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Abstract

Very long instruction word (VLIW) machines potentially provide the most direct way
to exploit Instruction-Level Parallelism (ILP), but cannot be used to emulate current
general-purpose instruction set architectures. In addition, programs scheduled for a
particular implementation of a VLIW model cannot be guaranteed to be binary
compatible with other implementations of the same model either with a different
number of functional units or functional units with different latencies. This problem
is known as the VLIW object code compatibility problem. The Dynamic Instruction
Formatting (DIF) concept, however, can be used to implement machines that execute
code in a VLIW fashion and that are capable of overcoming the VLIW object code
compatibility problem. A DIF machine schedules instructions into blocks of VLIW
instructions while executing them on a simple engine and caches these blocks for
repeated execution on a VLIW engine.

This thesis presents an architecture, named Dynamically Trace Scheduled
VLIW (DTSVLIW), which follows the DIF concept. The DTSVLIW architecture
was conceived independently of DIF and its implementation is significantly different
from the DIF implementation suggested by the proponents of DIF. A DTSVLIW
machine differs in the instruction-scheduling algorithm, register renaming
mechanism, register access mechanism, and VLIW cache organisation.

To evaluate the DTSVLIW, a trace-driven simulator has been implemented and
experiments using SPEC benchmark programs have been performed. The effect of
various architectural parameters on the DTSVLIW integer performance has been
studied and the effectiveness of the DTSVLIW instruction-scheduling algorithm has
been evaluated. In addition, comparisons between the DTSVLIW performance and
that of DIF and Superscalar implementations have been made. The results show that
the DTSVLIW achieves significant ILP with feasible machine configurations and
that, although simpler, the DTSVLIW instruction-scheduling algorithm is as effective
as the DIF’s. The results also show that the DTSVLIW performs better than the DIF
and Superscalar architectures for representative machine configurations while using
less hardware resources and in a way that should not produce a longer clock cycle
than these architectures.

The principal scientific contributions of this thesis are: (i) conception of a
VLIW-based architecture — the DTSVLIW — that uses a pipelined instruction-
scheduling algorithm, which effectively produces VLIW instructions dynamically;
(i) proof that the core of the DTSVLIW instruction-scheduling algorithm has
complexity comparable to that of an adder, and as such can be implemented in
hardware without impacting the DTSVLIW clock cycle time; (iii) evaluation of the
effect of important DTSVLIW architectural parameters on its performance; (iv)
evaluation of the effectiveness of the DTSVLIW instruction-scheduling algorithm;

(v) comparison of the DTSVLIW performance with that of the DIF and Superscalar
architectures.
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Chapter 1

Introduction

In the standard model of computation, a computer program coded in machine
language can be viewed as a vector in which each element is an instruction that
commands a small set of simple operations. The computer starts executing the
program at an instruction and proceeds executing instructions in ascending order.
This order can be broken, however, by conditional or unconditional branch
instructions, which can move the execution flow, forward or backward, a specified
number of instructions. The program semantics is guaranteed to be correct if the
instructions are executed atomically, and in the sequence specified by the program
ordering and the taken branches.

A simple sequential computer processor executes each instruction completely
before starting the execution of the next instruction. However, many operations are
common to the execution of all instructions, which makes it possible to implement a
processor in a pipelined way, as in a factory, to improve its performance (its ability to
execute the program faster). In addition, sometimes instructions can be executed in
parallel or even out of the order specified in the program without changing the
program semantics. This can be exploited by properly designed processors containing
many functional units capable of operating in parallel. Furthermore, the pipeline
technique can be combined with parallel and out-of-order execution capabilities in a
single processor for improving performance even further. Such processors are said to
follow the Superscalar architecture [Johnson91].

An alternative approach to improve the performance is to generate machine
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code in a parallel form. In this case, each element of the vector representing the
program can hold a certain number of independent operations that can be executed in
parallel. Properly designed processors execute such a program by fetching one
element of the vector at a time and by issuing the operations in parallel. Such
processors are said to follow the Very Long Instruction Word (VLIW) architecture,
because their instructions have hundreds or even thousands of bits to accommodate
several operations [Fisher84]. VLIW processors can also be implemented in a
pipelined fashion.

In VLIW systems, the compiler has complete responsibility for creating a
package of operations that can be simultaneously issued. VLIW processors do not
dynamically make any decisions about multiple operation issue, and thus they are
simple and fast. In addition, because the VLIW compiler can look for parallelism
between instructions in the whole program, VLIW architectures are potentially the
most direct way of exploiting the instruction-level parallelism (ILP). However, the
assumptions built into the code by the VLIW compiler about the hardware prevent
code compatibility between different implementations of the same VLIW instruction
set architecture (ISA). VLIW processors with different levels of hardware
parallelism require recompilation of the source code. For instance, the code generated
for a VLIW processor with four operations per VLIW instruction could not run on
another VLIW processor with five operations per VLIW instruction without
recompilation. This problem, known as the VLIW object-code compatibility problem,
has limited the commercial interest in VLIW architectures [Rau93b].

Recently, a new architectural concept named Dynamic Instruction Formatting
(DIF) has been proposed [Nair97]. A machine implementing this concept can
overcome the VLIW object-code compatibility problem by executing the program in
two distinct phases. First, when a fragment of code is initially encountered, a simple
processor in the machine, not aggressive in exploiting parallelism, executes it. At the
same time, this fragment of code is scheduled by a special functional unit of the
machine into VLIW instructions. These VLIW instructions are saved in a special
cache memory. If the same fragment of code is encountered again, another processor
of the machine, this one a VLIW parallel processor, executes the scheduled version

instead of the previous one.
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In this thesis, we present a new architecture that follows the DIF concept. This
architecture, named Dynamically Trace Scheduled Very Long Instruction Word
(DTSVLIW) architecture [deSouza98a], has been conceived independently of DIF,
which has permitted an implementation significantly different from that suggested by
the proponents of DIF. We have shown that the DTSVLIW is easier to implement
than DIF and delivers equivalent performance with less hardware resources
[deSouza99a].

Figure 1.1 shows a block diagram of the DTSVLIW architecture. In the
DTSVLIW architecture, the Scheduler Engine fetches instructions from the
Instruction Cache and executes them first using a simple pipelined processor — the
Primary Processor. In addition, its Scheduler Unit dynamically schedules the trace
produced during this execution into VLIW instructions, placing them as blocks of
VLIW instructions in the VLIW Cache. If the same code is executed again, it is then
fetched by the VLIW Engine from this cache and executed in a VLIW fashion. In the
DTSVLIW architecture, the Scheduler Engine provides object-code compatibility,
and the VLIW Engine provides VLIW performance and simplicity.

To execute code in two distinct modes, one sequential and one parallel, results
in four positive characteristics:

1. Code compatibility between different machine generations is facilitated —
DTSVLIW machines with different levels of hardware parallelism can
easily share the same ISA.

2. Complex instructions can be dealt with in sequential mode — During
sequential execution, complex instructions can be decomposed into several
simpler operations, which can later be executed in parallel mode.

3. The task of finding parallelism is simplified — The DTSVLIW’s Scheduler
Unit receives no more than one instruction per cycle and, therefore, can
have a simple and fast hardware implementation.

4. Instruction exceptions can be dealt with in sequential mode — In case of an
instruction exception during parallel execution, a DTSVLIW machine can
switch to sequential mode and deal with the exception in this mode.

In order to take advantage of these characteristics, however, a DTSVLIW

machine has to operate in parallel mode most of the time. This means that it has to
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reuse the blocks of VLIW instructions saved in the VLIW Cache many times. A

DTSVLIW machine, then, relies on code temporal execution locality to improve

program execution performance.

From

Memory
Y Instruction VLIW
Cache Cache
*{ Fetch Unit
Scheduler
Engine Primary VLIW
Processor Engine
To/From
Memory

Data
Cache

Figure 1.1: The Dynamically Trace Scheduled VLIW (DTSVLIW) architecture

1.1 Research Motivation

The main motivation for this research came from the observation that even small
instruction caches (16-Kbyte or 4098 instructions) can achieve average hit rates
higher than 99% with the SPEC92 and SPEC95 benchmark suites [SPEC, Gee93,
Chamey97]. This shows that there is strong temporal execution locality in programs.
The DTSVLIW exploits temporal execution locality by converting the code into
blocks of VLIW instructions in the first execution encounter and by executing it in
the VLIW Engine in subsequent encounters. To make a mechanism like this work
and take advantage of the DTSVLIW architecture characteristics, the conversion
algorithm has to be effective in producing VLIW code. In addition, it has to be
simple enough not to render the clock cycle time longer than that determined by the
VLIW Engine design. The results achieved with this research so far supports the

view that this can be achieved [deSouza99a, deSouza99c].

1.2 Goal of this Thesis

The aim of the research work presented in this thesis is to examine the following

hypotheses:
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o The DISVLIW architecture can overcome the VLIW object code
compatibility problem while preserving the VLIW architecture simplicity
and high clock rate.

e The DISVLIW can achieve higher performance than the DIF and
Superscalar architectures using equivalent hardware.

With this aim, we describe the DTSVLIW in detail and show that it can be
implemented without taking the clock cycle far from that determined by a pure VLIW
design. In addition, we show that the DTSVLIW can execute legacy code in VLIW
mode. To better understand the DTSVLIW architecture, we investigate the effect of
various architectural parameters on its performance via experiments. We then

compare the DTSVLIW performance with that of DIF and Superscalar architectures.

1.3 Overview of the Contributions

The main contributions of this research work are:

e Conception of a VLIW-based architecture — the DTSVLIW — capable of taking
advantage of the code temporal locality for achieving program execution
performance. The DTSVLIW uses a pipelined code-scheduling algorithm that
effectively produces VLIW instructions dynamically [deSouza98a].

e Proof that the core operation of the DTSVLIW scheduling algorithm has
complexity comparable to that of an integer adder and, as such, can be
implemented in hardware level without impacting the DTSVLIW clock cycle
time [deSouza99a].

e Evaluation of the effect of important DTSVLIW architectural parameters on its
performance [deSouza98b, deSouza99a, deSouza99b].

e Evaluation of the effectiveness of the DTSVLIW scheduling algorithm
[deSouza99c].

e Comparison of the DTSVLIW performance with that of the DIF, pure VLIW, and

Superscalar architectures [deSouza99a, deSouza99c].
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1.4 Organisation of this Thesis

This thesis is organised in eight chapters. After this introduction, Chapter 2 presents
the background for this research. Chapter 3 contains discussions of previous research
relevant to this thesis on microcode scheduling and VLIW architectures. In addition,
in this chapter we discuss research that either tackles the VLIW object code
compatibility problem or proposes mechanisms to exploit code execution locality.
Chapter 4 describes the DTSVLIW architecture, showing how it can be implemented
with a fast clock cycle and how it solves the VLIW object code compatibility
problem. Chapter 5 presents the methodology used to carry out the experiments to
evaluate the DTSVLIW architecture and the metrics used in the evaluation. The
trace-driven simulator of the DTSVLIW and the benchmark programs used are also
presented. In Chapter 6, we describe the experiments used for investigating the effect
of various architectural parameters in the DTSVLIW performance, and for comparing
the DTSVLIW performance with that of DIF and Superscalar architectures. Chapter 7
puts the DTSVLIW in perspective by comparing its characteristics with those of
other machine architecture proposals. In Chapter 7, we make a critical assessment of
this research work by examining the limits of validity of the experimental results and
the possible difficulties in implementing a DTSVLIW machine. Chapter 8 presents a
summary of this thesis, its conclusions, and suggests future directions for improving

the DTSVLIW architecture performance.
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Chapter 2

Background

The ultimate goal of the computer designer is to minimise the execution time of any

given program. We can express this execution time, T, as:
T=NxCxS§

where N is the number of instructions that need to be executed, C is the average
number of processor clock cycles per instruction, and § is the number of seconds per
cycle. To a first approximation, N, C, and S are affected primarily by the compiler
technology, the ISA, and the implementation technology, respectively [Rau89].

An approach to reduce N at the expense of a smaller increase in C is to exploit
the parallelism available in horizontally microcoded machines [Salisbury76]. This
can be done by defining complex instructions that exploit the internal micro-
parallelism of these machines in the hope that N would decrease more sharply than C
would increase. This is the general idea behind Complex Instruction Set Computers
(CISC).

Microprogramming can be used to implement powerful CISC ISAs, with
complex instructions capable of commanding many operations involving many
operands in registers or main memory. A typical CISC instruction, for example, can
read a value from memory, add this value to the content of an internal register, and
store the result in another position in the memory.

By contrast, the Reduced Instruction Set Computer (RISC) approach to reduce
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T focuses on the use of very simple instructions, which would reduce C and, due to
its simplicity, S as well. The resulting increase in N can be minimised by fine-tuning
the compiler technology and the RISC ISA’s implementation [Patterson85].

RISC instructions usually command a single operation involving no more than
one access to memory. Due to their simplicity, RISC instructions are not
implemented using microprogramming. RISC machines are, therefore, equivalent to
a vertical microprogrammable microarchitecture exposed to the programmer of the
ISA level.

Improvements in the implementation technology alone can also reduce 7' by
reducing S. However, assuming the use of the fastest technology, any further increase
in performance would require the exploitation of the parallelism available in

programs.

2.1 Architectures for Exploiting ILP

Machines capable of exploiting parallelism in the ISA level realise ILP. In this

section, we discuss briefly some important machine architectures for exploiting ILP.

2.1.1 Pipelined Architectures

There are two basic types of ILP: temporal and spatial. Pipelining realises temporal
ILP. It refers to the segmentation of an instruction’s execution into several sub-
processes that are executed by dedicated autonomous units (pipe stages). Successive
instructions can be executed in a mode analogous to car assembly in a factory. Using
pipelining, several instructions can be executed in parallel, each one in a different
pipe stage, and in a different phase of its execution (Figure 2.1). Because the
operations performed by each pipe stage are simple, the pipe stages can be
implemented with simple hardware, which results in a high machine-clock frequency.
Theoretically, the deeper (larger number of pipe stages) the pipeline, the faster the
machine is, but there are of course practical limitations to this rule. Kunkel and Smith
[Kunkel86] have studied the relationship between the theoretical linear speedup that

pipelining offers and its practical limitations.

The first general-purpose pipelined machine is considered to be the IBM 7030

21



Stretch [Bloch59]. After IBM Stretch, the majority of high-end machines have used
some form of pipelining. Surveys on pipelining include Keller [Keller75],
Ramamoorthy and Li [Ramamoorthy77], and Kogge’s book [Kogge81], entirely
devoted to pipelining.

Spatial ILP is that present in processors with multiple functional units. It refers
to the execution of more than one instruction simultaneously in different functional
units of the processor. Temporal and spatial parallelism can be present at the same
time. Indeed, a few years after the IBM 7030 Stretch had been constructed, the
CDC6600 was produced with pipelining and multiple functional units that can
operate in parallel [Thornton70].

The arithmetic portion of CDC6600 has 10 functional units, and many
instructions can be issued to its functional units and executed in parallel. To do so,
the CDC6600 looks-ahead in the sequence of instructions originally specified in the

program in order to determine those that can be executed at the same time.

Fetch Decode Execute Memory Write
Access Back
(a)
Clock Cycle 0 1 2 3 4 5 7
Fetch Stage I 2 13 14 I5 16 17
Decode Stage 1l 12 13 14 I5 16
Execute Stage 11 12 13 14 15
M. Access Stage I 12 3 14
W. Back Stage 11 12 13
®)

Figure 2.1: Pipelining. () The classic five-stage computer pipeline. () After filling all pipeline
stages, one instruction can be completed per clock cycle. Up to five instructions, each in a
different pipe stage, can be executed in parallel in this pipeline.

2.1.2 Superscalar Architectures

The term look-ahead derives from a class of schemes in which programs are
specified in a conventional serial manner, but the processor can look ahead during
execution and execute instructions either in parallel or out of order, provided no
logical inconsistencies arise as a result of doing so. If the processor has sufficient

capabilities, several instructions can be executed concurrently using look-ahead
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[Keller75]. The look-ahead scheme used in CDC6600 is called Thornton's algorithm
and is described in [Thornton64] and [Thornton70].

The IBM 360/91 introduced a powerful look-ahead scheme named Tomasulo's
algorithm [Anderson67, Tomasulo67]. A variant of Tomasulo's algorithm was used
in the IBM RISC System/6000 design [Grohoski90] and, since then, various variants
of Thornton and Tomasulo's algorithms have been used in many machines known as
Superscalar machines [Johnson91].

The core of a Superscalar machine, shown in Figure 2.2, is the look-ahead
hardware, also called dynamic scheduling hardware. The role of the dynamic
scheduling hardware is to dispatch decoded instructions to the instruction window,
and to select instructions from this window to issue to the functional units each clock
cycle. The instruction window is central to the dynamic scheduling hardware and
may be organised as a large structure with many entries or as several small structures,
one for each functional unit. In the latter case, each structure has few entries and each
entry is called reservation station.

During the dispatch process, dependency information is added to the
instructions, their outputs are renamed (see Subsection 2.2.1), and they are stored into
the instruction window. The dependency information comprises dependencies
between the instructions being dispatched themselves and between these and other
instructions previously dispatched, such as which instruction is going to produce a
needed operand. Available input operands are also added to the instructions and
saved with them into the instruction window during dispatch.

During the issue process, the issue hardware collects results from the result
buses (Figure 2.2), updates the instruction window with these results, selects groups
of instructions ready to execute, and issues these groups to the functional units. The
results collected from the result buses are stored into the instruction window in the
entries that have instructions that were dispatched with an incomplete set of input
operands. When all input operands of an instruction are available, the issue hardware
marks it as ready to execute. Groups of ready instructions are selected by the issue
hardware and issued to the functional units to execute.

One of the main problems of highly parallel Superscalar machines is the issue

hardware. In order to set the instructions as ready to execute, the issue logic has to
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compare the output of all functional units with the inputs of all instructions in the
instruction window. This requires wires to connect all functional units to all
instructions in the instruction window, and a number of comparators and associated
logic proportional to the number of functional units times the number of instructions
in the window. Therefore, Superscalar processors with many functional units and
large instruction windows have a complex issue hardware, and a complex issue
hardware impacts negatively on the clock cycle time of these machines. A possible
solution to this problem is to organise the Superscalar core in clusters of functional
units and associated small instruction windows, and to add special buses for
communicating results between these clusters [Palacharla97, Vajapeyam97].

The term superscalar was coined by Agerwala and Cocke [Agerwala87] to
name machines that dispatch multiple independent instructions per clock cycle (in
their original form, the Thornton and Tomasulo’s algorithms can dispatch one
instruction per cycle only). In fact, Agerwala and Cocke proposed this approach as an
extension of the RISC ideas [Hennessy86]. A machine that follows the RISC
philosophy has a fixed instruction length, load-store instruction set (all instructions
operate on registers and two specific instructions operate with memory: load and
store), limited addressing modes, and a small number of possible operations. These
characteristics result in easier pipelined and superscalar implementation.
Nevertheless, CISC ISAs can also be interpreted by machines that follow the
Superscalar architecture such as, for example, the Intel Pentium [Saini93] and the
Intel Pentium Pro [Bhandarkar97] processors with the Intel 1A-32 ISA. The Intel
Pentium, less powerful than the Intel Pentium Pro, can dispatch up to two simple
instructions (RISC-like instructions present in the IA-32 ISA repertoire) to two
parallel execution pipelines of the machine. The Intel Pentium Pro, on the other hand,
has three parallel decoders that convert up to three IA-32 ISA instructions per clock
cycle into multiple RISC-like micro-operations which can be dispatched to
reservation stations of five different functional units.

Computer systems that employ Superscalar techniques leave to the processor
the obligation of finding and exploiting the parallelism that exists in programs.
Although the compiler can help the Superscalar processor to find the parallelism

[Hwu93], the Superscalar hardware still has the main responsibility for finding it.
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However, the compiler can be given the primary responsibility for finding the
parallelism and, in addition, for expressing it in the form of parallel code. From the
different forms of parallel code that can be produced, two have been particularly

successful: Vector code and VLIW code.

| Instruction Memory | | Fetch |
I :
Decode Hardware l Decode
v v vy ‘
Look-Ahead Dispatch Hardware | Dispatch I
Hard
ardware \ l ¢ l ¢ ‘
IW & Issue Hardware mZe—‘
¥ y
Fu| [ru] [ru] [ru] | Execute |
o e
Result Buses
| Data Memory ] ®)
(@)

Figure 2.2: Superscalar machine. IW stands for instruction window and FU for functional unit.
(a) A simple Superscalar data path. (b) A simple Superscalar pipeline.

2.1.3 Vector Architectures

To produce Vector code, the compiler looks for loops in the program and, by using
vectorization techniques [Padua86], generates vector instructions that implement, or
partially implement, the loops. The Vector code produced is executed by Vector
machines. These machines have specialised vector functional units that compute
individual element operations of a vector operation in parallel [Patterson96
(Appendix B)].

The main advantage of Vector architectures is that their hardware is simple,
which results in fast machine implementations. Their hardware is simple because the
compiler generates code in the explicit parallel form of vector instructions, whose
implementation in hardware involves a small set of elementary operations only. A
typical vector instruction might add two 64-element floating-point vectors to obtain a
single 64-element vector as result. The Vector processor interprets this instruction by

reading two elements from the input vector registers, adding these elements, and
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writing the result into the output vector register repeatedly, from the first until the last
vector element of each vector register. These operations are executed sequentially;
however, in a very deep pipelined functional unit. Some Vector processors do not
have vector registers and operate directly with memory.

A vector functional unit can be implemented with a very deep and fast pipeline
because each result is independent of the previous in a vector operation. This
independence is decided at compile time, when the vector instruction is selected to
perform a sequence of operations. Because the parallelism is decided at compile time,
Vector processors do not need the complex look-ahead hardware of Superscalars.

Vector operations can execute in parallel in different functional units if they are
independent. Using chaining, a technique that allows a vector operation to start as
soon as the individual elements of its vector source operand become available, even
some dependent operations can execute in parallel [Ramamoorthy77, Patterson96
(page B-24)]. Scalar and vector operations can also be executed in parallel if they do
not write into each other’s inputs. Nevertheless, in these cases, look-ahead hardware
is required.

Many Vector machines became successful commercially; however, by the end
of the 1980s their importance started fading. This was caused by improvements in
Superscalar architectures, their compilers, and their implementation techniques. At
the beginning of the 1990s, these improvements made Superscalar machines, which
were more than 10 times cheaper than contemporary Vector machines, faster than
Vector machines in the execution of the very important class of scalar programs
[Patterson96 (page B-38)]. Scalar programs are characterised by a lack of long loops
that can be vectorized. Compilers, database manipulation programs, and system
utilities are examples of scalar code. Nowadays, Vector computers are demanded
only by specialised users that require vector performance.

Other parallel processing paradigms such as Multiprocessors, Workstation
Clusters, and Massively Parallel Processors [Fernandes89, deSouza935, Patterson96
(Chapter 8)] have also challenged vector parallel processing. In these paradigms, not
the compiler but the programmer has the primary responsibility for specifying the
program parallelism, which is a drawback and has also limited the use of machines

that follow such paradigms to specialised users.
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2.1.4 VLIW Architectures

The other successful form of parallel code that can be produced by compilers, VLIW
code, is executed by VLIW machines [Fisher84]. VLIW machines can execute
several scalar operations in a single clock cycle. They have long instructions
(hundreds to thousands of bits), with fields to control each of their many functional
units. These long instructions (the term used in the rest of this thesis to refer to VLIW
instructions) are fetched from memory, one per processor clock cycle, and issued to
functional units that operate in parallel. In VLIW machines, the compiler has
complete responsibility for creating a package of operations that can be
simultaneously issued. The hardware does not dynamically make any decisions about
multiple operation issue, and thus the VLIW hardware is simple and fast (Figure 2.3).
However, the assumptions built into the object code by the compiler about this
hardware prevent object code compatibility between different implementations of the
same VLIW ISA. VLIW processors with different levels of parallelism require
specific object-code. This problem is known as the VLIW object code compatibility
problem [Rau93b]. Furthermore, it is not possible to implement current RISC or
CISC general-purpose ISAs using the standard VLIW architecture because their
existing legacy code has been produced with a sequential machine in mind. All this
has made VLIW machines of limited commercial interest. Nevertheless, some VLIW
machines have been produced commercially [Cowell88, Rau89], and the research
efforts on their VLIW compilers has proved very useful in improving the

performance of compilers targeting modern pipelined and Superscalar machines
[Rau93a).

27



Instruction Memory |

*---

Data Memory l

(a)
Clock Cycle 0 1 2 3 4 5 7
Functional Unit 1 I 15 111 114 116
Functional Unit 2 2 18 1ns 17
Functional Unit 3 13 16 9 112 118
Functional Unit 4 14 17 110 113 119

®)

Figure 2.3: VLIW machines. (@) A hypothetical VLIW machine. (5) The compiler can put up to
four instructions into each long instruction of this VLIW machine. If one instruction slot cannot
be filled, a no-operation (nop) instruction is used.

2.1.5 Multithreaded Architectures

Like pipelining, multithreading realises temporal parallelism, but in a different way.
A Multithreaded architecture can execute many threads (processes from different
programs or the same program) in parallel with the same hardware. To do so, a
multithreaded processor has multiple sets of storage positions for recording the state
(also called context) of different threads. The multithreaded processor executes one
or more instructions of one thread and then switches to another thread ready for
execution, repeating this process continuously in a round robin or prioritised way.
Thread switching can be triggered either by the clock or by dynamic events such as
cache misses. By using multithreading, the utilisation of the processor hardware is
increased because latencies due to cache misses, inter-instruction dependencies, etc,
can be hidden by the execution of other threads.

Multithreading and multiprogramming (also called time-sharing) are similar in
the way they allow different programs to execute in the same hardware. They differ,
however, in the kind of latency they hide. While multiprogramming hides long
latencies, such as input/output (I/O) latencies, multithreading hides short latencies
related to instruction execution. In multiprogramming, the operating system controls
process switching. This involves saving one process context in memory and bringing

another from memory into the processor, which typically requires tens to thousands
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of clock cycles. In multithreading, the processor has storage space for several threads
and its hardware is typically able to switch between threads in one clock cycle.
Nevertheless, Multithreading can be used to implement multiprogramming.

To my knowledge, multithreading was first employed in the peripheral
subsystem of the CDC6600 [Thornton70], in which a single processor is connected to
10 independent ferrite-magnetic-core memories and 10 independent register files. On
each clock cycle, the processor is connected to one particular register file and one
associated memory. The processor executes one instruction in this clock cycle and
switches to the subsequent register file-memory pair on a circular basis. Because the
CDC6600’s peripheral processor hardware is 10 times faster than its ferrite-
magnetic-core memories, it is able to perform as if it were 10 processors instead of
one, by sharing its hardware between 10 different programs. When 10 I/O programs
are running simultaneously, the Multithreaded architecture of the CDC6600’s
peripheral processor hides the memory latency completely, making the most of the
available hardware.

The basic architectural principle behind multithreading — sharing hardware
resources between threads — can be associated with other parallel processing
paradigms. Some researchers have proposed, for example, multithreaded
multiprocessors [Smith_BJ81], while others have proposed multithreaded
multiprocessors where the processors are VLIW machines [Alverson90]. Tullsen and
his colleagues have proposed an advanced Superscalar architecture capable of issuing
several instructions from different threads to the machine’s functional units in the
same clock cycle [Tullsen95]. They called the technique embodied in this
architecture simultaneous multithreading. In Sohi’s Multiscalar architecture
[Sohi95], fine-grain tasks from a single program are defined automatically at compile
time, as opposed to threads defined in the source code by the programmer or threads
of different programs. These tasks are dynamically assigned to different execution
contexts of the Multiscalar processor.

An intrinsic problem of Multithreaded architectures is the need for several
execution contexts, which include register files, pipe registers, and sometimes caches
and memories. The implementation of these contexts increases the machine design

complexity substantially, which impacts on the clock cycle time, reducing the
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multithreading advantage. Nevertheless, as the gap between processor and main
memory speed increases, multithreading may become more important due to its

latency-hiding ability.

2.2 ISA and Hardware Support for Exploiting ILP

Pipelined, Superscalar, Vector, and VLIW architectures exploit the ILP available in
programs. The amount of ILP that can be exploited is limited by data and control
dependencies between instructions (Figure 2.4). These dependencies impede:

e execution of consecutive instructions in pipelined architectures

parallel instruction issue in Superscalar architectures

loop vectorization in Vector architectures
e placement of more instructions into the long instructions of VLIW
architectures by VLIW compilers
All this leads to poor utilisation of the available hardware — while one hardware unit
is busy others may be idle, waiting for the results from the busy unit.

The ISA itself can give support to overcome dependencies by allowing direct
expression of ILP, as in Vector and VLIW ISAs. However, there are other forms of
ISA support for exploiting ILP, such as bits in the instructions encoding to help
branch prediction or to express predication. Hardware can support ILP exploitation
with, for example, register renaming or dynamic branch prediction. In the rest of this

section, we discuss ISA and hardware support for ILP exploitation.
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@:= 3 *r4

r2 : 1
(a) true data dependency (b) anti-dependency
(11):= 50[r6] :@rS = 0 goto L
(r1):= 13 + 4 L:
(c) output dependency (d) control dependency

Figure 2.4: Data and control dependencies. (@) Two instructions have a true data dependency if
the result of the first is an operand of the second. () Two instructions have an anti-dependency
if the first uses the old value in some location and the second sets that location to a new value. (¢
Two instructions have an output dependency if they both assign a value to the same location. (d)
There is a control dependency between a branch and an instruction whose execution is
conditional on it.

2.2.1 Register Renaming

Anti-dependencies and output dependencies (Figure 2.4) can be eliminated by
renaming. They are called name dependencies because, as opposed to true data
dependencies, there is no value being transmitted between the instructions. In anti-
dependencies and output dependencies, it is the use of a name that causes the
dependency, not the need for a previously computed value. For example, in Figure
2.4b, if the result of the second operation, “r2 / 57, is written into another register,

2

say “r5”, the anti-dependency disappears and the two statements can then be

executed either in parallel or in reverse order. The same is true for Figure 2.4c if we

99

change “rI” to “r2” in the second statement, for example. The names used for
renaming cannot be in use at the point of renaming; that is, the names used cannot
specify valid values that might be needed for subsequent instructions.

Although renaming can be applied to both memory and register operands it can
be more easily applied to register operands, in which case it is called register
renaming. Register renaming can be done either statically by the compiler or
dynamically by the hardware. Superscalar machines employing the Tomasulo’s

dynamic scheduling algorithm [Tomasulo67] for example, perform register renaming
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dynamically. In fact, the main difference between the Thormton and Tomasulo’s
dynamic scheduling algorithms is the ability to perform renaming — the Thornton’s

algorithm does not support renaming [Patterson96 (pages 240-261)].

2.2.2 Branch Prediction

Branch prediction [Lee_JFK84, Fisher92, Pan92, McFarling93, Nair95] can reduce
the impact of control dependencies (Figure 2.4d) on machine performance. Control
dependencies impact on performance because instructions that depend on a
conditional branch can only be executed after the branch outcome is known. For
example, if in Figure 2.1 (page 22) the instruction I5 is a conditional branch that
targets instruction /32 at that point of program execution, the processor fetches and
decodes instruction /6 in vain and fetches /7 in vain. This happens because the
processor only learns the branch outcome when /5 is in the execute pipeline-stage.

Branches can be predicted statically by the compiler or dynamically by the
hardware. They can be predicted at compile time using knowledge about the program
itself. A conditional branch at the end of a loop that is used to branch back to the
beginning for another loop interaction may be predicted as taken, for example.
Another alternative for branch prediction at compile time is profiling [Fisher92]. In
this case, a version of the program is executed one or more times with typical inputs
and the branches’ behaviour is saved. The branch behaviour information is then used
to statically predict the program branches as taken or not taken in an eventual
program recompilation. Whether or not profiling is used, the compiler establishes its
prediction by setting a taken-bit in the branch instruction to inform the hardware
whether the branch is predicted as taken or not taken. Therefore, compiler oriented
static branch prediction has to be supported by the ISA.

Usually, the hardware checks the taken-bit and moves the control-flow to the
appropriate branch-target instruction when the branch instruction leaves the decode-
stage of the processor’s pipeline. In the example mentioned above, if 15 has a taken-
bit and it is set at true, the processor can redirect the fetch under the control of /5
when it is in the decode pipeline-stage. In such case, 16 is still fetched but not 17; 132
is fetched instead. This saves one cycle, improving the overall machine performance.

Experimental results have shown that profiling achieves prediction accuracy of 85%
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on average for the integer programs of the SPEC89 benchmark suite [Patterson96
(page 176)].

Certain ISAs go beyond the static branch prediction mechanism described and
use the concept of delayed branches to try to avoid the useless fetch of /6 in the last
example. In such ISAs, one or more instructions that follow a branch (usually just
one) are unconditionally executed. These instructions are said to be in the branch
delay slots. The compiler can use branch delay slots to accommodate useful
instructions. An even more elaborate scheme adds an extra annul-bit to the branches
encoding to say whether the instruction in the branch slot should be annulled when
the branch is not taken. Using these facilities, the compiler could put /32 after the I5
branch in the example above, and set the annul-bit and the taken-bit of I5 at true.
This would favour a possibly more frequent case when I5 is taken — no processor
cycles would be lost in such case, provided that the 5 target can be computed in the
decode pipeline-stage. The Sparc Version 9 ISA [Patterson96 (page C-25)], for
example, incorporates the annul-bit and the taken-bit in some of its conditional
branches. Experiments have shown that the compiler is able to fill 79% of branch
delayed slots and that delayed slots that can be annulled are not annulled 66% of the
time on average in the SPEC89 integer programs [Patterson96 (page 171)].

Branches can be predicted dynamically using pure hardware mechanisms. The
Branch Target Buffer (BTB) is an example of such a mechanism [Lee_JFK84]. The
BTB is a special cache memory in the processor that stores the target address of taken
branches. When a branch is executed and its outcome is taken, an entry in the BTB
receives its target address; not-taken branches have any current entry in the BTB
removed. The BTB entries are tagged with the branch instruction addresses. On every
instruction fetch, the processor checks the BTB using the instruction fetch address
and, if this address hits in the BTB, it means that the fetched instruction is a branch
and that it was previously taken. The next instruction fetch, then, uses the branch
target address previously stored in the BTB. If the processor fetches more than one
instruction per cycle, as Superscalars do, the address stored in the BTB is the target
of the first branch in the previously fetched group of instructions. The BTB address
tag is the address of this group of instructions, in this case. The mentioned policies

for adding, removing, and tagging BTB entries are typical; there are other policies
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[Lee_JFKS84].

An alternative implementation scheme for BTBs has been evaluated by Calder
and Grunwald [Calder95]. In this scheme, called next /ine and set (NLS) predictor,
the predicted next instruction cache line and set are stored either in a special cache or
in the instruction cache directory (not the contents but the line and set values). This
saves silicon space when compared with the BTB, because a branch target address
specification requires more bits than a cache line and set, and no address tags are
required, since they are already available for the instruction cache operation. Calder
and Grunwald have shown that the NLS performs better than the BTB for the same
silicon area in some important configurations [Calder95]. An example of processor
that uses NLS is the UltraSparc-I [ Tremblay96].

The BTB is a one-bit branch prediction scheme: it either contains or does not
contain the target of a specific branch. A shortcoming of a one-bit predictor is that,
even if a branch is almost always taken, this predictor will predict incorrectly twice
rather than once when the branch is not taken and then taken. In a more elaborated
branch prediction scheme, small registers record the history of previousiy executed
branches. These registers are also saved in a cache, called the Branch History Table
(BHT). In a predictor that follows this scheme and uses two-bit registers, a prediction
may be set to miss twice before change, for example. The two-bit scheme is actually
a specialisation of a more general scheme that has an n-bit register for each entry in
the BHT. With an n-bit register it is possible to record the outcome of n branches 1f
we use the register as a shift register: the newest branch outcome is inserted in one
side and the oldest removed from the other side. When a branch fetch address hits in
the BHT, the corresponding register content is used to predict its outcome. When the
branch outcome is later computed, this BHT register incorporates its outcome.

Lee and Smith [Lee JFK84] have shown that a two-bit predictor predicts
almost as well as a n-bit (n > 2) one, and thus most systems rely on two-bit predictors
rather than the more general n-bit predictors. In these systems, the two-bit registers
are used as saturating counters [Smith JE81]. With a 2-bit saturating counter it is
possible to record values between 0 and 3. When a branch address hits in the BHT,
the corresponding counter is either incremented if the branch is taken or decremented

if the branch is not taken, but saturates in 3 and 0, respectively. When the counter is
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equal to 2 or 3 the branch is predicted as taken; otherwise, it is predicted as not taken.
A branch predictor based in a BHT that is updated this way is also called bimodal
branch predictor [McFarling93].

A BHT only says whether a branch is predicted as taken or not. Although very
useful, this information can only produce positive results in the case of taken
branches after they are decoded and their targets computed, which usually requires
more than one pipeline stage. However, BHTs and BTBs can work together in a
single processor: the BTB recording the target of taken branches and the BHT
governing the general conjugate-predictor behaviour. This behaviour can follow
several different schemes. As an example of such a scheme, instruction fetches that
hit in the BTB take the branch target address stored in the BTB as the new fetch
address. However, not taken branches only have their entry removed from the BTB if
they are predicted as not taken by the BHT, and taken branches only have their target
address stored in the BTB if they are predicted as taken by the BHT. Schemes like
this are interesting because BHTs require less hardware per entry than BTBs, since
they do not record branch target addresses, which allows larger BHTs than BTBs. An
example of processor that uses such a scheme is the PowerPC620 [IBM94]. Other
schemes may join the BTB and the BHT together to save silicon space with tags, or
use different polices of replacement in the BTB, BHT, or both. As an example of
BHT (or bimodal branch predictor) performance, a 4096-entry (1K-byte) direct-
mapped two-bit saturating counter BHT achieves accuracy of 89% average in the
SPECR89 integer benchmark suite [Pan92].

The BTB, the BHT, and their combinations are the most simple and well-
known branch predictors. There are, however, many other predictors. Yeh [Yeh91,
Yeh92, Yeh93a] has proposed two-level adaptive branch predictors, which use two
tables (or caches) to predict if branches are taken or not. The first table contains shift-
registers and records the history of the branches while the second contains saturating
counters and determines the prediction; the second table is partially or fully
addressed by the content of the first. Yeh proposed a taxonomy for two-level
adaptive branch predictors to classify them according to the addressing of the two
tables and the tables sizes. He and his colleagues studied the predictor accuracy with

different configurations and found average accuracy for the complete (integer and
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floating-point) SPEC89 benchmark suite of 96.5% with a 1-Kbyte per-address history
two-level adaptive branch predictor (PAs). Pan [Pan92] studied a particular case of
two-level adaptive branch predictor where a single shift-register is used to record the
branch history. This shift-register is concatenated with the branch address to produce
an index to the table of saturating counters. Pan has called this predictor correlation-
based branch predictor and found average prediction accuracy of 94.1% on the
SPEC89 integer benchmark suite. McFarling [McFarling93] proposed instead of
concatenation, the performance of an exclusive-or (xor) between the shift-register
and the branch address. He called this new predictor gshare and reported gshare
prediction accuracy of 95.5% with the complete SPEC89 benchmark suite.
McFarling also proposed, in the same paper, the combination of two branch
predictors to exploit the different characteristics of each of them. In this case, an
extra table of saturating counters is used to choose the most accurate predictor for a
particular branch. He found average prediction accuracy of 96.5% with a
bimodal/gshare combined branch predictor on the complete SPEC89 benchmark
suite. Kaely and Emma [Kaeli91] have proposed the use of a small (Iess than 32
entries) return-address-stack specifically for predicting subroutine returns. Recent
proposals of repair mechanisms of the return-address-stack contents have
demonstrated accuracy of nearly 100% in subroutine return branches for the SPEC95
benchmark suite [Skadron98].

There is an enormous amount of research on dynamic branch prediction in the
literature and the research interest in this field is still high. This interest exists
because dynamic branch prediction has a fundamental role when used together with
speculative execution in wide and deep pipelined Superscalar architectures

[Theobald92, Wall94, Uht97].

2.2.3 Speculative Execution and Interrupt Handling

Instructions are said to execute speculatively when they are dependent for execution
on the outcome of a conditional branch and yet are executed before the branch result
is available, but do not have their output values committed to the ISA state until the
outcome of the branch instruction is known. This is done to allow the machine

hardware to be utilised while the branch outcomes are still not computed.
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Although more frequent, branch mispredictions are similar to interrupts (also
called exceptions or traps). Interrupts are caused by the execution of some
instructions, such as load/store (page faults, access violations) or divide (divide by
zero), or by events external to the processor (timer, VO, etc). When a branch
misprediction occurs, the machine must be restored to a state such that all
instructions that precede the misprediction have updated the machine state, while
none of those following it have. The same is true for interrupts: after an interrupt is
handled, the machine must be restored to a state such that all instructions that precede
the interrupt have updated the machine state, while none of those following it have.
Speculative execution makes it difficult to establish the precise ISA state to return to
in these cases because instructions are allowed to initiate before knowing the
outcome of branches that precede them. This problem is known in the literature as
the precise interrupt problem.

Smith and Pleszkun [Smith_JE85] described several mechanisms to implement
precise interrupts. The simplest one is in order completion. In a machine that
implements this mechanism, instructions modify the ISA state only when all
previously issued instructions are known to be free of exception conditions and all
previously issued branches have confirmed their targets. Another mechanism
proposed by Smith and Pleszkun is the history buffer. The history buffer allows a
machine to undo the effects of instructions executed speculatively. The history buffer
is a circular list, with pointers to the top and bottom. Every time the machine issues
an instruction to the functional units, it allocates a slot for the instruction at the
bottom of the history buffer. When the instruction executes, the values it overwrites
in the machine state (the old values) are stored into the instruction’s slot in the buffer.
Instructions at the top of the history buffer are removed as they complete execution.
An instruction can only interrupt the machine when it arrives at the top of the buffer.
On an interrupt, the machine restores the precise ISA state before the instruction
execution using the old values preserved in the history buffer.

Hwu and Patt have proposed the checkpoint repair mechanism to recover from
mispredicted branches and exceptions [Hwu87]. A processor employing checkpoint
repair has a set of logical spaces, which consists of a full set of ISA registers and

extra registers for recording values which result from store instruction execution. Of
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all logic spaces, only one is used for current execution. The other spaces contain
backup copies of previous states of the processor. At various times during execution
(at every branch instruction for example), a checkpoint is made by copying the
contents of the processor registers to one of these logic spaces. The logic spaces are
managed as a stack; therefore, a checkpoint operation discards the oldest
checkpointed state. In case of an exception or misprediction and depending on the
implementation, a suitable previously saved machine state either becomes the active
state or is copied to the machine state. Store instructions are managed using one of
two possible mechanisms. In the first, they have their store values saved in special
registers in the logical space. After each new checkpoint, the values previously saved
are stored into memory. In the second mechanism, they have the values that they
overwrite in the cache saved in the special registers. In case of interrupt or
misprediction, the values saved are restored into the cache.

Most schemes for dealing with interrupts and branch mispredictions in the
presence of speculative execution described in the literature incorporate the idea of
keeping multiple copies of any overwritten ISA register or memory position. These
mechanisms recover from interrupts or branch mispredictions by discarding all
values produced after these events took place and restoring the ISA state to the
previous values. They differ in the impact on the machine performance and in the
implementation cost. Wang and Emnett [Wang CJ93] have examined these trade-
offs for the in-order completion, history buffer, reorder buffer [Smith JE85], and
future file [Smith_JE85] mechanisms. Butler and Patt [Butler93] compare the
performance implications of using checkpointing with that of using either the history

buffer or the reorder buffer.

2.2.4 Memory Disambiguation

When load/store instructions are executed out of the order specified by the
programmer, special mechanisms must be used to avoid memory aliasing. Memory
aliasing occurs when loads read from or stores write to the same memory positions
that are going to be written by stores originally assigned to execute before them. The
mechanisms employed to avoid memory aliasing are known as memory

disambiguation mechanisms or memory aliasing detection mechanisms.
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In VLIW machines, memory disambiguation is usually done at compile time,
although some hardware support can be added to the VLIW machine for detecting
and resolving memory aliasing between near long instructions at execution time
[Colwell88]. Johnson proposed the use of a store buffer for dynamic memory
disambiguation in Superscalar machines that execute load and store instructions
speculatively [Johnson91]. The store buffer records store instructions, the store data,
and the store addresses as they are computed. When a store instruction is dispatched,
it is also copied to the store buffer together with the store data. After being computed,
the store address is placed into the appropriated entry of the store buffer. The store
then waits in the store buffer until all previously issued instructions are completed.
After that, the cache write is performed and the store instruction removed from the
store buffer. Load disambiguation is performed by holding the execution of load
instructions until the addresses of all stores in the store buffer are computed. If a load
address matches an address in the store buffer, the load can either read the data
directly from the buffer or wait until all matching store-buffer entries are removed
from the store buffer. Store disambiguation is performed by removing the store
instructions from the buffer and writing their data into the cache in execution order.
Franklin and Sohi have proposed a more elaborate memory disambiguation scheme,
called Address Resolution Buffer (ARB) [Franklin92]. In a machine with ARB, loads
are allowed to read from the data cache even when there are previous store
instructions not yet issued or whose addresses are not yet computed. This is possible
because the ARB records the same information recorded by the store buffer plus load
addresses and the relative order between loads and stores. When a store address is
computed, the ARB is able to signal any existent memory aliasing. Special recovery

actions are then taken when aliasing is detected.

2.2.5 Predication

Predication is a form of ISA support for exploiting ILP. Predicated, or guarded,
execution refers to the conditional execution of instructions based on the value of a
boolean source operand, referred to as predicate [Park91]. Predicates are associated
with instructions at compile time. An instruction with a predicate value of true

executes normally, while an instruction with a predicate value of false — although
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issued — does not write its results into the ISA state. Additional compare and move
instructions are used to set the predicates’ value at execution time. Predication can be
used to remove conditional branches, particularly the hard to predict ones, such as
those associated with if — then — else statements. The process of eliminating
conditional branches utilising predicated execution support is referred to as if-
conversion, and it was initially proposed to assist automatic vectorization of loops
with conditional branches [Allen83]. Predication was also extensively used in the
Cydra 5 VLIW computer [Rau89], and is a key architectural feature of the Intel IA-64
ISA (first 64-bit Intel ISA, which will supersede the Pentium IA-32 ISA)
[Dulong98].

Consider, for example, the following fragment of C code extracted from the

eqntott program of the SPEC92 benchmark suite:

if (aa ==2)
aa =0,

if (bb==2)
bb =0;

This code fragment can be translated to the following assembly code fragment
(the destination register is the rightmost, branches are not delayed, and the suffix cc
in the sub_cc instructions indicate that the machine’s condition codes are modified

by these instructions):

1d aa(sp), rl # load the aa variable into r1 (sp is the stack pointer)

sub_ccrl, 2, r0 # write to r0 have no effect
bnz if 2 # branch if not zero
st r0, aa(sp) # 10 always read as zero

if 2: 1d bb(sp), rl # load the bb variable into rl
sub_ccrl, 2, 10
bnz end

st r0, bb(sp)
end: ...

In wide and deep pipelined Superscalars, when the instruction bnz if 2 is
detected as taken and was predicted as not taken, all subsequent instructions shown

above might already have been issued. In such case, all work done is discarded only
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to fetch the store possibly for a second time, since it might already have been fetched.

With predication, the assembly code fragment above can be modified to:

1d aa(sp), rl # load the aa variable into rl

sub rl,2,p # p is a predicate

~p, st 10, aa(sp) # the store is only executed if p is zero
if 2. 1d bb(sp), rl

sub rl,2,p

~p, st 10, bb(sp)
end: ...

The assembly code is now shorter (this is not always the case with predication)
because the branches have been removed. In addition, all instructions can be issued at

the same time in a Superscalar employing the Tomasulo algorithm.

2.2.6 Instruction Hoisting

Mahlke et al. have proposed a form of ISA support for speculative execution of
instructions that can cause exceptions, such as loads, stores, and floating-point
instructions [Mahlke92a]. We use here the nomenclature used by Dulong
[Dulong98], who calls this ISA support instruction hoisting. Instruction hoisting is
used to advance exception-causing instructions past conditional branches in order to
improve ILP exploitation. (Instruction hoisting is also one of the key architectural
features of the Intel IA-64 ISA [Dulong98].)

Hoisted instructions receive a tag at compile time that indicates to the machine
hardware that they have been hoisted. The machine executes these instructions
normally, but does not deliver exceptions related to them. If a hoisted instruction
performs any exception-causing operation, the information related to the exception is
saved in bits associated with the destination register of this instruction, and the
address of the offending instruction is saved into its destination register. In the case
of store instructions, the address of the offending store is saved in a modified version
of the store buffer [Mahlke92a], ARB, or equivalent architectural support for store
instructions.

Special instructions, called sentinel instructions, are used to check the
exception information saved. When sentinel instructions detect exceptions, fix-up

code is invoked to deal with the exceptions.
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Consider the following fragment of C code:

if(x>y)
k=a[x +y];

This code fragment can be translated to the following assembly code fragment:

1d x(sp), rl # load the x variable into rl
1d y(sp), 12 # load the y variable into r2
1d a(sp), 13 # load the a pointer into r3
sub_ccrl, r2, r0

ble else #branchifx <=y

add r2,rl,r4 #rd=x+y
1d (r3+r4),r4  #load a[x + y] into r4
st r4, k(sp) #k=a[x+y]

else:
With hoisting, the assembly code fragment above can be modified to:
1d x(sp), rl # load the x variable into rl
1d y(sp), 12 # load the y variable into r2
1d a(sp), 13 # load the a pointer into r3
sub_ccrl, 2,10
add r2,rl,r4 #rd=x+y
Id.hois (r3+r4),r4  # hoisted load a[x + y] into r4
ble else # branch if x <=y
check r4 # special instruction for exception check
st r4, k(sp) #k=a[x+y]
else:

The assembly code fragment is now larger, but it is not always the case, since
the st r4, k(sp) can perform the sentinel function of the instruction check ¥4 when
reading r4, ISA permitting. In the new code fragment there is always one instruction
between a load and the instruction that consumes the loaded value. This reduces the
impact of load latencies in the machine performance. If the sentinel instruction
detects an exception such as a page-fault, the operating system is invoked and fix-up
code is used to execute the ld.hois (¥r4+r2), r4 instruction again. The program

execution then restarts after the check r4 instruction.
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2.2.7 Data Dependence Collapsing

Data dependence collapsing can be used to alleviate the impact of true data
dependencies on ILP. Consider the example of true data dependency shown in Figure

2.4 (a) (page 31) and repeated below:

rl=r3*r4

r2:=rl+1

The second statement has to wait the execution of the first due to a true data
dependency on r/. The dependency between these two statements can be eliminated,
however, by executing the second in a functional unit capable of reading three inputs,
and performing one multiply operation and one add operation at the same time as

shown below:
2:=(13*rd4)+1

This is called data dependency collapsing. Data dependency collapsing
functionality has been added to some processors, such as the Intel 1860 [Intel89],
IBM RS/6000 [Oehler90], and the PowerPC family [Diefendorff94] in the form of
multiply-add floating-point instructions. Malik and his colleagues [Malik92] have
proposed and evaluated an Arithmetic and Logic Unit (ALU) design that allows data
dependency collapsing of integer instructions. Sazeides and Vassiliadis have studied
the performance potential of data dependency collapsing for improving processor

performance in [Sazeides96].

2.3 Compiler Support for Exploiting ILP

Superscalar architectures deal with instruction dependencies in hardware level by
using the Thornton, Tomasulo, or another dynamic scheduling algorithm. However,
due to hardware limitations, a significant part of the ILP may be lost. Nevertheless,
the compiler can help the Superscalar hardware by generating code where instruction

dependencies are spaced apart, and by using predication and hoisting when there is
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ISA support. VLIW architectures differ from Superscalars in their exploitation of ILP
by relying only on the compiler, which produces already parallel code in the form of
long instructions. In fact, the appearance of VLIW architectures was a result of the

development of a compiler technique called trace scheduling.

2.3.1 Trace Scheduling

Trace scheduling was first developed as a solution to the global microcode
compaction problem [Fisher81]. Microcode compaction is the process of combining
the microoperations that compose a microprogram into microinstructions in a way
that reduces the space required by the microprogram and, hopefully, the time needed
for the microprogram execution. Microcode compaction is used to produce code for
horizontal microprogrammable machines.

There are two types of microcode compaction: local and global. Local
microcode compaction is restricted to basic blocks of microcode [Davidson81]. A
basic block is a straight-line sequence of instructions that are not targeted by
branches except at the beginning and with no branches except at the end. Basic
blocks are short — typically about 5-20 instructions on average — and, because of this,
there is not much scope for finding parallelism in them. Therefore, in order to make
highly parallel horizontally microcoded machines worthwhile, it was important to go
beyond basic blocks by using global microcode compaction techniques. Global
microcode compaction techniques compact large sections of microcode containing
many basic blocks. The first technique capable of doing that effectively was the trace
scheduling technique [Fisher81].

The success of trace scheduling in compacting microcode for horizontally
microcoded machines triggered the development of the VLIW architecture, which is
basically an architecture where horizontal microinstructions are exposed to the
programmer of the ISA level as long instructions. A VLIW compiler employing trace
scheduling is able to find the parallelism in the program source code and express it in
the form of long instructions [Colwell88, Ellis86].

A trace-scheduling compiler analyses the program source as a whole. After
applying a set of classical optimisations (loop invariant motion, common sub-

expression elimination, induction variable simplification, etc [Aho86]), the compiler
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generates the intermediate code and builds a graph of the program with operations
represented by nodes and control flow represented by edges. Using estimates of
branch directions produced through heuristics, the compiler selects a path, or trace, in
the program graph, likely to be followed during execution. The instructions in this
trace are dealt with as if they were a single basic block, with little attention paid to
branch instructions except that they are constrained to remain in their original order.
Instructions are allowed to move upward and downward and to cross their original
basic block limits. The compiler schedules the trace into long instructions using the
list-scheduling algorithm [Adam74, Fisher81], taking into consideration data
dependencies between instructions, efficient use of functional units, registers, cache
ports, etc. Of course, the scheduling done without considering branch instructions
can lead to inconsistencies when branch instructions leave the trace or target
instructions inside the trace. To avoid these inconsistencies, the compiler adds
compensation code outside the trace in all points leading to or leaving the trace,
connecting it to the rest of the program. This activity, termed bookkeeping, repairs
the inconsistencies, restoring the program semantics. After scheduling the most likely
trace, the compiler selects and schedules the second most likely trace, then the third,
and so on, until there are no traces left.

Trace scheduling suffers from two problems: inaccurate trace selection and
code explosion. Traces are selected statically at compile time by guessing the
direction of branches, which is good for some programs but overall is not very
efficient [Patterson96 (page 175)]. Nevertheless, trace selection can be improved
with profiling [Fisher92, Fisher93]. Code explosion is caused by bookkeeping and by
code replication during motion of code downward across branches and upward across
merges. Researchers have addressed this problem and proposed heuristics to

circumvent it [Su84, Gross90, Freudenberger92].

2.3.2 Superblock Scheduling

An important issue for trace scheduling is the compiler implementation complexity
incurred by the need to perform bookkeeping to maintain correct program execution

after moving instructions across basic blocks. Superblock scheduling is a technique
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derived from trace scheduling that avoids bookkeeping via superblock formation
[Hwu93].

A superblock is a trace that has no side entrances (execution paths that lead to
instructions inside the trace); that is, control can only enter from the top but may
leave at one or more exit points. Superblocks are formed in two steps. First, traces
are selected using execution profile information. Second, tail duplication is
performed to eliminate any side entrances into the trace. Tail duplication is
performed by copying the tail portion of the trace from the first side entrance to the
end of the trace. All side entrances into the trace are then moved to the corresponding
tail copy. This trace without side entrances is a superblock, also known as an
extended basic block in the compiler literature. After formation, the compiler
schedules superblocks using the list-scheduling algorithm.

A structure similar to the superblock is the Ayperblock [Mahlke92b]. A
hyperblock is also a block of instructions where control can only enter at the top, but
may exit from one or more locations. However, unlike the superblock, predicate
instructions are used within hyperblocks. Thus, a hyperblock may contain
instructions from more than a single path of control. Therefore, for programs without
heavily biased branches, hyperblocks provide a more flexible framework for
compile-time ILP expression.

Other forms of ISA support, such as hoisting, can also be used for improving
trace scheduling and its variants, superblock and hyperblock scheduling

[Mahlke92a].

2.3.3 Percolation Scheduling

Percolation scheduling was designed as a general scheduling technique for any
parallel machine, but it is particularly appropriate for VLIW machines. Percolation
scheduling modifies a program little by little using four semantics-preserving
primitive transformations: move-op, move-cj, delete, and unify [Nicolau85]. The
input code is presented to the percolation scheduler as a graph, with nodes containing
instructions and edges representing the control flow. The primitive transformations
are applied to this graph, grouping independent instructions in single nodes. Move-op

and move-cj move simple operations and conditional branches between adjacent
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nodes, respectively. These transformations may cause replication of instructions and
empty nodes. The unify transformation unifies identical operations in neighbour
nodes, and the delete operation deletes empty nodes resulting from previous
transformations. The use of these transformations is guided by heuristics.

The original percolation scheduling has several drawbacks. First, it assumes
unbounded resources. Second, the possibility of moving an instruction in a target
path of a conditional branch above this conditional branch is limited to the case in
which the destination of the instruction is dead in the other path of the branch. This
restricts the achievable parallelism. Third, there is no control over code explosion.
Finally, it cannot schedule instructions that take more than one cycle to complete
(latency larger than one cycle).

Ebcioglu and Nakatani developed a new technique, called enhanced pipeline
percolation scheduling, which builds on the original ideas of Nicolau, tackling the
percolation scheduling drawbacks [Ebcioglu89, Nakatani89, Nakatani93]. Enhanced
pipeline percolation scheduling schedules code into tree instructions. A tree
instruction implements a small binary decision tree. At each internal node of the tree,
there is a conditional branch. At the external nodes of the tree, there are labels to
which the tree instruction can branch. On each directed edge of the tree, there can be
zero, one, or more instructions, which have no data dependencies with each other and
can thus execute simultaneously. Tree instructions allow operations to be
conditionally executed, depending on to where its branches are branching. During
execution, only those instructions in the followed path through the tree instruction are
executed. This reduces the critical path length to less than what was possible with the
original percolation scheduling. The resources that a tree instruction can hold are
limited in enhanced pipeline percolation scheduling.

Enhanced pipeline percolation scheduling adds renaming to move-op and
move-cj. With renaming, an instruction in a target path of a conditional branch can
move above the conditional branch even if the instruction destination is live in the
other target path, since the instruction destination can be renamed.

Code explosion is avoided in enhanced pipeline percolation scheduling by
adopting move-op and move-cj conditionally and by limiting the code area that is

scheduled at any given time to a look-ahead window computed using heuristics.
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Multicycle instructions are accomplished by adding » - 1 “dummy” instructions with
the semantic “z <« delay(z)” after each n-stage pipelined “z < x operation y”
instruction. Dummy instructions do not take resources during scheduling and are not

saved in the final tree instructions but are only used to guide the scheduling.

2.3.4 Loop-unrolling

Trace scheduling, superblock scheduling, and percolation scheduling are, in their
original formulation, different forms of global acyclic scheduling. They try to expose
the ILP available in acyclic code by overlapping the execution of multiple basic
blocks.

Although dynamically executed many times, cyclic code — or loops — are
usually statically short and contain few basic blocks. Nevertheless, as with global
acyclic scheduling, ILP in cyclic code can be obtained by overlapping the execution
of multiple basic blocks. In this case, however, these basic blocks are the result of
multiple iterations of the same piece of code. The most natural way of exposing these
multiple dynamic basic blocks, that result from the execution of loops, to the
compiler’s scheduler is to unroll the body of the loop some number of times
[Rau93a].

Consider the following fragment of C code, which calculates the sum of all

elements of a vector:

sum = 0;
for (1 =0; i <a_size; i++)
sum = a[i] + sum;

This code fragment can be translated to the following assembly code fragment

(the compiler knows that a_size is larger than zero):
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mov 0,12 # 12 represents the sum variable at this point

mov 0,1l # rl represents the i variable at this point
1d a(sp), 13 # load the a pointer into r3 (sp is the stack pointer)
1d a_size(sp), r5 # load the a_size into 15
1.loop: 1d (r3+rl), 14 #rd=afi]
2. add rl,1,rl #i++
3. sub_ccrl, 15,10 # write to r0 have no effect
4, add r4,r2,12 # sum = afi] + sum
5. bnz loop # branch if not zero
st rl, i(sp) # update i in memory
st r2, sum(sp) # update sum in memory

The loop can be unrolled once at source level as shown below, if a_size is

known to be multiple of 2:

sum = 0;
for (i =0; i <a_size; i =i+2)
{ .

sum = afi] + sum,;

sum = a[i+1] + sum,;

}

This unrolled loop can be translated to the following assembly code fragment:

mov 0,12 # r2 represents the sum variable at this péint
mov 0,rl # rl represents the i variable at this point
1d a(sp), r3 # load the a pointer into r3 (sp is the stack pointer)

1d a_size(sp), 15 # load the a_size into r5
l.loop:add  r3,rl, 16 # r6 points to a/i]

2. 1d 0(r6), r4 #rd4=afi]
3. 1d 1(r6), 17 #1r7=afitl]
4. add rl,2,rl #i=i+2
5. sub_ccrl, 15,10 # write to r0 have no effect
6. add r4,r2,r2 # sum = afi] + sum
7. add 17,r2,12 #sum = afi+1] + sum
8. bnz  loop # branch if not zero
st rl, i(sp) # update i in memory
st r2, sum(sp)  # update sum in memory

The unrolled loop uses a single conditional branch and a single index

computation for two iterations of original loop, and the i+/ in the loop body
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statement is a constant computed at compile time and attached to the load instruction
used to load a/i+1]. The original loop requires 10 instructions to compute the sum of
two vector elements, while the unrolled loop requires 8. In addition, if the original
version is allowed to run in a parallel machine, the minimum number of cycles for

two iterations is 6, as shown below:

1.loop: 1d (r3+r1), r4 | add rl,1,rl
2. sub_ccrl, r5, r0 | add r4,r2,1r2
3. bnz loop |

While the unrolled version can complete two iterations in 4 cycles when
running in a parallel machine, which shows that loop unrolling can expose a

significant amount of the ILP available in loops:

I.loop:add 13,rl, 16 | add rl,2,rl
2. 1d 0(r6), r4 | 1d 1(r6), r7
3. sub_ccrl, r5, 10 | add r4,r2,r2
4, add 17,12,12 | bnz loop

Compiless can unroll loops automatically and, after unrolling, they can perform

trace scheduling or some other form of global acyclic scheduling.

2.3.5 Software Pipelining

Software pipelining is another technique for exposing the ILP available in loops.
Software pipelining is the software equivalent of a hardware pipeline. In a pipelined
machine, several instructions in different phases of their execution can occupy
different stages of the machine pipeline, while in a software-pipelined loop, several
instructions belonging to different iterations can coexist in the same loop body. Thus,
a compiler that employs software-pipelining scheduling interleaves instructions from
different loop iterations in such way that ILP is exposed.

The fragment of assembly code shown below is a software-pipelined version of
the assembly code of the original fragment of C code that computes the sum of all

elements of a vector shown in Subsection 2.3.4.

50



mov 0,12 # 12 represents the sum variable at this point

mov 0,1l # r1 represents the i variable at this point
1d a(sp), 13 # load the a pointer into 13 (sp is the stack pointer)
1d a_size(sp), r5 # load the a_size into r5
1d (r3+rl),r4  #rd=a[0] (iteration 0)
add rl,1,rl #it++ (iteration 0)
sub_ccrl, 15, r0 # test a_size (iteration 0)
1. add r4,12,r2 # sum = afi] + sum (iteration i)
2.loop: bz end # branch if zero (iteration @)
3. 1d (3+r]), 14 #r4d=afi+l] (iteration i+1)
4. add rl,1,rl #i+t+ (iteration i+1)
5. sub_ccrl, 15,10 # (iteration i+1)
6. b loop # unconditional branch
end: st rl, i(sp) # update i in memory
st r2, sum(sp)  # update sum in memory

As can be seen in the code above, some amount of start-up code has been
added to guarantee the original semantics, and the loop body now has 6 instructions
as opposed to 5 in the original version. However, more parallelism can be exploited;
that is, more instructions can be executed in a cycle. As shown below, now the
parallel version can execute two iterations in only 4 cycles (instructions to the right

of the bz end instruction are not executed if this branch is taken):

l.loop:add 1r4,12,r2 | bz end | 1d (r3+rl),r4 | add rl,1,rl
2. sub_ccrl, 15,10 | b loop | |

This is possible because, as can be seen in the sequential version of the
software-pipelined loop, instructions belonging to different iterations are now part of
the same loop body and can execute in parallel. This shows that software pipelining
can expose a significant amount of the ILP available in loops

To implement software pipelining or loop unrolling in the compiler, several
techniques must be used for generating start-up and clean-up code, for optimising the
number of different iterations present in the loop body, or the number of times the

loop is unrolled. Rau and Fisher [Rau93a] present a comprehensive survey of such

techniques.
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2.4 ILP Available in Programs

Several studies have been made to measure the amount of ILP available in programs
[Tjaden70, Foster72, Riseman72, Nicolau84, Jouppi89, Smith MD89, Wall9l,
Wall93]. Two of these studies were focused on the parallelism available inside basic
blocks [Tjaden70, Foster72]. These studies have shown that parallelism within basic
blocks, measured as the number of instructions that can be executed in parallel per
cycle on average, rarely exceeds 3. This is unsurprising. Basic blocks are typically no
more than 10 instructions long, which leaves little scope for more parallelism
(measurements have shown that the average size of a basic block in the SPEC92
integer programs is 6 instructions [Patterson96 (page 171)]).

Results presented in these early studies on the ILP available inside basic blocks
diminished the appeal of architectures that exploit ILP for almost ten years. However,
at the end of the 70s and beginning of the 80s, research in the field of
microprogramming showed that it is possible to exploit parallelism beyond basic
blocks [Tokoro78, Fisher81, Tokoro81]. A study by Nicolau and Fisher [Nicolau84]
found that an average ILP of 90 can be extracted from numerical programs if one has
a scheduler that knows the outcome of all branches and uses a VLIW machine with
unlimited resources. The good results and methodology used by Nicolau and Fisher
were not new though. Riseman and Foster found an average ILP of 50 with
equivalent assumptions in the 70s [Riseman72]. However, Nicolau and Fisher’s
results came at a time when researchers were aware that branches could be predicted
with reasonable accuracy using affordable hardware [Lee_JFK84], which would pave
the way for the exploitation of the ILP available beyond basic blocks.

One of the most detailed studies on the ILP inside and beyond basic blocks has
been done by Wall [Wall93]. Wall studied the effect of various machine parameters
on the amount of ILP that can be extracted from programs, including:

e Instruction window size — the instruction window holds a certain number of

instructions that are made available for issuing.

e Number of instructions issued per cycle — the instructions in the instruction

window that can be issued in parallel to the functional units of the machine
each clock cycle.

e Number of renaming registers.
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e Type of memory alias analysis.

e Type of branch prediction.

e Branch fanout — the number of paths generated by conditional branches that

can be executed speculatively.
Wall has shown that all these parameters have a strong effect on the amount of ILP
that can be extracted from programs. He has also shown that none of these
parameters should be considered singly — the overall performance of a machine is
determined by how these parameters are chosen as a group.

Wall’s results confirm Nicolau and Fisher, and Riseman and Foster’s results —
average ILP of 90 and as high as 500 are reported in [Wall93]. However, according
to Wall’s results, machines that can harness this amount of parallelism are impossible
to build. They would require perfect branch prediction, perfect memory alias
analysis, and an immense amount of hardware resources. Nevertheless, ILP in the
range of 4.3 — 8.7, average of 6, are reported in [Wall93] with a machine that may be
built in the near future. This machine would fetch up to 64 instructions each cycle
from memory to an instruction window of 64 instructions. Up to 64 instructions
could be issued to 64 fully pipelined functional units each cycle, and 256 renaming
registers could be used to remove output or anti-dependencies between them.
Memory alias analysis would be perfect (this can be achieved with an instruction
window of limited size) and the branch prediction hardware large but possible to
implement. Up to four different paths can be executed speculatively. An average ILP
of 6 may still be optimistic for the machine described, since, in the experiments that
produced this ILP, all instructions were able to complete execution in a single clock
cycle.

Although important for the understanding of the nature of the performance
bottlenecks in the exploitation of ILP available in state-of-the-art code, experiments
that attempt to measure the maximum ILP available in programs should be examined
with care. This is because these experiments cannot consider the effect of yet-

unknown processor architectures and compiler optimisation techniques.
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2.5 Historical Perspective of ILP Exploitation

In this section, we revisit a discussion presented in [Rau93a], in order to place the
architecture of this thesis in the context of processor technology development from

the 70s to the present moment.

2.5.1 Late 70s

The late 70s witnessed the emergence of VLIW architecture. In many ways, VLIWs
were a natural outgrowth of horizontal microarchitectures [Salisbury76], the first ILP
technology. Their appearance was triggered by the same changes in semiconductor
technology that had such a profound impact upon the entire computer industry in the
80s — the development of fast and cheap Very Large Scale Integrated (VLSI) circuit
technologies. For sequential processors, as the speed gap between writeable and read-
only memory narrowed, the advantages of a small, dedicated, read-only microcode
memory began to disappear. One natural effect of this was to diminish the advantage
of microcode — it no longer made as much sense to define a complex ISA as a
compiler target and then interpret this with a very fast read-only microcode. Instead,
the vertical microcode interface was presented as clean, simple compiler target — the

RISC ISA.

2.5.2 Beginning of the 80s

In the 80s, due to the development of VLSI technologies, the general movement of
microprocessor products was towards the RISC concept. The availability of VLSI
technologies was having a somewhat different effect upon horizontally
microprogrammed processors though.

During the 70s, a large market had grown in specialised signal processing
computers. Not aimed at general-purpose use, these machines hardwired fast fourrier
transform and other important algorithms directly into read-only horizontal
microcode, gaining tremendous advantage from the microinstruction-level
parallelism available there. When fast, writeable memory became available, some of
these manufacturers, most notably Floating-point Systems [Charlesworth81},

replaced the read-only microcode memory with writeable memory, giving users
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access to ILP in far greater amounts than early Superscalar processors had. These
machines were extremely fast, the fastest processors by far in their price range, for
important classes of scientific applications. However, despite attempts on the part of
several manufacturers to market their products for more general, everyday use, they
were almost always restricted to a narrow class of applications. This was caused by
two factors. First, by the lack of good system software which, in turn, was caused by
the idiosyncratic architecture of processors built for a single application. Second, by
the lack at that time of good code generation algorithms for ILP machines with that
much parallelism. As with RISC, the crucial step for these architectures was to
present a simple, clean interface to the compiler. However, in this case, the clean
interface was horizontal, not vertical microcode. This style of architecture, which
exposes a horizontal microarchitecture to the ISA level, was denominated VLIW.
Code generation techniques, some of which had been developed for generating
horizontal microcode, were extended to these general-purpose VLIW machines so

that the compiler could specify the parallelism directly [Fisher81].

2.5.3 Late 80s

In the second half of the 80s, VLIW machines were offered commercially in the form
of capable, general-purpose machines. Some start-up companies — Multiflow and
Cydrome for example — built VLIWs with varying degrees of parallelism [Colwell88,
Rau89]. These companies demonstrated that it was possible to build practical
machines that achieve large amounts of ILP on scientific and engineering codes.
Although for various reasons none was a lasting business success, several major
computer manufacturers acquired access to the technologies developed by these start-
ups. Furthermore, many of the compiler techniques developed with VLIWs in mind

started to be used in compilers for Superscalar machines as well.

2.5.4 Beginning of the 90s

Processor designers in the 90s have more silicon space on a single chip available to
them than a RISC processor requires. Because of this, virtually all manufacturers

began to add some degree of Superscalar capability to processors and some started to
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investigate VLIW processors as well. By the middle of the 90s, virtually all new

processors of major manufacturers embodied some degree of ILP.

2.5.5 Late 90s

The computer industry saw a fantastic growth in the 90s due to widespread use of
personal computers. Consumer demand forced processor manufacturers to deliver
one minor processor version half yearly and one major every two years. Today, it is
common to see two or more hardware generations interpreting the same ISA in the
same room. Although ILP had never been pursued as much as in the late 90s, due to
the object code compatibility problem, there was no place for VLIW architectures
except in specialised segments where the code is kept in read-only memories or
seldom changed [Wolfe97]. Backward code compatibility became fundamental for
survival in the processor market — the personal computer user wanted new, faster
processors but capable of running already available software.

The availability of enormous amounts of transistors and the continuous search
for new architectures for exploiting ILP created a nurturing environment for radically
new architectural concepts [Burger97]. The DTSVLIW is a result of these historical
conditions. It consumes extra silicon area with its VLIW Cache and wide VLIW
Engine, but, as we shall see in Chapter 6, it can harness a significant amount of ILP
with feasible machine configurations, while allowing for backward object code

compatibility.
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Chapter 3

Related Work

The DTSVLIW architecture exploits the ILP available in programs by executing
VLIW code on its VLIW Engine. This VLIW code is dynamically generated by
hardware from original sequential code that is fetched as usual from the memory.
This process solves the VLIW object code compatibility problem and allows the
VLIW Engine parallelism to be utilised most of the time. All this is possible due to
the code execution locality that exists in ordinary programs, which is capitalised
upon by the DTSVLIW.

In this chapter, we discuss aspects of the DTSVLIW architecture that are
related to previous research on microcode scheduling and VLIW architectures. In
addition, we discuss research that either tackles the VLIW object code compatibility

problem or proposes mechanisms to exploit code execution locality.

3.1 Related Work on Microcode Scheduling

The DTSVLIW schedules instructions using a simplified version of a single-pass
algorithm that has historically been used for microcode compaction — the First Come
First Served (FCFS) algorithm [Davidson81]. Microcode compaction is the process
of scheduling microoperations into microinstructions in a way that minimises the
space required by the microprogram and, hopefully, the time needed for the
microprogram execution. DeWitt [DeWitt76] has shown that microcode compaction

is an NP-complete problem; therefore, a single-pass algorithm such as the FCFS is a
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cost-effective solution only. Nevertheless, the FCFS algorithm can achieve optimum
execution-time scheduling, as shown by Davidson et al. [Davidson81].

The FCFS algorithm was first proposed by Dasgupta and Tartar [Dasgupta76];
however, the description presented here is based on that of Davidson et al. The
original algorithm operates over a list of microoperations coming from a straight-line
microcode segment, which is a sequence of microoperations containing no branch
microoperation except perhaps one at the end, and no entry point except at the
beginning (a straight-line microcode segment is a basic block of microoperations).
The algorithm takes microoperations from the straight-line microcode segment and
groups them to form microinstructions with multiple microoperations. In the
DTSVLIW, however, we use the FCFS algorithm to schedule instructions coming
from a trace (produced dynamically during program execution) into long instructions
(equivalent to microinstructions). Because we are using a trace, where the direction
of each branch is fixed, we are able to schedule instructions past conditional and
indirect branches by renaming these instructions. The details of the FCFS algorithm,

bounded to work within a list of long instructions of size LIST_SIZE, are as follows.

1. Take one instruction from the trace and, if there is no dependency, add it to
the last long instruction of an initially empty list of long instructions. If
there is any dependency, add one empty long instruction to the end of the
list and add the instruction to this long instruction. If this makes the list
longer than the LIST_SIZE, save the previous list’s contents and start a new
list with a single long instruction containing the instruction.

2. Search the list of long instructions and find the earliest long instruction
where flow dependencies and resource dependencies allow the added
instruction to be placed. Rename the instruction if appropriate, and put it in
the long instruction found.

3. If the added instruction cannot move up due to the lack of a suitable slot in
any long instruction above the one in the tail and the list is smaller than
LIST_SIZE — 1, add one long instruction at the top of the list and put the
new instruction there. (A new long instruction is added to the top to allow

any subsequent instruction that may be data dependent on the just added
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instruction to be added to an already existing long instruction, instead of

forming a new long instruction at the bottom of the list.)

4. Gotostepl.

There are two differences between the DTSVLIW and the FCFS algorithms.
First, the DTSVLIW does not implement step 3 of FCFS; i.e., the DTSVLIW
algorithm never adds long instructions at the top of the scheduling list but only at the
bottom. Second, the DTSVLIW algorithm only moves up an instruction if there is a
slot available in the next long instruction on the list. This can cause premature
installing of instructions that could be moved to a long instruction two or more
entries up in the list, limiting the code density and the achievable parallelism.
However, it facilitates a pipelined implementation of the DTSVLIW algorithm. The
DTSVLIW scheduling algorithm is detailed in Subsection 4.1.1, while its pipelined

implementation is described in Section 4.6.

3.2 Related Work on VLIW Architectures

A trace-scheduling compiler selects traces in a program and schedules these traces
statically, using heuristics or profiling (Subsection 2.3.1). Different from a VLIW
compiler, a DTSVLIW machine performs dynamic trace scheduling instead of static
trace scheduling.

In a DTSVLIW machine, the execution trace produced by the Primary
Processor feeds the Scheduler Unit, which schedules the instructions into blocks of
long instructions and saves these blocks into the VLIW Cache. Each block of long
instructions may encompass many basic blocks. Scheduling is performed in a way
that allows any branch inside any block to exit without side effects. The unique entry
point of each block is its first instruction. Therefore, if a path in the program leads to
an instruction inside an existent block, this path will cause the scheduling of a new
block. This is equivalent to tail duplication, which is performed during superblock
formation by a superblock-scheduling compiler (see Subsection 2.3.2). In fact, what
the DTSVLIW’s Scheduler Unit really does is superblock scheduling. However,
different from the compiler, which performs static superblock scheduling, the

DTSVLIW hardware performs dynamic superblock scheduling. This allows the
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DTSVLIW to use dynamic information about the branches behaviour not available to
the compiler. The compiler selects traces statically and these traces must be suitable
for all input data sets of the program. In contrast, a DTSVLIW machine performs
dynamic trace selection and as such can achieve good performance for all input data
sets.

A core scheduling operation performed by the DTSVLIW is the move up
operation, which moves instructions through a list of long instructions inside the
machine to compact long instructions (see Subsection 4.1.1). This operation is
similar to the move-op with renaming operation of the enhanced pipeline percolation
scheduling technique [Nakatani93]. However, its application is different, reflecting
its different purposes: move-op was designed for scheduling during compile time,
whereas move up was designed for scheduling during execution time. The
application of the move-op operation requires the evaluation of all execution paths
that transverse the instruction being moved; on the other hand, the application of the
move up operation requires the evaluation of the current trace only. The move-op
operation is applied in a sequential fashion by the compiler, while the move up
operation is applied in a pipelined parallel fashion by the DTSVLIW hardware. The
application of the move-op operation can cause the generation of a new long
instruction, whereas the move up operation never causes this.

The DTSVLIW schedules the code trace observed during execution into long
instructions, all with the same format (Subsection 4.2). This format is similar to the
tree instruction described by Ebcioglu [Ebcioglu88].

The tree instruction was proposed to hold VLIW code scheduled by VLIW
compilers. Although suitable as a target for VLIW compilers, the tree instruction has
some drawbacks. First, it has many possible next long instruction targets. For this
reason, a VLIW machine using it has to compute all branch outcomes and only after
that select the next long instruction. This can pose difficulties to the production of a
short cycle time in the circuitry responsible for long instruction fetch. Second, the
tree instruction needs physical space to accommodate the two target addresses of all
branches it holds. Finally, the tree instruction holds code for both paths determined
by a branch, but while only one path is actually followed during execution, the other

path is still executed with its results discarded. This can cause ineffective
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exploitation of machine parallelism.

In contrast to the tree instruction, the long instruction format of the DTSVLIW
has a default direction for each branch, which can be the taken or not taken path. Its
long instructions hold instructions in the default path only, and each long instruction
has a default next long instruction target, which simplifies the implementation of fast
fetch hardware. The long instruction format of the DTSVLIW has only one branch
target for each branch it holds, which is used when the branch does not determine the
default direction. The long instruction format of the DTSVLIW can be viewed as a
special case of the tree instruction, although it has not been derived from this
approach. The DTSVLIW methodology is particularly suitable for a VLIW machine

that executes scheduled trace code.

3.3 Related Work on Tackling the VLIW Object Code
Compatibility Problem

VLIW machines potentially provide the most direct way to exploit ILP [Nicolau84,
deSouza93, deSouza97]; however, for widespread use as general-purpose processors,
the VLIW object code compatibility problem has to be overcome. This problem can
be understood by examining the following example.

The fragment of code below is the same software pipelined loop shown in
Subsection 2.3.5.

lloop:add r4,r2,12 | bz end | 1d (3+rl),r4 | add rl,1,rl
2. sub_ccrl, 15,10 | b loop | |

This fragment of code can run in a VLIW machine where loads complete
execution in one or two cycles and all other instructions complete execution in one
cycle. However, if this code were to execute in a machine where loads have latency
of three cycles, the add r4,r2,r2 instruction above will use the value loaded two
iterations behind instead of one iteration behind. In this case, the result of the loop
execution will be incorrect. In addition, this code does not fit in VLIW machines with

3-instruction long instructions.

Software [Sites93, Conte95b, Hookway97, Ebciouglu97] and hardware
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[Rau93b, Franklin94, Nair97, Banerjia98] techniques have been proposed to get over
this problem.

3.3.1 Software Approaches

The simplest software technique to overcome the VLIW object code compatibility
problem is off-line recompilation of the programs’ source code. Recompilation yields
appreciable performance because the compiler can expose the ILP in the source code
to different VLIW hardware implementations. The drawback of this approach is that
it is awkward to use — machine upgrades require either recompilation of all installed
software, whose source code may not always be available, or reinstallation of a
complete set of new binaries. Binary translation [Sites93] is a variant of this
technique that can be performed without the source code, but machine upgrades still
require either translation or reinstallation of the binaries. Alternatively, interpreters
can be used to emulate different architectures at run-time; however, this approach
usually suffers from poor performance. Binary translation and emulation can be
combined, however. For example, the Digital FX!32 is a software system that
performs emulation and incremental binary translation, enabling Win32/Intel 1A-32
ISA applications to run on Windows NT/Alpha ISA platforms [Hookway97,
Chernoff98]. In the FX!32, the first time the code is run, it is emulated. The binary
translation is done incrementally in the background after the program execution, and
only executed parts of the code are translated. To implement this, a database of
translated binaries is maintained by the system: when a significant number of new
fragments of code are executed, translations are generated and added to the database.
The FX!32 system requires no user interaction.

The FX!32, like perhaps any other systems that perform emulation and
posterior binary translation, has some drawbacks. First, the fact that any new code is
initially emulated creates two patterns of system performance easily perceived by the
user: one slow when emulating and one fast after code translation. In the FX!32,
emulation is 10 times slower than translated-code execution [Hookway97]. Second,
the operating system binaries used in the Alpha system are not the same as those in
an Intel system: the Windows NT operating system must be recompiled for the Alpha

platform. This is also true for any device driver. Therefore, either their source code
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must be available or their interface must be precisely documented, which may not
always be the case (the FX!32 has many dependencies with undocumented Windows
NT features [Chernoff98]). Third, the profiling information cannot contain
conditional branch directions since it would generate large profile files and slow
down the emulation. This results in poor scheduling of the translated code for parallel
machines such as VLIWs. Fourth, the disk space required for binaries is almost or
even more than doubled. Finally, system development for the Intel ISA cannot be
performed in the Alpha system, since debugging is too much impaired due to its
frequent need of the Intel ISA’s state [Hookway97].

Emulation and binary translation are powerful tools for migrating applications
from one ISA to another. They have been successfully used in the past to migrate
VAX ISA applications to Alpha ISA [Sites93], for example. However, we believe
they are not competitive concepts to make families of backward incompatible VLIW
systems viable due to the mentioned drawbacks.

Dynamic Rescheduling, proposed by Conte and Sathaye [Conte95b], is another
software technique which can be used to overcome the VLIW object code
compatibility problem. When a binary incompatible VLIW program is invoked in a
system that implements dynamic rescheduling, the operating system translates its first
page to a new page, which is binary compatible with the system’s hardware. This
process is repeated each time a new page fault occurs, and provides correct execution
over different VLIW machine generations.

In Conte and Sathye’s proposal, the pages of the original program are
rescheduled to reflect the new latencies and parallelism of the hardware but the
translated pages must be the same size as the original ones. However, the new
schedule may grow larger due to the insertion of empty cycles, or may have its size
reduced due to the deletion of empty cycles from the old schedule. To avoid this,
Conte and Sathye have suggested a special encoding which hides the nop
instructions, ensuring that code rescheduling within basic blocks does not trigger any
code size changes. Scheduling beyond basic blocks — or speculative code motions —
introduces two problems, however. The first problem is incorrect translation due to
moving code above instructions that are the targets of instructions from other pages.

To avoid this, Conte and Sathye suggested the use of superblock or hyperblock

63



scheduling across all families of dynamic-scheduling compatible VLIW systems.
Because superblocks and hyperblocks have a unique entry point at the top of the
block, speculative code motions are allowed within them; however, code generation
must be guaranteed not to make any superblock or hyperblock span page boundaries.
A second problem is caused by the addition of new code that might be necessary to
undo effects of speculative code motion. To circumvent this problem, code motion is
limited to those that do not require code expansion. However, if the rescheduler does
this blindly, its opportunity to expose more ILP to a wider VLIW hardware is
restricted. Thus, in a dynamic rescheduling system implementation, the compiler
saves the live-out set information for each branch (storage positions written within
the superblock/hyperblock that are read afterwards) in the program object file
[Conte95b]. This information is used during rescheduling to improve the scheduled-
code parallelism in the face of the no-code-increasing limitation.

Dynamic rescheduling has some drawbacks. First, the time spent rescheduling
pages on each page fault is significant. Conte and Sathye have found that around
50000 VLIW-machine cycles are necessary for rescheduling a page, which represents
about 20% of the cost of a page fault. To reduce the impact of the rescheduling time
on performance, they suggest the use of a persistent rescheduled-page cache for
saving previous page translations across execution of different programs [Conte96].
This reduces the impact of the rescheduling-time on performance but adds cost in the
form of disk space. Second, the special encoding suggested in [Conte95b] may
prohibit the use of new instructions or interesting new hardware features, such as
more registers, because more bits might be needed for encoding, which can make the
code larger. Third, software pipelined loops pose difficulties to the rescheduler, to
which no solutions were presented in [Conte95b] or [Conte96]. Fourth, the inability
to use speculative code motions that increase code size is a strong scheduling
limitation if VLIW machines with large differences in the degree of parallelism are
considered. Fifth, due to the large number of branches in programs, to add the live-
out sets for each branch in the object code may increase code size substantially.
Sixth, the operating system and device driver binaries used in one VLIW system
should not be the same as those in another system for performance reasons.

Therefore, the operating system should be recompiled for each VLIW platform, as in
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the FX!32 system. Finally, and perhaps most important, the rescheduling (and the
original scheduling performed by the compiler) is done statically within page
boundaries, not taking into consideration the dynamics of branches during execution.
This limits the amount of ILP that can be achieved with this technique even if
profiling is used.

Ebcioglu and Altman [Ebcioglu97], with their Dynamically Architected
Instruction Set from Yorktown (DAISY) machine, have extended the concept of
dynamic rescheduling to dynamic compilation, allowing VLIW hardware to emulate
a generic ISA. In a DAISY machine, every time an instruction page fault occurs, a
Virtual Machine Monitor (VMM) is invoked. The VMM reads the original ISA
instructions from memory and translates then to simpler operations (if required).
These operations are scheduled into long instructions, and the resulting VLIW
machine code is saved as a new page in a portion of main memory not visible to the
original ISA.

Different to dynamic rescheduling, in dynamic compilation translated pages are
N times larger than the original ISA pages, where N should be a power of 2 (Ebcioglu
and Altman have suggested N = 4 [Ebcioglu97]). This allows the code size to
increase as a result of the dynamic compilation. The virtual address space of DAISY
is divided in three parts: the first for the emulated ISA, the second for the VMM, and
the third for the translated code. An original ISA code page at address n has its
translation at DAISY’s virtual address nx N +VLIW _ BASE , where VLIW_BASE
is the address of the beginning of the translated code part of DAISY’s vitual address
space.

The VLIW machine uses special branches to move the control flow from one
translated page to another translated page. However, not all long instructions in
translated pages are valid targets for such branches. A long instruction fetch,
resulting from a cross-page branch, has to check a valid entry bit in the long
instruction fetched. Nevertheless, a VLIW cross-page branch can branch to an invalid
entry point in another translated page, in which case an invalid entry point exception
occurs and the VMM retranslates the target page.

In the Ebcioglu and Altman experiments with DAISY reported in
[Ebcioglu97], they found that their DAISY implementation required an average of
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4315 operations to compile each original ISA instruction. If the DAISY’s VMM
executes an average of 4 operations per cycle during dynamic compilation and each
page of code of the original ISA can hold 1024 instructions, more than one million

cycles are required for each page compilation (4315x1024). (1024 instructions per page
4

is a typical value for a RISC ISA, such as the PowerPC ISA used in [Ebcioglu97], i.e.
4096-byte pages and 32-bit instructions.) This is much more than that required per
page translation in dynamic rescheduling (50000 cycles per page), but this is to be
expected, since in this case dynamic compilation is performed. However, according
to Ebcioglu and Altman, the DAISY dynamic compiler has performance 20% inferior
to a traditional static VLIW compiler. Our results show that the DTSVLIW performs
better than a pure VLIW executing code produced by a static VLIW compiler and as
such should perform significantly better than DAISY (see Section 6.4).

Kelly et al. have been granted a patent for a memory controller which gives
support for dynamic compilation [Kelly98]. In their invention, instructions from a
generic ISA are translated by a software translator into long instructions and saved in
a translation buffer, which may be implemented as a data structure in memory or as
hardware cache. As in DAISY, the translator and the translated code run on a VLIW
machine. Translations are built incrementally, starting and finishing at basic block
boundaries. However, because the translator does not schedule instructions across
basic blocks and does not consider the dynamics of branches, the performance of a
system implemented according to the patent should be inferior to that of a DAISY
machine.

Dynamic rescheduling and dynamic compilation rely on the ability of a
software system to translate code rapidly and on the reusability of this code.
However, since they are implemented in software, the cost of the translation is high.
In addition, these approaches do not take into consideration the dynamic behaviour of
branches and perform static-code scheduling only, although done during the
execution of the program. The DTSVLIW performs dynamic trace scheduling or,
more specifically, dynamic superblock scheduling, learning the dynamic branch
behaviour and taking advantage of it to achieve performance. Our results show that
the DTSVLIW performance is better than that achieved with a pure VLIW executing
code produced by a VLIW compiler (see Section 6.4), and we believe that the
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DTSVLIW can achieve even better performance if compile-time scheduling specially

designed for it is employed.

3.3.2 Hardware Approaches

Rau [Rau93b] proposed a new type of VLIW machine, named Dynamically
Scheduled VLIW (DSVLIW), which tackles the VLIW software compatibility
problem at the hardware level via split-issue. The DSVLIW compiler generates
VLIW code scheduled for a specific VLIW ISA with fixed long instruction width and
functional units’ latency. During program execution, after the decoding of each long
instruction, the DSVLIW machine splits each instruction member of a long
instruction in two components: phasel and phase2. The phasel component is the
original instruction with its destination renamed, while phase2 is a copy instruction
copying the phase2 result to the original instruction destination. Both these
components can be dispatched simultaneously to reservation stations of functional
units. Once execution of phasel finishes, the reservation station with phase2 receives
the result. The execution of each original instruction is completed after the execution
of phase2, which can be done in just one more cycle. This mechanism allows a
DSVLIW machine with functional unit latencies different from those assumed by the
compiler to execute the VLIW ISA code.

The DSVLIW architecture allows fetch and split-issue of more than one long
instruction per cycle. Therefore, this architecture solves the VLIW object code
compatibility problem since machines with different functional unit latencies and
different degrees of parallelism can execute the same VLIW ISA code. However, the
DSVLIW architecture cannot be used to implement an existent sequential ISA. In
addition, it requires dynamic scheduling hardware in the main data path of the
machine, which can have a negative effect on the clock cycle time.

Franklin and Smotherman [Franklin94] proposed the use of a Fill Unit
[Melvin88] to compact a dynamic stream of scalar instructions into long instructions.
Their Fill Unit accepts decoded instructions from the machine decoder, compacts
them into a long instruction, and saves the long instruction in the shadow cache. At
the same time, the Fill Unit sends this long instruction to the functional units for

execution. Fetch accesses hitting the shadow cache provide long instructions directly
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to the functional units.

The Franklin and Smotherman’s Fill Unit does not rename registers and works
within a window of one long instruction only. For these reasons, it cannot exploit ILP
extensively.

Banerjia and his colleges presented a processor architecture similar to the
Franklin and Smotherman proposal, called Miss Path Scheduling (MPS) architecture
[Banerjia98]. The main difference between the two proposals is that MPS schedules
blocks of long instructions as opposed to a single long instruction. In MPS,
scheduling hardware is placed between the instruction cache and the next level of
memory. Instruction scheduling is performed at instruction cache misses and the
blocks of long instructions formed are saved in a special instruction cache
[Banerjia98]. Once in the cache, long instructions are fetched and issued to a VLIW
core.

In a machine implementing MPS, scheduling is performed using two tables: the
register def-use table, which records reads and writes in registers; and the reservation
table, which records the availability of functional units. Renaming is not performed;
therefore, anti and output dependencies impede parallel and out-of-order execution of
instructions. Banerjia and his colleges have estimated that four cycles are required to
schedule each instruction, as the register def-use table must be read, a starting point
in the reservation table computed, new table values computed, and the tables must be
updated with these values. They have shown a way in which the whole process can
be pipelined, although dependencies between pipe stage can happen and may reduce
the scheduling pipeline performance. Nevertheless, more than one instruction each
four cycles can be scheduled with pipelining.

Speculation is allowed in MPS. However, a reorder buffer with a future file
must be used to prevent incorrectly speculated instructions from retiring their results.
In order to decide which instruction to speculate, branch prediction (dynamic, static,
or profiling) is used. To calculate the target address of branches, the instructions are
decoded in the scheduling pipeline. Indirect branches cannot be resolved without
reading ISA registers contents. Because of this, when an indirect branch is found,
scheduling stops.

MPS has three main drawbacks. First, instruction cache miss penalty is
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increased in a MPS machine, since instruction scheduling takes at least one cycle per
instruction and no useful execution is performed during scheduling. Second, MPS
machines do not rename registers, which can have a severe impact on scheduled-code
parallelism. Third, MPS machines perform static scheduling only. Although dynamic
branch prediction can be used during scheduling, instructions are scheduled at
instruction cache misses and are not likely to have been executed before. Therefore,
dynamic branch behaviour information is not likely to be available at scheduling
time.

Nair and Hopkins [Nair97] suggested a VLIW based machine organisation
named Dynamic Instruction Formatting (DIF), which also follows the Franklin and
Smotherman proposal. The DIF machine incorporates two engines: the VLIW Engine
and the Primary Engine. The latter is a simple processor, less aggressive in exploiting
parallelism, which executes instructions of a generic ISA when first fetched.
Simultaneously with the execution of a code sequence, this engine reformats
(schedules) the code, generating groups of long instructions as opposed to a single
long instruction. These groups, which can encompass many basic blocks, are saved in
a special cache — the DIF Cache. Following accesses to the same sequence will hit
the DIF Cache, and the long instructions fetched will be executed by the VLIW
Engine.

In a DIF machine, the instructions are executed during scheduling, therefore
useful execution occurs during scheduling time. Register renaming is performed and
the dynamic branch behaviour is recorded into the scheduled blocks. This allows for
more parallelism than the MPS and all previously mentioned proposals. Table 3.1
compares the DIF with some of the approaches to circumvent the VLIW object code
compatibility problem discussed in this section.

The DTSVLIW architecture is a variant of the DIF architecture. We show in
this thesis similar or better performance than the DIF implementation proposed by
Nair and Hopkins, but with a simpler architecture that should be much easier to
implement (see Section 6.3). The DTSVLIW differs from the DIF in its register
renaming mechanism, VLIW engine register access, communication between the
cache that stores the long instructions and the VLIW Engine, and most importantly in

the instruction scheduling algorithm. The DTSVLIW was first presented in
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[deSouza98a]. Preliminary DTSVLIW SPECint95 performance measurements have
been shown in [deSouza98b]. A detailed description of the DTSVLIW and the
differences between DTSVLIW and DIF was first presented in [deSouza99a]. The
impact of multicycle instructions on the performance of the DTSVLIW was first
presented in [deSouza99b], and the effectiveness of the DTSVLIW instruction-
scheduling algorithm in [deSouza99c].

Table 3.1: Features implemented by different approaches for tackling the VLIW object code

compatibility problem
Emulation Dynamic Dynamic DSVLIW Fill MPS DIF &
plus Binary  Rescheduling  Compilation Unit DTSVLIW
Translation
Execution of sequential
ISA code v v v v v
Scheduling across basic
blocks v v v v v v
Scheduling considering v
dynamic branch behaviour
Register renaming v v v v v
Useful execution during v v v

(re)scheduling

3.4 Related Work on Exploiting Code Locality

The DTSVLIW architecture takes advantage of code execution locality for exploiting
the ILP available in programs. However, other architectures described in the
literature take advantage of similar code characteristics with the same purpose. In this

section, some of these architectures are described and compared with the DTSVLIW.

3.4.1 Trace Cache

In the integer programs of the SPEC92 benchmark suite, on average 19% of the
executed instructions are branches [Patterson96 (page 105)] and on average 62% of
them change the control flow [Patterson96 (page 166)]. This means that about 12%
of the instructions executed in these programs change the control flow — almost one
in eight. Current Superscalar machines fetch up to four instructions each clock cycle.
For the next generation, it is going to be possible to fetch eight or more instructions
each cycle. This means that almost every fetch will contain a branch that will change
the control flow. Since these branches are distributed evenly throughout the address
space, many of these fetch cycles (almost half for an 8-wide fetch) will be only
partially effective. In addition, instead of incrementing the program counter to the
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next fetch address, Superscalar machines capable of fetching eight instructions per
cycle will have to find the target address of a branch (possible more than one) almost
every cycle.

Several high bandwidth fetch mechanisms based on the conventional
instruction cache have been proposed [Conte95a, Seznec96, Yeh93b]. In such
mechanisms, on every cycle instructions from non-contiguous locations in the
instruction cache are fetched and assembled into dynamic sequences using
information collected by dynamic branch predictors. To do this, branch target tables
are inspected and pointers are generated to all non-contiguous instruction blocks. A
moderately to highly interleaved instruction cache is accessed and provides multiple
lines simultaneously. These lines are aligned by an alignment network, which then
sends the instructions to the decode stage of the Superscalar processor.

The disadvantage of these high bandwidth fetch mechanisms is their
complexity. Sophisticated dynamic branch predictors, interleaved multiport
instruction caches, and complex alignment networks are required to make them work.
The Trace Cache architecture, on the other hand, avoids this complexity by caching
dynamic instruction sequences, rather than only the information for constructing
them [Rotenberg96]. A diagram of the Trace Cache architecture is shown in Figure
3.1

Machines employing the Trace Cache architecture take advantage of code
execution locality to achieve performance. A machine that follows this architecture
fetches instructions from the instruction cache and attempts to schedule them across
multiple functional units using, for example, the Tomasulo’s algorithm
[Tomasulo67]. These instructions are then grouped by a Fill Unit [Melvin88] and
placed in a trace cache, which stores them in execution order, as opposed to the static
order determined by the compiler. On an instruction fetch, the trace cache will
provide a line of instructions if available. This line can encompass more than one line
from the instruction cache through merging of lines affected by partial fetches caused
by taken branches: this increases instruction bandwidth and throughput.

The Trace Cache architecture has attracted significant research interest due to
its potential for supplying enough instructions to make aggressively parallel

Superscalar machines viable, and several aspects of it have been studied recently
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[Friendly97, Jacobson97, Patel97, Patt97, Rotenberg97, Smith_JE97, Vajapeyam97,
Friendly98, Patel98, Patel99, Rotenberg99].

The Trace Cache architecture is an enhanced Superscalar architecture.
Therefore, it has the same dynamic scheduling overheads of Superscalars (Subsection
2.1.2). These dynamic scheduling overheads can be particularly severe in
aggressively parallel Superscalars, and may substantially lengthen their clock cycle
time.

According to Hara et al. [Hara96], logic fan-out and wire delays are the most
important scheduling overheads of aggressively parallel Superscalar-like machines.
The main fan-out overheads are caused by the logic that forwards the functional
units’ results to all instructions in the instruction window or reservation stations of
the machine, the bypass logic. The main wire delay overheads are caused by the long
wires necessary to connect these functional units to the various instructions in
instruction window (or reservation stations), or bypass wire delay. In the near future,
wire delays are expected to dominate the clock cycle time of Superscalar-like
machines [Matzke97]. VLIW and DTSVLIW machines do not need hardware
mechanisms equivalent to instruction windows or reservation stations in their main
data path and do not suffer from their characteristic bypass logic and bypass wire
delay overheads. Bypass logic and bypass wires are of course necessary in VLIW and
DTSVLIW machines. However, they connect functional units’ outputs to functional
units’ inputs only and not functional units’ outputs to several reservation stations at
the input of each functional unit, or to all instructions of a large instruction window.
Therefore, they can have a faster clock than Superscalar-like machines even
considering wire delays [Hara96].

Palacharla, Jouppi, and Smith have studied the impact of the complexity of the
instruction dispatch and instruction issue hardware, and the impact of the bypass
logic (fan-out) and wire delay in the performance of future Superscalars
[Palacharla97]. Like Hara and his colleges [Hara96], they have concluded that wire
delays are going to dominate the clock cycle time of Superscalar machines. They
have also concluded that the delays incurred by the wakeup logic and selection logic
may also impact the clock cycle time of Superscalars. The wakeup logic is

responsible for matching the results produced by functional units with the source
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operands of instructions waiting in the instruction window or reservation stations and
for setting the instructions as ready. The selection logic is responsible for selecting
instructions for execution from the pool of ready instructions. To reduce the impact
of wire delays and wakeup and selection logic overheads, Palacharla, Jouppi, and
Smith have suggested dividing the Superscalar core into several smaller clusters of
functional units (A similar proposal specifically tailored to Trace Cache architectures
is reported in [Vajapeyam97].) The resulting architecture has been named the
Dependence-Based architecture. This architecture groups dependent instructions and
sends them to the same cluster. This grouping of dependent instructions in clusters
simplifies the wakeup and selection logic and helps mitigate the wire delays to some
extent by using short local connections more frequently than long inter-cluster
connections. The Dependence-Based architecture has inferior performance than non-
clustered Superscalar, however. Therefore, the DTSVLIW can compete in
performance with this variant of Superscalar as well. Moreover, we believe that
clustering can also be employed in the DTSVLIW, although we do not examine
clustered DTSVLIWs in this thesis.

Fill Trace Instruction
Unit || Cache Cache
! v ¥
. v Main
Dispatch Hardware Memory
v
—] IW & Issue Hardware
vy ¥ v
FU rul [rul  [FU

_*; F N

Data Cache

A

Figure 3.1: Trace Cache Architecture. IW stands for instruction window and FU for functional
unit.
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3.4.2 Value Prediction and Instruction Reuse

Value prediction and instruction reuse are architectural concepts that take advantage
of the value locality that exist in programs and can be incorporated into Superscalar
machines. Value prediction has been proposed by Lipasti and Chen initially for
predicting the values of load instructions [Lipasti96a] and later extended for
predicting the value of registers as well [Lipasti96b]. A machine employing value
prediction uses a special hardware table for reducing the effect of data dependencies
by predicting registers and memory contents from current information held in this
table. The instruction reuse technique, on the other hand, takes advantage of value
locality by using a hardware table where the results of instructions previously
executed are stored [Sodani97]. Experiments have shown that many instructions and
groups of instructions having the same inputs are executed repeatedly producing, of
course, the same results [Sodani97]. However, such instructions do not have to be
executed repeatedly — their results can be provided by this hardware table, avoiding
subsequent executions and improving overall processor performance. The key
difference between value prediction and instruction reuse techniques is the way they
verify the validity of the values read from the tables. In the value prediction
technique, the values are used speculatively and validated later, while in the
instruction reuse technique the values are validated before being used [Sodani98].

By using value prediction and instruction reuse, a Superscalar machine can
exploit more ILP and, in this sense, value prediction and instruction reuse are
improvements on the Superscalar architecture [Lipasti97, Sodani98]. These two
architectural concepts have also attracted significant research interest recently
[Sazeides97, Gabbay97, Wang K97, Citron98, Fu98, Gabbay98, Reinman98,
Nakra99].

Superscalar machines enhanced with trace cache, value prediction, and
instruction reuse may become a very effective way of exploiting ILP. This might
transform such machines in the general-purpose processors of the future. However,
Superscalar machines employing trace cache, value prediction, and instruction reuse
are very complex devices and the impact of such complexity on the design cost and
clock cycle time can be severe. For this reason, the DTSVLIW stands as an

alternative general-purpose machine due to its simplicity and performance.
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Moreover, we believe that the value prediction and instruction reuse concepts can
also be incorporated to the DTSVLIW architecture [Fu98, Nakra99], although we do

not examine this possibility in this thesis.
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Chapter 4

The DTSVLIW Architecture

The symbolic diagram of a DTSVLIW machine is shown in Figure 4.1 (page 78). It
has two caches for instructions and two processing engines. The Instruction Cache
stores fragments of the original compiled code while the VLIW Cache stores blocks
of long instructions. The original code is executed first by the Primary Processor. The
code trace produced during this execution is scheduled by the Scheduler Unit into
blocks of long instructions that are saved in the VLIW Cache. The VLIW Engine
executes these long instructions if an already scheduled code fragment has to be
executed again.

In a DTSVLIW machine, the VLIW Engine and the Primary Processor never
operate at the same time and no machine state has to be transferred between them, as
they share the DTSVLIW machine state. This simplifies the design of both, even
allowing the VLIW Engine to share ports of the register file and Data Cache with the
Primary Processor. The cost in cycles of swapping the execution between the VLIW
Engine and the Primary Processor is equal to the sum of a number of pipeline stages
of each one only (the pipeline stages discarded in one plus the pipeline stages refilled
in the other).

While the Primary Processor is executing the code, the Fetch Unit (Figure 4.1)
issues different addresses to the Instruction Cache and the VLIW Cache. To the
Instruction Cache is issued the program counter (PC) content. To the VLIW Cache 1s
issued the address of the instruction in the execute stage of the Primary Processor

(dashed arrow in Figure 4.1). If this instruction has been executed before, there may
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be a block with its address in the VLIW Cache. On a VLIW Cache hit, the VLIW
Engine takes over execution. The block being constructed by the Scheduler Unit is
flushed to the VLIW Cache — this block is made to point at the hit block. The
contents of all but the write back pipeline stage of the Primary Processor are annulled
and the PC receives the memory address that hit the VLIW Cache. In subsequent
cycles, the VLIW Engine controls the PC.

On a VLIW Cache miss, the Primary Processor takes over execution, fetching
from the last PC value computed by the VLIW Engine. The Fetch Unit does not issue
fetches to the VLIW Cache again until an instruction arrives at the execute stage of
the Primary Processor. At this point, the Scheduler Unit restarts to schedule a new
block, the address of which will be the last address produced by the VLIW Engine
when executing the previous block. This connects these blocks forming a block
chain. In steady state, the VLIW Cache contains all most frequently executed traces.

The key issues to be resolved in the DTSVLIW architecture are the scheduling
of the instruction trace into long instructions and the addressing within these long
instructions. The Primary Processor and the VLIW Engine themselves are not a
challenge. In this chapter, the Scheduler Engine operation and the VLIW Engine long

instruction addressing are examined in detail together with other relevant aspects of
the DTSVLIW architecture.
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Figure 4.1: A DTSVLIW machine.

4.1 The Scheduler Engine

The Scheduler Engine is composed of the Primary Processor plus the Scheduler Unit
(Figure 4.1). The Primary Processor is a simple pipelined processor capable of
executing all instructions of the Sparc Version 7 ISA [Sun87] —the ISA we have
chosen for the implementation of the DTSVLIW machine described in this thesis.
When a valid instruction moves from the decode pipeline stage to the execute
pipeline stage, the Primary Processor sends it to the Scheduler Unit. The Scheduler
Unit implements in hardware a simplified version of the FCFS algorithm, which
historically has been used to statically schedule microcode (Section 3.1). We have

chosen this algorithm for three reasons. First, it operates with one instruction at a
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time and considers instructions in the strict order that they appear during program
execution, which perfectly fits the DTSVLIW mode of operation. Second, the FCFS
algorithm produces optimum or near-optimum scheduling [Davidson81]. Finally, the
FCFS algorithm is easy to implement in hardware in a pipelined fashion in the form

it is presented here (see Section 4.5).

4.1.1 The Scheduling Algorithm

The implemented version of the FCFS algorithm acts on a list, the scheduling list.
This list has a number of elements equal to BLOCK_SIZE (a hardware constant) and
each element contains one long instruction and a candidate instruction, which holds
an instruction for scheduling into the long instruction. A broad overview of the
algorithm is that an instruction coming from the Primary Processor in one clock cycle
is placed at the end of the scheduling list on the next clock cycle. On each subsequent
cycle, this instruction can move up to the next higher element in the list ift

e it has not reached the head of the list

o and there is space for it in the next element

e and there is not a dependency with instructions in the next element
Figure 4.2 shows an example of the algorithm scheduling a fragment of code that
adds all elements of a vector. In Figure 4.2, slh and slt stand for scheduling list head
and tail, respectively, and the destination register of the instructions is the rightmost.
The scheduling algorithm ignores the nop instruction. The details of the algorithm’s
operation follow.

An instruction arriving in the execute pipeline stage of the Primary Processor in
one cycle is inserted into a suitable slot in the scheduling list in the next cycle. If
there are no data, control, or resource dependencies on any instruction in the list’s tail
element, the incoming instruction is inserted into the list’s tail element; otherwise, it
is inserted into a new tail element added to the list. In Figure 4.2, instructions 1 and 2
are inserted by the first method, while instruction 3 is inserted by the second method
due to a true data dependency on 8.

An instruction inserted with the first method is a candidate for moving up the
list on subsequent clock cycles. There can only ever be a single candidate instruction

in a long instruction, but each long instruction in the list may have a candidate for
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promotion. Thus, candidate instructions of different long instructions can be moved
up in parallel in a clock cycle. After an instruction has been inserted into the end of
the list, the next step is to move this instruction up as far as it can go in the list of
long instructions. An instruction can move up from long instruction i to long
instruction 7 - 1 if it has no true data dependency on any instruction in the long
instruction i - 1 and there is a suitable slot available. If the instruction cannot move
up, it is installed in long instruction i. In Figure 4.2, instruction 3 is installed in the
fourth cycle, while instruction 8 is moved up in the ninth cycle.

The candidate instruction in i can be placed in long instruction i - 1 even if:

e there is an output dependency on any instruction in i — 1

e or there is an anti dependency on any instruction in i

e or there is a control dependency on any instruction in i (there is a

conditional branch or indirect branch in )

However, in such cases, the candidate instruction has to be split. The split is done by
renaming either the candidate instruction’s output that has caused the output/anti
dependency or all outputs if there is a control dependency, and by inserting a copy
instruction permanently in the current slot in long instruction i. This copy instruction
performs the copy of the renaming register (or the renaming registers) content to the
instruction’s original output (or instruction’s original outputs). In Figure 4.2,
instruction 7 is split in the ninth cycle.

Conditional and indirect branches do not move up. They are installed when
inserted and establish a tag for their long instruction. All instructions subsequently
placed in this long instruction receive the last established tag. During VLIW
execution, the VLIW Engine evaluates the conditional and indirect branches and
validates their tags if they follow the same direction observed during scheduling.
Only instructions with valid tags have their results written in the machine state. In
Figure 4.2, the second instance of instruction 5 receives the tag established by
instruction 9 in cycle eleven.

When there is no free element for an incoming instruction, the scheduling list
content is sent to the VLIW Cache as a block and the incoming instruction is inserted
into the list as the first instruction of a new block. All renaming registers previously

used are restored to the pool of renaming registers and can be reused. The list is
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saved as a block, but on a one long instruction per cycle basis; nevertheless,
instructions can be continuously inserted into the new block at the same time as the
old block is being saved. This is achieved by making the scheduling list circular, and
by using three registers to handle it: the scheduling list head register, the scheduling
list tail register (Figure 4.2), and the output long instruction pointer register.

The scheduling list tail register together with the scheduling list head register
delimits the active elements of the scheduling list. The output long instruction pointer
register is used to flush the list to the VLIW Cache. All three are zeroed after the
DTSVLIW is reset. The scheduling list tail register is incremented when new entries
are added to the scheduling list. If the number of valid elements in the list exceeds
the BLOCK_SIZE, the list is full. When the list is found full on going to insert a new
instruction, the content of the scheduling list tail register is copied to the scheduling
list head register. This makes the latter different from the output long instruction
pointer register and the list empty. When the output long instruction pointer and the
scheduling list head registers are different, the long instruction that is pointed at by
the output long instruction pointer is sent to the VLIW Cache and the output long
instruction pointer is incremented. These repeat every clock cycle until the output
long instruction pointer register becomes equal to the scheduling list head register
again and the block has been flushed. As instructions are inserted into the list at the
maximum rate of one instruction per clock cycle, the same rate as long instructions

are written into the VLIW Cache, one action does not interfere with the other.
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for (sum =10, i=0; i<x; it+) I: or 10, 0, r9 # 19 = sum
( 2: sethi hi(56), r8 # 18 = temp
sum = a[ i] + sum; 3: or 8, 8, rl 1 #rl 1= *a
} 4: or 10, 0, rlO0 # 110 = 4*i
loop: 5: Id [rlO+r] 1], 18
(@) 6: add 19, 18, 19
7. add rlO, 4, rlO
8: subcc rlO, 4*x-1, 1O
9: ble loop
10: or 10, 0, 1O # nop
®)
slh-> or ro, 0, r9 sethi hi(56), r8
slt-> or r8, 8, rl 1 after
3 cycles
slh -> or ro, 0, i-9 sethi hi(56), r8 or ro, 0, rl0
or r8, 8, rl 1 after
Id frlO+rl 11, r8 add rl0, 4, rlO0 8 cycles
sit -> add r9, r8, r9 subce rl0. 4*x-1, 1O
slh -> or ro, 0, r9 sethi hi(56), r8 or ro, 0, rl0
or r8, 8, rl 1 add rlO, 4, r32 after
Id frl0O+rl 11, r8 COPY r32, rlO subcc r32, 4*x-1, rO 9 cycles
sit -> add r9, r8, r9 ble loop
slh -> or ro, 0, r9 sethi hi(56), r8 or r0.0, rl0
or r8, 8, rl 1 add rlO, 4, r32 after
Id frlO+rl I1,r8 COPY r32, rlO subcce r32, 4*x-1, rO 11 cycles
sit -> add r9, r8, r9 ble loop Id [r1O+rl 1], r8
©

Figure 4.2: Scheduling algorithm running example, (@) C code fragment, (b) Assembly language
version of the C code (¢) Four snapshots of a three instructions wide and four long instructions
deep scheduling list, filled with instructions coming from the Primary Processor after 3, 8, 9,
and 11 cycles of the execution of the first instruction. The shaded instructions in each snapshot

are also candidate instructions.

4.1.2 Copy Instructions Handling

Copy instructions do not cause data dependencies and they can be overwritten by
other instructions during scheduling. If an instruction in long instruction / reads from
a register written by a copy instruction in long instruction /—1I, this instruction can
be moved to long instruction / — 1 during scheduling. In this case, the mentioned
input register is renamed to the same name of the copy instruction input register. On
the other hand, if an instruction in long instruction zwrites into the register written by
a copy instruction in long instruction i — 1, this instruction may be moved to long
instruction i — 1 without splitting. This instruction can be moved to long instruction i

— 1 without splitting if the tag of the copy instruction in /—1 is equal to the current
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tag of the long instruction i - 1. In this case, the copy instruction is overwritten by the
instruction. If the tag of the copy instruction is different from the tag of the long
instruction, it means that a conditional or indirect branch has been installed in the
long instruction after the copy instruction had been generated. To overwrite this copy
instruction would be equivalent to crossing a conditional or indirect branch without
renaming, which would be an invalid scheduling operation. Therefore, if the tag of
the copy instruction is different from the tag of the long instruction i — 1, the
instruction in long instruction i has to be split in order to be moved up to long

instruction i — 1.

4.1.3 Control-Transfer Instructions Handling

During scheduling, one or more control-transfer instructions can be placed in a single
long instruction, but they cannot move up (their order is preserved). Control
dependencies are caused only by conditional and indirect branches (subroutine return
is a special case of this) and they do not impede scheduling beyond basic blocks.
Instructions can cross basic block limits imposed by conditional and indirect
branches and execute speculatively.

Speculative execution is implemented by splitting instructions and moving up
their first part past conditional or indirect branches, leaving the copy part behind. If a
conditional or indirect branch does not follow the same direction during execution,
the copy part of the split instruction is not executed, not committing the
corresponding instruction.

Conditional branch instructions read the conditional code register (the flags),
which is written by many different instructions. Output and anti data dependencies
caused by this register are tackled as other dependencies of these kinds. The VLIW
Engine has many conditional code registers; therefore, instruction splitting can be
used to avoid these dependencies.

Because the Sparc ISA implements delayed branches, an extra pipeline stage
between the Primary Processor and the Scheduler Unit is necessary for the insertion
of delayed slot instructions (see Figure 4.1). When a delayed branch is detected
inside this pipeline stage, it is held on it for one cycle. In this cycle, instead of the

branch, the delayed slot instruction in the Primary Processor’s decode pipeline stage
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is inserted into the scheduling list, bypassing the insert pipeline stage. In the
following cycle, the delayed branch is inserted normally. This guarantees the correct

assignment of tags to the delayed branch and delayed slot instruction.

4.1.4 No-operation Instructions Handling

No-operation (nop) instructions are ignored and not placed in the scheduling list.

4.1.5 Load and Store Instructions Handling

Load and store instructions can be split and moved up by the scheduling algorithm
without restrictions. For dependency test, their data addresses are compared with the
data address of other load/store instructions, while the registers they use (including
those used to compute data addresses) are compared with registers of other
instructions (including load/store). Memory renaming registers provide for the
renaming of memory positions. Load/store address aliasing is discussed in Section

4.7.

4.1.6 Save and Restore Instructions Handling

Save and restore instructions, which deal with the register windows of the Sparc ISA
[Sun87], are scheduled as any other integer instruction. To make it possible, the
value of the cwp (current window pointer) register of the Sparc ISA, which is used
for computing the address of the physical integer registers, accompanies the

instructions to the scheduling list and VLIW Cache.

4.1.7 Non-schedulable Instructions Handling

Non-schedulable instructions are a number of instructions of the Sparc ISA that are
not executable by the VLIW Engine, but must always be executed by the Primary
Processor because they are too complex for the VLIW Engine to handle. When such
instructions are sent to the Scheduling Unit, they flush the scheduling list to the
VLIW Cache. Thus trap, return from trap, and co-processor handling instructions
are non-schedulable. In addition, load/store instructions are non-schedulable when
they are non-cacheable, or when they perform 1/0 operations, or when they provide

support for cache coherence and multiprocessing.
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4.1.8 Multicycle instructions Handling

Multicyle instructions, such as integer divide, floating-point multiply, or (sometimes)
loads and stores, impact upon both the operation and performance of the architecture.
Their scheduling requires special care to respect dependencies in any of their cycles.
The DTSVLIW scheduling of multicycle instructions has been implemented as
follows [deSouza99b].

To schedule multicycle instructions, extra features were added to the
scheduling list. These are an extra candidate instruction for each element of the list,
the candidate instruction B, and an extra slot in each long instruction for each
multicycle functional unit, the slot B. Two instances, A and B, of a multicycle
instruction are inserted into the scheduling list. These are just copies of the original
instruction, and have cross-references to each other’s position in the scheduling list.
The purpose of the A and B instructions is to delimit the scheduling list elements in
which the instruction is active to prevent instructions with dependencies being
scheduled in these elements. The primary role of the B instruction is for dependency
checking against instructions moving up.

Instance A is inserted into the tail of the scheduling list. If the current block
size plus the instruction latency minus one is larger than BLOCK_SIZE, a new long
instruction is added to the scheduling list for inserting the instance A of the
multicycle instruction. In such cases, a new block starts at the scheduling list position
where the instance A is inserted. Instance B, on the other hand, is inserted into the
scheduling list tail + (instruction latency — 1) position of the scheduling list in the
candidate instruction B and slot B; the scheduling list tail register is made to point at
this element. After insertion, the Scheduler Unit handles these two instances as other
instructions, except that:

e Instance B does not suffer or cause resource dependencies, because it does

not use a normal slot but a B slot.

e Instance B does not suffer or cause data dependencies related to its inputs.

* Instance A does not suffer or cause data dependencies related to its outputs

but only control dependencies, in which case A’s output is renamed and

instance B is split. The copy instruction generated is not placed in a B slot,

but in a normal one.
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e Instances A and B move up together; if A cannot move up both are
permanently placed in their current long instructions (B can always move
up if A can move up).

e If instance B suffers an output or anti data dependency it is split and A is
also renamed.

¢ Instance B is not saved in the VLIW Cache and is only used for scheduling
purposes.

Multiple scheduling list elements need to be added to a block for a single
multicycle instruction. Because of this, the Primary Processor is required to have only
one instruction in the execute pipeline stage at any time. Therefore, the Scheduler
Unit only has to add one extra scheduling list element per cycle, since the Primary
Processor 1s expected to hold its pipeline to complete the multicycle instruction. This
reduces its performance, but the overall performance of the architecture is dependent
on the VLIW Engine performance, not that of the Primary Processor.

Scheduling a multicycle instruction lengthens a block by the latency of the
instruction minus one. This impacts on etficiency since the longer block is more
difficult to fill, reducing parallelism and wasting space in the VLIW Cache. Some
instructions have very long latencies, and in certain programs, are too frequent to be
left to the Primary Processor to execute (one option for dealing with them): floating-
point divide is one example. These instructions are scheduled as multicycle
instructions, but the latency used by the Scheduler Unit is not the same as the
instruction latency. The latency used by the Scheduler Unit is set to a maximum (4
for example) and, under VLIW execution, the VLIW Engine holds the execution of
the long instruction containing these instructions for the number of extra cycles
necessary for its proper execution. This saves on VLIW Cache space but does not

affect the reduction in parallelism.

4.2 DTSVLIW Long Instruction Format

The format of the long instructions of the DTSVLIW can be appreciated with the
help of Figure 4.3. In this figure, two long instructions are shown, and each of them
has five instructions. The individual instruction tags are represented by the shaded
fields. These two long instructions do not have any particular programming meaning
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and are only examples. However, they could be seen as two neighbour instructions of
a block.

The first long instruction does not have conditional or indirect branches;
therefore, all instructions have tags with the value zero. Instructions with tag equal
zero are executed unconditionally. The second long instruction has two conditional
branches. In this long instruction, only the branch ble (0) loop is executed
unconditionally. The (0) in this branch indicates which conditional code register the
branch is testing — the DTSVLIW has many conditional code registers and
instructions that read from or write into them can be renamed. An example of this
renaming is shown in Figure 4.3.

The instruction subcc of the Sparc ISA writes into conditional code registers.
An instance of subcc is shown in the first long instruction of Figure 4.3: the
instruction subcc rl, r3, r0: (1). This instruction writes into the conditional code
register 1, as indicated by the (1) in the instruction. The copy instruction COPY ccl,
ccO copies the content of the conditional code register 1 to the conditional code
register O: the original subcc was split and moved up by the Scheduler Unit, and left
this copy instruction behind.

When installed in the second long instruction of Figure 4.3, the branch ble (0)
loop changes this long instruction’s tag value to 1, and three instructions receive this
new tag value, including the second branch, bz (1) exit. When installed, this second
branch changes the tag again, and the instruction add r8, r2, r3 receives the new tag
value, 2. When executing this long instruction, the VLIW Engine validates the tags 1
and 2 by checking if the branches follow the same direction observed during
scheduling. Only instructions with valid tags, including branches, have their results
written to the machine state. Therefore, if the branch ble (0) loop follows a direction
different from that observed during scheduling, no other instruction in its long
instruction has its results stored. On the other hand, if this branch does follow the
same direction observed during scheduling and the branch bz (1) exit does not, only

the instruction add r8, r2, r3 does not have its results stored.

0¢1d [r10+r11],18 501 subce 10, 50, r0: (0) | 04 add r10,4,r32 FQ {subccrl,r3,10: (1) [ 0 | nop
0.4 ble (0) loop 1] COPY 32,110 191 COPY ccl, ccO g1 {bz (1) exit -2 {add r8, 12,13

Figure 4.3: DTSVLIW long instruction format examples.
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4.3 DTSVLIW Long Instruction Addressing

Once instructions are scheduled into blocks of long instructions, the VLIW Engine
instruction addressing has to be different from the Primary Processor instruction
addressing. In the DTSVLIW, a block of long instructions is stored as a VLIW Cache
line. Since the only entry point of a block is the first instruction scheduled in the
block, there is a single address for the whole block, and this is the address of the first
instruction scheduled in the block. For fetching a long instruction from the VLIW
Cache, the VLIW Engine uses a fetch address with two fields: the address field and
the line index field. The address field is a Sparc ISA address and specifies the block,
while the line index field specifies a long instruction in the block. This long
instruction address is produced by concatenating the PC with a line index register
maintained by the VLIW Engine and incremented from zero.

The number of valid long instructions in a block is stored into the VLIW Cache
with the block. The line index register content is compared with this number to
determine the fetch of the last valid long instruction in a block. When they have the
same value, the next fetch is made using the address of the instruction that follows
the block, which is also stored into the VLIW Cache line. This mechanism requires
only two instruction addresses to be stored in a cache line: the address of the first
instruction of the block and that of the following block. Individual instruction
addresses are not required, since the block will execute as a whole unless a branch is
made out of the block, in which case the information needed to build the target
address is stored as part of each branch instruction.

We have developed a mechanism to generate and save in the VLIW Cache the
number of valid long instructions of each block and the address of the following
block. This mechanism allows several blocks to coexist in the scheduling list, in
addition to allowing the scheduling of one block and the saving of another block in
parallel. To implement this mechanism, we have added to each element of the
scheduling list two stores to hold the current and the next long instruction addresses:
the long instruction address store, and the next long instruction address store. Each
of these has an address field to hold a Sparc ISA address and a line index field to
hold the position of the element of the list. Figure 4.4 shows examples of how our

mechanism operates, and the following paragraphs give the details of its operation.
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When instruction insertion causes a new long instruction to be added to a
block, the long instruction address store of this element receives a copy of the long
instruction address store of the previous tail element with the line index field
incremented. In addition, every time a new long instruction is added to a block, the
next long instruction address store of the previous scheduling list’s tail element
receives the long instruction address of the new long instruction. In Figure 4.4, the
first snapshot shows a new long instruction being added to a block as explained.

When the insertion of an instruction causes the creation of a new block in an
element of the scheduling list, this instruction’s address is copied to the address field
of the long instruction address store of the element. At the same time, the line index
field of the long instruction address store of the element is zeroed. The second
snapshot of Figure 4.4 shows the creation of a new block in this way.

Because the next long instruction address store of the previous scheduling list’s
tail element always receives the long instruction address of an added long instruction,
the next long instruction address store of the last long instruction of a block always
point to the first long instruction of the fall-through block. The only exception are
when a non-schedulable instruction is sent to the Scheduling Unit and when there is a
fetch hit on the VLIW Cache. In these cases, the block being scheduled is made to
point to the non-schedulable instruction or to the hit block, and start being flushed to
the VLIW Cache. This is accomplished by adding a new empty long instruction to
the scheduling list, as show in the third snapshot of Figure 4.4. This creates a new
empty block. The insertion of an instruction into an empty block gives this block the
instruction’s address — see the fourth snapshot of Figure 4.4.

The contents of the long instruction address store and next long instruction
address store are not saved into the VLIW Cache; instead, a unique next block
address (nba) is saved with each block. The nba has the same format as the long
instruction address and contains the address of the following block and the number of
valid long instructions of the block. The address field of nba holds the Sparc ISA
address of the following block, while the line index field of nba holds the number of
valid long instructions of the block. The nba value is computed as follows.

When a long instruction is being saved, the address field of its next long

instruction address store is copied into the address field of the nba of the long
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instruction’s block in the VLIW Cache. At the same time, the line index field of this
long instruction’s long instruction address store is copied into the line index field of
the nba. Thus, the nba of each block ends up with the address of the fall-through
block (the address field of the next long instruction address store of the last long
instruction of each block) and with the number of valid long instructions of the block
(the line index field of the long instruction address store of the last long instruction of
each block). Figure 4.4 shows four mba values generated for a single block. The

value of the nba in the last snapshot is the final value written into the VLIW Cache.
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Long Instruction lia nlia nba
olip, slh -2 inst inst inst 0x1000 0 0x1000 1 0x1000 0
inst inst inst 0x1000 1 0x1000 2
inst inst 0x1000 2 0x1000 3
sit -> inst 0x1000 3
Long Instruction lia nlia nba
(saved)
olip -> inst inst inst 0x1000 1 0x1000 2 0x1000 1
inst inst 0x1000 2 0x1000 3
inst 0x1000 3 0x20a0 0
slh, sit -> inst 0x20a0 o
Long Instruction lia nlia nba
(saved)
(saved)
olip -> inst inst 0x1000 2 0x1000 3 0x1000 2
inst 0x1000 3 0x20a0 0
inst 0x20a0 0 0xI18c0 0
slh, sit -> Ox18cO 0
Long Instruction lia nlia nba
(saved)
(saved)
(saved)
olip -> inst 0x1000 3 0x20a0 0 0x20a0 3
inst 0x20a0 0 0x18c0 0
slh, sit -> inst 0x18c4 0

Figure 4.4: VLIW Engine instruction addressing. Four snapshots of a three instructions wide
and eight long instructions deep scheduling list are shown, lia, nlia, and nba stand for long
instruction address, next long instruction address, and next block address, respectively, olip, slh,
and sit stand for output long instruction pointer, scheduling list head, and scheduling list tail,
respectvely. The shaded fields represent the index field of each address.

4.4 The VLIW Cache

The VLIW Cache is an ordinary set associative cache with line size equal to one
block of long instructions. It is tagged with the Sparc ISA address of the first
instruction placed in the blocks by the Scheduler Unit. In the VLIW Cache, each long
instruction can be accessed directly by using addresses in the long instruction address

format, with the line index field of the address choosing the specific long instruction
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in the block. The single additional feature of the VLIW Cache is the nba store
associated with each cache line. The nba value is used in the VLIW Engine fetch, as

described next.

4.5 The VLIW Engine

The VLIW Engine of the DTSVLIW has a simple fetch-execute-write back pipeline
for each functional unit. Multicycle instructions execute in pipelined functional units
with more than one execute stage. A decode stage is not necessary as decoded
instructions are saved in the VLIW Cache. To access the VLIW Cache, the VLIW
Engine concatenates the PC with the contents of the line index register. This register
is incremented after each VLIW Engine fetch, while the PC is left unchanged. On a
long instruction fetch, the nba value associated with the cache line is fetched as well.
If the line index register content is equal to the line index of nba, then, at the end of
the cycle, the content of the address field of nba is copied to the PC and the line
index register is zeroed. These actions cause the fetch of the first long instruction of
the fall-through block in the following cycle without causing pipeline bubbles.

When blocks are sequentially executed no bubbles occur in the VLIW Engine
pipeline, and only a single bubble occurs when a branch is made out of a block and
another block is hit in the VLIW Cache.

All conditional and indirect branches are resolved in the execute stage of the
VLIW Engine. The direction taken by them during the scheduling, recorded in the
VLIW Cache, is used during the execution to determine if any of them are following
a different direction. If the branch direction of a branch with a valid tag is different
from that recorded, the current VLIW fetch is annulled and the PC receives the new
branch target, while the line index register is zeroed. This causes a 1-cycle bubble in

the VLIW Engine pipeline.

inserting splitting and moving up saving

> e -] >

Figure 4.5: Scheduler Unit pipeline.
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4.6 Scheduler Unit Implementation

The Scheduler Unit can be implemented in a pipelined fashion as depicted in Figure
4.5. One or more pipeline stages can be used for inserting instructions into the
scheduling list, each scheduling list entry can be made a pipeline stage, and none, one
or more pipeline stages can be used for saving the scheduled long instructions into
the VLIW Cache.

The checking operations required on the scheduling list on each clock cycle are
just comparison operations between each candidate instruction and the instructions in
the current and next element of the list. Each check operation is independent.
However, the decision to install, split, or move up a candidate instruction may
depend on a chain of decisions as long as the scheduling list. Nevertheless, the
information necessary to each one can be gathered in a way similar to carry
propagation in carry-lookahead integer adders [Patterson96 (Appendix A)], and the
logic required can be made as fast as an and-or gate delay. This can be proved with
the help of Figure 4.6.

In Figure 4.6, the value of CRd(i), CTd(i), COd(i), Rd(i), Td(i), Od(i), Ad(i),
and Cd(i) for each element i of the list (0 < i < block size — 1) is available at the
beginning of each clock cycle after the comparators delay (xor gate delay). Invalid
candidate instructions never produce CRd(i), CTd(i), or COd(i) signals. Valid
candidate instructions could influence the Rd(i), Td(i), Od(i), and Ad(i) signal
values; for this reason, their companion position is used for disabling the
comparators associated with the slot where the companion instruction is. CRd(i) is
also disabled if there is more than one slot available in i - 1 for candidate instruction
I

Let us analyse the installing case first. A valid candidate instruction must be
installed on true dependencies or resource dependencies. So, if Td(i) is true there is
an instruction already installed in long instruction i - 1 causing a true dependency on
the candidate instruction i. In this case, the candidate instruction in i must be
installed. If only CTd(i) is true one cannot tell whether or not the candidate
instruction should be installed, because the candidate instruction in i — 1 might move
up in this cycle. The same can be said about Rd(i) and CRd(i) signals. Nevertheless,

using the position of the candidate instruction in the list, which is recorded in the line
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index field of the long instruction address store of the long instruction, an install

signal can be computed for each candidate instruction in the scheduling list as

follows:

install signal =
(i®0)+
(i®1).(Td(1) + Rd(1) + CTd(1) + CRd(1)) +
(i®2)(Td(2) + Rd(2) + {CTd(2) + CRA(2)}.{Td(1) + Rd(1) + CTd(1) + CRd(1)}) + (1)
(i®3).(Td(3) + RA(3) + {CTd(3)+CRd(3)}.
{Td(2) + Rd(2) + [CTd(2) + CRA(2)].[Td(1) + Rd(1) + CTd(1) + CRA()]})

The equation above represents the logic necessary to compute the install signal
for a DTSVLIW machine with a block size equal to 4. The rule to produce equations
for larger blocks is easily deduced by visual inspection. The operator “®” means
binary vector comparison: (i®x) evaluates to true if i is equal to x. The operator “+”
means logic or, and the operator “.” means logic and.

When the line index field of the list element containing the candidate
instruction i is equal to zero, the first line of the equation evaluates to true and,
consequently, the install signal becomes true. This implements the first rule for
installing a candidate instruction, i.e., if the candidate instruction is at the head of the
scheduling list it is installed. If i is equal to 1, only the second line of the equation
can evaluate as true. In this case, the candidate instruction i will be installed if there
is a true dependency on any instruction installed in long instruction i - 1 (the head of
the list), or there is not a slot available in this long instruction, or there is a true
dependency or resource dependency on a valid candidate instruction in this long
instruction. For i greater than 1, the information from lower order list elements is
added to each equation line as shown.

A split signal can be computed for each candidate instruction in the scheduling

list of a DTSVLIW machine with a block size equal to 4 as follows:
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split signal =
(i®1).(0d(1) + Ad(1) + Cd(1) + COd(1)) +
(i®2).(0d(2) + Ad(2) + Cd(2) + COd(2).{Td(1) + Rd(1) + CTd(1) + CRd(1)}) + (2)

(i®3).(0d(3) + Ad(3) + Cd(3) + COA(3).{Td(2) + Rd(2) + [CTd(2) + CRA(2)].
[Td(1) + Rd(1) + CTd(1) + CRA(1)]})

Again, the rule to produce equations for larger blocks is easily deduced by
visual inspection. It is important to observe that part of this equation comes from the
previous one. This is so because an output dependency caused by COd(i) generates a
split signal only if the candidate instruction in element i - 1 of the scheduling list is
going to be installed.

If the split signal is true, the respective candidate instruction is split. If the
install signal is true, the candidate instruction is installed. If the install and the split
signals are both true the respective candidate instruction is only installed. If the
candidate instruction is not going to be installed or split, it is moved up.

The install and split signal generation is the most complex operation performed
by the Scheduler Unit, and its complexity is governed by the block size. Since a
block of 32 long instructions is a large block, the Scheduler Unit design does not
pose constraints on the cycle time of DTSVLIW machines. This is because the
complexity of the logic necessary for generating these signals is equivalent to that of
an integer adder and DTSVLIW machines with data words of 32-bit or more have to

perform integer add operations in one cycle.
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Figure 4.6: Scheduling list. Rd(i), Td(i), Od(i), Ad(i), and Cd(i) stand for resource dependency,
true data dependency, output data dependency, anti data dependency, and control dependency
on candidate instruction i, respectively. CRd(i), CTd(i) and COd(i) stand for resource
dependency, true data dependency and output data dependency on candidate instruction i
caused only by the candidate instruction in long instruction i - 1, respectively.

4.7 Memory Aliasing Detection

Memory aliasing (see Subsection 2.2.4) can occur, as the memory address observed
during scheduling is not necessarily the same during VLIW execution. To detect
memory aliasing and generate memory aliasing exceptions during VLIW execution,
load and store instructions receive two extra fields when they are scheduled: the
order and the cross bit fields. The order field receives the load/store insertion order,
which is copied from the load/store order counter. This counter is zeroed every time
the scheduling list is found empty and is incremented every time a load/store is
inserted into the scheduling list. The cross bit field is set in the load/store when it is
placed in a long instruction containing a store or a memory copy instruction
generated from a store split.

The VLIW Engine keeps a store list and a load list, which are emptied every
time a block starts execution. During VLIW execution, loads and stores with the
cross bit set have their addresses and order fields stored in these lists as they execute.
Load instructions executed in VLIW mode have their addresses associatively
compared with the store addresses in their long instruction and all store addresses in
the store list. On an address match, if the order field of the load is smaller than the

order field of the corresponding store (which means that a late store to the same
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address has been executed), an aliasing exception is signalled. The store instructions
executed in VLIW mode have their addresses associatively compared with the load
and store addresses in the same long instruction and all load and store addresses in
the load and store lists. On an address match, if the order field of the store is smaller
than the order field of the corresponding load/store, an aliasing exception is

signalled. DTSVLIW exception handling is discussed next.

4.8 Exception Handling

Exceptions (interrupts) may be generated by the execution of some instructions, such
as load/store (page faults, access violations) or divide (divide by zero). However,
split instructions should not signal exceptions until their copy part is executed. To
avoid uncommitted instructions generating exceptions while allowing true exceptions
to be handled, an exception bit is added to each renaming register of the DTSVLIW.

When a split instruction generates an exception, the exception bit of its
renamed destination register is set and execution proceeds normally. If this register is
read by any other instruction, the exception bit is propagated to the destination
registers of this instruction. This is accomplished by performing logic or of the
exception bits of all input registers of this instruction and by writing the result of this
operation to the exception bits of the instruction’s destination registers. When an
instruction that has an input register with an exception bit set is executed and its
destination register is part of Sparc ISA state, an exception is signalled. The
DTSVLIW exception handling mechanism operates as follows.

The DTSVLIW uses the Checkpointing exception handling mechanism,
proposed by Hwu and Patt [Hwu87] (see Subsection 2.2.3). Checkpointing occurs at
the beginning of the execution of each block of long instructions, when all registers
that make up the Sparc ISA state are saved in shadow registers. Store instructions
executed in the block cause the data they overwrite in the Data Cache to be saved in
the checkpoint recovery store list. This list contains the address, data overwritten, and
data type.

If the VLIW Engine detects an exception during the execution of a block, the
Scheduler Engine enters a recovery mode of execution. In this mode, registers receive

the values stored in the shadow registers, each entry of the checkpoint recovery store
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list is written back into the Data Cache, and the load and store lists are emptied. If the
exception detected is an aliasing exception, the VLIW Cache entry containing the
block that caused the exception is invalidated. Execution is then resumed.

For an aliasing exception, execution resumes in normal trace mode and the
block that has caused it is scheduled in a way that prevents new aliasing exceptions:
data dependencies keep load/stores in a new order inside the block, different from
before. For other exceptions, execution resumes in exception mode until the
exception repeats, from which point the operating system handles the exception. In
exception mode only the Primary Processor operates.

The scheme described for dealing with store instructions is not the only one
that would work with the DTSVLIW. An alternative scheme make the stores write
into a data store list as oppose to the Data Cache, and the checkpoint recovery store
list is not used. The data store list contains the address, data, data type, and the order
field of store instructions. This list works as a queue for incoming store data.
Nevertheless, the order field can be used to transfer this data to the Data Cache in
order, which can be useful when using the DTSVLIW for applications requiring
intensive in order memory or I/O writing — in the former scheme the Primary
Processor has to handle in order data store. Data is only transferred from the data
store list after the block containing the respective store instructions has finished
without exceptions. In case of an exception, data generated in the block where the
exception is detected is annulled. Load instructions read from the Data Cache and
from the data store list at the same time, and use the last data stored in the list on a
list hit. This scheme has not been used as it is much harder to implement in a

simulator, and its advantages need to be identified through further research.

4.9 Object Code Compatibility Issues

There are some important issues related to backward code compatibility that have not
yet been discussed. These are: self-modifying code, programs that read their own
code as data, load instructions side effects, and the implementation of CISC ISAs
with the DTSVLIW architecture.

Self-modifying code is a problem even for simple pipelined processors, since a

store instruction can change an instruction in memory that is already in some stage of
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the processor pipeline. Modern processors use the virtual memory supporting
hardware for detecting attempts to modify code, and they generate exceptions when
this happens [Patterson96 (page 449)]. The DTSVLIW can use the same mechanism.
If the execution of self-modifying code is necessary, the exception handler just needs
to flush the entire instruction and VLIW caches. If self-modification is frequent in
such code, the performance is going to be seriously affected, however. Nevertheless,
this is an uncommon programming practice usually present in old programs only.
Therefore, support for the execution of self-modifying code is limited in the
DTSVLIW architecture and, if performance is required, specially designed
architectures should be used for the execution of this kind of code.

Certain programs need to read their own code, such as programs that compute
their own checksum for security reasons for example. The DTSVLIW architecture
does not impose any restrictions on the execution of such programs since the
scheduled code in the VLIW Cache is not accessible by load/store instructions.

In some systems, load instructions may have side effects due to memory
mapped I/O. In these systems, a load may reset an I/O register for example. Since the
DTSVLIW can execute loads speculatively, programs could have incorrect behaviour
due to a detected but not committed exception prior to the execution of such a
speculative load that may cause side effects. This does not happen, however, because
the DTSVLIW architecture includes a data cache and must already be aware that
some types of data cannot be stored in the cache. Load accesses that change system
state are a subset of non-cacheable memory accesses and as such are non-schedulable
instructions (see Subsection 4.1.7).

The description of the DTSVLIW until here assumes the implementation of an
RISC ISA; however, the DTSVLIW architecture can also be used to implement CISC
ISAs. The most direct way of doing this is to implement the Primary Processor with a
vertical microprogrammed machine. The RISC like microinstructions executed by
this Primary Processor could then be dealt with in the same way as has been

described for a RISC ISA implementation.
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4.10 Differences Between DTSVLIW and DIF

The DTSVLIW architecture differs from the DIF architecture in the organisation of
the instruction cache used by the VLIW Engine, in its scheduling algorithm, in its
register renaming, and in the VLIW Engine register access mechanism.

The unit of communication between the DIF cache and its VLIW Engine is an
entire block of long instructions, whereas the DTSVLIW machine accesses one long
instruction per VLIW Cache access. We believe that this should make the DTSVLIW
VLIW Cache implementation simpler than a DIF VLIW cache implementation.

A DIF machine schedules instructions using a hardware table, which has as
many entries as resources in the machine and records the earliest long instruction in
which each resource is available. Its proposed scheduler implements the Greedy
algorithm, by checking all resources necessary for each new instruction against this
table, and scheduling the instruction in the earliest long instruction possible. The DIF
scheduling scheme is similar to the MPS scheme described in Subsection 3.3.2,
although more complex, and suffer from the same pipelining problems of MPS. Nair
and Hopkins have not addressed these pipelining problems in [Nair97]. The
DTSVLIW, on the other hand, uses a simplified pipelined version of the FCFS
algorithm, which operates over a list of long instructions. An instruction has only to
be checked for dependencies against other instructions in its current and next position
in the list, as opposed to all resources available in the machine.

Instead of using copy instructions to implement register renaming, a DIF
machine has a number of instances of each ISA register and extra bits are added to
each register specifier to specify the register being used during VLIW execution. A
register-mapping table is used to access the current ISA register set. Renaming is
performed by specifying the extra bits during scheduling and by copying the new
register mapping — the exit map — to the register-mapping table every time the
execution leaves a block. Each exit point of a block (all branches and the final long
instruction) has to carry its own exit map. This mechanism may not be practical for
machines with a large number of physical registers, however. The Sparc ISA, for
example, allows processor implementations with as many as 520 integer registers due
to its register windows. Although most Sparc processors have only 128 integer

registers, a single exit map for such a processor, with four instances of each register,
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would require 256 bits only for integer registers. The DTSVLIW splits instructions
with the purpose of renaming registers to overcome data and control dependencies
and the copy instructions generated are simpler to handle than mapping tables.

The DIF VLIW Engine accesses its register file differently to the DTSVLIW. It
has to translate each register specifier to access the register file during VLIW
execution because of its renaming mechanism — this translation is in the data path of
the DIF VLIW Engine. A DTSVLIW machine, on the other hand, accesses its
register file directly.

101




Chapter 5

Experimental Methodology

We have used experiments to evaluate the DTSVLIW architecture. In order to
perform these experiments, we have implemented a parameterised and instrumented
simulator of the DTSVLIW. This simulator is capable of executing ordinary
programs for the Sparc Version 7 ISA compiled with standard compilers. Integer
programs from the SPEC92 and SPEC95 benchmark suites have been compiled and
used as input for the simulator. The data gathered is presented and discussed in the
chapters that follow this.

In the rest of this chapter, we describe the DTSVLIW simulator, present the
DTSVLIW parameters held constant and those we have varied during the
simulations, the benchmark programs, and the metrics we have used to gauge the

DTSVLIW performance.

5.1 The DTSVLIW Simulator

The DTSVLIW simulator has been implemented in C (23K lines of code), it is
parametric, allowing the specification of various parameters of the DTSVLIW
architecture, and it performs execution-driven simulation.

In execution-driven simulation, the simulator that models the machine under
study fully executes the test programs used in the study. This is in contrast with
trace-driven simulation, where instruction traces of test programs are produced in a

simple simulator and then used to feed a program that models the machine under
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study. Trace-driven simulation is usually faster but often less precise than execution-
driven simulation because assumptions have to be made about instructions that are
not in the trace but might have been fetched or even speculatively executed in a real
machine. In order to avoid the need for such assumptions, we have decided to
implement our simulator as an execution-driven simulator.

To guarantee correct simulation results, all results have been produced with the
simulator running in a special mode called test mode. The test mode puts two
machines to run together: the DTSVLIW and a fest machine with the same
characteristics of the Primary Processor of the DTSVLIW. The DTSVLIW starts
first, and every time an instruction or a block of long instructions is completed, the
simulator switches to the test machine, which runs until its PC becomes equal to the
DTSVLIW PC. The Sparc ISA state of both machines is compared and, if not equal,
an error is signalled and the simulation interrupted. The test mode has been very
useful not only to validate the execution but also because in this mode it is possible
to measure the precise number of instructions necessary for the execution of a
program, which the test machine can provide. A DTSVLIW simulator alone cannot
provide this number due to copy instructions and instructions executed speculatively.

The simulator fully executes all user-level instructions, including instructions
that are part of linked libraries; however, it does not execute operating system
instructions. When a system call occurs during simulation, a module of the simulator
intercepts it. This module decodes the system call, copies its arguments, makes the
corresponding system call to the host’s operating system, copies the results of the
system call into the simulated program’s memory, and then restarts the execution of
the simulated program.

The simulated DTSVLIW’s Primary Processor fully implements the Sparc
Version 7 ISA [Sun87]. The simulator receives as input any SunOS 4.1.3 (Sun
operating system) executable for this ISA and faithfully models the DTSVLIW

architecture operation.

5.2 Simulation Parameters

Except when stated otherwise, each program was run for 50 million or more

instructions each experiment, as counted by the test machine. We have chosen to run
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this number of instructions because this is optimistically the number of instructions
that a DTSVLIW machine is capable of executing between operating system context
switches. (Supposing that the DTSVLIW can execute 5 instructions per cycle, a clock
rate of 1 GHz, and one context switch every 10ms.)

We cannot always specify the exact number of executed instructions because,
when the simulator is executing code in VLIW-mode, the exact number of executed
instructions is only known when the execution leaves a block. That is the reason why
we say that “each program was run for 50 million or more instructions each
experiment,” and not exactly 50 million instructions.

The DTSVLIW parameters that are invariant for all simulations are presented
in Table 5.1, while the parameters that we have varied to appreciate their influence
on the DTSVLIW performance are shown in Table 5.2 together with their default
values. Except when stated otherwise, the default values were used in the

simulations.

Table 5.1: Fixed parameters

Trace Processor o four-stage (fetch, decode, execute, and write back)
pipeline
e not taken branches cause a 2-cycle bubble in the
pipeline (the Sparc ISA’s delayed branches allow for
zero-bubble taken branches)
¢ instructions following a load, requiring the data loaded
cause a one-cycle bubble in the pipeline
Decoded Instruction Size 6 bytes
VLIW Engine List Sizes load = store = checkpoint recovery store = unlimited
Scheduler Unit Pipeline inserting = 1 stage
splitting and moving up = block-size stages
saving = 1 stage

Table 5.2: Variable parameters

Parameter Default Value

Number of VLIW Engine functional units equal to the long instruction size
VLIW Engine functional units type untyped (can execute any instruction)
Number of renaming registers unlimited

Next long instruction miss penalty no penalty (0-cycle)

Instructions latency 1-cycle

VLIW Cache size 3072-Kbyte

VLIW Cache associativity 4-way

Instruction Cache perfect (no miss penalty)

Data Cache perfect (no miss penalty)
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5.3 Benchmark Programs

In 1988, the Standard Performance Evaluation Corporation (SPEC) was established
as a non-profit corporation devoted to “establishing, maintaining and endorsing a
standardized set of relevant benchmarks that can be applied to the newest generation
of high-performance computers” [SPEC]. SPEC is supported by leading companies
in the processor market, such as Intel and IBM.

SPEC’s first product was the SPEC Benchmark Release 1 suite, currently
identified as SPEC89. Since then, two other releases have been developed: SPEC92
and SPEC95 benchmark suites. These new releases became necessary due to
advances in processors, systems, and compiler technology, and the improvements
from one version to another are in aspects such as execution time, application size,
application type, etc.

The SPEC benchmark programs and their respective input data used in the
experiments reported in this thesis are shown in Table 2. We have used integer
programs from the SPEC95 and SPEC92 benchmark suites, although the experiments
with SPEC92 programs have only been included for comparison with previously
published results. All programs have been compiled with the gcc 2.7.2 compiler,
using optimisation flag -O. In this level of optimisation, the gcc compiler performs
several optimisations such as automatic register allocation, common sub-expression
elimination, invariant code motion from loops, induction variable optimisations,
constant propagation and copy propagation, filling of delay slots, etc. We could have
used the higher levels of optimisation -O2 or -O3; however, these levels include
optimisations such as loop-unrolling and function inlining whose effect in the
DTSVLIW performance would require a careful study in isolation. We have left the
study of the compiler-DTSVLIW architecture interaction for future work.
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Table 5.3: Benchmark programs and Input Data

The instructions per cycle (IPC) index is the main performance measurement index
used in this thesis. It has been produced by dividing the number of instructions

necessary to execute the program, as counted by the test machine, by the number of

cycles taken for DTSVLIW execution.

We refrain from averaging benchmark performances most of the time and show
performance measurements for each individual benchmark. However, sometimes
averages are useful. Jacob and Mudge [Jacob95], and Giladi and Ahituv [Giladi95]
have discussed which average should be used when dealing with computer
performance indices and have suggested the use of the harmonic mean for indices

like IPC. Therefore, when appropriate, we use the harmonic mean. Nevertheless, we
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SPEC95 Description Inputs

Benchmarks

compress Unix utility. Compresses data using the 20000 q 2131
adaptive Limpel-Ziv coding. The data is
generated randomly.

gcc C compiler. Compiles pre-processed source -03 jump.i
into optimised Sparc assembly code.

20 Game. Plays the game Go against itself. 40 19 null.in

ijpeg Image processing tool. Performs jpeg image vigo.ppm —GO
compression.

m88ksim Simulator. Simulates the Motorola 88100 dhry.big
processor running a program.

perl Shell Interpreter. Performs text and numeric primes.pl
manipulations.

vortex Database. Builds and manipulates three vortex.in
interrelated databases.

xlisp Lisp interpreter. Interprets lisp programs. queens 7

SPEC92 Description Inputs

Benchmarks

compress Unix utility. Compresses files using the in
adaptive Limpel-Ziv coding.

eqntott Logic design tool. Translates a logical int_pri_3.eqn
representation of a boolean equation to a truth
table.

espresso Logic design tool. Minimise boolean Cps.in
functions.

gce C compiler. Compiles pre-processed source -O jump.i
into optimised Sparc assembly code.

xlisp Lisp interpreter. Interprets lisp programs. queens 7

5.4 Metrics



also show, for extra clarity, the arithmetic mean between parenthesis at the side of the

harmonic mean in the form (4.1 u.a.m.), where u.a.m. means using arithmetic mean.
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Chapter 6

Experiments

In this chapter we present and discuss the experiments carried out to evaluate the
integer performance of the DTSVLIW architecture. We start by examining the effect
of some architecture parameters on the DTSVLIW performance. We then evaluate
the effectiveness of the DTSVLIW instruction-scheduling algorithm by comparing it
with the FCFS algorithm, used in microcode compaction, and the Greedy algorithm,
used in the DIF architecture. Finally, we present comparisons between the DTSVLIW
and the DIF, pure VLIW, and Superscalar architectures.

6.1 Effect of Some Architectural Parameters on the
DTSVLIW Performance

In this section, the effect of several parameters of the DTSVLIW architecture upon its

performance is examined.

6.1.1 VLIW Fetch Starting Point

When a DTSVLIW machine is scheduling code, every time a valid instruction moves
from the Primary Processor’s decode pipeline stage to the Primary Processor’s
execute pipeline stage, a VLIW fetch can be attempted with its address. On a VLIW
Cache hit, the VLIW Engine takes over execution and the block being scheduled is
saved into the VLIW Cache. If no special action is taken, the blocks produced this

way can have any number of long instructions from 1 to block size, but small blocks
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(1 or 2 long instructions) are likely not to have much parallelism. However, instead
of always allowing VLIW fetches, we can easily allow VLIW fetches only when the
size of the block being scheduled is near its maximum. That is, we can establish a
starting point for VLIW fetches associated with the size of the current block being
scheduled, forcing the production of larger and, hopefully, more compact (parallel)
blocks.

Figure 6.1 shows the impact of the VLIW fetch starting point on the DTSVLIW
performance. We have used DTSVLIW machines with 8 instructions per long
instruction and 8 long instructions per block (8x8-block geometry) in this
experiment. To ensure the absence of extraneous effects, the experiments leading to
the results in this figure were performed with perfect instruction and data caches (no
miss penalty), large VLIW Cache (3072-Kbyte), and no next long instruction miss
penalty. The legend of Figure 6.1 shows the different VLIW fetch starting points
used: at any block size (Start at 0), at half of the maximum block size (Start at 1/2), at
three quarters of the maximum block size (Start at 3/4), and at full block (Start at
1/1).

As the graph in Figure 6.1 shows, the strategy of discarding some possible
VLIW fetch opportunities to favour the production of larger blocks is worthwhile.
The machine configuration with VLIW fetch starting point at 1/2 of the maximum
block size performs better than the configuration with starting point at any block size
in seven of the eight benchmarks. The configuration with starting point at 3/4 of the
maximum block size has equivalent or better performance than the two previous
configurations in all benchmarks.

The configuration that starts issuing VLIW fetches only at full block has an
anomalous behaviour, however. It has equivalent or better performance than the
previous three configurations discussed in all but the compress benchmark. With
compress, this configuration has performance inferior than the other three. This
happens because, if VLIW fetches are allowed only when the block is full, the
DTSVLIW sometimes does not have many opportunities to perform VLIW fetches
and spends too much time executing code in the Primary Processor. This is more
apparent when larger blocks are used, as shown in Figure 6.2. In Figure 6.2, we have

used DTSVLIW machines with 16 instructions per long instruction and 16 long
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instructions per block (16x16-block geometry). With the 16x16-block geometry, the
performance is overall better with starting point at 1/2 than with starting point at 3/4
of the of the maximum block size. In addition, in Figure 6.2, the benchmarks
compress, ijpeg, and xlisp show clearly that there is a performance maximum when
the VLIW fetch starting point is near 1/2 of the block size.

We have performed several experiments to try to find a single rule for
computing the VLIW fetch starting point that could be used for all block geometries
without causing significant performance loss in cases where the rule does not
perfectly fit. We have found that a starting point at 1/2 + 1 of the block size offers a
good trade off for large and small block sizes. Figure 6.3 shows the performance of
DTSVLIWs with 8x8-block geometry and 16x16-block geometry and two different
starting point rules for each block geometry: the new 1/2 + 1 rule and the best rules
previously used in the experiments of Figure 6.1 and Figure 6.2. As the graph in
Figure 6.3 shows, the 1/2 + 1 rule produces slightly inferior performance (1.8%) than
the 3/4 rule for the 8x8-block geometry — harmonic mean of 3.22 (3.31 u.a.m. (see
Section 5.4)) IPC versus harmonic mean of 3.28 (3.24 u.a.m.) IPC. On the other
hand, for the 16x16-block geometry, the 1/2 + 1 rule produces significantly better
performance (4.6%) than the 3/4 rule — 4.29 (4.53 u.a.m.) IPC versus 4.10 (4.28
u.a.m.) IPC. Thus, in the face of these results, we have chosen to configure the
DTSVLIW to start fetching from the VLIW Cache at 1/2 + 1 of the maximum block
size in the remained experiments discussed in this thesis. It does not mean that we
believe that 1/2 + 1 rule should be used for all DTSVLIW implementations, but only
that it is an approximation of the optimal rule. In a silicon implementation, a larger
set of experiments must be made, with block geometry and other machine parameters

set, in order to determine the adequate VLIW fetch stating point.
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Figure 6.1: Variation of parallelism with VLIW fetch starting point: 8x8-block
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Figure 6.2: Variation of parallelism with VLIW fetch starting point: 16x16-block
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Figure 6.3: Variation of parallelism with VLIW fetch starting point: 8x8-block and 16xl6-block
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6.1.2 Block Size and Geometry

Figure 6.4 shows the effect of the block size (in number of instructions) and block
geometry (instructions per long instruction (width) versus long instructions per block
(height)) on the DTSVLIW performance. To ensure the absence of extraneous
effects, we have used the same experimental set-up of the previous section to
produce the results shown in Figure 6.4: perfect instruction and data caches (no miss
penalty), large VLIW Cache (3072-Kbyte), and no next long instruction miss penalty.
The numbers in the figure’s legend are instructions per long instruction and long
instructions per block, respectively.

As the graph in Figure 6.4 shows, the performance of machines with the same
block sizes and different geometries is significantly different. For example, the
performance of the machine with 4x8-block geometry is lower than the machine with
8x4-block geometry for all benchmark programs. The block width and height affect
the cost of implementing a DTSVLIW machine in different ways. Large long
instructions imply many functional units, Data Cache ports, and register file ports. A
large number of long instructions in a block implies many renaming registers, and
long load/store and checkpoint recovery store lists (see Section 4.7 and Section 4.8).
To increase just the width or just the height of the block does not appear to be the
best approach to achieve cost/effective performance — a DTSVLIW with 8x8-block
geometry performs better than machines with 4x16-block geometry and 16x4-block
geometry in the majority of the SPECint95 benchmarks. The DTSVLIW benefits
from large block sizes but not linearly. A 16-fold increase in the number of
instructions of a block (from 4x4 to 16x16) does not quite double its performance.

The performance of the 16x16 configuration on the ijpeg benchmark is
extraordinary and has been investigated. This benchmark spends most of its
execution in one loop. With a large enough block size, more than one iteration of the
loop can be scheduled into a single block, allowing instructions from these iterations
to be overlapped, extracting much greater parallelism. (In Figure 4.2, instruction 5 of

the second loop iteration overlaps with instructions of the first.)
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Figure 6.4: Variation of parallelism with block size and geometry

6.1.3 VLIW Cache Size

The results of Figure 6.4 represent the highest achievable SPECint95 performance of
the DTSVLIW for the block sizes shown. However, when the VLIW Cache is
smaller, the performance is expected to be lower due to premature flushing of useful
scheduled blocks by replacement blocks, leading to the need to rebuild the blocks
flushed. This requires the Primary Processor to run, reducing parallelism.

Figure 6.5 shows the impact of different VLIW Cache sizes (in Kbytes, the
directory information is not included) on the performance of a DTSVLIW machine
with 8x8-block geometry. The associativity is the same for all sizes and equal to 4.
As the graph shows, some benchmark programs do not demand a large VLIW Cache
in order to exploit the performance of the DTSVLIW. The benchmarks compress,
ijpeg, and xlisp have small instruction working set [Chamey97] and are insensitive to
the VLIW Cache size, achieving the same performance for the range of sizes used.
However, go, which has a large working set [Chamey97], would appear to benefit
from a VLIW Cache larger than 3072-Kbyte.

Some benchmarks sometimes show better performances with smaller VLIW
Caches, as for example compress for the 48-Kbyte and 96-Kbyte run, and xlisp for
the 96-Kbyte run. This happens because, with a small VLIW Cache, sometimes
blocks have to be replaced and later rescheduled, and the newer block versions

contain traces that are more frequently executed to the end than the replaced blocks.
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Figure 6.5: Variation of the parallelism with VLIW Cache size

6.1.4 VLIW Cache Associativity

Figure 6.6 shows the effect of the VLIW Cache associativity on the performance of
the DTSVLIW. Two cache sizes are presented: 96-Kbyte and 384-Kbyte, and the
associativity is varied from 1 to 8. The figure shows that ijpeg is insensitive to the
VLIW Cache associativity in this range; however, m88ksim, peri, xlisp, and
compress (for the 96-Kbyte cache) benefit from extra associativity. From Figure 6.5
and Figure 6.6 it is possible to infer that a two- or four-way set-associative 384-Kbyte
VLIW Cache offers a cost-effective solution for a DTSVLIW machine with 8x8-
block geometry.
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Figure 6.6: Variation of parallelism with VLIW Cache associativity

6.1.5 Instruction Cache Size

Figure 6.7 shows the effect of the Instruction Cache on the perfonnance of a

DTSVLIW machine with a 3072-Kbyte VLIW Cache. Five Instruction Cache
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configurations with increasing implementation costs amnd access times are presented:
256-byte fully associative, 1-Kbyte 2-way set associative, 4-Kbyte direct mapped, 16-
Kbyte direct mapped, and perfect (no miss penalty). The line size for all
configurations is 64-byte (16 instructions) and the miss penalty is 8 cycles (except for
the perfect configuration, of course). The 256-byte fullly associative configuration has
only four lines (256/64); therefore, it should not have an access time longer than the
1-Kbyte configuration.

As the graph in Figure 6.7 shows, the impact of Instruction Cache misses on
the performance of a DTSVLIW machine with a large VLIW Cache is negligible.
The performance loss, when compared with a perfect Instruction Cache, of the
smallest configuration is only more than 1% (1.54%) for gcc. However, a 3072-
Kbyte VLIW Cache is hardly implementable in an efficient way with current
technology and, with small VLIW Caches, the Instruction Cache may be more
important for the overall DTSVLIW performance.

Figure 6.8 shows the effect of the Instruction ‘Cache on the performance of a
DTSVLIW machine with a 192-Kbyte VLIW Cache. Five Instruction Cache
configurations, similar to those used in previous experiment, are presented. These
are: 512-byte fully associative, 1-Kbyte 4-way set associative, 8-Kbyte 2-way set
associative, 32-Kbyte direct mapped, and perfect (no miss penalty). The line size and
the miss penalty for all configurations are the same as in the previous experiment: 64-
byte and 8 cycles, respectively.

As shown in Figure 6.8, the same benchmarks that are sensitive to the VLIW
Cache capacity (see Figure 6.5 and Figure 6.6) are also sensitive to the Instruction
Cache capacity. These benchmarks, namely gec, go, perl, and vortex, have an
instruction working set of significant size [Charney97] and, therefore, require large
caches for instructions.

From Figure 6.8 is possible to see that, if the WLIW Cache is not large enough,
a significant number of blocks may have to be rescheduled. If the instructions that are
necessary to build these blocks are not in the Instruction Cache due to lack of
capacity, misses will occur and the overall machine performance will be affected. On
the other hand, Figure 6.7 shows that, if the VLIW Cache is large enough, the

Instruction Cache can be substituted for a simple instruction buffer.
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Figure 6.7: Variation of parallelism with different Instruction Cache configurations:
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Figure 6.8: Variation of parallelism with different Instruction Cache configurations:
192-Kbvte VLIW Cache

6.1.6 Multicycle Instructions Latency

The Sparc 7 ISA does not have integer divide or multiply instructions, but only a
multiply-step instruction that executes in a single cycle [Sun87]. Therefore, from the
set of integer instructions, only loads and stores require more than one cycle to
execute in this ISA.

The graph in Figure 6.9 shows the effect of the load/store instructions latency
on the performance of the DTSVLIW with 8x8-block geometry. In the figure’s
legend, LxSy stands for load instructions with latency ofv and store instructions with
latency of y. In these results, we express the latency as the number of cycles
necessary for the load/store execution and the functional units of the VLIW Engine
are fully pipelined.

As the graph in the figure shows, the latency of load instructions has a severe
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impact in the DTSVLIW performance —25.9% (25.3% u.a.m.) performance loss with
2-cycle and 50.7% (50.2% u.a.m.) with 3-cycle load latency. This occurs because
load instructions are frequent in integer code and loaded data is usually required
shortly after the load instructions. On the other hand, the latency of store instructions
does not have a strong impact on the DTSVLIW performance. Store instructions are
also frequent in integer code; however, the stored data is often not required again for
a relatively large number of instructions.

The graph in Figure 6.10 shows the impact of load/store latency on the
performance of a DTSVLIW machine with 8x16-block geometry. The impact is
smaller with this geometry — 20.6% (20.4% u.a.m.) performance loss with 2-cycle
load latency and 43.1% (42.7% u.a.m.) with 3-cycle load latency on average. With a
longer block, the Scheduler Unit has more opportunities to accommodate instructions
in the empty long instructions created by the scheduling of multicycle loads. This
results in better scheduling and better performance, but the latency impact is still high
and there are costs for using long blocks (see Subsection 6.1.2).

As mentioned in Subsection 4.1.8, the Primary Processor does not pipeline
multicycle instructions but retains them on its execute pipeline stage until they
complete execution. Table 6.1 presents the percentage of cycles the DTSVLIW
spends waiting for these multicycle instructions to complete in the Primary
Processor. As the table shows, the cost of waiting in the Primary Processor is very
small and it is not an issue in the impact of the load/store latency on the DTSVLIW
performance. Table 6.1 also presents the percentage of VLIW execution cycles for
the DTSVLIW with 8x16-block geometry. This machine configuration executes
98.56% (98.57% u.a.m.) of the cycles in VLIW mode on average. This strongly
suggests that the DTSVLIW architecture is effective in taking advantage of its VLIW
Engine.

There are two simple approaches for reducing the impact of the load instruction
latency on the DTSVLIW performance. The first is always to implement loads with
1-cycle latency. This would, in some cases, almost double the DTSVLIW clock cycle
length and, therefore, it may not be a cost-effective alternative. The second is to
implement loads with 1-cycle latency and to use a small and fast Data Cache (8-

Kbyte direct mapped, for example). This would increase the Data Cache miss rate,
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but it may be a more cost-effective alternative. Another approach to further reduce
the impact of loads on the DTSVLIW performance is to use hardware- or software-
implemented data prefetching [VanderWiel97]. This approach can also be used

together with one ofthe former approaches.
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Figure 6.9: Variation of the parallelism with load/store instructions latency —8x8-block
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Figure 6.10: Variation of the parallelism with load/store instructions latency —8x16-block

Table 6.1: Percentage of cycles waiting load/store latency in the Primary Processor and
percentage of VLIW execution cycles

compress gce g0 ‘jpeg  m88ksim peri vortex xlisp H. Mean A. Mean
Waiting Cycles (8x8) 0.14% 0.11%  0.08%  0.00% 0.01% 0.01% 0.03% 0.01% 0.00% 0.05%
Waiting Cycles (8x16) 0.1 1% 0.18%  0.21%  0.00% 0.01% 0.02%  0.05%  0.02% 0.01% 0.08%
VLIW Cycles (8x16) 97.97%  98.20% 97.49% 99.98% 99.87% 96.37% 98.89% 99.80%  98.56%  98.57%



6.1.7 A Feasible DTSVLIW Machine Configuration

So far, the results presented have been produced under ideal assumptions to allow

appreciation of individual architecture parameters. However, the DTSVLIW

architecture permits straightforward implementation using current VLSI technology

if reasonable design parameters are used. The graph in Figure 6.11 presents the

performance of a DTSVLIW machine with a set of parameters that permits

implementation using available technology. These parameters are:

Blocks with 16 long instructions and 8 instructions per long instruction.

12-wide VLIW Engine, with typed (specialised) functional units and 2-cycle next
long instruction miss penalty. The functional units used are: 5 integer, 3
load/store, 2 floating-point, and 2 branch functional units. Although this VLIW
Engine has twelve functional units, the VLIW fetch is 8-instruction wide because
the block is 8-instruction wide. This is the main reason why we are using 2-cycle
next long instruction miss penalty. One extra cycle has been added to the VLIW
Engine pipeline to allow the unpacking of 8-instruction wide long instructions,
which are fetched from the VLIW Cache, into the 12-instruction wide long
instructions required by VLIW Engine. The Scheduler Unit is conscious of the
number of functional units available and schedules the 8-instruction wide long
instructions respecting their availability per cycle.

2-cycle latency load instructions and 1-cycle latency store, integer (the Sparc 7
ISA does not have integer divide or multiply but only multiply-step, which can
execute in one cycle), branch, and floating-point instructions. Latency of one
cycle is a low latency for floating-point instructions; nevertheless, this latency has
been used because the benchmarks are integer and, therefore, the number of
floating-point instructions executed is zero or negligible.

192-Kbyte 4-way set-associative VLIW Cache with 2-cycle fully pipelined
access.

8-Kbyte 2-way set-associative Instruction Cache with 1-cycle access and 8-cycle
miss penalty.

32-Kbyte 2-way set-associative Data Cache with 2-cycle fully pipelined access
and 8-cycle miss penalty.

Perfect (pre-initialised with all instructions and data) unified second level cache.
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The number of entries of the VLIW Engine lists (load, store, and checkpoint
recovery store) and the number of renaming registers has been left unlimited.
However, the maximum number of entries required for these lists and the maximum
number of renaming registers used during the simulation have been measured and are
shown in Table 6.3.

Figure 6.11 puts together, in form of stacked bars, the result of various
simulations to allow appreciation of the impact of various architectural parameters in
the performance of this DTSVLIW machine. The first bar is the performance of the
DTSVLIW with the parameters presented. The following bars represent the extra
performance that would be added if the corresponding cost (shown in the legend) was
removed. Table 6.2 shows these costs as percentages of the maximum performance,
together with other relevant information. Some items in this table do not have
harmonic mean because it cannot be computed when the list of values contains zeros.

As the graph in Figure 6.11 and in Table 6.2 show, the load instruction latency
is the principal contributor to the reduction of this DTSVLIW machine performance,
and its cost is significant for all benchmark programs used. On the other hand, the
second most important parameter that affects the machine performance — the VLIW
Cache size — has a significant impact only on the gcc, go, and vortex benchmarks. It
1s important to note, however, that, although large, this VLIW Cache can hold only
256 blocks and only 35% (36% u.a.m.) of the instructions saved in these blocks
during the simulations have been valid (Table 6.2, last row). Therefore, if nop
instructions had not been saved in the VLIW Cache, its capacity would have been
better used and the performance of gcc, go, and vortex would have been significantly
better. In addition, if the VLIW Cache capacity had been better used, the Instruction
Cache could have been even smaller than described. Instruction Cache misses cause
significant performance losses only for gcc, go, and vortex and, as discussed in
Subsection 6.1.5, if the VLIW Cache capacity is large enough, the size of the
Instruction Cache can be smaller than the size used.

Next long instruction misses have a small, although significant, impact on the
machine performance. If nop instructions were not saved in the VLIW Cache, a more
elaborated VLIW fetch would be required, which would result in the need for the

next long instruction miss penalty to be even higher than 2-cycle. However, the next
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long instruction address can be predicted and the number of misses reduced using
techniques similar to those used in dynamic branch prediction.

The impact of using typed (specialised) as opposed to untyped functional units
(capable of executing all instructions) is also small. This means that, the combination
of specialised functional units used is in good balance with the ILP available in the
benchmarks.

Table 6.3 shows that the number of renaming registers required for execution
are within a range that does not cause significant cycle time increase due to register
file size. The VLIW Engine lists (load, store, and checkpoint recovery store) do not
reach unacceptable sizes either, and they can be implemented without imposing extra
penalty on the cycle time. However, since the number of aliasing exceptions is low
(Table 6.2), a cheaper aliasing exception detection and recovery mechanism is
advisable.

A performance of 1.89 (2.01 u.a.m.) instructions per cycle in a machine with 12
functional units seems to be low. However, experiments with the PowerPC620, an
aggressive Superscalar machine with 6 functional units, have shown an average
(arithmetic mean) of 1.2 instructions per cycle only [Patterson96 (page 341)]. Taking
into consideration that DTSVLIW machines can be implemented with clock speed
higher than equivalent Superscalar machines such as the PowerPC620, it appears to
be worth implementing DTSVLIW machines with current technology. Simple
machines with fast clocks have proved to be more powerful than their more complex
counterparts [Smith JE94]. In addition, DTSVLIW machines using equivalent

hardware can perform better than Superscalars (see Section 6.5).
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Figure 6.11: Performance of a feasible DTSVLIW machine

Table 6.2: Performance data of a feasible DTSVLIW machine

compress gee g0 'jpeg m88ksim peri vortex xlisp H.Mean A.Mean
Instructions per Cycle 2.07 1.33 1.31 2.77 2.56 2.17 1.92 1.98 1.89 2.01
Load Latency Cost 15.64% 8.16% 9.22%  20.47% 15.53% 31.67% 13.26% 27.32% 14.50% 17.66%
VLIW Cache Cost 0.00% 33.27% 29.64%  0.00% 0.01% 0.00% 20.26% 1.31% - 10.56%
Data Cache Cost 19.24% 3.39% 3.30% 1.38% 0.98% 0.18% 5.69% 3.58% 0.95% 4.72%
Next LI Miss Cost 5.37% 2.23% 3.38% 0.03% 5.84% 5.49% 2.74% 6.72% 0.22% 3.97%
Tvped F.U. Cost 0.00% 4.48% 4.34% 3.98% 1.96% 1.97% 1.51% 5.43% - 2.96%
Instruction Cache Cost 0.01% 7.81% 4.92% 0.01% 0.23% 0.95% 5.17% 0.05% 0.02% 2.39%
Aliasing Exceptions 0 4 39 0 1 0 1 0 - 5.63
VLIW Engine Execution Cycles 96.43% 53.42% 60.47% 99.97% 98.47% 86.56% 73.58% 99.09% 79.19% 83.50%
Valid Instructions per Block 25.18% 39.25% 35.15% 38.95% 36.44% 41.05°, 44.96% 30.35% 35.35% 36.42%

Table 6.3: Resource consumption of a feasible DTSVLIW machine

compress gee ijpeg m88ksim peri vortex xlisp H.Mean A.Mean
Integer Renaming Registers 33 49 44 24 38 33 39 28 34.32 36.00
Flag Renaming Registers 17 20 17 15 18 21 18 17 17.70 17.88
Memory Renaming Registers 14 14 8 7 1 8 15 8 9.78 10.63
Load List Size 10 15 16 7 10 11 12 10 10.72 11.38
Store List Size 32 15 32 5 13 12 23 14 13.24 18.25
Checkpoint Rec. Store List Size 48 34 48 11 20 31 39 25 25.82 32.00

6.2 Effectiveness of the DTSVLIW Scheduling Algorithm

The scheduling algorithm used in the DTSVLIW architecture and the Greedy
algorithm used in the DIF [Nair97] architecture are subsets of the FCFS algorithm
[Davidson81], described in Section 3.1; i.e., they are simplifications of the FCFS
algorithm. The difference between the Greedy and the FCFS algorithms is that the
Greedy algorithm does not implement step 3 of FCFS (see Page 58). That is, the
Greedy algorithm never adds long instructions at the top of the scheduling list but

only at the bottom. The DTSVLIW algorithm does not add instructions at the top
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either and, in addition, only moves up an instruction if there is a slot available in the
next long instruction in the list. The FCFS and the Greedy algorithms, on the other
hand, can move up an instruction to any available slot in the list, from the next long
instruction to the top.

In this section, we evaluate the effectiveness of the DTSVLIW scheduling
algorithm by comparing its performance with that of FCFS and Greedy algorithms.
To perform the comparisons, we have modified our DTSVLIW simulator to make it
able to use the FCFS and Greedy algorithms and have performed experiments using
the SPECint95 benchmark suite.

6.2.1 Evaluation of the Performance of the DTSVLIW, Greedy, and

FCFS Scheduling Algorithms — Untyped Functional Units
In order to compare the three scheduling algorithms, we have chosen to use three
different block geometries: 4x4, 8x8, and 16x16. To ensure the absence of
extraneous effects and identical conditions, the experiments were performed with
perfect instruction and data caches (no miss penalty), large VLIW Cache (3072-
Kbyte), instruction latencies of 1 cycle, and no next long instruction miss penalty.
The DTSVLIW renaming mechanism was used in all algorithms.

As shown in Figure 6.12, all three scheduling algorithms perform very
similarly, although the DTSVLIW algorithm achieves marginally inferior results in
most cases. This is to be expected as it is possible for instructions to be blocked from
moving up the scheduling list by full long instructions at some interior position of the
list. This prevents empty instruction slots at higher list positions from being filled,
which reduces the code density in the block and limits the achievable parallelism.
Blocking in this fashion does not occur for the other two algorithms. However, the
DTSVLIW algorithm is expected to provide a much more feasible and faster
implementation, and the results in Figure 6.12 demonstrate that its use should not
significantly prejudice the architecture. In some cases, our simplified algorithm does
as well as and even outperforms the other algorithms. This is markedly so for the
16x16-ijpeg run, but it is also seen in the 16x16-m88ksim run.

The full FCFS is as good as or better than the Greedy algorithm for the 16x16
runs, but is outperformed by the Greedy algorithm for the smaller geometries,
particularly for the 4x4 runs. This happens because, in some cases, the extra long
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instruction added at the top of the block by the FCFS algorithm cannot be filled by
subsequent instructions as these have dependencies with instructions in the middle of
the block. These instructions when added to the end of the block cause the block to
be filled and flushed to the VLIW Cache with the first long instruction only partially
filled, reducing the code density and the achievable parallelism. The Greedy
algorithm does not add the new long instruction at the top of the block allowing for
another one at the end of the block that must be more effectively filled despite the
dependencies caused by instructions added to it. Increasing the number of long
instructions in the block and the width of these long instructions reduces the resource
blocking of instructions and allows more instructions to be added by the FCFS
algorithm after resource blocking occurs. This gives more opportunity for the added

front long instruction to be filled.
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Figure 6.12: Performance of the DTSVLIW, Greedy, and FCFS algorithms —untyped F.U.

6.2.2 Evaluation of the Performance of the DTSVLIW, Greedy, and
FCFS Scheduling Algorithms— Typed Functional Units

The simulations described in this section so far assume that all functional units can
execute all instructions; i.e., the functional units are untyped. However, machines
using typed functional units are more likely scenarios in real implementations. In
order to evaluate the impact of typed functional units in the performance of the
scheduling algorithms, we have performed experiments using three machine
configurations:

1. 5x4 —with 2 integer, 1 load/store, 1 floating-point, and 1 branch functional units

in the VLIW Engine, and a 4 long instructions long block
124



7 10x8 — with twice the number of functional units and twice the number of long
instructions of the previous configuration

3. 20x16 — with four times the number of functional units and four times the
number of long instructions of the 5x4 configuration

The results we have obtained with these three machine configurations are presented

in graph form in Figure 6.13 and summarised in Table 6.4, Table 6.5, and Table 6.6.

As a comparison between the graphs in Figure 6.12 and Figure 6.13 shows, the
use of typed functional units causes significant performance loss, even though the
typed configurations have 25% more instruction slots in each long instruction than
the similar untyped ones. However, a small increase in the number of functional units
might significantly reduce this performance loss. For example, in the DTSVLIW
machine configuration described in Subsection 6.1.7, the performance loss due to the
use of typed functional units is small, even though that configuration has only 2
functional units more than the 10x8 configuration. Nevertheless, we have chosen the
number of functional units in the typed configurations described in this subsection
with the specific purpose of stressing any existing differences between the
algorithms’ performance. As summarised in Table 6.4, Table 6.5, and Table 6.6, the
5x4 configuration achieves from 77% (77% u.a.m.) to 79% (79% u.a.m.) of the
untyped 4x4 average performance for the three algorithms, while 10x8 configuration
achieves from 81% (81% u.am.) to 85% (85% u.a.m.) of the untyped 8x8
performance, and the 20x16 achieves from 85% (83% u.a.m.) to 90% (89% u.a.m.) of
the untyped 16x16 performance.

The relative performance of the three algorithms did not change much from
machines with untyped to machines with typed functional units. In Table 6.4, Table
6.5, and Table 6.6, the last two columns contain the average performance of each
algorithm as a percentage of that of the FCFS algorithm. As the tables show, the
performances of the DTSVLIW and Greedy algorithms as percentage of the FCFS
algorithm vary from 93% (92% u.a.m.) to 105% (106% u.a.m.) percent for
configurations with untyped functional units, and from 95% (96% u.a.m.) to 102%
(102% wu.a.m.) for typed configurations. That is, the DTSVLIW and Greedy
algorithms have presented performances closer to the FCFS with typed functional
units. This shows that, for the range of configurations used, the DTSVLIW algorithm
performs almost as well as the more complex Greedy and FCFS algorithms.
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Figure 6.13: Performance of the DTSVLIW, Greedy, and FCFS algorithms —typed F.U.

fable 6.4: Summary of the results —4x4 & 5x4 machine configurations

IPC —H.Mecin (A.Mean)

4x4 5x4
DTSVLIW 2.33 (2.35) 1.80(1.80)
GREEDY 2.39 (2.41) 1.82 (1.83)
FCFS 2.27 (2.28) 1.79 (1.80)

Relative Performance —H. Mean (A.Mean)
Algorithm /FCFS

5x4/ 4x4 4x4 5x4

77% (77%) 103% (103%) 100% (100%)

76% (76%) 105% (106%) 102% (102%)

79% (79%) 100% (100%) 100% (100%)

Table 6.5: Summary of Che results —8x8 & 10x8 machine configurations

IPC - H.Mean (A.Mean))

8x8 10x8
DTSVLIW 3.22 (3.24) 2.75(2.77)
GREEDY 3.48 (3.55) 2.88(2.91)
FCFS 3.47 (3.53) 2.82 (2.85)

Relative Performance —H.Mean (A.Mean)
Algorithm | FCFS
10x8/8x8 8x8 10x8
85% (85%) 93% (92%) 97% (97%)
83% (82%) 100% (100%) 102% (102%)
81% (81%) 100% (100%) 100% (100%)

Table 6.6: Summary of the results —16x16 & 20x16 machine configurations

IPC—H.Mean (A.Mean))

16x16 20x16
DTSVLIW 4.29 (4.53)  3.68 (3.77)
GREEDY 4.28 (4.40) 3.87 (3.94)
FCFS 4.29(4.41)  3.86 (3.93)

6.3 DTSVLIW versus DIF

Relative Performance - H.Mean (A.Mean)
Algorithm / FCFS
16x16 20x16
100% (103%) 95% (96%)
100% (100%) 100% (100%)
100% (100%) 100% (100%)

20x16/16x16
86% (83%)
90% (89%)
90% (89%)

An important difference between the DTSVLIW and the DIF scheduling algorithms

is the register renaming mechanism. The DTSVLIW uses copy instructions for

renaming, with the disadvantage that the slots used by them cannot be used for other

instructions. The DIF, on the other hand, has several extra instances of each ISA
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register, with the disadvantage of requiring large register files if the renaming of the
same register is to be allowed many times within the same block.

In the experiments described so far, we have used the DTSVLIW renaming
mechanism, since we wanted to compare the algorithms under identical conditions.
In order to compare the DTSVLIW with the DIF, we have fully implemented the DIF
scheduling algorithm in our simulator and have run experiments with DIF machine
configurations and equivalent DTSVLIW configurations. We have used four
instances of each integer and floating-point register in the DIF simulations, which
corresponds to 96 integer and 96 floating-point renaming registers, and 32 instances
of each integer and floating-point Sparc condition register. The same number of
renaming registers was given to the DTSVLIW, but it has never used any of them to
the full during the simulations. We have set the DTSVLIW’s VLIW Cache size at
3072-Kbyte, while the DIF’s VLIW cache size has been set at a value that allows the
same number of blocks of the equivalent DTSVLIW machine configuration. (For
VLIW caches with equivalent number of blocks, the DIF’s VLIW cache requires
more bytes than the DTSVLIW’s VLIW Cache does due to the DIF’s exit maps. See
Section 4.10.) The results are shown in Figure 6.14 and Figure 6.15.

As the graph in Figure 6.14 shows, the DIF outperforms the DTSVLIW in all
benchmarks with the 4x4 configuration. However, with the 8x8 configuration, the
DTSVLIW outperforms DIF in the compress, gcc, go, and mk88sim. With the 16x16
configuration, the DTSVLIW outperforms DIF in all benchmarks by a large margin.
This happens because, for larger configurations, renaming is more frequent and four
instances of each integer and floating-point register, as used in the DIF, is not
enough. With typed functional units, the DTSVLIW advantage is smaller, as shown
in Figure 6.15. In this case, the DTSVLIW is outperformed by DIF in all benchmarks
for the 5x4 and 10x8 configurations, although not by a large margin. However, for
the 20x16 configuration, the DTSVLIW outperforms DIF in all benchmarks by a
significant margin. One can infer that a DIF implementation with sufficient instances
of each register would always outperform the DTSVLIW. However, it is not practical
to implement machines with more than a few instances per ISA register. The number
of register read and write ports grows with the number of functional units, so a large

multiported register file would render the machine clock rate too slow.
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Figure 6.16 shows a comparison between a DTSVLIW and a DIF machine
using more realistic parameters. The performance data of the DIF machine and the
parameters used for both machines have been collected from [Nair97]. The
parameters were: 2 branch units plus four untyped functional units; 2-way set-
associative Instruction Cache with 128-byte lines, 16 lines per set (4-Kbyte), and 2
cycle miss penalty; direct-mapped Data Cache with 128 lines each of length 32 bytes
(4-Kbyte), and a 2-cycle miss penalty, 2-way set associative VLIW Cache with
512x2 blocks; and a block size of 6 long instructions of 6 instructions each.

From this data and assuming an instruction size of 6 bytes for both machines,
the DTSVLIW VLIW Cache size is 216-Kbyte and the DIF VLIW cache size 463-
Kbyte. The DIF VLIW cache is larger due to the DIF register renaming system. For
each block exit point, the DIF machine requires 19 bytes for the exit map [Nair97].
The number of renaming registers is different for the same reason. Four instances of
each integer and floating-point register were required in the DIF simulation; i.e., 96
integer and 96 floating-point extra registers for renaming, while the maximum
number of integer and floating-point renaming registers required in the DTSVLIW
simulation was 18 and 6, respectively.

As can be seen in Figure 6.16, the average performance of the two machines is
similar: 2.4 (2.4 u.a.m.) instructions per cycle for the DTSVLIW and 2.2 (2.2 u.a.m.)
for the DIF, a difference of approximately 10% (10% u.a.m.) in favour of DTSVLIW.
However, the DTSVLIW achieves this performance with fewer resources. DIF
performs better in compress and xlisp, while DTSVLIW performs better in the

remaining benchmarks.
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Figure 6.14: DTSVLIW versus DIF: untyped functional units
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Figure 6.15: DTSVLIW versus DIF: typed functional units
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Figure 6.16: DTSVLIW versus DIF: more realistic models
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6.4 DTSVLIW versus VLIW

The VLIW research group at IBM is a leading group on VLIW compiler and
architecture technologies. In [Moreno97] they have presented experimental
performance results of various VLIW configurations using a powerful VLIW
compiler named Chameleon. Chameleon has an aggressive suite of optimisations,
including a complete set of traditional optimisations plus several ILP-increasing
optimisations such as loop unrolling, if-conversion (predication), and instruction
hoisting.

In Figure 6.17, we show the performance figures for programs from the
SPECint92 and SPECint95 running in two VLIW configurations described in
[Moreno97] and [Moudgill96] executing code compiled by Chameleon, and in two
DTSVLIW configurations. The benchmarks m88ksim and go are from SPECint95
while the others are from the SPECint92. One VLIW configuration used in the IBM’s
experiments has been set with § untyped functional units and the other has been set
with 16. The instruction latencies have been set at l-cycle for integer (including
load/store), 3-cycle for integer multiply, 10-cycle for integer divide, and 3-cycle for
floating-point instructions. The number of added registers for renaming has been 64-
integer, 64-floating-point, and 16-condition in the 8-wide configuration, and 128-
integer, 128-floating-point, and 32-condition in the 16-wide configuration. The
experiments have been performed with perfect instruction and the data caches (no
miss penalty).

We have configured the two DTSVLIW machines with parameters identical or
equivalent to those used in the two IBM VLIW machines. One DTSVLIW
configuration used in our experiments has been set with an 8x8-block and the other
has been set with a 16x16-block, both with untyped functional units. The instruction
latencies have been all set at 1-cycle, which is a value lower than that used in the
IBM’s experiments for integer multiply, integer divide, and floating-point
instructions. However, the Sparc 7 ISA does not have integer multiply or divide
instructions but only multiply-step, which can execute in one cycle. Since the
benchmarks are all integers, the number of floating-point instructions executed is
negligible; therefore, the different latencies used for floating-point instructions do not

constitute a problem. The number of renaming registers used during the DTSVLIW
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simulations has never exceeded the number used in the IBM’s simulations in any
combination of benchmark program and machine configuration. Our experiments
have also been performed with perfect instruction and the data caches.

As the graph in Figure 6.17 shows, the VLIW outperforms the DTSVLIW in
compress and eqntott by a large margin. However, for gcc, go, m88ksim, and xlisp
the DTSVLIW has consistent better performance for both machine configurations
shown. These results demonstrate that, in most cases, the DTSVLIW algorithm is
able to find more parallelism than a state-of-the-art VLIW compiler under similar
conditions. This is possible because the DTSVLIW scheduling algorithm has access
to dynamic information not available to the VLIW compiler. We believe that, a
conjunction of the DTSVLIW architecture and compiler technology such as loop
unrolling, software pipeline, and predication (if added to the DTSVLW ISA) would
perform even better than shown, in particular with compress and eqntott. Published
results coiToborate this view, showing that the use of such optimisations does
significantly improve performance, in particular the use of predication in the eqntott
and compress benchmarks [August98]. Other compiler techniques could also be

developed specifically for the DTSVLIW architecture.
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Figure 6.17: DTSVLIW versus VLIW

6.5 DTSVLIW versus Superscalar

The graph in Figure 6.18 shows a comparison between the performance of the

Superscalar processor PowerPC620, as described in [Diep95], and a DTSVLIW
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machine using equivalent hardware. The PowerPC620 performance figures have
been taken from [Diep95], and the parameters used there are:
e 4-instruction wide fetch, dispatch, complete, and writeback pipeline stages
e l-cycle integer, 2-cycle load, and 3-cycle floating-point instruction latency
e 3 integer, 1 load/store, 1 floating-point, and 1 branch functional units, with 2,
3, 2, and 4 reservation stations for the functional units of each kind (a total of
15 reservation stations), respectively
e 32-Kbyte, 8-way set associative instruction and data L1 caches, with 8-cycle
miss penalty (a perfect unified L2 cache was assumed)
e branch predictor with a 256-entry 2-way BTB and a 2048-entry (2-bit
counters) direct mapped BHT
The DTSVLIW has been configured with a 4x8 block and functional units of
the same type, in the same number, and with same latency of the PowerPC620. The
only exception has been the latency of the floating-point functional unit, whose
latency has been set to 1-cycle. This does not constitute a problem because the
benchmarks are integer and, therefore, the number of floating-point instructions
executed is zero or negligible. Although six functional units are available in the
VLIW Engine with this machine configuration, we have used 4-instruction wide long
instructions in the DTSVLIW to allow the same dispatch width for both machines.
An extra dispatch pipeline stage was added to the VLIW Engine pipeline to account
for the logic necessary to unpack the long instructions coming from the VLIW Cache
and to issue them to the appropriate functional units. A branch predictor with the
same characteristics of the PowerPC620’s has been used to try to reduce the extra
cost added to next long instruction misses by this dispatch stage. An 8-Kbyte, 8-way
set associative instruction cache, and a 24-Kbyte, 8-way set associative VLIW Cache
have been used. These sizes have been chosen to make this pair equivalent to the
instruction cache of the PowerPC620. The DTSVLIW’s Data Cache has been
configured with the same characteristics of the PowerPC620’s. In this simulation, the
DTSVLIW has been allowed to execute approximately the same number of
instructions executed in the PowerPC620 simulation described in [Diep95]. The
number of instructions executed is shown in Table 6.7.

As Figure 6.18 shows, the performance of the two machines is comparable,
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although the DTSVLIW performance is better overall. This is so because the
scheduling list of the DTSVLIW is larger than the instruction window (all reservation
stations) of the PowerPC620, which allows more opportunities for finding ILP.
Although larger than instruction window of the PowerPC620 (15 instructions), the
scheduling list of the DTSVLIW (32 instructions) is simpler. The complexity of the
instruction window of the PowerPC620 is proportional to the number of reservation
stations times the number of functional units (15 * 6 = 80, see Subsection 2.1.2),
while the complexity of the scheduling list of the DTSVLIW is proportional to the
number of candidate instructions times the number of instructions per long
instruction (8 *4 = 32, see Section 4.6). Note that a DTSVLIW implementation is
likely to have a significantly higher clock rate than that of the PowerPC620, because,
different from the PowerPC620, the DTSVLIW scheduling hardware is not in its
main data path. In addition, due to the instruction fetch bandwidth problem of
Superscalar machines, described in the Subsection 3.4.1, the PowerPC620
performance in teims of ILP can be seen as a high-end performance for standard
Superscalar machines. The DTSVLIW described in this section, on the other hand, is
a low-end DTSVLIW and larger DTSVLIW configurations, such as that described in

Subsection 6.1.7, can be implemented with increasing performance returns.

Table 6.7: Number of instructions executed

Benchmark compress eqntott espresso xlisp
Instructions Executed 6,884,257 3,147,235 4,615,093 3,376,416

mDISVLIW m PowerPC

compress eqntott espresso xlisp

Benchmarks

Figure 6.18: DTSVLIW versus Po\verPC620
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Chapter 7

Discussion

An ISA is a contract between a class of programs and a set of processor
implementations [Rau93a]. Usually, this contract is concerned with the instructions
format and the interpretation of the bits that constitute each instruction. However, in
the case of systems that exploit ILP, this contract extends to information embedded in
the programs regarding the available parallelism between the instructions of the
programs. Special functions are performed by ILP exploiting systems in order to find
and take advantage of ILP, and different forms of ISA contract divide these functions
between the compiler and the hardware differently. These functions can be
summarised as follows:

¢ To determine dependencies between instructions.

e To determine independencies between instructions; i.e., to find out the
instructions that are independent of any instruction that has already been
assigned to execute but may have not yet completed.

e To bind resources; i.e., to schedule the independent instructions to execute
at some particular time on some specific functional unit, and to assign
registers into which the results of these instructions may be written.

Figure 7.1 (page 136) shows some forms of ISA contract for ILP exploiting systems.

Superscalar machines execute sequential ISA code and exploit ILP; therefore,

their hardware has to determine dependencies and independencies between several

instructions, and bind several instructions to resources at the same time, dynamically.
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The hardware for doing this is in the main data path of Superscalar machines.
Because of this, Superscalar machines with elaborate instruction scheduling hardware
have slower clocks than simpler Superscalar machines, and the latter may have a
better performance than the former due to their fast clocks [Smith JE94].

Superscalar and VLIW machines are at opposite extremes regarding ILP
exploitation. In standard VLIW systems, the compiler is responsible for all functions
that have to be performed in order to exploit ILP. This allows the VLIW hardware to
be simple and fast, but makes the VLIW ISA contract very restrictive. Developments
in compiler or hardware technology following a VLIW ISA specification may allow
for greater parallelism than that which can be expressed within this VLIW ISA
specification. To take advantage of these developments, the VLIW ISA may have to
be changed,; this creates the VLIW object code compatibility problem.

DTSVLIW machines execute sequential code, and their hardware, similar to
that of Superscalars, has to determine dependencies and independencies between
instructions and to bind instructions to resources dynamically. However, different
from Superscalars, DTSVLIW machines perform the functions related to ILP
exploitation with one instruction at a time, producing VLIW code that is cached and
thereafter executed many times. We have shown that a DTSVLIW machine performs
better than a Superscalar machine with equivalent hardware. We have also shown
that DTSVLIWSs perform better than VLIWSs with the same degree of parallelism.

In the rest of this chapter, we compare the DTSVLIW architecture with other
architectures that have sequential ISA contract and with promising architectures that

do not have sequential ISA contract.
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Figure 7.1: Different forms of ISA contract.

7.1 DTSVLIW versus Enhanced Superscalar
Architectures

The Fill Unit of Superscalar machines enhanced with a trace cache (Subsection 3.4.1)
is the equivalent to the Scheduler Unit of DTSVLIW machines. However, the
Scheduler Unit performs all functions necessary to ILP exploitation on a DTSVLIW
machine. In contrast, Superscalar machines implemented according to the standard
Trace Cache architecture use their Fill Unit only to ameliorate the fetch bottleneck
(Subsection 3.4.1). Nevertheless, the DTSVLIW and Trace Cache architectures can
be seen as members of the same family of architectures. They can be put in a scale of
how many ILP extraction functions are performed by their Scheduler Unit/Fill Unit
and how many of these functions are performed by their parallel execution-core.
Figure 7.2 shows such a scale and the positions of the DTSVLIW and Trace Cache
architectures.

Like standard VLIW and standard Superscalar, the DTSVLIW and Trace Cache
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architectures are at opposite extremes. As shown in Figure 7.2, the Trace Cache
architecture’s execution-core performs all ILP related functions, while the
DTSVLIW’s execution-core performs none. On the other hand, the DTSVLIW’s
Scheduler Unit performs all ILP related functions and the Trace Cache architecture’s
Fill Unit performs none.

One might argue that the DTSVLIW sequential execution during the
scheduling phase would strongly affect its performance. However, in the DTSVLIW
or in any architecture that always operate in parallel such as the Trace Cache, the first
time a fragment of code is executed it is likely to cause data and instruction cache
misses that will determine the performance during its execution. In addition, no
machine has dynamic branch behaviour information when fresh code fragments are
encountered, and the more parallel the machine the larger the effect of branch
mispredictions. Furthermore, our results show that most of the time the DTSVLIW is
executing code in VLIW-mode (Table 6.1) if the VLIW Cache is large enough to
hold pre-scheduled code. Results with the Trace Cache architecture also show that
the code can be found in the trace cache most of the time [Rotenberg97].

Real implementations usually distance themselves from standard architecture
definitions due to real world constraints. For example, in the DTSVLIW
configuration described in Subsection 6.1.7 and in the DTSVLIW configuration
compared with the PowerPC620 in Section 6.5, we have left to the execution-core
the task of dispatching the instructions to specific functional units. Researchers
working with the Trace Cache architecture have also suggested moving some ILP
related functions from the execution-core to the Fill Unit in order to allow
implementations with fast clock [Rotenberg97, Vajapeyam97, Friendly98]. Other
Superscalar enhancements such as value prediction [Fu98, Nakra99] and instruction
reuse (Subsection 3.4.2) may also be incorporated in both architectures.

Although future research may produce variants of the DTSVLIW and Trace
Cache architectures that are more closely together in the scales shown in Figure 7.2,
their pure definitions still represent useful models to understand the nature of the ILP
that can be exploited dynamically. Ultimately, the available VLSI technology and
design expertise will determine which of the two extremes represented by the

DTSVLIW and Trace Cache architectures will reach the marketplace. We believe,
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however, that a point close to the DTSVLIW’s in the scales of the Figure 7.2 is a
better option than one close to the Trace Cache’s. This view is corroborated by the
evolution of Alpha microprocessors. They implement the simplest RISC ISA (which
means simple execution-core) in the mass microprocessor market and are
“performance leaders since their introduction in 1992” [Kessler99] mainly, we

believe, due to their simple high-clock-speed-tailored implementation.

DTSVLIW Trace Cache

Scheduler Unit/Fill
ILP functions

Figure 7.2: Distribution of ILP related functions.

7.2 DTSVLIW versus Explicitly Parallel Instruction
Computing Architectures

The term Explicitly Parallel Instruction Computing (EPIC) was coined recently by
Intel and Hewlett Packard in their joint announcement of the LA-64 ISA
[Gwennap97]. EPIC ISAs require the compiler to determine the dependencies and the
independencies between instructions (Figure 7.1). However, the hardware interpreter
of an EPIC ISA is responsible for binding the independent instructions specified by
the compiler to the machine resources. This is in contrast with VLIW ISAs where the
compiler is responsible for determining dependencies and independencies, and also
for binding resources.

To my knowledge, Horizon [Thistle88] is the first EPIC architecture proposed.
Horizon is a multiprocessor where each processor executes EPIC code. The
architecture of each Horizon processor is VLIW and Multithreaded (the processors
switches execution context each clock cycle). Horizon long instructions are 3-
instructions long. Each of them has a look-ahead field that controls long instruction
execution overlap. The compiler specified look-ahead value for this field of each

long instruction, /a, indicates the number of subsequent long instructions that may be
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issued without the completion of this long instruction. The compiler guarantees that
the next /a long instructions in the long instruction stream are data-independent of
the current long instruction. In order to execute the EPIC program correctly, all the
hardware has to do to issue a long instruction is to assure itself that no more than la
subsequent long instructions are issued before this instruction has completed. The
hardware is still responsible for scheduling functions but this is restricted to sending
long instructions to the respective functional units: no data dependence check is
required.

Similar to the Horizon EPIC ISA, in the Intel/Hewlett Packard EPIC ISA, or
[A-64 for short, each three instructions are grouped together into 128-bit sized and
aligned containers called bundles. Each bundle contains three 41-bit instruction slots
and a 5-bit template field [Intel99]. The template field specifies two properties: the
mapping of instruction slots to execution unit types, and stops within the current
bundle. The stops define instruction groups. An instruction group is a sequence of
instructions starting at a given bundle address and slot number and including all
instructions at sequentially increasing slot numbers and bundle addresses up to the
first stop or taken branch. Therefore, instruction groups can encompass several
bundles.

The IA-64 specifies dependency restrictions that allow the processor to execute
all (or any subset) of the instructions within a legal instruction group in parallel or
serially with the end result being identical. That is, two or more instructions within a
group should not write to the same register (output dependency), or read from and
write to the same register (true and anti dependencies). Memory reads and writes to
the same address are allowed within groups, however. The IA-64 compiler has to
generate code according to these dependency restrictions. To facilitate this task, the
[A-64 exposes to the compiler a large number of registers: 128 integer, 128 floating-
point, 64 predicate, and a large number of other registers.

Conditional branch instructions use the predicate registers to decide their
outcome. In addition, these registers are used to implement predicated execution (see
Subsection 2.2.5). Instruction hoisting (Subsection 2.2.6) is also supported by IA-64.

Because the dependencies and independencies between instructions are

specified by the compiler, the IA-64 processor only has to fetch one or more bundles,

139



to identify the stops, and to send the independent instructions to the respective
functional units. Memory dependencies can be dealt with via compiler assisted
memory disambiguation, compiler and ISA assisted speculative memory access
[Intel99], and the use of an ARB (Subsection 2.2.4). The new IA-64 processor still
executes legacy 8086 ISA code and all is upgrades [Intel99] but it does so using
special modes that may not take full advantage of the new EPIC processor core. Intel
and Hewlett Packard have not yet disclosed how the microarchitecture of IA-64
processors executes legacy code.

The Intel/Hewlett Packard EPIC architecture relies on compiler technologies
such as predication, instruction hoisting, loop unrolling, software pipelining, etc, to
exploit the ILP available in programs. The DTSVLIW architecture, on the other
hand, does not rely on the compiler to exploit ILP and can achieve performance
executing legacy sequential code. In addition, the DTSVLIW architecture can be
employed to emulate legacy ISA code in IA-64 processors, taking advantage of the
EPIC core. It can also be used to execute EPIC code directly, collecting dynamic
branch behaviour information and organising the code during the scheduling phase of
program execution to increase the processor performance. Due to the availability of
predication and hoisting ISA support, we expect that the DTSVLIW will achieve
performance levels even higher than those shown in this thesis when executing EPIC

code.

7.3 Research Architectures for ILP Exploitation

In this section, we discuss some important machine architectures that have been
targeted by the computer architecture research community’s research efforts, and try

to compare them with the DTSVLIW.

7.3.1 IRAM Architectures

Recently, researchers have suggested the integration of high-performance processors
and dynamic random access memory (DRAM) on the same chip, forming an
architecture called Intelligent RAM (IRAM) [Kozyrakis97]. This suggestion comes

out of the fact that, in the near future, billions of transistors are going to be available
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for computer architects [Burger97], and this would be a good way to make use of
them. They suggested the use of Vector architectures to provide high performance.
We believe that the same principles that motivate the use of Vector architectures in

an IRAM also apply to DTSVLIW architectures.

7.3.2 Simultaneous Multithreaded Architectures

Simultaneous multithreaded processors [Tullsen95, Eggers97] are Superscalar
processors that support multiple machine contexts and execute multiple instruction
streams simultaneously (see Subsection 2.1.5). They do so to reduce the latency of
multithreaded programs (programs where threads are specified by the programmer or
compiler).

The performance of multithreaded machines depends on finding enough thread
parallelism, a task left to the software level. However, to develop multithreaded
applications is challenging due to the extreme difficulty of debugging multithreaded
programs and the lack of automatic thread-partitioning compilers. Because of this,
we share the view of other researchers that simultaneous multithreading is primarily a
technique for improving throughput in multiprogrammed workloads [Lipasti97]. In
addition, the implementation of several hardware contexts is costly and may have a
negative impact on the clock cycle time.

The Multithreaded architecture addresses issues that are orthogonal to those
addressed by the DTSVLIW architecture. Nevertheless, multithreading could be
added to the DTSVLIW, although it might be expensive in terms of silicon area. We
have left the assessment of Multithreaded DTSVLIW architectures for future work.

7.3.3 Dataflow Architectures

Dataflow machines are examples of the class of dependence architectures (Figure
7.1). Programs for Dataflow ISAs explicitly indicate the dependencies that exist
between instructions [Veen86, Rau93a]. This is typically done by including in each
instruction a list of successor instructions. An instruction is a successor of another
instruction if it uses as one of its input operands the result produced by that other
instruction. As soon as all of the input operands of an instruction already inside the

Dataflow machine are available, its hardware executes the instruction and updates
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tables that will trigger the fetch or execution of other instructions. Therefore, the
availability of operands (data) rather than the PC update is responsible for triggering
instruction execution in Dataflow machines and this is what gives rise to the name of
this type of processor.

Studies from past dataflow projects revealed inefficiencies in Dataflow
computing [Veen86]. Compared to its control-flow counterpart, the fine-grain
approach to ILP exploitation of the Dataflow model of parallel execution incurs more
overheads. The overheads involved in detecting enabled instructions and using their
outputs to enable other instructions generally result in poor performance in
applications with low degrees of parallelism, such as scalar programs [Lee_B94].

In a dataflow machine, instructions become enabled when their input data
become available. Thus, the machine has to keep many (hundreds to thousands) not
yet enabled instructions in tables inside the processor in order to have a large enough
instruction window in which to find ILP. To detect many enabled instructions in this
large window simultaneously is a costly operation to perform in hardware. The
machine also has to use the many results produced during execution to update this
large instruction window simultaneously, which is also a costly operation to do in
hardware.

It is interesting to note that the core of superscalar machines operates in a
dataflow manner: The results produced by the functional units propagate back to the
instruction window or reservation stations and trigger the execution of other
instructions. As discussed in Subsection 3.4.1, the overheads incurred by this
restricted dataflow mode of execution are precisely those that are exacerbated in the
general dataflow machine architecture.

Experimental dataflow machines have now been around for more than twenty
years [Davis79], but still there is no consensus as to whether the data-driven model of
execution exposed to the ISA level is a viable means to exploit ILP. In addition,
dataflow architectures obviously cannot be directly used to execute sequential code.
Because of this, they do not offer backward code compatibility for legacy sequential
code as the DTSVLIW does. The realisation of the pure dataflow potential
performance in a feasible cost/effective machine running large scalar programs (such

as those of the SPEC benchmark suite) is yet to be shown. This thesis shows that the
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DTSVLIW can achieve ILP with cost/effective machine configurations.

7.3.4 Multiscalar Architectures

The Multiscalar architecture uses fine-grain and coarse-grain dataflow to exploit ILP.
In a Multiscalar system, sequential programs are partitioned into sequential tasks by
the compiler [Sohi95]. These tasks are dynamically assigned to processing units for
execution. These processing units, like small superscalar processors, use fine-grain
dataflow to exploit intratask ILP. In addition to task partitioning, the compiler
specifies the intertask communication [Vijaykumar99]. When a processing unit
reaches a point in its task execution where a value produced by another processing
unit needs to be consumed, it waits until the value is produced in order to proceed
executing its task code. This realises coarse-grain dataflow.

In a Multiscalar system, the compiler specifies a list of successors for each task.
The Multiscalar hardware predicts a task successor using techniques similar to
branch prediction, and assigns this new task to a new processing unit dynamically.
Apart from the successors of the tasks, the Multiscalar hardware needs to know
where the tasks end, so that it may terminate the tasks’ execution and start the
execution of new ones. To make it possible, the compiler tags the instructions at the
boundaries of the tasks with extra bits to indicate where the tasks end.

Multiple tasks are speculatively executed simultaneously on the multiple
processing units of a Multiscalar machine; however, they are retired in program
order. All intertask register dependencies are honoured by communication and
synchronisation, as specified by the compiler. To do this, the compiler determines the
set of register values that may be consumed by each task. If a task consumes a data
value produced by another task, then the consumer task waits until the value is
received. The compiler determines the last update of each register within tasks and
tags the instructions that modify them with extra bits to indicate that these registers
have to be forwarded. A network is used to communicate register values between
tasks. Intertask memory dependencies are honoured by speculation and validation in
hardware. This is achieved using an ARB (see Subsection 2.2.4). Intratask

dependencies are handled by the processing units’ hardware in a way similar to that

of Superscalar processors.

143



To achieve performance, Multiscalar architectures rely on the compiler to
partition the sequential program in tasks that exhibit ILP. They also rely on the
compiler to orchestrate data and control communication between tasks within
hardware support. Therefore, compatibility with legacy sequential code can only be
achieved through recompilation or binary translation. The DTSVLIW, on the other
hand, can execute legacy code directly and does not rely on the compiler to exploit
ILP.

Multiscalar is an interesting architecture, but there are many potential problems
in producing effective hardware and compiler implementations. We believe the

DTSVLIW is a more straightforward approach to exploit ILP.

7.4 Critical Assessment of this Research Work

The goal of this thesis has been to examine the two hypotheses presented in
Subsection 1.2 and repeated below.

e The DTSVLIW architecture can overcome the VLIW object code
compatibility problem while preserving the VLIW architecture simplicity
and high clock rate.

e The DTSVLIW can achieve higher performance than the DIF and
Superscalar architectures using equivalent hardware.

In Chapter 4, we have described the DTSVLIW architecture in detail showing
that it is able to overcome the VLIW object code compatibility problem while
preserving the VLIW simplicity on its main processing engine and overall high clock
rate. In Chapter 6, we have presented and discussed experimental results that show
that, for representative machine configurations, the DTSVLIW achieves higher
performance than the DIF and Superscalar architectures using equivalent hardware.
In this section, we discuss the limits of the validity of the experimental results and

the potential difficulties for the implementation of a DTSVLIW machine in silicon.

7.4.1 On the Limits of Validity of the Experimental Results

In this thesis, we have examined the integer performance of the DTSVLIW.

Therefore, the results presented here are valid for the class of integer programs, but
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not necessarily valid for other classes of programs. We have chosen to examine the
DTSVLIW performance with this class of programs first, because experiments have
shown that integer programs do not have much ILP and their ILP is hard to extract, if
compared with floating-point programs for example [Wall93]. We have left the
evaluation of the DTSVLIW performance with other classes of programs for future
work.

Within the class of integer programs, we have chosen the integer programs of
the SPEC95 and SPEC92 benchmark suites as test programs for the DTSVLIW in the
experiments reported here. The number of test programs in the SPEC9S and SPEC92
is, however, small. Nevertheless, results obtained using SPEC programs are
considered to be representative by researchers in the experimental computer
architecture field and these programs are officially used by most computer
manufacturers to compute and advertise performance indices.

We have used the first 50 million instructions executed in each program as
sample for most of the experiments in this thesis. However, the first instructions
executed in a program include start up code that is not part of the algorithms
exercised in the program. In addition, 50 million instructions would represent a short
execution time in a real DTSVLIW machine. Nevertheless, experiments reported in
the literature have shown that the inputs of the SPEC integer programs can be chosen
in a way that allows them to complete execution running from as little as 30 million
to little more than 200 million instructions [Nair97, Rotenberg99]. This indicates that
50 million instructions is representative of the programs execution behaviour. In
addition, a real machine is likely to switch the execution context to another program
within the execution of 50 million instructions, as discussed in Section 5.2.

We have used our DTSVLIW simulator to produce the experimental results for
most of the experiments described in Chapter 6. The only exceptions are
experimental results for the Nair and Hopkins’s DIF [Nair97], in Figure 6.16, for the
IBM’s VLIW [Moreno97, Moudgill96], in Figure 6.17, and for the Diep’s
PowerPC620 [Diep95], in Figure 6.18, which have been collected from the literature.
The use of results previously published in literature is of course valid and common
practice in research. However, the validity of the comparison of the results produced

by our simulator and those mentioned above is limited by the following factors:
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e The ISA we have used has been the Sparc 7 ISA, while the ISA used in the
results we have collected from the literature was the PowerPC ISA.

e We have used execution-driven simulation in our experiments, while trace-
driven simulation has been used to produce the results of some of the
experiments we have collected from the literature.

e The input files used to produce the results we have collected from the
literature are not shown in the literature, and are possibly different from
those we have used.

e The compiler used to produce the object code of the benchmarks used in
our experiments was different from the compilers used in the experiments
reported in the literature.

e The number of instructions executed is significantly different in the
comparisons between the DTSVLIW and the DIF (Figure 6.16), and
DTSVLIW and VLIW (Figure 6.17).

RISC ISAs are very similar. According to Patterson and Hennessy [Paterson96
(page C-22)], “In the history of computing, there has never been such widespread
agreement on computer architecture.” The PowerPC ISA is, however, more powerful
than the Sparc 7 ISA. The PowerPC ISA has features such as multiple conditional
code fields and, load/store & update, branch on count register, load/store multiple,
and string instructions that are not found in the Sparc 7 ISA [Patterson96 (Appendix
C)]. Because of these features, the number of PowerPC instructions needed for
executing a program may be smaller than the number of Sparc 7 instructions needed
for executing the same program under the same conditions. This may result in an IPC
index for the Sparc 7 ISA better than the IPC index for the PowerPC ISA under the
same architectural conditions.

We have used execution-driven simulation in our experiments, while trace-
driven simulation has been used to produce the results of the Nair and Hopkins’s DIF
[Nair97] and Diep’s PowerPC620 [Diep95] experiments. Due to the characteristics
of the DIF architecture, the use of trace-driven simulation is not likely to affect the
DIF’s results. However, the use of trace-driven simulation certainly affects the
measured performance of Superscalar machines. This happens because instructions in

the mispredicted paths of branches are fetched and use resources of the Superscalar
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core in real machines (or execution-driven simulations). In trace-driven simulations,
these resources are not consumed and, because of this, Superscalar machines are
likely to perform better when simulated with trace-driven simulators than when
simulated with execution-driven simulators.

The input data may affect the amount of ILP exhibited by programs. However,
the input data used to produce the results we have collected from the literature has
not been made available in the literature. Therefore, we may have used different input
files and this may have a significant impact on the relative performances presented in
the comparisons between the DTSVLIW and the DIF, VLIW, and PowerPC620. We
have used a compiler different from those used in the results collected from the
literature, and the number of instructions simulated in the DIF and VLIW simulations
have also been different. All these limit the validity of the mentioned comparisons.

To isolate the effect of each of these factors (and possibly others not
mentioned) for each comparison would be very difficult if at all possible. One might
argue that it would have been better to implement our own VLIW simulator/compiler
and Superscalar simulator and use these for the comparison with the DTSVLIW. (We
have implemented our own DIF simulator and compared its performance with
DTSVLIW’s in Subsection 6.3.) However, this amount of work is beyond the scope
of a research work of the magnitude of this thesis. In addition, the results we would
obtain are unlikely to be significantly better than those we have collected from the

literature.

7.4.2 On the DTSVLIW Implementation Difficulties

The hardware of a DTSVLIW machine can be divided into five main blocks (see
Figure 1.1): three caches — the Data Cache, the Instruction Cache, and the VLIW
Cache; and two engines — the VLIW Scheduler Engine and the VLIW Engine. The
Data Cache is a standard multiported cache and the Instruction Cache is a small
standard single-ported cache. The VLIW Cache is also an ordinary cache, with one
read and one write ports; its single additional feature is an extra field per directory
entry to store the nba of the blocks saved (see Section 4.4). We believe there are no
particular difficulties in the implementation of these caches, except for the extra

silicon area that may be required by the VLIW Cache. Nevertheless, a si gnificant part
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of the silicon area for the VLIW Cache, if not all, can come from that which
otherwise would be used for the Instruction Cache, as we have shown in Section 6.5.

The DTSVLIW Scheduler Engine can be divided into the Scheduler Unit and
the Primary Processor. We have shown that the core operations performed by the
Scheduler Unit are not complex (see Section 4.6), and the Primary Processor is a
simple pipelined scalar processor; therefore, both offer no significant implementation
difficulties.

In order to exploit the ILP available in programs, the VLIW Engine of a
DTSVLIW machine has to employ many functional units that operate in parallel. A
machine with a large number of functional units requires a large number of register
file ports and data cache ports, but large multiported data cache and register files
impact on the clock cycle time. However, any machine using an equivalent number
of functional units would suffer the same problem. Moreover, techniques such as
functional units clustering and data cache interleaving can be used in the DTSVLIW
to ameliorate this problem. We have left the study of the impact of incorporating
these techniques into the DTSVLIW architecture for future work.

We have not examined the implementation of the register renaming mechanism
of the DTSVLIW in Chapter 4. This is because the logic necessary for register
renaming in the DTSVLIW is likely to be simple. The DTSVLIW has to rename less
than one register per cycle on average because not all instructions inserted in the
scheduling list during scheduling have to be renamed. Nevertheless, in the worst case
all candidate instructions in the DTSVLIW scheduling list may have to be renamed in
the same clock cycle. If the number of long instructions in the scheduling list is large,
16 for example, this may complicate the register renaming logic. However, renaming
in the DTSVLIW consists of simply getting a new name for a register from the pool
of available registers, which may be implemented as a simple array of bits. Therefore,
the logic necessary for implementing register renaming is not likely to affect the
DTSVLIW implementation complexity or clock cycle time.

A simple register renaming scheme that takes advantage of the DTSVLIW
register renaming characteristics would, for example, allocate the renaming registers
necessary for each instruction during their insertion in the scheduling list. This could

be done by using registers containing the renaming register names as pointers to the
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array of bits representing the pool of available registers. Every cycle, the pointer for
each type of renaming register would be moved to a bit in the respective array
indicating a remaming register available. An instruction being inserted in the
scheduling list receives the pointer value as the name of a renaming register. These
renaming register names accompany each candidate instruction, and the Scheduler
Unit uses them if a candidate instruction needs to be renamed. In case the candidate
instruction is installed without being renamed, the renaming register name is used to
change the bit in the renaming register pool, indicating that the renaming register is
available again. This scheme only requires each cycle: updating the position of the
pointers moved due to the insertion of one instruction, and updating the arrays
representing the renaming registers due to return of unused registers. The maximum
number of renaming registers consumed by a single instruction is two and the
maximum number of array updates is equal to the number of long instructions in the
scheduling list. Therefore, the logic necessary for implementing this scheme is not
likely to affect the DTSVLIW clock cycle time.

In the scheme for renaming registers described, some registers are taken from
the poll, held for some cycles, and then made available again. This appears to reduce
the effective number of renaming registers available by almost the size of the
scheduling list. However, in fact, instructions requiring different renaming register
types are likely to alternate during insertion, which reduces the number of renaming
registers of each type being held. Furthermore, there are potentially other register
renaming schemes more effective than this. We have described this one only to show
that is possible to implement register renaming in the DTSVLIW with simple
hardware that should not affect the DTSVLIW clock cycle time.
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Chapter 8

Summary, Conclusions and Future Work

This thesis presents the definition and the evaluation of the integer performance of
the Dynamically Trace Scheduled VLIW (DTSVLIW) architecture. This architecture
can be used to implement machines that execute code of current RISC or CISC ISAs
in a VLIW fashion, delivering instruction-level parallelism with backward code
compatibility. Our main motivation for the development of the DTSVLIW
architecture came from the observation that small instruction caches (16Kbytes) can
achieve high average hit rates (99%), which shows that there is strong code execution
locality in programs. The DTSVLIW architecture takes advantage of the code
execution locality by executing programs in two distinct modes. The first time a
fragment of code is encountered, it is executed in sequential mode by a simple
pipelined processor, the DTSVLIW’s Primary Processor. At the same, this code
fragment is scheduled by the DTSVLIW’s Scheduler Unit into parallel long
instructions (VLIW instructions) and saved in the DTSVLIW’s VLIW Cache. In
subsequent execution encounters, the DTSVLIW’s VLIW Engine executes the
scheduled version of the code in parallel mode.

The DTSVLIW architecture is similar to the DIF, proposed by Nair and
Hopkins [Nair97]. We have conceived the DTSVLIW independently of the DIF,
however, which has permitted an implementation significantly different from that
suggested by the proponents of DIF. The DTSVLIW differs from the DIF in the
organisation of the cache used by the VLIW Engine, in its scheduling algorithm, in

its register renaming mechanism, and in the VLIW Engine register access
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mechanism.

8.1 Thesis Summary

In this thesis, we present and evaluate the DTSVLIW architecture, a processor
architecture that we have designed and developed to exploit ILP by using a dynamic
code scheduler and a VLIW execution core. In order to evaluate the DTSVLIW, we
have surveyed: several architectures for exploiting ILP; several ISA, hardware, and
software support for exploiting ILP; and published research on the amount of ILP
available in programs. We have then discussed aspects of the DTSVLIW architecture
that are related to previous work on microcode scheduling and VLIW architectures.
In addition, we have discussed systems that, like the DTSVLIW, can be used to solve
the VLIW object code compatibility problem or take advantage of code locality to
exploit the ILP available in programs.

The key features of the DTSVLIW are the scheduling of the instruction trace
produced by the Primary Processor into long instructions and the VLIW Engine
addressing of long instructions. The DTSVLIW schedules instructions using a
simplified version of the FCFS algorithm, historically used for microcode
compaction. This algorithm has been adapted to perform superblock scheduling and
to operate in a pipelined fashion. The superblocks are generated in the form of a list
of long instructions. A simple and effective long instruction addressing mechanism
groups these long instructions in blocks, which are saved in the VLIW Cache for the
VLIW Engine to execute. The DTSVLIW scheduling and addressing of long
instructions allows support for precise interrupts and for the execution of: programs
that read their own code as data, programs with self-modifying code, and programs
with load instructions that cause side effects (memory mapped I/O).

We have implemented a parameterised and instrumented execution-driven
simulator of the DTSVLIW. Using this simulator, we have examined the effect of
various architectural parameters on the DTSVLIW performance when running the
SPECint95 benchmark suite. Our results show that the DTSVLIW can achieve
average ILP higher than 4 IPC with 16 untyped functional units and perfect caches,
and 2 IPC with a feasible machine configuration with 12 typed functional units and

caches of reasonable sizes. Our results also show that the DTSVLIW performs better
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than DIF, VLIW, and Superscalar architectures for important machine configurations.

8.2 Conclusions

The design of the DTSVLIW architecture has been driven by the requirement to
develop an architecture that can be effectively implemented to realise the fast
clocking that can be achieved with VLIW designs. The Primary Processor and the
VLIW Engine of the DTSVLIW do not restrict the achievable clock rate. It is the
Scheduler Unit that is the key to an efficient and high clock rate implementation. As
detailed in Section 4.6, the core logic of the Scheduler Unit is straightforward to
implement, being comparable to an integer adder, and as such should not render the
DTSVLIW cycle time longer than that determined by the VLIW Engine design. The
remaining operations performed by the simplified version of the FCFS instruction
scheduling algorithm used by the DTSVLIW have a complexity that is readily
implementable.

Our experimental results confirm that the DTSVLIW takes advantage of code
execution locality. The experiments discussed in Subsection 6.1.5 show that the
DTSVLIW’s Instruction Cache can be substituted for a simple instruction buffer if its
VLIW Cache is large enough. That is, with a large enough VLIW Cache, the
DTSVLIW spends most of its time executing parallel code. The experiments in
Subsection 6.1.5 further confirm this, showing that the fact that the Primary
Processor retains multicycle instructions at its execute pipeline stage until they
complete execution does not impact on the DTSVLIW performance.

Our results demonstrate, however, that multicycle load instructions impose a
severe performance penalty on the DTSVLIW architecture and it is clear that it is
important to get the load latency as close to one cycle as possible. Single cycle store
instructions are not so important. Nevertheless, reasonably low load latency (3
cycles) is achievable with high clock rate Superscalars, as demonstrated by the Alpha
21264 processor [Kessler99], and the same or lower load latency can be expected in
DTSVLIW implementations.

Our results demonstrate the effectiveness of the DTSVLIW scheduling
algorithm. Experiments in Section 6.2 show that there is no significant reduction in

performance over other candidate scheduling algorithms, even though these
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algorithms are expected to be more difficult to implement. Even more so if the high
clock rate of the VLIW Engine is to be achieved.

The DTSVLIW scheduling algorithm requires far fewer resources than the
Greedy algorithm used by the DIF architecture in order to achieve equivalent
performance, as have been shown in our previous paper [deSouza99¢c] and in Section
6.3. In this section, our experiments show that the DTSVLIW achieves performance
similar to the DIF. However, while the DTSVLIW uses 18 integer and 6 FP renaming
registers and a 216-Kbyte VLIW Cache, the DIF requires 96 integer and 96 FP
renaming registers and a 463-Kbyte DIF Cache.

In many areas that have great needs for processing power, the behaviour of
algorithms is irregular and dependent on the input data, making it necessary to
perform instruction scheduling at run time to achieve performance. Architectures
such as the VLIW and EPIC rely solely on the compiler to exploit the ILP available
in programs. The DTSVLIW, on the other hand, does not rely on the compiler to
exploit ILP. The experiments presented in Section 6.4 demonstrate that the
DTSVLIW algorithm is able to find more parallelism than a state-of-the-art VLIW
compiler under similar conditions. This is possible because the DTSVLIW scheduler
algorithm has access to dynamic information not available to the VLIW compiler.
Nevertheless, we believe that a conjunction of the DTSVLIW architecture and
compiler technology such as loop unrolling, software pipeline, and predication (if
added to the DTSVLW ISA) would produce performance even better than that shown
in Section 6.4.

In Section 6.5, we have compared the performance of a powerful Superscalar
processor with the performance of an equivalent DTSVLIW machine configuration.
Our results have shown that the DTSVLIW performance is overall better than the
Superscalar. This is so because the scheduling list of the DTSVLIW is larger than the
instruction window that the Superscalar uses for scheduling. However, even though
larger, the DTSVLIW’s scheduling list is likely to be simpler to implement than the
Superscalar’s instruction window. The DTSVLIW’s scheduling list is potentially
simpler to implement because only one instruction can be inserted into the
DTSVLIW’s scheduling list each cycle, while the instruction window of a

Superscalar processor has to be able to receive many instructions per cycle. This
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difference in complexity of the scheduling hardware, aggravated by the fact that the
Superscalar scheduling hardware is in its main data-path, is likely to make the
Superscalar clock cycle slower than the DTSVLIW’s. Therefore, in real
implementations, the DTSVLIW performance is likely to be significant better than
the Superscalar performance for implementations using equivalent technologies.

Due to the Superscalar fetch bottleneck (discussed in Subsection 3.4.1), which
1s going to limit the performance of future more parallel Superscalar machines,
several new architectures have being proposed and some classical architectures
revisited recently. We believe that two of these new architectures are particularly
promising: Trace Cache and EPIC.

The Trace Cache architecture, like the DTSVLIW, takes advantage of code
execution locality to achieve ILP. In fact, the DTSVLIW and the Trace Cache
architecture can be seen as members of the same family of architectures. The main
difference between them is in how they divide the responsibility for performing ILP
extraction functions within their functional units. The Trace Cache architecture’s
execution-core performs all ILP related functions, while the DTSVLIW’s execution-
core performs none. On the other hand, the DTSVLIW’s Scheduler Unit performs all
ILP related functions and the Trace Cache architecture’s Fill Unit performs none. We
believe that machines following the DTSVLIW philosophy of simplicity in the main
execution-core are likely to perform better than machines in which the execution-
core is the main responsible for instruction scheduling tasks. This view is
corroborated by the evolution of the Alpha family of microprocessors. With their
simple ISA and implementation tailored to high clock rate, Alpha microprocessors
are “performance leaders since their introduction in 1992” [Kessler99].

The new generation of Intel processors, which is going to substitute the current
Pentium processors (x86 or IA-32 ISA), is going to have EPIC ISA. EPIC
architectures are a result of two decades of research in VLIW compilers and
architectures. They are similar to pure VLIW but their ISA incorporate features that
resolve most of the VLIW disadvantages. EPIC architectures, however, still rely
solely on the compiler to expose the ILP to their hardware. The DTSVLIW
architecture, on the other hand, does not rely on the compiler to exploit ILP. In

addition, the DTSVLIW architecture can be employed to emulate legacy ISA code in
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new EPIC processors, taking advantage of the EPIC core. It can also be used to
execute EPIC code directly, collecting dynamic branch behaviour information and
organising the code during the scheduling phase of program execution to increase the
EPIC processor performance. Due to the availability of predication and hoisting ISA
support in EPIC architectures, we expect that the DTSVLIW will achieve
performance levels even higher than those shown in this thesis when executing EPIC

code.

8.3 Future Work

The DTSVLIW architecture opens several new avenues of research. In this section,

we discuss some of them that we will investigate in future work.

8.3.1 Mechanisms for Reducing the Impact of Load Latency

The experiments in Subsection 6.1.6 and Subsection 6.1.7 show that the load
instruction latency strongly affects the DTSVLIW performance. However, techniques
such as fast address calculation [Austin96], zero-cycle loads [Austin96], or load
value prediction [Lipasti96a] can be adapted and incorporated into the DTSVLIW for
reducing the impact of the load latency. Another promising research topic that we
intend to investigate is the incorporation of mechanisms for data prefetching in the

Scheduling Unit or VLIW Engine of the DTSVLIW.

8.3.2 New VLIW Cache Organisations

The results presented in Subsection 6.1.7 show that the DTSVLIW does not use its
VLIW Cache efficiently. A large number of nop instructions are saved into the VLIW
Cache. However, the Scheduling Unit could compact the blocks of long instructions
before saving them in the VLIW Cache. This would allow good performance with
small VLIW Caches. On the other hand, this would increase the number of pipeline
stages of the VLIW Engine and consequently the next long instruction miss penalty.
Nevertheless, next long instruction prediction hardware might be used to minimise

the next long instruction miss penalty.
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8.3.3 Next Long Instruction Prediction

When the VLIW Engine misses in the VLIW Cache, at least one DTSVLIW cycle is
lost. However, we believe that available techniques for hardware branch prediction

can be adapted to be used for next long instruction prediction in the DTSVLIW.

8.3.4 Clustered DTSVLIW

Larger DTSVLIW machines requires large number of register file and data cache
ports. This may affect the DTSVLIW clock cycle time negatively. However, the
VLIW Engine core can be divided into several clusters of functional units, each
cluster with its private register file. Register values that are required by other clusters
can be forward, paying a delay cost, through a network connecting the clusters. The
data cache can be interleaved, allowing multiple fast accesses via the association of

different clusters to different ranges of data addresses.

8.3.5 DTSVLIW Performance with Other Classes of Program

This thesis investigates the DTSVLIW integer performance. We expect the
DTSVLIW performance to be higher when execution other classes of program such
as floating-point and multimedia code due to their higher available ILP. However, the
latency of multicycle instructions may have a significant impact on the performance

of the DTSVLIW when executing these classes of code.

8.3.6 DTSVLIW-Tailored Compilers

Although the DTSVLIW does not rely on the compiler to exploit the ILP available in
programs, it can benefit from compiler optimisations tailored to improve the
performance of its scheduling algorithm. In fact, the DTSVLIW architecture 1s
complementary to compiler techniques for extracting ILP, in that the latter does static
scheduling while the former does dynamic scheduling. While dynamic scheduling is
better, it is constrained by the amount of code that the hardware can analyse and by
the characteristics of the code presented for analysis. The compiler can assist the
DTSVLIW by producing code that allows easier implementation of the scheduling
hardware, e. g. EPIC code, and code that, when dynamically scheduled by the
DTSVLIW, results in high ILP. Hence, new compiler techniques, such as predication
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and instruction hoisting, can be used to produce code tailored for the DTSVLIW. The
impact of these compiler techniques on the DTSVLIW performance is another topic

that we intend to investigate in future work.
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Glossary

ARB
BHT
BTB
CISC
DAISY
DIF
DSVLIW
DTSVLIW
EPIC
FCFS

o

ILP

IPC
IRAM
ISA

MPS

nba

NLS

Arithmetic and Logic Unit

Address Resolution Buffer

Branch History Table

Branch Target Buffer

Complex Instruction Set Computers

Dynamically Architected Instruction Set from Yorktown
Dynamic Instruction Formatting

Dynamically Scheduled VLIW

Dynamically Trace Scheduled Very Long Instruction Word
Explicitly Parallel Instruction Computing

First Come First Served

input/output

instruction-level parallelism

instructions per cycle

Intelligent Random Access Memory

instruction set architecture

Miss Path Scheduling

next block address

next line and set
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nop
PC
RISC

SPEC

u.a.m.

VLSI

VMM

no-operation

program counter

Reduced Instruction Set Computer

Standard Performance Evaluation Corporation
using arithmetic mean

Very Long Instruction Word

Very Large Scale Integrated

Virtual Machine Monitor
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