can be coded in Occam as 
M := 1

SEQ i = 1 FOR N 
B [i] := TRUE 

WHILE M < N
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ALT i =1 FOR N 
C[i] ? X[i] && B[i]

SEQ 

B[i] := FALSE 

M := M + 1 

TRUE 

SKIP 

PROCESS_l

All these lead us to conclude that NIL can be an alternative to Occam and that it offers 

some compact notations to specify computations on a network of transputers. There are 

also few weaknesses in NIL such as the lack of facilities for configuring standard I/O 
devices, and a TIMER mechanism. It is also felt that provision of high level connection 

statements and richer input conditions will make NIL a serious candidate for 
programming transputers.

6.1.2.3 Translating high level languages into NIL In order to show that neural 
network programs written in high level languages can be easily translated into NIL 
programs, we decided to specify a high level language in a pseudo language form that 
will possess all the basic properties which are common to all neural network languages 
such as SLOGAN [Ange88], CONDELA [Kohl88], NEURAL [Chol88], AXON 
[Guts88]. These basic properties are

1. application modelling- most of the high level language in this field tend to 
act as application builders rather than algorithm implementors. This 
means they describe the network as a collection of sub networks 
cooperating to perform some task. In this, each sub network is described 

by specifying their layers, connections and the nodes.

2. connection statements- which allow full connection between layers of 

nodes, connection between individual nodes, and between sub networks.

3. node interfaces- definitions of node functions used in these systems may 
belong to a library or can be described in the program. These are specified 

as general purpose functions with variable lists of input, output and weight 
parameters. In order to configure these nodes in a given network, their I/O 

list’s parameters(eg- length of I/O vectors) must be specified. This is 

usually done in node interface section of the language.

4. node definition - which specifies the computational behaviour of the 
nodes.
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5. network control routine- which controls and manipulates the network.

A program written in this language has the following form: 

netw ork consists of sub nets {

/* this part describes the network as a collection of sub networks */ 

model_name_l, 
model_name_2,

model_name_k;

} network_name; 
definition of model_name_l :
/*This part defines each sub network by specifying the number of layers, number of 

nodes in each layer and their types */

{ layers = no_of__layers ->

I
/* the nodes and their types in each layer */

layer[l] consists of no_of_nodes of type node_name_l; 
layer[2] consists of no_of_nodes of type node_name_2;

layer[no_of_layers] consists of no_of_nodes of type node_name_n;

}
node interface {
/* interface to each node type- ie- number of I/O channels and the weight vectors 
associated with the prototype of the particular node type. The information about the base 

type of this prototype is available to the programmer from a library */ 
node type node_name_l has

input_name_l[n], input_name_2[p] : inchan, 
output_name_l[m]: outchan, 

wt_namel[i], wt_name2[j] : local;

node type node_name_n has 

}

connections ->

{

/* This part consists of connection statements which link nodes in the sub network. These
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connections can be layer to layer connections or single connections between nodes. */ 

connection statements fo r  model_name_l;

}
} end model_name_l;

definition of model_name_k :

{

} end model_name_k; 

sub nets connections ->

{

/* this part describes the connections between the sub nets, again using similar 
connection statements used in connecting the nodes within a sub net. This part is optional 

and is only included if there are more than one sub network in the network */ 
connection statements

}
host()
{
/*this part is executed by the host processor and consists of commands for controlling the 

network */

}

Connection statements used to link nodes within a sub network take the following forms : 

To send all output from one layer to all the nodes in another layer.

connect all output_l of layer[l] to input_l of layer[2]

This is referred to as "all to all" connection.
To send output from each node in one layer to input channels called input_l of each node 

in another layer.

connect output_l oflayer[l] to inpu t_ l oflayer[2]

This is referred to as "one to one" connection.
To send a particular output from a node to a particular input of another node.
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connect output_l of layer[l][2] to input_l of layer[2][5]

To send output from a layer to host.

send all output_2 of layer[3] to host

The connection statements used to connect sub networks are similar to the above 

statements except further qualification is added to distinguish layers and nodes of one sub 

network from another. For example, to connect all outputs from layer[3] of model_l to 

all the inputs of layer[l] of model_2 the following statement is used.

connect all output of model_l.layer[3] to input of model_2.1ayer[l]

A node in this language is defined as follows: 
node type output ( input[n],target[l] : inchan, 

output[l], e rro r[ l]: outchan, 

w[n], t[j] : local )

{
switch mode {
learn => if test(input[l..n], target[l]) then {

else 
if test...

ft

recall =>

} end switch;

}

The node/function body and the host use control flow statements similar to the 

ones found in the "C" language. The special commands available for controlling the 

networks are
Idvals - to load the links with data,

Idwts - to load weight variables with data,

save - to save a trained network,

test - to test the presence of data on input channels,
show - to display the weights and I/O values of a node (or nodes),
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set mode - to select the mode of activation (ie- learning or recalling), 
read - to read data,

file - to assign file names to file pointers.

A three layer back propagation model with three nodes in each layer can be 

specified in this language as follows.

Network consists of sub_nets { 

model 1;

} backprop; 
definition of model 1: 

layers = 3 ->

{

layer[l] with 3 nodes of type input; 
layer[2] with 3 nodes of type hidden; 
layer[3] with 3 nodes of type output;

}

node interface { 
node type input has 

input[l] : inchan, 
output[l]: outchan; 

node type hidden has
input[3], in_error[3] : inchan, 

output[l] : outchan, 
si[l], theta[l], w[3] : local; 

node type output has
input[3], target[l] : inchan, 
output[l], errorfl] : outchan, 

si[l], theta[l],w[3] : local;

}
connections ->
{connect all output of layer[l] to input of layer[2] 

connect all output of layer[2] to input of layer[3] 
connect all error of layer[3] to in_error of layer[2] 

send all output of layer[3] to host 

}
end model 1; 
hostQ
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file f l = data_file; 
set mode = leam; 

for i = 1 to 3 { 

ldwts layer[2][i].si = read(fl,num); 

ldwts layer[2][i] .theta = read(fl,num); 

ldwts layer[3][i].si = read(fl,num); 

ldwts layer[3][i] .theta = read(fl ,num); 

for j = 1 to 3 {

ldwts layer[2][i].w[j] = read(fl^ium); 
ldwts layer[3][i].w[j] := read(fl,num);

}

}

t = l;
while (t <= 2000 ) { 
for p = 1 to 3 { 
for i = 1 to 3 {
ldvals layer[l][i].input[l] = read(fl,x);

}

evaluate layer[l]; 
evaluate layer[2]; 
evaluate layer[3]; 
evaluate layer[2];

}

t = t+  1;

}
for i = 1 to 3 

{
print (layer[2][i].si); 

print (layer[2][i].theta); 

print (layer[3][i].si); 

print (layer[3][i].theta); 

for j = 1 to 3 

{

print (layer[2][i].w[j],layer[3][i].w[j]);



}

save backprop; } end host 

T ranslating into NIL

In order to implement a network model in NIL, first we need the informations on the 

topology of the network. The network definition part is used to construct a table of 

models as shown in Table 8.

Names of Models

model_l

model_2

TABLE 8. Model_Names Table

After this, the definitions of each model in the network is scanned to generate 

informations about

1. the layer structure of the particular model,

2. the node interfaces for each type of nodes in the model.
These informations are used to build the Tables 9, 10, 11, and 12 where "vn" stands for 
vector number of a particular I/O channels.

Layer Nodes types

1 3 input

2 3 hidden

3 3 output

TABLE 9. Network Layers for Model 1

In Channels vn Out Channels vn Weights vn

input 1 output 1 0

TABLE 10. Node Interface for Type Input
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InChannels vn Out Channels vn Weights vn

input 1 output 1 si 1

input 1 theta 2

input 1 w 3

in_error 2 w 3

in_error 2 w 3

in_error 2

TABLE 11. Node Interface for Type Hidden

In_Channels vn Out Channels vn Weights vn

input 1 output 1 si 1

input 1 error 2 theta 2

input 1 w 3

target 2 w 3

w 3

TABLE 12. Node Interface for Type Output

After this, specific tables of input, output, and weight parameters have been 
constructed by giving pseudo-names for each I/O channels associated with each node in 

the first layer as as shown in Tables 13, 14, and 15.

In Vectors vn Out Vectors vn Weights vn

input_l[l] 1 output_l[l] 1 0

TABLE 13. Node_l[l] - Node 1 of Layer I

Now if we scan the first connect statement and produce the three node tables for 

layer 2 using the node interface table for the hidden unit type. At this stage we may or 

may not have a complete table. If we fail to have a complete table at this stage, we 
produce the partially updated tables for each node in this layer and go on to scan the next
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In Vectors vn Out Vectors vn Weights vn

input_I[2] 1 output_l[2] 1 0

TABLE 14. Node_l[2] - Node 2 of Layer 1

In Vectors vn Out Vectors vn Weights vn

input_l[3] 1 output_l[3] 1 0

TABLE 15. Node_l[3] - Node 3 of Layer 1

connect statement and come back and complete these tables as and when we encounter 

the rest of the informations required to complete these tables. So in this case, we have 

three partial tables (Tables 16,17, and 18).

In Vectors vn Out Vectors vn Weights vn

output_l[l] 1 output_2[l] 1 si 1

output_l[2] 1 theta 2

output_l[3] 1 w 3

in_error 2 w 3

in_error 2 w 3

in_error 2

TABLE 16. Node_2[l] - Node I of Layer 2

Having produced the partial node tables for nodes in layer 2, we proceed with the 

scanning of the next connect statement and the production of the node tables(Tables 19, 

20, and 21) for layer 3.

Scanning of the last connect statement will enable us to complete the node tables 

for the layer 2 as shown in Tables 22, 23, and 24.

While building these node tables, a list of channel names vs pseudo names are 
also created for further reference while compiling the code for the host. These node 

tables are further updated by replacing the weight variables with the appropriate weight 

values given in the host part of the program. At the end of this stage, link statements are 
generated for the whole network by extracting informations from these tables one after



InVectors vn Out Vectors vn Weights vn

output_l[l] 1 output_2[2] 1 si 1

output_l[2] 1 theta 2

output_l[3] 1 w 3

in_error 2 w 3

in_error 2 w 3

inerror 2

TABLE 17. Node_2[2] - Node 2 of Layer 2

InVectors vn OutVectors vn Weights vn

output_l[l] 1 output_2[3] 1 si 1

output_l[2] 1 theta 2

output_l[3] 1 w 3

in_error 2 w 3

in_error 2 w 3

in_error 2

TABLE 18. Node_2[3] - Node 3 of Layer 2

the other. This should produce the following link statements. 

input([input_l[l]]) -> ([output_l[l]]) 
input([input_l[2]]) -> ([output_l[2]]) 

input([input_l[3]]) -> ([output_l[3]])

hidden( [output_l [ 1 ] ,output_l [2] ,output_l [3]] ,[error[ 1 ],error [2],error [3]]: 

[#si],[#theta],[#wl,#w2,#w3] ) -> ([output_2[l]]) 

hidden( [output_ 1 [ 1 ] ,output_ 1 [2] ,output_ 1 [3 ] ], [error [ 1 ],error [2],error [3 ] ]: 

[#si],[#theta],[#wl,#w2,#w3] ) -> ([output_2[2]]) 
hidden( [outpu t_ 1 [ 1 ] ,output_ 1 [2] ,output_ 1 [3 ] ], [error[ 1 ], error [2],error [3 ] ]: 

[#si],[#theta],[#wl,#w2,#w3] ) -> ([output_2[3]])
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! In Vectors vn Out Vectors vn Weights vn

output_2[l] 1 output[l] 1 si 1

output_2[2] 1 error[l] 2 theta 2

output_2[3] 1 w 3

targetjl] 2 w 3

w 3

TABLE 19. Node_3[l] - Node 1 of Layer 3

In Vectors vn Out Vectors vn Weights vn

output_2[l] 1 output[2] 1 si 1

output_2[2] 1 error[2] 2 theta 2

output_2[3] 1 w 3

target_[2] 2 w 3

! w 3

TABLE 20. Node_3[2] - Node 2 of Layer 3

InVectors vn Out Vectors vn Weights vn

output_2[l] 1 output[3] 1 si 1
1
output_2[2] 1 error[3] 2 theta 2

■
output_2[3] 1 w 3

! target_[3] 2 w 3

w 3

TABLE 21. Node_3[3] - Node 3 of Layer 3

output( [output_2 [ 1 ] ,output_2 [2] ,output_2 [3 ] ], [targe t_[ 1 ] ]:

[#si],[#theta],[#wl,#w2,#w3]) -> ([output[l]],[error[l]]) 
output( [output_2 [ 1 ] ,output_2 [2] ,output_2 [3] ], [targe t_[2] ]:

[#si],[#theta],[#w 1 ,#w2,#w3] ) -> ([output[2]],[error[2]])



In Vectors vn Out Vectors vn Weights vn

output_l[l] 1 output_2[l] 1 si 1

output_l[2] 1 theta 2

output_l[3] 1 w 3

error[l] 2 w 3

error[2] 2 w 3

error[3] 2

TABLE 22. Node_2[l] - Node 1 of Layer 2

In Vectors vn Out_Vectors vn Weights vn

output_l[l] 1 output_2[2] 1 si 1

output_l[2] 1 theta 2

output_l[31 1 w 3

error[l] 2 w 3

error[2] 2 w 3

error[3] 2

TABLE 23. Node_2[2] - Node 2 of Layer 2

output([output_2[l],output_2[2],output_2[3]],[target_[3]]:

[#si],[#theta],[#wl,#w2,#w3]) -> ([output[3]],[error[3]])

Where #name stands for the numerical values assigned to the relevant weight 

variables by the "ldwts" commands in the host program. The rest of the host program is 

scanned and equivalent NIL program is generated and kept in a temporary file. This is 

then followed by the translation of the node functions used in the network. This is done 

by converting each "if test() then are compiled into NIL, the NIL version of the host 
program is copied at the end of link statements and functions.
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In Vectors vn Out Vectors vn Weights vn

output_l[l] 1 output_2[3] 1 si 1

output_l[2] 1 theta 2

output_l[3] 1 w 3

error[l] 2 w 3

error[2] 2 w 3

error[3] 2

TABLE 24. Node_2[3] - Node 3 of Layer 2

The difficult part of translating any high level neural network language into NIL 
is the production of the node tables to specify the network topology. Once this is 
achieved, we see no major problems in completing the rest of the translation.

6.2 Assessment of NPS

Assessment of the Network Programming System, NPS, also involves the two 
main aspects of this thesis, programmability and portability.

6.2.1 Program m ability

In the case of programmability, NPS was evaluated for presence of the following 
properties.

1. usability - how easy it is to code and execute neural network algorithms 
on a particular machine?

2. facilities - the main facility, library of functions and models, how helpful 
are they and how can they be improved?

3. simplicity - how simple is the design? is it easy to maintain and upgrade?

6.2.1.1 Usability Firstly, number of models were coded in NIL and executed and found 

that the overall activity of coding, compiling and executing models required no more 
efforts than compiling an ADA program in a UNIX environment. Considering the 

complexity of a neural network model in terms of its connectivity among nodes and the 
special control mechanism required by the manipulation part, we found it usable to an
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acceptable degree. The existing facilities are found to be adequate for executing 

algorithms and conducting experiments except when it comes to examining the structure 

and state of the network on the screen. This is mainly due to the lack of a graphical 
display system and this proved to be a major handicap in this respect. However, it nust 

be noted that we can only form a valid opinion when it is assessed with a graphic sysem. 

Unfortunately, it was not possible to do so because of building such a graphic systemand 
interfacing with NIL is beyond the scope of this project.

6.2.1.2 Facilities Assessing the facilities provided by the NPS involved the execution of 

the basic commands available at this level. These are

1. load -m file jiam e  - for loading a partially mn network for execution m  a 

particular hardware by specifying the hardware option in the parair^ter

m .

2. save file jiam e - to save a partially m n program for running later, rhis 
command can also be used in the manipulation part of a NIL program.

3. stop - to stop a running network. Again this command can be used in the 
manipulation part of a NIL program.

4. go - to mn a loaded network.

5. run -m file jiam e  - to compile, load and mn a source program file vith 
options to execute in a particular machine.

6. exec -m m odeljiam e  - to execute one of the standard models availabb in
the model library. When executed, this command will initiate a serie of

questions regarding the size of each layer, tolerance value, and input and 
output patterns etc. The user responds by typing the required data. Chce 

all the information is available, the system builds the appropriate netvork 
and proceeds with the compilation and subsequent execution process.

7. abort - to abandon the execution of the network. This command is ilso 
available in the NIL language.

and the use of already written functions stored in the functions library in new program.

Execution of the basic commands produced the expected result The etec 

command for executing library models proved to be very restrictive. This is due to tlree 

reasons:
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1. The overall topologies of the models are fixed. This means that the user 
cannot have a different topology other than the one provided except that 
the number of nodes in each layers can be varied;

2. Smoothing, threshold and other functions are also fixed and cannot be 

changed;

3. The format for outputting the data to the screen could not be altered since 

it was part of the manipulation program which is not accessible to the 
user.

The use of existing node functions in the library made programming easier and the 

program more compact. The save command for partially trained network proved to be 
valuable during the training of a Boltzmann Machine. The conclusion was that more 

flexibility and options must be provided when executing standard models from the 
library. The provision of the function library which consists of a collection of commonly 

used functions that describes various types of nodes proved to be valuable. Strictly 
speaking it does not belong to the Network Programming System and it is part of the NIL 
translator.

6.2.1.3 Simplicity It is believed that the NPS is simple and easy to maintain due to its 
design simplicity. Its amenability to changes in terms of upgrading is considered to be 
satisfactory because the programming system is held together by a simple command 
interpreter which calls the relevant subsystems to execute the commands.

6.2.2 Portability

This has been achieved by having NIL as its intermediate language system. This 
is further demonstrated by generating "C" code from NIL compiler to show that NIL can 
be mapped on a range of machines such as a network of Transputers and Sun 

workstations. This leads us to safely conclude that NPS offers the user the facility for 

porting neural network models and applications through its intermediate system.



Chapter 7

This chapter presents some concluding remarks. First, a summary o f the thesis is 

presented. This is followed by a statement o f the contributions made by this thesis to 

neural network computing research. Finally, a short list o f ongoing work and potential 
future work is presented.

7. Summary

The main goals of this work has been the design and implementation of a neural 
network programming system which supports portability over a range of hardware, and 

programmability by facilitating the implementation of a range of neural network models. 

The system comprises:

• An intermediate Language - NIL - Which is a machine independent intermediate 
level neural network language that can implement a range of neural network 
models. In addition it is possible to implement semantic network and other 
network problems using this language.

• A Virtual Machine - Which encapsulate the machine independent model of the 
intermediate language in a simple and directly executable form(C-Machine).

• An Algorithms Library - Which contains a set of parameter driven popular neural 
network models which can be executed by the user by supplying the necessary 

parameters.

• A functions Library - Which contains a set of generalised node functions which 
can be used to build network models.

• A Neurocomputer Architecture - Which is based on a primitive processing 

element for executing neural network models and applications.

This thesis has mainly concentrated on the specification and the implementation 

of the intermediate language, NIL. The motivation and the design approach taken were 

already stated in chapter 4 and 5. The implementation strategies (both parallel and 

sequential) were discussed in chapter 5.



7.1 Contributions

In pursuing this research described in this thesis, a prime consideration has been 

to provide answers to the following questions:

• Is it possible to design a programming system that can support a range of target 

hardware?

• If so, can a range of neural network models be efficiently mapped and executed 
on this system?

It is believed that these questions have been answered positively. In the following 
sections, the contributions of this work to neural network computing research are 

summarised.

7.1.1 Portability

Since neural network computing is at its infancy, it is virtually impossible at this 
stage to identify the ideal form of computing system that can enhance portability in a 
general way. The reasons for this is that there is no obvious candidate architecture for 
neural network computing. The other equally important point is that the existing neural 
network algorithms are not ideally suited for building practical applications. This is 
because they take so long to learn (the reliable ones) and their adaptive capabilities are 
very very limited. What this thesis tried to do is to provide a software machinery capable 
of accommodating any progress in both of these directions(ie- hardware and algorithms) 
in the form of an intermediate language, NIL. What this language tries to do is, while 
representing neural network problems in a basic form it avoids explicitly specifying the 
mode of execution either in part or whole. It represents the network in such a way one 
can choose to execute sequentially or in parallel at the time of execution rather than at 

the time of specification. Again, the parallel execution can be either large grained 
parallelism or coarse grained parallelism depending whether each node is going to 

occupy a single processor or each guarded process going to occupy a single processor. 

The language also tried to tackle the problem of selective control over the network by 

providing simple commands for controlling and synchronizing.

7.1.2 Programmability

The model independent capability (i.e. programmability) of the system (in 

particular the language) has been demonstrated within the framework of the existing 

models. Again, it is impossible to judge its capability in this volatile period of research 
and it is even more difficult to judge its ability in dealing with the future models. But one
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can safely assume that the system is model independent given the present state of 
research in this area. The features which give positive encouragement in this direction 

are in its ability to deal with semantic networks and its general computing ability.

7.2 Future W ork

There are currently two mini projects underway at the Polytechnic of North 

London based on the intermediate language. The first one is the production of object 

oriented intermediate code from NIL by adding Objective C type of extensions to it. An 
exploratory study has been done on the design and implementation of an object oriented 

language and is found to be feasible. We also found that the underlying features of neural 
network has become more clear in object oriented form. It is also anticipated that the 

extensive graphics libraries available in Objective C would greatly simplify the building 
of a good user interface. There are two basic types of objects in this form, namely, nodes 
and links. A link can be generated in three basic form:

• Single Linking - which generates a single connection between any two nodes.

• Layer Linking - which connects all the outputs from nodes of a particular layer 
to all the nodes in another layer.

• Random Linking - which connects two layers of nodes randomly.

When translating a NIL program to an objective "C" program the output links 
associated with a given process are pointers to destination nodes. We generate links with 
the help of a dictionary object class which maintains a set of associations as ordered 
pairs of node identifiers and node pointers. These dictionaries, together with tables 
(derived from the NIL program) describing the network topology can then be used to 

create collections of destination node pointers to be associated with each guarded 
process. This approach works for the case involving point to point or layer to layer 

connections. With random connections the dictionaries are used together with a suitable 
random number generator. In the object oriented version each node contains a set of 

synaptic input objects. These may pre-process the input before writing it to the data 
slot associated with that synapse within that node. In addition each node contains a set of 

guarded processes and only one of these will be able to fire at any one time as in NIL. 

When such process fires it will send the appropriate messages to the synapses it knows 

about. Some basic components of a node object and their relationships are shown in the 

figure 31 below.
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Figure 31. An Object-Oriented Model for a Node

The beauty of this approach is that it allows us to implement functional links as 
proposed by Sobajic [Soba88] in a direct and elegant way. Thus we have the potential to 
build complex systems for process control purposes.

In a particular neural network application the number of different classes of 

neurons (differing in terms of the different guarded processes they contain) is fairly 

small. Neurons from these various classes are connected together into functional 

networks. The process of translating from NIL to objective C (or to any other object 

oriented programming language) consists of creating the code for the individual classes 

of neurons and their associated synapses. The network specification part of NIL is then 

used to create and link these collections of objects together in the desired configuration. 
By associating suitable display methods with the objects in the system it is possible to 

construct user interfaces much more rapidly than with conventional programming 

methods.
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The second project is concerned with the mapping of NIL on a network of 
transputers. This project is being supported by the Science and Engineering Research 
Council as part of their Transputer Loan Initiative (Project Number HB0001B). The 

aims of the project are as follows:

1. To translate NIL into Occam and map it on the transputer network. This 

seems to be very feasible in that NIL has similar features found in Occam 
and the task of translating merely consists of producing a set of macros.

2. To generate Transputer assembler code directly and develop an efficient 

mapping software to optimally map the network.

This work is currently being carried out at the Polytechnic of North London, where the 
author is a full time member of the academic staff.

Apart from this, NIL has been used in building communication network 

management systems using neural network techniques to control and manage networks 
[Elia89, Elia90]. In this work, various network management models were implemented to 
assess the potential of using self organising networks in this area. As part of this work, 
few models based on fuzzy logic were also coded in NIL. This work is still continuing 
and we hope to exploit the dynamic capabilities of NIL to produce a practical network 
management system eventually.
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APPENDIX A - Syntax Definition of NIL

prog ::= begin netblock funcblock manp end

netblock linkstat { linkstat }* 
linkstat ::= slink \ replink | structlink 
slink ::=fun name ( [inputJist) [:w tjist])

-> ( o u t j i s t ) 
replink ::= rep [integer] fun j ia m e  (v ec jis t

{:wt_vec})
-> (v e c jis t)

v e c jis t  ::= vec {,vec}* 
vec ::= ident [ ident ] 
wt_vec ::= int * md(low - high) 
low ::= high ::= int 
input J is t  ::= v a r jis t  { , v a r jis t  }* 
o u tjis t  ::= var list { , v a r jis t  }* 
v a r jis t  ::= [ //sr_v { ; list_v }* ] 
list_v ::= ident [, ident } * 
w tjis t  ::= w a ljis t  [, va ljis t}*  
v a ljis t  ::= [ list_c {; list c }* ] 
list_c ::= constant {, constant }* 
structlink ::= construct(

[rep_par nam&{input_par) -> (output_par) 
[:[rep_par name(input_par) -> (output_par)} 

rep_par ::= index_var = number of replications

funcblock v.-func  { func  }*
func  ::= header [declarations] "{" body "}"
header ::= hm fun  name ( input_par ) -> ( output_par)
input_par ::= in_array list {ival: wt_arrayjist]
out_par ::= out_ar ray J is t
in_array J is t  ::= array J is t
w t_arrayjist ::= array J is t
out_array J is t  ::= array J i s t
array J is t  ::= ident [dim] {, ident[dim] } *
dim ::= /dercf { , ident }
body ::= guarded_process { guarded_process }* 
guarded_process ::= input_condition => "{" statements " 
input_condition ::= ident[index_range

{, ident index_range } * 
index ja n g e  ::= [ range_comp {, range_comp }] 
range_comp ::= index .. index \ index 
index ::= int \ ident
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statements : := stmnt { stmnt } *
stmnt ::= if\ do \ assignment | skip ;
if::= if (booleanexpression) -> statements

{ ->-> statements } fi 
do ::= do (boolean _expression) -> statements od 
assignment ::= variable := expression ; 
boolean expression ::= expression rel op expression 

| boolean_expression { logic_op 
boolean expression } 

expression ::= term a op expression | term 
term : = factor mop term \ factor 
factor ::= variable \ unsigned_const | ( expression ) 
variable ::= ident \ ident [subscrpt\ 
subscrpt ::= elemnt | elem nt: elemnt 
elemnt ::= int \ ident 
rel op ::= > | >= | < | <= | <> | = 
logic op ::= and | or | xor | not 
aop ::= + | - 
mop ::= * | /

manp ::= begin declarations mstatblock end 
mstatblock ::= ctstmnt { ctstmnt }* 
ctstmnt ::= if  \ do \ assignment \ skip;

| readstat \ Inkop | input 
| output |get | getwt 
| Idconst | save \ load 
| rmv | run_net; | stop; | go 

readstat ::= readst par 
par ::= all | nodelabel {, nodelabel}*\
Inkop ::= operation Inkname (operation_par)
operation ::= delete | join
operation_par ::= del_par\join_par
del_par ::= nodelabel \ ,nodelabel
join _par ::= node label, input_array _elmnt
input ::= input Inkname = value

{,Inkname = value} *; 
get ::= get variable = linkname

{,variable -  linkname} *; 
getwt ::= get variable = wt_array_elmnt

{,■variable = wt_arr ay _elmnt} *; 
Idconst ::= Idconst wt_array_elmnt = value

{,wt_array_elmnt -  value} *; 
output ::= output {string}variable {,variable}*; 
string ::= "letter\digit [ letter\digit}* 
rmv ::= rmv nodelabel; 
elmnt ::= variable name | strings 
save ::= save filename; 
load ::= load -m filename;
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m ::= 1 | 2
source node ::= node label 
destnode ::= node label 
nodelabel ::= nde[/>zf|u/i/tf] 
declarations ::= {/ype variable_list}+ 
type ::= int | real
variable J is t  variable {,variable}*
integer ::= integer number 
idem ::= name



APPENDIX B - Sample NIL Programs

Heb/Hopfield model 

begin
rep[5] layl(iput[i]) -> (out[i]) /*link statements */ 
lay2([out[l],out[2],out[3],out[4],out[5]],[s[l],s[2]]:

[0.0,0.0,0.0,0.0,0.0],[1.0]) -> ([sig[l]],[resl[l]]) 
lay2([out[l],out[2],out[3],out[4],out[5]],[s[l],s[2]]:

[0.0,0.0,0.0,0.0,0.0],[2.0]) -> ([sig[2]],[resl[2]]) 
lay2([out[l],out[2],out[3],out[4],out[5]],[s[l],s[2]]:

[0.0,0.0,0.0,0.0,0.0],[3.0]) -> ([sig[3]],[resl[3]]) 
lay2([out[l],out[2],out[3],out[4],out[5]],[s[l],s[2]]:

[0.0,0.0,0.0,0.0,0.0],[4.0]) -> ([sig[4]],[resl[4]]) 
lay2([out[l],out[2],out[3],out[4],out[5]],[s[l],s[2]]:

[0.0,0.0,0.0,0.0,0.0],[5.0]) -> ([sfg[5]],[resl[5]])

fun layl(\[i]) -> (y[i]) /*node function to input layer */ 
int i;
real x[2],y[2];
{
x[i] => [y[i] := x[i];}

}
/*node function for output layer */
fun lay2(y[i], lr[j] ival:\v[i], index[m]) ->(signal[m],result[m]) 
int ij,m,k,ii;
real y[7],lr[4],index[2],signal[2],result[2],w[10],net;
{
y[l..i], lr[ 1] => { /*learn*/

k:= index[l]; 
ii:=l;
do (ii<=i) -> 

if(iiok) ->
w[ii] := \v[ii] + y[k]*y[ii];

- > - >

vv[ii] := 0.0; 
fi
ii:=ii+l;
od

signal[l] := 1.0;
}

y[l..i], lr[2] => { /^recall*/
k:= index[l]; ii:=l; 
net := 0.0; 
do (ii<=i) -> 
net := net + w[ii]*y[ii]; 
ii:= ii+1; 
od
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if (net>= 0.0) -> result[l] := 1.0;
->-> result[l] := 0.0-1.0; 
li

}
}
begin /^manipulation part*/
real a, b;
real p,q,r,s,t;
a := 1.0;
b:=0.0-1.0;
Idconst nde[6].w[l] = 0.11, /*load weights for node 6*/ 

nde[6].w[2] = 0.21, 
nde[6].w[3] = 0.12, 
nde[6].w[4] = 0.04, 
nde[6].w[5] = 0.13;

Idconst nde[8].w[l] = 0.15, 
nde[8].w[2] = 0.06, 
nde[8].w[3] = 0.17, 
nde[8].w[4] = 0.02, 
nde[8].w[5] = 0.11;

input iput[l] = b, /*put values on input channels*/ 
iput[2] = a, 
iput[3] = a, 
iput[4] = a, 
iput[5] = b,
s[l] = a; /*signal for learning */

run net; /* run the network */
get p = sig[l], /*has it learnt */

q = sig[2], 
r = sig[3], 
s = sig[4], 
t = sig[5];

/*yes input the next vector*/ 
input iput[l] = b, 

iput[2] = b, 
iput[3] = a, 
i p n t [ 4 ] = a, 
iput[5] = a, 
s[l] = a; 

run_net; 
get p = sig[l], 

q = sig[2], 
r = sig[3], 
s = sig[4], 
t = sig[5];

input iput[l] = a,
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iput[2] = a, 
iput[3] = b, 
iput[4] = a, 
iput[5] = a, 
s[l] = a; 

run_net; 
get p = sig[l], 

q = sig[2], 
s = sig[3], 
r = sig[4], 
t = sig[5];

output”

getwt p = nde[6].w[l], /*read the weights *1 
q = nde[6].w[2], 
r = nde[6].w[3], 
s = nde[6].w[4], 
t = nde[6].w[5];

output ’’WEIGHTS FOR NODE 6’’;
output "wl =”,p, ” w2 ='\q," w3 =",r,” w4 =”,s,” w5 =”,t;

getwt p = nde[7].w[l], 
q = nde[7].w[2], 
r = nde[7].w[3], 
s = nde[7].w[4], 
t = nde[7].w[5];

output ’’WEIGHTS FOR NODE 7”;
output ”wl =”,p, ” w2 =”,q," w3 =",r," w4 =”,s," w5 =",t;

getwt p = nde[8].w[l], 
q = nde[8].w[2], 
r = nde[8].w[3], 
s = nde[8].w[4], 
t = nde[8].w[5];

output ’’WEIGHTS FOR NODE 8”;
output "wl ='\p, ’’ w2 =’’,q,’’ w3 =’’,r,’’ w4 ='\s," w5 =",t;

getwt p = nde[9].w[l], 
q = nde[9].w[2], 
r = nde[9].w[3], 
s = nde[9].w[4],
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t = nde[9].w[5];

output "WEIGHTS FOR NODE 9";
output "wl =",p, " w2 =",q," w3 =",r," vv4 =",s," w5 =",t;

getwt p = nde[10].w[l], 
q = nde[10].w[2], 
r = nde[10].w[3], 
s = nde[10].w[4], 
t = nde[10].w[5];

output "WEIGHTS FOR NODE 10";
output "wl =",p, " w2 =",q," vv3 =",r," vv4 =",s," w'5 =",t;

/* Recall starts */ 
input iput[l] = b, 

iput[2] = a, 
iput[3] = a, 
iput[4] = a, 
iput[5] = b,
s[2] = a; /^recall signal*/ 

run_net; 
get p = resl[l], 

q = resl[2], 
r = resl[3], 
s = resl[4], 
t = resl[5]; 

output" ";
output "INPUT ->  OUTPUT";
output b, "—> ",p;
output a, "-> ",q;
output a, "-> ",r;
output a, "-> ",s;
output b, "-> ",t;

input iput[l] = b, 
i put [2] = b, 
iput[3] = a, 
iput[4] = a, 
iput[5] = a, 
s[2] = a; 

run_net; 
get p = resl[l], 

q = resl[2], 
r = resl[3], 
s = resl[4], 
t = resl[5];
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output "INPUT -  
output b, "--> ",p; 
output b, "—> ",q; 
output a, "-> ",r; 
output a, "-> ",s; 
output a, "--> ",t;

input iput[l] = a, 
iput[2] = a, 
iput[3] = b, 
iput[4] = a, 
iput[5] = a, 
s[2] = a; 

runnet; 
get p = resl[l], 

q = resl[2], 
r = resl[3], 
s = resl[4], 
t = resl[5];

output "INPUT -  
output a, "—> ",p; 
output a, "--> ",q; 
output b, "--> ",r; 
output a, "->  ",s; 
output a, "--> ",t;

end
end

OUTPUT";

> OUTPUT";
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Back-propagation model to solve XOR problem

begin

inlayer([iv[l]], [sig[l]]) -> ([ou[l]]) /*link statements*/ 
inlayer([iv[2]], [sig[l]]) -> ([ou[2]])

hIayer([ou[l],ou[2]], [erbk[l]]
:[3.1,2.1], [0.0,0.0], [0.0], [2.5], [0.1])

-> ([out[l]], [sig[l]])

olayer([iv[l],iv[2]], [out[l]], [e_op[l]],
[rcl[l]]:[1.2,2.6,1.27], [1.7], [0.1])

-> ([erbk[l]], [result[l]])

fun inlayer(in[i], sigl[i]) -> (ip[i]) /*input layer node*/ 
int i;
real in[3],sigl[2],ip[2];
{
in[i], sigl[i] => {

ip[l] := in[l];
}

}
/* hidden layer node */

fun hlayer(in[m], err[n] ival: wl[m], l__in[m], l_op[n], theta[n],si[n])
-> (op[n], rsig[n])

int m, n;
real in[4], err[2],vvl[5],l_in[4],l_op[2],theta[2], 
si[2],op[2],rsig[2],this_er,temp;
{
in[ 1,2] => { /Calculate output*/

temp := w l[l] * in[l] + vvl[2] * in[2]; 
l_in[l] ;=in[l]; 
l_in[2] := in[2];
l_op[l] := l/(l+e\p(0- temp - thetafl])); 
op[l] := l_op[l];
}

err[l] => { /*adjust weights etc */
this er := l_op[l] *(l-l_op[l]) * err[l]; 
thetaf 1J := theta[l] + (si[I] * this er); 
w l[l] := w l[l] + (si[ 1] * this_er * l_in[l]); 
wl[2] := wl[2] + (si[ 1] * this_er * l_in[2]); 
rsig[l] := 1;

}
}
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fun olayer(in[l], hi[m], e_op[m], recall[m] ival: w2[n], theta[m], si[m]) ->
(errbk[m], out[m])

int I, n, m;
real in[3],hi[2],e_op[2],recall[2],w2[4],theta[2], 

si[2],errbk[2],out[2],temp, c_op,err;
{
in[l..l],hi[m], e_op[m] => {

/*calc output,adjust wts, send back error val*/ 
temp := vv2[l] * in[l] + vv2[2] * hi[l] + w2[3] * in[2]; 
c op := l/(l+exp(0-temp - theta[l]));

err := c_op * (l-c_op)*(e_op[l] - c_op); 
thetafl] := thetafl] + (si[l] * err);

w2[l] := w2[l] + (si[l] * err * in[l]); 
w2[2] := w2[2] + (si[l] * err * hi[l]);

w2[3] := w2[3] + (si[l] * err * in[2]); 
errbk[l] := err * w2[2];
}

in[l..I], hi[m], recall[m] => { /*recall-output */
temp := w2[l] * inf 1] + w2[2] * hi[l] + vv2[3] * in[2]; 
outfl] := l/(l+exp(0-temp - thetafl]));
}

}
begin /^manipulation part*/ 
int p,i;
real wl, w2, w3, theta; 
real data[5:5],ex_op[5],y;
datafl: 1] := 0.0; data[l:2] := 0.0; ex_op[l] := 0.0;
data[2:l] := 0.0; data[2:2] := 1.0; ex_op[2] := 1.0;
data[3:l] := 1.0; data[3:2] := 0.0; ex_op[3] := 1.0;
data[4:l] := 1.0; data[4:2] := 1.0; ex_op[4] := 0.0;
input sig[l] = 1.0; 
i := 1;
do (i<=4000) ->

P := 1;
do (p <= 4) ->

input ivfl] = data[p:l], 
iv[2] = data[p:2], 
e_op[l] = ex_op[p]; 
runnet;

p:=p + 1;
od
i := i + I; 
od
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getwt w l = nde[3].wl[l], 
w2 = nde[3].wl[2], 
theta = nde[3].theta[l]; 

output" "; 
output "RESULTS"; 
output "Wl = ", wl; 
output "W2 = ", w2; 
output "theta = ", theta; 
output" ";

getwt w l = nde[4].w2[l], 
w2 = nde[4].w2[2], 
w3 = nde[4].w2[3], 
theta = nde[4].theta[l]; 

output" "; 
output "RESULTS"; 
output "Wl = ", wl; 
output "W2 = ", w2; 
output "W3 = ", w3; 
output "theta = ", theta; 
output" ";

output"input input ==> output ";
P := l;
do (p <= 4) ->

input i\[l] = data[p:l], 
iv[2] = data[p:2], 
rcl[l] = 1.0; 

runnet; 
get y = result[l];
output data[p:l]," ", data[p:2], " ==> ", y; 
input sig[l] = 1.0;
p := p+ 1;
od

end
end.
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Kohonen feature map for a 3x3 map

begin /* links for feature map nodes *1 
onode([invec[l], invec[2],invec[3]], [learn], [ajustl],[recal] 
:[0.926,0.908, 0.188] ,[0.0],[0.4])->([dist[l]],[otpl])

onode([invec[l],invec[2],invec[3]],[learn],[ajustl],[recal] 
:[0.918,0.953, 0.071],[0.0],[0.4])->([dist[2]],[otp2])

onode([invec[l],invec[2],invec[3]],[learn],[ajustl],[recal] 
:[0.617,0.340,0.404],[0.0],[0.4])->([dist[3]],[otp3])

onode([invec[l],invec[2],invec[3]],[learn],[ajustl],[recal] 
: [0.242,0.645,0.991],[0.0],[0.4])->([dist[4]],[otp4])

onode([invec[l],invec[2],invec[3]],[learn],[ajustl],[recal] 
: [0.633,0.379,0.492],[0.0],[0.4])->([dist[5]],[otp5])

onode([invec[l], invec[2],invec[3]], [learn], [ajustl],[recal] 
: [0.724,0.099,0.296],[0.0],[0.4])->([dist[6]],[otp6])

onode([invec[l], invec[2],invec[3]], [learn], [ajustl],[recal] 
:[0.923,0.983, 0.168],[0.0],[0.4])->([dist[7]],[otp7])

onode([invec[l],invec[2],invec[3]],[learn],[ajustl],[recal] 
: [0.956,0.570,0.876], [0.0], [0.4])->([dist[8]],[otp8])

onode([invec[l],invec[2],invec[3]],[learn],[ajustl],[recal] 
:[0.816,0.132,0.206], [0.0], [0.4])->([dist[9]],[otp9]>

/* result node */
resnode([otpl,otp2,otp3,otp4,otp5,otp6,otp7,otp8,otp9]) -> ([clout])

fun onode(iput[n],lrn[m],adj\vt[m],rcl[m] ival: vv[n],ss[m], 
si[m])

-> (d[m], op[m])
int n,m,i;
real iput[5],Irn[2],adj\vt[2],rcl[2],vv[7],ss[2],si[2],d[2],op[2]; 
{

lrn[l],iput[l..n] => { /*learn*/ 
d[ 1] := 0.0;
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i := L;
do (i<=n) ->

ss[l] := iput[i] - w[i]; 
d[l] := d[l] + (ss[l]*ss[l]); 
i:=i+l; 
od

}
adivvtri] => { /*adjust weights for neiborhood*/

if(adjwt[l] > 0) -> 
i:=l;
do (i<=n) ->

w[i] := w[i] + si[l] * ss[l];
i:=i+l;
od

fi
si[l] := si[l] - 0.1;

}
rcl[l],iput[l..n] => { /* recall */

i:=l;
op[l] := 0.0; 
do (i<=n) ->
op[l] := op[I] + iput[i] * w[i]; 
i := i+1; 
od 
}

}
fun resnode(iin[nn]) -> (ooput[m])
int nn,m,i;
real iin[12], ooput[2];
{
iin[l..nn] => { /* output */

ooput[l] := 0;
i:=l;
do (i<=nn) ->
ooput[l] := ooput[l] + iinfi];
i:=i+l;
od
}

}
begin
int n,jj,i,learn, kk,p, xx,r,rl,r2,c,cl,c2,j,jmn; 
real d[12], data[4:4],x,a[10],yes;

data[ 1:1] := 1.0; data[l:2] := 1.0; data[l:3] := 0.0; 
data[2:l] := 0.0; data[2:2] := 0.0; data[2:3] := 1.0; 
data[3:l] := 1.0; data[3:2] := 0.0; data[3:3] := 0.0;
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learn := 1; 
kk := 3;

do (learn = 1) -> 
kk := kk -1; 
p:= l;
do (p <= 3) -> 

input invec[l] = data[p:l], 
invec[2] = data[p:2], 
invec[3] = data[p:3], 
learn = 1.0; 

run_net;

get d[l] = dist[l]; 
get d[2] = dist[2]; 
get d[3] = dist[3]; 
get d[4] = dist[4]; 
get d[5] = dist[5]; 
get d[6] = dist[6]; 
get d[7] = dist[7]; 
get d[8] = dist[8]; 
get d[9] = dist[9];

n:=9;

do (i<= 9) ->

output "dj =M,d[i];
i:=i+l;
od

j := 1; jinn := 1; 
do (j <= n - I) -> 

jj := j + I; /* calculate distance */ 
if (d[jmn] > d[jj]) -> jmn := j + 1; fi 
j := j + 1;

od
j:=l;

do (j <= 9) ->
\  := jmn * 1.00; /* determine neiborhood nodes */ 
x := x/3.0;
if (x <= 1.0) -> r := 1; fi
if (x > 1.0) -> if (x <= 2.0) -> r := 2; fi fi
if (x > 2.0) -> if (x <= 3.0) -> r := 3; fi fi

xx := jmn - (r - 1)*3;
if (xx = 1) -> c := l;fi
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if (xx = 2)-> c := 2;fi 
if (xx = 3)-> c := 3;fi

rl := r;
c l := c;

x := j * 1.00; 
x := x/3.0;
if (x <= 1.0) -> r := 1; fi
if (x > 1.0) -> if (x <= 2.0) -> r := 2; fi fi
if (x > 2.0) -> if (x <= 3.0) -> r := 3; fi fi

xx := j - (r - 1)*3; 
if (xx = 1) -> c := 1; fi
if (xx = 2) -> c := 2; fi
if (xx = 3) -> c := 3; fi

r2 := r; 
c2 := c;

r := r l  - r2;
c := c l - c2;
if (r < 0) -> r := 0 - r; fi 
if (c < 0) -> c := 0 - c; fi 
yes := 0.0;
if (r <= kk)-> yes := 1.0; fi
if (c <= kk)-> yes := yes * 1.0; ->-> yes := 0.0;fi
a[j] := yes;
j := j+  I;
od
input a ju stl = a [l], /^adjust weights */ 

ajust2 = a[2], 
ajust3 = a[3], 
ajust4 = a[4], 
ajust5 = a[5], 
ajust6 = a [6], 
ajust7 = a[7], 
ajust8 = a[8], 
ajust9 = a[9];

run_net;

p:= p +  1; 
od
if (kk = 0) -> learn := 0; fi 
od
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P := 1;
do (p <= 3) -> /* recall */

input recal = 1.0, 
invec[l] = da ta[p :l], 
invec[2] = data[p:2], 
invec[3] = data[p:3];

run net;

get d[l] = clout;

o u tp u t" ” ;
o u tp u t" result H,d[l];

P := P + 1;

od
end
end

Inputs

1.000000 1.000000 0.000000 
0.000000 0.000000 1.000000 
1.000000 0.000000 0.000000

Initial Weights

w l w2 \v3

0.926 0.908 0.188

0.918 0.953 0.071

0.617 0.340 0.404

0.242 0.645 0.991

0.633 0.379 0.492

0.724 0.099 0.296

0.923 0.983 0.168

0.956 0.570 0.876
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0.816 0.132 0.206

Actual output.....

W EIGHTS 
w l >w2......... >w3

1.065421 1.047421 0.327421 
1.131965 1.166965 0.284964 
0.618804 0.341804 0.405804 
-0.130186 0.272814 0.618814 
0.578737 0.324737 0.437737 
0.794612 0.169612 0.366612 
1.075164 1.135164 0.320164 
0.657083 0.271083 0.577083 
0.943953 0.259953 0.333953

result 11.725105 

result 3.672553 

result 6.735553
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Dynamic Properties of the NIL

The program given below illustrates the dynamic properties of NIL by implementing a 
three layer network and deleting links,removing a node, and creating a link(join). The 
first layer consists of two input nodes which receives inputs(in[l] and in[2]) from host 
and send these inputs to all the two nodes in the second layer(outl[l] and outl[2]). The 
nodes in the second layer takes these inputs from the first layer and sum them before 
sending them(out2[l] and out2[2]) to a single node in the third layer. This node in the 
third layer sums these inputs and produces it as output(res[l]). The nodes 1 and 2 of the 
first layer use the function "one". The nodes 3 and 4 of the second layer use the function 
called "two". The node 5 in the third layer uses the function called three.

begin

one([in[l]])->([outl[l]]) 
one([in[2]])->([outl[2]]) 
two([outl[I],outl[2]]) -> ([out2[l]]) 
two([outI[l],outl[2]]) -> ([out2[2]]) 
three([out2[l],out2[2]]) -> ([res[l]])

fun one(x[i]) -> (y[i]) 
int i;
real x[2], y[2];
{

x[i] => {
y[l] := x[l];
}

}

fun two(p[j]) -> (q[i])
int i,j, m;
real p[4], q[4], t;
{

p[l»j] => (
m := I; 
t := 0.0; 

do (m <= j) -> 
t := t + p[m]; 
m := m + 1; 
od

q[l] := t;
}

}

fun three(r[j]) -> (s[i])
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int i j ,  m; 
real r[4], s[4], t;
{

r[l..j] => {
m := 1; 
t := 0.0; 

do (m <= j) -> 
t := t + r[m]; 
m := m + 1; 
od 

s[l]:= t;
}

}

begin 
real z;

input in[l] = 2.0, /*load inputs*/ 
in[2] = 3.0;

r u n n e t ;  /*run the network*/
/*get the result*/ 

get z = res[l]; 
output" ";
output "result is ", z; /*print it */

input in[l] = 2.0, /*load inputs again */ 
in[2] = 3.0;

delete outl[2](,nde[3]); /*delete link from  node 2 to 3 */ 
run net; /*run the network */
get z = resfl];
output "result after deletion of out 1 [2] is ", z; /*print the result*/

join outl[l](nde[5],r); /*join link outl[l] to node 5*/

input inf 1] = 2.0, /*load inputs again */ 
in[2] = 3.0;

ru n n e t ;  
get z = resf 1];
output "result after joining of o u t l [ 1] to node 5 is ", z;

/*print the result*/ 
input in f l] = 2.0, /*load inputs a gain */ 

in[2] = 3.0;
rmv nde[l]; /*remove first input node */
run_net; /*run the network */
get z = resfl];
output "result after removing node 3 is " , z; /*print result*/
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end
end.

The output from the program is

result is 10.000000

result after deletion of outl[2] is 7.000000 

result after joining of outlfl] to node 5 is 9.000000 

result after removing node 3 is 7.000000
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APPENDIX C - Comparison of NIL with BIF

A Back-propagation Network Model in BIF

#include "userfx.h"
#include <math.h>
#define TOP 1 
#define BOTTOM 0

/* enlists are lists of the cn indices present on the local HN */ 
static enlist *cns_in, *cns_hid, *cns_out;
/* user’s network functions */
void Input_site_fx(), Other_site_fx(), Assign_to_outsite(), 

Squash();
void Calculate_output_error(), Calculate_other_error(); 
void Init_user_fxl(); 
short Activate();
/* simulation parameters accessed by the user code */ 
extern cycle_params cp;
/* buffer for iPSC log messages */ 
char sb[80];

/* Init_user_fxl: Called once by ANNE to init user data */

void Init_user_fxl()
{

int i;

cns_in = Get_cnlist(" input"); 
cns_hid = Get_cnlist("hidden"); 
cns_out = Get_cnlist("output");
Update_group_weights("hidden", TOP); 
Update_group_weights("hidden", BOTTOM);
/* no fault simulation */ 
faulting = OFF;

/* User_fxl: for back-prop network */
/* This procedure describes the "script" modelling the */
/* network’s behaviour for a single network cycle. */

void User_fxl()
{

int cnx, i, 1; 
float ferr, upd, fout;

/** FORWARD PASS **/
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/* get an input vector from the host */ 
Input_site_fx();
Send_group_output(" input", TOP);

/* sum weighted inputs at the hidden layer, activate,
and send output */ 

Other_site_fx(cns_hid, BOTTOM, 1); 
Squash(cns_hid, BOTTOM); 
Assign_to_outsite(cns_hid, TOP); 
Send_group_output("hidden", TOP);

/* sum weighted inputs at output layer, activate, send
to host */

Other_site_fx(cns_out, BOTTOM, 1); 
Squash(cns_out, BOTTOM); 
Assign_to_outsite(cns_out, TOP);
Send_net_output();
/** BACKWARD PASS **/ 
Calculate_output_error(cns_out); 
for(i = 0; i < cns_out->numcns; i++) { 

cnx = cns_out->cns[i];
SITEVALUE(cnx, BOTTOM) = ERROR(cnx);

}
Send_group_output(" output", BOTTOM);

/* received error from output layer */
/* sum weighted error signals */ 
Other_site_fx(cns_hid, TOP, 0);
/* calculate this layer’s error and send down */ 
Calculate_other_error(cns_hid); 
for (i = 0; cns_hid->numcns; i++) { 

cnx = cns_hid->cns[i];
SITEVALUE(cnx, BOTTOM) = ERROR(cnx);

}
Send_group_output("hidden", BOTTOM);

/* send new weights to other end of links */ 
Update_group_weights("hidden", TOP);

Other_site_fx(cns_in, TOP, 0); 
Calculate_other_error(cns_in);
/* send new weights to other end of links */ 
Update__group_weights(" input", TOP);

} /* end user_fxl () */

/* Calculate_other_error */

void Calculate_other_error(cnl)



enlist *cnl;
{

int cnx;
short i, local_error; 
float ferr, fout;

for (i = 0; i < cnl_numcns; i++) { 
cnx = cnl->cns[i];
fout = SHORTJTO_FLOAT(OUTPUT(cnx));
ferr = SHORT_TO_FLOAT(SITEVALUE(cnx, TOP)) * DERIV(fout); 
ERROR(cnx) = FLOAT_TO_SHORT (ferr);

}

j * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

/* Calculate_output_error */

void Calculate_output_error(cnl) 
enlist *cnl;
I

int cnx;
short i, local_error; 
float ferr, fout;

for (i = 0; i < cnl->numcns; i++) { 
cnx = cnl->cns[i];
local_error = targetvalsjcnx] - OUTPUT(cnx); 
fout = SHORT_TO_FLOAT(OUTPUT(cnx)); 
ferr = SHORT_TO_FLOAT(local_error) * DERIV(fout);
ERROR(cnx) = FLO AT_TO_SHORT (ferr);

/* Input_site_fx */

void Input_site_fx()
{

int cnx; 
short i, siteval;

/* global inputs are ready and weighting in site value */ 
if (cns_in != (enlist *)NULL) { 

for (i = 0; i < cns_in->numcns; i++) { 
cnx = cns_in->cns[i];
/* output function is identity */
OUTPUT(cnx) = SITEVALUE(cnx, 0); 
if (faulting) (void) flt_cn(cnx, &OUTPUT(cnx));

}
}

}
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/* Other_site_fx */

void Other_site_fx(cnl ,site_index,direc) 
enlist *cnl; 
short site_index; 
int direc;
{

int cnx, siteval, i;

if (cnl != (enlist *)NULL) { 
for (i = 0; i < cnl->numcns; i++) { 

cnx = (int)cnl->cns[i]; 
if(direc != 1) { /* make weight change while error in inval */ 

Weight_change(cnx, site_index);
}
/* weight and sum inputs be they error or output */ 
siteval = Sum_inputs(cnx, site_index); 

if (faulting) {
(void) flt_site(cnx, site_index, (short *)&siteval);
}

SITEVALUE(cnx, site_index) = siteval;
}

}

) * * * * * * * * * * * * * * * „ « * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/* Squash: applies the activation function to the */
/* output and assigns the result to the output site */

void Squash(cnl, site_index) 
enlist *cnl; 
short site_index;
{

int cnx, i;

if (cnl != (enlist *)NULL) { 
for (i = 0; i < cnl->numcns; i++) { 

cnx = cnl->cns[i];
OUTPUT(cnx) = Activate(cnx, SITEVALUE(cnx, site_index)); 
if (faulting) (void) flt_cn(cnx, &OUTPUT(cnx));

j*** * * * * * *

/* Assign_to_outsite: assign output to output site */

void Assign_to_outsite(cnl, site_index) 
enlist *cnl; 
short site_index;
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{

int cnx; 
int i;

if (cnl != (enlist *)NULL) { 
for (i = 0; i < cnl->numcns; i++) { 

cnx = cnl->cns[i];
SITEVALUE(cnx, site_index) = OUTPUT(cnx);

}

}

double dblval; 
char s[80];

dblval = SHORT_TO_DOUBLE(siteval); 
/* don’t blow up exp() */ 
if (dblval <-30) { 

retum(O);
}
if (dblval > 30) { 

retum(500);
}
dblval = 1.0/(1.0 + exp(-1.0 *dblval)); 
retum(DOUBLE_TO_SHORT(dblval));

} /* end Activate() */

/* ie- the convergence procedure that runs in the host */

#include "convergence.h"
FILE *fpcyc; /* print out cycle data to this file */
/* used to convert standard BIF vectors to floating point */ 
double dbl_err[NCNS], dbl_out[NCNS], dbl_targ[NSNS]; 
static int total_cycles = 0;

/* alf is for use in character recognition network */

/* Activate: CN activation function */

short Activate (cnx, siteval) 
int cnx; 
short siteval;

/* CONVERGENCE PROCEDURE : HOST LEVEL */

char alf[16] = {’A ’, *B\ ’C ’, ’D \  *E\ ’F \  ’G \  ’H \

/* Convergence 1: for back-prop nets. 
/* return 1 if converged, 0 if not

*/
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int Convergence 1 ()
I

int i, mark, ok = 1, maxind; 
double ferr, maxout;

/* detect if each node is within defined limits */ 
fprint(stderr, "OARGET: "); 
for(i = 0; i < numoutputs; i++) { 

dbl_targ[i] = INT_TO_DOUBLE(targetvec[i]*SCALE); 
dbl_out[i] = INT_TO_DOUBLE(outputvec[i]); 
dbl_err[i] = dbl_targ[i] - dbl_out[i]; 
errorvec[i] = DOUBLE_TO_INT(dbl_err[i]);
/* fabs() didn’t fx properly */ 
ferr = dbl_err[i];
if (ferr < 0.0) ferr = -1 * dbl_err[i]; 
if (ferr > cp.err_factor) { /* then too much error */ 

ok = 0;
}
fprintf(stderr, "%2.2f ",dbl_targ[i]);

}
/* print output vector to screen at each synch point */ 
fprint(stderr, "576UTPUT: "); 
for (i = 0; i < numoutputs; i++) { 

fprintf(stderr, "%2.2f ", dbl_out[i]);
}
if (ok) { 

maxout = dbl_out[0]; 
maxind = 0;
for (i = 1; i < numoutputs; i++) { 

if (dbl_out[i] > maxout) { 
maxout = dbl_out[i]; 
maxind = i;

total_cycles += cp.numcycles;

fprintf(stderr,"CONVERGED on %c in %d cycles, total cycles = %d0, 
alf[maxind], cp.numcycles, total_cycles); 

fpcyc = fopen("cycles", "a"); 
fprintf(fpcyc, "CONVERGED on %c in %d cycles, total cycles = %d0, 

alf[maxind], cp.numcycles, total_cycles); 
fclose(fpcyc);

}

HEADER FILES FOR USER PROCEDURES 
#if VAX
#include <stdio.h>
#endif
#include "nglob.h"
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/* ANN system calls */
extern void Send_node_output(), Send_group_output(),

Send_net_output(); 
extern void Update_node_weights(), Update_group_weights(); 
extern enlist *Get_cnlist();
/* local CN table */
extern CNentry CN[MAX_CNS];
/* used for target vector, if any */ 
extern short targetvals[MAX_CNS];
/* structure holding user-controlled simulation parameters */ 
extern cycle_params cp;
/* faulting flag */ 
extern int faulting;

/* USER MACROS */
/* for simplified access to CN table fields */
#define DELAY(cn) CN[cn].C->delay
#define HISTORY(cn) CN[cn].C->history
#define RESTPOT(cn) CN[cn].C->restpot
#define POT(cn) CN[cn].C->pot
#define STATE(cn) CN[cn].C->state
#define OUTPUT(cn) CN[cn].C->output
#define ERROR(cn) CN[cn].C->error
#define SD(cn) CN[cn].C->sd
#define SITEVALUE(cn,s) CN[cn].sites[s] .value
#define SITENLINKS(cn,s) CN[cn].sites[s].nlinks
#define LINKPTR(cn,s,l) &CN[cn].sites[s].links[l]
#define LINKVEC(cn,s,l) CN[cn].sites[s].links[l].lnkvec 
#define LINKHISTORY(cn,s,l) CN[cn].sites[s].links[l].history 
#define LINKWEIGHT(cn,s,l) CN[cn].sites[s].links[1].weight 
#define LINKINVAL(cn,s,l) CN[cn].sites[s].links[l].inval 
#define SETWTUP(cn,s,l) CN[cn].sites[s].links[l].lnkvec |=LV_WTUP

/* used to convert int fields to float and vice versa */
#define SHORT_TO_FLOAT(s) ((((float)s)/(float)SCALE))
#define FLOAT_TO_SHORT(f) ((short) (f * (float)SCALE))
#define SHORT_TO_DOUBLE(s) ((((double)s)/(double)SCALE))
#define DOUBLE_TO_SHORT(d) ((short)(d * (double)SCALE))
#define DERIV(f) (f * (1 - f))

User Accessible Data Structures

In writing the network procedure the user has access to local data structures, including 
those holding the CNs. These structures are modelled closely after the BIF format. The 
following data structures can be accessed by the user:

/* entry in local cube node CN table */ 
typedef struct {

unsigned char hn; /* hypercube node index where CN lives */
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SFWL *sites; /* array of sites belonging to this CN */
CFWN *C; /* pointer to a CN structure */

}CNentry;

CNentry CN[MAX_CNS]; /* table of local CNs */

/* a link */ 
typedef struct { 

unsigned char 
char history;
BYT4 cn; 
short site; 
short link; 
float weight; 
short inval;

}LFWI;

/* a site */ 
typedef struct {

short value; /* result of site function */
unsigned char sitevec; /* bit vector for this site */ 
short nlinks; /* number of links attached */
LFWI *links; /* pointer to links array */ 

}SFWL;

/* a CN */ 
typedef struct { 

char group;
BYT4 index; 
short procid; 
short delay; 
unsigned char 
char history; 
short restpot; 
short pot; 
char state; 
short output; 
short error; 
short sd; 
short nsites;

}CFWN;

/* struct passed to user from Get_cnlist(groupname) */ 
/* recommended that a enlist be allocated statically */ 
typedef struct {

int numens; /* number of CNs in list */
BYT4 *cns; /* list of CN indices */

} enlist;

/* group this CN belongs to */ 
/* unique CN index */

/* cube processor for CN */
/* delay of output message */ 

bitvec; /* bit vector for this CN */ 
/* recent history of CN */
/* resting potential */

/* potential */
/* current state of CN */

/* current output value */
/* error value */

/* statistical deviation */
/* number of sites on CN */

lnkvec; /* bit vector for this link */ 
/* recent history of link */
/* CN this link goes to */

/* site this link goes to */
/* link this link goes to */
/* weight value for link */

/* input value to this link */
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/* simulator’s synchronization parameters */
/* shared by both the host and nodes */
/* recommended that these not be assigned */
typedef struct { 

short global_clock, /* global simulation clock (host) */ 
local_clock, /* local simulation clock (nodes) */ 
msg_window, /* window for valid cn<->cn msgs 
synch_count, /* # of local clock cycles to run */ 
synch_point, /* global_clock + synch_count - 1 */
checkpoint; /* synch_point to break at (host) */

} cycle_params;

*/

cycle_params cp;

/* node vectors only available in the host */
int *targetvec, 

*outputvec, 
*errorvec, 
*inputvec;

/* target vector length=numoutputs */ 
/* output vector length=numoutputs */ 

/* error vector length=numoutputs */ 
/* input vector length=numinputs */

int numoutputs, /* number of output CNs 
numinputs; /* number of input CNs

*/
*/



Back-Propagation model coded in NIL for the same net in BIF

begin

inlayer([iv[l]], [sg[l],sg[2],sg[3]]) -> ([ou[l]]) 
inlayer([iv[2]], [sg[l],sg[2],sg[3]]) -> ([ou[2]]) 
inlayer([iv[3]], [sg[l],sg[2],sg[3]]) -> ([ou[3]])

hlayer([ou[l],ou[2],ou[3]], [erbk[ll],erbk[21],erbk[3I]]
:[0.3,0.01,0.2], [0.0,0.0,0.0], [0.0], [2.5], [0.1])

-> ([out[l]],[sg[l]])

hlayer([ou[l],ou[2],ou[3]], [erbk[12],erbk[22],erbk[32]]
:[0.23,0.4,0.02], [0.0,0.0,0.0], [0.0], [0.75], [0.1])

-> ([out[2]], [sg[2]])

hlayer([ou[l],ou[2],ou[3]], [erbk[13],erbk[23],erbk[33]]
:[0.21,0.31,0.02],[0.0,0.0,0.0],[0.0],[1.5],[0.1])

-> ([out[3]], [sg[3]])

oIayer([out[l],out[2],out[l]], [e op[l]],
[rcl[l]]:[0.03,0.02,0.25],[1.05],[0.1])

-> ([erbk[ll],erbk[12],erbk[13]], [result[l]])

olayer([out[l],out[2],out[3]], [e op[2]],
[rcl[l]]:[0.23,0.24,0.06],[2.65],[0.1])

-> ([erbk[21],erbk[22],erbk[23]], [result[2]])

olayer([out[l],out[2],out[3]], [e op[3]],
[rcl[l]]:[0.29,0.01,0.22],[0.15],[0.1])

-> ([erbk[31],erbk[32],erbk[33]], [result[3]])

fun inlaver(in[i], sigl[m]) -> (ip[i]) 
int i,m;
real in[2],sigl[4],ip[2];
{
in[i], sigl[l..m] => {

ip[l] := in[l];
}

}

fun hlayer(in[n], err[n] ival: w l[n], l_in[n], l_op[m], theta[m],si[m])
-> (op[m], rsig[m])

int m, n;
real in[4], err[4],vvl[5],l_in[4],l_op[2],theta[2], 
si[2],op[2],rsig[2],this_er,temp;
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{
in[1..3] => {

temp := w l[l] * in[l] + wl[2] * in[2] + wl[3]*in[3]; 
l_in[l] :=in[l];
Mn[2] := in[2]; 
l_in[3] := in[3];
l_op[l] := l/(l+exp(0- temp - theta[l])); 
op[l] := I_op[l];
}

err[1..3] => {
temp := err[l] + err[2] + err[3]; 
this_er := l_op[l] *(l-l_op[l]) * temp; 
theta[l] := theta[l] + (si[l] * this_er); 
wl[l] := w l[l] + (si[l] * this_er * l_in[l]); 
wl[2] := wl[2] + (si[l] * this_er * l_in[2]); 
wl[3] := wl[3] + (si[l] * this_er * l_in[3]); 
rsig[l] := 1;

}
}

fun olayer(in[n], exp_op[m], recall[m] ival: w2[n], theta[m], si[m]) ->
(errbk[n], out[m])

int n, m;
real in[4],exp_op[2],recall[2],w2[4],theta[2], 

si[2],errbk[4],out[2],temp, c_op,err;
{
in[l..n],exp_op[m] => {

temp := w2[l] * in[l] + w2[2] * in[2] + w2[3] * in[3]; 
c op := l/(l+exp(0-temp - theta[l]));

err := c op * (l-c_op)*(exp_op[l] - c_op); 
thetafl] := theta[l] + (si[l] * err);

\v2[l] := w2[l] + (si[I] * err * in[l]); 
vv2[2] := w2[2] + (si[ 1] * err * in[2]); 
vv2[3] := w2[3] + (si[ 1 ] * err * in[3]); 
errbk[l] := err * w2[l]; 
errbk[2] := err * vv2[2]; 
errbk[3] := err * vv2[3];

}

in[l..n], recallfl] => {
temp := \v2[l] * inf 1] + w2[2] * in[2] + vv2[3] * in[3]; 
out[l] := l/(l+exp(0-temp - thetafl]));
}

}
begin 
int p,i;
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real wl,w2,w3,theta;
real data[5:5],ex_op[5:5],sg[4], rcl[2],yl,y2,y3; 
data[ 1:1 ] := 1.0; data[l:2] := 1.0; data[l:3 ] := 1.0; 
ex_op[l:l] := 1.0; ex_op[l:2] := 0.0; ex_op[l:3] := 1.0;

data[2 :l] := 0.0; data[2:2] := 1.0; data[2:3] := 1.0; 
ex_op[2:l] := 1.0; ex_op[2:2] := 1.0; ex_op[2:3] := 0.0;

data[3 :l] := 1.0; data[3:2] := 0.0; data[3:3] := 1.0; 
ex_op[3:l] := 0.0; ex_op[3:2] := 1.0; ex_op[3:3] := 1.0;

input sg[l] = 1.0, 
sg[2] = 1.0, 
sg[3] = 1.0; 

i := 1;
do (i<=3000) ->

P := l;
do (p <= 3) ->

input iv[l] = data[p :l], 
iv[2] = data[p:2], 
iv[3] = data[p:3], 
e_op[l] = ex_op[p:l], 
e_op[2] = ex_op[p:2], 
e_op[3] = ex_op[p:3]; 
run_net;

p := p + 1;
od
i := i + 1; 
od

o u tp u t" "; 
output "RESU LTS";

output "NODE = 4"; 
getvvt \vl = nde[4].\vl[l], 

w2 = nde[4].\vl[2], 
w3 = nde[4].\vl[3], 
theta = nde[4].theta[l]; 

output " w l = " ,w l ;  
output " \v2 = ", \v2; 
output " vv3 = ", \v3; 
output " theta = ", theta;

output "NODE = 5"; 
getwt w l = nde[5].vvl[l], 

w2 = nde[5].wl[2], 
vv3 = nde[5].wl[3],
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theta = nde[5].theta[l]; 
output " w l  = ” , w l; 
output " w2 = ” ,w 2; 
output " vv3 = ” , w3; 
output ” theta = ", theta;

output "NODE = 6"; 
getwt w l = nde[6].w l[l], 

vv2 = nde[6].wl[2], 
w3 = nde[6].wl[3], 
theta = nde[6].theta[l]; 

output " w l = ", w l; 
output " w2 = ", w2; 
output " w3 = " ,w 3; 
o u tp u t"  theta = " , theta;

output "NODE = 7"; 
getwt w l = nde[7].w2[l], 

w2 = nde[7].w2[2], 
w3 = nde[7].w2[3], 
theta = nde[7].theta[l]; 

output " w l = ", w l; 
output " w2 = ", w2; 
output " w3 = " , w3; 
output " theta = ", theta;

output "NODE = 8"; 
getwt w l = nde[8].w2[l], 

w2 = nde[8].w2[2], 
w3 = nde[8].w2[3], 
theta = nde[8].theta[l]; 

output " w l  = " ,w l ;  
output " w2 = ", vv2; 
output " vv3 = ", w3; 
output " theta = ", theta;

output "NODE = 9"; 
getwt w l = nde[9].w2[l], 

w2 = nde[9].w2[2], 
w3 = nde[9].w2[3], 
theta = nde[9].theta[l]; 

output " w l = ", w l; 
output " w2 = ", w2; 
output " w3 = ", vv3; 
o u tp u t"  theta = ", theta;



P := 1; 
do (p <= 3) ->

input iv[l] = data[p: 1 ], 
iv[2] = data[p:2], 
iv[3] = data[p:3], 
rcl[l] = 1.0; 
runnet;
get y l = result[l], 

y2 = result[2], 
y3 = result[3];

output" "; 
output data[p:l], 
output data[p:2], 
output data[p:3], 
output" ";

input sg[l] = 1.0, 
sg[2] = 1.0, 
sg[3] = 1.0;

p := p+ 1; 
od

end 
end.

The initial weights(Tables 25 and 26) and the output produced by the program

Weights Node 4 Node 5 Node 6

wl 0.30000 0.23000 0.21000

w2 0.01000 0.40000 0.31000

w3 0.20000 0.02000 0.02000

theta 2.50000 0.75000 1.50000

TABLE 25. Weights for Nodes in Hidden Layer

",ex_op[p:l],
f\ex_op[p:2],
”,ex_op[p:3],

==> ’\y i ;  
==> ">y2; 
==> '\y3;
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Weights Node 7 Node 8 Node 9

wl 0.03000 0.23000 0.29000

w2 0.02000 0.24000 0.01000

w3 0.25000 0.06000 0.22000

theta 1.05000 2.65000 0.15000

TABLE 26. Weights for Nodes in O utput Layer

RESULTS

NODE = 4 
w l = 1.524359
vv2 = -2.262244 
w3 = -1.061634 
theta = 1.238360

NODE = 5 
wl = -0.494916 
w2 = 5.112295 
w3 = -1.363389 
theta = -0.633388

NODE = 6 

wl = 5.409690 
w2 = -0.850357 

w3 = -1.619321 

theta = -0.139319

N O D E = 7  

wl  = -2.103633 

w2 = 4.363748 

w3 = -1.883630 

theta = 0.319483

NODE = 8



w l = 0.959008 
w2 = -3.634852 

w3 = -4.151572 

theta = 5.411319

NODE = 9 

w l = 1.955741 
w2 = -2.039612 

w3 = 4.647953 

theta = -0.855688

INPUT EXPECTED

1.000000:: 1.000000 ==>  

1.000000:: 0.000000 ==> 

1.000000:: 1.000000 ==>

0.000000 :: 1.000000 ==>

1.000000:: 1.000000 ==>

1.000000:: 0.000000 ==>

RESULT

0.949730
0.176193
0.911751

0.982998
0.852229
0.093310

1.000000 :: 0.000000 ==> 0.061869 
0.000000:: 1.000000 ==> 0.869661 
1.000000:: 1.000000 ==> 0.994362



APPENDIX D - Sample Output from the Compiler

- OUTPUT FROM COMPILER. -

nodeid = 1 nodename = inlayer

namel = * index I = 1 name 2 = i index2 = 1 foiminpar = in

index 1 = 1 index2 = 1 aclinpar =iv[l] status =3 value =0.000000
namel = * index 1 = 1 name2 = m index2 = 3 forminpar = sigl

index 1 = 1 index2 = 1 aclinpar =sg[l] status =3 value =0.000000
index 1 = 1 index2 = 2 aclinpar =sg[2] status =3 value =0.000000
index 1 = 1 index2 = 3 aclinpar =sg[3] status =3 value =0.000000
namel = * index 1 = 1 name2= i index2 = 1 formoupar = ip 
indexl = 1 index2 = 1 acloupar =ou[l] status =3 value =0.000000

nodeid = 2 nodename = inlayer

namel = * indexl = 1 name2 = i Lndex2 = 1 forminpar = in 
indexl = 1 index2 = 1 aclinpar =iv[2] status =3 value =0.000000 
namel = * indexl = 1 name2 = m index2 = 3 forminpar = sigl 

indexl = 1 index2 = 1 aclinpar =sg[l] status =3 value =0.000000 
indexl = 1 index2 = 2 aclinpar =sg[2] status =3 value =0.000000 

indexl = 1 index2 = 3 aclinpar =sg[3] status =3 value =0.000000 
namel = * indexl = 1 name2= i index2 = 1 formoupar = ip 

indexl = 1 index2 = 1 acloupar =ou[2] status =3 value =0.000000

nodeid = 3 nodename = inlayer

namel = * indexl = 1 name2 = i index2 = 1 forminpar = in 

indexl = 1 index2 = 1 aclinpar =iv[3] status =3 value =0.000000 
namel = * indexl = 1 name2 = m index2 = 3 forminpar = sigl 

indexl = 1 index2 = 1 aclinpar =sg[l] status =3 value =0.000000 
indexl = 1 index2 = 2 aclinpar =sg[2] status =3 value =0.000000
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indexl = 1 index2 = 3 aclinpar =sg[3] status =3 value =0.000000 
namel = * indexl = 1 name2= i index2 = 1 formoupar = ip

indexl = 1 index2 = 1 acloupar =ou[3] status =3 value =0.000000

nodeid = 4 nodename = hlayer

namel = * indexl = 1 name2 = n index2 = 3 forminpar = in

indexl = 1 index2 = 1 aclinpar =ou[l] status =3 value =0.000000
indexl = 1 index2 = 2 aclinpar =ou[2] status =3 value =0.000000

indexl = 1 index2 = 3 aclinpar =ou[3] status =3 value =0.000000
namel = * indexl = 1 name2 = n index2 = 3 forminpar = err

indexl = 1 index2 = 1 aclinpar =erbk[l 1] status =3 value =0.000000
indexl = 1 index2 = 2 aclinpar =erbk[21] status =3 value =0.000000
indexl = 1 index2 = 3 aclinpar =erbk[31] status =3 value =0.000000
namel= * indexl = 1 name2=n index2 = 3 wts_indx->formwtpar = w l 
indexl = 1 index2 = 1 value =0.300000 
indexl = 1 index2 = 2 value =0.010000 
indexl = 1 index2 = 3 value =0.200000
namel= * indexl = 1 name2=n Lndex2 = 3 wts_indx->formwtpar = l_in 

indexl = 1 index2 = 1 value =0.000000 
indexl = 1 index2 = 2 value =0.000000 
indexl = 1 index2 = 3 value =0.000000
namel= * indexl = 1 name2=m index2 = 1 wts_indx->formwtpar = l op 
indexl = 1 index2 = 1 value =0.000000
namel= * indexl = 1 name2=m index2 = 1 wts_indx->formwtpar = theta 
indexl = 1 index2 = 1 value =2.500000

namel= * indexl = 1 name2=m index2 = 1 wts_indx->formwtpar = si 
indexl = 1 index2 = 1 value =0.100000 
namel = * indexl = 1 name2= m index2 = 1 formoupar = op 

indexl = 1 index2 = 1 acloupar =out[l] status =3 value =0.000000 

namel = * indexl = 1 name2= m index2 = 1 formoupar = rsig 

indexl = 1 index2 = 1 acloupar =sg[l] status =3 value =0.000000

nodeid = 5 nodename = hlayer

namel = * indexl = 1 name2 = n index2 = 3 forminpar = in 
indexl = 1 index2 = 1 aclinpar =ou[l] status =3 value =0.000000

Page 164



index 1 = 1 index2 = 2 aclinpar =ou[2] status =3 value =0.000000 
index 1 = 1 index2 = 3 aclinpar =ou[3] status =3 value =0.000000 
namel = * index 1 = 1 name2 = n index2 = 3 forminpar = err 

index 1 = 1 index2 = 1 aclinpar =erbk[12] status =3 value =0.000000 

index 1 = 1 index2 = 2 aclinpar =erbk[22] status =3 value =0.000000 

index 1 = 1 index2 = 3 aclinpar =erbk[32] status =3 value =0.000000 
namel= * index 1 = 1 name2=n index2 = 3 wts_indx->formwtpar = w l 

index 1 = 1 index2 = 1 value =0.230000 

index 1 = 1 index2 = 2 value =0.400000 

index 1 = 1 index2 = 3 value =0.020000
namel= * index 1 = 1 name2=n index2 = 3 wts_indx->formwtpar = l_in 

index 1 = 1 index2 = 1 value =0.000000 

index 1 = 1 index2 = 2 value =0.000000 
index 1 = 1 index2 = 3 value =0.000000
namel= * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = l op 
index 1 = 1 index2 = 1 value =0.000000
namel= * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = theta 
index 1 = 1 index2 = 1 value =0.750000
namel= * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = si 

index 1 = 1 index2 = 1 value =0.100000 
namel = * index 1 = 1 name2= m index2 = 1 formoupar = op 
index 1 = 1 index2 = 1 acloupar =out[2] status =3 value =0.000000 
namel = * index 1 = 1 name2= m index2 = 1 formoupar = rsig
index 1 = 1 index2 = 1 acloupar =sg[2] status =3 value =0.000000

nodeid = 6 nodename = hlayer

namel = * index 1 = 1 name2 = n index2 = 3 forminpar = in

index 1 = 1 index2 = 1 aclinpar =ou[l] status =3 value =0.000000

index 1 = 1 index2 = 2 aclinpar =ou[2] status =3 value =0.000000

index 1 = 1 index2 = 3 aclinpar =ou[3] status =3 value =0.000000
namel = * index 1 = 1 name2 = n index2 = 3 forminpar = err 

index 1 = 1 index2 = 1 aclinpar =erbk[13] status =3 value =0.000000 
index 1 = 1 index2 = 2 aclinpar =erbk[23] status =3 value =0.000000 

index 1 = 1 index2 = 3 aclinpar =erbk[33] status =3 value =0.000000 
namel= * index 1 = 1 name2=n index2 = 3 wts_indx->formwtpar = w l 

indexl = 1 index2 = 1 value =0.210000



5x1 = 1 index2 = 2 value =0.310000 
5x1 = 1 index2 = 3 value =0.020000

iel=  * index 1 = 1 name2=n index2 = 3 wts_indx->formwtpar = l_in 

5x1 = 1 index2 = 1 value =0.000000 

5x1 = 1 index2 = 2 value =0.000000 

5x1 = 1 index2 = 3 value =0.000000

iel=  * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = l_op 

jxl = 1 index2 = 1 value =0.000000

iel= * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = theta 

5x1 = 1 index2 = 1 value =1.500000

iel=  * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = si
5x1 = 1 index2 = 1 value =0.100000
lel = * index 1 = 1 name2= m index2 = 1 formoupar = op

jxl = 1 index2 = 1 acloupar =out[3] status =3 value =0.000000
lel = * index 1 = 1 name2= m index2 = 1 formoupar = rsig

5x1 = 1 index2 = 1 acloupar =sg[3] status =3 value =0.000000

eid = 7 nodename = olayer

lel = * index 1 = 1 name2 = n index2 = 3 forminpar = in 
5x1 = 1 index2 = 1 aclinpar =out[l] status =3 value =0.000000
5x1 = 1 index2 = 2 aclinpar =out[2] status =3 value =0.000000
5x1 = 1 index2 = 3 aclinpar =out[l] status =3 value =0.000000
lel = * index 1 = 1 name2 = m index2 = 1 forminpar = exp_op

5x1 = 1 index2 = 1 aclinpar =e_op[l] status =3 value =0.000000 

lel = * index 1 = 1 name2 = m index2 = 1 forminpar = recall 

5x1 = 1 index2 = 1 aclinpar =rcl[l] status =3 value =0.000000 
iel= * index 1 = 1 name2=n index2 = 3 wts_indx->formwtpar = w2 

5x1 = 1 index2 = 1 value =0.030000 

5x1 = 1 index2 = 2 value =0.020000 

5x1 = 1 index2 = 3 value =0.250000

iel= * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = theta 

5x1 = 1 index2 = 1 value =1.050000

iel= * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = si

5x1 = 1 index2 = 1 value =0.100000

lel = * index 1 = 1 name2= n index2 = 3 formoupar = errbk

5x1 = 1 index2 = 1 acloupar =erbk[ll] status =3 value =0.000000
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index 1 = 1 index2 = 2 acloupar =erbk[12] status =3 value =0.000000 

indexl = 1 index2 = 3 acloupar =erbk[13] status =3 value =0.000000 
namel = * indexl = 1 name2= m index2 = 1 formoupar = out 

indexl = 1 index2 = 1 acloupar =result[l] status =3 value =0.000000

nodeid = 8 nodename = olayer

namel = * indexl = 1 name2 = n index2 = 3 forminpar = in 

indexl = 1 index2 = 1 aclinpar =out[l] status =3 value =0.000000 

indexl = 1 index2 = 2 aclinpar =out[2] status =3 value =0.000000 

indexl = 1 index2 = 3 aclinpar =out[3] status =3 value =0.000000 
namel = * indexl = 1 name2 = m index2 = 1 forminpar = exp op 

indexl = 1 index2 = 1 aclinpar =e_op[2] status =3 value =0.000000 
namel = * indexl = 1 name2 = m index2 = 1 forminpar = recall 

indexl = 1 index2 = 1 aclinpar =rcl[l] status =3 value =0.000000 
namel= * indexl = 1 name2=n index2 = 3 wts_indx->formwtpar = w2 
indexl = 1 index2 = 1 value =0.230000 
indexl = 1 index2 = 2 value =0.240000 
indexl = 1 index2 = 3 value =0.060000
namel= * indexl = 1 name2=m index2 = 1 wts_indx->formwtpar = theta 
indexl = 1 index2 = 1 value =2.650000
namel= * indexl = 1 name2=m index2 = 1 wts_indx->formwtpar = si 
indexl = 1 index2 = 1 value =0.100000 
namel = * indexl = 1 name2= n index2 = 3 formoupar = errbk 

indexl = 1 index2 = 1 acloupar =erbk[21] status =3 value =0.000000 
indexl = 1 index2 = 2 acloupar =erbk[22] status =3 value =0.000000 

indexl = 1 index2 = 3 acloupar =erbk[23] status =3 value =0.000000 
namel = * indexl = 1 name2= m index2 = 1 formoupar = out 

indexl = 1 index2 = 1 acloupar =result[2] status =3 value =0.000000

nodeid = 9 nodename = olayer

namel = * indexl = 1 name2 = n index2 = 3 forminpar = in

indexl = 1 index2 = 1 aclinpar =out[l] status =3 value =0.000000
indexl = 1 index2 = 2 aclinpar =out[2] status =3 value =0.000000

indexl = 1 index2 = 3 aclinpar =out[3] status =3 value =0.000000
namel = * indexl = 1 name2 = m index2 = 1 forminpar = exp op



indexl = 1 index2 = 1 aclinpar =e_op[3] status =3 value =0.000000 
namel = * indexl = 1 name2 = m index2 = 1 forminpar = recall 

indexl = 1 index2 = 1 aclinpar =rcl[l] status =3 value =0.000000 
namel= * indexl = 1 name2=n index2 = 3 wts_indx->formwtpar = w2 

indexl = 1 index2 = 1 value =0.290000 

indexl = 1 index2 = 2 value =0.010000 

indexl = 1 index2 = 3 value =0.220000
namel= * indexl = 1 name2=m index2 = 1 wts_indx->formwtpar = theta 

indexl = 1 index2 = 1 value =0.150000

namel= * indexl = 1 name2=m index2 = 1 wts_indx->formwtpar = si 

indexl = 1 index2 = 1 value =0.100000 
namel = * indexl = 1 name2= n index2 = 3 formoupar = errbk 

indexl = 1 index2 = 1 acloupar =erbk[31] status =3 value =0.000000 
indexl = 1 index2 = 2 acloupar =erbk[32] status =3 value =0.000000 
indexl = 1 index2 = 3 acloupar =erbk[33] status =3 value =0.000000 
namel = * indexl = 1 name2= m index2 = 1 formoupar = out 
indexl = 1 index2 = 1 acloupar =result[3] status =3 value =0.000000

DONE
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APPENDIX E - C Representation of the Virtual Machine

/* input vector */

typedef struct invect {
int iaindxl; /*row */

int iaindx2; /*col*/

char *acdinpar; /* actual parameter name */

int status;
float value;
struct invect *nxtiput;

} invect;

/* output vector */

typedef struct ouvect { 
int oaindxl; 
int oaindx2; 
char *actloupar; 
int status; 
float value; 
struct ouvect *nxtoput;
} ouvect;

/* weight vector */

typedef struct wtvect { 
int waindxl; 

int waindx2; 

float value; 
struct wtvect *nxtwt;

} wtvect;
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/* input vector list */

typedef struct inp_indx {

char *dimnamel; /* subscript name */ 
int invl_numl; /* index value */ 

char *dimname2; 

int invl_num2;

char *forminpar; /* formal para name */ 

invect *inlst;
struct inp_indx *nxt_i_indx;
} inp_indx;

/* weight vector list */

typedef struct wts_indx { 

char *dimnamel; 
int wtvl_numl; 
char *dimname2; 
int wtvl_num2; 
char *formwtpar; 
wtvect *wtlst;
struct wts_indx *nxt_w_indx;
} wts_indx;

/* output vector list */

typedef struct oup_indx { 

char *dimnamel; 
int ouvl_numl; 

char *dimname2; 
int ouvl_num2; 

char *formoupar; 

ouvect *oulst;
struct oup_indx *nxt_o_indx;

} oup_indx;



/* a node */

typedef struct nodei_o {

int nodeid; /* node id */ 
char *fname; /* function name */ 

inp_indx *inv_ptr; /* ptr to input vector list */ 

wts_indx *wts_ptr; /* ptr to weight vector list */

oup_indx *oup_ptr; /* ptr to output vector list */

struct nodei_o *nxtnde; /* ptr to next node */

} nodei_o;
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