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Abstract

Very long instruction word (VLIW) machines potentially provide the most direct way 
to exploit Instruction-Level Parallelism (ILP), but cannot be used to emulate current 
general-purpose instruction set architectures. In addition, programs scheduled for a 
particular implementation of a VLIW model cannot be guaranteed to be binary 
compatible with other implementations of the same model either with a different 
number of functional units or functional units with different latencies. This problem 
is known as the VLIW object code compatibility problem. The Dynamic Instruction 
Formatting (DIF) concept, however, can be used to implement machines that execute 
code in a VLIW fashion and that are capable of overcoming the VLIW object code 
compatibility problem. A DIF machine schedules instructions into blocks of VLIW 
instructions while executing them on a simple engine and caches these blocks for 
repeated execution on a VLIW engine.

This thesis presents an architecture, named Dynamically Trace Scheduled 
VLIW (DTSVLIW), which follows the DIF concept. The DTSVLIW architecture 
was conceived independently of DEF and its implementation is significantly different 
from the DIF implementation suggested by the proponents of DIF. A DTSVLIW 
machine differs in the instruction-scheduling algorithm, register renaming 
mechanism, register access mechanism, and VLIW cache organisation.

To evaluate the DTSVLIW, a trace-driven simulator has been implemented and 
experiments using SPEC benchmark programs have been performed. The effect of 
various architectural parameters on the DTSVLIW integer performance has been 
studied and the effectiveness of the DTSVLIW instruction-scheduling algorithm has 
been evaluated. In addition, comparisons between the DTSVLIW performance and 
that of DIF and Superscalar implementations have been made. The results show that 
the DTSVLIW achieves significant ILP with feasible machine configurations and 
that, although simpler, the DTSVLIW instruction-scheduling algorithm is as effective 
as the DIF’s. The results also show that the DTSVLIW performs better than the DIF 
and Superscalar architectures for representative machine configurations while using 
less hardware resources and in a way that should not produce a longer clock cycle 
than these architectures.

The principal scientific contributions of this thesis are: (i) conception of a 
VLIW-based architecture — the DTSVLIW — that uses a pipelined instruction- 
scheduling algorithm, which effectively produces VLIW instructions dynamically; 
(ii) proof that the core of the DTSVLIW instruction-scheduling algorithm has 
complexity comparable to that of an adder, and as such can be implemented in 
hardware without impacting the DTSVLIW clock cycle time; (iii) evaluation of the 
effect of important DTSVLIW architectural parameters on its performance; (iv) 
evaluation of the effectiveness of the DTSVLIW instruction-scheduling algorithm; 
(v) comparison of the DTSVLIW performance with that of the DIF and Superscalar 
architectures.
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Chapter 1 

Introduction

In the standard model of computation, a computer program coded in machine 

language can be viewed as a vector in which each element is an instruction that 

commands a small set of simple operations. The computer starts executing the 

program at an instruction and proceeds executing instructions in ascending order. 

This order can be broken, however, by conditional or unconditional branch 

instructions, which can move the execution flow, forward or backward, a specified 

number of instructions. The program semantics is guaranteed to be correct if the 

instructions are executed atomically, and in the sequence specified by the program 

ordering and the taken branches.

A simple sequential computer processor executes each instruction completely 

before starting the execution of the next instruction. However, many operations are 

common to the execution of all instructions, which makes it possible to implement a 

processor in a pipelined way, as in a factory, to improve its performance (its ability to 

execute the program faster). In addition, sometimes instructions can be executed in 

parallel or even out of the order specified in the program without changing the 

program semantics. This can be exploited by properly designed processors containing 

many functional units capable of operating in parallel. Furthermore, the pipeline 

technique can be combined with parallel and out-of-order execution capabilities in a 

single processor for improving performance even further. Such processors are said to 

follow the Superscalar architecture [Johnson91].

An alternative approach to improve the performance is to generate machine
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code in a parallel form. In this case, each element of the vector representing the 

program can hold a certain number of independent operations that can be executed in 

parallel. Properly designed processors execute such a program by fetching one 

element of the vector at a time and by issuing the operations in parallel. Such 

processors are said to follow the Very Long Instruction Word (VLIW) architecture, 

because their instructions have hundreds or even thousands of bits to accommodate 

several operations [Fisher84]. VLIW processors can also be implemented in a 

pipelined fashion.

In VLIW systems, the compiler has complete responsibility for creating a 

package of operations that can be simultaneously issued. VLIW processors do not 

dynamically make any decisions about multiple operation issue, and thus they are 

simple and fast. In addition, because the VLIW compiler can look for parallelism 

between instructions in the whole program, VLIW architectures are potentially the 

most direct way of exploiting the instruction-level parallelism (ILP). However, the 

assumptions built into the code by the VLIW compiler about the hardware prevent 

code compatibility between different implementations of the same VLIW instruction 

set architecture (ISA). VLIW processors with different levels of hardware 

parallelism require recompilation of the source code. For instance, the code generated 

for a VLIW processor with four operations per VLIW instruction could not run on 

another VLIW processor with five operations per VLIW instruction without 

recompilation. This problem, known as the VLIW object-code compatibility problem , 

has limited the commercial interest in VLIW architectures [Rau93b].

Recently, a new architectural concept named Dynamic Instruction Formatting 

(DIF) has been proposed [Nair97]. A machine implementing this concept can 

overcome the VLIW object-code compatibility problem by executing the program in 

two distinct phases. First, when a fragment of code is initially encountered, a simple 

processor in the machine, not aggressive in exploiting parallelism, executes it. At the 

same time, this fragment of code is scheduled by a special functional unit of the 

machine into VLIW instructions. These VLIW instructions are saved in a special 

cache memory. If the same fragment of code is encountered again, another processor 

of the machine, this one a VLIW parallel processor, executes the scheduled version 

instead of the previous one.
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In this thesis, we present a new architecture that follows the DIF concept. This 

architecture, named Dynamically Trace Scheduled Very Long Instruction Word 

(DTSVLIW) architecture [deSouza98a], has been conceived independently of DIF, 

which has permitted an implementation significantly different from that suggested by 

the proponents of DIF. We have shown that the DTSVLIW is easier to implement 

than DIF and delivers equivalent performance with less hardware resources 

[deSouza99a].

Figure 1.1 shows a block diagram of the DTSVLIW architecture. In the 

DTSVLIW architecture, the Scheduler Engine fetches instructions from the 

Instruction Cache and executes them first using a simple pipelined processor — the 

Primary Processor. In addition, its Scheduler Unit dynamically schedules the trace 

produced during this execution into VLIW instructions, placing them as blocks of 

VLIW instructions in the VLIW Cache. If the same code is executed again, it is then 

fetched by the VLIW Engine from this cache and executed in a VLIW fashion. In the 

DTSVLIW architecture, the Scheduler Engine provides object-code compatibility, 

and the VLIW Engine provides VUW performance and simplicity.

To execute code in two distinct modes, one sequential and one parallel, results 

in four positive characteristics:

1. Code compatibility between different machine generations is facilitated — 

DTSVLIW machines with different levels of hardware parallelism can 

easily share the same ISA.

2. Complex instructions can be dealt with in sequential mode — During 

sequential execution, complex instructions can be decomposed into several 

simpler operations, which can later be executed in parallel mode.

3. The task of finding parallelism is simplified — The DTSVLIW’s Scheduler 

Unit receives no more than one instruction per cycle and, therefore, can 

have a simple and fast hardware implementation.

4. Instruction exceptions can be dealt with in sequential mode — In case of an 

instruction exception during parallel execution, a DTSVLIW machine can 

switch to sequential mode and deal with the exception in this mode.

In order to take advantage of these characteristics, however, a DTSVLIW 

machine has to operate in parallel mode most of the time. This means that it has to
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reuse the blocks o f VLIW instructions saved in the VLIW Cache many times. A 

DTSVLIW machine, then, relies on code temporal execution locality to improve 

program execution performance.

From
M em ory VLIW

C ache
Instruction

C ache

♦ {  Fetch Unit

S ch eduler
E ngine VLIW

Engine
Primary

Processor

To/From
M em ory

Data
C ache

F igu re 1.1: T he D yn am ica lly  T race Schedu led  V L IW  (D T S V L IW ) arch itectu re

1.1 Research Motivation

The main motivation for this research came from the observation that even small 

instruction caches (16-Kbyte or 4098 instructions) can achieve average hit rates 

higher than 99% with the SPEC92 and SPEC95 benchmark suites [SPEC, Gee93, 

Chamey97]. This shows that there is strong temporal execution locality in programs. 

The DTSVLIW exploits temporal execution locality by converting the code into 

blocks o f VLIW instructions in the first execution encounter and by executing it in 

the VLIW Engine in subsequent encounters. To make a mechanism like this work 

and take advantage o f the DTSVLIW architecture characteristics, the conversion 

algorithm has to be effective in producing VLIW code. In addition, it has to be 

simple enough not to render the clock cycle time longer than that determined by the 

VLIW Engine design. The results achieved with this research so far supports the 

view that this can be achieved [deSouza99a, deSouza99c].

1.2 Goal of this Thesis

The aim o f the research work presented in this thesis is to examine the following 

hypotheses:
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• The DTSVLIW architecture can overcome the VLIW object code 

compatibility problem while preserving the VLIW architecture simplicity 

and high clock rate.

• The DTSVLIW can achieve higher performance than the DIF and 

Superscalar architectures using equivalent hardware.

With this aim, we describe the DTSVLIW in detail and show that it can be 

implemented without taking the clock cycle far from that determined by a pure VLIW 

design. In addition, we show that the DTSVLIW can execute legacy code in VLIW 

mode. To better understand the DTSVLIW architecture, we investigate the effect of 

various architectural parameters on its performance via experiments. We then 

compare the DTSVLIW performance with that of DIF and Superscalar architectures.

1.3 Overview of the Contributions

The main contributions of this research work are:

• Conception of a VLIW-based architecture — the DTSVLIW — capable of taking 

advantage of the code temporal locality for achieving program execution 

performance. The DTSVLIW uses a pipelined code-scheduling algorithm that 

effectively produces VLIW instructions dynamically [deSouza98a],

• Proof that the core operation of the DTSVLIW scheduling algorithm has 

complexity comparable to that of an integer adder and, as such, can be 

implemented in hardware level without impacting the DTSVLIW clock cycle 

time [deSouza99a].

• Evaluation of the effect of important DTSVLIW architectural parameters on its 

performance [deSouza98b, deSouza99a, deSouza99b].

• Evaluation of the effectiveness of the DTSVLIW scheduling algorithm 

[deSouza99c].

• Comparison of the DTSVLIW performance with that of the DIF, pure VLIW, and 

Superscalar architectures [deSouza99a, deSouza99c].
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1.4 Organisation of this Thesis

This thesis is organised in eight chapters. After this introduction, Chapter 2 presents 

the background for this research. Chapter 3 contains discussions of previous research 

relevant to this thesis on microcode scheduling and VLIW architectures. In addition, 

in this chapter we discuss research that either tackles the VLIW object code 

compatibility problem or proposes mechanisms to exploit code execution locality. 

Chapter 4 describes the DTSVLIW architecture, showing how it can be implemented 

with a fast clock cycle and how it solves the VLIW object code compatibility 

problem. Chapter 5 presents the methodology used to carry out the experiments to 

evaluate the DTSVLIW architecture and the metrics used in the evaluation. The 

trace-driven simulator of the DTSVLIW and the benchmark programs used are also 

presented. In Chapter 6, we describe the experiments used for investigating the effect 

of various architectural parameters in the DTSVLIW performance, and for comparing 

the DTSVLIW performance with that of DIF and Superscalar architectures. Chapter 7 

puts the DTSVLIW in perspective by comparing its characteristics with those of 

other machine architecture proposals. In Chapter 7, we make a critical assessment of 

this research work by examining the limits of validity of the experimental results and 

the possible difficulties in implementing a DTSVLIW machine. Chapter 8 presents a 

summary of this thesis, its conclusions, and suggests future directions for improving 

the DTSVLIW architecture performance.
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Chapter 2 

Background

The ultimate goal of the computer designer is to minimise the execution time of any 

given program. We can express this execution time, T, as:

T = N x C x S

where N  is the number of instructions that need to be executed, C is the average 

number of processor clock cycles per instruction, and S is the number of seconds per 

cycle. To a first approximation, N, C, and S are affected primarily by the compiler 

technology, the ISA, and the implementation technology, respectively [Rau89].

An approach to reduce N  at the expense of a smaller increase in C is to exploit 

the parallelism available in horizontally microcoded machines [Salisbury76]. This 

can be done by defining complex instructions that exploit the internal micro­

parallelism of these machines in the hope that N  would decrease more sharply than C 

would increase. This is the general idea behind Complex Instruction Set Computers 

(CISC).

Microprogramming can be used to implement powerful CISC ISAs, with 

complex instructions capable of commanding many operations involving many 

operands in registers or main memory. A typical CISC instruction, for example, can 

read a value from memory, add this value to the content of an internal register, and 

store the result in another position in the memory.

By contrast, the Reduced Instruction Set Computer (RISC) approach to reduce
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T focuses on the use of very simple instructions, which would reduce C and, due to 

its simplicity, S as well. The resulting increase in N  can be minimised by fine-tuning 

the compiler technology and the RISC ISA’s implementation [Patterson85].

RISC instructions usually command a single operation involving no more than 

one access to memory. Due to their simplicity, RISC instructions are not 

implemented using microprogramming. RISC machines are, therefore, equivalent to 

a vertical microprogrammable microarchitecture exposed to the programmer of the 

ISA level.

Improvements in the implementation technology alone can also reduce T  by 

reducing S. However, assuming the use of the fastest technology, any further increase 

in performance would require the exploitation of the parallelism available in 

programs.

2.1 Architectures for Exploiting ILP

Machines capable of exploiting parallelism in the ISA level realise ILP. In this 

section, we discuss briefly some important machine architectures for exploiting ILP.

2.1.1 Pipelined Architectures

There are two basic types of ILP: temporal and spatial. Pipelining realises temporal 

ILP. It refers to the segmentation of an instruction’s execution into several sub­

processes that are executed by dedicated autonomous units (pipe stages). Successive 

instructions can be executed in a mode analogous to car assembly in a factory. Using 

pipelining, several instructions can be executed in parallel, each one in a different 

pipe stage, and in a different phase of its execution (Figure 2.1). Because the 

operations performed by each pipe stage are simple, the pipe stages can be 

implemented with simple hardware, which results in a high machine-clock frequency. 

Theoretically, the deeper (larger number of pipe stages) the pipeline, the faster the 

machine is, but there are of course practical limitations to this rule. Kunkel and Smith 

[Kunkel86] have studied the relationship between the theoretical linear speedup that 

pipelining offers and its practical limitations.

The first general-purpose pipelined machine is considered to be the IBM 7030
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Stretch [Bloch59]. After IBM Stretch, the majority of high-end machines have used 

some form of pipelining. Surveys on pipelining include Keller [Keller75], 

Ramamoorthy and Li [Ramamoorthy77], and Kogge’s book [Kogge81], entirely 

devoted to pipelining.

Spatial ILP is that present in processors with multiple functional units. It refers 

to the execution of more than one instruction simultaneously in different functional 

units of the processor. Temporal and spatial parallelism can be present at the same 

time. Indeed, a few years after the IBM 7030 Stretch had been constructed, the 

CDC6600 was produced with pipelining and multiple functional units that can 

operate in parallel [Thomton70].

The arithmetic portion of CDC6600 has 10 functional units, and many 

instructions can be issued to its functional units and executed in parallel. To do so, 

the CDC6600 looks-ahead in the sequence of instructions originally specified in the 

program in order to determine those that can be executed at the same time.

Fetch Decode Execute Memory Write
— ► — ► — ► Access — ► Back

(a)

Clock Cycle 0 1 2 3 4 5 7

Fetch Stage 11 12 13 14 15 16 17
D ecode Stage 11 12 13 14 15 16
Execute Stage 11 12 13 14 15
M. A ccess Stage 11 12 13 14
W. Back Stage 11 12 13

(b)

Figure 2.1: Pipelining, (a) The classic five-stage computer pipeline, (b) After filling all pipeline 
stages, one instruction can be completed per clock cycle. Up to five instructions, each in a 
different pipe stage, can be executed in parallel in this pipeline.

2.1.2 Superscalar Architectures

The term look-ahead derives from a class of schemes in which programs are 

specified in a conventional serial manner, but the processor can look ahead during 

execution and execute instructions either in parallel or out of order, provided no 

logical inconsistencies arise as a result of doing so. If the processor has sufficient 

capabilities, several instructions can be executed concurrently using look-ahead
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[Keller75]. The look-ahead scheme used in CDC6600 is called Thornton's algorithm 

and is described in [Thomton64] and [Thomton70].

The IBM 360/91 introduced a powerful look-ahead scheme named Tomasulo's 

algorithm [Anderson67, Tomasulo67]. A variant of Tomasulo's algorithm was used 

in the IBM RISC System/6000 design [Grohoski90] and, since then, various variants 

of Thornton and Tomasulo's algorithms have been used in many machines known as 

Superscalar machines [Johnson91].

The core of a Superscalar machine, shown in Figure 2.2, is the look-ahead 

hardware, also called dynamic scheduling hardware. The role of the dynamic 

scheduling hardware is to dispatch decoded instructions to the instruction window, 

and to select instructions from this window to issue to the functional units each clock 

cycle. The instruction window is central to the dynamic scheduling hardware and 

may be organised as a large structure with many entries or as several small structures, 

one for each functional unit. In the latter case, each structure has few entries and each 

entry is called reservation station.

During the dispatch process, dependency information is added to the 

instructions, their outputs are renamed (see Subsection 2.2.1), and they are stored into 

the instruction window. The dependency information comprises dependencies 

between the instructions being dispatched themselves and between these and other 

instructions previously dispatched, such as which instruction is going to produce a 

needed operand. Available input operands are also added to the instructions and 

saved with them into the instruction window during dispatch.

During the issue process, the issue hardware collects results from the result 

buses (Figure 2.2), updates the instruction window with these results, selects groups 

of instructions ready to execute, and issues these groups to the functional units. The 

results collected from the result buses are stored into the instruction window in the 

entries that have instructions that were dispatched with an incomplete set of input 

operands. When all input operands of an instruction are available, the issue hardware 

marks it as ready to execute. Groups of ready instructions are selected by the issue 

hardware and issued to the functional units to execute.

One of the main problems of highly parallel Superscalar machines is the issue 

hardware. In order to set the instructions as ready to execute, the issue logic has to
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compare the output of all functional units with the inputs of all instructions in the 

instruction window. This requires wires to connect all functional units to all 

instructions in the instruction window, and a number of comparators and associated 

logic proportional to the number of functional units times the number of instructions 

in the window. Therefore, Superscalar processors with many functional units and 

large instruction windows have a complex issue hardware, and a complex issue 

hardware impacts negatively on the clock cycle time of these machines. A possible 

solution to this problem is to organise the Superscalar core in clusters of functional 

units and associated small instruction windows, and to add special buses for 

communicating results between these clusters [Palacharla97, Vajapeyam97].

The term superscalar was coined by Agerwala and Cocke [Agerwala87] to 

name machines that dispatch multiple independent instructions per clock cycle (in 

their original form, the Thornton and Tomasulo’s algorithms can dispatch one 

instruction per cycle only). In fact, Agerwala and Cocke proposed this approach as an 

extension of the RISC ideas [Hennessy86]. A machine that follows the RISC 

philosophy has a fixed instruction length, load-store instruction set (all instructions 

operate on registers and two specific instmctions operate with memory: load and 

store), limited addressing modes, and a small number of possible operations. These 

characteristics result in easier pipelined and superscalar implementation. 

Nevertheless, CISC IS As can also be interpreted by machines that follow the 

Superscalar architecture such as, for example, the Intel Pentium [Saini93] and the 

Intel Pentium Pro [Bhandarkar97] processors with the Intel IA-32 ISA. The Intel 

Pentium, less powerful than the Intel Pentium Pro, can dispatch up to two simple 

instructions (RISC-like instructions present in the IA-32 ISA repertoire) to two 

parallel execution pipelines of the machine. The Intel Pentium Pro, on the other hand, 

has three parallel decoders that convert up to three IA-32 ISA instmctions per clock 

cycle into multiple RISC-like micro-operations which can be dispatched to 

reservation stations of five different functional units.

Computer systems that employ Superscalar techniques leave to the processor 

the obligation of finding and exploiting the parallelism that exists in programs. 

Although the compiler can help the Superscalar processor to find the parallelism 

[Hwu93], the Superscalar hardware still has the main responsibility for finding it.
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However, the compiler can be given the primary responsibility for finding the 

parallelism and, in addition, for expressing it in the form of parallel code. From the 

different forms of parallel code that can be produced, two have been particularly 

successful: Vector code and VLIW code.

Look-Ahead
Hardware

Result Buses

Execute

Write Back

Issue

Dispatch

Decode

Fetch

Data Memory

IW & Issue Hardware

Dispatch Hardware

Instruction Memory

Decode Hardware

(«)

Figure 2.2: Superscalar machine. IW stands for instruction window and FU for functional unit. 
(a) A simple Superscalar data path. (b) A simple Superscalar pipeline.

2.1.3 Vector Architectures

To produce Vector code, the compiler looks for loops in the program and, by using 

vectorization techniques [Padua86], generates vector instructions that implement, or 

partially implement, the loops. The Vector code produced is executed by Vector 

machines. These machines have specialised vector functional units that compute 

individual element operations of a vector operation in parallel [Patterson96 

(Appendix B)].

The main advantage of Vector architectures is that their hardware is simple, 

which results in fast machine implementations. Their hardware is simple because the 

compiler generates code in the explicit parallel form of vector instructions, whose 

implementation in hardware involves a small set of elementary operations only. A 

typical vector instruction might add two 64-element floating-point vectors to obtain a 

single 64-element vector as result. The Vector processor interprets this instruction by 

reading two elements from the input vector registers, adding these elements, and
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writing the result into the output vector register repeatedly, from the first until the last 

vector element of each vector register. These operations are executed sequentially; 

however, in a very deep pipelined functional unit. Some Vector processors do not 

have vector registers and operate directly with memory.

A vector functional unit can be implemented with a very deep and fast pipeline 

because each result is independent of the previous in a vector operation. This 

independence is decided at compile time, when the vector instruction is selected to 

perform a sequence of operations. Because the parallelism is decided at compile time, 

Vector processors do not need the complex look-ahead hardware of Superscalars.

Vector operations can execute in parallel in different functional units if they are 

independent. Using chaining, a technique that allows a vector operation to start as 

soon as the individual elements of its vector source operand become available, even 

some dependent operations can execute in parallel [Ramamoorthy77, Patterson96 

(page B-24)]. Scalar and vector operations can also be executed in parallel if they do 

not write into each other’s inputs. Nevertheless, in these cases, look-ahead hardware 

is required.

Many Vector machines became successful commercially; however, by the end 

of the 1980s their importance started fading. This was caused by improvements in 

Superscalar architectures, their compilers, and their implementation techniques. At 

the beginning of the 1990s, these improvements made Superscalar machines, which 

were more than 10 times cheaper than contemporary Vector machines, faster than 

Vector machines in the execution of the very important class of scalar programs 

[Patterson96 (page B-38)]. Scalar programs are characterised by a lack of long loops 

that can be vectorized. Compilers, database manipulation programs, and system 

utilities are examples of scalar code. Nowadays, Vector computers are demanded 

only by specialised users that require vector performance.

Other parallel processing paradigms such as Multiprocessors, Workstation 

Clusters, and Massively Parallel Processors [Femandes89, deSouza95, Patterson96 

(Chapter 8)] have also challenged vector parallel processing. In these paradigms, not 

the compiler but the programmer has the primary responsibility for specifying the 

program parallelism, which is a drawback and has also limited the use of machines 

that follow such paradigms to specialised users.
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2.1.4 VLIW Architectures

The other successful form of parallel code that can be produced by compilers, VLIW 

code, is executed by VLIW machines [Fisher84]. VLIW machines can execute 

several scalar operations in a single clock cycle. They have long instructions 

(hundreds to thousands of bits), with fields to control each of their many functional 

units. These long instructions (the term used in the rest of this thesis to refer to VLIW 

instructions) are fetched from memory, one per processor clock cycle, and issued to 

functional units that operate in parallel. In VLIW machines, the compiler has 

complete responsibility for creating a package of operations that can be 

simultaneously issued. The hardware does not dynamically make any decisions about 

multiple operation issue, and thus the VLIW hardware is simple and fast (Figure 2.3). 

However, the assumptions built into the object code by the compiler about this 

hardware prevent object code compatibility between different implementations of the 

same VLIW ISA. VLIW processors with different levels of parallelism require 

specific object-code. This problem is known as the VLIW object code compatibility 

problem [Rau93b]. Furthermore, it is not possible to implement current RISC or 

CISC general-purpose ISAs using the standard VLIW architecture because their 

existing legacy code has been produced with a sequential machine in mind. All this 

has made VLIW machines of limited commercial interest. Nevertheless, some VLIW 

machines have been produced commercially [Cowell88, Rau89], and the research 

efforts on their VLIW compilers has proved very useful in improving the 

performance of compilers targeting modem pipelined and Superscalar machines 

[Rau93a].
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F.U.2 F.U.4F.U.3

Data Memory

Instruction Memory

(a)

C lock Cycle 0 1 2 3 4 5 7

Functional Unit 1 11 15 111 114 116
Functional Unit 2 12 18 115 117
Functional Unit 3 13 16 19 112 118
Functional Unit 4 14 17 110 113 119

(b)

Figure 2.3: VLIW machines, (a) A hypothetical VLIW machine, (b) The compiler can put up to 
four instructions into each long instruction of this VLIW machine. If one instruction slot cannot 
be filled, a no-operation (nop) instruction is used.

2.1.5 Multithreaded Architectures

Like pipelining, multithreading realises temporal parallelism, but in a different way. 

A Multithreaded architecture can execute many threads (processes from different 

programs or the same program) in parallel with the same hardware. To do so, a 

multithreaded processor has multiple sets of storage positions for recording the state 

(also called context) of different threads. The multithreaded processor executes one 

or more instructions of one thread and then switches to another thread ready for 

execution, repeating this process continuously in a round robin or prioritised way. 

Thread switching can be triggered either by the clock or by dynamic events such as 

cache misses. By using multithreading, the utilisation of the processor hardware is 

increased because latencies due to cache misses, inter-instruction dependencies, etc, 

can be hidden by the execution of other threads.

Multithreading and multiprogramming (also called time-sharing) are similar in 

the way they allow different programs to execute in the same hardware. They differ, 

however, in the kind of latency they hide. While multiprogramming hides long 

latencies, such as input/output (I/O) latencies, multithreading hides short latencies 

related to instruction execution. In multiprogramming, the operating system controls 

process switching. This involves saving one process context in memory and bringing 

another from memory into the processor, which typically requires tens to thousands
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of clock cycles. In multithreading, the processor has storage space for several threads 

and its hardware is typically able to switch between threads in one clock cycle. 

Nevertheless, Multithreading can be used to implement multiprogramming.

To my knowledge, multithreading was first employed in the peripheral 

subsystem of the CDC6600 [Thomton70], in which a single processor is connected to 

10 independent ferrite-magnetic-core memories and 10 independent register files. On 

each clock cycle, the processor is connected to one particular register file and one 

associated memory. The processor executes one instruction in this clock cycle and 

switches to the subsequent register file-memory pair on a circular basis. Because the 

CDC6600’s peripheral processor hardware is 10 times faster than its ferrite- 

magnetic-core memories, it is able to perform as if it were 10 processors instead of 

one, by sharing its hardware between 10 different programs. When 10 I/O programs 

are running simultaneously, the Multithreaded architecture of the CDC6600’s 

peripheral processor hides the memory latency completely, making the most of the 

available hardware.

The basic architectural principle behind multithreading — sharing hardware 

resources between threads — can be associated with other parallel processing 

paradigms. Some researchers have proposed, for example, multithreaded 

multiprocessors [Smith_BJ81], while others have proposed multithreaded 

multiprocessors where the processors are VLIW machines [Alverson90]. Tullsen and 

his colleagues have proposed an advanced Superscalar architecture capable of issuing 

several instructions from different threads to the machine’s functional units in the 

same clock cycle [Tullsen95]. They called the technique embodied in this 

architecture simultaneous multithreading. In Sohi’s Multiscalar architecture 

[Sohi95], fme-grain tasks from a single program are defined automatically at compile 

time, as opposed to threads defined in the source code by the programmer or threads 

of different programs. These tasks are dynamically assigned to different execution 

contexts of the Multiscalar processor.

An intrinsic problem of Multithreaded architectures is the need for several 

execution contexts, which include register files, pipe registers, and sometimes caches 

and memories. The implementation of these contexts increases the machine design 

complexity substantially, which impacts on the clock cycle time, reducing the
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multithreading advantage. Nevertheless, as the gap between processor and main 

memory speed increases, multithreading may become more important due to its 

latency-hiding ability.

2.2 ISA and Hardware Support for Exploiting ILP

Pipelined, Superscalar, Vector, and VLIW architectures exploit the ILP available in 

programs. The amount of ILP that can be exploited is limited by data and control 

dependencies between instructions (Figure 2.4). These dependencies impede:

• execution of consecutive instructions in pipelined architectures

• parallel instruction issue in Superscalar architectures

• loop vectorization in Vector architectures

• placement of more instructions into the long instructions of VLIW 

architectures by VLIW compilers

All this leads to poor utilisation of the available hardware — while one hardware unit 

is busy others may be idle, waiting for the results from the busy unit.

The ISA itself can give support to overcome dependencies by allowing direct 

expression of ILP, as in Vector and VLIW ISAs. However, there are other forms of 

ISA support for exploiting ILP, such as bits in the instructions encoding to help 

branch prediction or to express predication. Hardware can support ILP exploitation 

with, for example, register renaming or dynamic branch prediction. In the rest of this 

section, we discuss ISA and hardware support for ILP exploitation.
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(a) true data dependency (b) anti-dependency

r lj :=  50[r6] r̂ ^ r 8  =  0 goto L

r2 := r l +

r lj :=  r3 + r4 L:

(c) ou tpu t dependency (d) con tro l dependency

Figure 2.4: Data and control dependencies, (a) Two instructions have a true data dependency if 
the result of the first is an operand of the second, (b) Two instructions have an anti-dependency 
if the first uses the old value in some location and the second sets that location to a new value, (c) 
Two instructions have an output dependency if they both assign a value to the same location, (d) 
There is a control dependency between a branch and an instruction whose execution is 
conditional on it.

2.2.1 Register Renaming

Anti-dependencies and output dependencies (Figure 2.4) can be eliminated by 

renaming. They are called name dependencies because, as opposed to true data 

dependencies, there is no value being transmitted between the instructions. In anti­

dependencies and output dependencies, it is the use of a name that causes the 

dependency, not the need for a previously computed value. For example, in Figure 

2.4b, if the result of the second operation, “r2 /  5”, is written into another register, 

say “r5”, the anti-dependency disappears and the two statements can then be 

executed either in parallel or in reverse order. The same is true for Figure 2.4c if we 

change ‘W ” to “r2” in the second statement, for example. The names used for 

renaming cannot be in use at the point of renaming; that is, the names used cannot 

specify valid values that might be needed for subsequent instructions.

Although renaming can be applied to both memory and register operands it can 

be more easily applied to register operands, in which case it is called register 

renaming. Register renaming can be done either statically by the compiler or 

dynamically by the hardware. Superscalar machines employing the Tomasulo’s 

dynamic scheduling algorithm [Tomasulo67] for example, perform register renaming



dynamically. In fact, the main difference between the Thornton and Tomasulo’s 

dynamic scheduling algorithms is the ability to perform renaming -  the Thornton’s 

algorithm does not support renaming [Patterson96 (pages 240-261)].

2.2.2 Branch Prediction

Branch prediction [Lee_JFK84, Fisher92, Pan92, McFarling93, Nair95] can reduce 

the impact of control dependencies (Figure 2.4d) on machine performance. Control 

dependencies impact on performance because instmctions that depend on a 

conditional branch can only be executed after the branch outcome is known. For 

example, if in Figure 2.1 (page 22) the instruction 15 is a conditional branch that 

targets instruction 132 at that point of program execution, the processor fetches and 

decodes instruction 16 in vain and fetches 17 in vain. This happens because the 

processor only leams the branch outcome when 15 is in the execute pipeline-stage.

Branches can be predicted statically by the compiler or dynamically by the 

hardware. They can be predicted at compile time using knowledge about the program 

itself. A conditional branch at the end of a loop that is used to branch back to the 

beginning for another loop interaction may be predicted as taken, for example. 

Another alternative for branch prediction at compile time is profiling [Fisher92]. In 

this case, a version of the program is executed one or more times with typical inputs 

and the branches’ behaviour is saved. The branch behaviour information is then used 

to statically predict the program branches as taken or not taken in an eventual 

program recompilation. Whether or not profiling is used, the compiler establishes its 

prediction by setting a taken-bit in the branch instruction to inform the hardware 

whether the branch is predicted as taken or not taken. Therefore, compiler oriented 

static branch prediction has to be supported by the ISA.

Usually, the hardware checks the taken-bit and moves the control-flow to the 

appropriate branch-target instruction when the branch instruction leaves the decode­

stage of the processor’s pipeline. In the example mentioned above, if 15 has a taken- 

bit and it is set at true, the processor can redirect the fetch under the control of 15 

when it is in the decode pipeline-stage. In such case, 16 is still fetched but not 17; 132 

is fetched instead. This saves one cycle, improving the overall machine performance. 

Experimental results have shown that profiling achieves prediction accuracy of 85%
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on average for the integer programs of the SPEC89 benchmark suite [Patterson96 

(page 176)].

Certain ISAs go beyond the static branch prediction mechanism described and 

use the concept of delayed branches to try to avoid the useless fetch of 16 in the last 

example. In such ISAs, one or more instructions that follow a branch (usually just 

one) are unconditionally executed. These instructions are said to be in the branch 

delay slots. The compiler can use branch delay slots to accommodate useful 

instructions. An even more elaborate scheme adds an extra annul-bit to the branches 

encoding to say whether the instruction in the branch slot should be annulled when 

the branch is not taken. Using these facilities, the compiler could put 132 after the 15 

branch in the example above, and set the annul-bit and the taken-bit of 15 at true. 

This would favour a possibly more frequent case when 15 is taken — no processor 

cycles would be lost in such case, provided that the 15 target can be computed in the 

decode pipeline-stage. The Sparc Version 9 ISA [Patterson96 (page C-25)], for 

example, incorporates the annul-bit and the taken-bit in some of its conditional 

branches. Experiments have shown that the compiler is able to fill 79% of branch 

delayed slots and that delayed slots that can be annulled are not annulled 66% of the 

time on average in the SPEC89 integer programs [Patterson96 (page 171)].

Branches can be predicted dynamically using pure hardware mechanisms. The 

Branch Target Buffer (BTB) is an example of such a mechanism [Lee_JFK84], The 

BTB is a special cache memory in the processor that stores the target address of taken 

branches. When a branch is executed and its outcome is taken, an entry in the BTB 

receives its target address; not-taken branches have any current entry in the BTB 

removed. The BTB entries are tagged with the branch instruction addresses. On every 

instruction fetch, the processor checks the BTB using the instruction fetch address 

and, if this address hits in the BTB, it means that the fetched instruction is a branch 

and that it was previously taken. The next instruction fetch, then, uses the branch 

target address previously stored in the BTB. If the processor fetches more than one 

instruction per cycle, as Superscalars do, the address stored in the BTB is the target 

of the first branch in the previously fetched group of instructions. The BTB address 

tag is the address of this group of instructions, in this case. The mentioned policies 

for adding, removing, and tagging BTB entries are typical; there are other policies
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[Lee_JFK84].

An alternative implementation scheme for BTBs has been evaluated by Calder 

and Grunwald [Calder95]. In this scheme, called next line and set (NLS) predictor, 

the predicted next instruction cache line and set are stored either in a special cache or 

in the instruction cache directory (not the contents but the line and set values). This 

saves silicon space when compared with the BTB, because a branch target address 

specification requires more bits than a cache line and set, and no address tags are 

required, since they are already available for the instruction cache operation. Calder 

and Grunwald have shown that the NLS performs better than the BTB for the same 

silicon area in some important configurations [Calder95]. An example of processor 

that uses NLS is the UltraSparc-I [Tremblay96].

The BTB is a one-bit branch prediction scheme: it either contains or does not 

contain the target of a specific branch. A shortcoming of a one-bit predictor is that, 

even if a branch is almost always taken, this predictor will predict incorrectly twice 

rather than once when the branch is not taken and then taken. In a more elaborated 

branch prediction scheme, small registers record the history of previously executed 

branches. These registers are also saved in a cache, called the Branch History Table 

(BHT). In a predictor that follows this scheme and uses two-bit registers, a prediction 

may be set to miss twice before change, for example. The two-bit scheme is actually 

a specialisation of a more general scheme that has an 72-bit register for each entry in 

the BHT. With an 72-bit register it is possible to record the outcome of n branches if 

we use the register as a shift register: the newest branch outcome is inserted in one 

side and the oldest removed from the other side. When a branch fetch address hits in 

the BHT, the corresponding register content is used to predict its outcome. When the 

branch outcome is later computed, this BHT register incorporates its outcome.

Lee and Smith [Lee_JFK84] have shown that a two-bit predictor predicts 

almost as well as a 72-bit (7 2 > 2) one, and thus most systems rely on two-bit predictors 

rather than the more general 72-bit predictors. In these systems, the two-bit registers 

are used as saturating counters [Smith_JE81]. With a 2-bit saturating counter it is 

possible to record values between 0 and 3. When a branch address hits in the BHT, 

the corresponding counter is either incremented if the branch is taken or decremented 

if the branch is not taken, but saturates in 3 and 0, respectively. When the counter is
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equal to 2 or 3 the branch is predicted as taken; otherwise, it is predicted as not taken. 

A branch predictor based in a BHT that is updated this way is also called bimodal

branch predictor [McFarling93].

A BHT only says whether a branch is predicted as taken or not. Although very 

useful, this information can only produce positive results in the case of taken 

branches after they are decoded and their targets computed, which usually requires 

more than one pipeline stage. However, BHTs and BTBs can work together in a 

single processor: the BTB recording the target of taken branches and the BHT 

governing the general conjugate-predictor behaviour. This behaviour can follow 

several different schemes. As an example of such a scheme, instruction fetches that 

hit in the BTB take the branch target address stored in the BTB as the new fetch 

address. However, not taken branches only have their entry removed from the BTB if 

they are predicted as not taken by the BHT, and taken branches only have their target 

address stored in the BTB if they are predicted as taken by the BHT. Schemes like 

this are interesting because BHTs require less hardware per entry than BTBs, since 

they do not record branch target addresses, which allows larger BHTs than BTBs. An 

example of processor that uses such a scheme is the PowerPC620 [IBM94]. Other 

schemes may join the BTB and the BHT together to save silicon space with tags, or 

use different polices of replacement in the BTB, BHT, or both. As an example of 

BHT (or bimodal branch predictor) performance, a 4096-entry (lK-byte) direct- 

mapped two-bit saturating counter BHT achieves accuracy of 89% average in the 

SPEC89 integer benchmark suite [Pan92].

The BTB, the BHT, and their combinations are the most simple and well- 

known branch predictors. There are, however, many other predictors. Yeh [Yeh91, 

Yeh92, Yeh93a] has proposed two-level adaptive branch predictors, which use two 

tables (or caches) to predict if branches are taken or not. The first table contains shift- 

registers and records the history of the branches while the second contains saturating 

counters and determines the prediction; the second table is partially or fully 

addressed by the content of the first. Yeh proposed a taxonomy for two-level 

adaptive branch predictors to classify them according to the addressing of the two 

tables and the tables sizes. He and his colleagues studied the predictor accuracy with 

different configurations and found average accuracy for the complete (integer and
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floating-point) SPEC89 benchmark suite of 96.5% with a 1-Kbyte per-address history 

two-level adaptive branch predictor (PAs). Pan [Pan92] studied a particular case of 

two-level adaptive branch predictor where a single shift-register is used to record the 

branch history. This shift-register is concatenated with the branch address to produce 

an index to the table of saturating counters. Pan has called this predictor correlation- 

based branch predictor and found average prediction accuracy of 94.1% on the 

SPEC89 integer benchmark suite. McFarling [McFarling93] proposed instead of 

concatenation, the performance of an exclusive-or (xor) between the shift-register 

and the branch address. He called this new predictor gshare and reported gshare 

prediction accuracy of 95.5% with the complete SPEC89 benchmark suite. 

McFarling also proposed, in the same paper, the combination of two branch 

predictors to exploit the different characteristics of each of them. In this case, an 

extra table of saturating counters is used to choose the most accurate predictor for a 

particular branch. He found average prediction accuracy of 96.5% with a 

bimodal/gshare combined branch predictor on the complete SPEC89 benchmark 

suite. Kaely and Emma [Kaeli91] have proposed the use of a small (less than 32 

entries) return-address-stack specifically for predicting subroutine returns. Recent 

proposals of repair mechanisms of the return-address-stack contents have 

demonstrated accuracy of nearly 100% in subroutine return branches for the SPEC95 

benchmark suite [Skadron98].

There is an enormous amount of research on dynamic branch prediction in the 

literature and the research interest in this field is still high. This interest exists 

because dynamic branch prediction has a fundamental role when used together with 

speculative execution in wide and deep pipelined Superscalar architectures 

[Theobald92, Wall94, Uht97].

2.2.3 Speculative Execution and Interrupt Handling

Instructions are said to execute speculatively when they are dependent for execution 

on the outcome of a conditional branch and yet are executed before the branch result 

is available, but do not have their output values committed to the ISA state until the 

outcome of the branch instruction is known. This is done to allow the machine 

hardware to be utilised while the branch outcomes are still not computed.
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Although more frequent, branch mispredictions are similar to interrupts (also 

called exceptions or traps). Interrupts are caused by the execution of some 

instructions, such as load/store (page faults, access violations) or divide (divide by 

zero), or by events external to the processor (timer, I/O, etc). When a branch 

misprediction occurs, the machine must be restored to a state such that all 

instructions that precede the misprediction have updated the machine state, while 

none of those following it have. The same is true for interrupts: after an interrupt is 

handled, the machine must be restored to a state such that all instructions that precede 

the interrupt have updated the machine state, while none of those following it have. 

Speculative execution makes it difficult to establish the precise ISA state to return to 

in these cases because instructions are allowed to initiate before knowing the 

outcome of branches that precede them. This problem is known in the literature as 

the precise interrupt problem.

Smith and Pleszkun [Smith_JE85] described several mechanisms to implement 

precise interrupts. The simplest one is in order completion. In a machine that 

implements this mechanism, instructions modify the ISA state only when all 

previously issued instructions are known to be free of exception conditions and all 

previously issued branches have confirmed their targets. Another mechanism 

proposed by Smith and Pleszkun is the history buffer. The history buffer allows a 

machine to undo the effects of instructions executed speculatively. The history buffer 

is a circular list, with pointers to the top and bottom. Every time the machine issues 

an instruction to the functional units, it allocates a slot for the instruction at the 

bottom of the history buffer. When the instruction executes, the values it overwrites 

in the machine state (the old values) are stored into the instruction’s slot in the buffer. 

Instructions at the top of the history buffer are removed as they complete execution. 

An instruction can only interrupt the machine when it arrives at the top of the buffer. 

On an interrupt, the machine restores the precise ISA state before the instruction 

execution using the old values preserved in the history buffer.

Hwu and Patt have proposed the checkpoint repair mechanism to recover from 

mispredicted branches and exceptions [Hwu87]. A processor employing checkpoint 

repair has a set of logical spaces, which consists of a full set of ISA registers and 

extra registers for recording values which result from store instruction execution. Of
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all logic spaces, only one is used for current execution. The other spaces contain 

backup copies of previous states of the processor. At various times during execution 

(at every branch instruction for example), a checkpoint is made by copying the 

contents of the processor registers to one of these logic spaces. The logic spaces are 

managed as a stack; therefore, a checkpoint operation discards the oldest 

checkpointed state. In case of an exception or misprediction and depending on the 

implementation, a suitable previously saved machine state either becomes the active 

state or is copied to the machine state. Store instructions are managed using one of 

two possible mechanisms. In the first, they have their store values saved in special 

registers in the logical space. After each new checkpoint, the values previously saved 

are stored into memory. In the second mechanism, they have the values that they 

overwrite in the cache saved in the special registers. In case of interrupt or 

misprediction, the values saved are restored into the cache.

Most schemes for dealing with interrupts and branch mispredictions in the 

presence of speculative execution described in the literature incorporate the idea of 

keeping multiple copies of any overwritten ISA register or memory position. These 

mechanisms recover from interrupts or branch mispredictions by discarding all 

values produced after these events took place and restoring the ISA state to the 

previous values. They differ in the impact on the machine performance and in the 

implementation cost. Wang and Emnett [Wang_CJ93] have examined these trade­

offs for the in-order completion, history buffer, reorder buffer [Smith_JE85], and 

future file [Smith_JE85] mechanisms. Butler and Patt [Butler93] compare the 

performance implications of using checkpointing with that of using either the history 

buffer or the reorder buffer.

2.2.4 Memory Disambiguation

When load/store instructions are executed out of the order specified by the 

programmer, special mechanisms must be used to avoid memory aliasing. Memory 

aliasing occurs when loads read from or stores write to the same memory positions 

that are going to be written by stores originally assigned to execute before them. The 

mechanisms employed to avoid memory aliasing are known as memory 

disambiguation mechanisms or memory aliasing detection mechanisms.
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In VLIW machines, memory disambiguation is usually done at compile time, 

although some hardware support can be added to the VLIW machine for detecting 

and resolving memory aliasing between near long instructions at execution time 

[Colwell88]. Johnson proposed the use of a store buffer for dynamic memory 

disambiguation in Superscalar machines that execute load and store instructions 

speculatively [Johnson91]. The store buffer records store instructions, the store data, 

and the store addresses as they are computed. When a store instruction is dispatched, 

it is also copied to the store buffer together with the store data. After being computed, 

the store address is placed into the appropriated entry of the store buffer. The store 

then waits in the store buffer until all previously issued instructions are completed. 

After that, the cache write is performed and the store instruction removed from the 

store buffer. Load disambiguation is performed by holding the execution of load 

instructions until the addresses of all stores in the store buffer are computed. If a load 

address matches an address in the store buffer, the load can either read the data 

directly from the buffer or wait until all matching store-buffer entries are removed 

from the store buffer. Store disambiguation is performed by removing the store 

instructions from the buffer and writing their data into the cache in execution order. 

Franklin and Sohi have proposed a more elaborate memory disambiguation scheme, 

called Address Resolution Buffer (ARB) [Franklin92]. In a machine with ARB, loads 

are allowed to read from the data cache even when there are previous store 

instructions not yet issued or whose addresses are not yet computed. This is possible 

because the ARB records the same information recorded by the store buffer plus load 

addresses and the relative order between loads and stores. When a store address is 

computed, the ARB is able to signal any existent memory aliasing. Special recovery 

actions are then taken when aliasing is detected.

2.2.5 Predication

Predication is a form of ISA support for exploiting ILP. Predicated, or guarded, 

execution refers to the conditional execution of instructions based on the value of a 

boolean source operand, referred to as predicate [Park91]. Predicates are associated 

with instructions at compile time. An instruction with a predicate value of true 

executes normally, while an instruction with a predicate value of false — although
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issued — does not write its results into the ISA state. Additional compare and move 

instructions are used to set the predicates’ value at execution time. Predication can be 

used to remove conditional branches, particularly the hard to predict ones, such as 

those associated with i f  — then — else statements. The process of eliminating 

conditional branches utilising predicated execution support is referred to as if- 

conversion, and it was initially proposed to assist automatic vectorization of loops 

with conditional branches [Allen83]. Predication was also extensively used in the 

Cydra 5 VLIW computer [Rau89], and is a key architectural feature of the Intel LA-64 

ISA (first 64-bit Intel ISA, which will supersede the Pentium IA-32 ISA) 

[Dulong98].

Consider, for example, the following fragment of C code extracted from the 

eqntott program of the SPEC92 benchmark suite:

if (aa == 2) 
aa = 0; 

if (bb == 2) 
bb = 0;

This code fragment can be translated to the following assembly code fragment 

(the destination register is the rightmost, branches are not delayed, and the suffix cc 

in the sub_cc instructions indicate that the machine’s condition codes are modified 

by these instructions):

Id aa(sp), rl # load the aa variable into rl (sp is the stack pointer)
sub_cc rl, 2, rO # write to rO have no effect
bnz if_2 # branch if not zero
St rO, aa(sp) # rO always read as zero
Id bb(sp), rl # load the bb variable into rl
sub_cc rl, 2, rO
bnz end
St rO, bb(sp)

end:

In wide and deep pipelined Superscalars, when the instruction bnz if_2 is 

detected as taken and was predicted as not taken, all subsequent instructions shown 

above might already have been issued. In such case, all work done is discarded only
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to fetch the store possibly for a second time, since it might already have been fetched.

With predication, the assembly code fragment above can be modified to:

Id aa(sp), rl # load the aa variable into rl
sub r l , 2, p # p is a predicate
~p, st rO, aa(sp) # the store is only executed if p is zero

if_2: Id bb(sp), rl
sub r l ,2 , p
~p, st rO, bb(sp)

end:

The assembly code is now shorter (this is not always the case with predication) 

because the branches have been removed. In addition, all instructions can be issued at 

the same time in a Superscalar employing the Tomasulo algorithm.

2.2.6 Instruction Hoisting

Mahlke et al. have proposed a form of ISA support for speculative execution of 

instructions that can cause exceptions, such as loads, stores, and floating-point 

instructions [Mahlke92a]. We use here the nomenclature used by Dulong 

[Dulong98], who calls this ISA support instruction hoisting. Instruction hoisting is 

used to advance exception-causing instructions past conditional branches in order to 

improve ILP exploitation. (Instruction hoisting is also one of the key architectural 

features of the Intel LA-64 ISA [Dulong98].)

Hoisted instructions receive a tag at compile time that indicates to the machine 

hardware that they have been hoisted. The machine executes these instructions 

normally, but does not deliver exceptions related to them. If a hoisted instruction 

performs any exception-causing operation, the information related to the exception is 

saved in bits associated with the destination register of this instruction, and the 

address of the offending instruction is saved into its destination register. In the case 

of store instructions, the address of the offending store is saved in a modified version 

of the store buffer [Mahlke92a], ARB, or equivalent architectural support for store 

instructions.

Special instructions, called sentinel instructions, are used to check the 

exception information saved. When sentinel instructions detect exceptions, fix-up 

code is invoked to deal with the exceptions.
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Consider the following fragment of C code:

if (x > y) 
k = a[x + y];

This code fragment can be translated to the following assembly code fragment:

Id x(sp), rl # load the jc variable into rl
Id y(sp), r2 # load the y  variable into r2
Id a(sp), r3 # load the a pointer into r3
sub__cc rl, r2, rO
ble else # branch if jc <= y
add r2, r l, r4 # r4 = x + y
Id (r3+r4), r4 # load a[x + y] into r4
st r4, k(sp) # k = a[x+y]

else:

With hoisting, the assembly code fragment above can be modified to:

Id x(sp), rl 
Id y(sp), r2 
Id a(sp), r3 
sub_cc r l, r2, rO 
add r2, r l , r4 
ld.hois (r3+r4), r4 
ble else 
check r4 
st r4, k(sp)

else:

The assembly code fragment is now larger, but it is not always the case, since 

the st r4, k(sp) can perform the sentinel function of the instruction check r4 when 

reading r4, ISA permitting. In the new code fragment there is always one instruction 

between a load and the instruction that consumes the loaded value. This reduces the 

impact of load latencies in the machine performance. If the sentinel instruction 

detects an exception such as a page-fault, the operating system is invoked and fix-up 

code is used to execute the ld.hois (r4+r2), r4 instruction again. The program 

execution then restarts after the check r4 instruction.

# load the x variable into rl
# load the y  variable into r2
# load the a pointer into r3

# r4 = x + y
# hoisted load a[x +y] into r4
# branch if x <= y
# special instruction for exception check
# k  = a[x + y ]
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2.2.7 Data Dependence Collapsing

Data dependence collapsing can be used to alleviate the impact of true data 

dependencies on ILP. Consider the example of true data dependency shown in Figure 

2.4 (a) (page 31) and repeated below:

rl := r3 * r4 

r2 := rl + 1

The second statement has to wait the execution of the first due to a true data 

dependency on rl. The dependency between these two statements can be eliminated, 

however, by executing the second in a functional unit capable of reading three inputs, 

and performing one multiply operation and one add operation at the same time as 

shown below:

r2 := (r3 * r4) + 1

This is called data dependency collapsing. Data dependency collapsing 

functionality has been added to some processors, such as the Intel i860 [Intel89], 

IBM RS/6000 [Oehler90], and the PowerPC family [Diefendorff94] in the form of 

multiply-add floating-point instructions. Malik and his colleagues [Malik92] have 

proposed and evaluated an Arithmetic and Logic Unit (ALU) design that allows data 

dependency collapsing of integer instructions. Sazeides and Vassiliadis have studied 

the performance potential of data dependency collapsing for improving processor 

performance in [Sazeides96].

2.3 Compiler Support for Exploiting ILP

Superscalar architectures deal with instruction dependencies in hardware level by 

using the Thornton, Tomasulo, or another dynamic scheduling algorithm. However, 

due to hardware limitations, a significant part of the ILP may be lost. Nevertheless, 

the compiler can help the Superscalar hardware by generating code where instruction 

dependencies are spaced apart, and by using predication and hoisting when there is
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ISA support. VLIW architectures differ from Superscalars in their exploitation of ILP 

by relying only on the compiler, which produces already parallel code in the form of 

long instructions. In fact, the appearance of VLIW architectures was a result of the 

development of a compiler technique called trace scheduling.

2.3.1 Trace Scheduling

Trace scheduling was first developed as a solution to the global microcode 

compaction problem [Fisher81]. Microcode compaction is the process of combining 

the microoperations that compose a microprogram into microinstructions in a way 

that reduces the space required by the microprogram and, hopefully, the time needed 

for the microprogram execution. Microcode compaction is used to produce code for 

horizontal microprogrammable machines.

There are two types of microcode compaction: local and global. Local 

microcode compaction is restricted to basic blocks of microcode [Davidson81]. A 

basic block is a straight-line sequence of instructions that are not targeted by 

branches except at the beginning and with no branches except at the end. Basic 

blocks are short — typically about 5-20 instructions on average — and, because of this, 

there is not much scope for finding parallelism in them. Therefore, in order to make 

highly parallel horizontally microcoded machines worthwhile, it was important to go 

beyond basic blocks by using global microcode compaction techniques. Global 

microcode compaction techniques compact large sections of microcode containing 

many basic blocks. The first technique capable of doing that effectively was the trace 

scheduling technique [Fisher81].

The success of trace scheduling in compacting microcode for horizontally 

microcoded machines triggered the development of the VLIW architecture, which is 

basically an architecture where horizontal microinstructions are exposed to the 

programmer of the ISA level as long instructions. A VLIW compiler employing trace 

scheduling is able to find the parallelism in the program source code and express it in 

the form of long instructions [Colwell88, Ellis86].

A trace-scheduling compiler analyses the program source as a whole. After 

applying a set of classical optimisations (loop invariant motion, common sub­

expression elimination, induction variable simplification, etc [Aho86]), the compiler
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generates the intermediate code and builds a graph of the program with operations 

represented by nodes and control flow represented by edges. Using estimates of 

branch directions produced through heuristics, the compiler selects a path, or trace, in 

the program graph, likely to be followed during execution. The instructions in this 

trace are dealt with as if they were a single basic block, with little attention paid to 

branch instructions except that they are constrained to remain in their original order. 

Instructions are allowed to move upward and downward and to cross their original 

basic block limits. The compiler schedules the trace into long instructions using the 

list-scheduling algorithm [Adam74, Fisher81], taking into consideration data 

dependencies between instructions, efficient use of functional units, registers, cache 

ports, etc. Of course, the scheduling done without considering branch instructions 

can lead to inconsistencies when branch instructions leave the trace or target 

instructions inside the trace. To avoid these inconsistencies, the compiler adds 

compensation code outside the trace in all points leading to or leaving the trace, 

connecting it to the rest of the program. This activity, termed bookkeeping, repairs 

the inconsistencies, restoring the program semantics. After scheduling the most likely 

trace, the compiler selects and schedules the second most likely trace, then the third, 

and so on, until there are no traces left.

Trace scheduling suffers from two problems: inaccurate trace selection and 

code explosion. Traces are selected statically at compile time by guessing the 

direction of branches, which is good for some programs but overall is not very 

efficient [Patterson96 (page 175)]. Nevertheless, trace selection can be improved 

with profiling [Fisher92, Fisher93]. Code explosion is caused by bookkeeping and by 

code replication during motion of code downward across branches and upward across 

merges. Researchers have addressed this problem and proposed heuristics to 

circumvent it [Su84, Gross90, Freudenberger92],

2.3.2 Superblock Scheduling

An important issue for trace scheduling is the compiler implementation complexity 

incurred by the need to perform bookkeeping to maintain correct program execution 

after moving instructions across basic blocks. Superblock scheduling is a technique
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derived from trace scheduling that avoids bookkeeping via superblock formation 

[Hwu93].

A superblock is a trace that has no side entrances (execution paths that lead to 

instructions inside the trace); that is, control can only enter from the top but may 

leave at one or more exit points. Superblocks are formed in two steps. First, traces 

are selected using execution profile information. Second, tail duplication is 

performed to eliminate any side entrances into the trace. Tail duplication is 

performed by copying the tail portion of the trace from the first side entrance to the 

end of the trace. All side entrances into the trace are then moved to the corresponding 

tail copy. This trace without side entrances is a superblock, also known as an 

extended basic block in the compiler literature. After formation, the compiler 

schedules superblocks using the list-scheduling algorithm.

A structure similar to the superblock is the hyperblock [Mahlke92b], A 

hyperblock is also a block of instructions where control can only enter at the top, but 

may exit from one or more locations. However, unlike the superblock, predicate 

instructions are used within hyperblocks. Thus, a hyperblock may contain 

instructions from more than a single path of control. Therefore, for programs without 

heavily biased branches, hyperblocks provide a more flexible framework for 

compile-time ELP expression.

Other forms of ISA support, such as hoisting, can also be used for improving 

trace scheduling and its variants, superblock and hyperblock scheduling 

[Mahlke92a].

2.3.3 Percolation Scheduling

Percolation scheduling was designed as a general scheduling technique for any 

parallel machine, but it is particularly appropriate for VLIW machines. Percolation 

scheduling modifies a program little by little using four semantics-preserving 

primitive transformations: move-op, move-cj, delete, and unify [Nicolau85]. The 

input code is presented to the percolation scheduler as a graph, with nodes containing 

instructions and edges representing the control flow. The primitive transformations 

are applied to this graph, grouping independent instructions in single nodes. Move-op 

and move-cj move simple operations and conditional branches between adjacent
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nodes, respectively. These transformations may cause replication of instructions and 

empty nodes. The unify transformation unifies identical operations in neighbour 

nodes, and the delete operation deletes empty nodes resulting from previous 

transformations. The use of these transformations is guided by heuristics.

The original percolation scheduling has several drawbacks. First, it assumes 

unbounded resources. Second, the possibility of moving an instruction in a target 

path of a conditional branch above this conditional branch is limited to the case in 

which the destination of the instruction is dead in the other path of the branch. This 

restricts the achievable parallelism. Third, there is no control over code explosion. 

Finally, it cannot schedule instructions that take more than one cycle to complete 

(latency larger than one cycle).

Ebcioglu and Nakatani developed a new technique, called enhanced pipeline 

percolation scheduling, which builds on the original ideas of Nicolau, tackling the 

percolation scheduling drawbacks [Ebcioglu89, Nakatani89, Nakatani93]. Enhanced 

pipeline percolation scheduling schedules code into tree instructions. A tree 

instruction implements a small binary decision tree. At each internal node of the tree, 

there is a conditional branch. At the external nodes of the tree, there are labels to 

which the tree instruction can branch. On each directed edge of the tree, there can be 

zero, one, or more instructions, which have no data dependencies with each other and 

can thus execute simultaneously. Tree instructions allow operations to be 

conditionally executed, depending on to where its branches are branching. During 

execution, only those instructions in the followed path through the tree instruction are 

executed. This reduces the critical path length to less than what was possible with the 

original percolation scheduling. The resources that a tree instruction can hold are 

limited in enhanced pipeline percolation scheduling.

Enhanced pipeline percolation scheduling adds renaming to move-op and 

move-cj. With renaming, an instruction in a target path of a conditional branch can 

move above the conditional branch even if the instruction destination is live in the 

other target path, since the instruction destination can be renamed.

Code explosion is avoided in enhanced pipeline percolation scheduling by 

adopting move-op and move-cj conditionally and by limiting the code area that is 

scheduled at any given time to a look-ahead window computed using heuristics.
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Multicycle instructions are accomplished by adding n - 1 “dummy” instructions with 

the semantic “z <— delay (z)” after each «-stage pipelined “z <- x operation y ” 

instruction. Dummy instructions do not take resources during scheduling and are not 

saved in the final tree instructions but are only used to guide the scheduling.

2.3.4 Loop-unrolling

Trace scheduling, superblock scheduling, and percolation scheduling are, in their 

original formulation, different forms of global acyclic scheduling. They try to expose 

the ILP available in acyclic code by overlapping the execution of multiple basic 

blocks.

Although dynamically executed many times, cyclic code — or loops — are 

usually statically short and contain few basic blocks. Nevertheless, as with global 

acyclic scheduling, ILP in cyclic code can be obtained by overlapping the execution 

of multiple basic blocks. In this case, however, these basic blocks are the result of 

multiple iterations of the same piece of code. The most natural way of exposing these 

multiple dynamic basic blocks, that result from the execution of loops, to the 

compiler’s scheduler is to unroll the body of the loop some number of times 

[Rau93a].

Consider the following fragment of C code, which calculates the sum of all 

elements of a vector:

sum = 0;
for (i = 0; i < a_size; i++) 

sum = a[i] + sum;

This code fragment can be translated to the following assembly code fragment 

(the compiler knows that a_size is larger than zero):
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mov 0, r2 # r2 represents the sum variable at this point
mov 0, rl # rl represents the i variable at this point
Id a(sp), r3 # load the a pointer into r3 (sp is the stack pointer)
Id a_size(sp), r5 # load the a_size into r5

1 .loop: Id (r3+rl), r4 <3IIt;

2. add rl, 1, rl # i++
3. sub_cc rl, r5, rO # write to rO have no effect
4. add r4, r2, r2 # sum = a[i] + sum
5. bnz loop # branch if not zero

st rl, i(sp) # update i in memory
st r2, sum(sp) # update sum in memory

The loop can be unrolled once at source level as shown below, if a_size is 

known to be multiple of 2:

sum = 0;
for (i = 0; i < a_size; i = i+2)
{

sum = a[i] + sum; 
sum = a[i+l] + sum;

}

This unrolled loop can be translated to the following assembly code fragment:

mov 0,r2 # r2 represents the sum variable at this point
mov 0, rl # rl represents the i variable at this point
Id a(sp), r3 # load the a pointer into r3 (sp is the stack pointer)
Id a_size(sp), r5 # load the a_size into r5

1 .loop: add r3, rl, r6 # r6 points to a[i]
2. Id 0(r6), r4 # r4 = a[i]
3. Id l(r6), r7 # r7 = a[i+l]
4. add r l , 2, rl # i = i + 2
5. sub__cc r l , r5, rO # write to rO have no effect
6. add r4, r2, r2 # sum = a[i] + sum
7. add r7, r2, r2 # sum = a[i+l] + sum
8. bnz loop # branch if not zero

st r l, i(sp) # update i in memory
st r2, sum(sp) # update sum in memory

The unrolled loop uses a single conditional branch and a single index 

computation for two iterations of original loop, and the i+1 in the loop body
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statement is a constant computed at compile time and attached to the load instruction 

used to load a[i+l]. The original loop requires 10 instructions to compute the sum of 

two vector elements, while the unrolled loop requires 8. In addition, if the original 

version is allowed to run in a parallel machine, the minimum number of cycles for 

two iterations is 6, as shown below:

l.loop:ld (r3+rl), r4 | add rl, 1, rl
2. sub_cc r l, r5, rO | add r4, r2, r2
3. bnz loop |

While the unrolled version can complete two iterations in 4 cycles when 

running in a parallel machine, which shows that loop unrolling can expose a 

significant amount of the ILP available in loops:

1 .loop: add r3 ,r l ,r6  | add r l , 2, rl
2. Id 0(r6), r4 | Id 1 (r6), r7
3. sub_cc r l, r5, rO | add r4, r2, r2
4. add r7, r2, r2 | bnz loop

Compilers can unroll loops automatically and, after unrolling, they can perform 

trace scheduling or some other form of global acyclic scheduling.

2.3.5 Software Pipelining

Software pipelining is another technique for exposing the ILP available in loops. 

Software pipelining is the software equivalent of a hardware pipeline. In a pipelined 

machine, several instructions in different phases of their execution can occupy 

different stages of the machine pipeline, while in a software-pipelined loop, several 

instructions belonging to different iterations can coexist in the same loop body. Thus, 

a compiler that employs software-pipelining scheduling interleaves instructions from 

different loop iterations in such way that ILP is exposed.

The fragment of assembly code shown below is a software-pipelined version of 

the assembly code of the original fragment of C code that computes the sum of all 

elements of a vector shown in Subsection 2.3.4.
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mov
mov
Id
Id
Id
add

1.
2.1oop: bz
3.
4.
5.
6 .

end:

0, r2 
0, rl 
a(sp), r3 
a_size(sp), r5 
(r3+rl), r4 
rl, 1, rl 

sub_cc r l , r5, rO 
add r4, r2, r2 

end
Id (r3+rl), r4 
add rl, 1, rl 
sub_cc rl, r5, rO 
b loop 
st rl,i(sp) 
st r2, sum(sp)

# r2 represents the sum variable at this point
# rl represents the i variable at this point
# load the a pointer into r3 (sp is the stack pointer)
# load the a size into r5
# r4 = a[0]
# / + +
# test a_size
# sum = a[i] + sum
# branch if zero
# r4 = a[i+lj
#  z + +

#
# unconditional branch
# update i in memory
# update sum in memory

(iteration 0) 
(iteration 0) 
(iteration 0) 
(iteration i) 
(iteration z) 
(iteration i+1) 
(iteration i+1) 
(iteration i+1)

As can be seen in the code above, some amount of start-up code has been 

added to guarantee the original semantics, and the loop body now has 6 instructions 

as opposed to 5 in the original version. However, more parallelism can be exploited; 

that is, more instructions can be executed in a cycle. As shown below, now the 

parallel version can execute two iterations in only 4 cycles (instructions to the right 

of the bz end instruction are not executed if this branch is taken):

l.loop:add r4, r2, r2 | bz end | Id (r3+rl), r4 | add r l, 1, rl
2. sub_ccrl, r5, rO | b loop | |

This is possible because, as can be seen in the sequential version of the 

software-pipelined loop, instructions belonging to different iterations are now part of 

the same loop body and can execute in parallel. This shows that software pipelining 

can expose a significant amount of the ILP available in loops

To implement software pipelining or loop unrolling in the compiler, several 

techniques must be used for generating start-up and clean-up code, for optimising the 

number of different iterations present in the loop body, or the number of times the 

loop is unrolled. Rau and Fisher [Rau93a] present a comprehensive survey of such 

techniques.
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2.4 ILP Available in Programs

Several studies have been made to measure the amount of ILP available in programs 

[Tjaden70, Foster72, Riseman72, Nicolau84, Jouppi89, Smith_MD89, Wall91, 

Wall93]. Two of these studies were focused on the parallelism available inside basic 

blocks [Tjaden70, Foster72]. These studies have shown that parallelism within basic 

blocks, measured as the number of instructions that can be executed in parallel per 

cycle on average, rarely exceeds 3. This is unsurprising. Basic blocks are typically no 

more than 10 instructions long, which leaves little scope for more parallelism 

(measurements have shown that the average size of a basic block in the SPEC92 

integer programs is 6 instructions [Patterson96 (page 171)]).

Results presented in these early studies on the ILP available inside basic blocks 

diminished the appeal of architectures that exploit ILP for almost ten years. However, 

at the end of the 70s and beginning of the 80s, research in the field of 

microprogramming showed that it is possible to exploit parallelism beyond basic 

blocks [Tokoro78, Fisher81, Tokoro81]. A study by Nicolau and Fisher [Nicolau84] 

found that an average ILP of 90 can be extracted from numerical programs if one has 

a scheduler that knows the outcome of all branches and uses a VLIW machine with 

unlimited resources. The good results and methodology used by Nicolau and Fisher 

were not new though. Riseman and Foster found an average ILP of 50 with 

equivalent assumptions in the 70s [Riseman72]. However, Nicolau and Fisher’s 

results came at a time when researchers were aware that branches could be predicted 

with reasonable accuracy using affordable hardware [Lee_JFK84], which would pave 

the way for the exploitation of the ILP available beyond basic blocks.

One of the most detailed studies on the ILP inside and beyond basic blocks has 

been done by Wall [Wall93]. Wall studied the effect of various machine parameters 

on the amount of ILP that can be extracted from programs, including:

• Instruction window size — the instruction window holds a certain number of 

instructions that are made available for issuing.

• Number of instructions issued per cycle — the instructions in the instruction 

window that can be issued in parallel to the functional units of the machine 

each clock cycle.

• Number of renaming registers.
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• Type of memory alias analysis.

• Type of branch prediction.

• Branch fanout -  the number of paths generated by conditional branches that 

can be executed speculatively.

Wall has shown that all these parameters have a strong effect on the amount of ILP 

that can be extracted from programs. He has also shown that none of these 

parameters should be considered singly — the overall performance of a machine is 

determined by how these parameters are chosen as a group.

Wall’s results confirm Nicolau and Fisher, and Riseman and Foster’s results — 

average ILP of 90 and as high as 500 are reported in [Wall93], However, according 

to Wall’s results, machines that can harness this amount of parallelism are impossible 

to build. They would require perfect branch prediction, perfect memory alias 

analysis, and an immense amount of hardware resources. Nevertheless, ELP in the 

range of 4.3 — 8.7, average of 6, are reported in [Wall93] with a machine that may be 

built in the near future. This machine would fetch up to 64 instructions each cycle 

from memory to an instruction window of 64 instructions. Up to 64 instructions 

could be issued to 64 fully pipelined functional units each cycle, and 256 renaming 

registers could be used to remove output or anti-dependencies between them. 

Memory alias analysis would be perfect (this can be achieved with an instruction 

window of limited size) and the branch prediction hardware large but possible to 

implement. Up to four different paths can be executed speculatively. An average ILP 

of 6 may still be optimistic for the machine described, since, in the experiments that 

produced this ILP, all instructions were able to complete execution in a single clock 

cycle.

Although important for the understanding of the nature of the performance 

bottlenecks in the exploitation of ILP available in state-of-the-art code, experiments 

that attempt to measure the maximum ILP available in programs should be examined 

with care. This is because these experiments cannot consider the effect of yet- 

unknown processor architectures and compiler optimisation techniques.
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2.5 Historical Perspective of ILP Exploitation

In this section, we revisit a discussion presented in [Rau93a], in order to place the 

architecture of this thesis in the context of processor technology development from 

the 70s to the present moment.

2.5.1 Late 70s

The late 70s witnessed the emergence of VLIW architecture. In many ways, VLIWs 

were a natural outgrowth of horizontal microarchitectures [Salisbury76], the first ILP 

technology. Their appearance was triggered by the same changes in semiconductor 

technology that had such a profound impact upon the entire computer industry in the 

80s — the development of fast and cheap Very Large Scale Integrated (VLSI) circuit 

technologies. For sequential processors, as the speed gap between writeable and read­

only memory narrowed, the advantages of a small, dedicated, read-only microcode 

memory began to disappear. One natural effect of this was to diminish the advantage 

of microcode — it no longer made as much sense to define a complex ISA as a 

compiler target and then interpret this with a very fast read-only microcode. Instead, 

the vertical microcode interface was presented as clean, simple compiler target — the 

RISC ISA.

2.5.2 Beginning of the 80s

In the 80s, due to the development of VLSI technologies, the general movement of 

microprocessor products was towards the RISC concept. The availability of VLSI 

technologies was having a somewhat different effect upon horizontally 

microprogrammed processors though.

During the 70s, a large market had grown in specialised signal processing 

computers. Not aimed at general-purpose use, these machines hardwired fast fourrier 

transform and other important algorithms directly into read-only horizontal 

microcode, gaining tremendous advantage from the microinstruction-level 

parallelism available there. When fast, writeable memory became available, some of 

these manufacturers, most notably Floating-point Systems [Charlesworth81], 

replaced the read-only microcode memory with writeable memory, giving users
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access to ILP in far greater amounts than early Superscalar processors had. These 

machines were extremely fast, the fastest processors by far in their price range, for 

important classes of scientific applications. However, despite attempts on the part of 

several manufacturers to market their products for more general, everyday use, they 

were almost always restricted to a narrow class of applications. This was caused by 

two factors. First, by the lack of good system software which, in turn, was caused by 

the idiosyncratic architecture of processors built for a single application. Second, by 

the lack at that time of good code generation algorithms for ILP machines with that 

much parallelism. As with RISC, the crucial step for these architectures was to 

present a simple, clean interface to the compiler. However, in this case, the clean 

interface was horizontal, not vertical microcode. This style of architecture, which 

exposes a horizontal microarchitecture to the ISA level, was denominated VLIW. 

Code generation techniques, some of which had been developed for generating 

horizontal microcode, were extended to these general-purpose VLIW machines so 

that the compiler could specify the parallelism directly [Fisher81].

2.5.3 Late 80s

In the second half of the 80s, VLIW machines were offered commercially in the form 

of capable, general-purpose machines. Some start-up companies — Multiflow and 

Cydrome for example — built VLIWs with varying degrees of parallelism [Colwell88, 

Rau89]. These companies demonstrated that it was possible to build practical 

machines that achieve large amounts of ILP on scientific and engineering codes. 

Although for various reasons none was a lasting business success, several major 

computer manufacturers acquired access to the technologies developed by these start­

ups. Furthermore, many of the compiler techniques developed with VLIWs in mind 

started to be used in compilers for Superscalar machines as well.

2.5.4 Beginning of the 90s

Processor designers in the 90s have more silicon space on a single chip available to 

them than a RISC processor requires. Because of this, virtually all manufacturers 

began to add some degree of Superscalar capability to processors and some started to
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investigate VLIW processors as well. By the middle of the 90s, virtually all new 

processors of major manufacturers embodied some degree of ILP.

2.5.5 Late 90s

The computer industry saw a fantastic growth in the 90s due to widespread use of 

personal computers. Consumer demand forced processor manufacturers to deliver 

one minor processor version half yearly and one major every two years. Today, it is 

common to see two or more hardware generations interpreting the same ISA in the 

same room. Although ILP had never been pursued as much as in the late 90s, due to 

the object code compatibility problem, there was no place for VLIW architectures 

except in specialised segments where the code is kept in read-only memories or 

seldom changed [Wolfe97]. Backward code compatibility became fundamental for 

survival in the processor market — the personal computer user wanted new, faster 

processors but capable of running already available software.

The availability of enormous amounts of transistors and the continuous search 

for new architectures for exploiting ILP created a nurturing environment for radically 

new architectural concepts [Burger97]. The DTSVLIW is a result of these historical 

conditions. It consumes extra silicon area with its VLIW Cache and wide VLIW 

Engine, but, as we shall see in Chapter 6, it can harness a significant amount of ILP 

with feasible machine configurations, while allowing for backward object code 

compatibility.
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Chapter 3 

Related Work

The DTSVLIW architecture exploits the ILP available in programs by executing 

VLIW code on its VLIW Engine. This VLIW code is dynamically generated by 

hardware from original sequential code that is fetched as usual from the memory. 

This process solves the VLIW object code compatibility problem and allows the 

VLIW Engine parallelism to be utilised most of the time. All this is possible due to 

the code execution locality that exists in ordinary programs, which is capitalised 

upon by the DTSVLIW.

In this chapter, we discuss aspects of the DTSVLIW architecture that are 

related to previous research on microcode scheduling and VLIW architectures. In 

addition, we discuss research that either tackles the VLIW object code compatibility 

problem or proposes mechanisms to exploit code execution locality.

3.1 Related Work on Microcode Scheduling

The DTSVLIW schedules instructions using a simplified version of a single-pass 

algorithm that has historically been used for microcode compaction — the First Come 

First Served (FCFS) algorithm [Davidson81]. Microcode compaction is the process 

of scheduling microoperations into microinstructions in a way that minimises the 

space required by the microprogram and, hopefully, the time needed for the 

microprogram execution. DeWitt [DeWitt76] has shown that microcode compaction 

is an NP-complete problem; therefore, a single-pass algorithm such as the FCFS is a
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cost-effective solution only. Nevertheless, the FCFS algorithm can achieve optimum 

execution-time scheduling, as shown by Davidson et al. [Davidson81].

The FCFS algorithm was first proposed by Dasgupta and Tartar [Dasgupta76]; 

however, the description presented here is based on that of Davidson et al. The 

original algorithm operates over a list of microoperations coming from a straight-line 

microcode segment, which is a sequence of microoperations containing no branch 

microoperation except perhaps one at the end, and no entry point except at the 

beginning (a straight-line microcode segment is a basic block of microoperations). 

The algorithm takes microoperations from the straight-line microcode segment and 

groups them to form microinstructions with multiple microoperations. In the 

DTSVLIW, however, we use the FCFS algorithm to schedule instructions coming 

from a trace (produced dynamically during program execution) into long instructions 

(equivalent to microinstructions). Because we are using a trace, where the direction 

of each branch is fixed, we are able to schedule instructions past conditional and 

indirect branches by renaming these instructions. The details of the FCFS algorithm, 

bounded to work within a list of long instructions of size LIST_SIZE, are as follows.

1. Take one instruction from the trace and, if there is no dependency, add it to 

the last long instruction of an initially empty list of long instructions. If 

there is any dependency, add one empty long instruction to the end of the 

list and add the instruction to this long instruction. If this makes the list 

longer than the LIST_SIZE, save the previous list’s contents and start a new 

list with a single long instruction containing the instruction.

2. Search the list of long instructions and find the earliest long instruction 

where flow dependencies and resource dependencies allow the added 

instruction to be placed. Rename the instruction if appropriate, and put it in 

the long instruction found.

3. If the added instruction cannot move up due to the lack of a suitable slot in 

any long instruction above the one in the tail and the list is smaller than 

LIST_SIZE — 1, add one long instruction at the top of the list and put the 

new instruction there. (A new long instruction is added to the top to allow 

any subsequent instruction that may be data dependent on the just added
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instruction to be added to an already existing long instruction, instead of 

forming a new long instruction at the bottom of the list.)

4. Go to step 1.

There are two differences between the DTSVLIW and the FCFS algorithms. 

First, the DTSVLIW does not implement step 3 of FCFS; i.e., the DTSVLIW 

algorithm never adds long instructions at the top of the scheduling list but only at the 

bottom. Second, the DTSVLIW algorithm only moves up an instruction if there is a 

slot available in the next long instruction on the list. This can cause premature 

installing of instructions that could be moved to a long instruction two or more 

entries up in the list, limiting the code density and the achievable parallelism. 

However, it facilitates a pipelined implementation of the DTSVLIW algorithm. The 

DTSVLIW scheduling algorithm is detailed in Subsection 4.1.1, while its pipelined 

implementation is described in Section 4.6.

3.2 Related Work on VLIW Architectures

A trace-scheduling compiler selects traces in a program and schedules these traces 

statically, using heuristics or profiling (Subsection 2.3.1). Different from a VLIW 

compiler, a DTSVLIW machine performs dynamic trace scheduling instead of static 

trace scheduling.

In a DTSVLIW machine, the execution trace produced by the Primary 

Processor feeds the Scheduler Unit, which schedules the instructions into blocks of 

long instructions and saves these blocks into the VLIW Cache. Each block of long 

instructions may encompass many basic blocks. Scheduling is performed in a way 

that allows any branch inside any block to exit without side effects. The unique entry 

point of each block is its first instruction. Therefore, if a path in the program leads to 

an instruction inside an existent block, this path will cause the scheduling of a new 

block. This is equivalent to tail duplication, which is performed during superblock 

formation by a superblock-scheduling compiler (see Subsection 2.3.2). In fact, what 

the DTSVLIW’s Scheduler Unit really does is superblock scheduling. However, 

different from the compiler, which performs static superblock scheduling, the 

DTSVLIW hardware performs dynamic superblock scheduling. This allows the
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DTSVLIW to use dynamic information about the branches behaviour not available to 

the compiler. The compiler selects traces statically and these traces must be suitable 

for all input data sets of the program. In contrast, a DTSVLIW machine performs 

dynamic trace selection and as such can achieve good performance for all input data 

sets.

A core scheduling operation performed by the DTSVLIW is the move up 

operation, which moves instructions through a list of long instructions inside the 

machine to compact long instructions (see Subsection 4.1.1). This operation is 

similar to the move-op with renaming operation of the enhanced pipeline percolation 

scheduling technique [Nakatani93]. However, its application is different, reflecting 

its different purposes: move-op was designed for scheduling during compile time, 

whereas move up was designed for scheduling during execution time. The 

application of the move-op operation requires the evaluation of all execution paths 

that transverse the instruction being moved; on the other hand, the application of the 

move up operation requires the evaluation of the current trace only. The move-op 

operation is applied in a sequential fashion by the compiler, while the move up 

operation is applied in a pipelined parallel fashion by the DTSVLIW hardware. The 

application of the move-op operation can cause the generation of a new long 

instruction, whereas the move up operation never causes this.

The DTSVLIW schedules the code trace observed during execution into long 

instructions, all with the same format (Subsection 4.2). This format is similar to the 

tree instruction described by Ebcioglu [Ebcioglu88].

The tree instruction was proposed to hold VLIW code scheduled by VLIW 

compilers. Although suitable as a target for VLIW compilers, the tree instruction has 

some drawbacks. First, it has many possible next long instruction targets. For this 

reason, a VLIW machine using it has to compute all branch outcomes and only after 

that select the next long instruction. This can pose difficulties to the production of a 

short cycle time in the circuitry responsible for long instruction fetch. Second, the 

tree instruction needs physical space to accommodate the two target addresses of all 

branches it holds. Finally, the tree instruction holds code for both paths determined 

by a branch, but while only one path is actually followed during execution, the other 

path is still executed with its results discarded. This can cause ineffective
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exploitation of machine parallelism.

In contrast to the tree instruction, the long instruction format of the DTSVLIW 

has a default direction for each branch, which can be the taken or not taken path. Its 

long instructions hold instructions in the default path only, and each long instruction 

has a default next long instruction target, which simplifies the implementation of fast 

fetch hardware. The long instruction format of the DTSVLIW has only one branch 

target for each branch it holds, which is used when the branch does not determine the 

default direction. The long instruction format of the DTSVLIW can be viewed as a 

special case of the tree instruction, although it has not been derived from this 

approach. The DTSVLIW methodology is particularly suitable for a VLIW machine 

that executes scheduled trace code.

3.3 Related Work on Tackling the VLIW Object Code 
Compatibility Problem

VLIW machines potentially provide the most direct way to exploit ILP [Nicolau84, 

deSouza93, deSouza97]; however, for widespread use as general-purpose processors, 

the VLIW object code compatibility problem has to be overcome. This problem can 

be understood by examining the following example.

The fragment of code below is the same software pipelined loop shown in 

Subsection 2.3.5.

1.loop: add r4, r2, r2 | bz end | Id (r3+rl), r4 | add r l,  1, rl
2. sub_ccrl, r5, rO | b loop | |

This fragment of code can run in a VLIW machine where loads complete

execution in one or two cycles and all other instructions complete execution in one

cycle. However, if  this code were to execute in a machine where loads have latency 

of three cycles, the add r4,r2,r2 instruction above will use the value loaded two 

iterations behind instead of one iteration behind. In this case, the result of the loop 

execution will be incorrect. In addition, this code does not fit in VLIW machines with 

3-instruction long instructions.

Software [Sites93, Conte95b, Hookway97, Ebciouglu97] and hardware
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[Rau93b, Franklin94, Nair97, Banerjia98] techniques have been proposed to get over 

this problem.

3.3.1 Software Approaches

The simplest software technique to overcome the VLIW object code compatibility 

problem is off-line recompilation of the programs’ source code. Recompilation yields 

appreciable performance because the compiler can expose the ILP in the source code 

to different VLIW hardware implementations. The drawback of this approach is that 

it is awkward to use — machine upgrades require either recompilation of all installed 

software, whose source code may not always be available, or reinstallation of a 

complete set of new binaries. Binary translation [Sites93] is a variant of this 

technique that can be performed without the source code, but machine upgrades still 

require either translation or reinstallation of the binaries. Alternatively, interpreters 

can be used to emulate different architectures at run-time; however, this approach 

usually suffers from poor performance. Binary translation and emulation can be 

combined, however. For example, the Digital FX!32 is a software system that 

performs emulation and incremental binary translation, enabling Win32/Intel IA-32 

ISA applications to run on Windows NT/Alpha ISA platforms [Hookway97, 

Chemoff98]. In the FX!32, the first time the code is run, it is emulated. The binary 

translation is done incrementally in the background after the program execution, and 

only executed parts of the code are translated. To implement this, a database of 

translated binaries is maintained by the system: when a significant number of new 

fragments of code are executed, translations are generated and added to the database. 

The FX!32 system requires no user interaction.

The FX!32, like perhaps any other systems that perform emulation and 

posterior binary translation, has some drawbacks. First, the fact that any new code is 

initially emulated creates two patterns of system performance easily perceived by the 

user: one slow when emulating and one fast after code translation. In the FX!32, 

emulation is 10 times slower than translated-code execution [Hookway97]. Second, 

the operating system binaries used in the Alpha system are not the same as those in 

an Intel system: the Windows NT operating system must be recompiled for the Alpha 

platform. This is also true for any device driver. Therefore, either their source code
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must be available or their interface must be precisely documented, which may not 

always be the case (the FX!32 has many dependencies with undocumented Windows 

NT features [Chemoff98]). Third, the profiling information cannot contain 

conditional branch directions since it would generate large profile files and slow 

down the emulation. This results in poor scheduling of the translated code for parallel 

machines such as VLIWs. Fourth, the disk space required for binaries is almost or 

even more than doubled. Finally, system development for the Intel ISA cannot be 

performed in the Alpha system, since debugging is too much impaired due to its 

frequent need of the Intel ISA’s state [Hookway97].

Emulation and binary translation are powerful tools for migrating applications 

from one ISA to another. They have been successfully used in the past to migrate 

VAX ISA applications to Alpha ISA [Sites93], for example. However, we believe 

they are not competitive concepts to make families of backward incompatible VLIW 

systems viable due to the mentioned drawbacks.

Dynamic Rescheduling, proposed by Conte and Sathaye [Conte95b], is another 

software technique which can be used to overcome the VLIW object code 

compatibility problem. When a binary incompatible VLIW program is invoked in a 

system that implements dynamic rescheduling, the operating system translates its first 

page to a new page, which is binary compatible with the system’s hardware. This 

process is repeated each time a new page fault occurs, and provides correct execution 

over different VLIW machine generations.

In Conte and Sathye’s proposal, the pages of the original program are 

rescheduled to reflect the new latencies and parallelism of the hardware but the 

translated pages must be the same size as the original ones. However, the new 

schedule may grow larger due to the insertion of empty cycles, or may have its size 

reduced due to the deletion of empty cycles from the old schedule. To avoid this, 

Conte and Sathye have suggested a special encoding which hides the nop 

instructions, ensuring that code rescheduling within basic blocks does not trigger any 

code size changes. Scheduling beyond basic blocks — or speculative code motions — 

introduces two problems, however. The first problem is incorrect translation due to 

moving code above instructions that are the targets of instructions from other pages. 

To avoid this, Conte and Sathye suggested the use of superblock or hyperblock
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scheduling across all families of dynamic-scheduling compatible VLIW systems. 

Because superblocks and hyperblocks have a unique entry point at the top of the 

block, speculative code motions are allowed within them; however, code generation 

must be guaranteed not to make any superblock or hyperblock span page boundaries. 

A second problem is caused by the addition of new code that might be necessary to 

undo effects of speculative code motion. To circumvent this problem, code motion is 

limited to those that do not require code expansion. However, if the rescheduler does 

this blindly, its opportunity to expose more ILP to a wider VLIW hardware is 

restricted. Thus, in a dynamic rescheduling system implementation, the compiler 

saves the live-out set information for each branch (storage positions written within 

the superblock/hyperblock that are read afterwards) in the program object file 

[Conte95b]. This information is used during rescheduling to improve the scheduled- 

code parallelism in the face of the no-code-increasing limitation.

Dynamic rescheduling has some drawbacks. First, the time spent rescheduling 

pages on each page fault is significant. Conte and Sathye have found that around 

50000 VLIW-machine cycles are necessary for rescheduling a page, which represents 

about 20% of the cost of a page fault. To reduce the impact of the rescheduling time 

on performance, they suggest the use of a persistent rescheduled-page cache for 

saving previous page translations across execution of different programs [Conte96]. 

This reduces the impact of the rescheduling-time on performance but adds cost in the 

form of disk space. Second, the special encoding suggested in [Conte95b] may 

prohibit the use of new instructions or interesting new hardware features, such as 

more registers, because more bits might be needed for encoding, which can make the 

code larger. Third, software pipelined loops pose difficulties to the rescheduler, to 

which no solutions were presented in [Conte95b] or [Conte96]. Fourth, the inability 

to use speculative code motions that increase code size is a strong scheduling 

limitation if VLIW machines with large differences in the degree of parallelism are 

considered. Fifth, due to the large number of branches in programs, to add the live- 

out sets for each branch in the object code may increase code size substantially. 

Sixth, the operating system and device driver binaries used in one VLIW system 

should not be the same as those in another system for performance reasons. 

Therefore, the operating system should be recompiled for each VLIW platform, as in
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the FX!32 system. Finally, and perhaps most important, the rescheduling (and the 

original scheduling performed by the compiler) is done statically within page 

boundaries, not taking into consideration the dynamics of branches during execution. 

This limits the amount of ILP that can be achieved with this technique even if 

profiling is used.

Ebcioglu and Altman [Ebcioglu97], with their Dynamically Architected 

Instruction Set from Yorktown (DAISY) machine, have extended the concept of 

dynamic rescheduling to dynamic compilation, allowing VLIW hardware to emulate 

a generic ISA. In a DAISY machine, every time an instruction page fault occurs, a 

Virtual Machine Monitor (VMM) is invoked. The VMM reads the original ISA 

instructions from memory and translates then to simpler operations (if required). 

These operations are scheduled into long instructions, and the resulting VLIW 

machine code is saved as a new page in a portion of main memory not visible to the 

original ISA.

Different to dynamic rescheduling, in dynamic compilation translated pages are 

N  times larger than the original ISA pages, where N  should be a power of 2 (Ebcioglu 

and Altman have suggested N  = 4 [Ebcioglu97]). This allows the code size to 

increase as a result of the dynamic compilation. The virtual address space of DAISY 

is divided in three parts: the first for the emulated ISA, the second for the VMM, and 

the third for the translated code. An original ISA code page at address n has its 

translation at DAISY’S virtual address n x N  + VLIW_ BASE , where VLIW_BASE

is the address of the beginning of the translated code part of DAISY’S vitual address 

space.

The VLIW machine uses special branches to move the control flow from one 

translated page to another translated page. However, not all long instructions in 

translated pages are valid targets for such branches. A long instruction fetch, 

resulting from a cross-page branch, has to check a valid entry bit in the long 

instruction fetched. Nevertheless, a VLIW cross-page branch can branch to an invalid 

entry point in another translated page, in which case an invalid entry point exception 

occurs and the VMM retranslates the target page.

In the Ebcioglu and Altman experiments with DAISY reported in 

[Ebcioglu97], they found that their DAISY implementation required an average of
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4315 operations to compile each original ISA instruction. If the DAISY’S VMM 

executes an average of 4 operations per cycle during dynamic compilation and each 

page of code of the original ISA can hold 1024 instructions, more than one million

cycles are required for each page compilation ( 4315x1024) .  (1024 instructions per page
4

is a typical value for a RISC ISA, such as the PowerPC ISA used in [Ebcioglu97], i.e. 

4096-byte pages and 32-bit instructions.) This is much more than that required per 

page translation in dynamic rescheduling (50000 cycles per page), but this is to be 

expected, since in this case dynamic compilation is performed. However, according 

to Ebcioglu and Altman, the DAISY dynamic compiler has performance 20% inferior 

to a traditional static VLIW compiler. Our results show that the DTSVLIW performs 

better than a pure VLIW executing code produced by a static VLIW compiler and as 

such should perform significantly better than DAISY (see Section 6.4).

Kelly et al. have been granted a patent for a memory controller which gives 

support for dynamic compilation [Kelly98]. In their invention, instructions from a 

generic ISA are translated by a software translator into long instructions and saved in 

a translation buffer, which may be implemented as a data structure in memory or as 

hardware cache. As in DAISY, the translator and the translated code run on a VLIW 

machine. Translations are built incrementally, starting and finishing at basic block 

boundaries. However, because the translator does not schedule instructions across 

basic blocks and does not consider the dynamics of branches, the performance of a 

system implemented according to the patent should be inferior to that of a DAISY 

machine.

Dynamic rescheduling and dynamic compilation rely on the ability of a 

software system to translate code rapidly and on the reusability of this code. 

However, since they are implemented in software, the cost of the translation is high. 

In addition, these approaches do not take into consideration the dynamic behaviour of 

branches and perform static-code scheduling only, although done during the 

execution of the program. The DTSVLIW performs dynamic trace scheduling or, 

more specifically, dynamic superblock scheduling, learning the dynamic branch 

behaviour and taking advantage of it to achieve performance. Our results show that 

the DTSVLIW performance is better than that achieved with a pure VLIW executing 

code produced by a VLIW compiler (see Section 6.4), and we believe that the
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DTSVLIW can achieve even better performance if compile-time scheduling specially 

designed for it is employed.

3.3.2 Hardware Approaches

Rau [Rau93b] proposed a new type of VLIW machine, named Dynamically 

Scheduled VLIW (DSVLIW), which tackles the VLIW software compatibility 

problem at the hardware level via split-issue. The DSVLIW compiler generates 

VLIW code scheduled for a specific VLIW ISA with fixed long instruction width and 

functional units’ latency. During program execution, after the decoding of each long 

instruction, the DSVLIW machine splits each instruction member of a long 

instruction in two components: phase 1 and phase2. The phase 1 component is the 

original instruction with its destination renamed, while phase2 is a copy instruction 

copying the phase2 result to the original instruction destination. Both these 

components can be dispatched simultaneously to reservation stations of functional 

units. Once execution of phase 1 finishes, the reservation station with phase2 receives 

the result. The execution of each original instruction is completed after the execution 

of phase2, which can be done in just one more cycle. This mechanism allows a 

DSVLIW machine with functional unit latencies different from those assumed by the 

compiler to execute the VLIW ISA code.

The DSVLIW architecture allows fetch and split-issue of more than one long 

instruction per cycle. Therefore, this architecture solves the VLIW object code 

compatibility problem since machines with different functional unit latencies and 

different degrees of parallelism can execute the same VLIW ISA code. However, the 

DSVLIW architecture cannot be used to implement an existent sequential ISA. In 

addition, it requires dynamic scheduling hardware in the main data path of the 

machine, which can have a negative effect on the clock cycle time.

Franklin and Smotherman [Franklin94] proposed the use of a Fill Unit 

[Melvin88] to compact a dynamic stream of scalar instructions into long instructions. 

Their Fill Unit accepts decoded instructions from the machine decoder, compacts 

them into a long instruction, and saves the long instruction in the shadow cache. At 

the same time, the Fill Unit sends this long instruction to the functional units for 

execution. Fetch accesses hitting the shadow cache provide long instructions directly
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to the functional units.

The Franklin and Smotherman’s Fill Unit does not rename registers and works 

within a window of one long instruction only. For these reasons, it cannot exploit ILP 

extensively.

Banerjia and his colleges presented a processor architecture similar to the 

Franklin and Smotherman proposal, called Miss Path Scheduling (MPS) architecture 

[Baneijia98]. The main difference between the two proposals is that MPS schedules 

blocks of long instructions as opposed to a single long instruction. In MPS, 

scheduling hardware is placed between the instruction cache and the next level of 

memory. Instruction scheduling is performed at instruction cache misses and the 

blocks of long instructions formed are saved in a special instruction cache 

[Baneijia98]. Once in the cache, long instructions are fetched and issued to a VLIW 

core.

In a machine implementing MPS, scheduling is performed using two tables: the 

register def-use table, which records reads and writes in registers; and the reservation 

table, which records the availability of functional units. Renaming is not performed; 

therefore, anti and output dependencies impede parallel and out-of-order execution of 

instructions. Baneijia and his colleges have estimated that four cycles are required to 

schedule each instruction, as the register def-use table must be read, a starting point 

in the reservation table computed, new table values computed, and the tables must be 

updated with these values. They have shown a way in which the whole process can 

be pipelined, although dependencies between pipe stage can happen and may reduce 

the scheduling pipeline performance. Nevertheless, more than one instruction each 

four cycles can be scheduled with pipelining.

Speculation is allowed in MPS. However, a reorder buffer with a future file 

must be used to prevent incorrectly speculated instructions from retiring their results. 

In order to decide which instruction to speculate, branch prediction (dynamic, static, 

or profiling) is used. To calculate the target address of branches, the instructions are 

decoded in the scheduling pipeline. Indirect branches cannot be resolved without 

reading ISA registers contents. Because of this, when an indirect branch is found, 

scheduling stops.

MPS has three main drawbacks. First, instruction cache miss penalty is
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increased in a MPS machine, since instruction scheduling takes at least one cycle per 

instruction and no useful execution is performed during scheduling. Second, MPS 

machines do not rename registers, which can have a severe impact on scheduled-code 

parallelism. Third, MPS machines perform static scheduling only. Although dynamic 

branch prediction can be used during scheduling, instructions are scheduled at 

instruction cache misses and are not likely to have been executed before. Therefore, 

dynamic branch behaviour information is not likely to be available at scheduling 

time.

Nair and Hopkins [Nair97] suggested a VLIW based machine organisation 

named Dynamic Instruction Formatting (DIF), which also follows the Franklin and 

Smotherman proposal. The DIF machine incorporates two engines: the VLIW Engine 

and the Primary Engine. The latter is a simple processor, less aggressive in exploiting 

parallelism, which executes instructions of a generic ISA when first fetched. 

Simultaneously with the execution of a code sequence, this engine reformats 

(schedules) the code, generating groups of long instructions as opposed to a single 

long instruction. These groups, which can encompass many basic blocks, are saved in 

a special cache — the DIF Cache. Following accesses to the same sequence will hit 

the DIF Cache, and the long instructions fetched will be executed by the VLIW 

Engine.

In a DIF machine, the instructions are executed during scheduling, therefore 

useful execution occurs during scheduling time. Register renaming is performed and 

the dynamic branch behaviour is recorded into the scheduled blocks. This allows for 

more parallelism than the MPS and all previously mentioned proposals. Table 3.1 

compares the DIF with some of the approaches to circumvent the VLIW object code 

compatibility problem discussed in this section.

The DTSVLIW architecture is a variant of the DIF architecture. We show in 

this thesis similar or better performance than the DIF implementation proposed by 

Nair and Hopkins, but with a simpler architecture that should be much easier to 

implement (see Section 6.3). The DTSVLIW differs from the DIF in its register 

renaming mechanism, VLIW engine register access, communication between the 

cache that stores the long instructions and the VLIW Engine, and most importantly in 

the instruction scheduling algorithm. The DTSVLIW was first presented in
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[deSouza98a]. Preliminary DTSVLIW SPECint95 performance measurements have 

been shown in [deSouza98b]. A detailed description of the DTSVLIW and the 

differences between DTSVLIW and DIF was first presented in [deSouza99a]. The 

impact of multicycle instructions on the performance of the DTSVLIW was first 

presented in [deSouza99b], and the effectiveness of the DTSVLIW instruction- 

scheduling algorithm in [deSouza99c].

Table 3.1: Features implemented by different approaches for tackling the VLIW object code
compatibility problem

Em ulation  
plus Binary 
Translation

Dynamic
Rescheduling

Dynamic
Compilation

DSVLIW Fill
Unit

M PS DIF & 
DTSVLIW

Execution o f  sequential 
ISA code

✓ ✓ ✓ ✓ ✓

Scheduling across basic 
blocks

✓ ✓ ✓ ✓ ✓ ✓

Scheduling considering  
dynam ic branch behaviour

✓

Register renaming
✓ ✓ ✓ ✓ ✓

U seful execution during 
(re)scheduling

✓ ✓ ✓

3.4 Related Work on Exploiting Code Locality

The DTSVLIW architecture takes advantage of code execution locality for exploiting 

the ILP available in programs. However, other architectures described in the 

literature take advantage of similar code characteristics with the same purpose. In this 

section, some of these architectures are described and compared with the DTSVLIW.

3.4.1 Trace Cache

In the integer programs of the SPEC92 benchmark suite, on average 19% of the 

executed instructions are branches [Patterson96 (page 105)] and on average 62% of 

them change the control flow [Patterson96 (page 166)]. This means that about 12% 

of the instructions executed in these programs change the control flow — almost one 

in eight. Current Superscalar machines fetch up to four instructions each clock cycle. 

For the next generation, it is going to be possible to fetch eight or more instructions 

each cycle. This means that almost every fetch will contain a branch that will change 

the control flow. Since these branches are distributed evenly throughout the address 

space, many of these fetch cycles (almost half for an 8-wide fetch) will be only 

partially effective. In addition, instead of incrementing the program counter to the
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next fetch address, Superscalar machines capable of fetching eight instructions per 

cycle will have to find the target address of a branch (possible more than one) almost 

every cycle.
Several high bandwidth fetch mechanisms based on the conventional 

instruction cache have been proposed [Conte95a, Seznec96, Yeh93b]. In such 

mechanisms, on every cycle instructions from non-contiguous locations in the 

instruction cache are fetched and assembled into dynamic sequences using 

information collected by dynamic branch predictors. To do this, branch target tables 

are inspected and pointers are generated to all non-contiguous instruction blocks. A 

moderately to highly interleaved instruction cache is accessed and provides multiple 

lines simultaneously. These lines are aligned by an alignment network, which then 

sends the instructions to the decode stage of the Superscalar processor.

The disadvantage of these high bandwidth fetch mechanisms is their 

complexity. Sophisticated dynamic branch predictors, interleaved multiport 

instruction caches, and complex alignment networks are required to make them work. 

The Trace Cache architecture, on the other hand, avoids this complexity by caching 

dynamic instruction sequences, rather than only the information for constructing 

them [Rotenberg96]. A diagram of the Trace Cache architecture is shown in Figure 

3.1.

Machines employing the Trace Cache architecture take advantage of code 

execution locality to achieve performance. A machine that follows this architecture 

fetches instructions from the instruction cache and attempts to schedule them across 

multiple functional units using, for example, the Tomasulo’s algorithm 

[Tomasulo67]. These instructions are then grouped by a Fill Unit [Melvin88] and 

placed in a trace cache, which stores them in execution order, as opposed to the static 

order determined by the compiler. On an instruction fetch, the trace cache will 

provide a line of instructions if available. This line can encompass more than one line 

from the instruction cache through merging of lines affected by partial fetches caused 

by taken branches: this increases instruction bandwidth and throughput.

The Trace Cache architecture has attracted significant research interest due to 

its potential for supplying enough instructions to make aggressively parallel 

Superscalar machines viable, and several aspects of it have been studied recently
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[Friendly97, Jacobson97, Patel97, Patt97, Rotenberg97, Smith_JE97, Vajapeyam97, 

Friendly98, Patel98, Patel99, Rotenberg99].

The Trace Cache architecture is an enhanced Superscalar architecture. 

Therefore, it has the same dynamic scheduling overheads of Superscalars (Subsection 

2.1.2). These dynamic scheduling overheads can be particularly severe in 

aggressively parallel Superscalars, and may substantially lengthen their clock cycle 

time.

According to Hara et al. [Hara96], logic fan-out and wire delays are the most 

important scheduling overheads of aggressively parallel Superscalar-like machines. 

The main fan-out overheads are caused by the logic that forwards the functional 

units’ results to all instructions in the instruction window or reservation stations of 

the machine, the bypass logic. The main wire delay overheads are caused by the long 

wires necessary to connect these functional units to the various instructions in 

instruction window (or reservation stations), or bypass wire delay. In the near future, 

wire delays are expected to dominate the clock cycle time of Superscalar-like 

machines [Matzke97]. VLIW and DTSVLIW machines do not need hardware 

mechanisms equivalent to instruction windows or reservation stations in their main 

data path and do not suffer from their characteristic bypass logic and bypass wire 

delay overheads. Bypass logic and bypass wires are of course necessary in VLIW and 

DTSVLIW machines. However, they connect functional units’ outputs to functional 

units’ inputs only and not functional units’ outputs to several reservation stations at 

the input of each functional unit, or to all instructions of a large instruction window. 

Therefore, they can have a faster clock than Superscalar-like machines even 

considering wire delays [Hara96],

Palacharla, Jouppi, and Smith have studied the impact of the complexity of the 

instruction dispatch and instruction issue hardware, and the impact of the bypass 

logic (fan-out) and wire delay in the performance of future Superscalars 

[Palacharla97]. Like Hara and his colleges [Hara96], they have concluded that wire 

delays are going to dominate the clock cycle time of Superscalar machines. They 

have also concluded that the delays incurred by the wakeup logic and selection logic 

may also impact the clock cycle time of Superscalars. The wakeup logic is 

responsible for matching the results produced by functional units with the source
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operands of instructions waiting in the instruction window or reservation stations and 

for setting the instructions as ready. The selection logic is responsible for selecting 

instructions for execution from the pool of ready instructions. To reduce the impact 

of wire delays and wakeup and selection logic overheads, Palacharla, Jouppi, and 

Smith have suggested dividing the Superscalar core into several smaller clusters of 

functional units (A similar proposal specifically tailored to Trace Cache architectures 

is reported in [Vajapeyam97].) The resulting architecture has been named the 

Dependence-Based architecture. This architecture groups dependent instructions and 

sends them to the same cluster. This grouping of dependent instructions in clusters 

simplifies the wakeup and selection logic and helps mitigate the wire delays to some 

extent by using short local connections more frequently than long inter-cluster 

connections. The Dependence-Based architecture has inferior performance than non­

clustered Superscalar, however. Therefore, the DTSVLIW can compete in 

performance with this variant of Superscalar as well. Moreover, we believe that 

clustering can also be employed in the DTSVLIW, although we do not examine 

clustered DTSVLIWs in this thesis.

F UF U F U F U F U

Fill
Unit

Data Cache

Trace
Cache

Instruction
Cache

Dispatch Hardware

IW & Issue Hardware

Main
Memory

Figure 3.1: Trace Cache Architecture. IW stands for instruction window and FU for functional
unit.
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3.4.2 Value Prediction and Instruction Reuse

Value prediction and instruction reuse are architectural concepts that take advantage 

of the value locality that exist in programs and can be incorporated into Superscalar 

machines. Value prediction has been proposed by Lipasti and Chen initially for 

predicting the values of load instructions [Lipasti96a] and later extended for 

predicting the value of registers as well [Lipasti96b]. A machine employing value 

prediction uses a special hardware table for reducing the effect of data dependencies 

by predicting registers and memory contents from current information held in this 

table. The instruction reuse technique, on the other hand, takes advantage of value 

locality by using a hardware table where the results of instructions previously 

executed are stored [Sodani97]. Experiments have shown that many instructions and 

groups of instructions having the same inputs are executed repeatedly producing, of 

course, the same results [Sodani97]. However, such instructions do not have to be 

executed repeatedly — their results can be provided by this hardware table, avoiding 

subsequent executions and improving overall processor performance. The key 

difference between value prediction and instruction reuse techniques is the way they 

verify the validity of the values read from the tables. In the value prediction 

technique, the values are used speculatively and validated later, while in the 

instruction reuse technique the values are validated before being used [Sodani98].

By using value prediction and instruction reuse, a Superscalar machine can 

exploit more ILP and, in this sense, value prediction and instruction reuse are 

improvements on the Superscalar architecture [Lipasti97, Sodani98]. These two 

architectural concepts have also attracted significant research interest recently 

[Sazeides97, Gabbay97, Wang_K97, Citron98, Fu98, Gabbay98, Reinman98, 

Nakra99].

Superscalar machines enhanced with trace cache, value prediction, and 

instruction reuse may become a very effective way of exploiting ILP. This might 

transform such machines in the general-purpose processors of the future. However, 

Superscalar machines employing trace cache, value prediction, and instruction reuse 

are very complex devices and the impact of such complexity on the design cost and 

clock cycle time can be severe. For this reason, the DTSVLIW stands as an 

alternative general-purpose machine due to its simplicity and performance.
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Moreover, we believe that the value prediction and instruction reuse concepts can 

also be incorporated to the DTSVLIW architecture [Fu98, Nakra99], although we do 

not examine this possibility in this thesis.
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Chapter 4 

The DTSVLIW Architecture

The symbolic diagram of a DTSVLIW machine is shown in Figure 4.1 (page 78). It 

has two caches for instructions and two processing engines. The Instruction Cache 

stores fragments of the original compiled code while the VLIW Cache stores blocks 

of long instructions. The original code is executed first by the Primary Processor. The 

code trace produced during this execution is scheduled by the Scheduler Unit into 

blocks of long instructions that are saved in the VLIW Cache. The VLIW Engine 

executes these long instructions if an already scheduled code fragment has to be 

executed again.

In a DTSVLIW machine, the VLIW Engine and the Primary Processor never 

operate at the same time and no machine state has to be transferred between them, as 

they share the DTSVLIW machine state. This simplifies the design of both, even 

allowing the VLIW Engine to share ports of the register file and Data Cache with the 

Primary Processor. The cost in cycles of swapping the execution between the VLIW 

Engine and the Primary Processor is equal to the sum of a number of pipeline stages 

of each one only (the pipeline stages discarded in one plus the pipeline stages refilled 

in the other).

While the Primary Processor is executing the code, the Fetch Unit (Figure 4.1) 

issues different addresses to the Instruction Cache and the VLIW Cache. To the 

Instruction Cache is issued the program counter (PC) content. To the VLIW Cache is 

issued the address of the instruction in the execute stage of the Primary Processor 

(dashed arrow in Figure 4.1). If this instruction has been executed before, there may
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be a block with its address in the VLIW Cache. On a VLIW Cache hit, the VLIW 

Engine takes over execution. The block being constructed by the Scheduler Unit is 

flushed to the VLIW Cache -  this block is made to point at the hit block. The 

contents of all but the write back pipeline stage of the Primary Processor are annulled 

and the PC receives the memory address that hit the VLIW Cache. In subsequent 

cycles, the VLIW Engine controls the PC.

On a VLIW Cache miss, the Primary Processor takes over execution, fetching 

from the last PC value computed by the VLIW Engine. The Fetch Unit does not issue 

fetches to the VLIW Cache again until an instruction arrives at the execute stage of 

the Primary Processor. At this point, the Scheduler Unit restarts to schedule a new 

block, the address of which will be the last address produced by the VLIW Engine 

when executing the previous block. This connects these blocks forming a block 

chain. In steady state, the VLIW Cache contains all most frequently executed traces.

The key issues to be resolved in the DTSVLIW architecture are the scheduling 

of the instruction trace into long instructions and the addressing within these long 

instructions. The Primary Processor and the VLIW Engine themselves are not a 

challenge. In this chapter, the Scheduler Engine operation and the VLIW Engine long 

instruction addressing are examined in detail together with other relevant aspects of 

the DTSVLIW architecture.
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Figure 4.1: A D T S V L IW  machine.

4.1 The Scheduler Engine

The Scheduler Engine is composed o f the Primary Processor plus the Scheduler Unit 

(Figure 4.1). The Primary Processor is a simple pipelined processor capable o f 

executing all instructions o f the Sparc Version 7 ISA [Sun87] — the ISA we have 

chosen for the implementation o f the DTSVLIW machine described in this thesis. 

W hen a valid instruction moves from the decode pipeline stage to the execute 

pipeline stage, the Primary Processor sends it to the Scheduler Unit. The Scheduler 

Unit implements in hardware a simplified version o f the FCFS algorithm, which 

historically has been used to statically schedule microcode (Section 3.1). We have 

chosen this algorithm for three reasons. First, it operates with one instruction at a
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time and considers instructions in the strict order that they appear during program 

execution, which perfectly fits the DTSVLIW mode of operation. Second, the FCFS 

algorithm produces optimum or near-optimum scheduling [Davidson81]. Finally, the 

FCFS algorithm is easy to implement in hardware in a pipelined fashion in the form 

it is presented here (see Section 4.5).

4.1.1 The Scheduling Algorithm

The implemented version of the FCFS algorithm acts on a list, the scheduling list. 

This list has a number of elements equal to BLOCK_SIZE (a hardware constant) and 

each element contains one long instruction and a candidate instruction, which holds 

an instruction for scheduling into the long instruction. A broad overview of the 

algorithm is that an instruction coming from the Primary Processor in one clock cycle 

is placed at the end of the scheduling list on the next clock cycle. On each subsequent 

cycle, this instruction can move up to the next higher element in the list if:

• it has not reached the head of the list

• and there is space for it in the next element

• and there is not a dependency with instructions in the next element 

Figure 4.2 shows an example of the algorithm scheduling a fragment of code that 

adds all elements of a vector. In Figure 4.2, slh and sit stand for scheduling list head 

and tail, respectively, and the destination register of the instructions is the rightmost. 

The scheduling algorithm ignores the nop instruction. The details of the algorithm’s 

operation follow.

An instruction arriving in the execute pipeline stage of the Primary Processor in 

one cycle is inserted into a suitable slot in the scheduling list in the next cycle. If 

there are no data, control, or resource dependencies on any instruction in the list’s tail 

element, the incoming instruction is inserted into the list’s tail element; otherwise, it 

is inserted into a new tail element added to the list. In Figure 4.2, instructions 1 and 2 

are inserted by the first method, while instruction 3 is inserted by the second method 

due to a true data dependency on r8.

An instruction inserted with the first method is a candidate for moving up the 

list on subsequent clock cycles. There can only ever be a single candidate instruction 

in a long instruction, but each long instruction in the list may have a candidate for
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promotion. Thus, candidate instructions of different long instructions can be moved 

up in parallel in a clock cycle. After an instruction has been inserted into the end of 

the list, the next step is to move this instruction up as far as it can go in the list of 

long instructions. An instruction can move up from long instruction i to long 

instruction i - 1 if it has no true data dependency on any instruction in the long 

instruction i - 1 and there is a suitable slot available. If the instruction cannot move 

up, it is installed in long instruction i. In Figure 4.2, instruction 3 is installed in the 

fourth cycle, while instruction 8 is moved up in the ninth cycle.

The candidate instruction in i can be placed in long instruction i - 1 even if:

• there is an output dependency on any instruction in i — 1

• or there is an anti dependency on any instruction in i

• or there is a control dependency on any instruction in i (there is a 

conditional branch or indirect branch in i)

However, in such cases, the candidate instruction has to be split. The split is done by 

renaming either the candidate instruction’s output that has caused the output/anti 

dependency or all outputs if there is a control dependency, and by inserting a copy 

instruction permanently in the current slot in long instruction i. This copy instruction 

performs the copy of the renaming register (or the renaming registers) content to the 

instruction’s original output (or instruction’s original outputs). In Figure 4.2, 

instruction 7 is split in the ninth cycle.

Conditional and indirect branches do not move up. They are installed when 

inserted and establish a tag for their long instruction. All instructions subsequently 

placed in this long instruction receive the last established tag. During VLIW 

execution, the VLIW Engine evaluates the conditional and indirect branches and 

validates their tags if they follow the same direction observed during scheduling. 

Only instructions with valid tags have their results written in the machine state. In 

Figure 4.2, the second instance of instruction 5 receives the tag established by 

instruction 9 in cycle eleven.

When there is no free element for an incoming instruction, the scheduling list 

content is sent to the VLIW Cache as a block and the incoming instruction is inserted 

into the list as the first instruction of a new block. All renaming registers previously 

used are restored to the pool of renaming registers and can be reused. The list is
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saved as a block, but on a one long instruction per cycle basis; nevertheless, 

instructions can be continuously inserted into the new block at the same time as the 

old block is being saved. This is achieved by making the scheduling list circular, and 

by using three registers to handle it: the scheduling list head register, the scheduling 

list tail register (Figure 4.2), and the output long instruction pointer register.

The scheduling list tail register together with the scheduling list head register 

delimits the active elements of the scheduling list. The output long instruction pointer 

register is used to flush the list to the VLIW Cache. All three are zeroed after the 

DTSVLIW is reset. The scheduling list tail register is incremented when new entries 

are added to the scheduling list. If the number of valid elements in the list exceeds 

the BLOCK_SIZE, the list is full. When the list is found full on going to insert a new 

instruction, the content of the scheduling list tail register is copied to the scheduling 

list head register. This makes the latter different from the output long instruction 

pointer register and the list empty. When the output long instruction pointer and the 

scheduling list head registers are different, the long instruction that is pointed at by 

the output long instruction pointer is sent to the VLIW Cache and the output long 

instruction pointer is incremented. These repeat every clock cycle until the output 

long instruction pointer register becomes equal to the scheduling list head register 

again and the block has been flushed. As instructions are inserted into the list at the 

maximum rate of one instruction per clock cycle, the same rate as long instructions 

are written into the VLIW Cache, one action does not interfere with the other.
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for (sum = 0, i = 0; i < x; i++)
/
\

sum = a[ i] + sum;

}

(a)
loop:

1: or rO, 0, r9 # r9 = sum
2: sethi hi(56), r8 # r8 = temp
3: or r8, 8, rl 1 # rl 1 = *a
4: or rO, 0, rlO # rlO = 4*i
5: Id [rlO+rl 1], r8
6: add r9, r8, r9
7: add rlO, 4, rlO
8: subcc rlO, 4*x-1, rO
9: ble loop

10: or rO, 0, rO # nop

(b)

s lh -> or rO, 0 , r9 sethi h i(5 6 ), r8
slt-> or r8, 8 , rl 1

slh  -> or rO, 0 , i-9 sethi h i(5 6 ), r8 or rO, 0 , rlO
or r8, 8, rl 1

Id frlO +rl 11, r8 add rlO , 4 , rlO
sit -> add r9, r8, r9 sub cc rlO . 4 * x - l , rO

slh  -> or rO, 0 , r9 sethi h i(5 6 ), r8 or rO, 0 , rlO
or r8, 8 , rl 1 add rlO, 4 , r32
Id frlO +rl 11, r8 C O PY r32, rlO sub cc r32, 4 * x - l , rO

sit -> add r9, r8, r9 b le loop

slh  -> or rO, 0 , r9 sethi h i(5 6 ), r8 or rO.O, rlO
or r8, 8 , rl 1 add rlO , 4 , r32

Id frlO +rl I l ,r 8 C O PY r32 , rlO sub cc r32, 4 * x - l , rO
sit -> add r9, r8, r9 ble loop Id [rlO +rl 1], r8

after 

3 c y c le s

after 

8 c y c le s

after 

9 c y c le s

after 

11 cy c le s

(C)

F igure  4.2: Sch ed u ling  a lgorithm  running  example, (a) C code fragment, (b) A ssem bly  language  
version  o f  the C code (c) Four snapshots  o f  a three instructions wide and four long instructions  
d eep  scheduling  list, filled with instructions com ing from the Primary Processor after 3, 8, 9, 
and 11 cycles o f  the execution  o f  the first instruction. The shaded instructions in each snapshot  
are also ca n d id ate  instructions.

4.1.2 Copy Instructions Handling

Copy instructions do not cause data dependencies and they can be overwritten by 

other instructions during scheduling. If an instruction in long instruction /' reads from 

a register written by a copy instruction in long instruction / — I, this instruction can 

be moved to long instruction / — 1 during scheduling. In this case, the mentioned 

input register is renamed to the same name o f the copy instruction input register. On 

the other hand, if  an instruction in long instruction z writes into the register written by 

a copy instruction in long instruction i — 1, this instruction may be moved to long 

instruction i — 1 without splitting. This instruction can be moved to long instruction i 

— 1 without splitting if  the tag o f  the copy instruction in / — 1 is equal to the current
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tag of the long instruction i -  1. In this case, the copy instruction is overwritten by the 

instruction. If the tag of the copy instruction is different from the tag of the long 

instruction, it means that a conditional or indirect branch has been installed in the 

long instruction after the copy instruction had been generated. To overwrite this copy 

instruction would be equivalent to crossing a conditional or indirect branch without 

renaming, which would be an invalid scheduling operation. Therefore, if the tag of 

the copy instruction is different from the tag of the long instruction i -  1, the 

instruction in long instruction i has to be split in order to be moved up to long 

instruction / — 1.

4.1.3 Control-Transfer Instructions Handling

During scheduling, one or more control-transfer instructions can be placed in a single 

long instruction, but they cannot move up (their order is preserved). Control 

dependencies are caused only by conditional and indirect branches (subroutine return 

is a special case of this) and they do not impede scheduling beyond basic blocks. 

Instructions can cross basic block limits imposed by conditional and indirect 

branches and execute speculatively.

Speculative execution is implemented by splitting instructions and moving up 

their first part past conditional or indirect branches, leaving the copy part behind. If a 

conditional or indirect branch does not follow the same direction during execution, 

the copy part of the split instruction is not executed, not committing the 

corresponding instruction.

Conditional branch instructions read the conditional code register (the flags), 

which is written by many different instructions. Output and anti data dependencies 

caused by this register are tackled as other dependencies of these kinds. The VLIW 

Engine has many conditional code registers; therefore, instruction splitting can be 

used to avoid these dependencies.

Because the Sparc ISA implements delayed branches, an extra pipeline stage 

between the Primary Processor and the Scheduler Unit is necessary for the insertion 

of delayed slot instructions (see Figure 4.1). When a delayed branch is detected 

inside this pipeline stage, it is held on it for one cycle. In this cycle, instead of the 

branch, the delayed slot instruction in the Primary Processor’s decode pipeline stage
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is inserted into the scheduling list, bypassing the insert pipeline stage. In the 

following cycle, the delayed branch is inserted normally. This guarantees the correct 

assignment of tags to the delayed branch and delayed slot instruction.

4.1.4 No-operation Instructions Handling

No-operation (nop) instructions are ignored and not placed in the scheduling list.

4.1.5 Load and Store Instructions Handling

Load and store instructions can be split and moved up by the scheduling algorithm 

without restrictions. For dependency test, their data addresses are compared with the 

data address of other load/store instructions, while the registers they use (including 

those used to compute data addresses) are compared with registers of other 

instructions (including load/store). Memory renaming registers provide for the 

renaming of memory positions. Load/store address aliasing is discussed in Section 

4.7.

4.1.6 Save and Restore Instructions Handling

Save and restore instructions, which deal with the register windows of the Sparc ISA 

[Sun87], are scheduled as any other integer instruction. To make it possible, the 

value of the cwp (current window pointer) register of the Sparc ISA, which is used 

for computing the address of the physical integer registers, accompanies the 

instructions to the scheduling list and VLIW Cache.

4.1.7 Non-schedulable Instructions Handling

Non-schedulable instructions are a number of instructions of the Sparc ISA that are 

not executable by the VLIW Engine, but must always be executed by the Primary 

Processor because they are too complex for the VLIW Engine to handle. When such 

instructions are sent to the Scheduling Unit, they flush the scheduling list to the 

VLIW Cache. Thus trap, return from trap, and co-processor handling instructions 

are non-schedulable. In addition, load/store instructions are non-schedulable when 

they are non-cacheable, or when they perform I/O operations, or when they provide 

support for cache coherence and multiprocessing.
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4.1.8 Multicycle instructions Handling

Multicyle instructions, such as integer divide, floating-point multiply, or (sometimes) 

loads and stores, impact upon both the operation and performance of the architecture. 

Their scheduling requires special care to respect dependencies in any of their cycles. 

The DTSVLIW scheduling of multicycle instructions has been implemented as 

follows [deSouza99b].

To schedule multicycle instructions, extra features were added to the 

scheduling list. These are an extra candidate instruction for each element of the list, 

the candidate instruction B, and an extra slot in each long instruction for each 

multicycle functional unit, the slot B. Two instances, A and B, of a multicycle 

instruction are inserted into the scheduling list. These are just copies of the original 

instruction, and have cross-references to each other’s position in the scheduling list. 

The purpose of the A and B instructions is to delimit the scheduling list elements in 

which the instruction is active to prevent instructions with dependencies being 

scheduled in these elements. The primary role of the B instruction is for dependency 

checking against instructions moving up.

Instance A is inserted into the tail of the scheduling list. If the current block 

size plus the instruction latency minus one is larger than BLOCK_SIZE, a new long 

instruction is added to the scheduling list for inserting the instance A of the 

multicycle instruction. In such cases, a new block starts at the scheduling list position 

where the instance A is inserted. Instance B, on the other hand, is inserted into the 

scheduling list tail + (instruction latency — 1) position of the scheduling list in the 

candidate instruction B and slot B; the scheduling list tail register is made to point at 

this element. After insertion, the Scheduler Unit handles these two instances as other 

instructions, except that:

• Instance B does not suffer or cause resource dependencies, because it does 

not use a normal slot but a B slot.

• Instance B does not suffer or cause data dependencies related to its inputs.

• Instance A does not suffer or cause data dependencies related to its outputs 

but only control dependencies, in which case A ’s output is renamed and 

instance B is split. The copy instruction generated is not placed in a B slot, 

but in a normal one.
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• Instances A and B move up together; if A cannot move up both are 

permanently placed in their current long instructions (B can always move 

up if A can move up).

• If instance B suffers an output or anti data dependency it is split and A is 

also renamed.

• Instance B is not saved in the VLIW Cache and is only used for scheduling 

purposes.

Multiple scheduling list elements need to be added to a block for a single 

multicycle instruction. Because of this, the Primary Processor is required to have only 

one instruction in the execute pipeline stage at any time. Therefore, the Scheduler 

Unit only has to add one extra scheduling list element per cycle, since the Primary 

Processor is expected to hold its pipeline to complete the multicycle instruction. This 

reduces its performance, but the overall performance of the architecture is dependent 

on the VLIW Engine performance, not that of the Primary Processor.

Scheduling a multicycle instruction lengthens a block by the latency of the 

instruction minus one. This impacts on efficiency since the longer block is more 

difficult to fill, reducing parallelism and wasting space in the VLIW Cache. Some 

instructions have very long latencies, and in certain programs, are too frequent to be 

left to the Primary Processor to execute (one option for dealing with them): floating­

point divide is one example. These instructions are scheduled as multicycle 

instructions, but the latency used by the Scheduler Unit is not the same as the 

instruction latency. The latency used by the Scheduler Unit is set to a maximum (4 

for example) and, under VLIW execution, the VLIW Engine holds the execution of 

the long instruction containing these instructions for the number of extra cycles 

necessary for its proper execution. This saves on VLIW Cache space but does not 

affect the reduction in parallelism.

4.2 DTSVLIW Long Instruction Format

The format of the long instructions of the DTSVLIW can be appreciated with the 

help of Figure 4.3. In this figure, two long instructions are shown, and each of them 

has five instructions. The individual instruction tags are represented by the shaded 

fields. These two long instructions do not have any particular programming meaning
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and are only examples. However, they could be seen as two neighbour instructions of 

a block.
The first long instruction does not have conditional or indirect branches; 

therefore, all instructions have tags with the value zero. Instructions with tag equal 

zero are executed unconditionally. The second long instruction has two conditional 

branches. In this long instruction, only the branch ble (0) loop is executed 

unconditionally. The (0) in this branch indicates which conditional code register the 

branch is testing -  the DTSVLIW has many conditional code registers and 

instructions that read from or write into them can be renamed. An example of this 

renaming is shown in Figure 4.3.

The instruction subcc of the Sparc ISA writes into conditional code registers. 

An instance of subcc is shown in the first long instruction of Figure 4.3: the 

instruction subcc rl, r3, rO: (1). This instruction writes into the conditional code 

register 1, as indicated by the (1) in the instruction. The copy instruction COPY ccl, 

ccO copies the content of the conditional code register 1 to the conditional code 

register 0: the original subcc was split and moved up by the Scheduler Unit, and left 

this copy instruction behind.

When installed in the second long instruction of Figure 4.3, the branch ble (0) 

loop changes this long instruction’s tag value to 1, and three instructions receive this 

new tag value, including the second branch, bz (1) exit. When installed, this second 

branch changes the tag again, and the instruction add r8, r2, r3 receives the new tag 

value, 2. When executing this long instruction, the VLIW Engine validates the tags 1 

and 2 by checking if the branches follow the same direction observed during 

scheduling. Only instructions with valid tags, including branches, have their results 

written to the machine state. Therefore, if the branch ble (0) loop follows a direction 

different from that observed during scheduling, no other instruction in its long 

instruction has its results stored. On the other hand, if this branch does follow the 

same direction observed during scheduling and the branch bz (1) exit does not, only 

the instruction add r8, r2, r3 does not have its results stored.

0 Id frlO+r] 11, r8 0 subcc rlO, 50, rO: (0) 0 add rlO, 4 , r32 io subcc r l ,  r3, rO: (1) i0 nop
a? ble (0) loop UN COPY 32 , rlO COPY c c l ,  ccO i bz (1 ) exit •2 add r8, r2, r3

Figure 4.3: DTSVLIW long instruction format examples.
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4.3 DTSVLIW Long Instruction Addressing

Once instructions are scheduled into blocks of long instructions, the VLIW Engine 

instruction addressing has to be different from the Primary Processor instruction 

addressing. In the DTSVLIW, a block of long instructions is stored as a VLIW Cache 

line. Since the only entry point of a block is the first instruction scheduled in the 

block, there is a single address for the whole block, and this is the address of the first 

instruction scheduled in the block. For fetching a long instruction from the VLIW 

Cache, the VLIW Engine uses a fetch address with two fields: the address field and 

the line index field. The address field is a Sparc ISA address and specifies the block, 

while the line index field specifies a long instruction in the block. This long 

instruction address is produced by concatenating the PC with a line index register 

maintained by the VLIW Engine and incremented from zero.

The number of valid long instructions in a block is stored into the VLIW Cache 

with the block. The line index register content is compared with this number to 

determine the fetch of the last valid long instmction in a block. When they have the 

same value, the next fetch is made using the address of the instruction that follows 

the block, which is also stored into the VLIW Cache line. This mechanism requires 

only two instruction addresses to be stored in a cache line: the address of the first 

instruction of the block and that of the following block. Individual instruction 

addresses are not required, since the block will execute as a whole unless a branch is 

made out of the block, in which case the information needed to build the target 

address is stored as part of each branch instruction.

We have developed a mechanism to generate and save in the VLIW Cache the 

number of valid long instructions of each block and the address of the following 

block. This mechanism allows several blocks to coexist in the scheduling list, in 

addition to allowing the scheduling of one block and the saving of another block in 

parallel. To implement this mechanism, we have added to each element of the 

scheduling list two stores to hold the current and the next long instruction addresses: 

the long instruction address store, and the next long instruction address store. Each 

of these has an address field to hold a Sparc ISA address and a line index field to 

hold the position of the element of the list. Figure 4.4 shows examples of how our 

mechanism operates, and the following paragraphs give the details of its operation.



When instruction insertion causes a new long instruction to be added to a 

block, the long instruction address store of this element receives a copy of the long 

instruction address store of the previous tail element with the line index field 

incremented. In addition, every time a new long instruction is added to a block, the 

next long instruction address store of the previous scheduling list’s tail element 

receives the long instruction address of the new long instruction. In Figure 4.4, the 

first snapshot shows a new long instruction being added to a block as explained.

When the insertion of an instruction causes the creation of a new block in an 

element of the scheduling list, this instruction’s address is copied to the address field 

of the long instruction address store of the element. At the same time, the line index 

field of the long instruction address store of the element is zeroed. The second 

snapshot of Figure 4.4 shows the creation of a new block in this way.

Because the next long instruction address store of the previous scheduling list’s 

tail element always receives the long instruction address of an added long instruction, 

the next long instruction address store of the last long instruction of a block always 

point to the first long instruction of the fall-through block. The only exception are 

when a non-schedulable instruction is sent to the Scheduling Unit and when there is a 

fetch hit on the VLIW Cache. In these cases, the block being scheduled is made to 

point to the non-schedulable instruction or to the hit block, and start being flushed to 

the VLIW Cache. This is accomplished by adding a new empty long instruction to 

the scheduling list, as show in the third snapshot of Figure 4.4. This creates a new 

empty block. The insertion of an instruction into an empty block gives this block the 

instruction’s address — see the fourth snapshot of Figure 4.4.

The contents of the long instruction address store and next long instruction 

address store are not saved into the VLIW Cache; instead, a unique next block 

address (nba) is saved with each block. The nba has the same format as the long 

instruction address and contains the address of the following block and the number of 

valid long instructions of the block. The address field of nba holds the Sparc ISA 

address of the following block, while the line index field of nba holds the number of 

valid long instructions of the block. The nba value is computed as follows.

When a long instruction is being saved, the address field of its next long 

instruction address store is copied into the address field of the nba of the long
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instruction’s block in the VLIW Cache. At the same time, the line index field of this 

long instruction’s long instruction address store is copied into the line index field of 

the nba. Thus, the nba of each block ends up with the address of the fall-through 

block (the address field of the next long instruction address store of the last long 

instruction of each block) and with the number of valid long instructions of the block 

(the line index field of the long instruction address store of the last long instruction of 

each block). Figure 4.4 shows four nba values generated for a single block. The 

value of the nba in the last snapshot is the final value written into the VLIW Cache.
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Long Instruction lia nlia
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inst 0 x 1 0 0 0 3

n ba
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L ong Instruction lia nlia
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L ong Instruction lia nlia

inst inst 0 x 1 0 0 0 2 0 x 1 0 0 0 3

inst 0 x 1 0 0 0 3 0 x 2 0 a 0 0

inst 0 x 2 0 a 0 0 0 x l8 c 0 0
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0 x 1 0 0 0  1
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0 x 1 0 0 0  2

(sa v ed )  

(sa v ed )  

(sa v ed )  

o lip  ->

slh , sit ->

L ong Instruction lia nlia

inst 0 x 1 0 0 0 3 0 x 2 0 a 0 0
inst 0 x 2 0 a 0 0 0 x 1 8 c0 0
inst 0 x 1 8c4 0

nba

0 x 2 0 a 0  3

F igu re 4.4: V L IW  E ngine in struction  addressing . F our sn ap sh ots  o f  a three in stru ction s w ide  
and e igh t lon g  in structions deep  schedu lin g  list are sh ow n , lia , nlia , and nba stand  for lon g  
instruction  address , n ex t lon g  instruction  address , and n ex t b lo c k  ad d ress , resp ective ly , o lip , slh , 
and sit stand for o u tp u t lon g  instru ction  p o in te r , sch ed u lin g  lis t h ea d , and sch ed u lin g  lis t ta il, 
resp ectvely . T h e shaded  fields rep resent the index field o f  each  address.

4.4 The VLIW Cache

The VLIW Cache is an ordinary set associative cache with line size equal to one 

block o f long instructions. It is tagged with the Sparc ISA address o f  the first 

instruction placed in the blocks by the Scheduler Unit. In the VLIW Cache, each long 

instruction can be accessed directly by using addresses in the long instruction address 

format, with the line index field o f the address choosing the specific long instruction
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in the block. The single additional feature of the VLIW Cache is the nba store 

associated with each cache line. The nba value is used in the VLIW Engine fetch, as 

described next.

4.5 The VLIW Engine

The VLIW Engine of the DTSVLIW has a simple fetch-execute-write back pipeline 

for each functional unit. Multicycle instructions execute in pipelined functional units 

with more than one execute stage. A decode stage is not necessary as decoded 

instructions are saved in the VLIW Cache. To access the VLIW Cache, the VLIW 

Engine concatenates the PC with the contents of the line index register. This register 

is incremented after each VLIW Engine fetch, while the PC is left unchanged. On a 

long instruction fetch, the nba value associated with the cache line is fetched as well. 

If the line index register content is equal to the line index of nba, then, at the end of 

the cycle, the content of the address field of nba is copied to the PC and the line 

index register is zeroed. These actions cause the fetch of the first long instruction of 

the fall-through block in the following cycle without causing pipeline bubbles.

When blocks are sequentially executed no bubbles occur in the VLIW Engine 

pipeline, and only a single bubble occurs when a branch is made out of a block and 

another block is hit in the VLIW Cache.

All conditional and indirect branches are resolved in the execute stage of the 

VLIW Engine. The direction taken by them during the scheduling, recorded in the 

VLIW Cache, is used during the execution to determine if any of them are following 

a different direction. If the branch direction of a branch with a valid tag is different 

from that recorded, the current VLIW fetch is annulled and the PC receives the new 

branch target, while the line index register is zeroed. This causes a 1 -cycle bubble in 

the VLIW Engine pipeline.

inserting splitting and moving up saving

->□ o n  □ o n  o
Figure 4.5: Scheduler Unit pipeline.
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4.6 Scheduler Unit Implementation

The Scheduler Unit can be implemented in a pipelined fashion as depicted in Figure 

4.5. One or more pipeline stages can be used for inserting instructions into the 

scheduling list, each scheduling list entry can be made a pipeline stage, and none, one 

or more pipeline stages can be used for saving the scheduled long instructions into 

the VLIW Cache.

The checking operations required on the scheduling list on each clock cycle are 

just comparison operations between each candidate instruction and the instructions in 

the current and next element of the list. Each check operation is independent. 

However, the decision to install, split, or move up a candidate instruction may 

depend on a chain of decisions as long as the scheduling list. Nevertheless, the 

information necessary to each one can be gathered in a way similar to carry 

propagation in carry-lookahead integer adders [Patterson96 (Appendix A)], and the 

logic required can be made as fast as an and-or gate delay. This can be proved with 

the help of Figure 4.6.

In Figure 4.6, the value of CRd(i), CTd(i), COd(i), Rd(i), Td(i), Od(i), Ad(i), 

and Cd(i) for each element i of the list (0 < i < block size — 1) is available at the 

beginning of each clock cycle after the comparators delay (xor gate delay). Invalid 

candidate instructions never produce CRd(i), CTd(i), or COd(i) signals. Valid 

candidate instructions could influence the Rd(i), Td(i), Od(i), and Ad(i) signal 

values; for this reason, their companion position is used for disabling the 

comparators associated with the slot where the companion instruction is. CRd(i) is 

also disabled if  there is more than one slot available in z - 1 for candidate instruction 

i.

Let us analyse the installing case first. A valid candidate instruction must be 

installed on true dependencies or resource dependencies. So, if Td(i) is true there is 

an instruction already installed in long instruction i - 1 causing a true dependency on 

the candidate instruction i. In this case, the candidate instruction in i must be 

installed. If only CTd(i) is true one cannot tell whether or not the candidate 

instruction should be installed, because the candidate instruction in / — 1 might move 

up in this cycle. The same can be said about Rd(i) and CRd(i) signals. Nevertheless, 

using the position of the candidate instruction in the list, which is recorded in the line
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index field of the long instruction address store of the long instruction, an install 

signal can be computed for each candidate instruction in the scheduling list as 

follows:

install signal =

(i® 0)+

(i® l).(T d (l) + R d (l) + C T d(l) + C R d(l)) +

(i®2).(Td(2) + Rd(2) + {CTd(2) + C R d(2)}.{Td(l) + R d(l) + C Td(l) + C R d(l)}) + ( 1 )

(i®3).(Td(3) + Rd(3) + {CTd(3)+CRd(3)}.

{Td(2) + Rd(2) + [CTd(2) + CRd(2)].[Td(l) + R d(l) + C Td(l) + C R d (l)]})

The equation above represents the logic necessary to compute the install signal 

for a DTSVLIW machine with a block size equal to 4. The rule to produce equations 

for larger blocks is easily deduced by visual inspection. The operator “®” means 

binary vector comparison: (i®x) evaluates to true if i is equal to x. The operator “+” 

means logic or, and the operator means logic and.

When the line index field of the list element containing the candidate 

instruction i is equal to zero, the first line of the equation evaluates to true and, 

consequently, the install signal becomes true. This implements the first rule for 

installing a candidate instruction, i.e., if the candidate instruction is at the head of the 

scheduling list it is installed. If i is equal to 1 , only the second line of the equation 

can evaluate as true. In this case, the candidate instruction i will be installed if there 

is a true dependency on any instruction installed in long instruction i - 1 (the head of 

the list), or there is not a slot available in this long instruction, or there is a true 

dependency or resource dependency on a valid candidate instruction in this long 

instruction. For i greater than 1, the information from lower order list elements is 

added to each equation line as shown.

A split signal can be computed for each candidate instruction in the scheduling 

list of a DTSVLIW machine with a block size equal to 4 as follows:
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split signal =

(i® l).(O d (l) + A d (l) + C d(l) + CO d(l)) +

(i®2).(Od(2) + Ad(2) + Cd(2) + COd(2).{Td(l) + R d(l) + C T d(l) + C R d (l)}) + (2)

(i®3).(Od(3) + Ad(3) + Cd(3) + COd(3). {Td(2) + Rd(2) + [CTd(2) + CRd(2)].

[T d(l) + R d (l) + C T d(l) + C R d(l)]})

Again, the rule to produce equations for larger blocks is easily deduced by 

visual inspection. It is important to observe that part of this equation comes from the 

previous one. This is so because an output dependency caused by COd(i) generates a 

split signal only if the candidate instruction in element i - 1 of the scheduling list is 

going to be installed.

If the split signal is true, the respective candidate instruction is split. If the 

install signal is true, the candidate instruction is installed. If the install and the split 

signals are both true the respective candidate instruction is only installed. If the 

candidate instruction is not going to be installed or split, it is moved up.

The install and split signal generation is the most complex operation performed 

by the Scheduler Unit, and its complexity is governed by the block size. Since a 

block of 32 long instructions is a large block, the Scheduler Unit design does not 

pose constraints on the cycle time of DTSVLIW machines. This is because the 

complexity of the logic necessary for generating these signals is equivalent to that of 

an integer adder and DTSVLIW machines with data words of 32-bit or more have to 

perform integer add operations in one cycle.
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*• A d(i)
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candidate instruction
scheduling list entry

Figure 4.6: Scheduling list. Rd(i), Td(i), Od(i), Ad(i), and Cd(i) stand for resource dependency, 
true data dependency, output data dependency, anti data dependency, and control dependency 
on candidate instruction i, respectively. CRd(i), CTd(i) and COd(i) stand for resource 
dependency, true data dependency and output data dependency on candidate instruction i 
caused only by the candidate instruction in long instruction i - 1, respectively.

4.7 Memory Aliasing Detection

Memory aliasing (see Subsection 2.2.4) can occur, as the memory address observed 

during scheduling is not necessarily the same during VLIW execution. To detect 

memory aliasing and generate memory aliasing exceptions during VLIW execution, 

load and store instructions receive two extra fields when they are scheduled: the 

order and the cross bit fields. The order field receives the load/store insertion order, 

which is copied from the load/store order counter. This counter is zeroed every time 

the scheduling list is found empty and is incremented every time a load/store is 

inserted into the scheduling list. The cross bit field is set in the load/store when it is 

placed in a long instruction containing a store or a memory copy instruction 

generated from a store split.

The VLIW Engine keeps a store list and a load list, which are emptied every 

time a block starts execution. During VLIW execution, loads and stores with the 

cross bit set have their addresses and order fields stored in these lists as they execute. 

Load instructions executed in VLIW mode have their addresses associatively 

compared with the store addresses in their long instruction and all store addresses in 

the store list. On an address match, if the order field of the load is smaller than the 

order field of the corresponding store (which means that a late store to the same
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address has been executed), an aliasing exception is signalled. The store instructions 

executed in VLIW mode have their addresses associatively compared with the load 

and store addresses in the same long instruction and all load and store addresses in 

the load and store lists. On an address match, if the order field of the store is smaller 

than the order field of the corresponding load/store, an aliasing exception is 

signalled. DTSVLIW exception handling is discussed next.

4.8 Exception Handling

Exceptions (interrupts) may be generated by the execution of some instructions, such 

as load/store (page faults, access violations) or divide (divide by zero). However, 

split instructions should not signal exceptions until their copy part is executed. To 

avoid uncommitted instructions generating exceptions while allowing true exceptions 

to be handled, an exception bit is added to each renaming register of the DTSVLIW.

When a split instruction generates an exception, the exception bit of its 

renamed destination register is set and execution proceeds normally. If this register is 

read by any other instruction, the exception bit is propagated to the destination 

registers of this instruction. This is accomplished by performing logic or of the 

exception bits of all input registers of this instruction and by writing the result of this 

operation to the exception bits of the instruction’s destination registers. When an 

instruction that has an input register with an exception bit set is executed and its 

destination register is part of Sparc ISA state, an exception is signalled. The 

DTSVLIW exception handling mechanism operates as follows.

The DTSVLIW uses the Checkpointing exception handling mechanism, 

proposed by Hwu and Patt [Hwu87] (see Subsection 2.2.3). Checkpointing occurs at 

the beginning of the execution of each block of long instructions, when all registers 

that make up the Sparc ISA state are saved in shadow registers. Store instructions 

executed in the block cause the data they overwrite in the Data Cache to be saved in 

the checkpoint recovery store list. This list contains the address, data overwritten, and 

data type.

If the VLIW Engine detects an exception during the execution of a block, the 

Scheduler Engine enters a recovery mode of execution. In this mode, registers receive 

the values stored in the shadow registers, each entry of the checkpoint recovery store
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list is written back into the Data Cache, and the load and store lists are emptied. If the 

exception detected is an aliasing exception, the VLIW Cache entry containing the 

block that caused the exception is invalidated. Execution is then resumed.

For an aliasing exception, execution resumes in normal trace mode and the 

block that has caused it is scheduled in a way that prevents new aliasing exceptions: 

data dependencies keep load/stores in a new order inside the block, different from 

before. For other exceptions, execution resumes in exception mode until the 

exception repeats, from which point the operating system handles the exception. In 

exception mode only the Primary Processor operates.

The scheme described for dealing with store instructions is not the only one 

that would work with the DTSVLIW. An alternative scheme make the stores write 

into a data store list as oppose to the Data Cache, and the checkpoint recovery store 

list is not used. The data store list contains the address, data, data type, and the order 

field of store instructions. This list works as a queue for incoming store data. 

Nevertheless, the order field can be used to transfer this data to the Data Cache in 

order, which can be useful when using the DTSVLIW for applications requiring 

intensive in order memory or I/O writing — in the former scheme the Primary 

Processor has to handle in order data store. Data is only transferred from the data 

store list after the block containing the respective store instructions has finished 

without exceptions. In case of an exception, data generated in the block where the 

exception is detected is annulled. Load instructions read from the Data Cache and 

from the data store list at the same time, and use the last data stored in the list on a 

list hit. This scheme has not been used as it is much harder to implement in a 

simulator, and its advantages need to be identified through further research.

4.9 Object Code Compatibility Issues

There are some important issues related to backward code compatibility that have not 

yet been discussed. These are: self-modifying code, programs that read their own 

code as data, load instructions side effects, and the implementation of CISC ISAs 

with the DTSVLIW architecture.

Self-modifying code is a problem even for simple pipelined processors, since a 

store instruction can change an instruction in memory that is already in some stage of
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the processor pipeline. Modem processors use the virtual memory supporting 

hardware for detecting attempts to modify code, and they generate exceptions when 

this happens [Patterson96 (page 449)]. The DTSVLIW can use the same mechanism. 

If the execution of self-modifying code is necessary, the exception handler just needs 

to flush the entire instruction and VLIW caches. If self-modification is frequent in 

such code, the performance is going to be seriously affected, however. Nevertheless, 

this is an uncommon programming practice usually present in old programs only. 

Therefore, support for the execution of self-modifying code is limited in the 

DTSVLIW architecture and, if performance is required, specially designed 

architectures should be used for the execution of this kind of code.

Certain programs need to read their own code, such as programs that compute 

their own checksum for security reasons for example. The DTSVLIW architecture 

does not impose any restrictions on the execution of such programs since the 

scheduled code in the VLIW Cache is not accessible by load/store instructions.

In some systems, load instructions may have side effects due to memory 

mapped I/O. In these systems, a load may reset an I/O register for example. Since the 

DTSVLIW can execute loads speculatively, programs could have incorrect behaviour 

due to a detected but not committed exception prior to the execution of such a 

speculative load that may cause side effects. This does not happen, however, because 

the DTSVLIW architecture includes a data cache and must already be aware that 

some types of data cannot be stored in the cache. Load accesses that change system 

state are a subset of non-cacheable memory accesses and as such are non-schedulable 

instructions (see Subsection 4.1.7).

The description of the DTSVLIW until here assumes the implementation of an 

RISC ISA; however, the DTSVLIW architecture can also be used to implement CISC 

IS As. The most direct way of doing this is to implement the Primary Processor with a 

vertical microprogrammed machine. The RISC like microinstructions executed by 

this Primary Processor could then be dealt with in the same way as has been 

described for a RISC ISA implementation.
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4.10 Differences Between DTSVLIW and DIF

The DTSVLIW architecture differs from the DIF architecture in the organisation of 

the instruction cache used by the VLIW Engine, in its scheduling algorithm, in its 

register renaming, and in the VLIW Engine register access mechanism.

The unit of communication between the DIF cache and its VLIW Engine is an 

entire block of long instructions, whereas the DTSVLIW machine accesses one long 

instruction per VLIW Cache access. We believe that this should make the DTSVLIW 

VLIW Cache implementation simpler than a DIF VLIW cache implementation.

A DIF machine schedules instructions using a hardware table, which has as 

many entries as resources in the machine and records the earliest long instruction in 

which each resource is available. Its proposed scheduler implements the Greedy 

algorithm, by checking all resources necessary for each new instruction against this 

table, and scheduling the instruction in the earliest long instruction possible. The DIF 

scheduling scheme is similar to the MPS scheme described in Subsection 3.3.2, 

although more complex, and suffer from the same pipelining problems of MPS. Nair 

and Hopkins have not addressed these pipelining problems in [Nair97]. The 

DTSVLIW, on the other hand, uses a simplified pipelined version of the FCFS 

algorithm, which operates over a list of long instructions. An instruction has only to 

be checked for dependencies against other instructions in its current and next position 

in the list, as opposed to all resources available in the machine.

Instead of using copy instructions to implement register renaming, a DIF 

machine has a number of instances of each ISA register and extra bits are added to 

each register specifier to specify the register being used during VLIW execution. A 

register-mapping table is used to access the current ISA register set. Renaming is 

performed by specifying the extra bits during scheduling and by copying the new 

register mapping — the exit map — to the register-mapping table every time the 

execution leaves a block. Each exit point of a block (all branches and the final long 

instruction) has to carry its own exit map. This mechanism may not be practical for 

machines with a large number of physical registers, however. The Sparc ISA, for 

example, allows processor implementations with as many as 520 integer registers due 

to its register windows. Although most Sparc processors have only 128 integer 

registers, a single exit map for such a processor, with four instances of each register,
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would require 256 bits only for integer registers. The DTSVLIW splits instructions 

with the purpose of renaming registers to overcome data and control dependencies 

and the copy instructions generated are simpler to handle than mapping tables.

The DIF VLIW Engine accesses its register file differently to the DTSVLIW. It 

has to translate each register specifier to access the register file during VLIW 

execution because of its renaming mechanism — this translation is in the data path of 

the DIF VLIW Engine. A DTSVLIW machine, on the other hand, accesses its 

register file directly.
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Chapter 5 

Experimental Methodology

We have used experiments to evaluate the DTSVLIW architecture. In order to 

perform these experiments, we have implemented a parameterised and instrumented 

simulator of the DTSVLIW. This simulator is capable of executing ordinary 

programs for the Sparc Version 7 ISA compiled with standard compilers. Integer 

programs from the SPEC92 and SPEC95 benchmark suites have been compiled and 

used as input for the simulator. The data gathered is presented and discussed in the 

chapters that follow this.

In the rest of this chapter, we describe the DTSVLIW simulator, present the 

DTSVLIW parameters held constant and those we have varied during the 

simulations, the benchmark programs, and the metrics we have used to gauge the 

DTSVLIW performance.

5.1 The DTSVLIW Simulator

The DTSVLIW simulator has been implemented in C (23K lines of code), it is 

parametric, allowing the specification of various parameters of the DTSVLIW 

architecture, and it performs execution-driven simulation.

In execution-driven simulation, the simulator that models the machine under 

study fully executes the test programs used in the study. This is in contrast with 

trace-driven simulation, where instruction traces of test programs are produced in a 

simple simulator and then used to feed a program that models the machine under
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study. Trace-driven simulation is usually faster but often less precise than execution- 

driven simulation because assumptions have to be made about instructions that are 

not in the trace but might have been fetched or even speculatively executed in a real 

machine. In order to avoid the need for such assumptions, we have decided to 

implement our simulator as an execution-driven simulator.

To guarantee correct simulation results, all results have been produced with the 

simulator running in a special mode called test mode. The test mode puts two 

machines to run together: the DTSVLIW and a test machine with the same 

characteristics of the Primary Processor of the DTSVLIW. The DTSVLIW starts 

first, and every time an instruction or a block of long instructions is completed, the 

simulator switches to the test machine, which runs until its PC becomes equal to the 

DTSVLIW PC. The Sparc ISA state of both machines is compared and, if not equal, 

an error is signalled and the simulation interrupted. The test mode has been very 

useful not only to validate the execution but also because in this mode it is possible 

to measure the precise number of instructions necessary for the execution of a 

program, which the test machine can provide. A DTSVLIW simulator alone cannot 

provide this number due to copy instructions and instructions executed speculatively.

The simulator fully executes all user-level instructions, including instructions 

that are part of linked libraries; however, it does not execute operating system 

instructions. When a system call occurs during simulation, a module of the simulator 

intercepts it. This module decodes the system call, copies its arguments, makes the 

corresponding system call to the host’s operating system, copies the results of the 

system call into the simulated program’s memory, and then restarts the execution of 

the simulated program.

The simulated DTSVLIW’s Primary Processor fully implements the Sparc 

Version 7 ISA [Sun87]. The simulator receives as input any SunOS 4.1.3 (Sun 

operating system) executable for this ISA and faithfully models the DTSVLIW 

architecture operation.

5.2 Simulation Parameters

Except when stated otherwise, each program was run for 50 million or more 

instructions each experiment, as counted by the test machine. We have chosen to run
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this number of instructions because this is optimistically the number of instructions 

that a DTSVLIW machine is capable of executing between operating system context 

switches. (Supposing that the DTSVLIW can execute 5 instructions per cycle, a clock 

rate of 1 GHz, and one context switch every 1 Oms.)

We cannot always specify the exact number of executed instructions because, 

when the simulator is executing code in VLIW-mode, the exact number of executed 

instructions is only known when the execution leaves a block. That is the reason why 

we say that “each program was run for 50 million or more instructions each 

experiment,” and not exactly 50 million instructions.

The DTSVLIW parameters that are invariant for all simulations are presented 

in Table 5.1, while the parameters that we have varied to appreciate their influence 

on the DTSVLIW performance are shown in Table 5.2 together with their default 

values. Except when stated otherwise, the default values were used in the 

simulations.

T ab le  5.1: F ixed param eters

Trace Processor •  four-stage (fetch, decode, execute, and write back)
pipeline

•  not taken branches cause a 2 -cycle  bubble in  the 
pipeline (the Sparc ISA ’s delayed branches a llow  for 
zero-bubble taken branches)

•  instructions follow ing a load, requiring the data loaded  
cause a one-cycle bubble in the pipeline_________________

D ecod ed  Instruction Size 6 bytes
V LIW  Engine List S izes load =  store =  checkpoint recovery store = unlimited
Scheduler U nit Pipeline inserting = 1 stage

splitting and m oving up = b lock-size stages 
saving = 1 stage

T ab le  5.2: V ariab le p aram eters

P a ra m eter D efau lt V a lu e
N um ber o f  V LIW  Engine functional units equal to the long instruction size
V LIW  Engine functional units type untyped (can execute any instruction)
N um ber o f  renaming registers unlimited
N ext long instruction m iss penalty no penalty (0 -cycle)
Instructions latency 1-cycle
V LIW  Cache size 3072-K byte
V LIW  Cache associativity 4-w ay
Instruction Cache perfect (no m iss penalty)
Data Cache perfect (no m iss penalty)
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5.3 Benchmark Programs

In 1988, the Standard Performance Evaluation Corporation (SPEC) was established 

as a non-profit corporation devoted to “establishing, maintaining and endorsing a 

standardized set of relevant benchmarks that can be applied to the newest generation 

of high-performance computers” [SPEC], SPEC is supported by leading companies 

in the processor market, such as Intel and IBM.

SPEC’s first product was the SPEC Benchmark Release 1 suite, currently 

identified as SPEC89. Since then, two other releases have been developed: SPEC92 

and SPEC95 benchmark suites. These new releases became necessary due to 

advances in processors, systems, and compiler technology, and the improvements 

from one version to another are in aspects such as execution time, application size, 

application type, etc.

The SPEC benchmark programs and their respective input data used in the 

experiments reported in this thesis are shown in Table 2. We have used integer 

programs from the SPEC95 and SPEC92 benchmark suites, although the experiments 

with SPEC92 programs have only been included for comparison with previously 

published results. All programs have been compiled with the gcc 2.7.2 compiler, 

using optimisation flag -O. In this level of optimisation, the gcc compiler performs 

several optimisations such as automatic register allocation, common sub-expression 

elimination, invariant code motion from loops, induction variable optimisations, 

constant propagation and copy propagation, filling of delay slots, etc. We could have 

used the higher levels of optimisation -02 or -03; however, these levels include 

optimisations such as loop-unrolling and function inlining whose effect in the 

DTSVLIW performance would require a careful study in isolation. We have left the 

study of the compiler-DTSVLIW architecture interaction for future work.
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Table 5.3: Benchmark programs and Input Data

SPEC95
Benchmarks

Description Inputs

compress Unix utility. Compresses data using the 
adaptive Limpel-Ziv coding. The data is 
generated randomly.

20000 q 2131

gcc C compiler. Compiles pre-processed source 
into optimised Sparc assembly code.

-03 jump.i

go Game. Plays the game Go against itself. 40 19 null, in
ijpeg Image processing tool. Performs jpeg image 

compression.
vigo.ppm -G O

m88ksim Simulator. Simulates the Motorola 88100 
processor running a program.

dhry.big

peri Shell Interpreter. Performs text and numeric 
manipulations.

primes.pl

vortex Database. Builds and manipulates three 
interrelated databases.

vortex, in

xlisp Lisp interpreter. Interprets lisp programs. queens 7

SPEC92
Benchmarks

Description Inputs

compress Unix utility. Compresses files using the 
adaptive Limpel-Ziv coding.

in

eqntott Logic design tool. Translates a logical 
representation of a boolean equation to a truth 
table.

int_j)ri_3.eqn

espresso Logic design tool. Minimise boolean 
functions.

cps.in

gcc C compiler. Compiles pre-processed source 
into optimised Sparc assembly code.

-O jump.i

xlisp Lisp interpreter. Interprets lisp programs. queens 7

5.4 Metrics

The instructions per cycle (EPC) index is the main performance measurement index 

used in this thesis. It has been produced by dividing the number of instructions 

necessary to execute the program, as counted by the test machine, by the number of 

cycles taken for DTSVLIW execution.

We refrain from averaging benchmark performances most of the time and show 

performance measurements for each individual benchmark. However, sometimes 

averages are useful. Jacob and Mudge [Jacob95], and Giladi and Ahituv [Giladi95] 

have discussed which average should be used when dealing with computer 

performance indices and have suggested the use of the harmonic mean for indices 

like IPC. Therefore, when appropriate, we use the harmonic mean. Nevertheless, we
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also show, for extra clarity, the arithmetic mean between parenthesis at the side of the 

harmonic mean in the form (4.1 u.a.m.), where u.a.m. means using arithmetic mean.
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Chapter 6 

Experiments

In this chapter we present and discuss the experiments carried out to evaluate the 

integer performance of the DTSVLIW architecture. We start by examining the effect 

of some architecture parameters on the DTSVLIW performance. We then evaluate 

the effectiveness of the DTSVLIW instruction-scheduling algorithm by comparing it 

with the FCFS algorithm, used in microcode compaction, and the Greedy algorithm, 

used in the DIF architecture. Finally, we present comparisons between the DTSVLIW 

and the DEF, pure VLIW, and Superscalar architectures.

6.1 Effect of Some Architectural Parameters on the 
DTSVLIW Performance

In this section, the effect of several parameters of the DTSVLIW architecture upon its 

performance is examined.

6.1.1 VLIW Fetch Starting Point

When a DTSVLIW machine is scheduling code, every time a valid instruction moves 

from the Primary Processor’s decode pipeline stage to the Primary Processor’s 

execute pipeline stage, a VLIW fetch can be attempted with its address. On a VLIW 

Cache hit, the VLIW Engine takes over execution and the block being scheduled is 

saved into the VLIW Cache. If no special action is taken, the blocks produced this 

way can have any number of long instructions from 1 to block size, but small blocks
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(1 or 2 long instructions) are likely not to have much parallelism. However, instead 

of always allowing VLIW fetches, we can easily allow VLIW fetches only when the 

size of the block being scheduled is near its maximum. That is, we can establish a 

starting point for VLIW fetches associated with the size of the current block being 

scheduled, forcing the production of larger and, hopefully, more compact (parallel) 

blocks.

Figure 6.1 shows the impact of the VLIW fetch starting point on the DTSVLIW 

performance. We have used DTSVLIW machines with 8 instructions per long 

instruction and 8 long instructions per block (8x8-block geometry) in this 

experiment. To ensure the absence of extraneous effects, the experiments leading to 

the results in this figure were performed with perfect instruction and data caches (no 

miss penalty), large VLIW Cache (3072-Kbyte), and no next long instruction miss 

penalty. The legend of Figure 6.1 shows the different VLIW fetch starting points 

used: at any block size (Start at 0), at half of the maximum block size (Start at 1/2), at 

three quarters of the maximum block size (Start at 3/4), and at full block (Start at 

1/ 1).

As the graph in Figure 6.1 shows, the strategy of discarding some possible 

VLIW fetch opportunities to favour the production of larger blocks is worthwhile. 

The machine configuration with VLIW fetch starting point at 1/2 of the maximum 

block size performs better than the configuration with starting point at any block size 

in seven of the eight benchmarks. The configuration with starting point at 3/4 of the 

maximum block size has equivalent or better performance than the two previous 

configurations in all benchmarks.

The configuration that starts issuing VLIW fetches only at full block has an 

anomalous behaviour, however. It has equivalent or better performance than the 

previous three configurations discussed in all but the compress benchmark. With 

compress, this configuration has performance inferior than the other three. This 

happens because, if VLIW fetches are allowed only when the block is full, the 

DTSVLIW sometimes does not have many opportunities to perform VLIW fetches 

and spends too much time executing code in the Primary Processor. This is more 

apparent when larger blocks are used, as shown in Figure 6.2. In Figure 6.2, we have 

used DTSVLIW machines with 16 instructions per long instruction and 16 long
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instructions per block (16x16-block geometry). With the 16x16-block geometry, the 

performance is overall better with starting point at 1/2 than with starting point at 3/4 

of the of the maximum block size. In addition, in Figure 6.2, the benchmarks 

compress, ijpeg, and xlisp show clearly that there is a performance maximum when 

the VLIW fetch starting point is near 1/2 of the block size.

We have performed several experiments to try to find a single rule for 

computing the VLIW fetch starting point that could be used for all block geometries 

without causing significant performance loss in cases where the rule does not 

perfectly fit. We have found that a starting point at 1/2 + 1 of the block size offers a 

good trade off for large and small block sizes. Figure 6.3 shows the performance of 

DTSVLIWs with 8x8-block geometry and 16x16-block geometry and two different 

starting point rules for each block geometry: the new 1/2 + 1 rule and the best rules 

previously used in the experiments of Figure 6.1 and Figure 6.2. As the graph in 

Figure 6.3 shows, the 1/2 + 1 rule produces slightly inferior performance (1.8%) than 

the 3/4 rule for the 8x8-block geometry — harmonic mean of 3.22 (3.31 u.a.m. (see 

Section 5.4)) IPC versus harmonic mean of 3.28 (3.24 u.a.m.) EPC. On the other 

hand, for the 16x16-block geometry, the 1 / 2 +1  rule produces significantly better 

performance (4.6%) than the 3/4 rule — 4.29 (4.53 u.a.m.) IPC versus 4.10 (4.28 

u.a.m.) IPC. Thus, in the face of these results, we have chosen to configure the 

DTSVLIW to start fetching from the VLIW Cache at 1/2 + 1 of the maximum block 

size in the remained experiments discussed in this thesis. It does not mean that we 

believe that 1/ 2+1 rule should be used for all DTSVLIW implementations, but only 

that it is an approximation of the optimal rule. In a silicon implementation, a larger 

set of experiments must be made, with block geometry and other machine parameters 

set, in order to determine the adequate VLIW fetch stating point.
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6.1.2 Block Size and Geometry

Figure 6.4 shows the effect of the block size (in number of instructions) and block 

geometry (instructions per long instruction (width) versus long instructions per block 

(height)) on the DTSVLIW performance. To ensure the absence of extraneous 

effects, we have used the same experimental set-up of the previous section to 

produce the results shown in Figure 6.4: perfect instruction and data caches (no miss 

penalty), large VLIW Cache (3072-Kbyte), and no next long instruction miss penalty. 

The numbers in the figure’s legend are instructions per long instruction and long 

instructions per block, respectively.

As the graph in Figure 6.4 shows, the performance of machines with the same 

block sizes and different geometries is significantly different. For example, the 

performance of the machine with 4x8-block geometry is lower than the machine with 

8x4-block geometry for all benchmark programs. The block width and height affect 

the cost of implementing a DTSVLIW machine in different ways. Large long 

instructions imply many functional units, Data Cache ports, and register file ports. A 

large number of long instructions in a block implies many renaming registers, and 

long load/store and checkpoint recovery store lists (see Section 4.7 and Section 4.8). 

To increase just the width or just the height of the block does not appear to be the 

best approach to achieve cost/effective performance — a DTSVLIW with 8x8-block 

geometry performs better than machines with 4x16-block geometry and 16x4-block 

geometry in the majority of the SPECint95 benchmarks. The DTSVLIW benefits 

from large block sizes but not linearly. A 16-fold increase in the number of 

instructions of a block (from 4x4 to 16x16) does not quite double its performance.

The performance of the 16x16 configuration on the ijpeg benchmark is 

extraordinary and has been investigated. This benchmark spends most of its 

execution in one loop. With a large enough block size, more than one iteration of the 

loop can be scheduled into a single block, allowing instructions from these iterations 

to be overlapped, extracting much greater parallelism. (In Figure 4.2, instruction 5 of 

the second loop iteration overlaps with instructions of the first.)
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Figure 6.4: Variation o f parallelism  with block size and geom etry

6.1.3 VLIW  Cache Size

The results o f Figure 6.4 represent the highest achievable SPECint95 performance of 

the DTSVLIW for the block sizes shown. However, when the VLIW Cache is 

smaller, the performance is expected to be lower due to premature flushing o f useful 

scheduled blocks by replacement blocks, leading to the need to rebuild the blocks 

flushed. This requires the Primary Processor to run, reducing parallelism.

Figure 6.5 shows the impact o f different VLIW Cache sizes (in Kbytes, the 

directory information is not included) on the performance o f a DTSVLIW machine 

with 8x8-block geometry. The associativity is the same for all sizes and equal to 4. 

As the graph shows, some benchmark programs do not demand a large VLIW Cache 

in order to exploit the performance o f the DTSVLIW. The benchmarks compress, 

ijpeg, and xlisp have small instruction working set [Chamey97] and are insensitive to 

the VLIW Cache size, achieving the same performance for the range o f  sizes used. 

However, go, which has a large working set [Chamey97], would appear to benefit 

from a VLIW Cache larger than 3072-Kbyte.

Some benchmarks sometimes show better performances with smaller VLIW 

Caches, as for example compress for the 48-Kbyte and 96-Kbyte run, and xlisp for 

the 96-Kbyte run. This happens because, with a small VLIW Cache, sometimes 

blocks have to be replaced and later rescheduled, and the newer block versions 

contain traces that are more frequently executed to the end than the replaced blocks.
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6.1.4 VLIW  Cache Associativity

Figure 6.6 shows the effect o f the VLIW Cache associativity on the performance of 

the DTSVLIW. Two cache sizes are presented: 96-Kbyte and 384-Kbyte, and the 

associativity is varied from 1 to 8. The figure shows that ijpeg is insensitive to the 

VLIW Cache associativity in this range; however, m88ksim, peri, xlisp, and 

compress (for the 96-Kbyte cache) benefit from extra associativity. From Figure 6.5 

and Figure 6.6 it is possible to infer that a two- or four-way set-associative 384-Kbyte 

VLIW Cache offers a cost-effective solution for a DTSVLIW machine with 8x8- 

block geometry.
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6.1.5 Instruction Cache Size

Figure 6.7 shows the effect of the Instruction Cache on the perfonnance o f a 

DTSVLIW machine with a 3072-Kbyte VLIW Cache. Five Instruction Cache
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configurations with increasing implementation costs amd access times are presented: 

256-byte fully associative, 1-Kbyte 2-way set associative, 4-Kbyte direct mapped, 16- 

Kbyte direct mapped, and perfect (no miss penalty). The line size for all 

configurations is 64-byte (16 instructions) and the miss penalty is 8 cycles (except for 

the perfect configuration, of course). The 256-byte fullly associative configuration has 

only four lines (256/64); therefore, it should not have an access time longer than the

1-Kbyte configuration.

As the graph in Figure 6.7 shows, the impact o f  Instruction Cache misses on 

the performance of a DTSVLIW machine with a lairge VLIW Cache is negligible. 

The performance loss, when compared with a perfect Instruction Cache, of the 

smallest configuration is only more than 1% (1.54%) for gcc. However, a 3072- 

Kbyte VLIW Cache is hardly implementable in an efficient way with current 

technology and, with small VLIW Caches, the Instruction Cache may be more 

important for the overall DTSVLIW performance.

Figure 6.8 shows the effect of the Instruction Cache on the performance of a 

DTSVLIW machine with a 192-Kbyte VLIW Cache. Five Instruction Cache 

configurations, similar to those used in previous experiment, are presented. These 

are: 512-byte fully associative, 1-Kbyte 4-way set associative, 8-Kbyte 2-way set 

associative, 32-Kbyte direct mapped, and perfect (no miss penalty). The line size and 

the miss penalty for all configurations are the same as in the previous experiment: 64- 

byte and 8 cycles, respectively.

As shown in Figure 6.8, the same benchmarks that are sensitive to the VLIW 

Cache capacity (see Figure 6.5 and Figure 6.6) are also sensitive to the Instruction 

Cache capacity. These benchmarks, namely gcc, go, peri, and vortex, have an 

instruction working set of significant size [Chamey97] and, therefore, require large 

caches for instructions.

From Figure 6.8 is possible to see that, if  the VLIW Cache is not large enough, 

a significant number of blocks may have to be rescheduled. If the instructions that are 

necessary to build these blocks are not in the Instruction Cache due to lack of 

capacity, misses will occur and the overall machine performance will be affected. On 

the other hand, Figure 6.7 shows that, if the VLIW Cache is large enough, the 

Instruction Cache can be substituted for a simple instruction buffer.
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6.1.6 Multicycle Instructions Latency

The Sparc 7 ISA does not have integer divide or multiply instructions, but only a 

multiply-step instruction that executes in a single cycle [Sun87]. Therefore, from the 

set o f integer instructions, only loads and stores require more than one cycle to 

execute in this ISA.

The graph in Figure 6.9 shows the effect o f the load/store instructions latency 

on the performance o f the DTSVLIW with 8x8-block geometry. In the figure’s 

legend, LxSy stands for load instructions with latency o f v and store instructions with 

latency o f y .  In these results, we express the latency as the number o f cycles 

necessary for the load/store execution and the functional units o f the VLIW Engine 

are fully pipelined.

As the graph in the figure shows, the latency of load instructions has a severe
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impact in the DTSVLIW performance -  25.9% (25.3% u.a.m.) performance loss with

2-cycle and 50.7% (50.2% u.a.m.) with 3-cycle load latency. This occurs because 

load instructions are frequent in integer code and loaded data is usually required 

shortly after the load instructions. On the other hand, the latency of store instructions 

does not have a strong impact on the DTSVLIW performance. Store instructions are 

also frequent in integer code; however, the stored data is often not required again for 

a relatively large number of instructions.

The graph in Figure 6.10 shows the impact of load/store latency on the 

performance of a DTSVLIW machine with 8x16-block geometry. The impact is 

smaller with this geometry — 20.6% (20.4% u.a.m.) performance loss with 2-cycle 

load latency and 43.1% (42.7% u.a.m.) with 3-cycle load latency on average. With a 

longer block, the Scheduler Unit has more opportunities to accommodate instructions 

in the empty long instructions created by the scheduling of multicycle loads. This 

results in better scheduling and better performance, but the latency impact is still high 

and there are costs for using long blocks (see Subsection 6.1.2).

As mentioned in Subsection 4.1.8, the Primary Processor does not pipeline 

multicycle instructions but retains them on its execute pipeline stage until they 

complete execution. Table 6.1 presents the percentage of cycles the DTSVLIW 

spends waiting for these multicycle instructions to complete in the Primary 

Processor. As the table shows, the cost of waiting in the Primary Processor is very 

small and it is not an issue in the impact of the load/store latency on the DTSVLIW 

performance. Table 6.1 also presents the percentage of VLIW execution cycles for 

the DTSVLIW with 8x16-block geometry. This machine configuration executes 

98.56% (98.57% u.a.m.) of the cycles in VLIW mode on average. This strongly 

suggests that the DTSVLIW architecture is effective in taking advantage of its VLIW 

Engine.

There are two simple approaches for reducing the impact of the load instruction 

latency on the DTSVLIW performance. The first is always to implement loads with 

1-cycle latency. This would, in some cases, almost double the DTSVLIW clock cycle 

length and, therefore, it may not be a cost-effective alternative. The second is to 

implement loads with 1-cycle latency and to use a small and fast Data Cache (8- 

Kbyte direct mapped, for example). This would increase the Data Cache miss rate,
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but it may be a more cost-effective alternative. Another approach to further reduce 

the impact o f loads on the DTSVLIW performance is to use hardware- or software- 

implemented data prefetching [VanderWiel97]. This approach can also be used 

together with one o f the former approaches.
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T ab le  6.1: P ercen tage  o f  cy c le s  w aiting load /store latency in the Prim ary P rocessor and  
p ercen tage  o f  V L IW  execution  cycles

com press gcc go 'jpeg m88ksim peri vortex xlisp H. Mean A. M ean

Waiting Cycles (8x8) 0.14% 0.11% 0.08% 0.00% 0.01% 0.01% 0.03% 0.01% 0.00% 0.05%
Waiting Cycles (8x16) 0.1 1% 0.18% 0.21% 0.00% 0.01% 0.02% 0.05% 0.02% 0.01% 0.08%
VLIW Cycles (8x16) 97.97% 98.20% 97.49% 99.98% 99.87% 96.37% 98.89% 99.80% 98.56% 98.57%



6.1.7 A Feasible DTSVLIW Machine Configuration

So far, the results presented have been produced under ideal assumptions to allow 

appreciation of individual architecture parameters. However, the DTSVLIW 

architecture permits straightforward implementation using current VLSI technology 

if reasonable design parameters are used. The graph in Figure 6.11 presents the 

performance of a DTSVLIW machine with a set of parameters that permits 

implementation using available technology. These parameters are:

• Blocks with 16 long instructions and 8 instructions per long instruction.

• 12-wide VLIW Engine, with typed (specialised) functional units and 2-cycle next 

long instruction miss penalty. The functional units used are: 5 integer, 3 

load/store, 2 floating-point, and 2 branch functional units. Although this VLIW 

Engine has twelve functional units, the VLIW fetch is 8-instruction wide because 

the block is 8-instruction wide. This is the main reason why we are using 2-cycle 

next long instruction miss penalty. One extra cycle has been added to the VLIW 

Engine pipeline to allow the unpacking of 8-instruction wide long instructions, 

which are fetched from the VLIW Cache, into the 12-instruction wide long 

instructions required by VLIW Engine. The Scheduler Unit is conscious of the 

number of functional units available and schedules the 8-instruction wide long 

instructions respecting their availability per cycle.

• 2-cycle latency load instructions and 1-cycle latency store, integer (the Sparc 7 

ISA does not have integer divide or multiply but only multiply-step, which can 

execute in one cycle), branch, and floating-point instructions. Latency of one 

cycle is a low latency for floating-point instructions; nevertheless, this latency has 

been used because the benchmarks are integer and, therefore, the number of 

floating-point instructions executed is zero or negligible.

• 192-Kbyte 4-way set-associative VLIW Cache with 2-cycle fully pipelined 

access.

• 8-Kbyte 2-way set-associative Instruction Cache with 1-cycle access and 8-cycle 

miss penalty.

• 32-Kbyte 2-way set-associative Data Cache with 2-cycle fully pipelined access 

and 8-cycle miss penalty.

• Perfect (pre-initialised with all instructions and data) unified second level cache.
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The number of entries of the VLIW Engine lists (load, store, and checkpoint 

recovery store) and the number of renaming registers has been left unlimited. 

However, the maximum number of entries required for these lists and the maximum 

number of renaming registers used during the simulation have been measured and are 

shown in Table 6.3.

Figure 6.11 puts together, in form of stacked bars, the result of various 

simulations to allow appreciation of the impact of various architectural parameters in 

the performance of this DTSVLIW machine. The first bar is the performance of the 

DTSVLIW with the parameters presented. The following bars represent the extra 

performance that would be added if the corresponding cost (shown in the legend) was 

removed. Table 6.2 shows these costs as percentages of the maximum performance, 

together with other relevant information. Some items in this table do not have 

harmonic mean because it cannot be computed when the list of values contains zeros.

As the graph in Figure 6.11 and in Table 6.2 show, the load instruction latency 

is the principal contributor to the reduction of this DTSVLIW machine performance, 

and its cost is significant for all benchmark programs used. On the other hand, the 

second most important parameter that affects the machine performance — the VLIW 

Cache size — has a significant impact only on the gcc, go, and vortex benchmarks. It 

is important to note, however, that, although large, this VLIW Cache can hold only 

256 blocks and only 35% (36% u.a.m.) of the instructions saved in these blocks 

during the simulations have been valid (Table 6.2, last row). Therefore, if nop 

instructions had not been saved in the VLIW Cache, its capacity would have been 

better used and the performance of gcc, go, and vortex would have been significantly 

better. In addition, if the VLIW Cache capacity had been better used, the Instruction 

Cache could have been even smaller than described. Instruction Cache misses cause 

significant performance losses only for gcc, go, and vortex and, as discussed in 

Subsection 6.1.5, if the VLIW Cache capacity is large enough, the size of the 

Instruction Cache can be smaller than the size used.

Next long instruction misses have a small, although significant, impact on the 

machine performance. If nop instructions were not saved in the VLIW Cache, a more 

elaborated VLIW fetch would be required, which would result in the need for the 

next long instruction miss penalty to be even higher than 2-cycle. However, the next
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long instruction address can be predicted and the number of misses reduced using 

techniques similar to those used in dynamic branch prediction.

The impact of using typed (specialised) as opposed to untyped functional units 

(capable of executing all instructions) is also small. This means that, the combination 

of specialised functional units used is in good balance with the ILP available in the 

benchmarks.

Table 6.3 shows that the number of renaming registers required for execution 

are within a range that does not cause significant cycle time increase due to register 

file size. The VLIW Engine lists (load, store, and checkpoint recovery store) do not 

reach unacceptable sizes either, and they can be implemented without imposing extra 

penalty on the cycle time. However, since the number of aliasing exceptions is low 

(Table 6.2), a cheaper aliasing exception detection and recovery mechanism is 

advisable.

A performance of 1.89 (2.01 u.a.m.) instructions per cycle in a machine with 12 

functional units seems to be low. However, experiments with the PowerPC620, an 

aggressive Superscalar machine with 6 functional units, have shown an average 

(arithmetic mean) of 1.2 instructions per cycle only [Patterson96 (page 341)]. Taking 

into consideration that DTSVLIW machines can be implemented with clock speed 

higher than equivalent Superscalar machines such as the PowerPC620, it appears to 

be worth implementing DTSVLIW machines with current technology. Simple 

machines with fast clocks have proved to be more powerful than their more complex 

counterparts [Smith_JE94]. In addition, DTSVLIW machines using equivalent 

hardware can perform better than Superscalars (see Section 6.5).

121



4.5 

4

3.5

I  2.5
V)

i  2

I  15
to
= 1

0.5 

0
compress gcc go ijpeg m88ksim peri vortex xlisp

B enchm ark

F igure 6 .11: P erform an ce o f  a feasib le D T SV L IW  m achine

T ab le 6.2: P erform an ce data o f a feasib le D T SV L IW  m achine

co m p ress gcc go 'jpeg m 88ksim peri vortex xlisp H .M ean A .M ean

Instructions per C ycle 2 .0 7 1.33 1.31 2.77 2.56 2.17 1.92 1.98 1.89 2.01
Load Latency C ost 15.64% 8.16% 9.22% 20.47% 15.53% 31.67% 13.26% 27.32% 14.50% 17.66%
VLIW  Cache Cost 0.00% 33.27% 29.64% 0.00% 0.01% 0.00% 20.26% 1.31% - 10.56%
Data Cache Cost 19.24% 3.39% 3.30% 1.38% 0.98% 0.18% 5.69% 3.58% 0.95% 4.72%
N ext LI M iss C ost 5.37% 2.23% 3.38% 0.03% 5.84% 5.49% 2.74% 6.72% 0.22% 3.97%
Tvped F.U. Cost 0.00% 4.48% 4.34% 3.98% 1.96% 1.97% 1.51% 5.43% - 2.96%
Instruction C ache Cost 0.01% 7.81% 4.92% 0.01% 0.23% 0.95% 5.17% 0.05% 0.02% 2.39%

A liasing Exceptions 0 4 39 0 1 0 1 0 - 5.63

VLIW  Engine Execution C ycles 96 .43% 53.42% 60.47% 99.97% 98.47% 86.56% 73.58% 99.09% 79.19% 83.50%

Valid Instructions per Block 25.18% 39.25% 35.15% 38.95% 36.44% 4 1 .0 5 °, 44.96% 30.35% 35.35% 36.42%

T able 6.3: R esou rce  consum ption  o f  a feasib le D T SV L IW  m achine

com p ress gee ijpeg m 88ksim peri vortex xlisp H .M ean A .M ean

Integer Renam ing Registers 33 49 44 24 38 33 39 28 34.32 36.00

Flag Renam ing Registers 17 20 17 15 18 21 18 17 17.70 17.88

M em ory Renam ing Registers 14 14 8 7 11 8 15 8 9.78 10.63

Load List Size 10 15 16 7 10 11 12 10 10.72 11.38

Store List Size 32 15 32 5 13 12 23 14 13.24 18.25

Checkpoint Rec. Store List Size 48 34 48 II 20 31 39 25 25.82 32.00

6.2 Effectiveness o f  the DTSVLIW Scheduling Algorithm

The scheduling algorithm used in the DTSVLIW architecture and the Greedy 

algorithm used in the DIF [Nair97] architecture are subsets o f the FCFS algorithm 

[Davidson81], described in Section 3.1; i.e., they are simplifications o f the FCFS 

algorithm. The difference between the Greedy and the FCFS algorithms is that the 

Greedy algorithm does not implement step 3 o f FCFS (see Page 58). That is, the 

Greedy algorithm never adds long instructions at the top of the scheduling list but 

only at the bottom. The DTSVLIW algorithm does not add instructions at the top

■ Heterogeneous 
FU Cost

□ VLIW Cache Cost

■ Inst Cache Cost

□ Data Cache Cost

□ Load Latency

■ Next LI Mss Cost

□ ILP
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either and, in addition, only moves up an instruction if  there is a slot available in the 

next long instruction in the list. The FCFS and the Greedy algorithms, on the other 

hand, can move up an instruction to any available slot in the list, from the next long

instruction to the top.

In this section, we evaluate the effectiveness of the DTSVLIW scheduling 

algorithm by comparing its performance with that of FCFS and Greedy algorithms. 

To perform the comparisons, we have modified our DTSVLIW simulator to make it 

able to use the FCFS and Greedy algorithms and have performed experiments using 

the SPECint95 benchmark suite.

6.2.1 Evaluation of the Performance of the DTSVLIW, Greedy, and 
FCFS Scheduling Algorithms — Untyped Functional Units

In order to compare the three scheduling algorithms, we have chosen to use three 

different block geometries: 4x4, 8x8, and 16x16. To ensure the absence of 

extraneous effects and identical conditions, the experiments were performed with 

perfect instruction and data caches (no miss penalty), large VLIW Cache (3072- 

Kbyte), instruction latencies of 1 cycle, and no next long instruction miss penalty. 

The DTSVLIW renaming mechanism was used in all algorithms.

As shown in Figure 6.12, all three scheduling algorithms perform very 

similarly, although the DTSVLIW algorithm achieves marginally inferior results in 

most cases. This is to be expected as it is possible for instructions to be blocked from 

moving up the scheduling list by full long instructions at some interior position of the 

list. This prevents empty instruction slots at higher list positions from being filled, 

which reduces the code density in the block and limits the achievable parallelism. 

Blocking in this fashion does not occur for the other two algorithms. However, the 

DTSVLIW algorithm is expected to provide a much more feasible and faster 

implementation, and the results in Figure 6.12 demonstrate that its use should not 

significantly prejudice the architecture. In some cases, our simplified algorithm does 

as well as and even outperforms the other algorithms. This is markedly so for the 

16xl6-ijpeg run, but it is also seen in the 16xl6-m88ksim run.

The full FCFS is as good as or better than the Greedy algorithm for the 16x16 

runs, but is outperformed by the Greedy algorithm for the smaller geometries, 

particularly for the 4x4 runs. This happens because, in some cases, the extra long
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instruction added at the top o f the block by the FCFS algorithm cannot be filled by 

subsequent instructions as these have dependencies with instructions in the middle o f 

the block. These instructions when added to the end o f the block cause the block to 

be filled and flushed to the VLIW Cache with the first long instruction only partially 

filled, reducing the code density and the achievable parallelism. The Greedy 

algorithm does not add the new long instruction at the top o f the block allowing for 

another one at the end o f the block that must be more effectively filled despite the 

dependencies caused by instructions added to it. Increasing the number o f long 

instructions in the block and the width o f these long instructions reduces the resource 

blocking o f instructions and allows more instructions to be added by the FCFS 

algorithm after resource blocking occurs. This gives more opportunity for the added 

front long instruction to be filled.
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6.2.2 Evaluation of the Performance of the DTSVLIW, Greedy, and 
FCFS Scheduling A lgorithm s— Typed Functional Units

The simulations described in this section so far assume that all functional units can 

execute all instructions; i.e., the functional units are untyped. However, machines 

using typed functional units are more likely scenarios in real implementations. In 

order to evaluate the impact of typed functional units in the performance o f the 

scheduling algorithms, we have performed experiments using three machine 

configurations:

1. 5x4 — with 2 integer, 1 load/store, 1 floating-point, and 1 branch functional units 

in the VLIW Engine, and a 4 long instructions long block
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2. 10x8 — with twice the number of functional units and twice the number of long

instructions of the previous configuration

3. 20x16 -  with four times the number of functional units and four times the

number of long instructions of the 5x4 configuration

The results we have obtained with these three machine configurations are presented 

in graph form in Figure 6.13 and summarised in Table 6.4, Table 6.5, and Table 6.6.

As a comparison between the graphs in Figure 6.12 and Figure 6.13 shows, the 

use of typed functional units causes significant performance loss, even though the 

typed configurations have 25% more instruction slots in each long instruction than 

the similar untyped ones. However, a small increase in the number of functional units 

might significantly reduce this performance loss. For example, in the DTSVLIW 

machine configuration described in Subsection 6.1.7, the performance loss due to the 

use of typed functional units is small, even though that configuration has only 2 

functional units more than the 10x8 configuration. Nevertheless, we have chosen the 

number of functional units in the typed configurations described in this subsection 

with the specific purpose of stressing any existing differences between the 

algorithms’ performance. As summarised in Table 6.4, Table 6.5, and Table 6.6, the 

5x4 configuration achieves from 77% (77% u.a.m.) to 79% (79% u.a.m.) of the 

untyped 4x4 average performance for the three algorithms, while 10x8 configuration 

achieves from 81% (81% u.a.m.) to 85% (85% u.a.m.) of the untyped 8x8 

performance, and the 20x16 achieves from 85% (83% u.a.m.) to 90% (89% u.a.m.) of 

the untyped 16x16 performance.

The relative performance of the three algorithms did not change much from 

machines with untyped to machines with typed functional units. In Table 6.4, Table 

6.5, and Table 6.6, the last two columns contain the average performance of each 

algorithm as a percentage of that of the FCFS algorithm. As the tables show, the 

performances of the DTSVLIW and Greedy algorithms as percentage of the FCFS 

algorithm vary from 93% (92% u.a.m.) to 105% (106% u.a.m.) percent for 

configurations with untyped functional units, and from 95% (96% u.a.m.) to 102% 

(102% u.a.m.) for typed configurations. That is, the DTSVLIW and Greedy 

algorithms have presented performances closer to the FCFS with typed functional 

units. This shows that, for the range of configurations used, the DTSVLIW algorithm 

performs almost as well as the more complex Greedy and FCFS algorithms.
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fa b le  6.4: Sum m ary o f  the resu lts —4x4 & 5x4 m ach in e con figu ration s

Relative Perform ance  — H. Mean (A.Mean)
IPC — H.Mecin (A.Mean) Algorithm /F C F S

4x4 5x4 5x4 /  4x4 4x4 5x4
DTSVLIW 2.33 (2.35) 1 .80 (1 .80 ) 77%  (77% ) 103% (103% ) 100% (100% )
GREEDY 2.39 (2.41) 1.82 (1.83) 76%  (76% ) 105% (106% ) 102% (102% )
FCFS 2.27 (2.28) 1.79 (1.80) 79%  (79% ) 100% (100% ) 100% (100% )

T able 6.5: Sum m ary o f  Che resu lts — 8x8 & 10x8 m achine con figu ration s

Relative Perform ance — H.Mean (A.Mean)

IPC -  H. Mean (A.Mean)) Algorithm  /  FCFS

8x8 10x8 1 0 x 8 /8 x 8 8x8 10x8

DTSVLIW 3.22 (3.24) 2.75 (2.77) 85% (85% ) 93%  (92% ) 97%  (97% )

GREEDY 3.48 (3.55) 2.88 (2.91) 83% (82% ) 100% (100% ) 102% (102% )

FCFS 3.47 (3.53) 2.82 (2.85) 81% (81% ) 100% (100% ) 100% (100% )

T able 6.6: Sum m ary o f  the resu lts — 16x16 & 20x16  m achine con figu ration s

Relative Performance -  H.Mean (A.Mean)

IPC — H.Mean (A. Mean)) A Igorithm /  FCFS

16x16 20x16 2 0 x 1 6 /1 6 x 1 6 16x16 20x16

DTSVLIW 4.29 (4.53) 3.68 (3.77) 86%  (83% ) 100% (103% ) 95%  (96% )

GREEDY 4.28 (4.40) 3.87 (3.94) 90%  (89% ) 100% (100% ) 100% (100% )

FCFS 4 .2 9 (4 .4 1 ) 3.86 (3.93) 90%  (89% ) 100% (100% ) 100% (100% )

6.3 DTSVLIW versus DIF

An important difference between the DTSVLIW and the DIF scheduling algorithms 

is the register renaming mechanism. The DTSVLIW uses copy instructions for 

renaming, with the disadvantage that the slots used by them cannot be used for other 

instructions. The DIF, on the other hand, has several extra instances o f each ISA
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register, with the disadvantage of requiring large register files if the renaming of the 

same register is to be allowed many times within the same block.

In the experiments described so far, we have used the DTSVLIW renaming 

mechanism, since we wanted to compare the algorithms under identical conditions. 

In order to compare the DTSVLIW with the DIF, we have fully implemented the DIF 

scheduling algorithm in our simulator and have run experiments with DIF machine 

configurations and equivalent DTSVLIW configurations. We have used four 

instances of each integer and floating-point register in the DIF simulations, which 

corresponds to 96 integer and 96 floating-point renaming registers, and 32 instances 

of each integer and floating-point Sparc condition register. The same number of 

renaming registers was given to the DTSVLIW, but it has never used any of them to 

the full during the simulations. We have set the DTSVLIW’s VLIW Cache size at 

3072-Kbyte, while the DIF’s VLIW cache size has been set at a value that allows the 

same number of blocks of the equivalent DTSVLIW machine configuration. (For 

VLIW caches with equivalent number of blocks, the DIF’s VLIW cache requires 

more bytes than the DTSVLIW’s VLIW Cache does due to the DIF’s exit maps. See 

Section 4.10.) The results are shown in Figure 6.14 and Figure 6.15.

As the graph in Figure 6.14 shows, the DIF outperforms the DTSVLIW in all 

benchmarks with the 4x4 configuration. However, with the 8x8 configuration, the 

DTSVLIW outperforms DIF in the compress, gcc, go, and mk88sim. With the 16x16 

configuration, the DTSVLIW outperforms DIF in all benchmarks by a large margin. 

This happens because, for larger configurations, renaming is more frequent and four 

instances of each integer and floating-point register, as used in the DIF, is not 

enough. With typed functional units, the DTSVLIW advantage is smaller, as shown 

in Figure 6.15. In this case, the DTSVLIW is outperformed by DIF in all benchmarks 

for the 5x4 and 10x8 configurations, although not by a large margin. However, for 

the 20x16 configuration, the DTSVLIW outperforms DIF in all benchmarks by a 

significant margin. One can infer that a DIF implementation with sufficient instances 

of each register would always outperform the DTSVLIW. However, it is not practical 

to implement machines with more than a few instances per ISA register. The number 

of register read and write ports grows with the number of functional units, so a large 

multiported register file would render the machine clock rate too slow.
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Figure 6.16 shows a comparison between a DTSVLIW and a DIF machine 

using more realistic parameters. The performance data of the DIF machine and the 

parameters used for both machines have been collected from [Nair97]. The 

parameters were: 2 branch units plus four untyped functional units; 2-way set- 

associative Instruction Cache with 128-byte lines, 16 lines per set (4-Kbyte), and 2 

cycle miss penalty; direct-mapped Data Cache with 128 lines each of length 32 bytes 

(4-Kbyte), and a 2-cycle miss penalty; 2-way set associative VLIW Cache with 

512x2 blocks; and a block size of 6 long instructions of 6 instructions each.

From this data and assuming an instruction size of 6 bytes for both machines, 

the DTSVLIW VLIW Cache size is 216-Kbyte and the DIF VLIW cache size 463- 

Kbyte. The DIF VLIW cache is larger due to the DIF register renaming system. For 

each block exit point, the DIF machine requires 19 bytes for the exit map [Nair97]. 

The number of renaming registers is different for the same reason. Four instances of 

each integer and floating-point register were required in the DIF simulation; i.e., 96 

integer and 96 floating-point extra registers for renaming, while the maximum 

number of integer and floating-point renaming registers required in the DTSVLIW 

simulation was 18 and 6, respectively.

As can be seen in Figure 6.16, the average performance of the two machines is 

similar: 2.4 (2.4 u.a.m.) instructions per cycle for the DTSVLIW and 2.2 (2.2 u.a.m.) 

for the DIF, a difference of approximately 10% (10% u.a.m.) in favour of DTSVLIW. 

However, the DTSVLIW achieves this performance with fewer resources. DIF 

performs better in compress and xlisp, while DTSVLIW performs better in the 

remaining benchmarks.
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6.4 DTSVLIW versus VLIW

The VLIW research group at IBM is a leading group on VLIW compiler and 

architecture technologies. In [Moreno97] they have presented experimental 

performance results of various VLIW configurations using a powerful VLIW 

compiler named Chameleon. Chameleon has an aggressive suite of optimisations, 

including a complete set of traditional optimisations plus several ILP-increasing 

optimisations such as loop unrolling, if-conversion (predication), and instruction 

hoisting.

In Figure 6.17, we show the performance figures for programs from the 

SPECint92 and SPECint95 running in two VLIW configurations described in 

[Moreno97] and [Moudgill96] executing code compiled by Chameleon, and in two 

DTSVLIW configurations. The benchmarks m88ksim and go are from SPECint95 

while the others are from the SPECint92. One VLIW configuration used in the IBM’s 

experiments has been set with 8 untyped functional units and the other has been set 

with 16. The instruction latencies have been set at 1-cycle for integer (including 

load/store), 3-cycle for integer multiply, 10-cycle for integer divide, and 3-cycle for 

floating-point instructions. The number of added registers for renaming has been 64- 

integer, 64-floating-point, and 16-condition in the 8-wide configuration, and 128- 

integer, 128-floating-point, and 32-condition in the 16-wide configuration. The 

experiments have been performed with perfect instruction and the data caches (no 

miss penalty).

We have configured the two DTSVLIW machines with parameters identical or 

equivalent to those used in the two IBM VLIW machines. One DTSVLIW 

configuration used in our experiments has been set with an 8x8-block and the other 

has been set with a 16x16-block, both with untyped functional units. The instruction 

latencies have been all set at 1-cycle, which is a value lower than that used in the 

IBM’s experiments for integer multiply, integer divide, and floating-point 

instructions. However, the Sparc 7 ISA does not have integer multiply or divide 

instructions but only multiply-step, which can execute in one cycle. Since the 

benchmarks are all integers, the number of floating-point instructions executed is 

negligible; therefore, the different latencies used for floating-point instructions do not 

constitute a problem. The number of renaming registers used during the DTSVLIW
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simulations has never exceeded the number used in the IBM ’s simulations in any 

combination o f benchmark program and machine configuration. Our experiments 

have also been performed with perfect instruction and the data caches.

As the graph in Figure 6.17 shows, the VLIW outperforms the DTSVLIW in 

compress and eqntott by a large margin. However, for gcc, go, m88ksim, and xlisp 

the DTSVLIW has consistent better performance for both machine configurations 

shown. These results demonstrate that, in most cases, the DTSVLIW algorithm is 

able to find more parallelism than a state-of-the-art VLIW compiler under similar 

conditions. This is possible because the DTSVLIW scheduling algorithm has access 

to dynamic information not available to the VLIW compiler. We believe that, a 

conjunction o f the DTSVLIW architecture and compiler technology such as loop 

unrolling, software pipeline, and predication (if added to the DTSVLW ISA) would 

perform even better than shown, in particular with compress and eqntott. Published 

results coiToborate this view, showing that the use o f such optimisations does 

significantly improve performance, in particular the use o f predication in the eqntott 

and compress benchmarks [August98]. Other compiler techniques could also be 

developed specifically for the DTSVLIW architecture.

□  DTSVLIW  8  8  B V L I W 8  □ D T S V L I W 1 6  16  B V L IW  16

eqntottcompress m88ksim

Benchmarks 

F igure 6.17: D T SV L IW  versus V L IW

6.5 DTSVLIW versus Superscalar

The graph in Figure 6.18 shows a comparison between the performance o f the 

Superscalar processor PowerPC620, as described in [Diep95], and a DTSVLIW
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machine using equivalent hardware. The PowerPC620 performance figures have 

been taken from [Diep95], and the parameters used there are:

• 4-instruction wide fetch, dispatch, complete, and writeback pipeline stages

• 1-cycle integer, 2-cycle load, and 3-cycle floating-point instruction latency

• 3 integer, 1 load/store, 1 floating-point, and 1 branch functional units, with 2, 

3, 2, and 4 reservation stations for the functional units of each kind (a total of 

15 reservation stations), respectively

• 32-Kbyte, 8-way set associative instruction and data LI caches, with 8-cycle 

miss penalty (a perfect unified L2 cache was assumed)

• branch predictor with a 256-entry 2-way BTB and a 2048-entry (2-bit 

counters) direct mapped BHT

The DTSVLIW has been configured with a 4x8 block and functional units of 

the same type, in the same number, and with same latency of the PowerPC620. The 

only exception has been the latency of the floating-point functional unit, whose 

latency has been set to 1-cycle. This does not constitute a problem because the 

benchmarks are integer and, therefore, the number of floating-point instructions 

executed is zero or negligible. Although six functional units are available in the 

VLIW Engine with this machine configuration, we have used 4-instruction wide long 

instructions in the DTSVLIW to allow the same dispatch width for both machines. 

An extra dispatch pipeline stage was added to the VLIW Engine pipeline to account 

for the logic necessary to unpack the long instructions coming from the VLIW Cache 

and to issue them to the appropriate functional units. A branch predictor with the 

same characteristics of the PowerPC620’s has been used to try to reduce the extra 

cost added to next long instruction misses by this dispatch stage. An 8-Kbyte, 8-way 

set associative instruction cache, and a 24-Kbyte, 8-way set associative VLIW Cache 

have been used. These sizes have been chosen to make this pair equivalent to the 

instruction cache of the PowerPC620. The DTSVLIW’s Data Cache has been 

configured with the same characteristics of the PowerPC620’s. In this simulation, the 

DTSVLIW has been allowed to execute approximately the same number of 

instructions executed in the PowerPC620 simulation described in [Diep95]. The 

number of instructions executed is shown in Table 6.7.

As Figure 6.18 shows, the performance of the two machines is comparable,
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although the DTSVLIW performance is better overall. This is so because the 

scheduling list o f the DTSVLIW is larger than the instruction window (all reservation 

stations) o f the PowerPC620, which allows more opportunities for finding ILP. 

Although larger than instruction window of the PowerPC620 (15 instructions), the 

scheduling list o f the DTSVLIW (32 instructions) is simpler. The complexity o f the 

instruction window o f the PowerPC620 is proportional to the number o f reservation 

stations times the number o f functional units (15 * 6 = 80, see Subsection 2.1.2), 

while the complexity o f the scheduling list o f the DTSVLIW is proportional to the 

number o f candidate instructions times the number o f instructions per long 

instruction ( 8 * 4  = 32, see Section 4.6). Note that a DTSVLIW implementation is 

likely to have a significantly higher clock rate than that o f the PowerPC620, because, 

different from the PowerPC620, the DTSVLIW scheduling hardware is not in its 

main data path. In addition, due to the instruction fetch bandwidth problem of 

Superscalar machines, described in the Subsection 3.4.1, the PowerPC620 

performance in teims o f ILP can be seen as a high-end performance for standard 

Superscalar machines. The DTSVLIW described in this section, on the other hand, is 

a low-end DTSVLIW and larger DTSVLIW configurations, such as that described in 

Subsection 6.1.7, can be implemented with increasing performance returns.

T able 6.7: N um ber o f  in structions executed

B en ch m ark com press eqntott espresso xlisp
Instructions Executed 6,884,257 3,147,235 4,615,093 3,376,416

m DTSVLIW ■ PowerPC

compress eqntott espresso xlisp
Benchmarks

F igu re 6.18: D T SV L IW  versu s P o\verP C 620
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Chapter 7 

Discussion

An ISA is a contract between a class of programs and a set of processor 

implementations [Rau93a]. Usually, this contract is concerned with the instructions 

format and the interpretation of the bits that constitute each instruction. However, in 

the case of systems that exploit ILP, this contract extends to information embedded in 

the programs regarding the available parallelism between the instructions of the 

programs. Special functions are performed by ILP exploiting systems in order to find 

and take advantage of ILP, and different forms of ISA contract divide these functions 

between the compiler and the hardware differently. These functions can be 

summarised as follows:

• To determine dependencies between instructions.

• To determine independencies between instructions; i.e., to find out the 

instructions that are independent of any instruction that has already been 

assigned to execute but may have not yet completed.

• To bind resources; i.e., to schedule the independent instructions to execute 

at some particular time on some specific functional unit, and to assign 

registers into which the results of these instructions may be written.

Figure 7.1 (page 136) shows some forms of ISA contract for ILP exploiting systems.

Superscalar machines execute sequential ISA code and exploit ILP; therefore, 

their hardware has to determine dependencies and independencies between several 

instructions, and bind several instructions to resources at the same time, dynamically.
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The hardware for doing this is in the main data path of Superscalar machines. 

Because of this, Superscalar machines with elaborate instruction scheduling hardware 

have slower clocks than simpler Superscalar machines, and the latter may have a 

better performance than the former due to their fast clocks [Smith_JE94].

Superscalar and VLIW machines are at opposite extremes regarding ILP 

exploitation. In standard VLIW systems, the compiler is responsible for all functions 

that have to be performed in order to exploit ILP. This allows the VLIW hardware to 

be simple and fast, but makes the VLIW ISA contract very restrictive. Developments 

in compiler or hardware technology following a VLIW ISA specification may allow 

for greater parallelism than that which can be expressed within this VLIW ISA 

specification. To take advantage of these developments, the VLIW ISA may have to 

be changed; this creates the VLIW object code compatibility problem.

DTSVLIW machines execute sequential code, and their hardware, similar to 

that of Superscalars, has to determine dependencies and independencies between 

instructions and to bind instructions to resources dynamically. However, different 

from Superscalars, DTSVLIW machines perform the functions related to ILP 

exploitation with one instruction at a time, producing VLIW code that is cached and 

thereafter executed many times. We have shown that a DTSVLIW machine performs 

better than a Superscalar machine with equivalent hardware. We have also shown 

that DTSVLIWs perform better than VLIWs with the same degree of parallelism.

In the rest of this chapter, we compare the DTSVLIW architecture with other 

architectures that have sequential ISA contract and with promising architectures that 

do not have sequential ISA contract.
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Figure 7.1: Different forms of ISA contract.

7.1 DTSVLIW versus Enhanced Superscalar 
Architectures

The Fill Unit of Superscalar machines enhanced with a trace cache (Subsection 3.4.1) 

is the equivalent to the Scheduler Unit of DTSVLIW machines. However, the 

Scheduler Unit performs all functions necessary to ILP exploitation on a DTSVLIW 

machine. In contrast, Superscalar machines implemented according to the standard 

Trace Cache architecture use their Fill Unit only to ameliorate the fetch bottleneck 

(Subsection 3.4.1). Nevertheless, the DTSVLIW and Trace Cache architectures can 

be seen as members of the same family of architectures. They can be put in a scale of 

how many ILP extraction functions are performed by their Scheduler Unit/Fill Unit 

and how many of these functions are performed by their parallel execution-core. 

Figure 7.2 shows such a scale and the positions of the DTSVLIW and Trace Cache 

architectures.

Like standard VLIW and standard Superscalar, the DTSVLIW and Trace Cache
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architectures are at opposite extremes. As shown in Figure 7.2, the Trace Cache 

architecture’s execution-core performs all ILP related functions, while the 

DTSVLIW’s execution-core performs none. On the other hand, the DTSVLIW’s 

Scheduler Unit performs all ILP related functions and the Trace Cache architecture’s

Fill Unit performs none.

One might argue that the DTSVLIW sequential execution during the 

scheduling phase would strongly affect its performance. However, in the DTSVLIW 

or in any architecture that always operate in parallel such as the Trace Cache, the first 

time a fragment of code is executed it is likely to cause data and instruction cache 

misses that will determine the performance during its execution. In addition, no 

machine has dynamic branch behaviour information when fresh code fragments are 

encountered, and the more parallel the machine the larger the effect of branch 

mispredictions. Furthermore, our results show that most of the time the DTSVLIW is 

executing code in VLIW-mode (Table 6.1) if the VLIW Cache is large enough to 

hold pre-scheduled code. Results with the Trace Cache architecture also show that 

the code can be found in the trace cache most of the time [Rotenberg97].

Real implementations usually distance themselves from standard architecture 

definitions due to real world constraints. For example, in the DTSVLIW 

configuration described in Subsection 6.1.7 and in the DTSVLIW configuration 

compared with the PowerPC620 in Section 6.5, we have left to the execution-core 

the task of dispatching the instructions to specific functional units. Researchers 

working with the Trace Cache architecture have also suggested moving some ILP 

related functions from the execution-core to the Fill Unit in order to allow 

implementations with fast clock [Rotenberg97, Vajapeyam97, Friendly98]. Other 

Superscalar enhancements such as value prediction [Fu98, Nakra99] and instruction 

reuse (Subsection 3.4.2) may also be incorporated in both architectures.

Although future research may produce variants of the DTSVLIW and Trace 

Cache architectures that are more closely together in the scales shown in Figure 7.2, 

their pure definitions still represent useful models to understand the nature of the ILP 

that can be exploited dynamically. Ultimately, the available VLSI technology and 

design expertise will determine which of the two extremes represented by the 

DTSVLIW and Trace Cache architectures will reach the marketplace. We believe,
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however, that a point close to the DTSVLIW’s in the scales o f the Figure 7.2 is a 

better option than one close to the Trace Cache’s. This view is corroborated by the 

evolution o f Alpha microprocessors. They implement the simplest RISC ISA (which 

means simple execution-core) in the mass microprocessor market and are 

“performance leaders since their introduction in 1992” [Kessler99] mainly, we 

believe, due to their simple high-clock-speed-tailored implementation.

DTSVLIW  Trace Cache

Scheduler Unit/Fill 
ILP functions

<---------------------------------------------

F igure 7.2: D istribution  o f  ILP related  functions.

7.2 DTSVLIW versus Explicitly Parallel Instruction 
Computing Architectures

The term E xp lic itly  P a ra lle l In struction  C om puting  (EPIC) was coined recently by 

Intel and Hewlett Packard in their joint announcement o f the LA-64 ISA 

[Gwennap97]. EPIC ISAs require the compiler to determine the dependencies and the 

independencies between instructions (Figure 7.1). However, the hardware interpreter 

o f an EPIC ISA is responsible for binding the independent instructions specified by 

the com piler to the machine resources. This is in contrast with VLIW ISAs where the 

com piler is responsible for determining dependencies and independencies, and also 

for binding resources.

To my knowledge, H orizon  [Thistle88] is the first EPIC architecture proposed. 

Horizon is a multiprocessor where each processor executes EPIC code. The 

architecture o f each Horizon processor is VLIW and Multithreaded (the processors 

switches execution context each clock cycle). Horizon long instructions are 3- 

instructions long. Each o f them has a look-ahead field that controls long instruction 

execution overlap. The compiler specified look-ahead value for this field o f each 

long instruction, la , indicates the number o f subsequent long instructions that may be
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issued without the completion of this long instruction. The compiler guarantees that 

the next la long instructions in the long instruction stream are data-independent of 

the current long instruction. In order to execute the EPIC program correctly, all the 

hardware has to do to issue a long instruction is to assure itself that no more than la 

subsequent long instructions are issued before this instruction has completed. The 

hardware is still responsible for scheduling functions but this is restricted to sending 

long instructions to the respective functional units: no data dependence check is 

required.

Similar to the Horizon EPIC ISA, in the Intel/Hewlett Packard EPIC ISA, or 

LA-64 for short, each three instructions are grouped together into 128-bit sized and 

aligned containers called bundles. Each bundle contains three 41-bit instruction slots 

and a 5-bit template field  [Intel99]. The template field specifies two properties: the 

mapping of instruction slots to execution unit types, and stops within the current 

bundle. The stops define instruction groups. An instruction group is a sequence of 

instructions starting at a given bundle address and slot number and including all 

instructions at sequentially increasing slot numbers and bundle addresses up to the 

first stop or taken branch. Therefore, instruction groups can encompass several 

bundles.

The LA-64 specifies dependency restrictions that allow the processor to execute 

all (or any subset) of the instructions within a legal instruction group in parallel or 

serially with the end result being identical. That is, two or more instructions within a 

group should not write to the same register (output dependency), or read from and 

write to the same register (true and anti dependencies). Memory reads and writes to 

the same address are allowed within groups, however. The LA-64 compiler has to 

generate code according to these dependency restrictions. To facilitate this task, the 

LA-64 exposes to the compiler a large number of registers: 128 integer, 128 floating­

point, 64 predicate, and a large number of other registers.

Conditional branch instructions use the predicate registers to decide their 

outcome. In addition, these registers are used to implement predicated execution (see 

Subsection 2.2.5). Instruction hoisting (Subsection 2.2.6) is also supported by IA-64.

Because the dependencies and independencies between instructions are 

specified by the compiler, the IA-64 processor only has to fetch one or more bundles,
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to identify the stops, and to send the independent instructions to the respective 

functional units. Memory dependencies can be dealt with via compiler assisted 

memory disambiguation, compiler and ISA assisted speculative memory access 

[Intel99], and the use of an ARB (Subsection 2.2.4). The new IA-64 processor still 

executes legacy 8086 ISA code and all is upgrades [Intel99] but it does so using 

special modes that may not take full advantage of the new EPIC processor core. Intel 

and Hewlett Packard have not yet disclosed how the microarchitecture of IA-64 

processors executes legacy code.

The Intel/Hewlett Packard EPIC architecture relies on compiler technologies 

such as predication, instruction hoisting, loop unrolling, software pipelining, etc, to 

exploit the ILP available in programs. The DTSVLIW architecture, on the other 

hand, does not rely on the compiler to exploit ILP and can achieve performance 

executing legacy sequential code. In addition, the DTSVLIW architecture can be 

employed to emulate legacy ISA code in IA-64 processors, taking advantage of the 

EPIC core. It can also be used to execute EPIC code directly, collecting dynamic 

branch behaviour information and organising the code during the scheduling phase of 

program execution to increase the processor performance. Due to the availability of 

predication and hoisting ISA support, we expect that the DTSVLIW will achieve 

performance levels even higher than those shown in this thesis when executing EPIC 

code.

7.3 Research Architectures for ILP Exploitation

In this section, we discuss some important machine architectures that have been 

targeted by the computer architecture research community’s research efforts, and try 

to compare them with the DTSVLIW.

7.3.1 IRAM Architectures

Recently, researchers have suggested the integration of high-performance processors 

and dynamic random access memory (DRAM) on the same chip, forming an 

architecture called Intelligent RAM  (IRAM) [Kozyrakis97]. This suggestion comes 

out of the fact that, in the near future, billions of transistors are going to be available
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for computer architects [Burger97], and this would be a good way to make use of 

them. They suggested the use of Vector architectures to provide high performance. 

We believe that the same principles that motivate the use of Vector architectures in 

an IRAM also apply to DTSVLIW architectures.

7.3.2 Simultaneous Multithreaded Architectures

Simultaneous multithreaded processors [Tullsen95, Eggers97] are Superscalar 

processors that support multiple machine contexts and execute multiple instruction 

streams simultaneously (see Subsection 2.1.5). They do so to reduce the latency of 

multithreaded programs (programs where threads are specified by the programmer or 

compiler).

The performance of multithreaded machines depends on finding enough thread 

parallelism, a task left to the software level. However, to develop multithreaded 

applications is challenging due to the extreme difficulty of debugging multithreaded 

programs and the lack of automatic thread-partitioning compilers. Because of this, 

we share the view of other researchers that simultaneous multithreading is primarily a 

technique for improving throughput in multiprogrammed workloads [Lipasti97]. In 

addition, the implementation of several hardware contexts is costly and may have a 

negative impact on the clock cycle time.

The Multithreaded architecture addresses issues that are orthogonal to those 

addressed by the DTSVLIW architecture. Nevertheless, multithreading could be 

added to the DTSVLIW, although it might be expensive in terms of silicon area. We 

have left the assessment of Multithreaded DTSVLIW architectures for future work.

7.3.3 Dataflow Architectures

Dataflow machines are examples of the class of dependence architectures (Figure 

7.1). Programs for Dataflow ISAs explicitly indicate the dependencies that exist 

between instructions [Veen86, Rau93a]. This is typically done by including in each 

instruction a list of successor instructions. An instruction is a successor of another 

instruction if it uses as one of its input operands the result produced by that other 

instruction. As soon as all of the input operands of an instruction already inside the 

Dataflow machine are available, its hardware executes the instruction and updates
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tables that will trigger the fetch or execution of other instructions. Therefore, the 

availability of operands (data) rather than the PC update is responsible for triggering 

instruction execution in Dataflow machines and this is what gives rise to the name of 

this type of processor.

Studies from past dataflow projects revealed inefficiencies in Dataflow 

computing [Veen86]. Compared to its control-flow counterpart, the fine-grain 

approach to ILP exploitation of the Dataflow model of parallel execution incurs more 

overheads. The overheads involved in detecting enabled instructions and using their 

outputs to enable other instructions generally result in poor performance in 

applications with low degrees of parallelism, such as scalar programs [Lee_B94].

In a dataflow machine, instructions become enabled when their input data 

become available. Thus, the machine has to keep many (hundreds to thousands) not 

yet enabled instructions in tables inside the processor in order to have a large enough 

instruction window in which to find ILP. To detect many enabled instructions in this 

large window simultaneously is a costly operation to perform in hardware. The 

machine also has to use the many results produced during execution to update this 

large instruction window simultaneously, which is also a costly operation to do in 

hardware.

It is interesting to note that the core of superscalar machines operates in a 

dataflow manner: The results produced by the functional units propagate back to the 

instruction window or reservation stations and trigger the execution of other 

instructions. As discussed in Subsection 3.4.1, the overheads incurred by this 

restricted dataflow mode of execution are precisely those that are exacerbated in the 

general dataflow machine architecture.

Experimental dataflow machines have now been around for more than twenty 

years [Davis79], but still there is no consensus as to whether the data-driven model of 

execution exposed to the ISA level is a viable means to exploit ILP. In addition, 

dataflow architectures obviously cannot be directly used to execute sequential code. 

Because of this, they do not offer backward code compatibility for legacy sequential 

code as the DTSVLIW does. The realisation of the pure dataflow potential 

performance in a feasible cost/effective machine running large scalar programs (such 

as those of the SPEC benchmark suite) is yet to be shown. This thesis shows that the
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DTSVLIW can achieve ILP with cost/effective machine configurations.

7.3.4 Multiscalar Architectures

The Multiscalar architecture uses fine-grain and coarse-grain dataflow to exploit ILP. 

In a Multiscalar system, sequential programs are partitioned into sequential tasks by 

the compiler [Sohi95]. These tasks are dynamically assigned to processing units for 

execution. These processing units, like small superscalar processors, use fine-grain 

dataflow to exploit intratask ILP. In addition to task partitioning, the compiler 

specifies the intertask communication [Vijaykumar99]. When a processing unit 

reaches a point in its task execution where a value produced by another processing 

unit needs to be consumed, it waits until the value is produced in order to proceed 

executing its task code. This realises coarse-grain dataflow.

In a Multiscalar system, the compiler specifies a list of successors for each task. 

The Multiscalar hardware predicts a task successor using techniques similar to 

branch prediction, and assigns this new task to a new processing unit dynamically. 

Apart from the successors of the tasks, the Multiscalar hardware needs to know 

where the tasks end, so that it may terminate the tasks’ execution and start the 

execution of new ones. To make it possible, the compiler tags the instructions at the 

boundaries of the tasks with extra bits to indicate where the tasks end.

Multiple tasks are speculatively executed simultaneously on the multiple 

processing units of a Multiscalar machine; however, they are retired in program 

order. All intertask register dependencies are honoured by communication and 

synchronisation, as specified by the compiler. To do this, the compiler determines the 

set of register values that may be consumed by each task. If a task consumes a data 

value produced by another task, then the consumer task waits until the value is 

received. The compiler determines the last update of each register within tasks and 

tags the instructions that modify them with extra bits to indicate that these registers 

have to be forwarded. A network is used to communicate register values between 

tasks. Intertask memory dependencies are honoured by speculation and validation in 

hardware. This is achieved using an ARB (see Subsection 2.2.4). Intratask 

dependencies are handled by the processing units’ hardware in a way similar to that 

of Superscalar processors.
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To achieve performance, Multiscalar architectures rely on the compiler to 

partition the sequential program in tasks that exhibit ILP. They also rely on the 

compiler to orchestrate data and control communication between tasks within 

hardware support. Therefore, compatibility with legacy sequential code can only be 

achieved through recompilation or binary translation. The DTSVLIW, on the other 

hand, can execute legacy code directly and does not rely on the compiler to exploit 

ILP.

Multiscalar is an interesting architecture, but there are many potential problems 

in producing effective hardware and compiler implementations. We believe the 

DTSVLIW is a more straightforward approach to exploit ILP.

7.4 Critical Assessment of this Research Work

The goal of this thesis has been to examine the two hypotheses presented in 

Subsection 1.2 and repeated below.

• The DTSVLIW architecture ca?i overcome the VLIW object code 

compatibility problem while preserving the VLIW architecture simplicity 

and high clock rate.

• The DTSVLIW can achieve higher performance than the DIF and 

Superscalar architectures using equivalent hardware.

In Chapter 4, we have described the DTSVLIW architecture in detail showing 

that it is able to overcome the VLIW object code compatibility problem while 

preserving the VLIW simplicity on its main processing engine and overall high clock 

rate. In Chapter 6, we have presented and discussed experimental results that show 

that, for representative machine configurations, the DTSVLIW achieves higher 

performance than the DIF and Superscalar architectures using equivalent hardware. 

In this section, we discuss the limits of the validity of the experimental results and 

the potential difficulties for the implementation of a DTSVLIW machine in silicon.

7.4.1 On the Limits of Validity of the Experimental Results

In this thesis, we have examined the integer performance of the DTSVLIW. 

Therefore, the results presented here are valid for the class of integer programs, but
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not necessarily valid for other classes of programs. We have chosen to examine the 

DTSVLIW performance with this class of programs first, because experiments have 

shown that integer programs do not have much ILP and their ILP is hard to extract, if 

compared with floating-point programs for example [Wall93]. We have left the 

evaluation of the DTSVLIW performance with other classes of programs for future 

work.

Within the class of integer programs, we have chosen the integer programs of 

the SPEC95 and SPEC92 benchmark suites as test programs for the DTSVLIW in the 

experiments reported here. The number of test programs in the SPEC95 and SPEC92 

is, however, small. Nevertheless, results obtained using SPEC programs are 

considered to be representative by researchers in the experimental computer 

architecture field and these programs are officially used by most computer 

manufacturers to compute and advertise performance indices.

We have used the first 50 million instructions executed in each program as 

sample for most of the experiments in this thesis. However, the first instructions 

executed in a program include start up code that is not part of the algorithms 

exercised in the program. In addition, 50 million instructions would represent a short 

execution time in a real DTSVLIW machine. Nevertheless, experiments reported in 

the literature have shown that the inputs of the SPEC integer programs can be chosen 

in a way that allows them to complete execution running from as little as 30 million 

to little more than 200 million instructions [Nair97, Rotenberg99]. This indicates that 

50 million instructions is representative of the programs execution behaviour. In 

addition, a real machine is likely to switch the execution context to another program 

within the execution of 50 million instructions, as discussed in Section 5.2.

We have used our DTSVLIW simulator to produce the experimental results for 

most of the experiments described in Chapter 6. The only exceptions are 

experimental results for the Nair and Hopkins’s DIF [Nair97], in Figure 6.16, for the 

IBM’s VLIW [Moreno97, Moudgill96], in Figure 6.17, and for the Diep’s 

PowerPC620 [Diep95], in Figure 6.18, which have been collected from the literature. 

The use of results previously published in literature is of course valid and common 

practice in research. However, the validity of the comparison of the results produced 

by our simulator and those mentioned above is limited by the following factors:
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• The ISA we have used has been the Sparc 7 ISA, while the ISA used in the 

results we have collected from the literature was the PowerPC ISA.

• We have used execution-driven simulation in our experiments, while trace- 

driven simulation has been used to produce the results of some of the 

experiments we have collected from the literature.

• The input files used to produce the results we have collected from the 

literature are not shown in the literature, and are possibly different from 

those we have used.

• The compiler used to produce the object code of the benchmarks used in 

our experiments was different from the compilers used in the experiments 

reported in the literature.

• The number of instructions executed is significantly different in the 

comparisons between the DTSVLIW and the DIF (Figure 6.16), and 

DTSVLIW and VLIW (Figure 6.17).

RISC ISAs are very similar. According to Patterson and Hennessy [Paterson96 

(page C-22)], “In the history of computing, there has never been such widespread 

agreement on computer architecture.” The PowerPC ISA is, however, more powerful 

than the Sparc 7 ISA. The PowerPC ISA has features such as multiple conditional 

code fields and, load/store & update, branch on count register, load/store multiple, 

and string instructions that are not found in the Sparc 7 ISA [Patterson96 (Appendix 

C)]. Because of these features, the number of PowerPC instructions needed for 

executing a program may be smaller than the number of Sparc 7 instructions needed 

for executing the same program under the same conditions. This may result in an IPC 

index for the Sparc 7 ISA better than the IPC index for the PowerPC ISA under the 

same architectural conditions.

We have used execution-driven simulation in our experiments, while trace- 

driven simulation has been used to produce the results of the Nair and Hopkins’s DIF 

[Nair97] and Diep’s PowerPC620 [Diep95] experiments. Due to the characteristics 

of the DIF architecture, the use of trace-driven simulation is not likely to affect the 

DIF’s results. However, the use of trace-driven simulation certainly affects the 

measured performance of Superscalar machines. This happens because instructions in 

the mispredicted paths of branches are fetched and use resources of the Superscalar
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core in real machines (or execution-driven simulations). In trace-driven simulations, 

these resources are not consumed and, because of this, Superscalar machines are 

likely to perform better when simulated with trace-driven simulators than when 

simulated with execution-driven simulators.

The input data may affect the amount of ILP exhibited by programs. However, 

the input data used to produce the results we have collected from the literature has 

not been made available in the literature. Therefore, we may have used different input 

files and this may have a significant impact on the relative performances presented in 

the comparisons between the DTSVLIW and the DIF, VLIW, and PowerPC620. We 

have used a compiler different from those used in the results collected from the 

literature, and the number of instructions simulated in the DDF and VLIW simulations 

have also been different. All these limit the validity of the mentioned comparisons.

To isolate the effect of each of these factors (and possibly others not 

mentioned) for each comparison would be very difficult if at all possible. One might 

argue that it would have been better to implement our own VLIW simulator/compiler 

and Superscalar simulator and use these for the comparison with the DTSVLIW. (We 

have implemented our own DIF simulator and compared its performance with 

DTSVLIW’s in Subsection 6.3.) However, this amount of work is beyond the scope 

of a research work of the magnitude of this thesis. In addition, the results we would 

obtain are unlikely to be significantly better than those we have collected from the 

literature.

7.4.2 On the DTSVLIW Implementation Difficulties

The hardware of a DTSVLIW machine can be divided into five main blocks (see 

Figure 1.1): three caches — the Data Cache, the Instruction Cache, and the VLIW 

Cache; and two engines — the VLIW Scheduler Engine and the VLIW Engine. The 

Data Cache is a standard multiported cache and the Instruction Cache is a small 

standard single-ported cache. The VLIW Cache is also an ordinary cache, with one 

read and one write ports; its single additional feature is an extra field per directory 

entry to store the nba of the blocks saved (see Section 4.4). We believe there are no 

particular difficulties in the implementation of these caches, except for the extra 

silicon area that may be required by the VLIW Cache. Nevertheless, a significant part
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of the silicon area for the VLIW Cache, if not all, can come from that which 

otherwise would be used for the Instruction Cache, as we have shown in Section 6.5.

The DTSVLIW Scheduler Engine can be divided into the Scheduler Unit and 

the Primary Processor. We have shown that the core operations performed by the 

Scheduler Unit are not complex (see Section 4.6), and the Primary Processor is a 

simple pipelined scalar processor; therefore, both offer no significant implementation 

difficulties.

In order to exploit the ILP available in programs, the VLIW Engine of a 

DTSVLIW machine has to employ many functional units that operate in parallel. A 

machine with a large number of functional units requires a large number of register 

file ports and data cache ports, but large multiported data cache and register files 

impact on the clock cycle time. However, any machine using an equivalent number 

of functional units would suffer the same problem. Moreover, techniques such as 

functional units clustering and data cache interleaving can be used in the DTSVLIW 

to ameliorate this problem. We have left the study of the impact of incorporating 

these techniques into the DTSVLTvV architecture for future work.

We have not examined the implementation of the register renaming mechanism 

of the DTSVLIW in Chapter 4. This is because the logic necessary for register 

renaming in the DTSVLIW is likely to be simple. The DTSVLIW has to rename less 

than one register per cycle on average because not all instructions inserted in the 

scheduling list during scheduling have to be renamed. Nevertheless, in the worst case 

all candidate instructions in the DTSVLIW scheduling list may have to be renamed in 

the same clock cycle. If the number of long instructions in the scheduling list is large, 

16 for example, this may complicate the register renaming logic. However, renaming 

in the DTSVLIW consists of simply getting a new name for a register from the pool 

of available registers, which may be implemented as a simple array of bits. Therefore, 

the logic necessary for implementing register renaming is not likely to affect the 

DTSVLIW implementation complexity or clock cycle time.

A simple register renaming scheme that takes advantage of the DTSVLIW 

register renaming characteristics would, for example, allocate the renaming registers 

necessary for each instruction during their insertion in the scheduling list. This could 

be done by using registers containing the renaming register names as pointers to the
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array of bits representing the pool of available registers. Every cycle, the pointer for 

each type of renaming register would be moved to a bit in the respective array 

indicating a renaming register available. An instruction being inserted in the 

scheduling list receives the pointer value as the name of a renaming register. These 

renaming register names accompany each candidate instruction, and the Scheduler 

Unit uses them if a candidate instruction needs to be renamed. In case the candidate 

instruction is installed without being renamed, the renaming register name is used to 

change the bit in the renaming register pool, indicating that the renaming register is 

available again. This scheme only requires each cycle: updating the position of the 

pointers moved due to the insertion of one instruction, and updating the arrays 

representing the renaming registers due to return of unused registers. The maximum 

number of renaming registers consumed by a single instruction is two and the 

maximum number of array updates is equal to the number of long instructions in the 

scheduling list. Therefore, the logic necessary for implementing this scheme is not 

likely to affect the DTSVLIW clock cycle time.

In the scheme for renaming registers described, some registers are taken from 

the poll, held for some cycles, and then made available again. This appears to reduce 

the effective number of renaming registers available by almost the size of the 

scheduling list. However, in fact, instructions requiring different renaming register 

types are likely to alternate during insertion, which reduces the number of renaming 

registers of each type being held. Furthermore, there are potentially other register 

renaming schemes more effective than this. We have described this one only to show 

that is possible to implement register renaming in the DTSVLIW with simple 

hardware that should not affect the DTSVLIW clock cycle time.
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Chapter 8 

Summary, Conclusions and Future Work

This thesis presents the definition and the evaluation of the integer performance of 

the Dynamically Trace Scheduled VLIW (DTSVLIW) architecture. This architecture 

can be used to implement machines that execute code of current RISC or CISC ISAs 

in a VLIW fashion, delivering instruction-level parallelism with backward code 

compatibility. Our main motivation for the development of the DTSVLIW 

architecture came from the observation that small instruction caches (16Kbytes) can 

achieve high average hit rates (99%), which shows that there is strong code execution 

locality in programs. The DTSVLIW architecture takes advantage of the code 

execution locality by executing programs in two distinct modes. The first time a 

fragment of code is encountered, it is executed in sequential mode by a simple 

pipelined processor, the DTSVLIW’s Primary Processor. At the same, this code 

fragment is scheduled by the DTSVLIW’s Scheduler Unit into parallel long 

instructions (VLIW instructions) and saved in the DTSVLIW’s VLIW Cache. In 

subsequent execution encounters, the DTSVLIW’s VLIW Engine executes the 

scheduled version of the code in parallel mode.

The DTSVLIW architecture is similar to the DEF, proposed by Nair and 

Hopkins [Nair97]. We have conceived the DTSVLIW independently of the DIF, 

however, which has permitted an implementation significantly different from that 

suggested by the proponents of DIF. The DTSVLIW differs from the DEF in the 

organisation of the cache used by the VLIW Engine, in its scheduling algorithm, in 

its register renaming mechanism, and in the VLIW Engine register access
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mechanism.

8.1 Thesis Summary

In this thesis, we present and evaluate the DTSVLIW architecture, a processor 

architecture that we have designed and developed to exploit ILP by using a dynamic 

code scheduler and a VLIW execution core. In order to evaluate the DTSVLIW, we 

have surveyed: several architectures for exploiting ILP; several ISA, hardware, and 

software support for exploiting ILP; and published research on the amount of ILP 

available in programs. We have then discussed aspects of the DTSVLIW architecture 

that are related to previous work on microcode scheduling and VLIW architectures. 

In addition, we have discussed systems that, like the DTSVLIW, can be used to solve 

the VLIW object code compatibility problem or take advantage of code locality to 

exploit the ILP available in programs.

The key features of the DTSVLIW are the scheduling of the instruction trace 

produced by the Primary Processor into long instructions and the VLIW Engine 

addressing of long instructions. The DTSVLIW schedules instructions using a 

simplified version of the FCFS algorithm, historically used for microcode 

compaction. This algorithm has been adapted to perform superblock scheduling and 

to operate in a pipelined fashion. The superblocks are generated in the form of a list 

of long instructions. A simple and effective long instruction addressing mechanism 

groups these long instructions in blocks, which are saved in the VLIW Cache for the 

VLIW Engine to execute. The DTSVLIW scheduling and addressing of long 

instructions allows support for precise interrupts and for the execution of: programs 

that read their own code as data, programs with self-modifying code, and programs 

with load instructions that cause side effects (memory mapped I/O).

We have implemented a parameterised and instrumented execution-driven 

simulator of the DTSVLIW. Using this simulator, we have examined the effect of 

various architectural parameters on the DTSVLIW performance when running the 

SPECint95 benchmark suite. Our results show that the DTSVLIW can achieve 

average ILP higher than 4 IPC with 16 untyped functional units and perfect caches, 

and 2 IPC with a feasible machine configuration with 12 typed functional units and 

caches of reasonable sizes. Our results also show that the DTSVLIW performs better
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than DIF, VLIW, and Superscalar architectures for important machine configurations.

8.2 Conclusions

The design of the DTSVLIW architecture has been driven by the requirement to 

develop an architecture that can be effectively implemented to realise the fast 

clocking that can be achieved with VLIW designs. The Primary Processor and the 

VLIW Engine of the DTSVLIW do not restrict the achievable clock rate. It is the 

Scheduler Unit that is the key to an efficient and high clock rate implementation. As 

detailed in Section 4.6, the core logic of the Scheduler Unit is straightforward to 

implement, being comparable to an integer adder, and as such should not render the 

DTSVLIW cycle time longer than that determined by the VLIW Engine design. The 

remaining operations performed by the simplified version of the FCFS instruction 

scheduling algorithm used by the DTSVLIW have a complexity that is readily 

implementable.

Our experimental results confirm that the DTSVLIW takes advantage of code 

execution locality. The experiments discussed in Subsection 6.1.5 show that the 

DTSVLIW’s Instruction Cache can be substituted for a simple instruction buffer if its 

VLIW Cache is large enough. That is, with a large enough VLIW Cache, the 

DTSVLIW spends most of its time executing parallel code. The experiments in 

Subsection 6.1.5 further confirm this, showing that the fact that the Primary 

Processor retains multicycle instructions at its execute pipeline stage until they 

complete execution does not impact on the DTSVLIW performance.

Our results demonstrate, however, that multicycle load instructions impose a 

severe performance penalty on the DTSVLIW architecture and it is clear that it is 

important to get the load latency as close to one cycle as possible. Single cycle store 

instructions are not so important. Nevertheless, reasonably low load latency (3 

cycles) is achievable with high clock rate Superscalars, as demonstrated by the Alpha 

21264 processor [Kessler99], and the same or lower load latency can be expected in 

DTSVLIW implementations.

Our results demonstrate the effectiveness of the DTSVLIW scheduling 

algorithm. Experiments in Section 6.2 show that there is no significant reduction in 

performance over other candidate scheduling algorithms, even though these
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algorithms are expected to be more difficult to implement. Even more so if the high 

clock rate of the VLIW Engine is to be achieved.

The DTSVLIW scheduling algorithm requires far fewer resources than the 

Greedy algorithm used by the DIF architecture in order to achieve equivalent 

performance, as have been shown in our previous paper [deSouza99c] and in Section 

6.3. In this section, our experiments show that the DTSVLIW achieves performance 

similar to the DIF. However, while the DTSVLIW uses 18 integer and 6 FP renaming 

registers and a 216-Kbyte VLIW Cache, the DIF requires 96 integer and 96 FP 

renaming registers and a 463-Kbyte DIF Cache.

In many areas that have great needs for processing power, the behaviour of 

algorithms is irregular and dependent on the input data, making it necessary to 

perform instruction scheduling at run time to achieve performance. Architectures 

such as the VLIW and EPIC rely solely on the compiler to exploit the ILP available 

in programs. The DTSVLIW, on the other hand, does not rely on the compiler to 

exploit ILP. The experiments presented in Section 6.4 demonstrate that the 

DTSVLIW algorithm is able to find more parallelism than a state-of-the-art VLIW 

compiler under similar conditions. This is possible because the DTSVLIW scheduler 

algorithm has access to dynamic information not available to the VLIW compiler. 

Nevertheless, we believe that a conjunction of the DTSVLIW architecture and 

compiler technology such as loop unrolling, software pipeline, and predication (if 

added to the DTSVLW ISA) would produce performance even better than that shown 

in Section 6.4.

In Section 6.5, we have compared the performance of a powerful Superscalar 

processor with the performance of an equivalent DTSVLIW machine configuration. 

Our results have shown that the DTSVLIW performance is overall better than the 

Superscalar. This is so because the scheduling list of the DTSVLIW is larger than the 

instruction window that the Superscalar uses for scheduling. However, even though 

larger, the DTSVLIW’s scheduling list is likely to be simpler to implement than the 

Superscalar’s instruction window. The DTSVLIW’s scheduling list is potentially 

simpler to implement because only one instruction can be inserted into the 

DTSVLIW’s scheduling list each cycle, while the instruction window of a 

Superscalar processor has to be able to receive many instructions per cycle. This

153



difference in complexity of the scheduling hardware, aggravated by the fact that the 

Superscalar scheduling hardware is in its main data-path, is likely to make the 

Superscalar clock cycle slower than the DTSVLIW’s. Therefore, in real 

implementations, the DTSVLIW performance is likely to be significant better than 

the Superscalar performance for implementations using equivalent technologies.

Due to the Superscalar fetch bottleneck (discussed in Subsection 3.4.1), which 

is going to limit the performance of future more parallel Superscalar machines, 

several new architectures have being proposed and some classical architectures 

revisited recently. We believe that two of these new architectures are particularly 

promising: Trace Cache and EPIC.

The Trace Cache architecture, like the DTSVLIW, takes advantage of code 

execution locality to achieve ILP. In fact, the DTSVLIW and the Trace Cache 

architecture can be seen as members of the same family of architectures. The main 

difference between them is in how they divide the responsibility for performing ILP 

extraction functions within their functional units. The Trace Cache architecture’s 

execution-core performs all ILP related functions, while the DTSVLIW’s execution- 

core performs none. On the other hand, the DTSVLIW’s Scheduler Unit performs all 

ILP related functions and the Trace Cache architecture’s Fill Unit performs none. We 

believe that machines following the DTSVLIW philosophy of simplicity in the main 

execution-core are likely to perform better than machines in which the execution- 

core is the main responsible for instruction scheduling tasks. This view is 

corroborated by the evolution of the Alpha family of microprocessors. With their 

simple ISA and implementation tailored to high clock rate, Alpha microprocessors 

are “performance leaders since their introduction in 1992” [Kessler99].

The new generation of Intel processors, which is going to substitute the current 

Pentium processors (x86 or LA-32 ISA), is going to have EPIC ISA. EPIC 

architectures are a result of two decades of research in VLIW compilers and 

architectures. They are similar to pure VLIW but their ISA incorporate features that 

resolve most of the VLIW disadvantages. EPIC architectures, however, still rely 

solely on the compiler to expose the ILP to their hardware. The DTSVLIW 

architecture, on the other hand, does not rely on the compiler to exploit ILP. In 

addition, the DTSVLIW architecture can be employed to emulate legacy ISA code in
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new EPIC processors, taking advantage of the EPIC core. It can also be used to 

execute EPIC code directly, collecting dynamic branch behaviour information and 

organising the code during the scheduling phase of program execution to increase the 

EPIC processor performance. Due to the availability of predication and hoisting ISA 

support in EPIC architectures, we expect that the DTSVLIW will achieve 

performance levels even higher than those shown in this thesis when executing EPIC 

code.

8.3 Future Work

The DTSVLIW architecture opens several new avenues of research. In this section, 

we discuss some of them that we will investigate in future work.

8.3.1 Mechanisms for Reducing the Impact of Load Latency

The experiments in Subsection 6.1.6 and Subsection 6.1.7 show that the load 

instruction latency strongly affects the DTSVLIW performance. However, techniques 

such as fast address calculation [Austin96], zero-cycle loads [Austin96], or load 

value prediction [Lipasti96a] can be adapted and incorporated into the DTSVLIW for 

reducing the impact of the load latency. Another promising research topic that we 

intend to investigate is the incorporation of mechanisms for data prefetching in the 

Scheduling Unit or VLIW Engine of the DTSVLIW.

8.3.2 New VLIW Cache Organisations

The results presented in Subsection 6.1.7 show that the DTSVLIW does not use its 

VLIW Cache efficiently. A large number of nop instructions are saved into the VLIW 

Cache. However, the Scheduling Unit could compact the blocks of long instructions 

before saving them in the VLIW Cache. This would allow good performance with 

small VLIW Caches. On the other hand, this would increase the number of pipeline 

stages of the VLIW Engine and consequently the next long instruction miss penalty. 

Nevertheless, next long instruction prediction hardware might be used to minimise 

the next long instruction miss penalty.
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8.3.3 Next Long Instruction Prediction

When the VLIW Engine misses in the VLIW Cache, at least one DTSVLIW cycle is 

lost. However, we believe that available techniques for hardware branch prediction 

can be adapted to be used for next long instruction prediction in the DTSVLIW.

8.3.4 Clustered DTSVLIW

Larger DTSVLIW machines requires large number of register file and data cache 

ports. This may affect the DTSVLIW clock cycle time negatively. However, the 

VLIW Engine core can be divided into several clusters of functional units, each 

cluster with its private register file. Register values that are required by other clusters 

can be forward, paying a delay cost, through a network connecting the clusters. The 

data cache can be interleaved, allowing multiple fast accesses via the association of 

different clusters to different ranges of data addresses.

8.3.5 DTSVLIW Performance with Other Classes of Program

This thesis investigates the DTSVLIW integer performance. We expect the 

DTSVLIW performance to be higher when execution other classes of program such 

as floating-point and multimedia code due to their higher available LLP. However, the 

latency of multicycle instructions may have a significant impact on the performance 

of the DTSVLIW when executing these classes of code.

8.3.6 DTSVLIW-Tailored Compilers

Although the DTSVLIW does not rely on the compiler to exploit the ILP available in 

programs, it can benefit from compiler optimisations tailored to improve the 

performance of its scheduling algorithm. In fact, the DTSVLIW architecture is 

complementary to compiler techniques for extracting ILP, in that the latter does static 

scheduling while the former does dynamic scheduling. While dynamic scheduling is 

better, it is constrained by the amount of code that the hardware can analyse and by 

the characteristics of the code presented for analysis. The compiler can assist the 

DTSVLIW by producing code that allows easier implementation of the scheduling 

hardware, e. g. EPIC code, and code that, when dynamically scheduled by the 

DTSVLIW, results in high ILP. Hence, new compiler techniques, such as predication
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and instruction hoisting, can be used to produce code tailored for the DTSVLIW. The 

impact of these compiler techniques on the DTSVLIW performance is another topic 

that we intend to investigate in future work.

157



Glossary

ALU Arithmetic and Logic Unit

ARB Address Resolution Buffer

BHT Branch History Table

BTB Branch Target Buffer

CISC Complex Instruction Set Computers

DAISY Dynamically Architected Instruction Set from Yorktown

DIF Dynamic Instruction Formatting

DSVLIW Dynamically Scheduled VLIW

DTSVLIW Dynamically Trace Scheduled Very Long Instruction Word

EPIC Explicitly Parallel Instruction Computing

FCFS First Come First Served

I/O input/output

ILP instruction-level parallelism

IPC instructions per cycle

IRAM Intelligent Random Access Memory

ISA instruction set architecture

MPS Miss Path Scheduling

nba next block address

NLS next line and set
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nop no-operation

PC program counter

RISC Reduced Instruction Set Computer

SPEC Standard Performance Evaluation Corporation

u.a.m. using arithmetic mean

VLIW Very Long Instruction Word

VLSI Very Large Scale Integrated

VMM Virtual Machine Monitor
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