
Neural Network Programming
and

Portability

Arum ugam Siri Bavan

A thesis submitted for the degree of

Doctor of Philosophy

of the

University of London

D epartm ent o f Com puter Science

University College London

August 1991

ProQuest Number: 10609979

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10609979

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

ABSTRACT

Artificial neural networks, inspired by the neural structure of the brain, is a
rapidly expanding field of research based on algorithms to solve a wide spectrum of tasks
including speech recognition, image processing, planning, optimisation and other pattern
processing tasks. Although a growing number of neural models have been developed to
support a variety of applications, neural network programming is still mainly done using
conventional languages.

This thesis investigates the problems concerned with the programming of neural
network models and their portability. The main goal of this thesis is to propose and
develop a programming system that can facilitate the implementation of a range of neural
network models on a range of hardware. This led to the design and implementation of a
programming system called NPS, and a specialised neural network implementation
language called NIL. NIL, which forms the neucleus of the programming system NPS, is
a low level, machine independent network specification language designed to map a
spectrum of neural models onto a range of architectures and thus supporting portability.

The neural network programming system NPS provides the user with a system
consisting of:

• A programming language, NIL, to specify network models.

• A utility, to save partially trained networks for further training.

• Libraries o f functions and algorithms, to aid the network construction and the
execution of standard models.

The neural network programming language NIL consists of two major components:

• A network implementation sub-language, which provides mechanisms for
specifying the functions of the nodes and the interconnection topology of the
network.

• A manipulation sub-language, which provides interactive control and
modification facilities for use during the training and the recall phase of the
network.

These sub-languages together produce a low level, machine independent network
specification language that can be used to port neural network models.

Chapter 1 introduces the thesis and the background concepts, namely, neural
networks, and programming systems for neural networks. In chapter 2, a survey of
neural network programming systems is presented. In chapter 3, the proposed NPS
programming system is presented. In chapter 4, a detailed description of the NIL
language is presented. In chapter 5, implementation details of the NPS and NIL is
presented. In chapter 6 , an assessment of NPS and NIL is presented. Finally in chapter 7,
conclusions are drawn and future work is discussed.

To My Parents

Acknowledgements

The completion of this work owes much to many people. Firstly, I would like to
express my gratitude to my supervisor - Prof. Philip Treleaven - for his guidance,
constructive criticism, and help throughout the duration of this research. Secondly, I
would like to thank my second supervisor - Dr. M Lee - for his support and advice during
this research.

I also acknowledge my colleagues in the Computer Science Department at
University College London for their advice and constructive criticism. Especially, I wish
to thank Marco Pacheco, Dr. Andrew Eliasz, and Dr. Chang Wang for reading the earlier
versions of this thesis and making positive suggestions.

I am very much indebted to Science and Engineering Research Council (SERC)
for their financial support during the first two years of this research project. I am also
grateful to my research tutors - Charles Easteal and Dr. Russel Winder - and the
Department of Computer Science at University College for the support and generosity
shown towards me.

Finally, I wish to thank Vijaya and both my sons, Selvan and Luckshman for
allowing this thesis to dominate our lives for so long.

CONTENTS

1. I n t r o d u c t io n .. 1

1.1 Neural C o m p u tin g ... 3

1.1.1 Artificial Neural Networks .. 4

1.1.2 Neural Network M o d e l s ... 7
1.2 Programming Systems for Neural Network .. 9

1.2.1 P o r t a b i l i t y ... 11
1.2.2 Programmability ... 12

1.3 Aims and Background to R e s e a r c h .. 13
1.3.1 NPS and NIL ... 14

1.4 Outline of the T h e s i s ... 18

2. Neural Network Programming S y s te m s ... 19
2.1 Classification of Neural Network Programming Systems 20

2.1.1 Educational s y s t e m s ... 20
2.1.2 Research s y s t e m s ... 22

2.1.3 Commercial s y s t e m s ... 31
2.2 A s s e s s m e n t.. 36

3. The Neural Network Programming System, N P S .. 39
3.1 The Implemented S y s te m ... 44

4. The Network Implementation Language, N I L .. 50

4.1 Motivations and R e q u i r e m e n ts .. 50
4.2 K e y w o r d s ... 53

4.3 Brackets and S e p a r a t o r s ... 53

4.4 Constant-Valued T o k e n s ... 53
4.5 Syntax and T y p in g ... 54

4.6 A Network Implementation Language - N I L .. 54

4.6.1 The Network Specification S u b -L an g u ag e ... 55

4.6.1.1 Link S ta te m e n ts ... 55

4.6.1.2 Definition of f u n c t io n s ... 59
4.6.1.3 Output From C o m p ila tio n ... 64

4.6.2 Manipulation S u b -L a n g u ag e .. 64

4.6.2.1 Reading Status and L i n k s ... 65

4.6.2.2 Reading Inputs from Nodes ... 6 6

4.6.2.3 Reading Data from a F i l e ... 67

4.6.2.4 Creation and Deletion of L i n k s .. 67
4.6.2.5 Loading Initial Values on to the Input Links 68

4.6.2.6 Outputting R e s u l t s .. 68

4.6.2.7 Feeding New In fo rm a tio n .. 69

4.6.2.8 Deleting and Creating N o d e s ... 69
4.6.2.9 Saving and Reloading N e t w o r k ... 70

4.6.2.10 Executing the N e tw o rk .. 70

4.6.2.11 Stopping and S t a r t i n g .. 71

4.6.2.12 Loops and C o n d i t io n s .. 71

4.7 Semantic Properties .. 71

5. Implementation of NPS and N I L .. 72

5.1 Implementation of N I L ... 73
5.2 The NIL Translator ... 73

5.2.1 The Virtual (C-Machine) M a c h i n e .. 74
5.2.2 The Implementation of the Manipulation P a r t 77

5.3 The Prototype C o m p i l e r ... 78
5.3.1 Data Structures for U C L -N eu ro co m p u te r... 79

5.4 Implementation of N P S .. 81

6 . Assessment of NPS and N I L ... 83
6.1 Assessment of N I L ... 83

6.1.1 Programmability ... 84
6 .1.1.1 Specification of Models.. 84
6 .1.1.2 Dynamic Properties of NIL .. 94

6.1.1.3 NIL as an Intermediate Language and its
R e u s a b i l i t y .. 94

6 .1.1.4 Comparison with another Language in its

C l a s s ... 96

6.1.2 P o r t a b i l i t y ...100

6 .1.2.1 Target machine independence .. 100

6 .1.2.2 Occam and N I L ...100
6 .1.2.3 Translating high level languages into N I L 102

6.2 Assessment of NPS ...114

6.2.1 Programmability ..114

- ii -

6.2.1.1 U s a b i l i ty ... 114

6.2.1.2 F a c i l i t i e s ... 115
6.2.1.3 S im p lic ity ... 116

6.2.2 P o r t a b i l i t y ...116

7. S u m m a ry .. 117

7.1 C o n tr ib u t io n s .. 118

7.1.1 P o r t a b i l i t y ... 118
7.1.2 Programmability ... 118

7.2 Future W o rk .. 119

R E F E R E N C E S ..122

APPENDIX A - Syntax Definition of N I L ..127

APPENDIX B - Sample NIL P r o g r a m s ... 130

APPENDIX C - Comparison of NIL with B I F ..147

APPENDIX D - Sample Output from the C o m p i l e r .. 163

APPENDIX E - C Representation of the Virtual Machine ...169

APPENDIX F - Published W o rk s ... 172

- iii -

U ST OF FIGURES

Figure 1. Idealized View of a Biological Neuron ... 3

Figure 2. Typical Artificial N e u ro n .. 5

Figure 3. Artificial Neural Network .. 6

Figure 4. A Simplified View of Network Programming 9

Figure 5. A Generalised Neural Network Programming System 10

Figure 6 . Neural Network Programming System, NPS 15

Figure 7. A Typical Development Process in ANNE 26

Figure 8 . SFINX Environment 28

Figure 9. CONE System 29

Figure 10. Neural Network Programming System, NPS 40

Figure 11. The Implemented System ... 45

Figure 12. UCL Neurocomputer ... 47

Figure 13. UCL N e u ro -C h ip ... 48

Figure 14. A Simple Network 56

Figure 15. Sequential Replication 56

Figure 16. Parallel Replication 57

- iv -

Figure 17. A Regular Network 58

Figure 18. The Computational Model 60

Figure 19. NIL Translator .. 75

Figure 20. The C-Machine .. 76

Figure 21. A Node 76

Figure 22. An I/O Vector 76

Figure 23. Elements of an I/O Vector 77

Figure 24. The Prototype Compiler 78

Figure 25. Structure of a Node Program .. 79

Figure 26. Organisation of the Input Data 80

Figure 27. Organisation of the Output Data 81

Figure 28. Hebb/Hopfield Network 85

Figure 29. Exclusive OR Network 90

Figure 30. Kohonen’s Feature Map 92

Figure 31. An Object-Oriented Model for a N o d e ...120

- v -

LIST OF TABLES

TABLE I. A Classification of Neural Network M o d e ls .. 7

TABLE 2. Educational N N P S s ... 21

TABLE 3. Research N N P S s ... 23

TABLE 4. Commercial N N P S s ... 32

TABLE 5. K e y w o rd s ... 53

TABLE 6 . Initial W e i g h t s ... 88

TABLE 7. Weights for Nodes in Hidden and Output L a y e r s 91

TABLE 8 . Model_Names Table ... 108

TABLE 9. Network Layers for Model 1 ... 108

TABLE 10. Node Interface for Type I n p u t ... 108

TABLE 11. Node Interface for Type H i d d e n ..109

TABLE 12. Node Interface for Type O u t p u t ..109

TABLE 13. Node_l [1] - Node 1 of Layer 1 ..109

TABLE 14. Node_l [2] - Node 2 of Layer 1 ..110

TABLE 15. Node_l [3] - Node 3 of Layer 1 .. 110

TABLE 16. Node_2[l] - Node 1 of Layer 2 .. 110

- vi -

TABLE 17. Node_2[2] - Node 2 of Layer 2 ... I l l

TABLE 18. Node_2[3] - Node 3 of Layer 2 ... I l l

TABLE 19. Node_3[l] - Node 1 of Layer 3 ... 112

TABLE 20. Node_3[2] - Node 2 of Layer 3 ... 112

TABLE 21. Node_3[3] - Node 3 of Layer 3 ... 112

TABLE 22. Node_2[l] - Node 1 of Layer 2 ... 113

TABLE 23. Node_2[2] - Node 2 o f Layer 2 ... 113

TABLE 24. Node_2[3] - Node 3 of Layer 2 ... 114

TABLE 25. Weights for Nodes in Hidden L a y e r ..160

TABLE 26. Weights for Nodes in Output L a y e r ..161

- vii -

Chapter 1

This chapter introduces the research work conducted and the important background

concepts. These include an introduction to neural computing, and an investigation o f
programming and portability o f neural network models and applications.

1. Introduction

The work described in this thesis represents a precursor of the PYGMALION

project [Ange89] funded by ESPRIT II (project 2059) to build a general purpose
neurocomputing platform (both programming environment and hardware).

PYGMALION is a collaboration of major industrial and academic partners in Europe to
produce a number of applications, a programming environment and hardware to promote
the exploitation of neural network technology.

Typically a neural network programming system consists of an integrated set of
software and hardware tools for specifying and executing neural network models and
applications. The major components of a typical system are:

• an algorithms library of common neural network models;

• a special purpose high level language for programming network algorithms and
applications;

• a graphic monitor for interactively building and controlling a network.

For programming neural networks, many current neural network programming

systems provide a specialised language. These languages are usually very high level,
often object oriented and with a C or Pascal syntax [Anza87, Guts8 8 , Ange8 8] together
with data types and functions specifically for neural networks. These high level

languages are good for programming neural network applications, but frequently their

portability is limited to a few machines due to the complexity of writing translators. In

addition, these languages often do not have the explicit constructs or the structural

features (such as explicit connectivity, parallel control, and specialised data structures)

which are necessary for the efficient mapping of algorithms on parallel hardware.

For portability, certain systems like Neuralworks Professional II [K0 I0 8 8] tackles

the problem of portability by translating the neural networks specified in high level form
into C code. This is a pragmatic approach and is useful for conventional machines as

most machines support a C compiler. However, for parallel machines this C code is not

Page 1

particularly useful since C is a sequential language and hence will require excessive
overheads to isolate codes that can be executed in parallel. This is due to the lack of

explicit parallel control constructs or explicit parallel structure defining connectivity

which are essential for isolating components that can be distributed and executed in

parallel.

What we believe is required is a language with the following features:

1. Programmability: It must be general enough to be able to capture the

features of a range of neural (and semantic) network models. That is, it

must be model independent. It must be a readable language so that the

specification and testing of these models is easy. It must be based on a
simple and general syntax and semantics so that complex models can be

easily supported.

2. Portability: It must be based on simple syntax and semantics so that it can
be used as a low level target language for higher level neural
programming languages. By this, we mean that it should be almost at the
same level as OCCAM to capture the general features of sequential and
parallel machines and hence support portability. This also implies that it
must be simple to translate into assemblers of a range of machines. This
language should either have explicit parallel constmcts or features such as

explicit connectivity and structure to support parallelism.
To put it more broadly, what we need is a language which is:

1. readable and expressive enough to be a programming language for

implementing neural network models and applications;

2 . simple and low level enough to be easily translated for a range of

hardware;

3. simple and general enough to be a target language for higher level

languages.

This thesis investigates the program m ability and portability of neural network
models and their applications. Our main goal is to design and implement a neural

network implementation language that can be both portable and programmable. In order
to demonstrate the feasibility of our solution, that is, to demonstrate the capabilities of

the language we use a simplified version of a programming system called NPS. The main
purpose in designing and implementing NPS is to use it as a test-bed for assessing the

network implementation language NIL. Although, NPS, contributes to programmability

Page 2

by providing a number of support tools, it is NIL which tries to facilitate the

programming of a range of neural network algorithms and mapping of these algorithms

on a range of hardware.

Having briefly stated the motivations and the goals of this thesis, the next section

introduces the reader to neural computing as a prelude to subsequent sections which deal

with programming systems for neural networks, and the aims and background of this

research.

1.1 Neural Com puting

Since the motivation for neural computing is biological neural networks, it is

useful to review the properties of biological neural networks before introducing artificial

neural networks. The brain deals with pattern matching and pattern manipulation with

ease and efficiency that no electronic computer of the present generation can match. The
brain performs these tasks not through a more powerful computational device in a
sequential fashion but in a parallel fashion using a large network of much slower
primitive devices called neurons (or nerve cells). The brain is believed to be organised in
a hierarchy with successively higher layers performing more complex and abstract
operations on the input data. Each layer performs its processing of the input data before
passing the result up to the next layer.

The neurons are the "processing elements" of the brain. The human neocortex
contains over 10 billion neurons with each neuron connected to thousands of other
neurons. The brain contains a vast number of different types of neurons each with

slightly differing structure and properties [Shep79].

Dendrites

Inputs

Summer

Figure 1 shows a "biological" neuron which has:

• several dendrites, which receive input from other neurons;

Soma

>ses

Axon

Threshold
Output

Figure 1. Idealized View of a Biological Neuron

Page 3

• a cell body, called the soma, which performs some processing (typically a
threshold summation) on the information collected by the dendrites;

• a single axon which outputs the processed information, usually by the

propagation of a "spike" or action potential. The axon splits into various

branches that make synapses onto the dendrites and cell bodies of other neurons.

Artificial neural network modelling started in the early 1940s by Professor

Warren McCulloch and Dr Walter Pitts [Rum86b]. This initial work on neural network

modelling was given a significant encouragement in 1949 when Donald Hebb [Hebb49],

published a paper postulating that learning in the brain may be achieved through the
changing of the strength of these synaptic junctions. Specifically the more a particular

synapse is used or activated, the stronger that connection becomes. This is termed
synaptic facilitation. As a result, a particular pattern, once established and learnt, can

easily be refreshed in the future. It is this general principle that is the basis of artificial
neural networks.

In 1957 Rosenblatt created a neural model called the perceptron [Rum86b] which
showed remarkable promise as a computing device. The perceptron brought many
people into the field of neural networks and generated great enthusiasm, until in 1969
Minsky and Papert published a book [Mins69] that showed the inadequacies of the
perceptron. They were so convincing that the research into neural computing slumped
markedly, until in 1980 Hopfield produced a paper [Hopf82] that showed the potentials
of the collective computational abilities of neural networks. Since then research into
neural networks has expanded rapidly. During the past few years, there has been a great
deal of research into computational models which are inspired by the brain to deal with
pattern recognition problems. These models are simply known as neural models and have

been used in a number of applications with reasonable degree of success. However, there

is a great deal to be learnt about the real neural model in order to be able to produce a
more efficient and meaningful model that can be nearly as good as the original one.

In the next section a brief introduction to artificial neural networks is presented

which is followed by an overview of the common models and their properties. This is

done so in order to give a clear view of the type of processing that is required by a neural
network programming system.

1.1.1 Artificial Neural Networks

An artificial neural network is an attempt to solve pattern and image recognition

problems by using approaches analogous to the methods adopted by the brain. There are

Page 4

two reasons why one would want to do this:

1. by using techniques inspired by the brain one hopes to solve pattern and

image processing problems much more efficiently than by using the

current methods.

2 . it is also hoped that these neural models will lead to more powerful and

fault tolerant hardware.

Current neural models are still extremely simple when compared with the brain,

and use a simple summation and threshold device as the basic processing element in a

layered network. A typical artificial neuron has a single output and several inputs,

usually one from each neuron in the preceding layer.

Artificial neurons are the fundamental building blocks of neural networks. As
shown in Figure 2, a neuron takes a set of inputs X, which are the equivalent of the
excitation or the inhibition signal levels of a neuron.

OUT

Figure 2. Typical Artificial Neuron

These are then acted upon by a set of associated weights W-, which correspond to the

synaptic strengths of a neuron. The weighted sum of these inputs is then compared with a

threshold value and an output is delivered depending on the result of thresholding. The

weighting factors are analogous to the synaptic strengths.

The artificial neurons are usually connected in a simple layered structure. Most
models consist of either two or three layers of neurons since it has been shown that any

continuous mappings can be achieved by a three layered system [Hect87]. The network
shown in Figure 3 is a multi-layer network where each input X, to a neuron N} , in a layer

has an associated weight . The outputs from each layer are propagated as inputs to the

Page 5

Input Layer Hidden Layer Output Layer

OUT i

^ OUT2

OUT o

Figure 3. Artificial Neural Network

next layer until a final set of outputs is generated. Multi-layer networks have proved to
be more broadly applicable and general than single-layer networks [Wass8 8] because of
their abilities to map any input to output patterns and capture the underlying features of
the data space.

These networks can learn to map a specified input pattern to a specified output
pattern. Once a mapping has been learned the network will provide the required output
pattern when supplied with the appropriate or part of the appropriate input pattern.

The system learns by adjusting the connection strengths between successive
layers of neurons [Rum8 6a]. Different models use different algorithms to determine this
adjustment. These models form an N-dimensional energy terrain, where N is the number
of connections in the most interconnected neuron [Hopf82]. Given a set of input and

output pattern, these models adjust their connection weights in such a way that a local or

global energy minima is found by using the input pattern as the entry point to it (ie- the

possible output patterns generatable from the current connection weight matrix fonn
local energy minima on the energy surface). When a model seeks a global minima to

map its input patterns to output patterns, it adds some noise to the energy space to pull

itself out of the local energy minimas in order to avoid being trapped in it without
finding its global minima. Once the energy terrain has been learned, an input pattern can

be supplied to test the model. This input pattern specifies where on the terrain the search

for an output pattern will start. The model then "relaxes" into the nearest minima. No

matter what input pattern is supplied the model will always settle on an output pattern,
but of course this may not be the desired output pattern. The closer the test input pattern

Page 6

is to the originally learned input pattern the better the chance that the correct output
pattern will be selected.

1.1.2 Neural Network Models

Over the past few years the research efforts in neural networks have produced a

number of neural network models. Some of these models namely, Hebb/Hopfield

[Hopf82], Boltzmann [Hint85, Hint86], Kohonen’s self-organising feature map
[Koho84], Adaptive Resonance (ART models) [Gros88] and Back-Propagation

[Rum86c] have become popular because of their applicability to practical problems.

These neural network models in general can be classified into three major categories.

They are associative memories, weak-constraint optimizers, and learning systems as
shown in Table 1.

Neural Network Models
Associative
Memories

Weak-Constraint
Optimizers

Learning Systems
Supervised Unsupervised

examples:
Hopfield Models
Kosko’s BAM

examples:
Boltzmann Machine
Hopfield/Tank Model

examples:
Back Propagation
Boltzmann Machine

examples
ART Models
Self-organising Map

T ABLE 1. A Classification of Neural Network Models

In associative memories, the memory is organized as a storage of pattern vectors.
Presentation of a part of one of these stored vectors will enable the system to recall that

whole vector. These Vector patterns are distributed and stored in the connections of the
network. The values stored in these connections are simply referred to as connection

weights and are calculated using some fairly simple non-iterative algorithms. Adaptive
learning is usually not possible in such a system because all the pattern vectors must be
stored at the same time. Later storage of an additional vector will necessitate the process

of storing all the vectors again. In this respect, it is rather like a conventional
programmable-read-only-memory (PROM). However, the aim here is to build fast-

access fault and noise tolerant associative memories using networks of simple processing

elements similar to neural networks. The binary Hopfield [Hopf82] model is a recent
example of such models.

Optimization models offer good, though approximate, solutions to combinatorial

optimisation problems. As no learning processes are involved, the weights are fixed and
calculated a priori. Such models correspond to weak constraint satisfaction problems.

Constraints are embedded in the weights of the connections. The network evolves in such
a way as to observe these constraints whilst optimizing some general cost function.

Page 7

Typical neural network optimisation models include the Boltzmann Machine [Aart8 6]

and the analog Hopfield model [Hopf85].

Learning systems are probably the most commonly used systems in neural

networks. There are two major types of learning systems, namely, supervised and

unsupervised learning systems.

In supervised learning models the learning process is governed by a set of

training pairs. A training pair is formed by an input vector and a desired output vector.

The difference between the target output and the output the neural network produced

constitutes an error. The learning process seeks to reduce this error by modifying the

connection weights in a similar fashion as in a typical relaxation scheme. The multi­

layer perceptron with Back error Propagation and the Boltzmann Machine are well
known examples of this kind. Their learning mles have their origin in the Hebb’s rule of

learning (or some variations of it) which states the connection between two nodes that
are highly activated at the same time should be strengthened. Basically, the change in
the weight of a connection is proportional (with a proportionality constant k — the so
called learning rate) to the product of source and destination neuron activation states:

i.e Wu (t-+1) = Wij (t) + k*A; *Aj

In unsupervised learning models there is no "specified" target output; the neural
network organises itself by applying some rules. This means that the network is only
given input data and is expected to organise itself into some useful configuration in
response to it. Such models grew out of an analysis of a simpler type of adaptive pattern
recognition network, often called Competitive Learning [Rume86]. Its development has
lead to different models. One of these as defined by Grossberg in [Gros88] corresponds

to neural networks that self-organises stable recognition codes in real time in response to
arbitrary sequences of input patterns. Rumelhart and Zipser have developed another

model in [Rume86b] which is a regularity detection model. Their basic idea is that the set

of units is divided into a number of disjoint clusters in which the units compete with one

another in order to become active, i.e. to win the competition.

It should be noted that any supervised learning model (e.g. the Boltzmann

Machine) can be converted into an unsupervised learning scheme by using the input itself

to do the supervision. This kind of models have been used for image processing and

speech recognition tasks [Hint84].

In the next section, the general structure of a neural network programming system

and their contribution to programmability and portability is discussed.

Page 8

1.2 Program m ing Systems for Neural Network

Generally speaking, programming of a neural network can be viewed as a two

level process. They are:

• specification of the network topology and the functions of the neuron.

• execution of the network.

The role of the neural network programming system is to provide the user with

facilities to accomplish these two tasks. Typically, a neural network programming system

is an integrated suite of software tools, and possibly associated hardware, which enable
the user to specify the neural network and map it on to the hardware for execution. A

simplified view of programming a neural network can be described by the diagram

shown in Figure 4.

NETWORK MODELS

Back-Propagation Hopfield Boltzmann Machine
Model M odel

Neural Network Programming System

Silicon
Compilation

Workstations Parallel h/w Emulators Neurocom p. Etedicated h/w

Sun Supem ode H N C Boards UCL Chip

Simulation Simulation Emulation Emulation Emulation

Figure 4. A Simplified View of Network Programming

What this diagram tells us is that a neural network programming system accepts

neural network models as input and transforms them into a suitable form (eg:-binary

code) and maps them on to the desired hardware for execution.

Typically a neural network programming system consists of four major

components (see Figure 5). These are:

• An algorithm s library - which contains a set of parameterised neural network
algorithms such as Hopfield, Boltzmann, Back propagation, and Competitive

Graphics ^ ^ High Level ^ ^ Algorithms
Monitor Languages J Library

4 A

Y

Intermediate
Level

Language

V
Compilers

<

Target Machine Codes

Tmcl Tmc2 Tmcn

Figure 5. A Generalised Neural Network Programming System

learning. These can be configured for a specific user application by providing the

necessary parameters.

• A graphic m onitor - provides the facilities for the user to express the network
models in the form of a network graph which can be then translated into either a

high level language program or an intermediate language for further translation
and eventual execution. This also provides an easy way of controlling and

monitoring the network at run time.

• A high level language system - this system (language + compiler) allows the
user to specify algorithms in the form of a high level description and compile it

into either graphic or intermediate form for eventual execution.

• An interm ediate level language system - an intermediate level language system

(language + compiler) is the converging point of the system in that the high level

language programs and the graphic descriptions of the networks are translated
into this form first and then only compiled into specific machine language for

execution. This form is a low level description of the network model and acts as a
common form from which specific target machine codes are generated. An

Page 10

intermediate language compiler can be dedicated to a particular hardware if the
role of this language is to provide a common form of representation for a

particular architecture or be a common representation such as a virtual machine

that can be mapped on a range of hardware architectures.

Of these major components, the algorithms library, high level language, and the
graphic monitor can be classified as programming tools. These are there to aid the user to

communicate with the hardware system. On the other hand, the intermediate language

serves a different purpose, which is portability. By being able to represent the network

in a simple and general form, it is able to support portability. It must also be said that the

high level language also deals with the aspects of expressibility and portability.

Having briefly introduced a general neural network programming system let us
now look at two of the major problems associated with neural computing on the whole
and the neural network programming system in particular. These are programmability

and portability. A good system should offer the user the facilities for programming a
range of neural network models and mapping them on a range of hardware. These two
major issues are not uniquely associated with neural computing. These issues concern
computing in general. But in the case of neural computing it is more important because
of the cost involved in producing application packages which are commercially
acceptable. The next two sub sections considers these two issues in greater detail and
tries to evaluate their importance.

1.2.1 Portability

Portability is considered to be an important issue because:

1. The implementation of a neural network model consists of two phases
namely, training, and recall. It is generally accepted that the training phase

consumes an excessive amount of time. This suggests that it is

economically wise to train a system on a fast computer and use a low

performance machine for the recalling phase. This stresses the need for a
portable system.

2. Recent years have seen the emergence of a diverse range of hardware for
executing neural network models, each with their own programming

systems. This means that there are what one would call "software barriers"
to be crossed by the programmer to execute these network models on

different machines available to him/her. To overcome this barrier, one
needs a programming system that supports portability over a range of

Page 11

machines.

3. The ultimate aim of neural network modelling is to develop practical
applications for industrial use. In this context, an application developer

wants to be able to have the constructed application made available across

a wide class of users with varying computer platforms. This again

demands portability.

1.2.2 Program m ability

Programmability of a particular system concerns the provision of tools for easy

and efficient programming. In the case of neural computing, major tools which contribute
to programmability are the implementation languages (high and low level) and graphic

monitors. Of these two major tools, we believe that the languages are more important as

they are the ones which offer more freedom in terms of expression and control. In neural
computing, we believe that programmability should also include model independence.
This leads us to consider the following issues:

1. Conventional languages - Conventional languages like C, C++, and
OCCAM are being used to implement neural network models and
applications in many programming systems. The main advantage in using
these languages to implement neural networks is that most of the
conventional machines have compilers available for these languages. The
disadvantage in using these languages are that they do not have
specialised features for efficiently implementing neural network models.
In addition, although they are portable across a wide range of sequential

machines their portability across parallel machines is restricted.

2. Specialised high level languages - Recent years have seen the emergence
of a number of specialised high level languages for implementing neural

network models and applications. These specialised neural network

languages, like other application specific languages for other areas of

computation, typically offer more specialised features on top of a classical

language. They are usually complex in nature and tend to be better at
expressing a particular sub class of the problem domain. This naturally

encourages the user to choose different language for different application.

The major advantages are that these languages provide better expressive
power and domain specific features for coding the algorithms. On the

other hand these languages are biased towards application building and
often lacks explicit parallel constructs or explicit features to aid

Page 12

parallelism.

3. Specialised Low level languages - First of all, having a specialised low

level language which is similar to an assembler may help to port the

network models across a range of machines, but it may not contribute to

programmability. What would be more suitable is a language that can be

both a target level language as well as a programming language. This will

offer the user the best of both worlds. In the case of neural network

programming, it is useful to have the facility of programming at the

intermediate level. These requirements lead us to a specialised low level
language which is at a similar level as OCCAM so that programmability

can be achieved.

In conclusion, our aims namely, portability and programmability demands a
programming system where the user has the choice of a number of high level languages
which can be compiled down to a common intermediate representation (intermediate
level language) that can be mapped on to a range of hardware. In addition, this language
should have the necessary basic features so that it can be used as a low level
programming language for implementing a range of neural network models.

Having considered the issues of portability and programmability and identified
their importance in neural computing systems, the next section states the goals of this
thesis and presents a brief description of the research carried out in order to reach those
goals.

1.3 Aims and Background to Research

As mentioned earlier the work described in this thesis represents a precursor of

the PYGMALION project [Ange89] funded by ESPRIT II (project 2059) aimed at
producing a general purpose neural network programming environment and applications.

The research reported in this thesis on the portability and programmability of

neural networks was undertaken in conjunction with a complementary project on

neurocomputer architectures [Pach91]. They started in October 1986 and aimed at
producing a general purpose neural computing platform that could support:

• a wide range of neural network models and hardware;

• applications based on neural network techniques;

• further research and experimentation in this area of computing.

Page 13

Firstly, a primitive processing element (PE) which was to be the basic element of
a massively parallel computer that supported neural computing [Pach88] was designed.
The design of this PE was completed jointly with another student by the latter part of

April 1987 and forms the basis of another PhD project in VLSI design [Pach91]. This PE

was simulated at the register transfer level and configured in an array to form a network
of processors. Then the design and implementation of a neural network programming

system to aid the development of various applications based on neural network models

was undertaken. This led to the design of a neural network programming system called

NPS. Analysis of this design showed that there were basically two major areas to be
investigated, namely, the higher level and lower level of the system. The higher level

consists of high level language(s), algorithms library, and the graphics monitor(s) as

major components. We believe that these tools falls into the category of human
computer interactions and ample attention is being focussed on this area [Hood87]. The
lower level is concerned with portability and programmability at the intermediate level.
We believe that, portability is the least investigated area in neural network computing
and there was a need to address this problem because of the diversity in the available
hardware for executing neural networks. On the issue of programmability, what we are
looking for is a low level language which is capable of implementing a range of neural
network models (i.e - model independence) and expressive enough to also be a
programming language at the intermediate /low level. Programmability at the
intermediate/lower level is an important requirement in neural network computing due to

its dynamic nature and computational complexity. This initiated the design and
implementation of a specialised low level language whose main aims are to support
portability and programmability.

1.3.1 NPS and NIL

Having identified the major aims of the thesis, a full neural network programming

system, NPS, was outlined. This system as shown in Figure 6 consists of:

• high level languages; a number of high level neural network programming

languages (HLL).

• a graphic monitor for building and interacting with the running network.

• a specialised low level language that can be used as both an intermediate level

language to represent the high level language and graphical description of the

network in a suitable form for mapping on a range of machines and as a
programming language at a lower level offering the user the facility of multi-level
programming.

Page 14

User

i—

Utilities
HLL ii___

-5»- Graphic
Monitor

— i---------- v -----------

; Algorithms
! Library
U 1 --------- i

i—

Intermediate Level

Language (NIL)

Special Purpose

Machines

Analogue

Chips

Suns Neurocomputer

Emulators

Parallel

Pyramids M achines

Figure 6. Neural Network Programming System, NPS

• a utility system, comprising a set of useful tools such as context editors,

debugging aids, and software to save the partially trained networks for further

training and recall at a later time.

• an algorithms library, consisting of a set of popular models which can be

executed by supplying the necessary parameters.
Since the main aim of the thesis is to investigate portability and programmability of

neural network models and applications, and a full implementation of NPS is beyond the

scope of this thesis, it was decided to implement only the relevant parts of the NPS

(indicated by the broken lines in Figure 6) to demonstrate the feasibility of the solutions
proposed in this thesis. Thus, the currently implemented system consists of:

Page 15

• a low level language, NIL, to build a spectrum of neural network models and

applications and map them on a range of hardware.

• a utility, to save partially trained networks for further training and recall at a later

time.

• a library, consisting of a set of popular models which can be executed by

supplying the necessary parameters.

• a facility, to generate a range of target machine code for different architectures

based on a simple virtual machine called the C-Machine.

• a neurocomputer architecture simulator based on the design specification

mentioned in chapter 3. As part of the project, a compiler was implemented to
map NIL on to this simulated architecture to test the practical feasibility of

mapping NIL on parallel hardware.

The main reason for including the C-Machine (a "C" based virtual machine) is to
show that NIL can be mapped on to a range of conventional hardware. This is based on
the fact that the majority of the currently available hardware (network of transputers,
conventional machines such as Sun workstations, connection machine, and neural
network hardware like HNC [Anza87]) support languages which use "C" language as
their base.

The basic aim of the neural network programming system NPS as far as this

thesis is concerned is to enable us to demonstrate the feasibility of the proposed solutions
by serving as a platform for demonstrating the portability and programmability aspects of

NIL. This is why the currently implemented systen offers neither a high level language
nor a graphic monitor.

NIL consists of two major components:

• A network implementation sub-language, which enables a network to be built by

providing suitable statements for specifying the functions of the nodes and the

topology of the network.

• A manipulation sub-language, which provides monitor, control and modification

capabilities for the network.

These sub-languages together produce a low level, machine independent network

specification language.

Page 16

The primary design aim of the of the network specification language NIL, is to support:

• portability by being target machine independent.

• program m ability by being able to

a. represent a spectmm of network models including neural networks

(model independence).

b. express the connectivity and computations in a clear and concise
manner.

c. to handle non-determinism. This is achieved by splitting the
functions of a node into guarded processes and randomly selecting

one of the eligible processes for execution (see chapter 4).

The computational model on which NIL is based is formulated to support a variety of
neural network models. NIL tries to provide capabilities such as implicit synchronisation
and non-determinism to meet the basic needs of a network system and neural networks in
particular.

NIL is believed to be capable of implementing a wide variety of network models
in general and neural networks, and semantic networks in particular. We believe this
general property is a significant advantage for the following reasons:

1. Being at the early stages of neural network modelling no one knows what
the future models are going to be except that they will be based on
network principles. So an intermediate network specification language

should be general enough to represent network models of any type to cater
for the future needs.

2. Building applications based on neural network techniques may involve the
use of different network models. This means that a general network

language rather than a special purpose neural network language is useful

in building such heterogeneous network systems.

In addition to this general property, it is also found that this language is suited to

programming a network of transputers. This, we felt was another significant achievement

when considering both the current difficulties with the mapping of algorithms on a
network of transputers using the existing programming tools and the popularity of the

transputer as a building block of parallel computer platforms.

Page 17

1.4 Outline of the Thesis

This thesis presents the design, implementation and the assessment of the neural
network programming system, NPS and the network implementation language, NIL. In

chapter 2, a survey of neural network programming systems is presented. This survey is

used to form a critical assessment of the existing systems, as background to design a

neural network programming system. In chapter 3, the proposed programming system

NPS is presented. It also discusses the reasons behind some aspects of the design. In

chapter 4, the network implementation language NIL which forms the central part of the

proposed programming system is presented. In this chapter, semantics and syntax, and
the computational model of the language are discussed. In chapter 5, implementation

details of NPS and NIL is presented. This includes the detailed description of the virtual
(C-Machine) machine, the data structures and the communication mechanism between
the application code and the system. In chapter 6 , an assessment of NPS and NIL is

presented. This chapter includes sample programs, coded in NIL, to run some well
known neural network models, a brief comparison with existing languages in this class,
namely Occam and BIF [Bahr87], and a discussion on how to compile programs written
in high level languages into NIL. The discussion on translating high level languages into
NIL involves the loose specification of a high level language that combines most of the
major features found in majority of the high level neural network languages currently in
use and showing how it can be translated in to NIL. Finally, in chapter 7, conclusions are

drawn and future work is discussed.

Page 18

Chapter 2

This chapter presents a survey o f systems for programming neural networks. This

includes the descriptions o f some o f the well known systems. The main reason behind this

survey is to ascertain the current state o f research in this area and to serve as a

background to our investigation o f neural network programming systems.

2. N eura l N etw ork P ro g ram m in g System s

The term "Programming Systems" refers to the collection of software and

hardware tools available to a system developer to build software systems. A neural
network programming system provides facilities for network specification, testing and
execution. These facilities may be provided in the form of a set of stand alone tools or as

an integrated software/hardware package. A good programming system offers a
systematic path for developing software by providing the necessary tools at every stage
under a single environment. It is this approach that is adopted by most of the neural
network programming systems for developing software [K0 I0 8 8 , Hans87, Paik87,
Test88J. To specify and control the neural network most of the systems offer either a
special purpose high level network specification and control language or a graphical
system or both. Most of the debugging, run time control and manipulation is carried out
with the aid of the control component of this language and its graphical counter part.
Apart from offering these high level tools as basic facilities and a few minor aids, the
majority of the existing systems do not offer anything radical in the way of a debugging
tool for parallel systems or intermediateAow level programming. Most of these systems

are also dedicated to particular hardware. That is, they generate executable code for a
specific hardware.

A few of these neural network programming systems have an intermediate level
language so that the high level description of a network can be commonly represented in

this form for further translation and execution on different machines.

This chapter presents a survey of the existing Neural Network Programming

Systems with the view to examine their strengths and weaknesses in order to help us

design a neural network programming system that satisfies our intended goals which

were stated in the previous chapter.

Page 19

2.1 Classification of Neural Network Program m ing Systems

Currently, neural network simulations are mainly done using tools which were

developed for traditional computing on conventional machines such as C language on

workstations. However, building, analysing, debugging, and maintaining a neural

network is quite different from that of a traditional sequential program. This is due to the

fact that there is no single point of control that can be traced in a parallel distributed

system like the neural network. More specialised tools are needed to aid the developers

to specify networks, observe their behaviour, identify faults, correct the problems, and

retest the networks.

Although there is a certain degree of commonality among the different types of
neural network programming systems, they can be broadly classified according to the

specific purposes for which they are developed into three categories.

1. Educational systems

2. Research systems

3. Commercial systems

2.1.1 Educational systems

These are primarily intended for introducing neural computing to the novice

users. Some of these are free whilst others are sold as commercial products. The
majority of these packages are model dependent (i.e.- restricted to execution of a given
set of popular models such as Hop field, Boltzmann, and Back propagation etc).

NNPSs in this category include Adaptics, Netwurkz, NeuralWorks Explorer, and

the PDP Exercise Neural Network Tool. They are briefly summarised in Table 2.

Neural Network - The Course

Neural Network - The Course is developed by Adaptics [Adap88] as a training

software, available on Macintosh and IBM-PC computers. Its main purpose is to

introduce the various common neural network models to the novice user. This product is

a part of a broad line of support services and products to assist companies to use neural

network techniques.

Page 20

Organisation Environment Description

Adaptics NEURAL NETWORK -
THE COURSE

Simple Training Software for NN

Dair Computer
Systems

NETWURKZ Training Software for NN with a
low-level network language PL/D

NeuralWare NEURALWORKS EXPLORER A cut-down Educational Version
of the NEURALWORKS
PROFESSIONAL series

Stanford PDP EXERCISE TOOL Free Software available with
the Rumelhart PDP book vol.3

TABLE 2. Educational NNPSs

Netwurkz

Netwurlcz [Netw87] is a neural network simulator, developed by Dair Computer

Systems, available on IBM-PC computers. It is intended for people not familiar with
neural networks. Associated with Netwurkz is a low-level network language PL/D which
is based on list storage and representation. Netwurkz is itself implemented in PL/D. A
best-fit pattern recognizer demonstrator program called "Spell" is also included.

NeuralW orks Explorer

NeuralWorks Explorer [Neur89] is a basic programming environment, developed
by NeuralWare, available on the IBM PC, XT, AT, PS-2, Sun Microsystems SUN/3 and

SUN/4 computers. It is an introductory package with several of the features of a more
powerful package NeuralWorks Professional II (see later sections) marketed by the same

company, but with fewer capabilities. Basically, this package provides a number of

parameter driven neural network models and some example applications. A primitive
graphical environment is also provided.

PDP Exercise Neural Network Tool

This tool is available on MS DOS or UNIX Operating Systems, and is given free

with the Rumelhart neural computing book [Rum86d]. It is produced as a training tool to

illustrate the various PDP models covered in the accompanying book. It provides a

simple version of each of the basic PDP models. The user is guided through those models
by a textual description of the behaviour of each model. The effects of changing the

Page 21

parameters of these models can also be observed.

Comments

The main strengths of these educational NNPSs are that they are relatively cheap

and usually adequate as training and educational tools for novice users. They guide the

user through the basic neural network models, which are well described. Moreover the

user can learn the effect of slight changes on various components and parameters (e.g.

learning rate and threshold function) of a model. One of the best in this respect is the

PDP Exercise Neural Network tool. Finally they provide the user with facilities for
understanding the exact behaviour of the model (such as running the network in a "slow-

motion"), which is otherwise difficult to capture due to the dynamic nature of neural

networks.

However, because of the model-dependence of these NNPSs, the user doesn’t
have the flexibility required to experiment with new and novel neural network models.
Moreover, since their purpose is educational and not intended as a tool for building
commercial or research products these environments are usually slow in operation. In
addition these NNPSs lack a proper user-friendly graphical interface. Finally these
NNPS are appropriate only for small models; they are not effective in modeling neural
networks with large number of neurons (e.g. counter propagation model). But, as the
major aim of these NNPS is educational these restrictions are minor.

2.1.2 Research systems

The group of research NNPS encompasses various experimental research

environments. They include NETSIM [Test88,Gart87], the King’s College Simulator
[Smit87], P3 [Zips8 6], SNAIL [Hood87], NDL/ANNE [Bahr87], Rochester
Connectionist Simulator [Feld8 8], UCLA SFINX [Paik87], and IBM CONE [Hans87].

Some of them are hardware dependent whilst others are more general purpose and are not
designed to run only on a specific target machine, although very often a specific

hardware emulator is included. NNPSs under this category are summarised in Table 3.

NETSIM

NETSIM is a specialist parallel neural network simulator. It has been designed

for high speed simulation of large systems of networks. There is also an associated VLSI
chipset forming the core component of the simulator. But the importance of the ability to

Page 22

Organisation Environment Description

Texas Instruments/
Cambridge Univ.

GRIFFIN A Parallel Network Simulator based
on the TI NETSIM neurocomputer

King’s College
London

King’s College
Simulator

A PDP Network Simulator implemented
on Multiple-Transputer System

Stanford Univ. P3 A Lisp-based Windowed Environment with
Graphical display, Plan/Method as the
Specification Language

University
College
London

Pygmalion A Programming System for a range
of Connectionist Models, with NC as
the Specification Language

Carnegie
Mellon
University

SNAIL An Interactive/Graphical Windowed
Programming Environment (Textual
Description Not Supported)

Oregon
Graduate
Centre

NDL/ANNE An Integrated Programming System
with NDL (as HLL), BIF (as ILL), H/W
mapper, and Intel iPSC Emulator

University
of
Rochester

ROCHESTER
CONNECTIONIST

A C-based Hierarchical Graphical
Programming Environment that runs
on various Hardware Emulators

UCLA SFINX A C-based Interactive Programming
Environment with Primitive Graphics, ILL,
Assembler (but no HLL yet)

IBM
Palo Alto

CONE An Extensive Environment with Library,
GNL (as HLL), NETSPEC (as ILL),
XIP Graphical Monitor, and IBM NEP
(as Hardware Emulator)

TABLE 3. Research NNPSs

design and debug programs has been recognised in this NNPS. Therefore a software

environment is provided with this parallel NN simulator [Test8 8]. The user interface is

based around a multi-window environment which is driven either by the user application

program (written in C) or by the interface itself. However, the NNPS is very low level

in nature in that it mainly facilitates the user not in the high level construction of models

and applications but in the low level efficient utilization of the parallel hardware.

Kings College Sim ulator

Kings College Simulator [Smit87], corresponds to a PDP network simulator

implemented on a multiple Transputer system. The system is implemented via two

processes : the user interface and the network simulator. The user interface provides

functions to the user to analyse and simulate a PDP network. It supports all the PDP

network models, taken from the book by Rummelhart et al [Rum8 6d, Rum86e]. It is

probably the first system designed to simulate neural nets on a network of transputers.

The major facilities provided by this system includes, facilities to construct networks and

map them on the hardware optimally, display network structures and unit status, and

display simulation performance.

P3

The P3 system was developed by Zipser and Rabin as a simulation tool to aid the

development of parallelly distributed processing models [Zips8 6 , Trel8 8 a]. P3 is a
language centred system which is implemented in LISP and runs on a Symbolics 3600.
Although it was not originally intended as a neural network development system, it has
the necessary facilities and an inherent parallel structure that would map onto suitable

neural network hardware. The major components of the P3 system are a plan language, a
method language, a constructor, and a simulation environment.

The plan language describes the collection of nodes (called units in P3) in a
network model and specifies the connections between them. To do this, the language uses
a small but rich set of statements. The three fundamental constituents of the plan
language are a UNIT, a UNIT TYPE, and a CONNECT. The UNIT TYPE statement

names and describes a kind of unit. The UNIT statement instantiates and names actual
units. This statement can instantiate either a single unit or a whole array of units of the
same type. The CONNECT statement makes connections. Associated with each type of

unit is a method which defines the computational behaviour of the units in the model

program. This method is described in the method language which is an extension to

LISP. After the plan and the associated methods have been specified the constructor

generates a distributed data structure. This data structure is loaded into the simulation

environment for execution. This simulation environment is highly interactive and makes

extensive use of the "window" system and the "mouse" pointer of the Symbolics 3600. It

offers two layers of debugging tools for testing the code and monitoring its run-time

behaviour interactively. The first layer of the debugging allows the user to test and verify
the network connections and the second layer allows the user to test the individual units.

It allows "strip-chart recorders" to be connected to any of the parameters of a unit so that

Page 24

the behaviour of that parameter over the time can be measured. The simulator also
provides the user with a display of nodes in an orientation of his/her choice.

The environment of the network is handled by an appropriately defined

environment unit which handles any input or output connections, and has a suitably

defined method. Control over the update sequence of units is also handled in this manner
via a control unit. Without this control unit each of the units will be sequentially

executed, but through this unit an asynchronous updating process can be simulated.

SNAIL

SNAIL is a an interactive graphical tool for designing and testing neural networks
which was developed by scientists at Carnegie Mellon University [Hood87]. A neural

network design in the SNAIL system consists of a set of drawings. With these drawings,
one can construct a network by selecting appropriate primitives for drawing neurons,
synapses, etc. Labels can be attached to lines in order to reduce the number of connecting
lines, just as is done in electrical circuit schematics. In SNAIL modifications, deletions
and additions of elements of network can be made interactively and the consequences of
the change can be seen immediately. States of the network are shown by assigning
different colours for different parameters and their current values. Windows can be
created with parameter’s names and their values, and the user may modify any of these
parameters. Parameter windows may also be created for abstract objects, such as neuron
types, or a set of global simulation parameters, and the user can also modify any of these
parameters. Parameter windows, once displayed will have their values continuously
updated while the simulator is running. Neurons firing rate or synaptic strength over time
can also be displayed by requesting a chart recorder window.

Just as in designing circuits where it is extremely useful to abstract away from the
transistor level, and work in terms of gates or registers, in SNAIL system one can

encapsulate portions of a network up into prototype drawings, which can then be used as

units in themselves. Once a prototype drawing has been created, an instance of it can be
included in a drawing by creating a block. In the simplest case, the name of the block is

just the name of the prototype drawing which is to be included at that location in the

drawing. Connections are made between lines external to the block and lines internal to

the block by means of labels. The prototype drawing includes labels on all lines to which
external connection can be made. In the drawing containing the block, lines attached to

the block are labeled at the point of attachment to indicate the internal lines to which they

should be connected. It is also possible to use blocks within prototype drawings, thus
permitting the construction of hierarchical network designs.

Page 25

NDL/ANNE

ANNE (Another Neural Network Emulator) is a general purpose neural network

simulation system, developed at the Oregon Graduate Centre for the Intel iPSC [Bahr87,

Trel8 8 a, Trel88b]. Although an emulator exists in the form of an Intel iPSC multi­

processor, the development environment is not dedicated to any particular hardware

architecture (see Figure 7).

debugging
I-- 1
I 1
I i

mapped
BIFNDL BIF

PAD

mappercompiler

Figure 7. A Typical Development Process in ANNE

The user describes the network using a high level NDL (Network Description
Language) which is then compiled into a low level generic BIF (Beaverton Intermediate
Form) which is a common specification format designed to express network structures
with both generality and compactness. Mapper is a tool for assigning the network
structure (by graph partitioning) to a particular target machine architecture. It takes as its
inputs a BIF file and a PAD (Physical Architecture Description) file describing a specific
target machine architecture (which is the Intel iPSC hypercube in this case). The
functions of the nodes for learning and computation are specified by pointers to C
procedures. The output of the mapper is then used by ANNE which acts as a test bed and

debugger for the neural network model described by BIF. Using ANNE the user has the
ability to examine, modify or save pertinent data within the network, including the entire

BIF specification of the network at any point in the simulation. It should be noted that,

although the design of NDL/ANNE is intended to be hardware independent the only

existing version runs on the Intel iPSC.

Rochester Connectionist Sim ulator

The Rochester Connectionist Simulator (RCS), developed over a long period of

time at the University of Rochester [Feld88], is designed to be run on the Unix Operating
System. Versions of the simulator have run on a DEC/VAX, a Sun workstation and on

the BBN Butterfly Multiprocessor. It appears not to be dedicated to any neural networks

models.

The overall system consists of a user program, a Graphics Interface and the

Simulator, which corresponds to a run-time environment. The neural network is built in

the simulator via the user program (written in C). The user has to define, via a data

structure, each unit, its sites and links (sites at which incoming links are attached). This

specification has the ability to give a description at different levels of abstraction. The

lowest level corresponds to a single-unit description; i.e. unit, sites and link functions.

The next level corresponds to the description of the connectivity pattern; i.e. specifying

the links and the group of units. The highest (user-defined language) may be read in and

compiled into units and links by "user-supplied" functions. The Simulator and Graphics

Interface are independent. The Graphics Interface allows the user to display network
information during simulation and aids for the network debugging process. Furthermore

the user can examine the network before, during, and after it executes via a "simulation
window".

UCLA SFINX

SFINX (Structure and Function In Neural Connections) is a neural network
simulator environment, developed at UCLA’s Machine Perception Laboratory [Paik87,
Trel88a], that allows researchers to investigate the behaviour of various neural networks.

As shown in Figure 8 , the SFINX structure is analogous to traditional language
based systems. A neural network algorithm is specified in a high level textual language
which is compiled into an equivalent low level language. Next this low level language is
assembled into a binary data stmcture (defining the network) and is loaded into the
SFINX simulator for interactive execution. In SFINX, network specifications have two

basic parts:

• set of nodes - a node is a simple computing element, composed of: memory
storing the state of the nodes, and functions defining how signals are processed.

• interconnections - defining the connectivity and the flow of data amongst the
nodes.

These network specifications are represented by virtual PEs, each comprising:

• function pointer

• output register

Page 27

SFINX
Simulator network

input

Assembler neural-
network

Compiler network
output

low level
textual

description

high level
textual

description

binary
data

structure

Figure 8 . SFINX Environment

• vector of state registers

• vector associated weight/link_address(es)

Lastly, the front-end of the SFINX simulator is a command interpreter, accepting SFINX
shell scripts. These shell commands include: load, save, peek, poke, run, draw and set;
whose meanings should be fairly obvious. Once a network stmcture is created, these
SFINX shell commands can be used to exercise the simulator, displaying and modifying
the state of the network.

IBM CONE

The IBM Computational Network Environment (CONE) [Hans87, Trel88a] is
based on hierarchical and functional decomposition design methodology and consists of

a high level General Network specification Language (GNL), a generic intermediate

network specification (called NETSPEC), and an Interactive Execution Program (IXP).

Neural network programs are specified in GNL and compiled into a machine independent

intermediate form NETSPEC. This intermediate specification is then assembled into an

executable form dependent upon the execution engine (see Figure 9).

To describe a network in GNL, the designer uses three fundamental primitives:

• proc, which describes the functional processors.

• path, which defines the connections between procs.

Page 28

Source

M ode ls

PANO

Compiler

Hopfield VISION

NETSPEC

Assembler

Display

Network

IX P

User

Figure 9. CONE System

n

• port, which specifies the point at which a path joins a proc.

For any specific application area, the designer can establish a library of procs and these
are then made available to the compiler in a fashion completely analogous to providing a

Page 29

scientific library of routines. The NETSPEC description is simply a parts lists of various
primitive processors and a listing of the topology.

To run and manipulate the network, CONE provides an execution environment

called NET Interactive Execution Program (IXP) that runs on a PC connected to the
Network Emulation Processor (NEP). The IXP has three major components:

• a graphics display,

• an operator interface,

• a network engine.

The graphics display enable the operator to view the state of the network by selecting a
set of procs of interest. The operator can also vary the hierarchical depth for which the

network procs are to be decomposed. The IXP operator interface is a command shell
which controls the execution of the network engine and the display terminal. It has been
developed in close association with the hierarchical GNL compiler. Thus, the IXP
interface recognises the hierarchical decomposition of the network procs. The network
engine provides a simple interface to the target hardware. The IXP has isolated the entire
engine interface into a couple of low level functions. Thus, the IXP itself can be easily
modified to support the inclusion of special purpose hardware for the network updates.

Comments

Most of the NNPS in this category are hardware specific. In terms of execution

speed, the advantages of a hardware specific NNPS are obvious. Indeed, if the main
purpose is to create a specific end-user application then NNPSs from this group will fit

the bill well. They can provide complete solutions to specific problems. But when the
aim is to build a general purpose portable NNPS capable of integrating novel

applications, then a hardware independent NNPS seems to be a priority.

The obvious disappointment as far as these NNPSs are concerned is the failure to

achieve the expected level of performance Hood87, Zips86]. In terms of speed, the
dedicated systems reduce the running time by a significant margin. Even for ANNE

which runs on a parallel target engine (namely the Intel iPSC), the results in terms of

speed and storage efficiency are far from adequate, and in fact are much worse than

expected. This problem lies in the fact that at this stage of technology development, no

efficient general purpose "neurocomputer hardware" can be designed yet. To increase

efficiency, some NNPSs give the user two ways of specifying their model. For instance,
in SFINX the user has an explicit and an implicit way of designing his model. The

Page 30

implicit specification is designed to take advantages of high degrees of regularity in

connectivity patterns (as in low-level vision model). Because of the restrictions imposed
on the user it increases notably the space and time efficiency. The explicit specification

provides a great deal more flexibility to the user by assuming only minimal constraints.

But, because of the massive amount of details that is needed in explicitly specifying large

irregular models, the user is restricted to specify only small neural networks in reality.

Placing too much reliance on graphical facilities can also become a liability for NNPSs.

An example is the SNAIL NNPS. Because SNAIL is graphics-dedicated (i.e.

specification is by graphics only) the user is restricted to the design of neural network

models with only a small amount of neurons and interconnections which can be shown

and specified visually.

Flexibility is the main strength of most of the research NNPSs. There are two
aspects in this, viz., modelling flexibility and execution flexibility. Modelling flexibility

is indicated by the degree of freedom a NNPS gives to the user in expressing a neural
network model and application. This freedom depends on the expressive power of the
specification languages used (e.g. high-level network primitives, description granulity,
pre-imposed network structures and constraints, graphical/textual languages etc.). The
Rochester Simulator is a good example of a NNPS that gives the user the power to
construct specification at different levels of abstraction. A lowest level provides single­
units description; corresponding to units, sites and link functions. The next level
describes the pattern of connectivity via a set of functions which specify the links and
groups of units. A higher level gives the overall network specification. Execution
flexibility is measured by the kind of facilities offered to the user during a simulation
session. Regarding the generality, user-friendliness, and integration of tools, the IBM

CONE is one of the best example. These tools are highly interactive and provides
graphical display at any level of the specification; network as well as individual nodes.

2.1.3 Commercial systems

NNPSs in this categories have an overwhelming commercial orientation. They

include ANSE and Mark III/IV, HNC ANZA & AXON [Guts8 8], SAIC ANSim &

ANSpec, Cognitron [Fuku8 8], NESTOR, NeuralWorks and Professional II. A summary
of these NNPSs is given in Table 4.

ANSE and MARK III/IV

ANSE (Artificial Neural System Environment) is a design environment which
supports the neural network designer in the areas of neural network definition, network

Page 31

Organisation Environment Description

TRW ANSE commercial environment for
TRW neurocomputers Mark III,
IV and V

Hecht-Nielsen
Neurocomputer

ANZA sophisticated environment with
library, object-oriented HLL,
for HNC neurocomputers ANZA
and ANZA Plus

Cognitive
Software

COGNITRON multi-window icon-driven
environment + LISP-like HLL
for Macintosh

Nestor NESTOR DEVELOPMENT A NNPS for pattern recognition
and signal processing applications

NeuralWare NEURALWORKS
PROFESSIONAL II

Graphical environment for
IBM PC and SUN, C Converter
Available

Science
Applications
Int. Corp.

SIGMA/ANSpec commercial environment with
library, object-oriented HLL,
for SIGMA/DELTA neurocomputer

TABLE 4. Commercial NNPSs

editing, network storage and retrieval, and network implementation [Souc88].

ANSE is machine independent and it is compatible with the family of MARK

computers, the most significant of which are the MARK III and MARK IV
neurocomputers. The MARK III neurocomputer is a parallel processor implementing

neurons as virtual PEs and virtual full-connectivity is supported. The MARK IV
neurocomputer is a single high-speed pipelined uniprocessor, also implementing virtual

PEs and virtual full-connectivity.

HNC ANZA & AXON

The ANZA package comprises: the ANZA User Interface Subroutine Library,

basic Netware packages for the common neural network algorithms, the AXON
specification language, and a IBM PC co-processor board for the speeding-up of floating

point operations in neural network simulations.

Page 32

The User Interface Subroutine Library (UISL) is a collection of routines

providing access to the ANZA system functions. Examples include: load network, set
learning etc. The basis of UISL is common set of data types defining formats for slabs,

weights etc. As with the data types, the UISL routines adhere to a naming convention.

The UISL routines names use the same set of nouns as the data types. Likewise, the

UISL data files required to implement networks use four types of data: state data, weight

data, constant data and network description data.

The Basic Netware Package contains five of the classic neural network algorithms

in a parameterised specification that can be configured for a specific user application.

These algorithms are: Back propagation, Spaciotemporal (Formal Avalanche),

Neocognition, Hop field (plus Bidirectional Associative Memory) and Counter-
Propagation networks. In these networks the interconnection geometry and the transfer
equations are already specified. However, the number of PEs, their initial state and

weight values, learning rates and time constants, are all user selectable.

Lastly, AXON is a language for describing neural network architectures in a

machine-independent form. It is object-oriented and its syntax combines features of
Pascal and C, with constructs such as weight, input class and slab as keywords. AXON
is based on a generic neuron model containing attributes such as output state, transfer
function, interconnection class, connection weights, and local data memory.

The stmcture of a specific network is defined by four sections.

1. The network parameter section which defines the load-time and run-time
constants.

2. The network data declaration section which declares the processing
elements and their attributes.

3. The network construction and connection section which specifies

interconnections.

4. The network execution section which schedules the updating and also

defines the transfer functions.

SAIC ANSim & ANSpec

Scientific Applications International Corp. (SAIC) market a series of

sophisticated tools and co-processor boards collectively known as ANSkit [SAIC8 8] for
developing neural networks. The kit is designed for an IBM PC/XT/AT environment.

Page 33

The main utilities of the kit are the ANSim simulator and the ANSpec
programming language.. ANSim comprises a Microsoft Windows operating

environment, interfaces to dBase HI and Lotus 1-2-3, together with files of the popular

algorithms. The windows environment provides pull-down menus to select and change

I/O format, network architecture, network learning algorithm, network training and

execution, and displays of activations, weights etc.

The popular algorithms provided are:

1. Back propagation (with/without momentum, shared weights, recurrent

networks),

2. Hop field,

3. Boltzmann (learning, machine, I/O),

4. Kohonen feature map,

5. Adaptive resonance (ART 1, ART 2),

6 . Enhanced counter propagation,

7. Bi-directional associative memory, and

8 . Hamming net.

Networks can be loaded and saved, using data creation/load/save/modify
commands, and neurodynamic equations specified using simulation, activation/transfer

and learning functions.

ANSpec is a concurrent specification language for defining and simulating neural

networks, and extending the ANSim environment. ANSpec is object-oriented allowing

code developed for different applications including ANSim networks to be integrated

into more extensive systems. Applications can include mixtures of ANS networks and
other non ANS processes such as image processing, signal processing, and data base

management. The ANSpec specifications can either be simulated in a virtual processing

environment of thousands of concurrent processors or used for native code generation for

one or more Delta floating point co-processors, also available from SAIC.

Cognitron

Cognitron is a Macintosh-based neural network simulation system. It is designed

as an advanced network model simulator based on the principles of parallel distributed

Page 34

processing, and utilizing multi-window displays [Fuku8 8]. A main feature of the system
is the provision of "Modelling Windows" which allow the user to design a network and

its components in a hierarchical and graphical manner. There is also a textually-oriented

Creator!Editor primarily used to program the functionality of units and initial weights.

The simulation engine is represented by a specific simulation window. This window

provides the user with an implicit way of start, pause and resume a simulation, as well as

graphical displaying simulation status. Finally, there are facilities for time-charting the

output behaviour of any unit in a network. Input/Output handling is done via normal file

handling, and is compatible with standard graphing, statistics, and spread sheet

programs. The user interface has an appearance of a common Macintosh software

package in that it is intuitive and heavily graphical-oriented. The system appears capable
of supporting most currently imaginable neural network models.

NESTOR

NESTOR Inc. has produced a number of standard products. Their first product is
the Nestor Writer which allowed a computer user to read handwritten text into a typical
data-processing system. The system is implemented using a standard DBM PC. A
follow-on product is the Nestor Decision Learning System for the financial-services
market. Finally the Nestor Development System (NDS) provides access to the Nestor
Learning System for the development of solutions to pattern recognition or signal
processing applications. Therefore NESTOR corresponds to range of different products
serving the needs of different markets.

NeuralW orks Professional II

This is a fully fledged version (superseding an earlier release—NeuralWorks

Professional I) of an educational system called Neural works Explorer mentioned

previously, and is available on most PC’s and workstations (such as SUNs).

It is supposed to be a neural network environment for the "neural computing

professionals". In this system, in addition to a number of manufacturer-supplied standard

neural network models and applications, the user can define any network topology

(provided that it can be stmctured in terms of layers of neurons) and functionalities. A

package called the Designer Pack is also available for the conversion of a network design

into a subset of standard "C" code for portability and easy integration with other

conventional systems. Network manipulations are mostly icon-driven. There is also a
library of learning rules, activation rules, summation functions, and transfer functions. A

simulation run can be controlled in a number of ways, e.g. continuous, counted, or single

Page 35

step. Input/Output compatibility with Lotus 1-2-3 and dBase III is supported as well as
user defined I/O. It seems partially executed networks can be saved and restarted through

a check-point facility.

Comments

It seems that most of these commercial packages tend to place more emphasis on
performance. This inevitably leads to a certain amount of loss of flexibility in terms of

modelling and executing of neural networks in order to make them commercially

attractive(i.e. better performance and less flexibility). The Nestor Learning System is a
typical example in that producing a pattern recognition application is feasible but

observing the features of different learning schemes is quite impossible. On the other
hand some commercial NNPSs (e.g. ANZA) contain their own model specification
languages (e.g. AXON) which are flexible enough for specifying most of the existing

neural network models as well as new ones. Another common problem is the lack of
flexibility in the investigation of the behaviour of models during a simulation run, and in
the precise control of the system during a simulation. However, these NNPSs usually
come with a bundle of popular models and some of them even contain libraries of
common applications. The result is that the user can start using the technology in a very
short time. This factor undoubtedly has commercial appeal.

2.2 Assessment

A good NNPS should provide facilities for building and simulating a variety of

neural network models. This means that it should have the ability to deal with different
topologies, activation functions, and learning scheme. This demonstrates that a NNPS

(whether it is a commercial or a research system) needs to be able to specify and run any
type of neural network model. This is a crucial requirement when investigating novel

neural network models. In order to have such flexibility, at the specification level one

needs a high level language which should be heavily oriented towards the process of
model and application construction. This means that it should be very powerful and

flexible in its descriptive power. Efficiency considerations should not be a major concern

in this language. Indeed, efficiency concerns should be more appropriately dealt within a
low level language. Moreover, NNPSs have to be able to deal with heterogeneous neural

network models. These are models formed by a combination of different basic models

(shown in the previous section). They can be combined in parallel, in series or in

hierarchies. For example, Josin [Josi87] has demonstrated an interesting model composed
by the combination of an optimisation model and a self-organising model. Such a model

has been designed for a robot’s arm control application. There are no general rules for

Page 36

combining neural network. However, some sort of hierarchy concept (or level) appears
to be useful.

NNPSs have to be able to accommodate a wide range of neural network models
including some possible new ones, both from the point of view of the design and the

execution. Thus there is a need for a target engine independent NNPS. Indeed, if the

purpose is an end-use application there is no doubt that a dedicated hardware NNPS is

the best choice since it gives a complete solution to a specific problem. But when the aim

is to build a general-purpose NNPS then a target-engine independent NNPS seems a
priority. On the other hand we should bear in mind the efficiency of execution. But it is

premature to seek a general purpose neurocomputer given the current state of the

technology in parallel architectures for neural networks [Feld88]. Even if today’s
technology moves toward parallel systems, it is not necessarily a move towards
massively parallel "neural-style" machine. Therefore a flexible NNPS should contain an

intermediate level language able to be mapped onto any future hardware.

Another important point is the flexibility given to the user in terms of execution.

Indeed, neural networks are dynamic systems. Thus it is quite difficult to understand all
the processes involved at the same time. Graphics interface has proven to be
indispensable for displaying information during simulation and for aiding the network
debugging. Indeed, with a good display of run-time system behaviour, one can quickly
determine if a network is working properly and if not where the problem lies.
Furthermore NNPSs should allow the user to focus on a certain part of his model, that is
to stop the execution and "look" at certain components of the network. These
components can, for example be either a particular neuron or a particular layer etc. They
should also allow the isolated execution of only a part of the network; which is useful for

heterogeneous models and for general debugging. Much of the power of this type of
interfaces lies in their dynamic properties, which are not shown in a static pictures. For

example, with dynamical graphic display, the user can catch oscillations which can

penalise a network. Thus good graphical facilities seem a condition "sine-qua-non" for a

NNPS, given the useful information that these graphical displays can convey.

A large number of neural network models have been developed. Generality

requires the NNPS to be able to implement any known neural network models. Indeed,

generally one has to understand the existing models in order either to improve them or to

present a new type of model. Moreover, a NNPS has to give the user a reusability of

previous models. Thus, the need for a library is demonstrated. This library should supply
the user with a complete set of neural network models, each of those is equivalent to a
parameterised module and the user can use any particular instance of a model (either as a

Page 37

complete model or as a part of a more complex model) by providing the modules with
parameters.

Current research in programming systems is concentrating more and more in the use of

graphical aids in these environments. Also efforts are being made in producing a single

programming system that can provide most of the useful facilities which are available in
the existing programming systems together with appropriate tools for developing parallel

programs, especially tools designed to deal with network programming. This thesis is

one such attempt at providing a neural network programming system which tries to

address a few of these problems, namely, portability and programmability.

Page 38

Chapter 3

This chapter presents the proposed neural network programming system, NPS, and then

goes on to present the subset which was implemented fo r the purpose o f this thesis. It
also includes the descriptions o f each component o f the system and discusses the design
motivations.

3. T h e N eural N etw ork P ro g ram m in g System , NPS

The neural network programming system, NPS, was primarily designed to

support portability and program m ability [Bava90a, Bava90b]. That is - a system

which can take algorithms specified in a range of high level languages as input and map
it on a range of hardware. The NPS as shown in Figure 10 (which is same as the Figure 6
seen earlier in chapter 1), consists of:

• a number of high level languages for specifying neural network algorithms and
controlling (monitoring) the execution of the network;

• a graphic monitor for graphically representing and interacting with the network;

• an intermediate level neural network implementation language system that can
represent the graphical and high level language specifications of the various
neural network models;

• a library of popular algorithms for the user to run standard models by supplying
parameters;

• a set of utilities for assisting the user in the programming tasks;

• a wide range of hardware.

In this system, neural network models specified either in one of the high level
languages or in graphical form is translated into an intermediate language(NIL). The

intermediate language compiler translates this into appropriate target machine code and
passes it on to an appropriate mapping system for mapping it on to a specific hardware

for execution. The monitor and the control part of the high level programs can be

executed in an interactive mode in conjunction with the graphics system to display and

modify the network at run time. In this case each command is translated into its

intermediate counter part and communicated to the hardware through the appropriate
communication module. This run time translation is performed by a sub system of the

Page 39

respective language and graphics systems. Apart from this the user can execute any of
the available models in the algorithms library by supplying the necessary parameters.

User

i—

Utilities
- -A- - - -HLL ii___

Graphic
Monitor

i— — i

Algorithms
Library

i___

—i

Intermediate Level

Language (NIL)

Special Purpose

M achines

Suns Neurocomputer

Emulators

Parallel Analogue

ChipsPyramids Machines

Figure 10. Neural Network Programming System, NPS

The high level languages (HLL): A developer needs the flexibility to specify different

topology, activation functions, and learning schemes for building a variety of models and

applications. In order to have such a flexibility, at specification level one needs a high

level language which is highly expressive in terms of modelling and application

construction. This language does not have to be efficient as long as it is powerful and

flexible in its descriptive role, since the efficiency factor can be dealt by the intermediate
level language. Since different high level languages offer different facilities, a good

Page 40

programming system should have more than one high level language for the user to
choose from so that a suitable language can be chosen according to the special needs of a

particular application. This will no doubt enhance the programmability of the system.

G raphic Monitor: When it comes to interacting with the network, the user prefers a

method that would present the information in a form which is easily understood. It is

quite difficult to observe all the processes and make alteration to individual components
in a massively parallel and dynamic system like a neural network. This can only be

possible, if an overall picture of the system is available and sub components can be
accessed. Displaying the network using graphics and indirectly accessing sub

components via graphic displays for making alterations has proved to be a useful

technique in network programming and debugging. With a good display of the run-time
system behaviour, one can quickly determine if a network is working properly and if not
where problem lies. Furthermore a good Neural Network Programming System should
allow the user to focus on a certain part of the network and stop execution and examine
it. These components can be a neuron, a link, a layer or a sub network. Thus the
provision of good graphical facilities is an important requirement for a neural network
programming system.

The Interm ediate Level Language: First of all let us answer the question "Why do we
need an intermediate language system ?". The answer to this question is that we want a
common representation of the models we are trying to implement so that we can achieve
portability. Generally, an intermediate language can be used to achieve three different
kinds of mapping.

One to many mapping - In this mapping, a single high level language is mapped on to a

range of machines.
Many to one mapping - In this case, a number of high level languages are mapped on to a

single machine.

Many to many mapping - In this case, number of high level languages are mapped on to a
range of hardware.

These three systems require different design approaches to be efficient. The first

form, one to many mapping, requires an intennediate language that can both capture the

essential properties of a particular high level language and represent the algorithm

expressed in this language as a simple virtual machine that can be easily mapped on to
any hardware. The second form, many to one mapping, has to capture the essential

properties of all the high level languages and be capable of exploiting the unique
characteristics of the particular hardware on to which it is trying to map these high level

Page 41

language programs. This can be achieved by having a low level language which is closer

to the assembly language of that machine but slightly at a higher level so that the
essential features of most if not all the high level languages can be captured. On the other

hand the third form, many to many mapping, is more complex. It must combine the

properties of the previous two forms of representations to be a good system. That is, the

intermediate language should not only has to capture the essential properties of a broad

spectrum of high level languages but also should have the ability to exploit the desirable

features of a range of hardware through a common scheme of representation. A possible

solution to this is to have an intermediate language that represents the algorithms

specified in these high level languages in the form of virtual machine which is simple and
very general. This demands a high level description similar to "C" language or Occam in

order to be of any practical use. The major problem with this approach is that it does not
lend itself to producing optimised code for all the target machines.

These three forms of mappings are only a rough generalisation and further
classification at specific levels can also be possible. One such case is the problem at
hand, which is mapping a particular class of algorithms (models) specified in a range of
high level languages on to a range of hardware. That is, we want to map neural network
models specified in a number of high level languages on to a range of hardware. Here we
feel the problem is slightly simplified because of the existence of a set of basic features
which is inherent in all the neural network models. For example, a neural network model
must consist of a description of its network topology, descriptions of the different types
of nodes in the network, the learning and recall procedures, and the training and test data.
Using these basic features as the back bone of the language, one can design an
intermediate level language which is simple and general enough to represent these
models specified in various high level languages in the form of a simple virtual machine

so that it can be mapped on to a range of hardware. In here we see the NIL language as a
set of notations for representing such a virtual machine rather than a language for

specifying network models. This is substantiated by the fact that we are able to generate
"C" code from the NIL translator which is similar to a NIL program. This is the approach

the author has taken to tackle the problem of portability and programmability in this

piece of research.

So, what we want is a neural network programming system which is independent

of the execution hardware to take advantage of the advances in technology and one that
is capable of accommodating a wide range of neural network models, from the point of
view of the design, execution and interaction.

Page 42

Combining these two basic requirements with the need for efficiency creates the
need for an intermediate language which is model independent and capable of

representing the high level descriptions in a simple and efficient form {a virtual
machine). The reason for requiring a simple form is because a simple form of network

representation is considered to be easier to map on to different hardware architectures.

Other important characteristics needed in an intermediate language in a neural network

programming system is that it should provide facilities for observing and modifying the
network during run time. This particular characteristic is in a way an important one to

network programming as a whole in the same way it is important in an Object Oriented

Language System. Because it is the one that makes it possible for experimenting and
debugging since there are no other known tools for debugging a massively parallel

system.

The other important issue as far as a network language at an intermediate level is
concerned is "whether one should have primitives to specify parallelism explicitly or the
language should implicitly express it without the use of such primitives?". We believe a
neural network language (especially at an intermediate level) must be implicit in its
expression of parallelism like object-oriented languages. The main reason behind this
belief is that a network algorithm is generally considered to be inherently parallel. If this
assumption is adopted then the designer of the language should aim to design the

language in such a way that it expresses parallelism in a natural way.

Algorithms Library: A programming system for neural network should provide
facilities for building applications and testing the suitability of an existing model to solve
a particular problem in hand. One way of aiding the user in this task is to provide a
library of models and functions which can be executed by supplying the necessary

parameters. This approach also promotes reusability. This library should contain a
complete set of existing neural network models and associated functions. These are

equivalent to a set of parameterised modules and the user can use any particular instance

of them (either as a complete model or as a part of a more complex model) by selecting

the appropriate module and suplying the parameters.

Utilities: A good programming system should provide a number of tools for assisting the

programmer in the development of software. These may include a good editor (in our

case a context editor would be of great help), a screen dump program, a file maintenance
system appropriate for the particular type of software being developed, a program for

saving partially run programs etc.

Page 43

M apper: The software that maps an executable network on to a particular piece of

hardware must be efficient. This implies that it must be a dedicated system to exploit the

advantages offered by that particular hardware. This leads to a decision to have

dedicated mapping software for each target machine. This approach may be considered
inefficient for building software systems but it has the advantage of producing a run time

system which is efficient. Also depending on the architecture, physical placement of

processes can be arranged in such a way as to reduce the possibility of deadlocks due to

message passing.

3.1 The Implemented System

Since the main aims of this thesis is to investigate portability of neural network

models over a range of hardware and programmability (at a low level) of a range of
models, only the components marked by the broken lines in Figure 10 were
implemented. The main reason for deciding on this particular approach was to
demonstrate the capabilities of the intermediate level language and to show that the basic
concepts behind the proposed solution is a practical possibility. In this system (see Figure
11) the input commands are interpreted by a command interpreter and appropriate
functions or sub systems are called to perform the required task. The user may issue
commands for compiling and executing a NIL program, running an algorithm from the
library, save a partially run network using the utility or abort a running network etc. This
implemented system as shown in Figure 11 consists of:

1. the intermediate network implementation language (NIL) system;

2. an algorithms library;

3. a utility for saving partially trained network for further training and recall;

4. a library of general purpose functions specified in NIL for implementing

some well known node functions;

5. a main module comprising a command interpreter and a set of mappers;

6. a neurocomputer architecture simulator based on a primitive processing

element.

NIL System - This sub system consists of a NIL compiler and a translator, and a library

of useful function definitions for nodes. NIL programs can be either translated into the

virtual machine (C-Machine) based on "C" language and then compiled into object code
using a standard "C" compiler or compiled into target machine code for UCL

, ,
NIL SYSTEM

Input

ucl
m/c
code

C-machine
(virtual)

m/c
code

MapperMapper
C-Compiler

Utility

PyramidUCL
Neurocomputer

Algorithms
Library

Functions
Library

NIL
Compiler/translator

NPS
COMMAND INTERPRETER

Host

Figure 11. The Implemented System

Neurocomputer Architecture simulator. The command interpreter takes these machine
codes and maps them on the appropriate hardware for running. In the case of the virtual
machine, it is loaded on a Unix machine (Pyramid/Sun). Since the C-Machine is virtually
similar to the NIL program in terms of its constructs, we envisage no difficulty in

generating target machine code for the UCL Neurocomputer architecture simulator from

the C-machine. The current system uses a NIL compiler (which was originally
implemented for mapping NIL and testing the UCL neurocomputer architecture) to

generate code for UCL neurocomputer simulator, and a separate translator for generating

the virtual machine based on the "C" language. It must also be pointed out that NIL can

be implemented in other languages and may be considered as a notation for representing

neural network models rather than a language. This is found to be true in the case of the

C-machine and during our experience with the hand translation of NIL into OCCAM.

Algorithms L ibrary - The algorithm library consists of a set of popular models such as

Hopfield model, Back-Propagation model, Boltzmann machine, etc. These can be

executed by providing the appropriate parameters. Most algorithms in this library require
the user to specify the number of nodes in each layer, set of input patterns, a set of output

patterns, and tolerance value.

Utility - This is a single function utility package containing software for saving a

partially run network for further training at a later time. This is invoked by a "save"

command which is available both at the command level and at the manipulation level of

the intermediate language.

Library of functions - Since the functions which define the nodes in each layer of a
particular neural network algorithm can be specified as a general purpose function in

NIL, we found it useful to have a library of node functions readily available for use in a
NIL program. This is similar to the "C" language library, where the programmer is

provided with a set of functions for performing some common tasks.

Command interpreter - The command interpreter in the implemented system is like a
Unix shell. It accepts commands from the user and interprets it and calls the appropriate
function/sub system. This means that it shares some of its commands with the NIL
system. That is - some of the commands can be used within a NIL program.

There are all together seven commands available to user at this level. They are

1. load -m file jiam e - for loading a partially run network for execution on a

particular hardware by specifying the hardware option in the parameter
tt m .

2. save file jiam e - to save a partially run program for running later. This

command can also be used in the manipulation part of a NIL program.

3. stop - to stop a running network. Again this command can be used in the

manipulation part of a NIL program.

4. go - to run a loaded network.

5. run -m file jiam e - to compile, load and run a source program file with

options to execute in a particular machine.

6. exec -m m odeljiam e - to execute one of the standard models available in

the model library. When executed, this command will initiate a series of

questions regarding the size of each layer, tolerance value, and input and
output patterns etc. The user responds by typing the required data. Once

Page 46

all the information is available, the system builds the appropriate network

and proceeds with the compilation and subsequent execution process.

7. abort - to abandon the execution of the network. This command is also

available in the NIL language.

Ucl Neurocomputer - At University College London we have designed and are currently

implementing in CMOS, a primitive processing element for building a parallel MIMD

neurocomputer, configured from an array of these elements [Pach88, Pach91]. The main

goal of the neurocomputer is to support a range of connectionist algorithms spanning

both neural network models and semantic network models.

The overall structure of the system, as shown by Figure 12, consists of a set of
arrays of processing elements(PE) connected to a host computer that controls the

activities of the network.

PE

Figure 12. UCL Neurocomputer

A PE in an array is linked by a bi-directional, point-to-point connection to its two

neighbours and communicates by sending message packets (see Figure 13). Each

message consists of three fields: a destination address (ie-the identity of the destination

PE.), a logical input channel number, and a data value. When a PE receives a packet, it

compares the address field with its own address and if it matches then the processor is
interrupted and the packet is passed to the application process. If the address is different
then it is passed to its other neighbour. In this system both the host and the individual PE

can broadcast messages by placing a special destination address and input number in
their packets. In the case of a broadcast packet, each PE takes a copy of the packet and

passes the original to its other neighbour.

Each PE as shown in Figure 13, consists of three units: a communication unit, a

processor and a local memory. The communication unit has two I/O Buffers and a name

register to hold its address.

A Packet: 16 bit 16 bit 16 bit

destination input channel data value

COMMUNICATION

i/O name i/O

PROCESSOR

MEMORY

IK x 16 bit words

Figure 13. UCL Neuro-Chip

The processor consists of a primitive ALU, supporting a reduced instruction set of

16 instructions. This instruction set enables the processor to perform all the necessary

functions required by a network program by providing instructions such as load, store,
add, sub, mult, and, xor, etc. There is only one working register, the accumulator AX,

and a very few memory mapped registers. All the data addresses and instructions are 16-

bits long. Each instruction consists of a 4-bit opcode and 12-bit data address. The size of

the local memory can be up to IK X 16-bit words long which is found to be adequate

enough to support a range of neural network node functions.

The neurocomputer is configured by initialising each PE with a unique address

and then loading them with appropriate codes. These codes can be either identical or

Page 48

different for each PE depending on the overall task. Each PE also has a local operating

system to control and manage its activities. Currently, a simulation of the architecture at
the register level is running on a UNIX machine and a CMOS implementation is under
way.

Page 49

Chapter 4

This chapter describes the intermediate level language, NIL fo r mapping and
manipulating neural networks on a range o f hardware. The language incorporates the

concept o f guarded process and combines this with the philosophies behind network

languages to build networks and manipulate them.

4. The Network Implementation Language, NIL

4.1 Motivations and Requirem ents

The main motivations behind the design of NIL is to produce a low level
language for specifying neural network algorithms with the following features :

1. machine independence - The language must be independent of any
hardware, especially neurocomputers so that it can be used as an
intermediate language for porting neural network models specified in a
range of high level languages across a range of hardware.

2. neural network independence - The language must be capable of
representing a wide range of neural network models and applications so
that it can be used as a programming language, especially at a low level

during the development phase as well as during runtime.

3. simple and general - It must be simple enough to be an intermediate level
language as well as general enough to be translated into high level

languages like Concurrent Pascal, "C", etc and low level languages like

Occam and assemblers.
Using these motivations as a basis, a list of desirable properties for an intermediate level,

machine independent neural network language is arrived at [Ange88, Bahr87, Chol88,

Guts88, Kohl88, MayD87]. These are:

• Small and specialised language:
The language should be dedicated to neural network algorithms. This language

should offer specialised features on top of a more classical language, providing

the user with useful primitives and tools to deal with the unique aspect of the
problem domain. But these must be kept to a minimum in order to keep the

language as small as possible, thus avoiding costly compilation.

Page 50

• Simplicity:
The language should be readable. Generally, specialised languages are considered

to be less simple to understand than more general purpose ones, because they are

used by specialists, and less attention is given to their readability.

• Generality:
Any connectionist algorithm should be programmable in the language. The

expressive power of the language should not be a limiting factor. This is a very

ambitious requirement because no one knows what the models of tomorrow will
require. For example, some of the recent research papers suggests the need for

• Primitives for the dynamic evolution of the network structure - Some

models allow the creation and deletion of links and nodes, and primitives

for doing so should be provided in the language.

• Expression of randomness - Some models make use of random connection
patterns, and/or probabilistic cell activation. Primitives for implementing

these functions should be provided in a language.

• Parallelism:
An intermediate level language for neural network must have parallelism built
into it in a natural way, that is, it should reflect the parallel nature of the algorithm
in the way it represents it without explicitly stating it. It must also encourage the
programmer to isolate components in the algorithm which can be processed in
parallel.

• Reusability:
The language should incorporate a mechanism for making use of already written
and validated network components. One possible approach is to create a library of

common components and models, written in the most general and parameterised

form so that, it can be used by giving values to parameters.

• Support for graphical environment
A network programming language benefits from having the facilities to display its

structure as a graph wholly and partly during run time. Graphic facility should

also have the capability to express the behavioural characteristics during run time.

As there is no easier way to monitor the progress and debug the network other
than graphically displaying the network and making alteration through the graph,

it is important that the language should provide a mechanism for graphic

interface.

Page 51

This brings us to the question "why not use an existing language like "Occam" as
an intermediate language for implementing neural networks?". The reasons for not
following this approach are:

1. To manipulate a neural network, we need special commands, especially
when dealing with dynamic networks which require facilities for creating

and deleting links and nodes. If we are to use Occam, we need to

synthesise new functions to deal with these tasks. This will require

complicated coding and will only result in an inefficient system.

2. Additions needed to make Occam a neural network intermediate language

will make the language larger and less simple.

3. Supporting a graphical environment using an Occam based language

requires unacceptable level of overheads. This is mainly due to the
difficulties in extracting the topological informations and the informations
contained in each nodes. This will make the whole system unacceptably
slow.

4. So far, no one has shown that Occam can be efficiently mapped on other
parallel hardware (i.e - other than the transputer).

These considerations led to the design and implementation of NIL. NIL is
intended to be a machine independent low level language for neural network
specification. NIL has

1. a basic part that builds the network representation of the algorithm and

specifies the functionality of the nodes in the network.

2. a manipulation part that provides the capabilities for controlling and
modifying the network.

In the network specification part, nodes are connected using statements which

implement a series of mapping of inputs to outputs. The statements which describe the

functional behaviour of a node consists of control flow statements which are found in

popular procedural languages.

Having stated the motivations and requirements of NIL, section 4.2 lists all the

keywords used in NIL. Section 4.3 explains the use of brackets and separators in NIL.

This is followed by an explanation of the meanings and the use of constant values.
Section 4.5 describe the syntactic and typing convention used in formally describing the
language. Section 4.6 gives a detailed description of NIL. Finally, section 4.7 describes

Page 52

the semantic properties of the language.

4.2 Keywords

The following list(see Table 5) of tokens represent keywords and hence may not

be used as identifiers.

add all and begin
construct delete do end
exp fi fun get
getwt go if input
int ival join ldconst
load nde not od
or output read readst
real rep rmv md
run_net save skip stop

TABLE 5. Keywords

4.3 Brackets and Separators

The following symbols are used for grouping or separating objects:- (), []> {}> ->»
=>, semicolon Y , colon and comma In general, round brackets are used for
grouping and precedence, square brackets are used to denote array elements, and curly
brackets are used to enclose processes and blocks of codes. The arrow is also used as a
mapping operator in the link statement. The imply symbol ’=>’ is used to separate the
input condition from the associated block of statements in a guarded process. The
semicolon is generally used as a terminator of assignment statements. The colon is used
as a special separator to distinguish weight vectors from ordinary input vectors in the

parameter lists and separating subscripts in an array. Finally, the comma is used as a
general purpose separator for syntactic convenience (e.g. for separating parameters etc.).

4.4 Constant-Valued Tokens

Certain tokens have priori values associated with them. These are characters,

strings, integers, and real numbers. It should be noted that maximum and minimum

values for numbers will be machine dependent. A character is enclosed in single quotes
(e.g. ’c ’).

Integer numbers are represented using decimal numbers(0-9). The real numbers
are represented using decimal point notation. A string is any sequence of characters
enclosed within double quotes(e.g. "string").

Page 53

4.5 Syntax and Typing

The syntactic elements in NIL may be subdivided into five groups: link

statements, function definitions, guarded processes, expressions, and statements(see
APPENDIX A - for further details). Throughout this document a Backus-Naur Form

(BNF) notation will be used for describing NIL. The following conventions are adopted:

italics = nonterminal symbol

lower_case = terminal symbol

{ symbol } = optional symbol
{ symbol } * = repetition of zero or more symbols

{ symbol }+ = repetition of one or more symbols

Alternative categories of a syntax mle are separated by a vertical bar.

4.6 A Network Im plem entation Language - NIL

NIL is a machine independent, low level neural network programming language
for mapping and manipulating neural network algorithms on a range of parallel and non­

parallel hardware.

NIL consists of two sub-languages :

• a network specification sub-language which specifies the connections between
nodes and the functions performed by the nodes in the network.

• a m anipulation sub-language which allows the user to observe the behaviour
and modify the network during mn time.

a program written in this language has the following syntax.

Page 54

begin

networkspecification _part
begin

manipulation _part
end

end

4.6.1 The Network Specification Sub-Language

The network specification sub-language consists of:

• link statem ents for linking nodes in the network to specify the desired topology;

• function definitions for specifying the computational behaviour of the nodes in
the network.

4.6.1.1 Link Statements
In NIL the network is built using three types of link statements. These statements
implement a series of mappings using appropriate functions with specified lists of input
and output parameters. They are

1. a link statement, which is the most primitive statement that specifies the
mapping of a set of input to a set of output using a particular function
which represents the computational behaviour of a node.

2. a rep statement, which replicates nodes and their connections both in a
series and in parallel.

3. a construct statement, which builds a complete network structure with

regular connections.

link statem ent - a link statement has the following syntax.

name(input_list {: w t j i s t}) -> (outputJist)

The name refers to the specific function performed by that node. The input lists and

outputjists represent the set of input and output list associated with that node. The

w tjis t represents the list of initial values such as initial weights, status status values and

any other local data for that node. These data are private properties of that node and are
not accessesd by any other nodes in the system except the host for controlling the

network. To illustrate the use of the link statement, consider three nodes A, B and C

linked in a network as shown in Figure 14.

Page 55

Figure 14. A Simple Network

Where A and B perform the function defined by f l and C performs function f2 to

transform their inputs into outputs. The linking of these three nodes are achieved by the
following link statements.

fl([a, b, c] :[1, 3 ,5]) -> ([d, e, fj)

fl([d, e] : [7, 9])-> ([g , h])

f2([f,g, h]) ->([i])

When this network is executed, appropriate connections are established, weights
vectors are initialised and the system will wait until input channels a, b, and c are loaded
with appropriate values. This will initiate the firing of node A which in turn will output
values d, e, and f and provide input for other nodes.

rep statem ent - There are two forms of rep statements and these are similar to those

found in Occam [MayD87]. A rep statement of the form

rep[3] ff([X[I], Y[I]]) -> ([X[I+1], Y[I+1]])

would replicate the function f f three times in a series as shown in Figure 15.

X[3]XL21 X[4]
Y[4]

X[l]
Y [l]

Y[2] Y[3]
Figure 15. Sequential Replication

A rep statement of the following form

rep[2] ff([X[I], Y[I]]) -> ([A[I], B[I]])

Page 56

would replicate the node and its I/Os in parallel as shown in Figure 16.

X [l]
Y [l]

ff A [l]

B [l]

X[2]
Y[2]

ff
A [2]

B[2]

Figure 16. Parallel Replication

construct statem ent - This allows the programmer to build a complete network
with regular connections. For example, the following construct statement

construct ([i = 2] in(iv[i], [sig[l]]) -> ([ou[i]])

:[p = 1] hi(ou[i], [erbk[l]]) -> (out[p], sig[p])

:[k = 1] op(ou[i], out[p], [eop[l]], [rcl[l]]) -> (erbk[k], result[k]))

is equivalent to the following set of statements.

rep[2] in(iv[i], sig[l]) -> (ou[i])
hi([ou[l],ou[2]], [erbk[l]]) -> ([out[l]], [sig[l]])
op([ou[l], ou[2]], [out[l]], [eop[l]], [rcl[l]]) -> ([erbk[l]], [resultfl]])

These statements implements the network shown in Figure 17.
The construct statement has the following syntax.

construct

[rep_par] name(input_par) -> (output_par)

{: [rep_par] name(input_par) -> (output_par)} +

)

where

result[l]

rcl[l]

ou[2]ou[l]
out[l]

erbk[l]

sig[l] inin

iv[l] iv[2]
Host

Figure 17. A Regular Network

rep_par ::= index_var = number o f replications

input_par ::= c j j i s t {: c_ w tjis t }

output_par ::= c j j i s t
c j j i s t ::= in_var_vector \ arrayjange
c_o_list ::= var_name[index_var]

{ ,var_name[index_var] }*

in_var_vector ::= var ja m e \su b scrip tja r ia b le]

arrayjange ::= var_name[index_range]

index_range ::= range {, range} *

range ::= sub ja n g e | setjrange

sub_range ::= integer .. integer
set ja n g e ::= integer {, integer }*

c j v t j i s t ::= see later

This can produce statements such as

Page 58

construct [i = 5] fl(a[i], [b[l,2,4..7, 9], d[1..4]]) -> (c[i])
: U = 14] f2(c[i]) -> (b[j])

: [k = 12] f3(c[l,4,5], b[j]) -> (d[k]))

The rules governing the synthesis of a construct statement is as follows

1. The value of the index_var indicates the number of repetition of the

associated link statement.

2. The subscript_variable in the in v a rv e c to r must be either the current or a

previous index_var. If it is an index_var of a previous link component

then all the elements specified by that range are repeated for each
replication. If only a selection is required then it must be specified as an

arrayjange.

3. Any index var that has not yet appeared must not be used.

4. Links from nodes that are not part of the construct statement can be
included in the c j j i s t .

5. Any feed back loop must be specified using an array ja n g e .
Weights can be introduced into these statements using a standard random function as
follows.

rep[3] ff(x[i], y[i] : 2*md[0-l]) -> (a[i], b[i])

This will generate two random values in the range of 0 to 1 for each link statement.
Fixed array of weights also can be used

 :[2.0,3.0, 4.0]....
or

:[i, i+1, i-1]

where "i" is known index var.

Only simple expressions involving +, - and * can be used in this way.

4.6.1.2 Definition of functions
Once the topology of the network is specified, the computational behaviour of each

node(or a group of nodes in the case of a number of nodes performing the same type of

computation) is described in the form of function definitions. A function that represents

a node in this language is based on a generalised model of a biological neuron.

Page 59

The Computational Model - A computational model of a function that represents a
neuron should reflect the overall properties of a neuron. A popular view is that a neuron

only starts firing when the inputs that arrive at the dendrites satisfy certain conditions and

subsequently produces a new set of outputs which may or may not be different from the

previous set of outputs. This is then followed by a change of state and waiting until the
arrival of a new set of inputs that satisfy the input condition for firing and outputting new

values again. This process is repeated until the network becomes stabilized. This

generalisation led to the computational model shown in Figure 18.

Input

V r̂ \' \f

false

Input Conditions

true

passive state

Execution

Outputs
active state

Figure 18. The Computational Model

We believe this model is flexible and general enough to accommodate a wide

range of artificial neurons. This model also makes it possible to define functions in a

general way so that it can be used again. A function which implements this model has the
following form.

Page 60

fun name {input_vectors {i\n\:wt_vectors })

-> {output_yectors)

body

A function definition, although very much similar to a function definition in

Pascal, differs in many respects.

1- A function in NIL is considered to be a mapping function (i.e. - it maps

inputs onto outputs). This means that it can act upon any set that belongs to
the input space. This makes the function more general purpose and can be
re-used again with a different set of I/O parameters.

2- The parameter list consists of three types of parameters, they are input,
output and initialisation vectors. The initialisation vectors are sets of
constant values which are used to initialise variables within the functions at
the start of the system and they represent the state of computation in a node
at any given time. These are not carried by any links and are planted into the
node during compilation and are the sole property of that node.

3- All the parameter vectors denote a group(array) of variables.

4- Each element of the input and output vectors represent a set of virtual input

and output channels through which the data is sent and received by nodes.

5- The length of each I/O vector parameter is only determined by the link

statements which use this function to build the neural network(ie- the

individual components of the parameter lists are only specified at the linking

stage of the network).

6- The dimension component of the input, output and weight vectors are used

to hold the lengths of these vectors when a link statement is activated(see
example for explanation).

7- The body of the function consists of one or more GUARDED PROCESSES
with boolean input conditions as its head. A guarded process has the

Page 61

following construct.

input condition => process description "}"

8- A guarded process becomes eligible for execution when the corresponding

input condition becomes true.

9- Only one of the eligible guarded processes is executed during a node cycle

where a node cycle consists of the execution of a guarded process and

dispatching the output.

A general stmcture of a function definition and a link statement is as follows.

sum([a, b, c] : [2, 5]) -> ([k, 1, m])

fun sum (x[nl] ival: w[n2]) -> (y[nl])
n | ii

input_condition_l =>”{" process_1 "}"

input_condition_2 =>"{"process_2 "}"

input_condition_n process_n

In the above definition sum is defined to be a function that takes an input vector x

and a weight vector w each with n l and n2 elements respectively and produces an output
vector y. When sum is called n l takes a value 3 and n2 a value 2 along with initialisation

x[l] <- a, x[2] <- b, x[3] <- c, and w [l] <- 2, w[2] <- 5 and produces outputs y[l], y[2],

y[3] which are passed to other nodes in the network in k, 1 and m. This mechanism makes

it possible for the user to build general purpose functions that can be used by a number of
nodes wishing to perform the same type of computation but with different numbers of

input elements, which is an essential feature of a neural network.

Page 62

Guarded Process

A guarded process becomes eligible for execution when the corresponding input

condition becomes true. The guarded process in this language is similar to the guarded

process described by Hoare [Hoar85] except that it provides a compact and elegant
notation for representing it.

Input Condition - The input condition is represented by an array with an index-range. If

new input values are present in all the elements of the input array as specified by the

index range then a true value is realised and the corresponding process is executed. This

input condition can be expressed as an "ALT" statement in Occam [MayD87]. An input
condition has the following syntax.

vector_1 [index_range] {,vector_i[index_range] }*

The above syntax should produce a family of input condition that would cater for every
eventuality as illustrated below.

x[3] one specific channel input.

x[l..n], y[l..m] all input channels from x and y.

x[k..l] sub range.

x[kl..ml,k2..m2] set of sub ranges.

x [l , 12], y[2,5,9] subset of x and y.

Statements - The statements available for describing a process consists of " i f , "do",
"assignment" and "skip".

O utput Statements - There is no special statement to perform output in this sub­

language. This is achieved by assigning values to the elements of the output vectors.

The following example describes a general function to perform summation and
thresholding. This function can be used anywhere in a network whenever a summation
and thresholding unit is needed.

Page 63

fun lay2(x[n]) -> (y[i])

int i ,n ,j ;

real x[10], y[10], netj;

{
x[l..n] => {j := 1;

netj := 0.0;
do (j<=n) -> netj := netj + x[j];

j := j + i;
od

if (netj>=0) -> y [1] := 1.0;
->-> y[l] := 0.0;
fi

}
}

4.6.1.3 Output From Compilation A compilation of a program consisting of

definitions and link statements would output one of the following two outputs.

1- A list of errors and diagnostics if the compilation fails.

2- If the compilation is successful then it produces a list of labeled nodes, name
of the functions performed, input list, weight values and an output list(see
Appendix D).

The production of the second list gives all the relevant information so that the user is

familiar with the network he/she has built and can refer to each node uniquely by the

node label provided in the list during manipulation.

4.6.2 M anipulation Sub-Language

Once a network is built one would require a MANIPULATION language to

retrieve and deduce information from the network and modify it. Commands given in this

language can be expressed by the following syntax.

Page 64

begin control comnds end

control comnds ::= { control statement }*

This language should ideally have the following capabilities.

1- Stopping and starting the network.

2- Feeding and receiving data from individual nodes.

3- Looking at the current inputs and outputs of a node or nodes.

4- Inspection and modification of state variables of a node(s).

5- Creating and deleting links and nodes.

6- Saving and reloading an incomplete process(network).

7- Facilities for conditional and repeated execution of the above mentioned

functions(ie-loops and conditions).

Instead of having very descriptive constructs for each tasks mentioned above, it
was decided to have very simple commands to reduce the overheads in interpreting these
commands during run time. This led to the inclusion of the following statements in the
manipulation sub-language.

4.6.2.1 Reading Status and Links A single construct is used to read the status of nodes
as well as the links.

readst parameters

parameters ::= all | n o d e jd {, n o d e jd }* ;

Where a n o d e jd refers to a particular node and is referenced using the following
convention.

Page 65

nd e[unit_number\

nde[2]

denotes the second unit in the network. The construct above should produce the

following set of statements.

readst all

readst nde[2], nde[5];

The first statement reads the status of all the nodes in the network. The second statement
reads the status of nodes 2 and 5. This reads the state variables(ie- elements of the

weight vectors) and the values of the I/O channels.

When using the "readst" statement , all the specified state and I/O variable values
are made available to the programmer. Access to these values are made by referencing
them by their link I/O variable or referencing the I/O vector element of the particular
node. For example - Vector element t[2] of the I/O vector for the node 5 is accessed by
the following identifier.

nde[5].t[2]

4.6.2.2 Reading Inputs from Nodes To read any messages sent to host by nodes in the

network, a separate read statement is provided. This is similar to the one provided in

Occam [MayD87]. The reason for adopting this is to provide the host the ability to make

use of the data as soon as it arrives and respond to it as well as synchronize the activity of

the network. This is a very important statement in the language and helps to avoid

overwriting inputs sent from the host and bring about an orderly computational system.

get varjiam el - linkname
{ , var_name2 = linkname } * ;

When this statement is encountered, the linkname is checked repeatedly until a new

Page 66

datum is present in the named link variable and is placed in var_namel. If the
weight/status variable of a particular node is to be read instead of the link variable then

the following command is used.

getwt varjiam el - Weighttiame
{ , var_name2 = weightname } * ;

In this case the value of that variable is simply read into the named variable (i.e.
var name 1, say).

4.6.2.3 Reading Data from a File To read input data from a file, the following

statement is used.

read (filename, d a ta jype) d a ta jis t

Where the file name is a string or a variable which contains the name of the source file.
The data_type is an integer value which denotes the type of data to be read. This value
range from 0 to 3, where 0 stands for integer, 1 for real, 2 for character, and 3 for strings.
The data_list is a list of variables into which the data is to be placed. Some examples of
this statement are as follows.

read(data.p, 1) x, y, z;
read(filel, 3) head_line;

4.6.2.4 Creation and Deletion of Links To delete and create links, the following

construct is used.

operation link_name(joinjpar \ delete_par)

operation ::= delete | join

join_par ::= nodeJd.^formal input vector element

delete_par ::= n o d e jd j n o d e jd

Page 67

This construct will enable the deletion and creation of links. For example -

delete link_one{,ndz\2\)

or

delete link_two{nde[4])

The first delete statement will delete the link at the destination node. The second

statement will delete the link at the origin node.

join link_one{nde[2].x[3])

In this case output channel, link_one from a node will be linked to node 2 with the formal
parameter name x[3]. This means that the node 2 must have an input vector called ‘x ‘

with two elements already in place.

4.6.2.5 Loading Initial Values on to the Input Links Loading new(initial) values on to
those input links which require input from outside can be achieved by the following

construct.

input linkjiam e = value

{ , linkname = value } * ;

4.6.2.6 O utputting Results Outputting values to the standard output device is achieved

by the following construct.

output results

results ::= o p jis t \ read_status

o p jis t ::= element { ,element }*;

element ::= strings or variables or values

Using the above syntax statements, like

output x,y,z;

output "The result is ", result;

output link_namel;

can be constructed. These three statements output values of the variables x, y, z, a string,

result and the value of the link named "link_namel".

4.6.2.7 Feeding New Inform ation To feed in new information and alter the behaviour

of the network a "ldconst" statement is introduced. This statement enables us to introduce

new weights to an existing node before or during run.

ldconst nodeJd.state_yariable = value_l,

• •)

n o d e jd . state variable = value_n;

The construct above produces the statements such as

ldconst nde[3].wt[5] = 5,
nde[3].zt[3] = index;

This statement changes the weights of an existing node. The changes made by control
commands are permanent. This capability is of great value to a system of this nature.

This will allow modifications based on the current state of the system to be introduced at

run time and to perform experiments with the network.

4.6.2.8 Deleting and C reating Nodes Only node types which already exists in the

network can be added. This is achieved by copying an existing node of the desired type
and adjusting its i/o vector and parameters and loading into a free processor(virtual in the

case of C implementation).

Page 69

To delete a node from the network the remove command is used as follows.

rm v n o d e jd ;

For example

rmv nde[5];
will remove node five from the network.

4.6.2.9 Saving and Reloading Network Commands for saving a partially trained

network and reloading it for further training is (in fact) belong to the system. That is, it
can be executed outside the scope of the manipulation program. But we decided to allow

the manipulation program to be able execute it also. The main reason for this decision is
to allow the network to run in batch mode without any user interaction. So to save and
reload network programs we have the following commands.

save file name;

for saving a partially run network and

load -mfile_name;

for loading that network for running from where it was stopped. The user specifies
the target hardware by replacing "m" with the appropriate integer value. Currently only

one value is given(which is 1) as the target machine is Pyramid in the implemented
programming system.

4.6.2.10 Executing the Network Initially the control is in the hands of the host. Once

the necessary data is loaded on the links, and the weights are placed in each node, the

command

r u n n e t ;

must be issued to run the network. This will execute each node in the system twice

before returning the control to the host processor.

Page 70

4.6.2.11 Stopping and Starting For stopping and restarting the network, the following

commands are used.

stop

go

4.6.2.12 Loops and Conditions To be able to perform the above mentioned tasks in a
loop or perform them conditionally requires constructs like the guarded "do", " i f and the

"assignment" statements encountered in section 4.6.1 of this chapter. So it was decided
to use them for this purpose also.

4.7 Semantic Properties

• only control flow execution takes place in a node.

• Deleting a link means loading a zero on it.

• Only nodes with existing descriptions can be added to an active network.

• stopping a running network implies waiting until the end of current process in
each node and passing the control to an idle process for a fixed time before
freezing it.

• all input/output and weight values are taken to be real values.

Page 71

Chapter 5

This chapter describes the implementation o f the NPS and the NIL compiler I translator.
First it describes the main components o f the translator that generates the virtual

machine called the C-Machine which is based on "C" data structure that can be
compiled by a C compiler and executed on a Unix machine. Then it describes the

prototype compiler and the data structure originally developed fo r generating machine

code fo r execution on the UCL neurocomputer simulator. Finally it describes the

implementation o f the NPS and its interfaces.

5. Im p lem en ta tio n o f NPS an d N IL

As previously mentioned, only a subset of the NPS design was implemented. This

subset consists of the following.

1. A NIL language translator and a compiler.

2. An algorithms library comprising a set of well known neural network
algorithms which can be executed by supplying the necessary parameters.

3. A utility to save a partially run network for further training/recall at a later

time.

4. A library of general purpose node functions which can be used in a NIL

program in place of user written node functions.

5. A command interpreter that interprets the user commands and calls the
necessary sub system to execute it.

6. A neurocomputer simulator (which was jointly implemented with another

student) based on the design features described in chapter 3.
The major part of the implementation effort went into the implementation of the

intermediate language. The first version of the NIL was implemented as a compiler that
generated machine code for the UCL Neurocomputer simulator. A translator was

implemented to generate a virtual machine based on "C" language which can be

compiled using a "C" compiler for execution on a Pyramid technology machine. This

translator is the one that is used to in the Network Programming System. The
implementation of the translator is described first followed by a description of the

implementation of the prototype compiler. In the description of the translator,
prominence is given to the description of the virtual machine because of the important

Page 72

role it plays in demonstrating that NIL is in fact a computational model for processing
neural networks and can be implemented in any language like the paralation model
[Sabo88] which tries to model parallelism in general.

5.1 Implementation of NIL

When NIL was designed, implementation efforts were mainly concentrated on

generating code for the UCL neurocomputer architecture in order to test the suitability of

the language for implementing neural network algorithms on a massively parallel

machine. Having successfully demonstrated this, the next step was to implement it on a

sequential machine. This led to the design of the virtual machine which is a "C"
representation of the NIL. This approach is in a way similar to the paralation model
[Sabo88] approach. That is, we have a very general and simple neural network
implementation model in the form of NIL which can, not only be implemented in NIL
specification language but is also implementable in other languages. This implementation

language can be "C", Pascal, Lisp or Occam. To prove this very point "C" was chosen to
represent this model. This also helped to demonstrate the fact that our intermediate level
language is not only hardware independent but also language independent (ie- easy to
translate into high level languages as well as into low level languages).

The subsequent sub-sections describe the NIL translator and the data stmctures
used in generating the C-Machine followed by a description of the original prototype
compiler for generating code for UCL Neurocomputer simulator and the data structure
used for implementing a computational node in this system. Section 5.4 of this chapter
describes the implementation of the Network Programming System.

5.2 The NIL T ransla to r

The present NIL translator produces "C" code in the form of a virtual machine for
execution on a Unix based sequential machine. The main reason for generating "C" code

for execution on a sequential machine is two-fold:

1. Firstly to show that the intermediate language is target machine

independent;

2. Secondly to demonstrate that the simple model represented by NIL can be

implemented in other languages and mapped on a range of hardware

whether it be a sequential one or a parallel one.

The translator is a two-pass translator and slightly different from a typical one for

obvious reasons. During the first pass all the construct and replicate statements are

Page 73

converted into their equivalent set of simple link statements and an intermediate
(Expanded) source file is generated. This source file is used as input to the second pass

for the final translation. During the first pass only the constmct and replicate statements

are checked for lexical and syntactical error before expanding these statements into a set

of link statements. The rest of the program is ignored. During the second pass the
expanded source is checked for lexical and syntactic error. While performing syntactic

check, some semantic checks are also made before building the virtual machine (C-

Machine) based on "C" stmctures. The structure of the translator is as shown in Figure

19. Once the C-Machine is generated, depending on the target machine an appropriate
path can be taken. Currently it is executed on a sequential machine, so the "C" compiler

is activated and the C-machine is compiled and executed.

5.2.1 The Virtual (C-Machine) Machine

The C-machine is the simplest that one could design for representing an artificial
neural network. The idea stemmed from the simple view that a neural network is a

network of automatons and each of which are associated with a set of

• inputs;

• weights and state parameters;

• outputs.
This led to the synthesis of a data structure which is simple and easy to manipulate (see
Appendix E for the full representation of this data structure in "C"). This data structure
as shown in figure 20 consists of a list of nodes (see Figure 21). Each node consists of

two data fields

1. a node identification.

2. name of the function which specifies the computational method of that
node.

and four pointers-

1. pointer to a list of input vector nodes.

2. pointer to a list of weight vector nodes.

3. pointer to a list of output vector nodes.

4. pointer to the next node in the network.

Source file

\

Lexical
Analysis

Syntactic

Analysis

c
Structures

C-Machine

C Compiler

Object
Code

V

Pyramid

Figure 19. NIL Translator

These nodes are not arranged in any order. The topology of the network, that is

the way the nodes are connected to each other is only determined by names of I/O link
variables which are included in the description of the elements of the I/O vectors of each

Page 75

a node
data data

Input Vectors

data

an element
data

data 0

data

Weight Vectors

data

r ~
data |

data 0

data

— ̂ Output Vectors

data

£ L

data

data data

Figure 20. The C-Machine

data 0 data 0 data | 0 data 0 data 0 data 0

node
id

funct.
name

ptr
to

input

ptr
to
wts.

ptr
to

output

ptr
to

vec
list

t. vec
list

t. vect
list

next
node

Figure 21. A Node

node(see Figure 22 and 23). Each input/output/weight vector node contains information
about a particular input vector of a function definition and two pointers, one for the

associated list of vector elements and the other for the next input vector node as
illustrated in the Figure 22 and Figure 23.

1st
subscrpt

name
dim 1

2nd
subscrpt

name
dim 2

form,
par am.
name

Ptr
to

vect.
elmnt

ptr
to

next

V

Figure 22. An I/O Vector

Each element of the I/O vector contains the name of the link (actual parameter) variable,
index values of the I/O vector element (formal parameter), the status of the I/O value, the

current or the last I/O value and a pointer to the next element in the list. The status value

of an input element indicates whether this value is a fresh one (ie- not yet used) or an old

Page 76

value (ie-an output has been generated by processing the input). In the case of the output
value it indicates whether this value has been distributed to all the relevant destination
nodes or. not (see Figure 23).

index 1 index 2
act.

param.
name

status value

index 1 index 2
act.

param.
name

status value
next

elmnt

index 1 index 2
act.

param.
name

status value
next

elmnt

Figure 23. Elements of an I/O Vector

The element of the weight vector is slightly different from the I/O elements in that it does
not have the name of the actual parameter name for there is none.

This virtual machine can then be compiled and executed on the pyramid. The
main advantage of having the network in this form is that it can easily be translated into

other target languages especially for execution on parallel hardware. It fully describes the

processing activity of a node and its I/O data space. This also makes it easier for

converting it into object-oriented programs such as C++ and Objective C.

5.2.2 The Im plem entation of the M anipulation Part

The manipulation part is mn on an interpretation mode using a code interleaving

strategy. That is, whenever a get command is encountered all the node processes are

executed once in a loop before checking to see if the inputs expected by the get

command are available. This is repeated until the expected values are available to the
host before executing the next statement in the manipulation program. In the case of the

Page 77

UCL Neurocomputer implementation this checking is done after the execution of each

node to be consistent with the assumption that Host and the nodes are parallel processing

units.

5.3 The Prototype Compiler

The prototype compiler for generating code for UCL Neurocomputer was

generated using lex [Lesk75] and yacc [John75] and has the similar structure as the

translator down to the syntactic and semantic analysis stage. Then it differs from the

translator by producing the symbol tables and generating assembler codes like any other

compiler. In this compiler, no intermediate code is generated. A straight forward code

generation is applied. To convert the assembler code into executable machine code, an
assembler-compiler was implemented and is used to produce the machine code for the

neurocomputer as shown in Figure 24.

Source file

Lexical
Analysis

r

UCL
Assembler
Compiler

V

Syntactic
Analysis

Symbol Tables

UCL
Machine
v Code

+
Constant Table

Mapper

UCL
Assembler

Program
UCL

Neurocomputer

L J

Figure 24. The Prototype Compiler

Page 78

The loader and mapper used was developed during the implementation of the simulator

and is a very simple one which merely loads each virtual node into a simulated processor
in a sequence.

5.3.1 Data S tructures for UCL-Neurocomputer

The implementation on the UCL-Neurocomputer simulator was much easier than

expected. This could be due to the fact that the computational model of a node in the
language is in a way very similar to the model of a processing element. The overall

structure of the program in each node is as shown in Figure 25.

Memory Organisation

system software
and

standard functions

code for guarded process_l

code for guarded process_2

code for guarded process_n

interrupt service routines

intermediate data

input messages

output messages

Figure 25. Structure of a Node Program

The control flow structure of the application code can be explained by the following
pseudo-code.

Page 79

while TRUE do
begin

if (input_condition_l_is_true) then
execute guarded_process_l
call update_l/0_status_flags
call send_output
goto START
fi

if (input_condition_n_is_true) then
execute guarded_process_n
call update_l/0_status_flags
call send_output
goto START
fi
end

When an interrupt occurs (ie- when a packet arrives) the control is transferred to the
service routine for transferring the input packet to the data area allocated for placing
input messages and appropriate updatings are done before returning control to the
application software. The main feature of this implementation is in the way the input and
output data are organised. First of all let us look at the organisation and handling of the
input data.

number
of data
items

link
variable
number

addr. addr.
data flag

link
variable

number
addi
data

addi
flag

flags Data

xl x2 x9 xlO

Figure 26. Organisation of the Input Data

The input messages are organised in contiguous blocks of memory (see Figure

26). At the head of these blocks is a single cell which contains the number of input data

blocks. This number includes the actual number in use plus ten free blocks for further use
during mn time (for example:- when creating new links). Each input block consists of a

Page 80

number which represents the link (input) variable, a pointer to the formal parameter

variable into which it is to be copied and a pointer to a flag field which represents the
status of the current data.

When an input arrives, an interrupt transfers the control to a routine which

determines the source and services the interrupt. The service routine copies the newly
arrived packet into a temporary buffer and then the appropriate block which contains

information about this input (ie-link variable/input number) is used to copy the data into

its formal parameter variable and update its status.

The output data is again controlled by a set of control blocks placed contiguously

(see Figure 27). As with the input control blocks, at the head of the output blocks a single
memory location contains the number of output data. Each output block consists of a
link variable number as before, number of destination nodes (m say) for which this data

is to be sent, a list (m) of destination node identification numbers and ten spare slots for
further use.

addr. link number dest. dest. dest.
of variable of node node node

data number nodes 1 2 3

v
Figure 27. Organisation of the Output Data

5.4 Im plem entation of NPS

The NPS is implemented in the form of a command interpreter where each

command is interpreted and appropriate action is taken. In the case of sequential
execution NPS behaves almost like a UNIX shell where commands are accepted and

appropriate programs are executed and the control is returned to the user with one
exception. When a network is being executed the user can gain control in order to stop

and save the network by typing a "CONTROL X" . This character input is trapped by a

function and the control is given to the user after the execution of each node in the list.

The command interpreter has the following form

Page 81

While not EOF do
begin

get command

execute command

end

The "execute command" consists of interpreting the commands and calling the

appropriate function to act. For instance when the run command is issued, the file name

is passed to the NIL translator for translation and subsequent execution.

The commands that can be executed by the NPS are

• run -m file jiam e - which takes the source file called file_name and compile, load

and execute it on the desired machine specified by "m".

• load -m file_name - takes a partially run network in file_name and loads it on to

the desired system specified by the value given to "m".

• go - start executing the network.

• stop - stops a running network.

• save file jiam e - saves the current configuration of the network for later
execution in the named file.

• abort - aborts the current network.

• exec model_name - initiate the execution of a network package available in the
library. This will be followed by a number of request for parameters such as input

values, number of layers, nodes per layers etc. Once the system has got all the
information, it will proceed with the compilation, loading and execution of the
network.

Page 82

Chapter 6

This chapter presents an assessment o f NIL and the NPS. The assessment o f NIL consists

o f testing its portability and model independence, and showing how programs written in

high level languages can be compiled into NIL. The assessment o f the NPS centers

around the execution o f the system’s commands and the use o f library functions to

demonstrate its programmability.

6. A ssessm ent o f NPS an d N IL

To assess a programming system where the specification language forms the
major part is to demonstrate that it fulfills its intended role efficiently and easily. In the
case of NIL it must demonstrate that it is portable and contributes to programmability of

the system. This means that it must demonstrate that:

1. It is independent of any particular hardware;

2. It can represent a range of neural network models;

3. It is suitable as an intermediate level language for neural network
programming;

4. It supports reusability.

In the case of NPS, assessment is made with respect to its programmability. This means
that it must possess the following properties:

1. usability - how easy it is to code and execute neural network algorithms

on a particular machine?

2. facilities - the main facility, library of functions and models, how helpful

are they and how can they be improved?

3. simplicity - how simple is the design? is it easy to maintain and upgrade?

6 .1 Assessment of NIL

This section assesses the capabilities of NIL. As mentioned earlier the assessment
falls under two categories. They are

1. Programmability: In this category, NIL is assessed for its

Page 83

a. specification capability by coding three different
algorithms, namely, Hopfield, Back-error propagation and
Kohonen’s feature map algorithms in NIL and executing it

to show that it can satisfy the programmability

requirement.

b. dynamic properties to show its general applicability.

c. suitability as an intermediate language and its reusability.

d. overall strengths and weaknesses by comparing it with

another intermediate network language called BIF.

2. Portability: In this category, NIL is assessed for its

a. target machine independence to show that it satisfies its

portability requirement.

b. ability to deal with parallel computations by comparing
with Occam.

c. suitability as a target code by showing generally how an
algorithm specified in a high level language can be

compiled into NIL.

6.1.1 Program m ability

6.1.1.1 Specification of Models. The specification capabilities of NIL is demonstrated
by coding three different models, namely, Hebb/Hopfield, Back-error propagation, and

Kohonen’s feature map in NIL and executing them. To look at the capabilities of the
language and how it is used, let us first consider the following program written in NIL to

implement a Hebb/Hopfield algorithm that learns three patterns and recalls them. In this

example each input vector consists of five elements and there are two layers, an input

layer which merely propagates the input patterns to the next layer and an output layer

that learns and recalls the patterns. A model with five input units and five output units to

implement an auto-associator was coded in NIL. Three patterns were used as input and

the system was trained and recalled as described in [Psal87]. The network that describe
this model is as shown in Figure 28. This network was specified using six connection
statements as follows.

Page 84

resl resl

sig[l]

iput[5.iput[s[2]s[l]

Host

Figure 28. Hebb/Hopfield Network

begin
/* a rep statement specifying the input layer */
rep[5] lay l(iput[i]) -> (out[i])
/* five link statements specifying the output layer */
1 ay2([out[1] ,out[2] ,out[3] ,out [4] ,out[5]],[s[1] ,s[2]] :

[0.0,0.0,0.0,0.0,0.0],[1.0]) -> ([sig[l]],[resl[l]])
lay2([out[l],out[2],out[3],out[4],out[5]],[s[l],s[2]] :

[0.0,0.0,0.0,0.0,0.0],[2.0]) -> ([sig[2]],[resl[2]])
lay2([out[1],out[2],out[3],out[4],out[5]],[s[l],s[2]] :

[0.0,0.0,0.0,0.0,0.0],[3.0]) -> ([sig[3]],[resl[3]])
lay2([out[1],out[2],out[3],out[4],out[5]],[s[1],s[2]] :

[0.0,0.0,0.0,0.0,0.0],[4.0]) -> ([sig[4]],[resl[4]])

lay2([out[l],out[2],out[3],out[4],out[5]],[s[1],s[2]] :

[0.0,0.0,0.0,0.0,0.0],[5.0]) -> ([sig[5]],[resl[5]])
/* specification of the function for nodes in the input layer*/

fun lay l(x[i]) -> (y[i])

int i;

Page 85

real x[2],y[2];

{

XW => {y[i] := x[i];} /*sends inputs to output layer */

}

/* specification of the function for nodes in the output layer*/

fun lay2(y[i], lr[j] ival:w[i], index[m]) ->(signal[m],result[m])

int i,j,m,k,ii;

real y[7] ,lr[4],index[2],signal[2],result[2],w[10] ,net;

{
y [l..i] ,lr[l] =>{

/* learns the input pattern by adjusting the weights */

}

y[l..i],lr[2] =>{
/* recalls the input pattern */

}

}

/* specification of the manipulation part (host)*/
begin
real a, b, p, q, r, s, t;

a :=1.0; b:=-1.0;
/* loading initial weights for nodes 6 and 8 */
ldconst nde[6].w[l] = 0.11, nde[6].w[2] = 0.21, nde[6].w[3] = 0.12,

nde[6].w[4] = 0.04, nde[6].w[5] = 0.13;
ldconst nde[8].w[l] = 0.15, nde[8].w[2] = 0.06, nde[8].w[3] = 0.17,

nde[8].w[4] = 0.02, nde[8].w[5] = 0.11;
/* inputting patterns for learning */

input iput[l] = b,iput[2] = a,iput[3] = a,iput[4] = a,iput[5] = b,s[l] = a;

run_net;

/* has all the 2nd layer nodes learnt the pattern? */

get p = sig[l], q = sig[2], r = sig[3], s = sig[4], t = sig[5];

/* yes - input the next pattern for learning */

input iput[I] = b,iput[2] = b,iput[3] = a,iput[4] = a,iput[5] = a,s[l] = a;

mn_net;

get p = sig[l], q = sig[2], r = sig[3], s = sig[4], t = sig[5];
input iput[l] = a,iput[2] = a,iput[3] = b,iput[4] = a,iput[5] = a,s[l] = a;

mn_net;

get p = sig[l], q = sig[2], r = sig[3], s = sig[4], t = sig[5];

Page 86

/*RECALL THE FIRST PATTERN*/

input iput[l] = b,iput[2] = a,iput[3] = a,iput[4] = a,iput[5] = b, s[2] = a;

mn_net;

/* is the output ready? */

get p = resl[l], q = resl[2], r = resl[3], s = resl[4], t = resl[5];

/* yes - display the results */

output "result = ",p,q,r,s,t;

end

end
The first "rep" statement describes the input layer and the subsequent five statements

describe the second layer and its connections(see Appendix B). The processing activity
of an input unit is described by the function layl(), which merely sends the input sent by
the host (represented by the manipulation program) to all the output units in the next
layer. In this case the first layer is not really needed and can be excluded from the
network. The reasons for including it is to show how a simple two layered network can
be built and the use of the parallel "rep" statement. The computational behaviour of the
output units are described by the function lay2(). This function consists of two guarded
processes, one for learning and the other for recalling. The link statement associated
with these nodes have two input vectors, [out[l],..,out[5]], and [s[l],s[2]]. The first input
vector represents the input pattern and the second input vector represents the leam (s[l])
and recall(s[2]) signals to the nodes. The two weight vectors of each link statements are
mapped into the weight vectors w[i] and index[m] of the output nodes respectively. The
w[i] vector represents the actual weights on the links(which are all zeros initially) and the
index[m] represents the node index (i.e. 1,2,..,5) which enable each node to determine its
position in the output layer. The output of each link statements again consists of two

vectors, [sig[]], and [resl[]]. The first set carries a signal from each
node([sig[l]],..,[sig[5]]) to the host to inform that the current pattern has been leamt and

the second set of vectors([resl[l]],..[resl[5]]) carries the output generated by each node

when a recall is initiated.

The manipulation part begins with some initialisation statements followed by two

"ldconst" statements which changes the weights associated with node 6 and 8. These two
statements are mainly included to show how new weights can be loaded on to the links.

This is then followed by an "input" command to load the first input pattern and the signal

for leaming(s[l]). After loading the inputs, the network is executed using the "runjnet"

command. Then the "get" command is used to read the completion signals(sig[]) before
submitting the next pattern for learning. Once all the patterns have been learned, "input"

Page 87

command is used again to input a pattern and the recall signal(s[2]) for recalling that

pattern. Finally "output" command is used to print the results.

When this algorithm was executed both on the UCL’s simulated neurocomputer

and on the pyramid technology machine, it learnt the patterns and recalled them

correctly. The initial weights are as given in table 6.

Weights Node 6 Node 7 Node 8 Node 9 Node 10

w 1 0.1100 0.0000 0.1500 0.0000 0.0000

w2 0.2100 0.0000 0.0600 0.0000 0.0000

w3 0.1200 0.0000 0.1700 0.0000 0.0000

w4 0.0400 0.0000 0.0200 0.0000 0.0000

w5 0.1300 0.0000 0.1100 0.0000 0.0000

TABLE 6. Initial Weights

The node numbering is done by the compiler by assigning the values in ascending order
starting with the first node associated with the first link statement and so on. The final
listing of the weights and the output results produced by running the program is as given
below.

WEIGHTS FOR NODE 6 /*i.e- the first output node */
w l= 0.000000 w 2= 1.210000 w 3= -2.880000 w 4= -0.960000 w 5= 1.130000

WEIGHTS FOR NODE 7 /* the second output node */

w l= 1.000000 w 2= 0.000000 w 3= -1.000000 w 4= 1.000000 w 5= -1.000000
WEIGHTS FOR NODE 8

w l= -2.850000 w 2= -0.940000 w 3= 0.000000 w 4= 1.020000 w 5= -0.890000

WEIGHTS FOR NODE 9

w l= -1.000000 w2 = 1.000000 w 3= 1.000000 w 4= 0.000000 w 5= 1.000000

WEIGHTS FOR NODE 10

w l= 1.000000 w 2= -1.000000 w 3= -1.000000 w 4= 1.000000 w 5= 0.000000

INPUT ~> OUTPUT

-1 .000000-> -1.000000
1.000000 ~> 1.000000

Page 88

1.000000 ~ > 1.000000
1.000000 ~ > 1.000000
- 1.000000 ~ > - 1.000000

INPUT ~> OUTPUT

- 1.000000- > - 1.000000
-1 .000000-> -1.000000

1.000000 ~> 1.000000
1.000000 ~> 1.000000

1.000000 - > 1.000000

INPUT --> OUTPUT

1.000000 - > 1.000000
1.000000 - > 1.000000
-1 .000000-> -1.000000

1.000000 ~> 1.000000
1.000000 ~> 1.000000

full listing of the program can be found in Appendix B.

Back-Propagation Model

Back-propagation algorithm [Rum86c] is a fairly popular model and goes a long
way towards guaranteeing a global minimum. Apart from this, it can also succeed in

mapping any function using one or more layers of hidden units. Our reason for including
this algorithm in this assessment is to test the ability of the language in dealing with

feed-back loops. To test this basic property, the exclusive or (XOR) problem was coded

using two input units, one hidden unit and an output unit. Again the host executes the
manipulation sub-program. The problem is represented by the network topology shown

in Figure 29. In this example, the complete network is built using the powerful

construct statement to demonstrate its capabilities, especially its ability to deal with
feed-back loops.

Page 89

result[l]

eop[l] rcl[l]

ou[2]ou[l]

erbk[l]

in

iv[l] iv [2]
Host

Figure 29. Exclusive OR Network

begin

construct ([i=2] in(iv[i], sig[l]) -> (ou[i])
:[p=l] hi(ou[i], erbk[l] : 3*md[0-l], l*m d[0-l], l*m d[0-l],

l*m d[0-l],l*m d[0-l]) -> (out[p], sig[p])
:[k=l] op(ou[i], out[p], eop[l], rcl[1] :3*rnd[0-l],l*rnd[0-l],

l*m d[0-l]) -> (erb[k], result[k])

end

Even though, slightly complex for an intermediate level language, it is an essential

facility that greatly reduces the number of link statements.

The random function provided by the language was found to be very useful when

initialising the weights etc. Various other models based on this algorithms were tested

during trials and found to be satisfactory (see Appendix B for full coding, test data and

results). This example also demonstrate the power and value of a separate manipulation

sub-language to control and monitor the network using the control commands in "do" and

"if' statements.

Page 90

The initial weights and the output of the program which includes the final

weights, and the output values produced when recalled is as given in Table 7.

Weights Node 3(Hidden) Node 4(Output)

w 1 3.10000 1.20000

w2 2.10000 2.60000

w3 _ 1.27000

theta 2.50000 1.70000

TABLE 7. Weights for Nodes in Hidden and Output Layers

FINAL WEIGHTS FOR NODE 3 /* the hidden node */
W l= 5.596046
W2 = 5.521795
theta = -2.134852

FINAL WEIGHTS FOR NODE 4 /* the output node */
W1 = -3.271263
W2 = 7.620885

W3 = -3.245167
theta = -2.529501

input input ==> output
0.000000 0.000000 = > 0.151414

0.000000 1.000000 = > 0.831594
1.000000 0.000000 ==> 0.830358
1.000000 1.000000 ==> 0.193722

A full listing of the program can be found in Appendix B.

Kohonen’s Feature Map Model

This model is basically a pattern classifier and serves as a good test bench for any

neural network language. The main reason is that it is a system where the neighbourhood
of a node changes during every cycle. To implement such a system in a truly parallel

hardware one requires a language capable of handling a heterogeneous network. We

found that NIL seems to handle this aspect fairly easily with the help of an extra node to

determine the neighbourhood nodes at the beginning of each cycle. This also
demonstrates that NIL is able to deal with non-homogeneous neural network models.

A simple version of the model without lateral connections consisting of three

input nodes, twenty five feature map nodes and an output node (see Figure 30) was coded

for this assessment [Lipp87].

6

output

dist[i]

recal signal

ajust[i]

inputs

host

node for finding neighborhood nodes

Figure 30. Kohonen's Feature Map

Originally the connections were specified using a "rep" statement and twenty six simple

link statements(25 for each node in the feature map and one for the output node). Then

the network was specified using the "construct" statement to show the advantage of using

this statement. In both cases the results were the same.

Page 92

CODE USING SIMPLE LINK STATEMENTS ONLY

begin

rep[3] inode(iput[i])->(invec[i])

onode([invec[l],invec[2],invec[3]], [learn], [ajust[l]], [si], [recal]

:[0.2,0.1, 0.05],[0.0])->([dist[l]],[otpl])
onode([invec[l],invec[2],invec[3]],[learn],[ajust[2]],[si],[recal]

:[0.2, 0.1, 0.05],[0.0])->([dist[2]],[otp2])

onode([invec[l],invec[2],invec[3]],[learn],[ajust[3]],[si],[recal]

:[0.2,0.1, 0.05],[0.0])->([dist[3]],[otp3])
onode([in vec [1] ,in vec [2], invec [3]], [le am], [ajust [4]], [si], [rec al]

:[0.2,0 .1 ,0.05],[0.0])->([dist[4]],[otp4])

:[0.2, 0.1, 0.05],[0.0])->([dist[21]],[otp21])

onode([invec[l],invec[2],invec[3]],[leam],[ajust[22]],[si],[recal]
:[0.2, 0.1, 0.05],[0.0])->([dist[22]],[otp22])

onode([invec[1],invec [2],invec [3]], [leam], [ajust [23]], [si], [recal]
:[0.2,0.1, 0.05],[0.0])->([dist[23]],[otp23])

onode([invec[1] ,invec[2] ,invec[3]],[leam] ,[ajust[24]],[si],[recal]
:[0.2, 0.1, 0.05],[0.0])->([dist[24]],[otp24])

onode([invec[1] ,invec[2],invec [3]] ,[leam] ,[ajust[25]], [si],[recal]
:[0.2, 0.1, 0.05],[0.0])->([dist[25]],[otp25])

resnode([otp 1 ,otp2,otp3 ,otp4,otp5 ,otp6,otp7 ,otp8 ,otp9,otp 10,otp 11,
otp 12 ,otp 13 ,otp 14 ,otp 15 ,otp 16 ,otp 17 ,otp 18 ,otp 19 ,otp20 ,otp21 ,otp22,

otp23,otp24,otp25]) -> ([clout])

end

CODE USING CONSTRUCT STATEMENT

construct[i=3] inode(iput[i]) -> (invecfi])

: [j=25] onode(invec[i] ,leam[1],ajust[j] ,si[1],recal[1]

: 3*md[0-l], [0.0]) -> (dist[j], otp[j])
:[k=l] resnode(otp[j]) -> (clout[k]))

end
end

Page 93

As expected the execution of this model was very slow on the neuro-computer

architecture simulator. The heavy load of messages between the host and the nodes of the
network reduced the speed of execution. On the other hand, the "C" version was

comparable with a three layered back propagation model with ten nodes in each layer.

Again the construct statement showed its power in terms of its compactness and

expressibility. The manipulation part seems a bit long, but given the required amount of

interaction with network it was tolerable. A full listing of the program with nine feature

nodes, input values, and the output from the program can be found in Appendix B.

6.1.1.2 Dynamic Properties of NIL The dynamic properties of the language was tested
by creating a simple network consisting three layers, two input nodes, two hidden nodes,

and an output node. The test consisted of deleting, creating links and nodes to see if the
network behaves as expected (see example in Appendix B for more details and the

execution results). This proved to be satisfactory however there were limitations such as

1. when adding node types which are not already present in the network.

2. in the neurocomputer implementation, adding nodes with different
number of I/O links other than the one already present needed major
modifications to the code and was found to be a complex and time
consuming process.

3. in the case of creating a new link in a network, it was found that some
extra processing is needed to adjust the I/O channel indexes in the C-
Machine version.

6.1.1.3 NIL as an Interm ediate Language and its Reusability Assessing the
suitability of NIL as an intermediate language depends on what we use as basic criteria
for classifying a language as an intermediate level language. We believe an intermediate

language should have the following properties.

1. It should not have any high level functions.

2. A program written in this language should ideally represent a virtual

machine.

3. Intermediate state of this machine can be saved and the execution can be

resumed from where it was stopped.

4. Translating to target machine code for execution on a particular hardware

should not involve too many overheads nor should it be a multi-step

process.

Page 94

5. A high level language should compile down to this language and not up to

it.

6. In the case of network language, an intermediate language should clearly

define its topology and allow interaction at the intermediate level(ie-

multi-level interaction).

7. A network language at intermediate level also should have the facilities

for interfacing with other tools such as graphics, debuggers and other

support tools.

The first property, which is that the intermediate level language should be free of any
high level functions is generally considered to be an unnecessary restriction given the

current diverse nature of computing. Especially in the case of an intermediate level
neural network language that is supposed to facilitate interaction at this level. So this
requirement is not strictly met by NIL. However, the language was deliberately designed
to be at a similar level as PARLE[McCa88] and Occam[MayD87] which are generally
considered to be typical intermediate languages.

The second property, that an intermediate level language should represent a
virtual machine is an important one and we believe that this requirement is fully satisfied.
This is achieved by designing the language as a representation of a network of
automatons where each node is based on a very general computational model which
changes its state according to its input. This is further proved by the fact that a NIL
program can be translated to a C-Machine which is almost similar to the NIL program in

structure.

The third property is also believed to be satisfied by the successful demonstration

of the "save" and "load" commands. The existence of a compact prototype compiler for
mapping NIL programs on a simulated general purpose neurocomputer architecture

seems to prove that the fourth requirement is also satisfied. The fifth requirement can be

safely interpreted as meaning that at least no extra data structures must be generated
during translation from a high level language. This seems to be true with NIL as there are

no data structures and the language is primarily built on primitive constructs.

The sixth requirement, which is clear definition of the topology and intermediate

level interaction, is believed to be satisfied. Firstly, on the issue of clear definition of the

topology, the language scores well in using the three types of connection statements

namely, link, rep and construct. Especially the "rep" and "construct" statements gives a
clear and concise view of the network in a compact form. Secondly, on the issue of

Page 95

intermediate level interaction, the manipulation sub-language have demonstrated its

ability beyond reasonable doubt.

Finally, satisfying the last requirement is not seen as a problem. Especially,

because of the primitive nature of the connection statements. NIL is ideally suited for

translating into graphic form and back to it. The question of a debugger for NIL is made

redundant to an extent by the existence of the manipulation sub-language. It is also

anticipated that there will be no problem in calling other tools in the system.

In all the above mentioned cases NIL seems to score well except in its definition
of functions which seems to be slightly at a higher level. But when compared with BIF

(the only intermediate language in its class) it compares favourably.

The reusability issue in the case of NIL is an important one in that the language
lends itself to reusing a function definition as long as the link statement which uses it

correctly specifies the actual parameters. This makes it possible for building function
definitions of general type, for example, a hidden unit in a back-propagation model or an
output unit in Kohonen’s feature map model can be built and used again and again. This
is why a set of general functions are also included in the functions library.

6.L1.4 Comparison with another Language in its Class One of the very few
languages in this class (ie- intermediate level network languages) is BIF (Beaverton
Intermediate Form) in ANNE [Bahr87]. This is based on the "C" language syntax and
describes the network structure in a standardized network format using a "C" data
structure. In BIF the basic network object is called a Connection Node (CN). Each CN
may have one or more sites, and each site has one or more links. A CN is, thus, made up

of three sub-parts. The main CN field, a site, which groups the links and hold the values
from those links. At the terminal end of each link is the address of its other end in the
node which is connected to it.

A BIF file has two parts. The first contains a listing of the CN groups, each of
which consists of a unique group index, a string name, and two initialisation values for

CNs belonging to that group. Each CN carries an index corresponding to the group to

which the CN belongs. The group name allows the user to address groups of CNs

symbolically. Each BIF file must have two special CN groups named "input" and

"output". These groups designate the CNs used for global I/O operations.

The second part consists of individual CN records. These records are composed
of a hierarchy of CNs, sites, and links. Sites nest within CNs, and links nests within
sites. Input or output sites are not listed in any order. Neither the sites nor the links are

Page 96

explicitly indexed in a BIF file. Sites happened to be specified in BIF as being either
input or output. The network procedure at node level consists of functions for performing

sub tasks which collectively implement the activity of a node. The procedure at host level

is similar to the manipulation part in NIL except that NIL is much richer in terms of

network manipulation commands. The rest of this sub section compares NIL with BIF

systematically using the following criteria.

1. representation of network topology.

2. representation (holding) of data values.

3. representation of a node (ie- function representation) and description of

computation in a node.

4. control structure for controlling and manipulating the network during mn

time.

Comparison of NIL with BIF is based on the programs given in Appendix C.
These two programs implement a three layer Back-propagation model consisting of five
nodes in each layer. Each aspect mentioned above is considered one by one.

Representation o f network topology - As mentioned earlier, the network topology in BIF
is described in two parts using "C" data structures. In the first part, the nodes are grouped
according to their types. The second part describes the individual nodes as a set of
hierarchical records. These records contain informations such as its group identification,
number of sites, number of links per I/O values etc. These are accessible to the user and

can be viewed. This form of representation does not give a clear picture of the network
topology. On top of this, the input and output sites are not listed in any order nor are they
explicitly indexed. These make it even more difficult for the user to understand the

topology. On the other hand, NIL expresses its network topology in a neat and simple

way by using its simple link statement or rep and constmct statements. In this particular

case, it uses the constmct statement to give a compact view of the network topology. A

NIL’s link statement completely describes the input, output links, the weights, and other
state values associated with each node in a single statement. When a constmct statement

is used to define the topology, the topology of the network becomes even more clearer to

the user. This is not so clear in the case of BIF [see Appendix C] because most of the

informations concerning the network topology is burried into the "C" data stmcture. In

NIL the topology can be clearly worked out by looking at the link statements. This leads

us to conclude that NIL’s representation of the network topology is preferable to that of
BIF.

Page 97

Representation o f data values - By this we mean, how the data such as weights, status

values, and the I/O values are held by the intermediate language. In the case of BIF, these
are kept as a part of the data structure. In the case of NIL, these are part of the program

constructs. For example, the weights are a part of the parameter list of a node function

and the link statement associated with it, and can be displayed by using the "readst" or

the "get" command. We are of the opinion that it is preferable to hold the data in the

language constmct than in a data stmcture at this level (i.e. - intermediate level). The

main reason for this is that it requires less overheads to access these data. The second

reason is that it gives a clear view of the algorithm and the data in a combined form.

Representation o f a node - In BIF, a node procedure is described as a collection of

separate functions, where each function performs a sub task. This means that a node

activation triggers a series of calls to all or a sub set of these functions depending on the
purpose behind the activation (eg- learning or recalling). In NIL, a node is described as a
complete entity in the form of a function. This function consists of a header that specifies

the input, output, and weight parameters, a body that specify the computational tasks of
the node in the form of a set of guarded processes (eg- for learning and recalling). A node
function is a general class of function in NIL. Using this general class approach, one can
specify the basic classes such as input, output, and hidden nodes and then specific nodes
(units) which can be generated from these by connecting the appropriate I/O links. This
is where the important differences between NIL and other languages in its class comes to
the surface. First of all, on the issue of clarity, NIL fairs well because it is able to
describe a node completely (ie- its computation and data). Secondly, it shows that
mapping of neural network algorithms as a network of nodes on a parallel as well as a
sequential hardware is easier with NIL. On the other hand, a faithful implementation of a

network model using BIF will require excessive amount of resources and so it is mainly
used as a simulation language. This is further supported by the fact that the current

implementation of BIF on a hyper-cube system only mns on a simulation mode. This

lead us to conclude that NIL is better suited to program the type of massively parallel

machines which are being developed for executing neural network models. On the other

hand, NIL can also be used as a simulation language by splitting a node, that is- using

each guarded process as a virtual process.

Control structures and manipulation commands - The control stmctures in BIF are
composed of purely "C" statements such as " if’, "for", "return", function calls, etc. These

are very familiar constmcts and easy to leam and use. The manipulation and other

commands consists of a number of system calls. These includes

Page 98

• Send_node_output(cn_index, site_index); which sends the output from a single

CN along all the output links belonging to the named site.

• Send_net_output(filename); which is used specifically to get the host to write the

output vector to the named file.

• Update_node_weights(cn_index, site_index); which is used to transmit the new

weights from one end of a bidirectional link to the other. The CN and site indices

in the parameter list name the group of links that transmit their weights.
In addition to these system functions, there are a set of run-time/user commands such as

• buildnet; for constructing and initialising the network and the auxiliary data

structures.

• newmn; to begin a simulation run.

• stopnet; to suspend a network simulation.

• savenet; to save current network structure in a new BIF file, which can be used
later for a new simulation.

• show; to display the state of the "local" simulation parameters and list the

currently active traces.

• quit; to exit from the simulator.

In NIL, the control statements consists of " i f , "do", and "goto". The syntax of
the "if' and "do" are made simpler. Even though the presence of "goto" statement gives
the impression that it is not a proper structured language, it can be argued that it is a
necessity. On the other hand, the system call/user commands in NIL are much more

simple and geared towards parallel network execution mode and are part and parcel of
the language. This means, NIL is independent of any simulation environment and does

not require any other software other than its compiler for it to be implemented on a

different computer. For example, if weights are to be updated for a set of binary links,
these will be done by the user written code in each node autonomously. Building the

network is the task of the compiler in NIL and is not seen as a systems task as in BIF.

Apart from these, NIL has a richer command set for manipulating and controlling the

network. Especially, the delete and join commands for links and nodes in NIL makes it

more powerful and makes it eligible for dealing with connectionist models as a whole.

In conclusion the BIF programs do not clearly show the structure of the network
as NIL does. Secondly, it does not give a complete picture of a node and its activity in a

Page 99

compact form as in NIL. Translation into different target machine code and mapping of

the code on to the target machine requires more computational effort than NIL would.
Mapping a BIF program onto a neural network architecture like the UCL neurocomputer

would only result in an inefficient system. It is more geared towards a simulation mode

especially with its timer mechanism than a true neural network language. Even this is

debatable when one considers the simplicity of the C-Machine produced by the NIL
translator in terms of the procedural code for nodes and the host, and its simple data

stmcture which describes the network.

6.1.2 Portability

6.1.2.1 Target machine independence The target machine independence of the
language is demonstrated by successfully mapping the NIL programs on to a sequential

machine (Pyramid) and a simulated parallel architecture (UCL neurocomputer). The
execution of these models on the UCL simulated architecture led us to conclude that

1. The language is well suited to this particular architecture.

2. Parallel implementation of neural network algorithms using NIL does not

require any extra overheads.

3. It can be implemented and executed on both parallel and sequential
hardware.

Execution of these models both on a sequential machine and the parallel simulator also
confirmed that the underlying virtual machine(C-Machine) is a suitable vehicle for
porting network models over a range of machines. This view is further enforced by the

fact that "C" language programs can be mapped on a range of hardware(i.e. parallel and
sequential machines). In fact, the main reason for implementing a translator to translate

NIL into "C-Machine" is to prove that NIL can be mapped on a wide range of hardware.

6.1.2.2 Occam and NIL As already mentioned, NIL has a lot in common with the

language Occam. In a way NIL can be considered as a possible alternative to Occam in

programming a network of transputers. In Occam, the computation falls into two

categories, parallel, and sequential. This means that the programmer has to explicitly

specify the mode of computation using the "PAR" and "SEQ" constructs provided by the

language. In NIL, there are no such explicit constmcts to specify the mode of

computations. These are done in a natural way by splitting the parallel components into

virtual nodes and allowing sequential execution within nodes. The pattern of connections

are specified by the "link" statements. This has the obvious advantage of being able to
express each node (which is the equivalent of a procedure in Occam) as a generic

Page 100

function. The other advantage is that it expresses the whole process as a set of related but

independent functions and specify how they are related to each other in terms of data
channels. In Occam, communications between processes are established via data

channels in similar manner as in NIL except that these channels are specified explicitly at

the procedure level. The "rep" and "seq" statements in NIL have their equivalents in

Occam.

For example, the statement

rep[N] A(X[i], Y[i]) -> (X[i+1], Y[i+1])
is equivalent to the following Occam code

JN+1] CHAN X, Y :
PAR

ASTART (X [l], Y [l])
PAR i = 1 FORN

A(X[i], Y[i], X[i+1], Y[i+1])
ASTOP (X[N+1], Y[N+1])

and the statement

rep[N] A (S[i],T [i])->(U [i],V [i])
can be expressed in Occam as

[N] CHAN S, T, U, V :
PAR i = 1 FOR N

A(S[i], T[i], U[i], V[i])
The "constmct" statement in NIL on the other hand is more powerful and will need many
more statements in Occam.

Receiving and sending data is treated in different ways in both languages. In

Occam, "?" and "!" notations are used to receive and send data and they are
synchronised. In NIL, an input is accessed by referencing the appropriate input channel

of a node. There is no explicit form of outputting data on a channel in NIL. This is done

automatically by the run-time system in NIL. Most importantly, the I/O transfers are not

synchronised. The body of a function in NIL consists of one or more guarded processes.
These can be constmcted using the ALT statement in Occam. The input condition

associated with a guarded process also can be coded in Occam very easily as follows.

X[1..N] => {PROCESS_l}

can be coded in Occam as
M := 1

SEQ i = 1 FOR N
B [i] := TRUE

WHILE M < N

Page 101

ALT i =1 FOR N
C[i] ? X[i] && B[i]

SEQ

B[i] := FALSE

M := M + 1

TRUE

SKIP

PROCESS_l

All these lead us to conclude that NIL can be an alternative to Occam and that it offers

some compact notations to specify computations on a network of transputers. There are

also few weaknesses in NIL such as the lack of facilities for configuring standard I/O
devices, and a TIMER mechanism. It is also felt that provision of high level connection

statements and richer input conditions will make NIL a serious candidate for
programming transputers.

6.1.2.3 Translating high level languages into NIL In order to show that neural
network programs written in high level languages can be easily translated into NIL
programs, we decided to specify a high level language in a pseudo language form that
will possess all the basic properties which are common to all neural network languages
such as SLOGAN [Ange88], CONDELA [Kohl88], NEURAL [Chol88], AXON
[Guts88]. These basic properties are

1. application modelling- most of the high level language in this field tend to
act as application builders rather than algorithm implementors. This
means they describe the network as a collection of sub networks
cooperating to perform some task. In this, each sub network is described

by specifying their layers, connections and the nodes.

2. connection statements- which allow full connection between layers of

nodes, connection between individual nodes, and between sub networks.

3. node interfaces- definitions of node functions used in these systems may
belong to a library or can be described in the program. These are specified

as general purpose functions with variable lists of input, output and weight
parameters. In order to configure these nodes in a given network, their I/O

list’s parameters(eg- length of I/O vectors) must be specified. This is

usually done in node interface section of the language.

4. node definition - which specifies the computational behaviour of the
nodes.

Page 102

5. network control routine- which controls and manipulates the network.

A program written in this language has the following form:

netw ork consists of sub nets {

/* this part describes the network as a collection of sub networks */

model_name_l,
model_name_2,

model_name_k;

} network_name;
definition of model_name_l :
/*This part defines each sub network by specifying the number of layers, number of

nodes in each layer and their types */

{ layers = no_of__layers ->

I
/* the nodes and their types in each layer */

layer[l] consists of no_of_nodes of type node_name_l;
layer[2] consists of no_of_nodes of type node_name_2;

layer[no_of_layers] consists of no_of_nodes of type node_name_n;

}
node interface {
/* interface to each node type- ie- number of I/O channels and the weight vectors
associated with the prototype of the particular node type. The information about the base

type of this prototype is available to the programmer from a library */
node type node_name_l has

input_name_l[n], input_name_2[p] : inchan,
output_name_l[m]: outchan,

wt_namel[i], wt_name2[j] : local;

node type node_name_n has

}

connections ->

{

/* This part consists of connection statements which link nodes in the sub network. These

Page 103

connections can be layer to layer connections or single connections between nodes. */

connection statements fo r model_name_l;

}
} end model_name_l;

definition of model_name_k :

{

} end model_name_k;

sub nets connections ->

{

/* this part describes the connections between the sub nets, again using similar
connection statements used in connecting the nodes within a sub net. This part is optional

and is only included if there are more than one sub network in the network */
connection statements

}
host()
{
/*this part is executed by the host processor and consists of commands for controlling the

network */

}

Connection statements used to link nodes within a sub network take the following forms :

To send all output from one layer to all the nodes in another layer.

connect all output_l of layer[l] to input_l of layer[2]

This is referred to as "all to all" connection.
To send output from each node in one layer to input channels called input_l of each node

in another layer.

connect output_l oflayer[l] to inpu t_ l oflayer[2]

This is referred to as "one to one" connection.
To send a particular output from a node to a particular input of another node.

Page 104

connect output_l of layer[l][2] to input_l of layer[2][5]

To send output from a layer to host.

send all output_2 of layer[3] to host

The connection statements used to connect sub networks are similar to the above

statements except further qualification is added to distinguish layers and nodes of one sub

network from another. For example, to connect all outputs from layer[3] of model_l to

all the inputs of layer[l] of model_2 the following statement is used.

connect all output of model_l.layer[3] to input of model_2.1ayer[l]

A node in this language is defined as follows:
node type output (input[n],target[l] : inchan,

output[l], e rro r[l]: outchan,

w[n], t[j] : local)

{
switch mode {
learn => if test(input[l..n], target[l]) then {

else
if test...

ft

recall =>

} end switch;

}

The node/function body and the host use control flow statements similar to the

ones found in the "C" language. The special commands available for controlling the

networks are
Idvals - to load the links with data,

Idwts - to load weight variables with data,

save - to save a trained network,

test - to test the presence of data on input channels,
show - to display the weights and I/O values of a node (or nodes),

Page 105

set mode - to select the mode of activation (ie- learning or recalling),
read - to read data,

file - to assign file names to file pointers.

A three layer back propagation model with three nodes in each layer can be

specified in this language as follows.

Network consists of sub_nets {

model 1;

} backprop;
definition of model 1:

layers = 3 ->

{

layer[l] with 3 nodes of type input;
layer[2] with 3 nodes of type hidden;
layer[3] with 3 nodes of type output;

}

node interface {
node type input has

input[l] : inchan,
output[l]: outchan;

node type hidden has
input[3], in_error[3] : inchan,

output[l] : outchan,
si[l], theta[l], w[3] : local;

node type output has
input[3], target[l] : inchan,
output[l], errorfl] : outchan,

si[l], theta[l],w[3] : local;

}
connections ->
{connect all output of layer[l] to input of layer[2]

connect all output of layer[2] to input of layer[3]
connect all error of layer[3] to in_error of layer[2]

send all output of layer[3] to host

}
end model 1;
hostQ

Page 106

file f l = data_file;
set mode = leam;

for i = 1 to 3 {

ldwts layer[2][i].si = read(fl,num);

ldwts layer[2][i] .theta = read(fl,num);

ldwts layer[3][i].si = read(fl,num);

ldwts layer[3][i] .theta = read(fl ,num);

for j = 1 to 3 {

ldwts layer[2][i].w[j] = read(fl^ium);
ldwts layer[3][i].w[j] := read(fl,num);

}

}

t = l;
while (t <= 2000) {
for p = 1 to 3 {
for i = 1 to 3 {
ldvals layer[l][i].input[l] = read(fl,x);

}

evaluate layer[l];
evaluate layer[2];
evaluate layer[3];
evaluate layer[2];

}

t = t+ 1;

}
for i = 1 to 3

{
print (layer[2][i].si);

print (layer[2][i].theta);

print (layer[3][i].si);

print (layer[3][i].theta);

for j = 1 to 3

{

print (layer[2][i].w[j],layer[3][i].w[j]);

}

save backprop; } end host

T ranslating into NIL

In order to implement a network model in NIL, first we need the informations on the

topology of the network. The network definition part is used to construct a table of

models as shown in Table 8.

Names of Models

model_l

model_2

TABLE 8. Model_Names Table

After this, the definitions of each model in the network is scanned to generate

informations about

1. the layer structure of the particular model,

2. the node interfaces for each type of nodes in the model.
These informations are used to build the Tables 9, 10, 11, and 12 where "vn" stands for
vector number of a particular I/O channels.

Layer Nodes types

1 3 input

2 3 hidden

3 3 output

TABLE 9. Network Layers for Model 1

In Channels vn Out Channels vn Weights vn

input 1 output 1 0

TABLE 10. Node Interface for Type Input

Page 108

InChannels vn Out Channels vn Weights vn

input 1 output 1 si 1

input 1 theta 2

input 1 w 3

in_error 2 w 3

in_error 2 w 3

in_error 2

TABLE 11. Node Interface for Type Hidden

In_Channels vn Out Channels vn Weights vn

input 1 output 1 si 1

input 1 error 2 theta 2

input 1 w 3

target 2 w 3

w 3

TABLE 12. Node Interface for Type Output

After this, specific tables of input, output, and weight parameters have been
constructed by giving pseudo-names for each I/O channels associated with each node in

the first layer as as shown in Tables 13, 14, and 15.

In Vectors vn Out Vectors vn Weights vn

input_l[l] 1 output_l[l] 1 0

TABLE 13. Node_l[l] - Node 1 of Layer I

Now if we scan the first connect statement and produce the three node tables for

layer 2 using the node interface table for the hidden unit type. At this stage we may or

may not have a complete table. If we fail to have a complete table at this stage, we
produce the partially updated tables for each node in this layer and go on to scan the next

Page 109

In Vectors vn Out Vectors vn Weights vn

input_I[2] 1 output_l[2] 1 0

TABLE 14. Node_l[2] - Node 2 of Layer 1

In Vectors vn Out Vectors vn Weights vn

input_l[3] 1 output_l[3] 1 0

TABLE 15. Node_l[3] - Node 3 of Layer 1

connect statement and come back and complete these tables as and when we encounter

the rest of the informations required to complete these tables. So in this case, we have

three partial tables (Tables 16,17, and 18).

In Vectors vn Out Vectors vn Weights vn

output_l[l] 1 output_2[l] 1 si 1

output_l[2] 1 theta 2

output_l[3] 1 w 3

in_error 2 w 3

in_error 2 w 3

in_error 2

TABLE 16. Node_2[l] - Node I of Layer 2

Having produced the partial node tables for nodes in layer 2, we proceed with the

scanning of the next connect statement and the production of the node tables(Tables 19,

20, and 21) for layer 3.

Scanning of the last connect statement will enable us to complete the node tables

for the layer 2 as shown in Tables 22, 23, and 24.

While building these node tables, a list of channel names vs pseudo names are
also created for further reference while compiling the code for the host. These node

tables are further updated by replacing the weight variables with the appropriate weight

values given in the host part of the program. At the end of this stage, link statements are
generated for the whole network by extracting informations from these tables one after

InVectors vn Out Vectors vn Weights vn

output_l[l] 1 output_2[2] 1 si 1

output_l[2] 1 theta 2

output_l[3] 1 w 3

in_error 2 w 3

in_error 2 w 3

inerror 2

TABLE 17. Node_2[2] - Node 2 of Layer 2

InVectors vn OutVectors vn Weights vn

output_l[l] 1 output_2[3] 1 si 1

output_l[2] 1 theta 2

output_l[3] 1 w 3

in_error 2 w 3

in_error 2 w 3

in_error 2

TABLE 18. Node_2[3] - Node 3 of Layer 2

the other. This should produce the following link statements.

input([input_l[l]]) -> ([output_l[l]])
input([input_l[2]]) -> ([output_l[2]])

input([input_l[3]]) -> ([output_l[3]])

hidden([output_l [1] ,output_l [2] ,output_l [3]] ,[error[1],error [2],error [3]]:

[#si],[#theta],[#wl,#w2,#w3]) -> ([output_2[l]])

hidden([output_ 1 [1] ,output_ 1 [2] ,output_ 1 [3]], [error [1],error [2],error [3]]:

[#si],[#theta],[#wl,#w2,#w3]) -> ([output_2[2]])
hidden([outpu t_ 1 [1] ,output_ 1 [2] ,output_ 1 [3]], [error[1], error [2],error [3]]:

[#si],[#theta],[#wl,#w2,#w3]) -> ([output_2[3]])

Page 111

! In Vectors vn Out Vectors vn Weights vn

output_2[l] 1 output[l] 1 si 1

output_2[2] 1 error[l] 2 theta 2

output_2[3] 1 w 3

targetjl] 2 w 3

w 3

TABLE 19. Node_3[l] - Node 1 of Layer 3

In Vectors vn Out Vectors vn Weights vn

output_2[l] 1 output[2] 1 si 1

output_2[2] 1 error[2] 2 theta 2

output_2[3] 1 w 3

target_[2] 2 w 3

! w 3

TABLE 20. Node_3[2] - Node 2 of Layer 3

InVectors vn Out Vectors vn Weights vn

output_2[l] 1 output[3] 1 si 1
1
output_2[2] 1 error[3] 2 theta 2

■
output_2[3] 1 w 3

! target_[3] 2 w 3

w 3

TABLE 21. Node_3[3] - Node 3 of Layer 3

output([output_2 [1] ,output_2 [2] ,output_2 [3]], [targe t_[1]]:

[#si],[#theta],[#wl,#w2,#w3]) -> ([output[l]],[error[l]])
output([output_2 [1] ,output_2 [2] ,output_2 [3]], [targe t_[2]]:

[#si],[#theta],[#w 1 ,#w2,#w3]) -> ([output[2]],[error[2]])

In Vectors vn Out Vectors vn Weights vn

output_l[l] 1 output_2[l] 1 si 1

output_l[2] 1 theta 2

output_l[3] 1 w 3

error[l] 2 w 3

error[2] 2 w 3

error[3] 2

TABLE 22. Node_2[l] - Node 1 of Layer 2

In Vectors vn Out_Vectors vn Weights vn

output_l[l] 1 output_2[2] 1 si 1

output_l[2] 1 theta 2

output_l[31 1 w 3

error[l] 2 w 3

error[2] 2 w 3

error[3] 2

TABLE 23. Node_2[2] - Node 2 of Layer 2

output([output_2[l],output_2[2],output_2[3]],[target_[3]]:

[#si],[#theta],[#wl,#w2,#w3]) -> ([output[3]],[error[3]])

Where #name stands for the numerical values assigned to the relevant weight

variables by the "ldwts" commands in the host program. The rest of the host program is

scanned and equivalent NIL program is generated and kept in a temporary file. This is

then followed by the translation of the node functions used in the network. This is done

by converting each "if test() then are compiled into NIL, the NIL version of the host
program is copied at the end of link statements and functions.

Page 113

In Vectors vn Out Vectors vn Weights vn

output_l[l] 1 output_2[3] 1 si 1

output_l[2] 1 theta 2

output_l[3] 1 w 3

error[l] 2 w 3

error[2] 2 w 3

error[3] 2

TABLE 24. Node_2[3] - Node 3 of Layer 2

The difficult part of translating any high level neural network language into NIL
is the production of the node tables to specify the network topology. Once this is
achieved, we see no major problems in completing the rest of the translation.

6.2 Assessment of NPS

Assessment of the Network Programming System, NPS, also involves the two
main aspects of this thesis, programmability and portability.

6.2.1 Program m ability

In the case of programmability, NPS was evaluated for presence of the following
properties.

1. usability - how easy it is to code and execute neural network algorithms
on a particular machine?

2. facilities - the main facility, library of functions and models, how helpful
are they and how can they be improved?

3. simplicity - how simple is the design? is it easy to maintain and upgrade?

6.2.1.1 Usability Firstly, number of models were coded in NIL and executed and found

that the overall activity of coding, compiling and executing models required no more
efforts than compiling an ADA program in a UNIX environment. Considering the

complexity of a neural network model in terms of its connectivity among nodes and the
special control mechanism required by the manipulation part, we found it usable to an

Page 114

acceptable degree. The existing facilities are found to be adequate for executing

algorithms and conducting experiments except when it comes to examining the structure

and state of the network on the screen. This is mainly due to the lack of a graphical
display system and this proved to be a major handicap in this respect. However, it nust

be noted that we can only form a valid opinion when it is assessed with a graphic sysem.

Unfortunately, it was not possible to do so because of building such a graphic systemand
interfacing with NIL is beyond the scope of this project.

6.2.1.2 Facilities Assessing the facilities provided by the NPS involved the execution of

the basic commands available at this level. These are

1. load -m file jiam e - for loading a partially mn network for execution m a

particular hardware by specifying the hardware option in the parair^ter

m .

2. save file jiam e - to save a partially m n program for running later, rhis
command can also be used in the manipulation part of a NIL program.

3. stop - to stop a running network. Again this command can be used in the
manipulation part of a NIL program.

4. go - to mn a loaded network.

5. run -m file jiam e - to compile, load and mn a source program file vith
options to execute in a particular machine.

6. exec -m m odeljiam e - to execute one of the standard models availabb in
the model library. When executed, this command will initiate a serie of

questions regarding the size of each layer, tolerance value, and input and
output patterns etc. The user responds by typing the required data. Chce

all the information is available, the system builds the appropriate netvork
and proceeds with the compilation and subsequent execution process.

7. abort - to abandon the execution of the network. This command is ilso
available in the NIL language.

and the use of already written functions stored in the functions library in new program.

Execution of the basic commands produced the expected result The etec

command for executing library models proved to be very restrictive. This is due to tlree

reasons:

Page.15

1. The overall topologies of the models are fixed. This means that the user
cannot have a different topology other than the one provided except that
the number of nodes in each layers can be varied;

2. Smoothing, threshold and other functions are also fixed and cannot be

changed;

3. The format for outputting the data to the screen could not be altered since

it was part of the manipulation program which is not accessible to the
user.

The use of existing node functions in the library made programming easier and the

program more compact. The save command for partially trained network proved to be
valuable during the training of a Boltzmann Machine. The conclusion was that more

flexibility and options must be provided when executing standard models from the
library. The provision of the function library which consists of a collection of commonly

used functions that describes various types of nodes proved to be valuable. Strictly
speaking it does not belong to the Network Programming System and it is part of the NIL
translator.

6.2.1.3 Simplicity It is believed that the NPS is simple and easy to maintain due to its
design simplicity. Its amenability to changes in terms of upgrading is considered to be
satisfactory because the programming system is held together by a simple command
interpreter which calls the relevant subsystems to execute the commands.

6.2.2 Portability

This has been achieved by having NIL as its intermediate language system. This
is further demonstrated by generating "C" code from NIL compiler to show that NIL can
be mapped on a range of machines such as a network of Transputers and Sun

workstations. This leads us to safely conclude that NPS offers the user the facility for

porting neural network models and applications through its intermediate system.

Chapter 7

This chapter presents some concluding remarks. First, a summary o f the thesis is

presented. This is followed by a statement o f the contributions made by this thesis to

neural network computing research. Finally, a short list o f ongoing work and potential
future work is presented.

7. Summary

The main goals of this work has been the design and implementation of a neural
network programming system which supports portability over a range of hardware, and

programmability by facilitating the implementation of a range of neural network models.

The system comprises:

• An intermediate Language - NIL - Which is a machine independent intermediate
level neural network language that can implement a range of neural network
models. In addition it is possible to implement semantic network and other
network problems using this language.

• A Virtual Machine - Which encapsulate the machine independent model of the
intermediate language in a simple and directly executable form(C-Machine).

• An Algorithms Library - Which contains a set of parameter driven popular neural
network models which can be executed by the user by supplying the necessary

parameters.

• A functions Library - Which contains a set of generalised node functions which
can be used to build network models.

• A Neurocomputer Architecture - Which is based on a primitive processing

element for executing neural network models and applications.

This thesis has mainly concentrated on the specification and the implementation

of the intermediate language, NIL. The motivation and the design approach taken were

already stated in chapter 4 and 5. The implementation strategies (both parallel and

sequential) were discussed in chapter 5.

7.1 Contributions

In pursuing this research described in this thesis, a prime consideration has been

to provide answers to the following questions:

• Is it possible to design a programming system that can support a range of target

hardware?

• If so, can a range of neural network models be efficiently mapped and executed
on this system?

It is believed that these questions have been answered positively. In the following
sections, the contributions of this work to neural network computing research are

summarised.

7.1.1 Portability

Since neural network computing is at its infancy, it is virtually impossible at this
stage to identify the ideal form of computing system that can enhance portability in a
general way. The reasons for this is that there is no obvious candidate architecture for
neural network computing. The other equally important point is that the existing neural
network algorithms are not ideally suited for building practical applications. This is
because they take so long to learn (the reliable ones) and their adaptive capabilities are
very very limited. What this thesis tried to do is to provide a software machinery capable
of accommodating any progress in both of these directions(ie- hardware and algorithms)
in the form of an intermediate language, NIL. What this language tries to do is, while
representing neural network problems in a basic form it avoids explicitly specifying the
mode of execution either in part or whole. It represents the network in such a way one
can choose to execute sequentially or in parallel at the time of execution rather than at

the time of specification. Again, the parallel execution can be either large grained
parallelism or coarse grained parallelism depending whether each node is going to

occupy a single processor or each guarded process going to occupy a single processor.

The language also tried to tackle the problem of selective control over the network by

providing simple commands for controlling and synchronizing.

7.1.2 Programmability

The model independent capability (i.e. programmability) of the system (in

particular the language) has been demonstrated within the framework of the existing

models. Again, it is impossible to judge its capability in this volatile period of research
and it is even more difficult to judge its ability in dealing with the future models. But one

Page 118

can safely assume that the system is model independent given the present state of
research in this area. The features which give positive encouragement in this direction

are in its ability to deal with semantic networks and its general computing ability.

7.2 Future W ork

There are currently two mini projects underway at the Polytechnic of North

London based on the intermediate language. The first one is the production of object

oriented intermediate code from NIL by adding Objective C type of extensions to it. An
exploratory study has been done on the design and implementation of an object oriented

language and is found to be feasible. We also found that the underlying features of neural
network has become more clear in object oriented form. It is also anticipated that the

extensive graphics libraries available in Objective C would greatly simplify the building
of a good user interface. There are two basic types of objects in this form, namely, nodes
and links. A link can be generated in three basic form:

• Single Linking - which generates a single connection between any two nodes.

• Layer Linking - which connects all the outputs from nodes of a particular layer
to all the nodes in another layer.

• Random Linking - which connects two layers of nodes randomly.

When translating a NIL program to an objective "C" program the output links
associated with a given process are pointers to destination nodes. We generate links with
the help of a dictionary object class which maintains a set of associations as ordered
pairs of node identifiers and node pointers. These dictionaries, together with tables
(derived from the NIL program) describing the network topology can then be used to

create collections of destination node pointers to be associated with each guarded
process. This approach works for the case involving point to point or layer to layer

connections. With random connections the dictionaries are used together with a suitable
random number generator. In the object oriented version each node contains a set of

synaptic input objects. These may pre-process the input before writing it to the data
slot associated with that synapse within that node. In addition each node contains a set of

guarded processes and only one of these will be able to fire at any one time as in NIL.

When such process fires it will send the appropriate messages to the synapses it knows

about. Some basic components of a node object and their relationships are shown in the

figure 31 below.

Page 119

Body

OutputsInput
Slot

Guarded
Process

Input

OutputsGuarded
Process

Input
Slot

Input

OutputsGuarded
Process

Input
SlotInput

Outputs
—

Guarded
ProcessInput

SlotInput

Figure 31. An Object-Oriented Model for a Node

The beauty of this approach is that it allows us to implement functional links as
proposed by Sobajic [Soba88] in a direct and elegant way. Thus we have the potential to
build complex systems for process control purposes.

In a particular neural network application the number of different classes of

neurons (differing in terms of the different guarded processes they contain) is fairly

small. Neurons from these various classes are connected together into functional

networks. The process of translating from NIL to objective C (or to any other object

oriented programming language) consists of creating the code for the individual classes

of neurons and their associated synapses. The network specification part of NIL is then

used to create and link these collections of objects together in the desired configuration.
By associating suitable display methods with the objects in the system it is possible to

construct user interfaces much more rapidly than with conventional programming

methods.

Page 120

The second project is concerned with the mapping of NIL on a network of
transputers. This project is being supported by the Science and Engineering Research
Council as part of their Transputer Loan Initiative (Project Number HB0001B). The

aims of the project are as follows:

1. To translate NIL into Occam and map it on the transputer network. This

seems to be very feasible in that NIL has similar features found in Occam
and the task of translating merely consists of producing a set of macros.

2. To generate Transputer assembler code directly and develop an efficient

mapping software to optimally map the network.

This work is currently being carried out at the Polytechnic of North London, where the
author is a full time member of the academic staff.

Apart from this, NIL has been used in building communication network

management systems using neural network techniques to control and manage networks
[Elia89, Elia90]. In this work, various network management models were implemented to
assess the potential of using self organising networks in this area. As part of this work,
few models based on fuzzy logic were also coded in NIL. This work is still continuing
and we hope to exploit the dynamic capabilities of NIL to produce a practical network
management system eventually.

Page 121

REFERENCES

[Aart86] E. Aarts and J. Korst, Combinatorial Optimization on a Boltzmann Machine,
Submitted for publication in "Journal of Parallel and Distributed
Computing".

[Adap88] "Adaptive Solutions for Tomorrow’s Problems — Today", Adaptics, 16776
Bernardo Centre Drive, Suite 110B, San Diego, CA 92128.

[Ange88] Angeniol. B, Texier. J, Mateu. J, "SLOGAN : An Object-Oriented Language
for Neural Network Specification", nEuro’88, France, June,1988.

[Ange89] Angeniol. B, Treleaven "PYGMALION : Neural Network Programming &
Applications", ESPRIT Conference, 1989(to appear).

[Anza87] ANZA User’s Guide, Hect-Nielsen Corporation, Release 1.00, 1987.

[Bahr87] C. Bahr and D. Hammerstrom, ANNE - Another Neural Network Emulator

[Bava89] A. S. Bavan, "NIL-PLUS: A Neural Network Implementation Language",
Proc. First Neural Computing Meeting, London, April 1989, The Institute of
Physics.

[Bava90a] A. S. Bavan, "A Programming System for Implementing Neural Nets", - XI
Sitges Conference on Neural Networks, 4 June - 7 June 1990, Barcelona,
Spain.

[Bava90b] A. S. Bavan, "NPS: A Neural Network Programming System", in Proc.
International Joint Conference on Neural Networks, June 17-21, 1990,
Sandiego, California, ppl43-148.

[Chol88] Choi. Ph and Muntean. T, "NEURAL : Towards an Occam Extension for
Neurocomputers", nEuro’88, France, June88.

[Cruz87] C. Cruz, W. Hanson, J. Tam, "Neural Network Emulation Hardware Design
Considerations", Proceeding of the First IEEE International Conference on
Neural Networks, pp.III-427-434. 1987.

[Elia89] A. Eliasz S. Bavan J. Crowcroft, "Adaptive Network Management Using
Neural Computing", - Third Race TMN Workshop, 30 August - 1 September
1989, London.

Page 122

[Elia90]

[Feld88]

[Fuku88]

[Gart87]

[Guts88]

[Gros88]

[Hood87]

[Hopf82]

[Hopf85]

[Hans87]

[Hebb49]

[Hect87]

[Hint84]

A. W. Eliasz, A. S. Bavan, and J. Crowcroft, "Approaches to Using Neural
Computing Methods to Develop Adaptive Distributed Routing Algorithms",
- Proc. Fourth Race TMN Conference, 14 - 16 November 1990, Dublin,
pp218-232.

J. Feldman M. Fanty N. Goddard, Computing with Structured Neural
Networks, IEEE March 1988.

K. Fukushima, "A Neural Network for Visual Pattern Recognition", IEEE
Computer, pp. 65-75, March, 1988.

S. Garth, "A Dedicated Computer for Simulation of Large Systems of Neural
Nets", Texas Instmments Ltd., Manton Lane, Bedford, England.(Draft).

T. Gutshow, "Axon: The Researchers Neural Network Language", Presented
in INNS’88, September88.

S. Grossberg and G. Carpenter, "The ART of Adaptive Pattern Recognition
by a Self-Organizing Neural Network", IEEE March 1988.

G. Hood, "SNAIL : A Graphical Design System for Neural Networks",
Proceeding Volume of the first IEEE International Conference on Neural
Networks, 1987.

J. Hopfield, "Neural Networks and Physical Systems with Emergent
Collective Computational Abilities.", Proceedings of the National Academy
of Science, USA. 1982.

J. Hopfield and D. W. Tank, "Neural" Computation of Decisions in
Optimization Problems, in Biological Cybernetics, Vol 5 pp 141 - 152, 1987.

W. Hanson , C. Cruz , J. Tam, "CONE - Computational Network
Environment", Proceeding of the first IEEE International Conference on
Neural Networks, 1987. Vol3 pp 531-538

D. O. Hebb, "The Organisation of Behaviour"., Willey, New York. 1949.

R. Hect-Nielsen, "Kolmogorov’s Mapping Neural Network Existence
Theorem", Proceeding of the first IEEE International Conference on Neural
Networks, 1987. Vol3 pp 11-14.

G. Hinton, T. Sejnowski, and D. Ackley, "Boltzmann Machine: Constraint
Satisfaction Networks that Learn", Technical Report, CMU-CS-84-119.

Page 123

[Hint85]

[Hint86]

[Hoar85]

[Hech88]

[John75]

[Josi87]

[Koho84]

[Kohl88]

[K0 I0 8 8]

[Lesk75]

[Lipp87]

[McCa88]

[MavD87]

G. Hinton, D. Ackley, T. Sejnowski, "A Learning Algorithms for Boltzmann
Machines", Cognitive Science 9, ppl47-169, 1985.

G. E. Hinton, and T. J. Sejnowski, "Learning and relearning in Boltzmann
machines". In "Parallel distributed processing", Vol. 1, pp. 282-317.
Cambridge, MA:MIT press. 1986.

Hoare C A R , "Communicating Sequential Processes", Prentice-Hall
international UK, LTD, 1985.

R. Hecht-Nielsen, "Neurocomputing : picking the human brain", IEEE
Spectrum March 1988.

S.C. Johnson, "Yacc - Yet Another Compiler Compiler", Comp. Sc. Tech.
Rep. 32, AT&T Bell Labs., Murray Hill, N.J., 1975.

G. Josin, "Combinations of Neural Systems for Particular Application
Situations", Proceeding of the first IEEE International Conference on Neural
Networks, 1987. V ol4pp 517-524.

T. Kohonen, "Self-Organization and Associative Memory", Springer-Verlag,
Berlin. 1984.

Monika Kohle and Franzi Schonbauer, "CONDELA - A Language for
Neural Networks", nEuro’88, France, June88.

M. Kolonay Klimmasauskas "NeuralWorks Professional ; User’s Guide",
NeuralWorks Professional, NeuralWare Incorporated.

M. E. Lesk, "Lex - a Lexical Analyser Generator", Comp. Sc. Tech. Rep.
39, AT&T Bell Labs., Murray Hill, N.J., 1975.

Lippmann R, "An Introduction to Computing with Neural Nets", IEE ASSP
Magazine, April 1987.

McCabe S. C., "A Kernel System for Parallel Numeric and Symbolic
Computing", PhD Thesis, Dept, of Computer Science, Univ. of London, July
1988.

May D, "Occam2 language definition", INMOS, February 1987.

Page 124

[Mins69] M. Minsky and S. Papert, "Perceptions", MIT Press. 1969.

[Netw87] Netwurkz, Dair Computer.

[Pach88] Pacheco M, Bavan S, Lee M & Treleaven P, "A Simple VLSI Architecture
for Neurocomputing", Proceedings of the International Neural Network
Society, First Annual Meeting, Boston, Massachusetts., September 1988, pp
398.

[Pach91] Pacheco M., "A "Neural-RISC" Processor and Parallel Architecture for
Neural Networks" , PhD Thesis to be submitted, Dept, of Computer Science,
Univ. of London, 1991.

[Paik87] E. Paik, E. Gungner, J. Skrzypek, "UCLA SFINX - A Neural Network
Simulation Environment", Proceeding of the first IEEE International
Conference on Neural Networks, 1987. Vol 3 pp367-376

[PsaI87] D. Psaltis, K. Wagner, and D. Brady, "Learning in Optical Neural
Computers", IEEE: First International Conference on Neural Networks, Vol.
3, pp. 549-555. 1987.

[Rum86a] D. Rumelhart, G. Hinton, and J. McClelland, "Chapter 2: A General
Framework for Parallel Distributed Processing.", pp. 45-76 in Parallel
Distributed Processing , Explorations in the Microstructure of Cognition
Volume 1: Foundations, ed. D. Rumelhart & J. McClelland, MIT Press.
1986.

[Rum86b] D. Rumelhart, D. Zipser, "Chapter 5: Feature Discovery by Competitive
Learning"., pp. 151-193 in Parallel Distributed Processing. Explorations in
the Microstructure of Cognition Volume 1: Foundations, ed. D. Rumelhart &
J. McClelland, MIT Press. 1986.

[Rum86c] D. Rumelhart, G. Hinton, and R. Williams, " Chapter 8: Learning Internal
Representations by Error Propagation.", pp. 318-362 in Parallel Distributed
Processing. Explorations in the Microstructure of Cognition Volume 1:
Foundations, ed. D. Rumelhart & J. McClelland, MIT Press. 1986.

[Rum86d] D. Rumelhart J. McClelland, "Parallel Distributed Processing ,
Explorations in the Microstructure of Cognition : Foundations", MIT Press
Vol.l and 2.

[Rum86e] "Parallel Distributed Processing, Explorations in the Microstructure of
Cognition : Foundations", MET Press Vol.3.

Page 125

[Sabo88]

[SAIC88]

[Shep79]

[Smit87]

[Soba88]

[Souc88]

[Test88]

[Trel88a]

[T re!88b]

[Wass88]

[Zips86]

G. Sabot, "The Paralation Model": Architecture-Independent Parallel
Programming. The MIT Press, Cambridge, Massachusetts. 1988.

"DELTA/SIGMA/ANSim", editorial, Journal of Neurocomputers, Vol 2,
Number 1,1988.

G. M. Shepherd, "The Synaptic Organisation of the Brain", Oxford
University Press. 1979.

A. Smith, A Parallel PDP Network Simulator, Internal King’s college
London Report, June 1987.

D. Sobajic, "Neural Nets for Control Power Systems", PhD. Thesis,
Computer Science Department, Case Western Reserve University,
Cleveland, Ohio, USA. 1988.

B. Soucek and M. Soucek, "Chapter 12: Artificial Neural Systems or
Neurocomputers" pp. 245-276, in Neural and Massively Parallel Computers,
John Wiley & Sons, 1988.

C. Testa D. Pike S. Garth, "NETSIM : Software Environment For a Parallel
Neural Network Simulator", Internal Note, Cambridge. 1988

P. C. Treleaven, M. Recce, "Programming Languages for Neural
Computers", European Seminar on Neural Computing, London(IBC), Feb.
1988.

P. C. Treleaven, "Neurocomputers: invited tutorial", Proc. Neuro-Nimes,
1988.

P. Wasserman, T. Schwartz, "Neural Networks Part2 : What are they and
why everybody so interested in them now ?", IEEE Expert Systems, 1988.

D. Zipser, D. Rabin, "P3 : A Parallel Network Simulating System", in
Parallel Distributed Processing by D.E. Rumellhart, et al, Vol 1 Chapter 13,
1986.

Page 126

APPENDIX A - Syntax Definition of NIL

prog ::= begin netblock funcblock manp end

netblock linkstat { linkstat }*
linkstat ::= slink \ replink | structlink
slink ::=fun name ([inputJist) [:w tjist])

-> (o u t j i s t)
replink ::= rep [integer] fun j ia m e (v ec jis t

{:wt_vec})
-> (v e c jis t)

v e c jis t ::= vec {,vec}*
vec ::= ident [ident]
wt_vec ::= int * md(low - high)
low ::= high ::= int
input J is t ::= v a r jis t { , v a r jis t }*
o u tjis t ::= var list { , v a r jis t }*
v a r jis t ::= [//sr_v { ; list_v }*]
list_v ::= ident [, ident } *
w tjis t ::= w a ljis t [, va ljis t}*
v a ljis t ::= [list_c {; list c }*]
list_c ::= constant {, constant }*
structlink ::= construct(

[rep_par nam&{input_par) -> (output_par)
[:[rep_par name(input_par) -> (output_par)}

rep_par ::= index_var = number of replications

funcblock v.-func { func }*
func ::= header [declarations] "{" body "}"
header ::= hm fun name (input_par) -> (output_par)
input_par ::= in_array list {ival: wt_arrayjist]
out_par ::= out_ar ray J is t
in_array J is t ::= array J is t
w t_arrayjist ::= array J is t
out_array J is t ::= array J i s t
array J is t ::= ident [dim] {, ident[dim] } *
dim ::= /dercf { , ident }
body ::= guarded_process { guarded_process }*
guarded_process ::= input_condition => "{" statements "
input_condition ::= ident[index_range

{, ident index_range } *
index ja n g e ::= [range_comp {, range_comp }]
range_comp ::= index .. index \ index
index ::= int \ ident

Page 127

statements : := stmnt { stmnt } *
stmnt ::= if\ do \ assignment | skip ;
if::= if (booleanexpression) -> statements

{ ->-> statements } fi
do ::= do (boolean _expression) -> statements od
assignment ::= variable := expression ;
boolean expression ::= expression rel op expression

| boolean_expression { logic_op
boolean expression }

expression ::= term a op expression | term
term : = factor mop term \ factor
factor ::= variable \ unsigned_const | (expression)
variable ::= ident \ ident [subscrpt\
subscrpt ::= elemnt | elem nt: elemnt
elemnt ::= int \ ident
rel op ::= > | >= | < | <= | <> | =
logic op ::= and | or | xor | not
aop ::= + | -
mop ::= * | /

manp ::= begin declarations mstatblock end
mstatblock ::= ctstmnt { ctstmnt }*
ctstmnt ::= if \ do \ assignment \ skip;

| readstat \ Inkop | input
| output |get | getwt
| Idconst | save \ load
| rmv | run_net; | stop; | go

readstat ::= readst par
par ::= all | nodelabel {, nodelabel}*\
Inkop ::= operation Inkname (operation_par)
operation ::= delete | join
operation_par ::= del_par\join_par
del_par ::= nodelabel \ ,nodelabel
join _par ::= node label, input_array _elmnt
input ::= input Inkname = value

{,Inkname = value} *;
get ::= get variable = linkname

{,variable - linkname} *;
getwt ::= get variable = wt_array_elmnt

{,■variable = wt_arr ay _elmnt} *;
Idconst ::= Idconst wt_array_elmnt = value

{,wt_array_elmnt - value} *;
output ::= output {string}variable {,variable}*;
string ::= "letter\digit [letter\digit}*
rmv ::= rmv nodelabel;
elmnt ::= variable name | strings
save ::= save filename;
load ::= load -m filename;

Page 128

m ::= 1 | 2
source node ::= node label
destnode ::= node label
nodelabel ::= nde[/>zf|u/i/tf]
declarations ::= {/ype variable_list}+
type ::= int | real
variable J is t variable {,variable}*
integer ::= integer number
idem ::= name

APPENDIX B - Sample NIL Programs

Heb/Hopfield model

begin
rep[5] layl(iput[i]) -> (out[i]) /*link statements */
lay2([out[l],out[2],out[3],out[4],out[5]],[s[l],s[2]]:

[0.0,0.0,0.0,0.0,0.0],[1.0]) -> ([sig[l]],[resl[l]])
lay2([out[l],out[2],out[3],out[4],out[5]],[s[l],s[2]]:

[0.0,0.0,0.0,0.0,0.0],[2.0]) -> ([sig[2]],[resl[2]])
lay2([out[l],out[2],out[3],out[4],out[5]],[s[l],s[2]]:

[0.0,0.0,0.0,0.0,0.0],[3.0]) -> ([sig[3]],[resl[3]])
lay2([out[l],out[2],out[3],out[4],out[5]],[s[l],s[2]]:

[0.0,0.0,0.0,0.0,0.0],[4.0]) -> ([sig[4]],[resl[4]])
lay2([out[l],out[2],out[3],out[4],out[5]],[s[l],s[2]]:

[0.0,0.0,0.0,0.0,0.0],[5.0]) -> ([sfg[5]],[resl[5]])

fun layl(\[i]) -> (y[i]) /*node function to input layer */
int i;
real x[2],y[2];
{
x[i] => [y[i] := x[i];}

}
/*node function for output layer */
fun lay2(y[i], lr[j] ival:\v[i], index[m]) ->(signal[m],result[m])
int ij,m,k,ii;
real y[7],lr[4],index[2],signal[2],result[2],w[10],net;
{
y[l..i], lr[1] => { /*learn*/

k:= index[l];
ii:=l;
do (ii<=i) ->

if(iiok) ->
w[ii] := \v[ii] + y[k]*y[ii];

- > - >

vv[ii] := 0.0;
fi
ii:=ii+l;
od

signal[l] := 1.0;
}

y[l..i], lr[2] => { /^recall*/
k:= index[l]; ii:=l;
net := 0.0;
do (ii<=i) ->
net := net + w[ii]*y[ii];
ii:= ii+1;
od

Page 130

if (net>= 0.0) -> result[l] := 1.0;
->-> result[l] := 0.0-1.0;
li

}
}
begin /^manipulation part*/
real a, b;
real p,q,r,s,t;
a := 1.0;
b:=0.0-1.0;
Idconst nde[6].w[l] = 0.11, /*load weights for node 6*/

nde[6].w[2] = 0.21,
nde[6].w[3] = 0.12,
nde[6].w[4] = 0.04,
nde[6].w[5] = 0.13;

Idconst nde[8].w[l] = 0.15,
nde[8].w[2] = 0.06,
nde[8].w[3] = 0.17,
nde[8].w[4] = 0.02,
nde[8].w[5] = 0.11;

input iput[l] = b, /*put values on input channels*/
iput[2] = a,
iput[3] = a,
iput[4] = a,
iput[5] = b,
s[l] = a; /*signal for learning */

run net; /* run the network */
get p = sig[l], /*has it learnt */

q = sig[2],
r = sig[3],
s = sig[4],
t = sig[5];

/*yes input the next vector*/
input iput[l] = b,

iput[2] = b,
iput[3] = a,
i p n t [4] = a,
iput[5] = a,
s[l] = a;

run_net;
get p = sig[l],

q = sig[2],
r = sig[3],
s = sig[4],
t = sig[5];

input iput[l] = a,

Page 131

iput[2] = a,
iput[3] = b,
iput[4] = a,
iput[5] = a,
s[l] = a;

run_net;
get p = sig[l],

q = sig[2],
s = sig[3],
r = sig[4],
t = sig[5];

output”

getwt p = nde[6].w[l], /*read the weights *1
q = nde[6].w[2],
r = nde[6].w[3],
s = nde[6].w[4],
t = nde[6].w[5];

output ’’WEIGHTS FOR NODE 6’’;
output "wl =”,p, ” w2 ='\q," w3 =",r,” w4 =”,s,” w5 =”,t;

getwt p = nde[7].w[l],
q = nde[7].w[2],
r = nde[7].w[3],
s = nde[7].w[4],
t = nde[7].w[5];

output ’’WEIGHTS FOR NODE 7”;
output ”wl =”,p, ” w2 =”,q," w3 =",r," w4 =”,s," w5 =",t;

getwt p = nde[8].w[l],
q = nde[8].w[2],
r = nde[8].w[3],
s = nde[8].w[4],
t = nde[8].w[5];

output ’’WEIGHTS FOR NODE 8”;
output "wl ='\p, ’’ w2 =’’,q,’’ w3 =’’,r,’’ w4 ='\s," w5 =",t;

getwt p = nde[9].w[l],
q = nde[9].w[2],
r = nde[9].w[3],
s = nde[9].w[4],

P^e 132

t = nde[9].w[5];

output "WEIGHTS FOR NODE 9";
output "wl =",p, " w2 =",q," w3 =",r," vv4 =",s," w5 =",t;

getwt p = nde[10].w[l],
q = nde[10].w[2],
r = nde[10].w[3],
s = nde[10].w[4],
t = nde[10].w[5];

output "WEIGHTS FOR NODE 10";
output "wl =",p, " w2 =",q," vv3 =",r," vv4 =",s," w'5 =",t;

/* Recall starts */
input iput[l] = b,

iput[2] = a,
iput[3] = a,
iput[4] = a,
iput[5] = b,
s[2] = a; /^recall signal*/

run_net;
get p = resl[l],

q = resl[2],
r = resl[3],
s = resl[4],
t = resl[5];

output" ";
output "INPUT -> OUTPUT";
output b, "—> ",p;
output a, "-> ",q;
output a, "-> ",r;
output a, "-> ",s;
output b, "-> ",t;

input iput[l] = b,
i put [2] = b,
iput[3] = a,
iput[4] = a,
iput[5] = a,
s[2] = a;

run_net;
get p = resl[l],

q = resl[2],
r = resl[3],
s = resl[4],
t = resl[5];

Page 133

output "INPUT -
output b, "--> ",p;
output b, "—> ",q;
output a, "-> ",r;
output a, "-> ",s;
output a, "--> ",t;

input iput[l] = a,
iput[2] = a,
iput[3] = b,
iput[4] = a,
iput[5] = a,
s[2] = a;

runnet;
get p = resl[l],

q = resl[2],
r = resl[3],
s = resl[4],
t = resl[5];

output "INPUT -
output a, "—> ",p;
output a, "--> ",q;
output b, "--> ",r;
output a, "-> ",s;
output a, "--> ",t;

end
end

OUTPUT";

> OUTPUT";

Page 134

Back-propagation model to solve XOR problem

begin

inlayer([iv[l]], [sig[l]]) -> ([ou[l]]) /*link statements*/
inlayer([iv[2]], [sig[l]]) -> ([ou[2]])

hIayer([ou[l],ou[2]], [erbk[l]]
:[3.1,2.1], [0.0,0.0], [0.0], [2.5], [0.1])

-> ([out[l]], [sig[l]])

olayer([iv[l],iv[2]], [out[l]], [e_op[l]],
[rcl[l]]:[1.2,2.6,1.27], [1.7], [0.1])

-> ([erbk[l]], [result[l]])

fun inlayer(in[i], sigl[i]) -> (ip[i]) /*input layer node*/
int i;
real in[3],sigl[2],ip[2];
{
in[i], sigl[i] => {

ip[l] := in[l];
}

}
/* hidden layer node */

fun hlayer(in[m], err[n] ival: wl[m], l__in[m], l_op[n], theta[n],si[n])
-> (op[n], rsig[n])

int m, n;
real in[4], err[2],vvl[5],l_in[4],l_op[2],theta[2],
si[2],op[2],rsig[2],this_er,temp;
{
in[1,2] => { /Calculate output*/

temp := w l[l] * in[l] + vvl[2] * in[2];
l_in[l] ;=in[l];
l_in[2] := in[2];
l_op[l] := l/(l+e\p(0- temp - thetafl]));
op[l] := l_op[l];
}

err[l] => { /*adjust weights etc */
this er := l_op[l] *(l-l_op[l]) * err[l];
thetaf 1J := theta[l] + (si[I] * this er);
w l[l] := w l[l] + (si[1] * this_er * l_in[l]);
wl[2] := wl[2] + (si[1] * this_er * l_in[2]);
rsig[l] := 1;

}
}

Page 135

fun olayer(in[l], hi[m], e_op[m], recall[m] ival: w2[n], theta[m], si[m]) ->
(errbk[m], out[m])

int I, n, m;
real in[3],hi[2],e_op[2],recall[2],w2[4],theta[2],

si[2],errbk[2],out[2],temp, c_op,err;
{
in[l..l],hi[m], e_op[m] => {

/*calc output,adjust wts, send back error val*/
temp := vv2[l] * in[l] + vv2[2] * hi[l] + w2[3] * in[2];
c op := l/(l+exp(0-temp - theta[l]));

err := c_op * (l-c_op)*(e_op[l] - c_op);
thetafl] := thetafl] + (si[l] * err);

w2[l] := w2[l] + (si[l] * err * in[l]);
w2[2] := w2[2] + (si[l] * err * hi[l]);

w2[3] := w2[3] + (si[l] * err * in[2]);
errbk[l] := err * w2[2];
}

in[l..I], hi[m], recall[m] => { /*recall-output */
temp := w2[l] * inf 1] + w2[2] * hi[l] + vv2[3] * in[2];
outfl] := l/(l+exp(0-temp - thetafl]));
}

}
begin /^manipulation part*/
int p,i;
real wl, w2, w3, theta;
real data[5:5],ex_op[5],y;
datafl: 1] := 0.0; data[l:2] := 0.0; ex_op[l] := 0.0;
data[2:l] := 0.0; data[2:2] := 1.0; ex_op[2] := 1.0;
data[3:l] := 1.0; data[3:2] := 0.0; ex_op[3] := 1.0;
data[4:l] := 1.0; data[4:2] := 1.0; ex_op[4] := 0.0;
input sig[l] = 1.0;
i := 1;
do (i<=4000) ->

P := 1;
do (p <= 4) ->

input ivfl] = data[p:l],
iv[2] = data[p:2],
e_op[l] = ex_op[p];
runnet;

p:=p + 1;
od
i := i + I;
od

Page 136

getwt w l = nde[3].wl[l],
w2 = nde[3].wl[2],
theta = nde[3].theta[l];

output" ";
output "RESULTS";
output "Wl = ", wl;
output "W2 = ", w2;
output "theta = ", theta;
output" ";

getwt w l = nde[4].w2[l],
w2 = nde[4].w2[2],
w3 = nde[4].w2[3],
theta = nde[4].theta[l];

output" ";
output "RESULTS";
output "Wl = ", wl;
output "W2 = ", w2;
output "W3 = ", w3;
output "theta = ", theta;
output" ";

output"input input ==> output ";
P := l;
do (p <= 4) ->

input i\[l] = data[p:l],
iv[2] = data[p:2],
rcl[l] = 1.0;

runnet;
get y = result[l];
output data[p:l]," ", data[p:2], " ==> ", y;
input sig[l] = 1.0;
p := p+ 1;
od

end
end.

Page 137

Kohonen feature map for a 3x3 map

begin /* links for feature map nodes *1
onode([invec[l], invec[2],invec[3]], [learn], [ajustl],[recal]
:[0.926,0.908, 0.188] ,[0.0],[0.4])->([dist[l]],[otpl])

onode([invec[l],invec[2],invec[3]],[learn],[ajustl],[recal]
:[0.918,0.953, 0.071],[0.0],[0.4])->([dist[2]],[otp2])

onode([invec[l],invec[2],invec[3]],[learn],[ajustl],[recal]
:[0.617,0.340,0.404],[0.0],[0.4])->([dist[3]],[otp3])

onode([invec[l],invec[2],invec[3]],[learn],[ajustl],[recal]
: [0.242,0.645,0.991],[0.0],[0.4])->([dist[4]],[otp4])

onode([invec[l],invec[2],invec[3]],[learn],[ajustl],[recal]
: [0.633,0.379,0.492],[0.0],[0.4])->([dist[5]],[otp5])

onode([invec[l], invec[2],invec[3]], [learn], [ajustl],[recal]
: [0.724,0.099,0.296],[0.0],[0.4])->([dist[6]],[otp6])

onode([invec[l], invec[2],invec[3]], [learn], [ajustl],[recal]
:[0.923,0.983, 0.168],[0.0],[0.4])->([dist[7]],[otp7])

onode([invec[l],invec[2],invec[3]],[learn],[ajustl],[recal]
: [0.956,0.570,0.876], [0.0], [0.4])->([dist[8]],[otp8])

onode([invec[l],invec[2],invec[3]],[learn],[ajustl],[recal]
:[0.816,0.132,0.206], [0.0], [0.4])->([dist[9]],[otp9]>

/* result node */
resnode([otpl,otp2,otp3,otp4,otp5,otp6,otp7,otp8,otp9]) -> ([clout])

fun onode(iput[n],lrn[m],adj\vt[m],rcl[m] ival: vv[n],ss[m],
si[m])

-> (d[m], op[m])
int n,m,i;
real iput[5],Irn[2],adj\vt[2],rcl[2],vv[7],ss[2],si[2],d[2],op[2];
{

lrn[l],iput[l..n] => { /*learn*/
d[1] := 0.0;

Page 138

i := L;
do (i<=n) ->

ss[l] := iput[i] - w[i];
d[l] := d[l] + (ss[l]*ss[l]);
i:=i+l;
od

}
adivvtri] => { /*adjust weights for neiborhood*/

if(adjwt[l] > 0) ->
i:=l;
do (i<=n) ->

w[i] := w[i] + si[l] * ss[l];
i:=i+l;
od

fi
si[l] := si[l] - 0.1;

}
rcl[l],iput[l..n] => { /* recall */

i:=l;
op[l] := 0.0;
do (i<=n) ->
op[l] := op[I] + iput[i] * w[i];
i := i+1;
od
}

}
fun resnode(iin[nn]) -> (ooput[m])
int nn,m,i;
real iin[12], ooput[2];
{
iin[l..nn] => { /* output */

ooput[l] := 0;
i:=l;
do (i<=nn) ->
ooput[l] := ooput[l] + iinfi];
i:=i+l;
od
}

}
begin
int n,jj,i,learn, kk,p, xx,r,rl,r2,c,cl,c2,j,jmn;
real d[12], data[4:4],x,a[10],yes;

data[1:1] := 1.0; data[l:2] := 1.0; data[l:3] := 0.0;
data[2:l] := 0.0; data[2:2] := 0.0; data[2:3] := 1.0;
data[3:l] := 1.0; data[3:2] := 0.0; data[3:3] := 0.0;

Page 139

learn := 1;
kk := 3;

do (learn = 1) ->
kk := kk -1;
p:= l;
do (p <= 3) ->

input invec[l] = data[p:l],
invec[2] = data[p:2],
invec[3] = data[p:3],
learn = 1.0;

run_net;

get d[l] = dist[l];
get d[2] = dist[2];
get d[3] = dist[3];
get d[4] = dist[4];
get d[5] = dist[5];
get d[6] = dist[6];
get d[7] = dist[7];
get d[8] = dist[8];
get d[9] = dist[9];

n:=9;

do (i<= 9) ->

output "dj =M,d[i];
i:=i+l;
od

j := 1; jinn := 1;
do (j <= n - I) ->

jj := j + I; /* calculate distance */
if (d[jmn] > d[jj]) -> jmn := j + 1; fi
j := j + 1;

od
j:=l;

do (j <= 9) ->
\ := jmn * 1.00; /* determine neiborhood nodes */
x := x/3.0;
if (x <= 1.0) -> r := 1; fi
if (x > 1.0) -> if (x <= 2.0) -> r := 2; fi fi
if (x > 2.0) -> if (x <= 3.0) -> r := 3; fi fi

xx := jmn - (r - 1)*3;
if (xx = 1) -> c := l;fi

Page 140

if (xx = 2)-> c := 2;fi
if (xx = 3)-> c := 3;fi

rl := r;
c l := c;

x := j * 1.00;
x := x/3.0;
if (x <= 1.0) -> r := 1; fi
if (x > 1.0) -> if (x <= 2.0) -> r := 2; fi fi
if (x > 2.0) -> if (x <= 3.0) -> r := 3; fi fi

xx := j - (r - 1)*3;
if (xx = 1) -> c := 1; fi
if (xx = 2) -> c := 2; fi
if (xx = 3) -> c := 3; fi

r2 := r;
c2 := c;

r := r l - r2;
c := c l - c2;
if (r < 0) -> r := 0 - r; fi
if (c < 0) -> c := 0 - c; fi
yes := 0.0;
if (r <= kk)-> yes := 1.0; fi
if (c <= kk)-> yes := yes * 1.0; ->-> yes := 0.0;fi
a[j] := yes;
j := j+ I;
od
input a ju stl = a [l], /^adjust weights */

ajust2 = a[2],
ajust3 = a[3],
ajust4 = a[4],
ajust5 = a[5],
ajust6 = a [6],
ajust7 = a[7],
ajust8 = a[8],
ajust9 = a[9];

run_net;

p:= p + 1;
od
if (kk = 0) -> learn := 0; fi
od

Page 141

P := 1;
do (p <= 3) -> /* recall */

input recal = 1.0,
invec[l] = da ta[p :l],
invec[2] = data[p:2],
invec[3] = data[p:3];

run net;

get d[l] = clout;

o u tp u t" ” ;
o u tp u t" result H,d[l];

P := P + 1;

od
end
end

Inputs

1.000000 1.000000 0.000000
0.000000 0.000000 1.000000
1.000000 0.000000 0.000000

Initial Weights

w l w2 \v3

0.926 0.908 0.188

0.918 0.953 0.071

0.617 0.340 0.404

0.242 0.645 0.991

0.633 0.379 0.492

0.724 0.099 0.296

0.923 0.983 0.168

0.956 0.570 0.876

Page 142

0.816 0.132 0.206

Actual output.....

W EIGHTS
w l >w2......... >w3

1.065421 1.047421 0.327421
1.131965 1.166965 0.284964
0.618804 0.341804 0.405804
-0.130186 0.272814 0.618814
0.578737 0.324737 0.437737
0.794612 0.169612 0.366612
1.075164 1.135164 0.320164
0.657083 0.271083 0.577083
0.943953 0.259953 0.333953

result 11.725105

result 3.672553

result 6.735553

Page 143

Dynamic Properties of the NIL

The program given below illustrates the dynamic properties of NIL by implementing a
three layer network and deleting links,removing a node, and creating a link(join). The
first layer consists of two input nodes which receives inputs(in[l] and in[2]) from host
and send these inputs to all the two nodes in the second layer(outl[l] and outl[2]). The
nodes in the second layer takes these inputs from the first layer and sum them before
sending them(out2[l] and out2[2]) to a single node in the third layer. This node in the
third layer sums these inputs and produces it as output(res[l]). The nodes 1 and 2 of the
first layer use the function "one". The nodes 3 and 4 of the second layer use the function
called "two". The node 5 in the third layer uses the function called three.

begin

one([in[l]])->([outl[l]])
one([in[2]])->([outl[2]])
two([outl[I],outl[2]]) -> ([out2[l]])
two([outI[l],outl[2]]) -> ([out2[2]])
three([out2[l],out2[2]]) -> ([res[l]])

fun one(x[i]) -> (y[i])
int i;
real x[2], y[2];
{

x[i] => {
y[l] := x[l];
}

}

fun two(p[j]) -> (q[i])
int i,j, m;
real p[4], q[4], t;
{

p[l»j] => (
m := I;
t := 0.0;

do (m <= j) ->
t := t + p[m];
m := m + 1;
od

q[l] := t;
}

}

fun three(r[j]) -> (s[i])

Page 144

int i j , m;
real r[4], s[4], t;
{

r[l..j] => {
m := 1;
t := 0.0;

do (m <= j) ->
t := t + r[m];
m := m + 1;
od

s[l]:= t;
}

}

begin
real z;

input in[l] = 2.0, /*load inputs*/
in[2] = 3.0;

r u n n e t ; /*run the network*/
/*get the result*/

get z = res[l];
output" ";
output "result is ", z; /*print it */

input in[l] = 2.0, /*load inputs again */
in[2] = 3.0;

delete outl[2](,nde[3]); /*delete link from node 2 to 3 */
run net; /*run the network */
get z = resfl];
output "result after deletion of out 1 [2] is ", z; /*print the result*/

join outl[l](nde[5],r); /*join link outl[l] to node 5*/

input inf 1] = 2.0, /*load inputs again */
in[2] = 3.0;

ru n n e t ;
get z = resf 1];
output "result after joining of o u t l [1] to node 5 is ", z;

/*print the result*/
input in f l] = 2.0, /*load inputs a gain */

in[2] = 3.0;
rmv nde[l]; /*remove first input node */
run_net; /*run the network */
get z = resfl];
output "result after removing node 3 is " , z; /*print result*/

Page 145

end
end.

The output from the program is

result is 10.000000

result after deletion of outl[2] is 7.000000

result after joining of outlfl] to node 5 is 9.000000

result after removing node 3 is 7.000000

Page 146

APPENDIX C - Comparison of NIL with BIF

A Back-propagation Network Model in BIF

#include "userfx.h"
#include <math.h>
#define TOP 1
#define BOTTOM 0

/* enlists are lists of the cn indices present on the local HN */
static enlist *cns_in, *cns_hid, *cns_out;
/* user’s network functions */
void Input_site_fx(), Other_site_fx(), Assign_to_outsite(),

Squash();
void Calculate_output_error(), Calculate_other_error();
void Init_user_fxl();
short Activate();
/* simulation parameters accessed by the user code */
extern cycle_params cp;
/* buffer for iPSC log messages */
char sb[80];

/* Init_user_fxl: Called once by ANNE to init user data */

void Init_user_fxl()
{

int i;

cns_in = Get_cnlist(" input");
cns_hid = Get_cnlist("hidden");
cns_out = Get_cnlist("output");
Update_group_weights("hidden", TOP);
Update_group_weights("hidden", BOTTOM);
/* no fault simulation */
faulting = OFF;

/* User_fxl: for back-prop network */
/* This procedure describes the "script" modelling the */
/* network’s behaviour for a single network cycle. */

void User_fxl()
{

int cnx, i, 1;
float ferr, upd, fout;

/** FORWARD PASS **/

Page 147

/* get an input vector from the host */
Input_site_fx();
Send_group_output(" input", TOP);

/* sum weighted inputs at the hidden layer, activate,
and send output */

Other_site_fx(cns_hid, BOTTOM, 1);
Squash(cns_hid, BOTTOM);
Assign_to_outsite(cns_hid, TOP);
Send_group_output("hidden", TOP);

/* sum weighted inputs at output layer, activate, send
to host */

Other_site_fx(cns_out, BOTTOM, 1);
Squash(cns_out, BOTTOM);
Assign_to_outsite(cns_out, TOP);
Send_net_output();
/** BACKWARD PASS **/
Calculate_output_error(cns_out);
for(i = 0; i < cns_out->numcns; i++) {

cnx = cns_out->cns[i];
SITEVALUE(cnx, BOTTOM) = ERROR(cnx);

}
Send_group_output(" output", BOTTOM);

/* received error from output layer */
/* sum weighted error signals */
Other_site_fx(cns_hid, TOP, 0);
/* calculate this layer’s error and send down */
Calculate_other_error(cns_hid);
for (i = 0; cns_hid->numcns; i++) {

cnx = cns_hid->cns[i];
SITEVALUE(cnx, BOTTOM) = ERROR(cnx);

}
Send_group_output("hidden", BOTTOM);

/* send new weights to other end of links */
Update_group_weights("hidden", TOP);

Other_site_fx(cns_in, TOP, 0);
Calculate_other_error(cns_in);
/* send new weights to other end of links */
Update__group_weights(" input", TOP);

} /* end user_fxl () */

/* Calculate_other_error */

void Calculate_other_error(cnl)

enlist *cnl;
{

int cnx;
short i, local_error;
float ferr, fout;

for (i = 0; i < cnl_numcns; i++) {
cnx = cnl->cns[i];
fout = SHORTJTO_FLOAT(OUTPUT(cnx));
ferr = SHORT_TO_FLOAT(SITEVALUE(cnx, TOP)) * DERIV(fout);
ERROR(cnx) = FLOAT_TO_SHORT (ferr);

}

j *

/* Calculate_output_error */

void Calculate_output_error(cnl)
enlist *cnl;
I

int cnx;
short i, local_error;
float ferr, fout;

for (i = 0; i < cnl->numcns; i++) {
cnx = cnl->cns[i];
local_error = targetvalsjcnx] - OUTPUT(cnx);
fout = SHORT_TO_FLOAT(OUTPUT(cnx));
ferr = SHORT_TO_FLOAT(local_error) * DERIV(fout);
ERROR(cnx) = FLO AT_TO_SHORT (ferr);

/* Input_site_fx */

void Input_site_fx()
{

int cnx;
short i, siteval;

/* global inputs are ready and weighting in site value */
if (cns_in != (enlist *)NULL) {

for (i = 0; i < cns_in->numcns; i++) {
cnx = cns_in->cns[i];
/* output function is identity */
OUTPUT(cnx) = SITEVALUE(cnx, 0);
if (faulting) (void) flt_cn(cnx, &OUTPUT(cnx));

}
}

}

Page 149

/* Other_site_fx */

void Other_site_fx(cnl ,site_index,direc)
enlist *cnl;
short site_index;
int direc;
{

int cnx, siteval, i;

if (cnl != (enlist *)NULL) {
for (i = 0; i < cnl->numcns; i++) {

cnx = (int)cnl->cns[i];
if(direc != 1) { /* make weight change while error in inval */

Weight_change(cnx, site_index);
}
/* weight and sum inputs be they error or output */
siteval = Sum_inputs(cnx, site_index);

if (faulting) {
(void) flt_site(cnx, site_index, (short *)&siteval);
}

SITEVALUE(cnx, site_index) = siteval;
}

}

) * * * * * * * * * * * * * * * „ « * /

/* Squash: applies the activation function to the */
/* output and assigns the result to the output site */

void Squash(cnl, site_index)
enlist *cnl;
short site_index;
{

int cnx, i;

if (cnl != (enlist *)NULL) {
for (i = 0; i < cnl->numcns; i++) {

cnx = cnl->cns[i];
OUTPUT(cnx) = Activate(cnx, SITEVALUE(cnx, site_index));
if (faulting) (void) flt_cn(cnx, &OUTPUT(cnx));

j*** * * * * * *

/* Assign_to_outsite: assign output to output site */

void Assign_to_outsite(cnl, site_index)
enlist *cnl;
short site_index;

Page 150

{

int cnx;
int i;

if (cnl != (enlist *)NULL) {
for (i = 0; i < cnl->numcns; i++) {

cnx = cnl->cns[i];
SITEVALUE(cnx, site_index) = OUTPUT(cnx);

}

}

double dblval;
char s[80];

dblval = SHORT_TO_DOUBLE(siteval);
/* don’t blow up exp() */
if (dblval <-30) {

retum(O);
}
if (dblval > 30) {

retum(500);
}
dblval = 1.0/(1.0 + exp(-1.0 *dblval));
retum(DOUBLE_TO_SHORT(dblval));

} /* end Activate() */

/* ie- the convergence procedure that runs in the host */

#include "convergence.h"
FILE *fpcyc; /* print out cycle data to this file */
/* used to convert standard BIF vectors to floating point */
double dbl_err[NCNS], dbl_out[NCNS], dbl_targ[NSNS];
static int total_cycles = 0;

/* alf is for use in character recognition network */

/* Activate: CN activation function */

short Activate (cnx, siteval)
int cnx;
short siteval;

/* CONVERGENCE PROCEDURE : HOST LEVEL */

char alf[16] = {’A ’, *B\ ’C ’, ’D \ *E\ ’F \ ’G \ ’H \

/* Convergence 1: for back-prop nets.
/* return 1 if converged, 0 if not

*/

Page 151

int Convergence 1 ()
I

int i, mark, ok = 1, maxind;
double ferr, maxout;

/* detect if each node is within defined limits */
fprint(stderr, "OARGET: ");
for(i = 0; i < numoutputs; i++) {

dbl_targ[i] = INT_TO_DOUBLE(targetvec[i]*SCALE);
dbl_out[i] = INT_TO_DOUBLE(outputvec[i]);
dbl_err[i] = dbl_targ[i] - dbl_out[i];
errorvec[i] = DOUBLE_TO_INT(dbl_err[i]);
/* fabs() didn’t fx properly */
ferr = dbl_err[i];
if (ferr < 0.0) ferr = -1 * dbl_err[i];
if (ferr > cp.err_factor) { /* then too much error */

ok = 0;
}
fprintf(stderr, "%2.2f ",dbl_targ[i]);

}
/* print output vector to screen at each synch point */
fprint(stderr, "576UTPUT: ");
for (i = 0; i < numoutputs; i++) {

fprintf(stderr, "%2.2f ", dbl_out[i]);
}
if (ok) {

maxout = dbl_out[0];
maxind = 0;
for (i = 1; i < numoutputs; i++) {

if (dbl_out[i] > maxout) {
maxout = dbl_out[i];
maxind = i;

total_cycles += cp.numcycles;

fprintf(stderr,"CONVERGED on %c in %d cycles, total cycles = %d0,
alf[maxind], cp.numcycles, total_cycles);

fpcyc = fopen("cycles", "a");
fprintf(fpcyc, "CONVERGED on %c in %d cycles, total cycles = %d0,

alf[maxind], cp.numcycles, total_cycles);
fclose(fpcyc);

}

HEADER FILES FOR USER PROCEDURES
#if VAX
#include <stdio.h>
#endif
#include "nglob.h"

Page 152

/* ANN system calls */
extern void Send_node_output(), Send_group_output(),

Send_net_output();
extern void Update_node_weights(), Update_group_weights();
extern enlist *Get_cnlist();
/* local CN table */
extern CNentry CN[MAX_CNS];
/* used for target vector, if any */
extern short targetvals[MAX_CNS];
/* structure holding user-controlled simulation parameters */
extern cycle_params cp;
/* faulting flag */
extern int faulting;

/* USER MACROS */
/* for simplified access to CN table fields */
#define DELAY(cn) CN[cn].C->delay
#define HISTORY(cn) CN[cn].C->history
#define RESTPOT(cn) CN[cn].C->restpot
#define POT(cn) CN[cn].C->pot
#define STATE(cn) CN[cn].C->state
#define OUTPUT(cn) CN[cn].C->output
#define ERROR(cn) CN[cn].C->error
#define SD(cn) CN[cn].C->sd
#define SITEVALUE(cn,s) CN[cn].sites[s] .value
#define SITENLINKS(cn,s) CN[cn].sites[s].nlinks
#define LINKPTR(cn,s,l) &CN[cn].sites[s].links[l]
#define LINKVEC(cn,s,l) CN[cn].sites[s].links[l].lnkvec
#define LINKHISTORY(cn,s,l) CN[cn].sites[s].links[l].history
#define LINKWEIGHT(cn,s,l) CN[cn].sites[s].links[1].weight
#define LINKINVAL(cn,s,l) CN[cn].sites[s].links[l].inval
#define SETWTUP(cn,s,l) CN[cn].sites[s].links[l].lnkvec |=LV_WTUP

/* used to convert int fields to float and vice versa */
#define SHORT_TO_FLOAT(s) ((((float)s)/(float)SCALE))
#define FLOAT_TO_SHORT(f) ((short) (f * (float)SCALE))
#define SHORT_TO_DOUBLE(s) ((((double)s)/(double)SCALE))
#define DOUBLE_TO_SHORT(d) ((short)(d * (double)SCALE))
#define DERIV(f) (f * (1 - f))

User Accessible Data Structures

In writing the network procedure the user has access to local data structures, including
those holding the CNs. These structures are modelled closely after the BIF format. The
following data structures can be accessed by the user:

/* entry in local cube node CN table */
typedef struct {

unsigned char hn; /* hypercube node index where CN lives */

Page 153

SFWL *sites; /* array of sites belonging to this CN */
CFWN *C; /* pointer to a CN structure */

}CNentry;

CNentry CN[MAX_CNS]; /* table of local CNs */

/* a link */
typedef struct {

unsigned char
char history;
BYT4 cn;
short site;
short link;
float weight;
short inval;

}LFWI;

/* a site */
typedef struct {

short value; /* result of site function */
unsigned char sitevec; /* bit vector for this site */
short nlinks; /* number of links attached */
LFWI *links; /* pointer to links array */

}SFWL;

/* a CN */
typedef struct {

char group;
BYT4 index;
short procid;
short delay;
unsigned char
char history;
short restpot;
short pot;
char state;
short output;
short error;
short sd;
short nsites;

}CFWN;

/* struct passed to user from Get_cnlist(groupname) */
/* recommended that a enlist be allocated statically */
typedef struct {

int numens; /* number of CNs in list */
BYT4 *cns; /* list of CN indices */

} enlist;

/* group this CN belongs to */
/* unique CN index */

/* cube processor for CN */
/* delay of output message */

bitvec; /* bit vector for this CN */
/* recent history of CN */
/* resting potential */

/* potential */
/* current state of CN */

/* current output value */
/* error value */

/* statistical deviation */
/* number of sites on CN */

lnkvec; /* bit vector for this link */
/* recent history of link */
/* CN this link goes to */

/* site this link goes to */
/* link this link goes to */
/* weight value for link */

/* input value to this link */

Page 154

/* simulator’s synchronization parameters */
/* shared by both the host and nodes */
/* recommended that these not be assigned */
typedef struct {

short global_clock, /* global simulation clock (host) */
local_clock, /* local simulation clock (nodes) */
msg_window, /* window for valid cn<->cn msgs
synch_count, /* # of local clock cycles to run */
synch_point, /* global_clock + synch_count - 1 */
checkpoint; /* synch_point to break at (host) */

} cycle_params;

*/

cycle_params cp;

/* node vectors only available in the host */
int *targetvec,

*outputvec,
*errorvec,
*inputvec;

/* target vector length=numoutputs */
/* output vector length=numoutputs */

/* error vector length=numoutputs */
/* input vector length=numinputs */

int numoutputs, /* number of output CNs
numinputs; /* number of input CNs

*/
*/

Back-Propagation model coded in NIL for the same net in BIF

begin

inlayer([iv[l]], [sg[l],sg[2],sg[3]]) -> ([ou[l]])
inlayer([iv[2]], [sg[l],sg[2],sg[3]]) -> ([ou[2]])
inlayer([iv[3]], [sg[l],sg[2],sg[3]]) -> ([ou[3]])

hlayer([ou[l],ou[2],ou[3]], [erbk[ll],erbk[21],erbk[3I]]
:[0.3,0.01,0.2], [0.0,0.0,0.0], [0.0], [2.5], [0.1])

-> ([out[l]],[sg[l]])

hlayer([ou[l],ou[2],ou[3]], [erbk[12],erbk[22],erbk[32]]
:[0.23,0.4,0.02], [0.0,0.0,0.0], [0.0], [0.75], [0.1])

-> ([out[2]], [sg[2]])

hlayer([ou[l],ou[2],ou[3]], [erbk[13],erbk[23],erbk[33]]
:[0.21,0.31,0.02],[0.0,0.0,0.0],[0.0],[1.5],[0.1])

-> ([out[3]], [sg[3]])

oIayer([out[l],out[2],out[l]], [e op[l]],
[rcl[l]]:[0.03,0.02,0.25],[1.05],[0.1])

-> ([erbk[ll],erbk[12],erbk[13]], [result[l]])

olayer([out[l],out[2],out[3]], [e op[2]],
[rcl[l]]:[0.23,0.24,0.06],[2.65],[0.1])

-> ([erbk[21],erbk[22],erbk[23]], [result[2]])

olayer([out[l],out[2],out[3]], [e op[3]],
[rcl[l]]:[0.29,0.01,0.22],[0.15],[0.1])

-> ([erbk[31],erbk[32],erbk[33]], [result[3]])

fun inlaver(in[i], sigl[m]) -> (ip[i])
int i,m;
real in[2],sigl[4],ip[2];
{
in[i], sigl[l..m] => {

ip[l] := in[l];
}

}

fun hlayer(in[n], err[n] ival: w l[n], l_in[n], l_op[m], theta[m],si[m])
-> (op[m], rsig[m])

int m, n;
real in[4], err[4],vvl[5],l_in[4],l_op[2],theta[2],
si[2],op[2],rsig[2],this_er,temp;

Page 156

{
in[1..3] => {

temp := w l[l] * in[l] + wl[2] * in[2] + wl[3]*in[3];
l_in[l] :=in[l];
Mn[2] := in[2];
l_in[3] := in[3];
l_op[l] := l/(l+exp(0- temp - theta[l]));
op[l] := I_op[l];
}

err[1..3] => {
temp := err[l] + err[2] + err[3];
this_er := l_op[l] *(l-l_op[l]) * temp;
theta[l] := theta[l] + (si[l] * this_er);
wl[l] := w l[l] + (si[l] * this_er * l_in[l]);
wl[2] := wl[2] + (si[l] * this_er * l_in[2]);
wl[3] := wl[3] + (si[l] * this_er * l_in[3]);
rsig[l] := 1;

}
}

fun olayer(in[n], exp_op[m], recall[m] ival: w2[n], theta[m], si[m]) ->
(errbk[n], out[m])

int n, m;
real in[4],exp_op[2],recall[2],w2[4],theta[2],

si[2],errbk[4],out[2],temp, c_op,err;
{
in[l..n],exp_op[m] => {

temp := w2[l] * in[l] + w2[2] * in[2] + w2[3] * in[3];
c op := l/(l+exp(0-temp - theta[l]));

err := c op * (l-c_op)*(exp_op[l] - c_op);
thetafl] := theta[l] + (si[l] * err);

\v2[l] := w2[l] + (si[I] * err * in[l]);
vv2[2] := w2[2] + (si[1] * err * in[2]);
vv2[3] := w2[3] + (si[1] * err * in[3]);
errbk[l] := err * w2[l];
errbk[2] := err * vv2[2];
errbk[3] := err * vv2[3];

}

in[l..n], recallfl] => {
temp := \v2[l] * inf 1] + w2[2] * in[2] + vv2[3] * in[3];
out[l] := l/(l+exp(0-temp - thetafl]));
}

}
begin
int p,i;

Page 157

real wl,w2,w3,theta;
real data[5:5],ex_op[5:5],sg[4], rcl[2],yl,y2,y3;
data[1:1] := 1.0; data[l:2] := 1.0; data[l:3] := 1.0;
ex_op[l:l] := 1.0; ex_op[l:2] := 0.0; ex_op[l:3] := 1.0;

data[2 :l] := 0.0; data[2:2] := 1.0; data[2:3] := 1.0;
ex_op[2:l] := 1.0; ex_op[2:2] := 1.0; ex_op[2:3] := 0.0;

data[3 :l] := 1.0; data[3:2] := 0.0; data[3:3] := 1.0;
ex_op[3:l] := 0.0; ex_op[3:2] := 1.0; ex_op[3:3] := 1.0;

input sg[l] = 1.0,
sg[2] = 1.0,
sg[3] = 1.0;

i := 1;
do (i<=3000) ->

P := l;
do (p <= 3) ->

input iv[l] = data[p :l],
iv[2] = data[p:2],
iv[3] = data[p:3],
e_op[l] = ex_op[p:l],
e_op[2] = ex_op[p:2],
e_op[3] = ex_op[p:3];
run_net;

p := p + 1;
od
i := i + 1;
od

o u tp u t" ";
output "RESU LTS";

output "NODE = 4";
getvvt \vl = nde[4].\vl[l],

w2 = nde[4].\vl[2],
w3 = nde[4].\vl[3],
theta = nde[4].theta[l];

output " w l = " ,w l ;
output " \v2 = ", \v2;
output " vv3 = ", \v3;
output " theta = ", theta;

output "NODE = 5";
getwt w l = nde[5].vvl[l],

w2 = nde[5].wl[2],
vv3 = nde[5].wl[3],

Page 158

theta = nde[5].theta[l];
output " w l = ” , w l;
output " w2 = ” ,w 2;
output " vv3 = ” , w3;
output ” theta = ", theta;

output "NODE = 6";
getwt w l = nde[6].w l[l],

vv2 = nde[6].wl[2],
w3 = nde[6].wl[3],
theta = nde[6].theta[l];

output " w l = ", w l;
output " w2 = ", w2;
output " w3 = " ,w 3;
o u tp u t" theta = " , theta;

output "NODE = 7";
getwt w l = nde[7].w2[l],

w2 = nde[7].w2[2],
w3 = nde[7].w2[3],
theta = nde[7].theta[l];

output " w l = ", w l;
output " w2 = ", w2;
output " w3 = " , w3;
output " theta = ", theta;

output "NODE = 8";
getwt w l = nde[8].w2[l],

w2 = nde[8].w2[2],
w3 = nde[8].w2[3],
theta = nde[8].theta[l];

output " w l = " ,w l ;
output " w2 = ", vv2;
output " vv3 = ", w3;
output " theta = ", theta;

output "NODE = 9";
getwt w l = nde[9].w2[l],

w2 = nde[9].w2[2],
w3 = nde[9].w2[3],
theta = nde[9].theta[l];

output " w l = ", w l;
output " w2 = ", w2;
output " w3 = ", vv3;
o u tp u t" theta = ", theta;

P := 1;
do (p <= 3) ->

input iv[l] = data[p: 1],
iv[2] = data[p:2],
iv[3] = data[p:3],
rcl[l] = 1.0;
runnet;
get y l = result[l],

y2 = result[2],
y3 = result[3];

output" ";
output data[p:l],
output data[p:2],
output data[p:3],
output" ";

input sg[l] = 1.0,
sg[2] = 1.0,
sg[3] = 1.0;

p := p+ 1;
od

end
end.

The initial weights(Tables 25 and 26) and the output produced by the program

Weights Node 4 Node 5 Node 6

wl 0.30000 0.23000 0.21000

w2 0.01000 0.40000 0.31000

w3 0.20000 0.02000 0.02000

theta 2.50000 0.75000 1.50000

TABLE 25. Weights for Nodes in Hidden Layer

",ex_op[p:l],
f\ex_op[p:2],
”,ex_op[p:3],

==> ’\y i ;
==> ">y2;
==> '\y3;

Page 160

Weights Node 7 Node 8 Node 9

wl 0.03000 0.23000 0.29000

w2 0.02000 0.24000 0.01000

w3 0.25000 0.06000 0.22000

theta 1.05000 2.65000 0.15000

TABLE 26. Weights for Nodes in O utput Layer

RESULTS

NODE = 4
w l = 1.524359
vv2 = -2.262244
w3 = -1.061634
theta = 1.238360

NODE = 5
wl = -0.494916
w2 = 5.112295
w3 = -1.363389
theta = -0.633388

NODE = 6

wl = 5.409690
w2 = -0.850357

w3 = -1.619321

theta = -0.139319

N O D E = 7

wl = -2.103633

w2 = 4.363748

w3 = -1.883630

theta = 0.319483

NODE = 8

w l = 0.959008
w2 = -3.634852

w3 = -4.151572

theta = 5.411319

NODE = 9

w l = 1.955741
w2 = -2.039612

w3 = 4.647953

theta = -0.855688

INPUT EXPECTED

1.000000:: 1.000000 ==>

1.000000:: 0.000000 ==>

1.000000:: 1.000000 ==>

0.000000 :: 1.000000 ==>

1.000000:: 1.000000 ==>

1.000000:: 0.000000 ==>

RESULT

0.949730
0.176193
0.911751

0.982998
0.852229
0.093310

1.000000 :: 0.000000 ==> 0.061869
0.000000:: 1.000000 ==> 0.869661
1.000000:: 1.000000 ==> 0.994362

APPENDIX D - Sample Output from the Compiler

- OUTPUT FROM COMPILER. -

nodeid = 1 nodename = inlayer

namel = * index I = 1 name 2 = i index2 = 1 foiminpar = in

index 1 = 1 index2 = 1 aclinpar =iv[l] status =3 value =0.000000
namel = * index 1 = 1 name2 = m index2 = 3 forminpar = sigl

index 1 = 1 index2 = 1 aclinpar =sg[l] status =3 value =0.000000
index 1 = 1 index2 = 2 aclinpar =sg[2] status =3 value =0.000000
index 1 = 1 index2 = 3 aclinpar =sg[3] status =3 value =0.000000
namel = * index 1 = 1 name2= i index2 = 1 formoupar = ip
indexl = 1 index2 = 1 acloupar =ou[l] status =3 value =0.000000

nodeid = 2 nodename = inlayer

namel = * indexl = 1 name2 = i Lndex2 = 1 forminpar = in
indexl = 1 index2 = 1 aclinpar =iv[2] status =3 value =0.000000
namel = * indexl = 1 name2 = m index2 = 3 forminpar = sigl

indexl = 1 index2 = 1 aclinpar =sg[l] status =3 value =0.000000
indexl = 1 index2 = 2 aclinpar =sg[2] status =3 value =0.000000

indexl = 1 index2 = 3 aclinpar =sg[3] status =3 value =0.000000
namel = * indexl = 1 name2= i index2 = 1 formoupar = ip

indexl = 1 index2 = 1 acloupar =ou[2] status =3 value =0.000000

nodeid = 3 nodename = inlayer

namel = * indexl = 1 name2 = i index2 = 1 forminpar = in

indexl = 1 index2 = 1 aclinpar =iv[3] status =3 value =0.000000
namel = * indexl = 1 name2 = m index2 = 3 forminpar = sigl

indexl = 1 index2 = 1 aclinpar =sg[l] status =3 value =0.000000
indexl = 1 index2 = 2 aclinpar =sg[2] status =3 value =0.000000

Page 163

indexl = 1 index2 = 3 aclinpar =sg[3] status =3 value =0.000000
namel = * indexl = 1 name2= i index2 = 1 formoupar = ip

indexl = 1 index2 = 1 acloupar =ou[3] status =3 value =0.000000

nodeid = 4 nodename = hlayer

namel = * indexl = 1 name2 = n index2 = 3 forminpar = in

indexl = 1 index2 = 1 aclinpar =ou[l] status =3 value =0.000000
indexl = 1 index2 = 2 aclinpar =ou[2] status =3 value =0.000000

indexl = 1 index2 = 3 aclinpar =ou[3] status =3 value =0.000000
namel = * indexl = 1 name2 = n index2 = 3 forminpar = err

indexl = 1 index2 = 1 aclinpar =erbk[l 1] status =3 value =0.000000
indexl = 1 index2 = 2 aclinpar =erbk[21] status =3 value =0.000000
indexl = 1 index2 = 3 aclinpar =erbk[31] status =3 value =0.000000
namel= * indexl = 1 name2=n index2 = 3 wts_indx->formwtpar = w l
indexl = 1 index2 = 1 value =0.300000
indexl = 1 index2 = 2 value =0.010000
indexl = 1 index2 = 3 value =0.200000
namel= * indexl = 1 name2=n Lndex2 = 3 wts_indx->formwtpar = l_in

indexl = 1 index2 = 1 value =0.000000
indexl = 1 index2 = 2 value =0.000000
indexl = 1 index2 = 3 value =0.000000
namel= * indexl = 1 name2=m index2 = 1 wts_indx->formwtpar = l op
indexl = 1 index2 = 1 value =0.000000
namel= * indexl = 1 name2=m index2 = 1 wts_indx->formwtpar = theta
indexl = 1 index2 = 1 value =2.500000

namel= * indexl = 1 name2=m index2 = 1 wts_indx->formwtpar = si
indexl = 1 index2 = 1 value =0.100000
namel = * indexl = 1 name2= m index2 = 1 formoupar = op

indexl = 1 index2 = 1 acloupar =out[l] status =3 value =0.000000

namel = * indexl = 1 name2= m index2 = 1 formoupar = rsig

indexl = 1 index2 = 1 acloupar =sg[l] status =3 value =0.000000

nodeid = 5 nodename = hlayer

namel = * indexl = 1 name2 = n index2 = 3 forminpar = in
indexl = 1 index2 = 1 aclinpar =ou[l] status =3 value =0.000000

Page 164

index 1 = 1 index2 = 2 aclinpar =ou[2] status =3 value =0.000000
index 1 = 1 index2 = 3 aclinpar =ou[3] status =3 value =0.000000
namel = * index 1 = 1 name2 = n index2 = 3 forminpar = err

index 1 = 1 index2 = 1 aclinpar =erbk[12] status =3 value =0.000000

index 1 = 1 index2 = 2 aclinpar =erbk[22] status =3 value =0.000000

index 1 = 1 index2 = 3 aclinpar =erbk[32] status =3 value =0.000000
namel= * index 1 = 1 name2=n index2 = 3 wts_indx->formwtpar = w l

index 1 = 1 index2 = 1 value =0.230000

index 1 = 1 index2 = 2 value =0.400000

index 1 = 1 index2 = 3 value =0.020000
namel= * index 1 = 1 name2=n index2 = 3 wts_indx->formwtpar = l_in

index 1 = 1 index2 = 1 value =0.000000

index 1 = 1 index2 = 2 value =0.000000
index 1 = 1 index2 = 3 value =0.000000
namel= * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = l op
index 1 = 1 index2 = 1 value =0.000000
namel= * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = theta
index 1 = 1 index2 = 1 value =0.750000
namel= * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = si

index 1 = 1 index2 = 1 value =0.100000
namel = * index 1 = 1 name2= m index2 = 1 formoupar = op
index 1 = 1 index2 = 1 acloupar =out[2] status =3 value =0.000000
namel = * index 1 = 1 name2= m index2 = 1 formoupar = rsig
index 1 = 1 index2 = 1 acloupar =sg[2] status =3 value =0.000000

nodeid = 6 nodename = hlayer

namel = * index 1 = 1 name2 = n index2 = 3 forminpar = in

index 1 = 1 index2 = 1 aclinpar =ou[l] status =3 value =0.000000

index 1 = 1 index2 = 2 aclinpar =ou[2] status =3 value =0.000000

index 1 = 1 index2 = 3 aclinpar =ou[3] status =3 value =0.000000
namel = * index 1 = 1 name2 = n index2 = 3 forminpar = err

index 1 = 1 index2 = 1 aclinpar =erbk[13] status =3 value =0.000000
index 1 = 1 index2 = 2 aclinpar =erbk[23] status =3 value =0.000000

index 1 = 1 index2 = 3 aclinpar =erbk[33] status =3 value =0.000000
namel= * index 1 = 1 name2=n index2 = 3 wts_indx->formwtpar = w l

indexl = 1 index2 = 1 value =0.210000

5x1 = 1 index2 = 2 value =0.310000
5x1 = 1 index2 = 3 value =0.020000

iel= * index 1 = 1 name2=n index2 = 3 wts_indx->formwtpar = l_in

5x1 = 1 index2 = 1 value =0.000000

5x1 = 1 index2 = 2 value =0.000000

5x1 = 1 index2 = 3 value =0.000000

iel= * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = l_op

jxl = 1 index2 = 1 value =0.000000

iel= * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = theta

5x1 = 1 index2 = 1 value =1.500000

iel= * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = si
5x1 = 1 index2 = 1 value =0.100000
lel = * index 1 = 1 name2= m index2 = 1 formoupar = op

jxl = 1 index2 = 1 acloupar =out[3] status =3 value =0.000000
lel = * index 1 = 1 name2= m index2 = 1 formoupar = rsig

5x1 = 1 index2 = 1 acloupar =sg[3] status =3 value =0.000000

eid = 7 nodename = olayer

lel = * index 1 = 1 name2 = n index2 = 3 forminpar = in
5x1 = 1 index2 = 1 aclinpar =out[l] status =3 value =0.000000
5x1 = 1 index2 = 2 aclinpar =out[2] status =3 value =0.000000
5x1 = 1 index2 = 3 aclinpar =out[l] status =3 value =0.000000
lel = * index 1 = 1 name2 = m index2 = 1 forminpar = exp_op

5x1 = 1 index2 = 1 aclinpar =e_op[l] status =3 value =0.000000

lel = * index 1 = 1 name2 = m index2 = 1 forminpar = recall

5x1 = 1 index2 = 1 aclinpar =rcl[l] status =3 value =0.000000
iel= * index 1 = 1 name2=n index2 = 3 wts_indx->formwtpar = w2

5x1 = 1 index2 = 1 value =0.030000

5x1 = 1 index2 = 2 value =0.020000

5x1 = 1 index2 = 3 value =0.250000

iel= * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = theta

5x1 = 1 index2 = 1 value =1.050000

iel= * index 1 = 1 name2=m index2 = 1 wts_indx->formwtpar = si

5x1 = 1 index2 = 1 value =0.100000

lel = * index 1 = 1 name2= n index2 = 3 formoupar = errbk

5x1 = 1 index2 = 1 acloupar =erbk[ll] status =3 value =0.000000

Page 166

index 1 = 1 index2 = 2 acloupar =erbk[12] status =3 value =0.000000

indexl = 1 index2 = 3 acloupar =erbk[13] status =3 value =0.000000
namel = * indexl = 1 name2= m index2 = 1 formoupar = out

indexl = 1 index2 = 1 acloupar =result[l] status =3 value =0.000000

nodeid = 8 nodename = olayer

namel = * indexl = 1 name2 = n index2 = 3 forminpar = in

indexl = 1 index2 = 1 aclinpar =out[l] status =3 value =0.000000

indexl = 1 index2 = 2 aclinpar =out[2] status =3 value =0.000000

indexl = 1 index2 = 3 aclinpar =out[3] status =3 value =0.000000
namel = * indexl = 1 name2 = m index2 = 1 forminpar = exp op

indexl = 1 index2 = 1 aclinpar =e_op[2] status =3 value =0.000000
namel = * indexl = 1 name2 = m index2 = 1 forminpar = recall

indexl = 1 index2 = 1 aclinpar =rcl[l] status =3 value =0.000000
namel= * indexl = 1 name2=n index2 = 3 wts_indx->formwtpar = w2
indexl = 1 index2 = 1 value =0.230000
indexl = 1 index2 = 2 value =0.240000
indexl = 1 index2 = 3 value =0.060000
namel= * indexl = 1 name2=m index2 = 1 wts_indx->formwtpar = theta
indexl = 1 index2 = 1 value =2.650000
namel= * indexl = 1 name2=m index2 = 1 wts_indx->formwtpar = si
indexl = 1 index2 = 1 value =0.100000
namel = * indexl = 1 name2= n index2 = 3 formoupar = errbk

indexl = 1 index2 = 1 acloupar =erbk[21] status =3 value =0.000000
indexl = 1 index2 = 2 acloupar =erbk[22] status =3 value =0.000000

indexl = 1 index2 = 3 acloupar =erbk[23] status =3 value =0.000000
namel = * indexl = 1 name2= m index2 = 1 formoupar = out

indexl = 1 index2 = 1 acloupar =result[2] status =3 value =0.000000

nodeid = 9 nodename = olayer

namel = * indexl = 1 name2 = n index2 = 3 forminpar = in

indexl = 1 index2 = 1 aclinpar =out[l] status =3 value =0.000000
indexl = 1 index2 = 2 aclinpar =out[2] status =3 value =0.000000

indexl = 1 index2 = 3 aclinpar =out[3] status =3 value =0.000000
namel = * indexl = 1 name2 = m index2 = 1 forminpar = exp op

indexl = 1 index2 = 1 aclinpar =e_op[3] status =3 value =0.000000
namel = * indexl = 1 name2 = m index2 = 1 forminpar = recall

indexl = 1 index2 = 1 aclinpar =rcl[l] status =3 value =0.000000
namel= * indexl = 1 name2=n index2 = 3 wts_indx->formwtpar = w2

indexl = 1 index2 = 1 value =0.290000

indexl = 1 index2 = 2 value =0.010000

indexl = 1 index2 = 3 value =0.220000
namel= * indexl = 1 name2=m index2 = 1 wts_indx->formwtpar = theta

indexl = 1 index2 = 1 value =0.150000

namel= * indexl = 1 name2=m index2 = 1 wts_indx->formwtpar = si

indexl = 1 index2 = 1 value =0.100000
namel = * indexl = 1 name2= n index2 = 3 formoupar = errbk

indexl = 1 index2 = 1 acloupar =erbk[31] status =3 value =0.000000
indexl = 1 index2 = 2 acloupar =erbk[32] status =3 value =0.000000
indexl = 1 index2 = 3 acloupar =erbk[33] status =3 value =0.000000
namel = * indexl = 1 name2= m index2 = 1 formoupar = out
indexl = 1 index2 = 1 acloupar =result[3] status =3 value =0.000000

DONE

Page 168

APPENDIX E - C Representation of the Virtual Machine

/* input vector */

typedef struct invect {
int iaindxl; /*row */

int iaindx2; /*col*/

char *acdinpar; /* actual parameter name */

int status;
float value;
struct invect *nxtiput;

} invect;

/* output vector */

typedef struct ouvect {
int oaindxl;
int oaindx2;
char *actloupar;
int status;
float value;
struct ouvect *nxtoput;
} ouvect;

/* weight vector */

typedef struct wtvect {
int waindxl;

int waindx2;

float value;
struct wtvect *nxtwt;

} wtvect;

Page 169

/* input vector list */

typedef struct inp_indx {

char *dimnamel; /* subscript name */
int invl_numl; /* index value */

char *dimname2;

int invl_num2;

char *forminpar; /* formal para name */

invect *inlst;
struct inp_indx *nxt_i_indx;
} inp_indx;

/* weight vector list */

typedef struct wts_indx {

char *dimnamel;
int wtvl_numl;
char *dimname2;
int wtvl_num2;
char *formwtpar;
wtvect *wtlst;
struct wts_indx *nxt_w_indx;
} wts_indx;

/* output vector list */

typedef struct oup_indx {

char *dimnamel;
int ouvl_numl;

char *dimname2;
int ouvl_num2;

char *formoupar;

ouvect *oulst;
struct oup_indx *nxt_o_indx;

} oup_indx;

/* a node */

typedef struct nodei_o {

int nodeid; /* node id */
char *fname; /* function name */

inp_indx *inv_ptr; /* ptr to input vector list */

wts_indx *wts_ptr; /* ptr to weight vector list */

oup_indx *oup_ptr; /* ptr to output vector list */

struct nodei_o *nxtnde; /* ptr to next node */

} nodei_o;

Page 171

APPENDIX F - Published Works

1. M. Pacheco, S. Bavan, M. Lee and P. Treleaven, "A Simple VLSI Architecture

for Neurocomputing", in INNS - International Neural Network Society, First

Annual Meeting. September 6-10, 1988, Boston, Massachusetts, pp398.

2. A. S. Bavan, "NIL-PLUS: A Neural Network Implementation Language", Proc.

First Neural Computing Meeting, The Institute of Physics, London, April 1989,

ppl71-178.

3. A. Eliasz, S. Bavan, and J. Crowcroft, "Adaptive Network Management Using

Neural Computing", - Proc. Third Race TMN Conference, 30 August - 1
September 1989, London.

4. A. S. Bavan, "A Programming System for Implementing Neural Nets", - XI
Sitges Conference on Neural Networks, 4 June - 7 June 1990, Barcelona,
Spain.

5. A. S. Bavan, "NPS: A Neural Network Programming System", in Proc.
International Joint Conference on Neural Networks, June 17-21, 1990,
Sandiego, California, ppl43-148.

6. A. W. Eliasz, A. S. Bavan, and J. Crowcroft, "Approaches to Using Neural
Computing Methods to Develop Adaptive Distributed Routing Algorithms", -
Proc. Fourth Race TMN Conference, 14 - 16 November 1990, Dublin, pp218-
232.

Page 172

